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Abstract

The Kalman filter provides a simple and efficient algorithm to compute the posterior distribution 

for state-space models where both the latent state and measurement models are linear and 

Gaussian. Extensions to the Kalman filter, including the extended and unscented Kalman filters, 

incorporate linearizations for models where the observation model p(observation|state) is 

nonlinear. We argue that in many cases a model for p(state|observation) proves both easier to learn 

and more accurate for latent state estimation.

Approximating p(state|observation) as Gaussian leads to a new filtering algorithm, the 

discriminative Kalman filter (DKF), that can perform well even when p(observation|state) is highly 

nonlinear and/or non-Gaussian. The approximation, motivated by the Bernstein–von Mises 

Theorem, improves as the dimensionality of the observations increases. The DKF has 

computational complexity similar to the Kalman filter, allowing it in some cases to perform much 

faster than particle filters with similar precision, while better accounting for nonlinear and non-

Gaussian observation models than Kalman-based extensions.

When the observation model must be learned from training data prior to filtering, off-the-shelf 

nonlinear and/or nonparametric regression techniques can provide a Gaussian model for 

p(observation|state) that cleanly integrates with the DKF. As part of the BrainGate2 clinical trial, 

we successfully implemented Gaussian process regression with the DKF framework in a brain 
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computer interface to provide real-time closed-loop cursor control to a person with a complete 

spinal cord injury. In this paper, we explore the theory underlying the DKF, exhibit some 

illustrative examples, and outline potential extensions.

Keywords

Bayesian filtering; discriminative learning; dynamic state-space models; neural decoding; the 
Kalman filter

1 Introduction

Consider a state space model for Z1:T := Z1,…,ZT (latent states) and X1:T := X1,…,XT 

(observations) represented as a Bayesian network:

Z1 ⋯ Zt − 1 Zt ⋯ ZT

X1 Xt − 1 Xt XT

(1)

The conditional density of Zt given X1:t can be expressed recursively using the Chapman–

Kolmogorov equation and Bayes’ rule (see Chen, 2003, for further details):

p zt x1: t − 1 = ∫ p zt zt − 1 p zt − 1 x1: t − 1 dzt − 1, (2a)

p zt x1: t = p xt zt p zt x1: t − 1
∫ p xt zt p zt x1: t − 1 dzt

= p xt zt p zt x1: t − 1
p xt x1: t − 1

, (2b)

where p(z0|x1:0) = p(z0) and the conditional densities p(zt|zt−1) and p(xt|zt) are either 

specified a priori or learned from training data prior to filtering. Computing or 

approximating Equation 2 is often called Bayesian filtering. Bayesian filtering arises in a 

large number of applications, including global positioning systems, target tracking, aircraft 

and spacecraft guidance, weather forecasting, computer vision, digital communications, and 

brain computer interfaces (Chen, 2003; Hall, 1966; Battin and Levine, 1970; Grewal and 

Andrews, 2010; Buehner et al., 2017; Brown and Hwang, 2012; Schmidt et al., 1970; 

Brandman et al., 2017).

Exact solutions to Equation 2 are only available in special cases, such as the Kalman filter 

(Kalman, 1960; Kalman and Bucy, 1961). The Kalman filter models the conditional 

densities p(zt|zt−1) and p(xt|zt) as linear and Gaussian so that the posterior distribution p(zt|

x1:t) is also Gaussian and quickly computable. Beneš (1981) and Daum (1984, 1986) 

broadened the class of models for which the integrals in Equation 2 are analytically tractable 

but many model specifications still fall outside this class. When the latent state space is 

finite, the integrals in Equation 2 become sums that can be calculated exactly using a grid-

based filter (Elliott, 1994; Arulampalam et al., 2002). For more general models, there are 

many techniques for approximate Bayesian filtering; see Chen (2003) for a review.
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In some applications, parts of the underlying model are first learned from supervised training 

data consisting of (Zt,Xt) pairs and then the learned model is used for filtering on new (Xt) 

data. For instance, (Zt,Xt) pairs might be used to learn p(xt|zt) with nonparametric 

conditional density estimation and then the learned p(xt|zt), say p xt |zt , is substituted into 

whatever algorithm is used to approximate Bayes’ rule in Equation 2b. This motivates the 

search for combinations of approximation algorithms and learning methods that work well 

together. It also opens the door to novel approximation algorithms that would not 

traditionally be considered for a known model but become practical when the model can be 

learned. For instance, from (Zt,Xt) pairs we can choose to learn p(xt|zt) or p(zt|xt) and 

incorporate either into the approximation algorithm, whereas traditional approximation 

algorithms assume that only p(xt|zt) is available.

In this paper, we explore the idea of using a novel approximation algorithm that pairs well 

with learning and demonstrate its use in an intracortical brain computer interface (iBCI) for 

a human volunteer with tetraplegia as part of the ongoing BrainGate2 clinical trial. Our 

approach focuses on the approximation of Bayes’ rule in Equation 2b, making use of the fact 

that p(xt|zt) can be replaced with p(zt|xt)/p(zt) throughout. (The p(xt) term cancels.) This 

strategy combines well with various Gaussian assumptions that are often employed in 

approximate Bayesian filtering, resulting in what we call the discriminative Kalman filter 
(DKF). The DKF retains much of the computational simplicity of the classical Kalman filter, 

but allows for arbitrary observation models. Some of our clinical research using the DKF has 

already been published (Brandman et al., 2018b,a), and theoretical aspects of the DKF are 

further explored in the first author’s dissertation (Burkhart, 2019).

2 The discriminative Kalman filter

In Section 2.1, we derive the DKF approximation for a class of models that generalizes the 

Kalman filter by allowing for arbitrary observation models. We discuss approximation 

accuracy in Section 2.2 and introduce a modified algorithm that can be more robust to model 

misspecification in Section 2.3. In Section 2.4, we compare the DKF formalism to a variety 

of existing approaches that generalize the Kalman filter and, in Section 2.5, we discuss using 

the DKF approximation in models with nonlinear and/or non-Gaussian state dynamics.

We now introduce some notation and conventions. We let the latent states Zt take values in 

ℝd × 1 and the observations Xt take values in an abstract space X. In all of our examples, 

X ⊆ ℝn × 1, but this is not necessary. We use ηd(z;µ,Σ) to denote the d-dimensional 

multivariate Gaussian distribution with mean vector μ ∈ ℝd × 1 and covariance matrix 

Σ ∈ Sd evaluated at z ∈ ℝd × 1, where Sd denotes the set of d×d positive definite (symmetric) 

matrices. We let A⊤ refer to the transpose of a matrix A and use E and V  for expected value 

and variance/covariance, respectively.

2.1 Filter derivation

For the basic derivation, we assume that the latent states form a stationary, mean zero, 

Gaussian, vector autoregressive model of order 1. Namely, for A ∈ ℝd × d and S, Γ ∈ Sd,
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p z0 = ηd z0; 0, S , (3a)

p zt zt − 1 = ηd zt; Azt − 1, Γ , (3b)

for t = 1, 2,…, where S = AS A⊤ + Γ so that the process is stationary. Note that Equation 3 

matches the latent state model for the stationary Kalman filter. (The assumption of zero 

mean is easily generalized, but it is usually more convenient to center the Zt process by 

subtracting the common mean.)

