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Abstract

Motivation: Measuring discrepancies between protein models and native structures is at the heart

of development of protein structure prediction methods and comparison of their performance.

A number of different evaluation methods have been developed; however, their comprehensive

and unbiased comparison has not been performed.

Results: We carried out a comparative analysis of several popular model assessment methods

(RMSD, TM-score, GDT, QCS, CAD-score, LDDT, SphereGrinder and RPF) to reveal their relative

strengths and weaknesses. The analysis, performed on a large and diverse model set derived in

the course of three latest community-wide CASP experiments (CASP10–12), had two major direc-

tions. First, we looked at general differences between the scores by analyzing distribution, corres-

pondence and correlation of their values as well as differences in selecting best models. Second,

we examined the score differences taking into account various structural properties of models

(stereochemistry, hydrogen bonds, packing of domains and chain fragments, missing residues,

protein length and secondary structure). Our results provide a solid basis for an informed selection

of the most appropriate score or combination of scores depending on the task at hand.

Contact: ceslovas.venclovas@bti.vu.lt

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Measuring similarity between different conformations of the same

protein is a common though far from trivial task in computational

structural biology. This task is particularly important in the protein

structure prediction field, because both development of structure

prediction methods and their benchmarking depend on comparison

of modeled and native (reference) protein structures. For more than

two decades, advances in protein structure prediction have been

monitored by the community-wide CASP experiments (Moult et al.,

2018). The progress in protein structure prediction has also stimu-

lated the development of methods for model accuracy evaluation.

However, as the problem of protein structure comparison is multi-

parametric in nature (Kufareva and Abagyan, 2012), it is impossible

to arrive at a universally acceptable single measure that can tell the

whole story about the modeled structure. That’s why a well-

rounded assessment of model-target similarity should include vari-

ous conceptually different measures. Knowing distinctive properties

of the measures may help select their combinations that would be

most suitable for a given task such as developing and benchmarking

structure prediction methods, or identifying models with desired

characteristics for specific biomedical applications.

To date, multiple reference-based model evaluation scores have

been proposed. Depending on the design and implementation

details, the measures can be categorized into several binary classes:

superposition-based or superposition-free; based on rigid-body (glo-

bal) similarity or local similarity of constitutive regions; considering

all atoms or only selected subsets of atoms (e.g. Ca atoms). This

study is dedicated to comprehensive comparison of scores
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commonly used by method developers for benchmarking their mod-

eling approaches and CASP assessors for evaluating submitted mod-

els. To this end, we compared Root-Mean-Square Deviation

(RMSD) (Kabsch, 1976), Template Modeling (TM) score (Zhang

and Skolnick, 2004), Global Distance Test (GDT) score (Zemla

et al., 1999, 2001), Contact Area Difference (CAD) score

(Olechnovi�c et al., 2013, 2014), Local Distance Difference Test

(LDDT) (Mariani et al., 2013), SphereGrinder (Kryshtafovych et al.,

2014; Lukasiak et al., 2015), Recall, Precision and F-measure (RPF)

score (Huang et al., 2012, 2014) and Quality Control Score (QCS)

(Cong et al., 2011).

To avoid subjective judgment, we did not treat any score as a

‘gold standard’, i.e. no measure was considered superior to others.

Instead, our analyses aimed at comparing specific characteristics of

the scores that could be considered as desirable in general. Probably

one of the most desired features of a measure is its ability to give ad-

vantage to models with higher fraction of accurately modeled resi-

dues, without explicitly penalizing for inaccurate regions. This

feature is also important for methods development as it encourages

the construction of complete models. Another desirable property is

the potential of a measure to address flexibility of specific regions or

relative orientation of structural domains. Whereas in CASP this

issue is partly circumvented by splitting multidomain proteins into

rigid evaluation units upon manual inspection, such a recipe is not

acceptable for automatic model evaluation systems such as CAMEO

(Haas et al., 2018). As protein structure prediction continues to pro-

gress, an important feature of a good score is the ability to promote

realistic stereo chemical features of the structural model. Examples

of other looked-for features are independence on protein size and

secondary structure content.

2 Materials and methods

Considered scores are described in Table 1 and in more detail in

Supplementary Data. To simplify comparison of the scores some of

them were rescaled or transformed to fit within the same (0, 1)

range. For GDT-TS/HA and SphereGrinder, fractions were used in-

stead of percentages. RMSD was transformed to a (0, 1) range score

(tRMSD) similarly as proposed earlier (Levitt and Gerstein, 1998)

using the following equation: tRMSD¼1/(1þ(RMSD/10)2). With

this transformation, identical structures (RMSD¼0) result in

tRMSD¼1, and those with large RMSD get tRMSD close to zero.

Importantly, the relative rank of models is the same according to

both scores.

The scores were compared on merged CASP10–12 data. The en-

tire dataset includes 349 domains derived from both single- and mul-

tidomain targets (127 490 models) as well as 73 intact multidomain

targets (27 879 models). In some analyses, we used a subset of models

submitted on ‘predictable’ targets, or a subset of ‘good’ models only.

Predictable targets were defined as those having at least 15 ‘good’

models scoring above the GDT-TS threshold of 40 (268 targets,

93 271 models in total, 54 182 of them ‘good’). The list of considered

targets and the values of all the scores for corresponding models are

available in the data archive: https://kliment.bitbucket.io/refscores/

data.zip. The structures of targets and models are available at the

Prediction Center (http://predictioncenter.org/download_area/).

Stereochemical features were evaluated using MolProbity (Chen

et al., 2010). Hydrogen bonds were identified with HBplus

(McDonald and Thornton, 1994). Performance of scores on multi-

domain structures was compared using methodology proposed by

Grishin and colleagues (Kinch et al., 2011). The approach is based

on comparison of raw scores for the full structure with the weighted

sum of scores for individual domains. Similarities of scores were

visualized using the multi-dimensional scaling (MDS) method

(Mardia, 1978), which takes a dissimilarity matrix as an input and

outputs a set of points such that the distances between them quantify

the extent of the dissimilarity.

3 Results

3.1 How similar are the scores among themselves?
To answer this question, we checked empirical distributions of the

scores, correspondence of their values, correlation between score-

specific model rankings and agreement in selecting the best model(s).

These analyses were carried out on the single domains dataset to

avoid distortion of the results by conceptually different behavior of

various methods on multidomain targets (analyzed further).

3.1.1 Empirical distribution of scores

Histograms of values for every analyzed score show that in general

score distributions differ (Fig. 1).

RMSD/tRMSD and QCS have clear bimodal distributions,

whereas distributions of GDT-TS, TM-score and in part LDDT only

hint at bimodal character. CAD-AA exhibits roughly a bell-shaped

distribution in a relatively narrow range of values. RPF spreads the

Table 1. Brief description of the analyzed scores

Score Rangea What is measured Superposition

RMSD (global) 0,1 Mean distance between corresponding atoms (Ca or all atoms) Yes; global

TM-score (global) 0, 1 Mean distance between corresponding Ca atoms scaled by a

length-dependent distance parameter

Yes; global

GDT-TS/HA (global) 0, 100 Mean percentage of Ca atoms that fit under 4 distance thresholds:

GDT-TS: 1, 2, 4, 8 Å; GDT-HA: 0.5, 1, 2, 4 Å

Yes; global (four independent

ones)

QCS (global) 0, 1 Agreement between the length and relative orientation of secondary struc-

ture elements, and Ca distances.

No

SphereGrinder (local) 0, 100 Mean percentage of residues whose neighborhoods (spheres) fit under 2

and 4 Å RMSD threshold

Yes; local (atoms within 6 Å

from Ca)

CAD-score (local) 0, 1 Similarity of interatomic contact areas (all atoms or their subsets) No

LDDT (local) 0, 1 Mean fraction of preserved all-atom distances using 4 tolerance thresholds

(0.5, 1, 2, 4 Å) within the 15 Å inclusion radius

No

RPF (local) 0, 1 Normalized F-measure derived from distances between N and C atoms

within the 9 Å inclusion radius

No

aFor all scores, except RMSD, higher values correspond to more similar structures; RMSD values do not have a fixed upper limit.
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models almost evenly along the wide range of values, and

SphereGrinder monotonically assigns better values to fewer models.

Among common trends is the dominance of low scores, reflecting

the nature of the CASP dataset. Additional variants of the analyzed

scores show similar distributions (Supplementary Fig. S1).

Distribution of all-atom RMSD/tRMSD is nearly identical to that of

Ca RMSD/tRMSD. The distribution of a more stringent version of

GDT (GDT-HA) is shifted towards lower values. Similarly, CAD-

score variants CAD-AS (all atom-side chain) and CAD-SS (side

chain-side chain) display shifts towards smaller values and sharper

peaks, indicating a more stringent evaluation of model accuracy.