The observation model p(xt|zt) is assumed to not vary with t, so that the joint (Zt,Xt) process 

is stationary but otherwise arbitrary. The observation model can be non-Gaussian, 

multimodal, discrete, etc. For instance, in neural decoding for BCI applications, the 

observations are often vectors of counts of neural spiking events (binned action potentials), 

which might be restricted to small integers or even be binary-valued.

The DKF is based on a Gaussian approximation for p(zt|xt), namely,

p zt xt ≈ ηd zt; f xt , Q xt , (4)

where f :X ℝd and Q:X Sd. Note that Equation 4 is not an approximation of the 

observation model, but rather of the conditional density of the latent state given the 

observation at a single time step. In Section 2.4, we compare this to other approaches that 

use Gaussian approximations for Bayesian filtering. When the dimensionality of the 

observation space X  is large relative to the dimensionality of the state space ℝd , the 

Bernstein–von Mises Theorem states that there exists f and Q such that this approximation 

will be accurate, requiring only mild regularity conditions on the observation model p(xt|zt); 

see Section 2.2 in van der Vaart (1998). Furthermore, we can take f and Q to be the 

conditional mean and covariance of Zt given Xt, namely,

f x = E Zt Xt = x , Q x = V Zt Xt = x , (5)

which is the approach taken in this paper, although other choices are certainly possible, such 

as f xt = argmaxztp zt |xt  or f xt = argmaxztp xt |zt , the latter of which is most commonly 

used in statements of the Bernstein–von Mises Theorem.

To make use of Equation 4 for approximating Equation 2, we first rewrite Equation 2b in 

terms of p(zt|xt) as

p zt x1: t = p xt
p xt x1: t − 1

p zt xt
p zt

p zt x1: t − 1 ,

= p xt
p xt x1: t − 1

p zt xt
p zt ∫ p zt zt − 1 p zt − 1 x1: t − 1 dzt − 1,

(6)

where the second line follows from the the Chapman–Kolmogorov equation (Equation 2a). 

We then substitute the latent state model (Equation 3) and the DKF approximation (Equation 
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4) into Equation 6. We absorb terms not depending on zt into a normalizing constant κ to 

obtain

p zt x1: t ≈ κ x1: t
ηd zt; f xt , Q xt

ηd zt; 0, S ∫ ηd zt; Azt − 1, Γ p zt − 1 x1: t − 1 dzt − 1

.
(7)

If p(zt−1|x1:t−1) is approximately Gaussian, which it is for the base case of t = 1 from 

Equation 3a (defining p(z0|x1:0) = p(z0)), then all of the terms on the right side of Equation 7 

are approximately Gaussian. If these approximations are exact and the analytic expression 

for covariance is valid (specifically if Σt in Equation 9 is positive definite), we find that the 

right side of Equation 7 is again Gaussian, giving a Gaussian approximation for p(zt|x1:t). 

We rely on the fact that dividing two Gaussian pdf’s yields an exponentiated quadratic form 

that will itself be Gaussian if the associated covariance matrix is positive definite (and that 

the product of two Gaussian pdf’s is Gaussian, without any additional assumptions). See the 

proof of Lemma 1 in Appendix 7 for a full derivation and further details.

Let

p zt x1: t ≈ ηd zt; μt x1: t , Σt x1: t (8)

be the Gaussian approximation of p(zt|x1:t) obtained from successively applying the 

approximation in Equation 7. Defining µ0 = 0 and Σ0 = S, we can sequentially compute 

μt = μt x1: t ∈ ℝd × 1 and Σt = Σt x1: t ∈ Sd via

νt = Aμt − 1, Mt = A Σt − 1 A⊤ + Γ , Σt = Mt
−1 + Q xt

−1 − S−1 −1, μt = Σt Mt
−1νt + Q xt

−1f xt . (9)

The first two steps incorporate the exact state dynamics in Equation 3b and the final two 

steps incorporate the observation information using the DKF approximation in Equation 4. 

The function Q needs to be defined so that Σt exists and is a proper covariance matrix. A 

sufficient condition that is easy to enforce in practice is Q ⋅ −1 − S−1 ∈ Sd; see Appendix 

6.3.

Equation 9 encapsulates the DKF. For pseudocode, see Algorithm 1 Once f(xt) and Q(xt) 

have been evaluated, there is no remaining dependence on n and a single iteration of the 

algorithm takes O(d3) operations, which is at least as fast as the Kalman filter (when d < n). 

The power of the DKF, along with potential computational difficulties, comes from 

evaluating f and Q. If f is linear and Q is constant, then the DKF and the Kalman filter are 

equivalent (cf. Section 4.1). More general f and Q allow the filter to depend nonlinearly on 

the observations, improving performance in many cases. If f and Q can be quickly evaluated 

and the dimension d of Zt is not too large, then the DKF is fast enough for use in real-time 

applications, such as the BCI decoding example below.

2.2 Approximation accuracy

Let the observation space be X = Bn for some set B. As n grows, the Bernstein–von Mises 

(BvM) Theorem guarantees under mild assumptions that the conditional distribution of Zt|Xt 
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is asymptotically normal in total variation distance and concentrates at Zt (van der Vaart, 

1998). This asymptotic normality result provides the main rationale for our key 

approximation expressed in Equation 4. The BvM Theorem is usually stated in the context 

of Bayesian estimation. To apply it in our context, we equate Zt with the parameter and Xt 

with the data, so that p(zt|xt) becomes the posterior distribution of the parameter at a fixed 

time t. We then let the dimension n of xt grow, meaning that we are observing growing 

amounts of data at a fixed time t associated with the parameter Zt. Very loosely speaking, the 

BvM Theorem tends to be applicable in situations where Xt uniquely determines Zt in the 

limit as n → ∞, but does not uniquely determine Zt for any finite n.

Algorithm 1: the DKF

Data: observations x1, x2, …; matrices A ∈ ℝd × d and S, Γ ∈ Sd such that
z0, z1, … are drawn from stationary process satisfying Equation 3;

functions f :X ℝd and Q:X Sd such that

p zt xt ≈ ηd zt; f xt , Q xt and Q ⋅ −1 − S−1 ∈ Sd, either derived
analytically or approximated from data

Result: μt = μt x1: t ∈ ℝd × 1 and Σt = Σt x1: t ∈ Sd to approximate the
posterior distribution as p zt x1: t ≈ ηd zt; μt, Σt for t = 1, 2, …

Initialize μ0 = 0 and Σ0 = S;
for t ≥ 1 do

set νt = Aμt − 1 and Mt = A Σt − 1 A⊤ + Σ ;

set Σt = Mt−1 + Q xt −1 − S−1 −1 and μt = Σt Mt−1νt + Q xt −1f xt ;
end

One concern is that Equation 6 will amplify approximation errors. Along these lines, we 

prove the following result that holds whenever the BvM Theorem is applicable for Equation 

4:

Theorem 1. Under mild assumptions, the total variation distance between our 
approximation ηd(zt;µt(x1:t), Σt(x1:t)) and the exact filtering distribution p(zt|x1:t) converges 
in probability to zero for each t as n → ∞.

This result is stated formally and proven in Appendix 7. We interpret the theorem to mean 

that under most conditions, as the dimensionality of the observations increases, the 

approximation error of the DKF tends to zero.

The proof is elementary, but involves several subtleties that arise because of the p(zt) term in 

the denominator of Equation 6 corresponding to ηd(zt;0,S). This term can amplify 

approximation errors in the tails of p(zt|xt), which are not uniformly controlled by the 

asymptotic normality results in the BvM Theorem. To remedy this, our proof also uses the 

concentration results in the BvM Theorem to control pathological behaviors in the tails. As 

an intermediate step, we prove that the theorem above still holds when the p(zt) term is 

omitted from the denominator of Equation 6 (see Remark 3 in Appendix 7).