The observed differences in the distribution of different scores pre-

clude direct comparison of their raw values. However, a common

technique of converting raw values to Z-scores (separately for every

reference structure) leads to similarly distributed values that can be

directly compared or combined (Supplementary Fig. S2).

3.1.2 Correspondence between values of different scores

To study what values can be expected for score ‘B’ when score ‘A’ is

within a given range, we produced scatter plots for every pair of

scores. Results are shown in Figure 2 (in more detail in

Supplementary Figs S3 and S4) with darker color representing the

higher local density of points (values).

From the figure, it is immediately apparent that the correspond-

ences of scores show high heterogeneity. Some correspondences are

relatively well-defined (values are scattered narrowly) whereas

others are not (scattered widely). Some of the best-defined corre-

spondences are among the local scores CAD-AA, LDDT and RPF.

Conversely, RMSD shows poorly defined correspondence with all

the scores. SphereGrinder (local score) is an interesting case. It

shows a poorly defined correspondence with global scores (GDT-

TS, TM-score and QCS) and even with two of the local scores

(LDDT and RPF). However, the correspondence between

SphereGrinder and CAD-AA is one of the least ambiguous. Another

observation is that most correspondences are asymmetric and in

many cases non-linear. As an example, let us consider the corres-

pondence between TM-score and local scores CAD-AA, LDDT and

RPF. In all these cases the correspondences are sigmoidal in shape

and asymmetric. Thus, if we use TM-score as a primary scoring

measure (score ‘A’), the corresponding values of the three scores

(score ‘B’) are relatively well defined. In contrast, when original

scoring is done using CAD-AA, LDDT or RPF, a fairly sharp transi-

tion of TM-score values corresponding to �0.45 of CAD-AA and

�0.4 in case of LDDT and RPF makes it difficult to predict which

values of TM-score can be expected in this range of local scores.

3.1.3 Correlation of scores

Since the correspondence of values for majority of score pairs is

non-linear (Fig. 2), we used Spearman’s rank correlation analysis,

suitable for both linear and non-linear correlations (Altman and

Krzywinski, 2015). We calculated correlation coefficients by consid-

ering models of individual reference structures (targets) separately

and then averaging the coefficients using Fisher’s Z-transformation

(Fisher, 1915). Correlation analysis was applied to all models in the

‘predictable’ single-domain dataset.

Results of this analysis (Fig. 3, Supplementary Fig. S5) show that

the scores are highly correlated, except for RMSD. Also, local scores

and global scores tend to show higher correlation within their own

group. For example, the correlations between LDDT and RPF scores

(local) and between GDT-TS and TM-score (global) for ‘predictable’

targets are correspondingly 0.94 and 0.97, while their cross-

correlations are lower (0.88–0.90) (Fig. 3A). If RMSD is not consid-

ered, RPF shows the most consistent correlation with the other

scores, ranging from 0.90 to 0.94. Visual summary of the results is

provided in Fig. 3B, where proximity of the points quantifies correl-

ation between the corresponding scores.

3.1.4 Selecting a better model out of two

Although the scores (with the exception of RMSD) are highly corre-

lated, they might disagree on which of the two models is more accur-

ate. Since difference in accuracy scores is usually meaningless for

models with low score values, where ‘similarity’ of structures is typ-

ically attributed to random fit of secondary structure elements, we

carried out our analysis on ‘good’ models for ‘predictable’ targets.

Fig. 1. Empirical distribution of score values on the single-domain dataset.

Horizontal axis indicates score values, vertical axis—frequency of the value

occurrence. For RMSD/tRMSD, GDT and CAD-score only representative

versions are shown [Ca RMSD/tRMSD, GDT-TS and all atom CAD-score

(CAD-AA)]

Fig. 2. Correspondence of scores. Scatter plots for ‘A’ and ‘B’ score pairs.

Horizontal direction represents values of score ‘A’, vertical direction repre-

sents score ‘B’. Increasing color intensity represents the increasing local

density of values
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To reduce noise resulting from minor differences between models

and intrinsic uncertainties of scores, we introduced a tolerance

threshold for defining models of comparable accuracy. The thresh-

old is defined as the 25% quantile of all the differences calculated

for a score and roughly corresponds to 2% of the score range for all

scores except for SphereGrinder, where it is about 3%. For example,

a model with a score of 0.65 is considered of similar accuracy to

models scoring in the range of 0.63–0.67 (0.62–0.68 in the case of

SphereGrinder).