Burkhart et al. Page 6

Neural Comput. Author manuscript; available in PMC 2021 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.3 Robust DKF

Omitting the p(zt) from the denominator of Equation 6 is also helpful for making the DKF 

robust to violations of the modeling assumptions and to errors introduced when f and Q are 

learned from training data. Repeating the original derivation, but without ηd(zt;0,S) in the 

denominator, gives the following filtering algorithm that we call the robust DKF. One can 

think of the robust DKF as a special case of the standard DKF where all eigenvalues of S−1 

are so small that the effect of subtracting S−1 is negligible. This has the effect of placing an 

improper prior on Z0. Defining µ1(x1) = f(x1) and Σ1(x1) = Q(x1), we sequentially compute 

µt and Σt for t ≥ 2 via

νt = Aμt − 1, Mt = A Σt − 1 A⊤ + Γ , Σt = Mt
−1 + Q xt

−1 −1, μt = Σt Mt
−1νt + Q xt

−1f xt . (10)

(Note that we initialize at t = 1 and not t = 0 in the robust DKF.) Justification for the robust 

DKF comes from Remark 3 in Appendix 7 showing that the robust DKF accurately 

approximates the true p(zt|x1:t) in total variation distance for each t as n increases. We 

sometimes find that the robust DKF outperforms the DKF on real-data examples, but not on 

simulated examples that closely match the DKF assumptions. For pseudocode, see 

Algorithm 2.

2.4 Other Gaussian approximations

The DKF enforces a Gaussian form for the filtering distribution p(zt|x1:t), which is a 

common strategy for approximate Bayesian filtering, owing to the analytic and 

representational tractability of Gaussians. In this section, we describe several other methods 

that use Gaussian approximations, focusing on the case of linear, Gaussian state dynamics. 

For this type of state dynamics the transition from time t−1 to time t is usually separated into 

two distinct steps when using Gaussian approximations. Beginning with the first step uses 

the exact state dynamics (Equation 3b) to create a Gaussian approximation for p(zt|x1:t−1), 

namely,

p zt − 1 x1: t − 1 ≈ ηd zt − 1; μt − 1, Σt − 1

Algorithm 2: the robust DKF
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Data: observations x1, x2, …; matrices A ∈ ℝd × d and S, Γ ∈ Sd such that
z0, z1, … are drawn from stationary process satisfying Equation 3;

functions f :X ℝd and Q:X Sd such that
p zt xt ≈ ηd zt; f xt , Q xt

Result: μt = μt x1: t ∈ ℝd × 1 and Σt = Σt x1: t ∈ Sd to approximate the
posterior distribution as p zt x1: t ≈ ηd zt; μt, Σt for t = 1, 2, …

Initialize μ1 x1 = f x1 and Σ1 x1 = Q x1 ;
for t ≥ 2 do

set νt = Aμt − 1 and Mt = A Σt − 1 A⊤ + Γ ;

set Σt = Mt−1 + Q xt −1 −1 and μt = Σt Mt−1νt + Q xt −1f xt ;
end

p zt x1: t − 1 ≈ ηd zt; νt, Mt , (11)

where νt = Aµt−1 and Mt = A Σt − 1 A⊤ + Γ, as in Equations 9 and 10. Most Gaussian 

methods would proceed similarly for the first step under these state dynamics. Differences 

between methods appear for nonlinear or non-Gaussian state dynamics; see Section 2.5.

The second step attempts to incorporate the observation information xt via Bayes rule:

p zt x1: t =
p xt zt p zt x1: t − 1

∫ p xt zt p zt x1: t − 1 dzt
.

Beginning with the Gaussian approximation from step 1 (Equation 11) and enforcing the 

final approximation

p zt x1: t ≈ ηd zt; μt, Σt ,

the problem reduces to finding µt and Σt so that

ηd zt; μt, Σt ≈ p xt zt ηd zt; νt, Mt
∫ p xt zt ηd zt; νt, Mt dzt

= qt zt , (12)

where qt is defined by this equation.

There are many strategies in the literature for choosing µt and Σt in Equation 12. The 

terminology is not standardized, but we will attempt to describe some prominent classes of 

strategies.

2.4.1 Gaussian assumed density filter—The Gaussian assumed density filter (G-

ADF) usually refers to choosing µt and Σt to be the mean vector and covariance matrix of the 

density qt in Equation 12 (Kushner, 1967; Ito, 2000; Ito and Xiong, 2000; Minka, 2001a). 

Moment matching, in this case, minimizes the relative entropy D(qt||ηd(·;µt, Σt)). The G-

Burkhart et al. Page 8

Neural Comput. Author manuscript; available in PMC 2021 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ADF directly seeks a Gaussian approximation to the full posterior p(zt|x1:t), whereas the 

DKF derives a Gaussian approximation to the full posterior from a Gaussian approximation 

of p(zt|xt). While the G-ADF approach tends to prove quite accurate, it is only practical if 

the mean and covariance of qt are available. In particular, we must be able to efficiently 

compute or easily approximate the integrals

a = ∫ p xt zt ηd zt; νt, Mt dzt,

b = ∫ ztp xt zt ηd zt; νt, Mt dzt,

c = ∫ ztzt⊤p xt zt ηd zt; νt, Mt dzt,

(13)

to obtain µt = b/a and Σt = c/a − μtμt⊤. There also exist extensions of the G-ADF. For 

instance, expectation propagation uses iterative refinement of estimates to improve upon 

assumed density filtering (Minka, 2001b,a). It may be possible to similarly improve the 

DKF, but iterating over the history of observations is typically not practical in an online 

setting and we do not explore that approach here.

In cases where the DKF is derived from a known model, as opposed to being learned from 

training data, computing f(xt) and Q(xt) requires the computation of very similar integrals to 

those needed for the G-ADF, the difference being that vt and Mt are replaced by 0 and S, 

respectively, throughout Equation 13 (and then f(xt) = b/a and Q xt = c/a − f xt f xt
⊤). For 

this reason, in models where the G-ADF can be easily used, there would seem to be no 

reason to use the DKF. The main difference is that the DKF can be easily learned from 

training data, whereas the G-ADF cannot, since the latter is based on the conditional mean 

and variance of Zt|Xt derived under a different marginal distribution for Zt at each time step, 

namely, ηd(zt;νt,Mt). The example in Section 4.2 below illustrates a model where both the 

DKF and G-ADF can be analytically computed; there is little difference in performance. The 

example in Section 4.3 illustrates a somewhat contrived model where the DKF can be easily 

computed, but it seems the G-ADF cannot.

2.4.2 Laplace approximation—The Laplace approximation uses a Taylor 

approximation at the maximum to coerce the numerator in Equation 12 into a Gaussian form 

as a function of zt (Butler, 2007; Koyama et al., 2010; Quang et al., 2015). Defining

gt zt = log p xt zt ηd zt; νt, Mt and zt∗ = argmaxztgt zt ,

a second order Taylor approximation of gt at zt∗ is

gt zt ≈ gt zt∗ + ġt zt∗ zt − zt∗ + zt − zt∗
⊤g̈t zt∗ zt − zt∗ /2,

where ġt z  and g̈t z  denote, respectively, the d×1 gradient vector and the d×d Hessian 

matrix of gt evaluated at z. The second term vanishes since ġt is zero at the maximum, giving
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qt zt ∝ exp gt zt
≈ exp gt zt∗ + zt − zt∗

⊤g̈t zt∗ zt − zt∗ /2

∝ ηd zt; zt∗, − g̈t zt∗
−1 .