Similarly to the correlation analysis, RMSD displays the largest

disagreement with the other scores (Fig. 4). Local scores, in particu-

lar CAD-AA, LDDT and RPF, show very close agreement between

themselves. The largest disagreement between them is only 3%

(Fig. 4A). Among local scores SphereGrinder tends to show slightly

higher disagreement, especially with LDDT (up to 5%). The overall

best agreement is shown by global scores GDT-TS and TM-score.

They disagree on only 0.6% of model pairs. QCS shows not particu-

larly strong, but fairly balanced agreement with both local and glo-

bal scores. The graphical illustration of score agreement is provided

in Figure 4B. All-atom RMSD, GDT-HA and CAD-score variants

(CAD-AS, CAD-SS) behave similarly to their representative variants

(Supplementary Fig. S6).

3.1.5 Selecting the best model(s) out of many

Most common task for any score is to select the best model out of a

set. Therefore, we next tested how scores differ/agree in performing

this task. We used all models from the dataset of ‘predictable’ single

domains, so that for each target reasonably accurate models are

available. For every target, we identified the highest scoring models

according to each of the scores and then compared these top-scoring

models for all pairs of scores. It is not unusual for more than one

model to have identical values according to a given score. Therefore,

we considered that scores agree in the selection of the best model if

they have at least one common model with the best value by both

scores. The best agreement was shown by CAD-AA, LDDT and RPF

as one group and GDT-TS and TM-score as another group (Fig. 5).

Differences in the choice of the best model do not tell whether

these models are of comparable accuracy or not. Therefore, we next

asked how quantitatively different are the selections made by differ-

ent scores. To this end, we calculated Z-scores using one of the raw

scores (let us say score ‘B’) and selected the best model. We then

selected the best model for the same target using another score

(score ‘A’) and recorded the loss of Z-score assigned using score ‘B’

(loss is zero if it is the same best model). We performed this for all

targets using all pairwise combination of scores and calculated aver-

age Z-score losses (Fig. 6). As an example let us consider the CAD-

AA/GDT-TS pair. If models are selected using the CAD-AA (score

‘A’), then the GDT-TS (score ‘B’) Z-score loss is 0.32. If models are

selected with GDT-TS (score ‘A’) the loss of CAD-AA Z-score is

0.4. As in the case of model pairs (Section 3.1.4), selection of the

best model out of many using RMSD (score ‘A’) yields the largest

losses no matter which score ‘B’ is used to calculate Z-score values.

Consistent with relatively good agreement in selecting the best

model, LDDT, CAD-AA and RPF show small losses of Z-score in

relation to each other (from 0.1 to 0.2). However, in this test,

LDDT and RPF show comparable agreement with global scores,

whereas CAD-AA does not. SphereGrinder, also of local nature,

is significantly different from all three. Selection of models

using SphereGrinder results in larger Z-score losses against LDDT,

CAD-AA or RPF (0.4–0.6) than against global scores (0.3–0.4).

GDT-TS and TM-score show negligible difference in selecting best

models. Selection by QCS is similar to that by GDT-TS and TM-

score.

Fig. 4. Score differences in selecting a better model out of two. (A) Fractions

of model pairs, where the disagreement between scores exceeds the toler-

ance threshold. Differences are colored from blue (smallest) to red (largest).

(B) Clustering of scores based on the analysis of model pairs with conflicting

ranking (Color version of this figure is available at Bioinformatics online.)

Fig. 5. Agreement between the scores in selecting the best model out of

many. (A) Average fraction of the same selections. (B) Clustering of scores

according to their agreement in selecting the best model

Fig. 6. Score differences in selecting the best model out of many. (A) Average

losses of Z-score computed by score B (vertical axis) when the best model is

selected using score A (horizontal axis). Z-score losses are colored from blue

(smallest) to red (largest). Note the overall asymmetry of Z-score loss for

score pairs. (B) Clustering of scores according to average Z-score losses

(Color version of this figure is available at Bioinformatics online.)

Fig. 3. Correlation of scores. (A) Spearman’s rank correlation coefficients

computed by averaging per target values. Coloring ranges from blue (high

correlation) to red (low correlation). (B) Clustering of scores according to their

correlations using multi-dimensional scaling (MDS) (Color version of this fig-

ure is available at Bioinformatics online.)
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Comparison of scores based only on the single best model may

be fairly stringent. Therefore, we repeated the analysis for the top-

10 scoring models. In this case different scores tend to agree better

and, accordingly, Z-score losses are in general smaller. At the same

time, the relationship between the scores remains essentially the

same (Supplementary Figs S7 and S8).