This motivates the choice of μt = zt∗ and Σt = − g̈t zt∗ . Similar to the DKF, the Laplace 

approximation can be justified in the limit of increasing observation dimensionality using 

the BvM Theorem. If zt∗ or the derivatives of gt are not available in closed form, then the 

Laplace approximation can be slow, owing to the need to solve an optimization problem at 

each time step. Laplace approximations are also criticized for being too local, in that the 

local curvature in the density at zt∗ dictates the variance chosen for a global approximation to 

the density.

2.4.3 Linearization methods—Several methods, often called linearization methods, 

can be motivated by attempting to approximate the numerator of Equation 12 as jointly 

Gaussian in (zt,xt), namely,

p xt zt ηd zt; νt, Mt ≈ ηd + n
zt
xt

νt
ℎt

,
Mt Ct

Ct
⊤ Nt

, (14)

where the history of observations x1:t is allowed to influence the choice of ℎt ∈ ℝn × 1, 

Nt ∈ Sn, and Ct ∈ ℝd × n. Using this approximation allows Equation 12 to be exactly 

integrated to obtain

μt = νt + CtNt
−1 xt − ℎt and Σt = Mt − CtNt

−1Ct
⊤ . (15)

Methods differ in how they choose ht, Nt, and Ct.

Using ηd(zt;νt,Mt) as the marginal density for Zt, Equation 14 can be rewritten as

p xt zt ≈ ηn xt; bt + Htzt, Λt . (16)

The implicit linearization in Equation 14 is now explicit: E Xt |Zt = zt  is approximated as 

the linear function bt + Htzt. The relationship between the different parameters in Equations 

14 and 16 is bt = ℎt − Ct
⊤Mt

−1vt , Ht = Ct
⊤Mt

−1, and Λt = Nt − Ct
⊤M−1Ct. Upon re-

parameterization, Equation 15 can be used for filtering with

Σt = Mt−1 + Ht⊤ Λt−1 Ht
−1,

μt = Σt Mt−1νt + Ht⊤ Λt−1 xt − bt ,

which has a similar appearance to the corresponding DKF updates in Equation 9.
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Equation 16 underlies several Gaussian approximations to Bayes’ rule, including the 

approximations used in the extended Kalman filter (EKF), the unscented Kalman filter 

(UKF: Julier and Uhlmann, 1997; Wan and van der Merwe, 2000; van der Merwe, 2004), 

and the statistically linearized filter (SLF: Gelb, 1974; Särkkä, 2013). The EKF, for instance, 

begins with the functions

ℎ z = E Xt Zt = z and Λ z = V Xt Zt = z ,

which are assumed known, and takes Ht = ℎ̇ νt , bt = ℎ νt − Htνt, and Λt = Λ(νt), where ℎ̇ z
is the n×d matrix of partial derivatives of h evaluated at z. These choices of bt and Ht 

correspond to a first-order Taylor approximation of h at the point νt. Like the Laplace 

approximation, the EKF is often criticized for being too local, because the gradient of h at a 

single point drives the approximation.

The unscented Kalman filter (UKF) employs the eponymous transform to propagate 

weighted, deterministically-chosen points through a nonlinear transformation and recover 

estimates for ht, Nt, and Ct from Equation 15. The estimates for all three parameters prove 

exact for linear transformations of Gaussians but inexact for general higher order 

polynomials (Särkkä, 2013), so we consider this a linearization method. Variations on this 

approach, collectively called sigma-point filters (van der Merwe, 2004), include the central 

difference Kalman filter (CDKF: Ito and Xiong, 2000; Nørgaard et al., 2000), the Gauss–

Hermite Kalman Filter, the Quadrature Kalman filter (Ito, 2000; Ito and Xiong, 2000) and 

the Cubature Kalman filter (Arasaratnam et al., 2007; Arasaratnam and Haykin, 2009).

The SLF is a related, but more global approximation for the same observation model. It 

selects bt and Ht to minimize the difference between the true observation model 

Xt = ℎ Zt + ϵt and the linear approximation Xt ≈ at + BtZt + ϵt where Zt is chosen from the 

current, approximate, predicted distribution. For instance, at and Bt can be chosen to 

minimize

∫ ℎ zt − at + Btzt 2ηd zt; νt, Mt dzt,

where || · || is the usual Euclidean norm in ℝn. Defining ℎt = ∫ ℎ zt ηd zt; νt, Mt dzt and 

Ht = ∫ ℎ zt − ℎt zt − νt
⊤ηd zt; νt, Mt dzt, the solution is Bt = HtMt

−1, and at = ℎt − Btνt, 

again with Λt = Λ. Like the EKF, this version of the SLF is best suited for additive, Gaussian 

noise models, but it further requires that the integrals defining ℎt and Ht can be efficiently 

computed or easily approximated.

The UKF, the SLF, and many related techniques improve upon some of the deficiencies of 

the EKF. Nevertheless, these methods tend to perform poorly when the conditional 

distribution of Xt given Zt cannot be well-approximated as Gaussian. The examples in 

Sections 4.2 and 4.3 below illustrate models where linearization proves completely 

ineffectual, as ℎ z = E Xt |Zt = z = 0 for all z in these examples, even though the G-ADF 

and the DKF work well.
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2.5 Nonlinear state dynamics

As described in the previous section, filtering can be conceptually separated into two steps. 

The first step uses the state dynamics to transition from Zt−1|X1:t−1 to Zt|X1:t−1 via Equation 

2a and the second step uses Bayes’ rule to update Zt|X1:t−1 into Zt|X1:t via Equation 2b. In 

this paper, difficulties with the first step are removed by assuming linear, Gaussian, state 

dynamics (Equation 3). There are, however, a variety of approximation methods for more 

complicated state dynamics, including methods that approximate p(zt|x1:t−1) as a Gaussian. 

Any such Gaussian method could be easily combined with the DKF approximation, which 

relates to Bayes’ rule in the second step. In particular, given the approximation

p zt x1: t − 1 ≈ ηd zt; νt, Mt ,

we simply use these values of νt and Mt in the DKF algorithm (Equation 9) or the robust 

DKF algorithm (Equation 10), instead of computing them in the first two lines of these 

algorithms. In this paper, we do not explore in depth this generalization to nonlinear state 

dynamics, although we do provide a proof of concept example in Section 4.4 below.

There is a vast literature on more general approximation algorithms for Bayesian filtering 

(Särkkä, 2013; Chen, 2003). Monte Carlo integration (Metropolis and Ulam, 1949) can 

almost always be used. Such approaches are called sequential Monte Carlo or particle 

filtering and include sequential importance sampling and sequential importance resampling 

(Handschin and Mayne, 1969; Handschin, 1970; Gordon et al., 1993; Kitagawa, 1996; del 

Moral, 1996; Doucet et al., 2000; Cappé et al., 2005, 2007). These methods apply to all 

classes of models but tend to be the most expensive to compute online and suffer from the 

curse of dimensionality (Daum and Huang, 2003). Alternate sampling strategies (see, e.g., 

Chen, 2003; Liu, 2008) can be used to improve filter performance, including: acceptance-

rejection sampling (Handschin and Mayne, 1969), stratified sampling (Douc and Cappé, 

2005), hybrid MC (Choo and Fleet, 2001), and quasi-MC (Gerber and Chopin, 2015). There 

are also ensemble versions of the Kalman filter that are used to propagate the covariance 

matrix in high dimensions including the ensemble Kalman filter (enKF: Evensen, 1994) and 

the ensemble transform Kalman filter (ETKF: Bishop et al., 2001; Majumdar et al., 2002), 

along with versions that produce local, parallelizable approximations for covariance (Ott et 

al., 2004; Hunt et al., 2007).