3.2 How strongly do the scores favor models with

realistic stereochemical features?
It has been observed that sometimes models with high assessment

scores may have systematically distorted stereochemical parameters

such as bond lengths and angles, and may be physically unrealistic

in general (Sadreyev et al., 2009). To compare how the scores pro-

mote physical realism of models, we selected model pairs for which

different scores disagree on a better model (as in Section 3.1.4

above) and employed an independent method, MolProbity, to

‘judge’ these conflicting rankings. MolProbity does not evaluate the

accuracy of a model; instead it evaluates how well stereochemical

features of the model conform to those derived from high quality ex-

perimental structures. Thus, we asked which score more often ranks

models within the conflicting pair in the same way as MolProbity

does. For this analysis, we only considered ‘good’ models of ‘predict-

able’ targets as it makes no sense to evaluate stereochemistry of

grossly incorrect structures. We performed the analysis by consider-

ing only conflicting pairs with differences larger than a defined

threshold (25% quantile of all the difference values) for both the

considered scores and MolProbity values. Results of this analysis are

shown in Figure 7.

The simplest way to analyze the results is to look at the values of

score ‘A’ along the horizontal axis. Values over 0.5 (shades of blue)

show better agreement with MolProbity than score ‘B’ and vice

versa. Two extremes are clearly identifiable: CAD-AA and RMSD.

CAD-AA agrees with the MolProbity score better than any other

score. The CAD-AA ranking of models in conflicting pairs is favored

by MolProbity over that of other scores in more than 80% of cases

(except for the CAD-AA/LDDT conflicting pairs, where the CAD-

AA/MolProbity agreement is 62%). At the other extreme, the

RMSD’s selection of better models gets the lowest support from

MolProbity. In between these extremes, LDDT and SphereGrinder

receive relatively strong support, being second and third after CAD-

AA. If we look at the individual components of the MolProbity score

(clashes, side chain rotamer outliers and backbone Ramachandran),

the overall picture does not change significantly (Supplementary Fig.

S9): CAD-AA remains supported better than other scores by any in-

dividual MolProbity component.

Other variants of CAD-score (CAD-AS and CAD-SS) agree with

MolProbity in slightly lesser degree than CAD-AA, but still better

than all the other scores (Supplementary Fig. S9). High accuracy ver-

sion of GDT (GDT-HA) agrees with MolProbity slightly better than

GDT-TS, whereas the agreement of all-atom RMSD is about the

same as Ca RMSD.

3.3 Do the scores promote accurate reproduction of the

hydrogen bonds?
An extensive network of hydrogen bonds is a common feature of

folded globular proteins. Typically, in proteins there is only a small

fraction of buried unsatisfied hydrogen bond donors and acceptors.

Therefore, we decided to test to which degree the scores support ac-

curate reproduction of hydrogen bonds of the target in correspond-

ing models. To this end, we chose the same model pairs with

conflicting ranking by different scores as in the MolProbity test

(above). Only in this case we asked which of the two models has

missed fewer hydrogen bonds present in the target structure. In add-

ition to all hydrogen bonds we separately considered non-local

hydrogen bonds (minimal sequence separation of six residues).

Similarly to the MolProbity test, we analyzed only conflicting pairs

with significant differences in both the score values and the number

of missed hydrogen bonds. The results of this test are provided in

Figure 8. CAD-AA agrees best with more accurate hydrogen bond-

ing network, whereas RMSD agrees worst. This is true both for all

and for only non-local hydrogen bonds. The results also show that

in general the local scores support the accurate reproduction of

hydrogen bonding network more strongly than the global scores.

Additional variants of CAD-score, GDT and RMSD behave similar-

ly to their representative ones (Supplementary Fig. S10).

3.4 How robust are the scores in the case of

multidomain proteins?
Many proteins are composed of multiple domains. Their relative

orientation often may not be biologically relevant. However, some

scores, in particular those based on structure superposition, are

known to be quite sensitive to the differences in domain orientation.

We compared suitability of the scores to evaluate models of multido-

main proteins automatically, without splitting them into individual

domains. We took all the models of multidomain targets and per-

formed the analysis using the so-called Grishin plots (see Section 2).

If the difference between the full structure score and the weighted

Fig. 7. Conflicting rankings of model pairs ‘judged’ using MolProbity.

Fractions of conflicting model pairs for which MolProbity supports score ‘A’

(vertical axis) over score ‘B’ (horizontal axis). The MolProbity support is col-

ored from blue (largest) to red (smallest) (Color version of this figure is avail-

able at Bioinformatics online.)