It may be possible to usefully combine the DKF approximation with some of these more 

advanced filtering techniques. The key approximation in the DKF is

p xt zt = p xt
p zt xt

p zt
≈ κ xt

ηd zt; f xt , Q xt
ηd zt; 0, S . (17)

This approximation could, in principle, be substituted for the likelihood p(xt|zt) in any 

filtering algorithm, including particle filters, which incorporate the likelihood into the 

particle weights. The normalizing term κ(xt) from Equation 17 will generally cancel, since 

the final posterior distribution p(zt|x1:t) is invariant to terms depending only on x1:t. The 

advantage of Equation 17 is that f(·), Q(·), and S, might be easier to learn from data than the 

full conditional density p(xt|zt). For complex state dynamics, it is worth noting that the 
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denominator ηd(zt;0,S) will no longer precisely correspond to p(zt) but will also be an 

approximation. If the Gaussian approximations for p(zt|xt) and p(zt) are learned separately, 

some care may need to be taken to ensure the resulting approximation to p(xt|zt) remains a 

good one. One strategy might be to learn a Gaussian-shaped approximation to the density 

ratio p(zt|xt)/p(zt), as a function of zt (Sugiyama et al., 2012). Another strategy might be to 

use the robust DKF approximation as in Section 2.3, which simply drops the denominator in 

Equation 17. In future work, we plan to explore these and other approaches that might allow 

a DKF-style approximation to be incorporated into more general filtering models.

3 Learning the DKF

The parameters in the DKF are A, Γ, f(·), and Q(·). (S is specified from A and Γ using the 

stationarity assumption.) In many problems, some or all of these parameters might be 

unknown or not easily computable. In this section we discuss some strategies for learning or 

approximating the parameters in the situation where fully supervised training data is 

available, meaning that we have a sequence of (Zt,Xt) pairs assumed to be sampled from the 

underlying Bayesian network in Equation 1 and denoted z1′ , x1′ , …, zm′ , xm′ . This training 

data might be real data, or it might be simulated from a known generative model for which 

the parameters, particularly f and Q, are not easily computable.

We use A, Γ, f , and Q to denote the respective learned parameters. We only consider the 

situation where the parameters are learned from training data and then fixed for subsequent 

filtering on a different sequence of observations. In particular, for filtering we simply replace 

each parameter with its corresponding estimate in the DKF algorithm in Equation 9. We do 

not consider a more fully Bayesian approach where parameter uncertainty is propagated 

through the filtering equations.

A and Γ are the parameters of a well-specified statistical model given by Equations 3a–3b. 

In the learning experiments below we learn them from zt − 1′ , zt′  pairs using only Equation 

3b, which reduces to multiple linear regression and is a common approach when learning the 

parameters of a Kalman filter from fully observed training data (see, for example, Wu et al., 

2002).

The parameters f and Q are more unusual, since they are not uniquely defined by the model, 

but are introduced via a Gaussian approximation in Equation 4. One possibility, and the one 

we focus on here, is to define f and Q via Equation 5 and then learn them directly from 

training data as

f x ≈ f x = E Zt Xt = x and Q x ≈ Q x = V Zt Xt = x . (18)

Using Equation 18, we learn f and Q from zt′, xt′  pairs ignoring the overall temporal 

structure of the data, which reduces to a standard nonlinear regression problem with 

heteroscedastic variance. The conditional mean f can be learned using any number of off-

the-shelf regression tools and then Q can be learned from the residuals, ideally using a held-

out portion of the training data. We think that the ability to easily incorporate off-the-shelf 
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discriminative learning tools into a closed-form filtering equation is one of the most exciting 

and useful aspects of this approach.

In the experiments below, we compare three standard nonlinear regression methods for 

learning f: Nadaraya-Watson (NW) kernel regression, neural network (NN) regression, and 

Gaussian process (GP) regression. Details are in the Appendix. While we have found that 

these methods work well with the DKF framework, one could readily use any arbitrary 

regression model.

For learning Q, we first define Rt = Zt − f(Xt) and Rt = Zt − f Xt , so that

Q x = V Zt Xt = x = E RtRt
⊤ Xt = x ≈ E RtRt

⊤ Xt = x . (19)

The final expression in Equation 19 is a conditional expectation and can in principle be 

learned with regression on RtRt
⊤, Xt  pairs. Learning Q in this way using off-the-shelf 

regression tools is more challenging because of the additional requirement that Q(x) be a 

valid covariance matrix. Since RtRt
⊤ is positive semidefinite, any regression estimator that is 

a weighted average of the training data with only nonnegative weights will also be positive 

semidefinite and, in most cases, positive definite. NW kernel regression constitutes one such 

method and we use it for learning Q in all of our examples below. Given a subset of the 

training set zi″, xi″ i = 1
k , distinct from the subset used to learn the function f, we define the 

residuals r i = zi″ − f xi″ , and then learn Q using NW kernel regression via

Q x =
∑i = 1

k r ir i
⊤κ x, xi″

∑i = 1
k κ x, xi″

, (20)

for a kernel κ:X × X 0, ∞ . Complete details are in the Appendix.

4 Examples

In this section, we compare filter performance on both artificial models and on real neural 

data. Corresponding MATLAB code (and Python code for the LSTM comparison) is freely 

available online at https://github.com/burkh4rt/Discriminative-Kalman-Filter under the GNU 

General Public License v3.0 to encourage code use and adaptation. For timing comparisons, 

the code was run on a Mid-2018 MacBook Pro laptop with a 2.6 GHz Intel Core i7 

processor using MATLAB v. 2019a and Python v. 3.6.8.

4.1 Kalman observation model

The stationary Kalman filter observation model is

p xt zt = ηn xt; b + Hzt, Λ
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for observations in X = ℝn × 1 and for fixed b ∈ ℝn × 1, H ∈ ℝn × d, and Λ ∈ Sn. Defining f 

and Q via Equation 5 gives

Q x ≡ Q = S−1 + H⊤ Λ−1 H −1 and f x = QH⊤ Λ−1 x − b .

It is straightforward to verify that the DKF in Equation 9 is exactly the well-known Kalman 

filter recursion. Hence, the DKF computes the exact posterior p(zt|x1:t) in this special case.

4.2 Kalman observation mixtures

This example and the next are designed to illustrate how the Gaussian approximation 

underlying the DKF is more similar in spirit to the G-ADF than to linearization 

approximations such as the Kalman filter, the EKF, and the UKF (Section 2.4). In particular, 

the specific observation model used in the simulation below is engineered so that the state Zt 

and the observation Xt are uncorrelated (but not independent). Linearization methods are 

useless in this case, whereas the DKF is able to take advantage of the higher-order 

dependence, much like the G-ADF.