Fig. 8. Conflicting rankings of model pairs ‘judged’ by the number of repro-

duced hydrogen bonds. The scores are compared using differences larger

than a defined threshold (A) for all hydrogen bonds and (B) for only non-local

hydrogen bonds
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sum of domain scores is small, then the measure is insensitive to the

domain orientation and evaluation of models can be performed

without splitting the target structure into domains.

Figure 9 shows Grishin plots for all models of multidomain tar-

gets pooled together. One can see that different scores indeed show

very different sensitivity to domain orientation. For local scores the

deviations from the diagonal line are relatively small indicating that

a given model gets similar value independently of whether it is eval-

uated as a full structure or as separate domains. Global scores show

relatively large deviations from the diagonal, indicating that they are

not suitable for evaluation of models corresponding to multidomain

structures without parsing them into rigid domains. Results for all

the score variants are shown in Supplementary Figure S11.

3.5 How do the scores deal with local structural

deviations
Protein models commonly have structural fragments such as small

subdomains, termini, domain linkers or long loops deviating from

the corresponding ones in the target. These locally deviating frag-

ments can be classified into two major groups: (i) fragments that

have fairly accurate local structure, but are packed (oriented) differ-

ently compared to the native structure and (ii) fragments that have

incorrect local structure. These two types of local deviations may be

considered as special cases of domain orientation and domain struc-

ture modeling problems, respectively. Figure 10 and Supplementary

Table S1 illustrate such cases on the example of target T0663 from

CASP10.

The C-terminal region in two models (Fig. 10A and B) is correct-

ly predicted as a-helical, but its orientation is different and incorrect

in both. Local scores evaluate both models as of similar accuracy

(Supplementary Table S1), whereas global scores, e.g. GDT-TS,

deem the model in orange (Fig. 10A) to be significantly more accur-

ate than the model in yellow (Fig. 10B). This is due to the fact that

the C-terminal fragment of orange model is oriented, although in-

correctly, somewhat less differently compared to the native struc-

ture. The C-terminal fragment of the third model (Fig. 10C, grey)

has even local structure incorrect, and this is recognized by both

local and global scores, although RMSD exaggerates the error to the

point that it may be difficult to distinguish the local error from the

entirely wrong model. If we consider the truncated structure

(Fig. 10, red arrow), the two models (Fig. 10A and B) are of very

similar accuracy by all the scores, including RMSD (Supplementary

Table S1).

3.6 Do the scores favor complete models?
An effective reference-based score should favor the construction of

complete structural model. In other words, exclusion of polypeptide

chain fragments or residues from the model generally should not

produce a better score. To test how scores differ in this regard, we

binned ‘good’ models for single-domain targets according to the

completeness and looked at the behavior of each score. Since we

combined together models for different targets, we used a sliding

window of completeness to smooth the trend lines (Fig. 11). The

RMSD score shows clear improvement as the models get less com-

plete. This is not surprising since the smaller set of superimposed

residues can be expected to have a smaller mean deviation.

SphereGrinder is also somewhat different from the remaining scores

as it stays about the same in the case of incomplete models.

The remaining scores all display a downward trend with CAD-AA

penalizing incomplete models most. Using smaller sliding windows

does not change the picture significantly (Supplementary Fig. S12).

Based on this analysis it is apparent that if a mixture of complete

Fig. 9. Grishin plots reflecting sensitivity of different scores to the relative

orientation of protein domains. Horizontal axis indicates the score values for

the full structure, vertical axis indicates weighted sum of scores for individual

domains

Fig. 10. Different types of local structural deviations. CASP10 target T0663-D1

(blue) superimposed with three models: (A) TS301_5 (orange), (B) TS301_3

(yellow) and (C) TS476_4 (grey). Red arrow indicates the C-terminal region

featuring different types of deviation in the models (Color version of this fig-

ure is available at Bioinformatics online.)

Fig. 11. Response of the scores to model completeness. Horizontal axis indi-

cates the model completeness as the percentage of residues modeled.

Vertical axis indicates mean Z-score for models of the same degree of com-

pleteness. Z-scores are averaged using left-sided sliding window of 15%, e.g.

values at 80% are averages of 95–80% range
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and incomplete models are evaluated against the reference structure,

RMSD would be a poor choice as a score.

3.7 How do the scores depend on the protein length and

secondary structure?
Dependence of a given score on the nature of the protein is not im-

portant when the models are scored against the same target struc-

ture. However, if one aims to make a broader generalization using a

large variety of target structures it is useful to know how a given

score depends on protein properties such as length and/or secondary

structure. It makes sense to investigate how the scores depend on

protein length and secondary structure using only targets for which

most models are reasonably accurate. To perform these tests we

took single-domain targets, for which models have mean GDT-TS

�50% (after removing model outliers with Z-score <�2). To inves-

tigate the length-dependence, we sorted targets by their length and

calculated mean Z-score values for every target using every score.

To get smoother trends, we averaged values for each target and its

neighbors using a centered sliding window. Most scores do not

show any obvious dependency on the protein size (Supplementary

Fig. S13). A clear exception is TM-score, which generally produces

higher values as proteins get larger. Two other scores, QCS and

SphereGrinder, also differ from the remaining ones. QCS tends to

produce lower scores for short proteins. SphereGrinder shows larger

fluctuation than the rest and tends to produce lower values for pro-

teins of up to about 200 residues and higher values for proteins over

250 residues long.

To investigate dependency of scores on secondary structure type,

we took the same dataset and ordered target proteins according to

their secondary structure content from mostly b-structural to mostly

a-helical. As in the size-dependency test, we calculated mean values

for each score using a sliding window (Supplementary Fig. S14). All

scores behave similarly in the case of mostly b-proteins and proteins

with mixed structure (a/b and aþb), but are in general lower for the

former compared to the latter. Also, with the increase of a-helical

content, the scores show increasing divergence.

4 Discussion

Our comparative study of selected reference-based model evaluation

scores aimed at answering two major questions: (i) how similar/dif-

ferent are these scores in general and (ii) how they compare with

each other when specific structural properties are taken into ac-

count. The score similarity analyses revealed that RMSD differs

most. This should not be surprising as RMSD values are heavily

influenced by large errors whereas other scores focus on the accurate

regions, or are local by nature. Similarity between the remaining

scores is considerably higher, in particular within two groups of

scores. One group consists of global scores GDT-TS and TM-score,

whereas another group is formed by local scores LDDT, RPF and

CAD-AA. GDT-TS and TM-score are extremely highly correlated

and show negligible differences in selecting the best model out of

two or out of many. LDDT, RPF and CAD-AA are also highly corre-

lated and nearly always agree on a better model within a given

model pair. Even if the best models selected by LDDT, RPF and

CAD-AA from a set of multiple models are not always the same,

their accuracy is comparable. Where these three scores differ, it is in

their agreement with global scores (e.g. with GDT-TS). The best

models selected using LDDT and RPF typically are also among the

best according to GDT-TS, TM-score or QCS. In the case of CAD-

AA, the selected best models differ by a larger margin. Among local

scores, SphereGrinder is the most distinct, especially in selecting the

best model(s) from a model set. QCS, which considers both global

and local structural features, does not show clear affinity with either

global or local scores. Thus, taking into account correlation and

distinct modes of model selection, all the analyzed scores can be

roughly divided into five groups according to the mutual similarity:

(i) RMSD, (ii) GDT-TS and TM-score, (iii) CAD-AA, LDDT and

RPF, (iv) SphereGrinder and (v) QCS.

Score differences by themselves tell nothing about the efficacy of

scores. Therefore, our second aim was to investigate how the

scores compare with each other when specific structural properties,

namely, stereochemical parameters, hydrogen bonds, differences in do-

main orientation, locally deviating chain fragments, model complete-

ness, protein size and secondary structure type are taken into account.

Among highly preferable features of a score is the ability to pro-

mote physical realism or ‘protein likeness’ of models, including

good stereochemistry and accurately reproduced hydrogen bonding

network. The emphasis on realistic physico-chemical features is es-

pecially important in the development and comparison of methods

for high accuracy modeling and/or structure refinement. When dis-

agreements between the scores were judged in the light of stereo-

chemical criteria, CAD-AA model rankings were supported by

MolProbity far better than those of any other score. Taking into

consideration all atoms may be one of the reasons, since both LDDT

and SphereGrinder (all-atom scores) showed better agreement

with MolProbity than RPF, which uses only N and C atoms.

Nonetheless, the use of all atoms cannot entirely account for this

phenomenon. Other CAD-score variants (CAD-AS and CAD-SS)

use subsets of residue atoms, yet they also agree with MolProbity

better than any other score. When disagreements in pairwise model

rankings were considered with hydrogen bonds in mind, the CAD-

AA rankings again agreed best with more complete hydrogen bond

network. This was true regardless of whether all or only non-local

hydrogen bonds were taken into account. These findings suggest

that interatomic contact areas (CAD-score) perhaps are better suited

than distances (other scores) to promote physical realism of models.