The observation model is a probabilistic mixture of Kalman observation models (Section 

4.1), namely,

p xt zt = ∑ℓ = 1
L πℓηn xt; bℓ + Hℓzt, Λℓ

for a probability vector π = π1:L, where each bℓ ∈ ℝn × 1, Hℓ ∈ ℝn × d, and Λℓ ∈ Sn. At each 

time step, one of L possible Kalman observation models is randomly and independently 

selected according to π and then used to generate the observation. This model can be viewed 

as a special case of a switching state space model with independent switching (see Shumway 

and Stoffer, 1991; Ghahramani and Hinton, 2000). The integrals in Equation 13 can be 

efficiently computed for any choice of νt and Mt, including νt = 0 and Mt = S, so the G-

ADF and the DKF can be computed exactly for this model (see Appendix 6.1 for details), 

although the DKF is much faster for large n, because it allows for more pre-computation. 

Figure 1 illustrates that the DKF is comparable to the G-ADF in terms of root mean squared 

error (RMSE) for a particular instance of this model, and it also shows that the 

computational savings of the DKF over a particle filter with similar accuracy can be 

dramatic, especially as n gets large.

Define b = ∑ℓπℓbℓ and H = ∑ℓπℓHℓ so that

E Xt Zt = b + HZt . (21)

An interesting special case of this model is when H = 0, so that the mean of Xt given Zt does 

not depend on Zt, and, consequently, Xt and Zt are uncorrelated. Information about the states 

is only found in higher-order moments of the observations. Algorithms that are designed 

around E Xt |Zt , such as the Kalman filter, EKF, and UKF, are not useful when H = 0, 
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illustrating the important difference between a Gaussian approximation for the observation 

model and the DKF approximation in Equation 4. The simulation in Figure 1 used H = 0, 

and the ineffectiveness of linearization techniques is easily seen.

4.3 Independent Bernoulli mixtures

Here we describe a model where observations take values in {0, 1}n to further emphasize 

that our Gaussian approximation is in the state space, not in the observation space. Like the 

example in Section 4.2, this example is also engineered so that the states and observations 

are uncorrelated, rendering linearization-based methods ineffective (Section 2.4). Finally, the 

specific parameters of this example are chosen to have the peculiar property that the DKF is 

efficiently computable, whereas the G-ADF is not (insofar as we can tell).

The observation model is a probabilistic mixture of conditionally independent Bernoulli 

random variables, namely,

p xt zt = ∑ℓ = 1
L πℓ∏i = 1

n gℓi zt
xti 1 − gℓi zt

1 − xti,

for a probability vector π = π1:L. For each ℓ = 1, …,L and i = 1,…,n, the functions 

gℓi:ℝd × 1 0, 1  are defined by

gℓi zt = αℓi 1 ztdi < γi + βℓi 1 ztdi ≥ γi ,

where each γi ∈ ℝ, αℓi, βℓi ∈ 0, 1 , di ∈ 1, …, d  and where ztk indicates the kth coordinate 

of zt. The ith coordinate of Xt depends on Zt only through the dith coordinate of Zt, and the 

probability distribution of Xti is different depending on whether Ztdi < γi or not. Each of the 

L components of the mixture changes the probability distribution of Xti, via αℓi and βℓi, but 

it does not change the corresponding coordinate di or the change point γi.

For the state dynamics, we use S = Id, which makes it possible to compute f(zt) and Q(zt) 

exactly; see Appendix 6.2. In general, however, the integrals in Equation 13 are not easily 

evaluated, so the G-ADF is not a practical approximation technique in this example. Figure 

2 suggests that the DKF approximation performs well for a particular instance of this model, 

in the sense that the DKF’s RMSE is near or better than that of a particle filter with a large 

number of particles. The figure also shows that the computational savings over a particle 

filter with similar accuracy can be dramatic, especially as n gets large.

Define gi = ∑ℓπℓgℓi, so that

E Xti Zt = ℙ Xti = 1 Zt = gi Zt . (22)

An interesting special case of this model is when gi is constant for each i, so that the mean of 

Xt given Zt does not depend on Zt, and, consequently, Xt and Zt are uncorrelated. As in the 

previous section, linearization approximations like the Kalman filter, EKF, and UKF are not 
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useful when gi is constant. Furthermore, when gi is constant, then Xti and Zt are independent, 

i.e., individual coordinates of the observations carry no information about the states. Only 

the vector of observations Xt can be used for meaningful predictions of Zt. The simulation in 

Figure 2 used gi ≡ 0.5 for all i, so that each coordinate of the observations is independent of 

the state.

4.4 Kalman observation mixtures with nonlinear state dynamics

This example illustrates how the DKF approximation can be combined with other filtering 

approximations for use with nonlinear state dynamics; see Section 2.5. We include it here as 

a proof of concept and leave for future work a more thorough exploration of when the DKF 

approximation is useful for filtering with nonlinear state dynamics. We use the same mixture 

of Kalman observation models from Section 4.2 but we modify the state dynamics in 

Equation 3 as follows. Define the 2×2 rotation matrix R θ = sinθ cosθ
−cosθ sinθ  and for even d 

define the d×d rotation matrix Rd(θ) to be the block-diagonal matrix with R(θ) repeated 

along the diagonal, namely,

Rd θ =

R θ 0 ⋯ 0
0 R θ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ R θ

.

Define the function a:ℝd × 1 ℝd × 1 via a(z) = ARd(|z|)z, where | · | denotes the Euclidean 

norm. The new state dynamics are

p z0 = ηd z0; 0, S ,

p zt zt − 1 = ηd zt; a zt − 1 , Γ ,

for t = 1, 2,…, where A = AS A⊤ + Γ. These are the same dynamics as before except that the 

conditional mean of Zt given Zt−1 has changed from the linear function AZt−1 to the 

nonlinear function a(Zt−1). In particular, before being multiplied by A, the state vector is 

rotated by an amount that depends on its length. This type of nonlinearity was chosen 

because when S = Id (as in our examples), then Zt remains marginally Gaussian, which is an 

important part of the DKF approximation.

We use an unscented Kalman filter (UKF) approximation for the state dynamics; i.e., we 

replaced νt and Mt in Equations 9 and 10 with the mean and covariance obtained from 

performing the unscented transform (Julier and Uhlmann, 1997). We used Matlab’s

unscentedKalmanFilter

implementation with
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alpha=1,beta=kappa=0

. The UKF approximations of νt and Mt can also be substituted directly into the G-ADF 

used in Section 4.2.

Figure 3 shows filtering performance for a specific instance of this model and illustrates that, 

at least in this case, a DKF approximation for nonlinear, non-Gaussian observation models 

can be usefully combined with other approximations for nonlinear state dynamics, and that 

there is little loss of performance compared to the G-ADF.

4.5 Unknown observation model: Macaque reaching-task data

This example illustrates Bayesian filtering in a case where the observation model is 

unknown and must be learned from data. Flint et al. (2012) implanted a rhesus monkey with 

a 96-channel microelectrode array (Blackrock Microsystems LLC) over the arm area of its 

primary motor cortex (M1). The monkey was trained to move a manipulandum to acquire 

illuminated targets for a juice reward. While performing this task, the monkey’s neural 

spikes were recorded with a 128-channel acquisition system (Cerebus, Blackrock 

Microsystems LLC). The signal was sampled at 30 kHz, high-pass filtered at 300 Hz, and 

then thresholded and manually sorted into spikes offline. Walker and Kording (2013) 

continue to make this data publicly available as part of the Database for Reaching 

Experiments and Models (DREAM). We used data from Flint et al. (2012) and aggregated 

spike counts over 100ms bins. The first n = 10 principal component analysis (PCA) 

components of neural data became the observed variable Xt, and we used the d = 2 

dimensional (horizontal and vertical) cursor velocity (lagged 50ms after the end of the spike 

count bin) as the latent variable Zt.

Tables 1 and 2 compare filtering performance using various learning algorithms and filtering 

methods. For learning the function f :ℝ10 ℝ2 for the DKF, we experimented with 

Nadaraya-Watson (NW) kernel regression, neural network (NN) regression, and Gaussian 

process (GP) regression. In each case we learned the function Q:ℝ10 S2 using NW kernel 

regression from the approximate residuals as in Equation 20. For the Kalman filter, 

parameters are learned in the usual manner via multivariate (linear) regression. For the EKF 

and UKF (see Section 2.4) we learned the conditional mean ℎ:ℝ2 ℝ10 defined by

ℎ z = E Xt Zt = z (23)

via neural network regression, and took the conditional covariance to be constant, namely, 

Λ z = V Xt |Zt = z ≡ Λ ∈ S10, which we learned from the approximate residuals. Finally, 

we also experimented with a Long Short Term Memory (LSTM) recurrent neural network 

for predicting Zt given X1:t. In all cases, we used 5000 training points and a different 1000 

testing points. More details about all of these methods are in Appendices 6.4–6.7.

The DKF using NW kernel regression was the best method among the ones that we tried, 

and all versions of the DKF were near the top in performance. Under the Mean Absolute 

Angular Error (MAAE) metric (Simeral et al., 2011), each version of the DKF outperformed 
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prediction using the corresponding f , illustrating the benefit of filtering to combine 

information from both past and present observations. The EKF and UKF performed poorly. 

We do not know the degree to which poor performance is a result of errors introduced by the 

EKF and UKF approximations or a result of errors introduced from learning the function h 
in Equation 23. All versions of the DKF outperformed the LSTM that we used. The LSTM 

and its variants require manually selecting a neural network architecture and several tuning 

parameters. This is often done by experts through trial and error. While we suspect that there 

is some combination of architecture and tuning parameters that would allow the LSTM to 

meet or exceed the DKF performance, automating this process of searching through network 

architecture remains an area of active research requiring extensive computational resources 

(Zoph and Le, 2017; Real et al., 2017).

4.6 Closed-loop decoding in a person with paralysis

Neural decoding for closed-loop brain-computer interfaces (BCIs) provided the motivating 

application for the development of the DKF. BCIs use neural measurements from the brain 

to enable voluntary control of external devices (Wolpaw et al., 2002; Hochberg and 

Donoghue, 2006; Brandman et al., 2017). Intracortical BCI systems (iBCIs) have been 

shown to provide users with paralysis the ability to control computer cursors (Pandarinath et 

al., 2015; Jarosiewicz et al., 2015; Nuyujukian et al., 2018), robotic arms (Hochberg et al., 

2012; Collinger et al., 2013), and functional electrical stimulation systems (Bouton et al., 

2016; Ajiboye et al., 2017) with the real-time decoded neural activity generated during 

attempted movement. State-of-the-art decoding approaches have been based on the Kalman 

filter (Pandarinath et al., 2017; Jarosiewicz et al., 2015; Gilja et al., 2015), with observed 

neural features and latent motor intention used to move external devices. To construct a 

supervised training set, motor intentions are inferred as vectors from the instantaneous 

cursor position to the target position Zt (Brandman et al., 2018b).

The DKF is a natural choice for closed-loop neural decoding using iBCIs for a few reasons. 

First, evidence suggests that neurons have very complex behavior. Neurons in the motor 

cortex have been shown to encode direction of movement (Georgopoulos et al., 1988), 

velocity (Schwartz, 1994), acceleration (Paninski et al., 2004), muscle activation (Lemon, 

2008; Pohlmeyer et al., 2007), proprioception (Bensmaia and Miller, 2014), visual 

information related to the task (Rao and Donoghue, 2014) and preparatory activity 

(Churchland et al., 2012). Hence, iBCI-related recordings are highly complex and non-linear 

(Vargas-Irwin et al., 2015). Moving away from the linear constraints of the Kalman filter 

could potentially capture more of the inherent complexity of the signals, resulting in higher 

end-effector control for the user.

Second, evidence suggests that the quality of control directly relates to the rate at which the 

decoding systems perform real-time decoding. Modern iBCI sytems update velocity 

estimates on the order of 20ms (Jarosiewicz et al., 2015) or even 1ms (Pandarinath et al., 

2015). Thus, any potential filtering technique must be computationally feasible to implement 

for real-time use.

Third, over the past decades, new technologies have allowed neuroscientists to 

simultaneously record from increasingly large numbers of neurons. In fact, the number of 
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observed brain signals has been growing exponentially (Stevenson and Kording, 2011). By 

contrast, the dimensionality of the underlying device being controlled remains small, 

generally not exceeding ten dimensions (Wodlinger et al., 2015; Vargas-Irwin et al., 2010).

We previously reported how three people with spinal cord injuries used the DKF with GP 

regression to rapidly gain closed-loop neural control (Brandman et al., 2018b,a). Here, as an 

additional proof of concept, we present data from a person with amyotrophic lateral sclerosis 

(participant T9) using the DKF. In these research sessions, the observations constitute neural 

data collected from an electrode array surgically implanted in the participant’s brain and the 

hidden states represent the intended cursor velocity. The DKF prediction of intended cursor 

velocity is used at each time step to move the cursor. For learning the DKF parameters, 

training data is collected during an initial calibration phase in which the participant is 

instructed to attempt to move the cursor to various target locations, and the intended velocity 

at each time step is assumed to be pointing from the current cursor position to the instructed 

target. GP regression was used to learn f, and, for computational efficiency, Q was assumed 

to be constant and set as the covariance of the residuals. The participant’s performance using 

an out-of-the-box DKF was comparable to state-of-the-art decoders based on modifications 

of the Kalman filter designed specifically for the BrainGate2 clinical trials.

4.6.1 Participant—The participant in this study was T9, a 52 year-old right-handed male 

with paralysis from late stage amyotrophic lateral sclerosis (ALSFRS-R score = 7; see 

Cedarbaum et al. (1999) for a detailed explanation of this metric). T9 underwent surgical 

placement of two 96-channel intracortical silicon microelectrode arrays (Maynard et al., 

1997) (1.5-mm electrode length, Blackrock Microsystems, Salt Lake City, UT) in the motor 

cortex as previously described (Kim et al., 2008; Simeral et al., 2011). Data was used from 

trial (post-implant) days 292 and 293.

4.6.2 Signal acquisition—Raw neural signals for each channel (electrode) were 

sampled at 30kHz using the Neuro-Port System (Blackrock Microsystems, Salt Lake City, 

UT). Further signal processing and neural decoding were performed using the xPC target 

real-time operating system (Mathworks, Natick, MA). Raw signals were downsampled to 

15kHz for decoding and de-noised by subtracting an instantaneous common average 

reference (Gilja et al., 2015; Jarosiewicz et al., 2015) using 40 of the 96 channels on each 

array with the lowest root-mean-square value (selected based on their baseline activity 

during a one minute reference block run at the start of each session). The de-noised signal 

was band-pass filtered between 250 Hz and 5000 Hz using an 8th order non-causal 

Butterworth filter (Masse et al., 2015). Spike events were triggered by crossing a threshold 

set at 3.5x the root mean square amplitude of each channel, as determined by data from the 

reference block. The neural feature used was the the total power in the band-pass filtered 

signal (Jarosiewicz et al., 2015; Brandman et al., 2018b). Neural features were binned in 

20ms non-overlapping increments for decoding. We used the top 40 features ranked by 

signal-to-noise-ratio (Malik et al., 2015).