Proteins having multiple domains are very common in nature.

Thus, it is important to identify scores that are not overly sensitive

to relative domain orientation and therefore would be suitable to

evaluate models of multidomain proteins automatically. A related

problem is how to properly assess locally deviating structural

regions or subdomains. When we tested the sensitivity of scores to

the relative domain orientation, we found a clear distinction be-

tween local and global scores. Local scores (CAD-AA, LDDT, RPF

and SphereGrinder) are largely insensitive to domain orientation,

whereas global ones (RMSD, GDT-TS, TM-score and QCS) are. We

showed that local scores are also better suited to deal with local

structure deviations. Notably, local scores can evaluate the accuracy

of the deviating region independently of its relative orientation. In

contrast, global scores focus mostly on the relative orientation of the

deviating region regardless of the accuracy of its local structure.

This distinction between local and global scores has important

implications not only for benchmarking protein structure prediction

methods, but also for estimation of model accuracy. If

superposition-based global scores are not always reliable in the as-

sessment of multidomain proteins, they also cannot be effective

points of reference in estimating global accuracy of multidomain

proteins. Assessment of per-residue accuracy (confidence) estimation

faces similar issues. Let us assume that the chain fragment has accur-

ate local conformation but wrong relative orientation. Should it be

considered accurate or wrong? It depends on whether the exact

orientation is biologically relevant or not. Regardless of the answer
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it is apparent that the accuracy of local structure should be taken

into account, and this can only be done by involving local scores.

In the protein structure prediction field, a commonly held view is

that the construction of complete structural models should be

encouraged. In other words, exclusion of a chain fragment from the

model should be penalized. We compared the behavior of scores de-

pending on the model completeness and found that RMSD is the

weakest score in this respect as incomplete models have a larger

chance of getting better scores. The remaining scores, except

SphereGrinder, which is mostly neutral to model completeness, all

penalize incomplete models, albeit to different extent.

When scoring models for the same target protein, the length and

the secondary structure composition of a protein affect all models

equally. However, these properties of proteins may introduce bias in

evaluation of models on multi-target datasets. According to our

results, of all the scores, TM-score shows the largest dependency

on protein size. TM-score values for small proteins are lower where-

as for large ones are higher. Similar but much less pronounced trend

is displayed by QCS. If secondary structure is concerned, a common

feature of all the scores is slightly higher values for mixed (a/b and

aþb) structures compared with mostly b-structures. In addition,

scores increasingly diverge with the increasing a-helical content.

Collectively, the analyses performed in this study provide a com-

prehensive picture for every considered score and help to better

understand the relationship between scores. Since there may be very

different tasks involving reference-based model assessment, it is dif-

ficult to suggest specific scores or their combinations that would be

best fitting in every case. On the other hand, some general observa-

tions can be made. Whenever two or more scores are utilized in

model evaluation it is inappropriate to directly compare or combine

their raw values, because different scores show distinct distributions,

have different ranges and in most cases display asymmetric corres-

pondence of values (Figs 1 and 2). However, transforming raw val-

ues into Z-scores largely takes care of these issues (Supplementary

Fig. S2). Another observation relates to the selection of best mod-

el(s). Our results show that the superposition-free local scores

(LDDT, RPF and CAD-score) make selections that are more consist-

ent compared to the selections made by global scores such as GDT-

TS or TM-score. This can be seen in the Z-score loss analysis (Fig. 6,

Supplementary Fig. S8). It shows that models selected by these local

scores on average are closer to the top models identified by the glo-

bal scores compared to the opposite scenario, i.e. selecting models

with the global scores and looking how close to the top they are

according to the local scores. Local scores are also better in dealing

with multidomain structures and local deviations as well as in pro-

moting realistic stereochemistry and hydrogen bonding. Consistent

with our results, a recent study has found that the use of local scores

(CAD-score or LDDT) as training targets may benefit the estimation

of model accuracy (Uziela et al., 2018). All these findings suggest

that superposition-free measures possess features that make them

very useful for description and comparison of protein structures in

general and inherently more appropriate for analysis of local struc-

tural details of models in particular. On the other hand, global

scores are well suited for identifying overall correct topology and

might be more informative for assessing differences in domain orien-

tation or deviations of subdomains, loops and tails.

In conclusion, we hope that this comparative study will be useful

not only for benchmarking and comparing protein structure predic-

tion methods but also for many other endeavors in computational

structural biology.
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