4.6.3 Decoder calibration—Decoder calibration was performed using the standard 

Radial-8 task (Simeral et al., 2011; Gilja et al., 2015) using custom built software running 

Matlab. An LCD monitor was placed 55–60 cm at a comfortable angle and orientation to T9. 
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Targets (size = 2.4 cm, visual angle = 2.5°) were presented sequentially in a pseudo-random 

order, alternating between one of eight radially distributed targets and a center target (radial 

target distance from center = 12.1 cm, visual angle = 12.6°). Successful target acquisition 

required the user to place the cursor (size = 1.5cm, visual angle = 1.6°) within the target’s 

diameter for 300ms, before a pre-determined timeout of 15 seconds. Target timeouts resulted 

in the cursor moving directly to the intended target, with immediate presentation of the next 

target.

Calibration began with two minute of open-loop presentation of a cursor; that is, the cursor 

moved automatically to pseudorandomly presented targets in a straight path. During this 

time, T9 was instructed to “imagine” or “attempt” to move the computer cursor as if he had 

control of it. After two minutes, initial hyperparameters for the GP were learned. Next, T9 

acquired targets for three minutes with 80% of the component of the decoded vector 

perpendicular to the vector between the cursor and the target (Jarosiewicz et al., 2013; 

Velliste et al., 2008), in order to assist with target acquisition. GP hyperparameters were then 

recomputed with all of the available data. The Radial-8 task was repeated two more times 

with the attenuated components at 50% and 20%, for a total of 11 minutes of calibration data 

collected. We collected a total of 3000 data points randomly subsampled from the 11 

minutes of collected data, using all 192 neural features (96 features per array, two arrays).

4.6.4 Performance measurement—We quantified the performance of the DKF 

decoder with the mFitts1 task (Gilja et al., 2015; Simeral et al., 2011). Under the Fitts model 

(Fitts, 1954), movement time (MT) varies linearly with the index of difficulty (ID) as

MT = a ⋅ ID + b (24)

where the parameters a and b depend on the input device. Parameters are estimated using 

linear regression on observed (ID, MT) pairs for each input method. These estimates are 

then used to evaluate filter performance.

A single target was presented on the screen in a pseudorandom location, with one of three 

pseudorandomly fixed diameters (size = 1.6cm, 3.5cm, and 5.6cm, visual angles 1.7°, 3.7°, 

and 5.8°). Targets were acquired by having the cursor contact the target for 500ms 

milliseconds, within a timeout of 10 seconds. For the mFitts1 task, the Index of Difficulty 

for each trial was calculated as follows:

ID = log2
D
W + 1

where D is the distance from the cursor’s start position to the goal, and W is the sum of the 

target’s diameter and cursor’s radius. Hence, DW  reflects a measure of difficulty for acquiring 

targets.

4.6.5 Results—T9 acquired 98% of targets presented over two research sessions (N = 

299) with the mFitts1 task. The Fitts regression parameters were comparable to the 

previously described performance by different participants (T6 and T7) using the ReFIT 

Burkhart et al. Page 21

Neural Comput. Author manuscript; available in PMC 2021 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decoder (Gilja et al., 2015) (Fig. 4.6.5, slope = 1.08 ± 0.06,p < 1.2 × 10−30, intercept = 1.6 ± 

1.3,p < 2.2 × 10−41).

5 Discussion

The DKF is a novel filtering method that should prove a helpful addition to the filtering 

toolbox. It provides a fast, analytic approximation for models with linear, Gaussian 

dynamics, but nonlinear, non-Gaussian observations. The approximations underlying the 

DKF tend to improve as the dimensionality of the observation space increases relative to the 

dimensionality of the state space. For known models, the DKF is quite similar in nature to 

the G-ADF; however, when models must be learned from training data as is the case for 

many practical applications, the G-ADF entails integrals which require approximation and 

does not provide a closed-form update. In comparison to Laplace or saddle-point 

approximations, the DKF provides a more global approximation to the true filtering 

distribution. As we demonstrate in our examples, there are many families of state space 

models that render the EKF and UKF ineffective but for which the DKF performs well.

In applications where the model must be learned from supervised training data prior to 

filtering, off-the-shelf nonlinear and/or nonparametric regression tools can be used to learn 

the conditional mean and variance for the DKF directly, avoiding the more complicated task 

of learning the complete observation model p(xt|zt). Using the DKF in this way appears to be 

novel within the large literature on state space models. Most approaches either learn a fully 

generative model and invert it for filtering (this includes the of use discriminative methods 

for training filters derived from generative models (Abbeel et al., 2005; Hess and Fern, 

2009)) or learn a fully discriminative model that directly predicts states from the sequence of 

observations. The DKF allows a generative model for the state dynamics to be combined in 

principled way with a discriminative model for predicting the states from the observations at 

individual time steps. We think that the ability to easily incorporate off-the-shelf 

discriminative learning tools into a closed-form filtering equation is one of the most exciting 

and useful aspects of this methodology.

Many promising opportunities exist to apply and extend the DKF. For example, using a 

Gaussian approximation for p(zt|xt) can permit a more principled approach to mitigating 

nonstationarities that occur in the measurement model. In neural decoding, a large change in 

the behavior of a single neuron that occurs between model training and filter use can result 

in significant performance degradation for the decoder. In the DKF framework with a GP 

regression model for p(zt|xt), one can select a kernel function that ignores large differences 

along any single dimension. Clinical results demonstrate that this modification allows the 

filter to be more robust to erratic firing patterns in an arbitrary single neuron. See Brandman 

et al. (2018a) for further details. It seems that this approach could be readily applied more 

generally to increase filter resilience to nonstationarities.

While the DKF assumes an approximately Gaussian posterior, for general filtering models 

there may also be ways to incorporate the underlying Gaussian approximation for p(zt|xt) to 

improve performance. Methods that preserve the full form of the filtering distribution, such 

as particle filters, could be combined with alternatively-specified measurement models, as in 
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Equation 17, to create general purpose filters that are both more convenient to learn from 

data and use in filtering applications. The DKF marks a first step in this direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Section 6 covers technical details and section 7 includes a proof of the main theorem.

6 Technical details

This section provides the derivations used in Sections 4.2 and 4.3, along with some 

information on numerical stability and details for the discriminative learning methods 

employed in Section 4.5.

6.1 Kalman observation mixtures

For the model in Section 4.2 we provide analytic expressions for the integrals in Equation 

13, which are needed for the G-ADF and the DKF (using νt = 0 and Mt = S for the DKF). 

Define

Utℓ = Mt−1 + Hℓ
⊤ Λℓ

−1 Hℓ
−1

,

ytℓ = Utℓ Mt−1νt + Hℓ
⊤ Λℓ

−1 xt − bℓ ,

κtℓ = ηd νt; 0, Mt ηn xt; bℓ, Λℓ /ηd ytℓ; 0,Utℓ .

Then
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a = ∫ p xt zt ηd zt; νt, Mt = ∑ℓ = 1
L πℓ∫ ηn xt; bℓ + Hℓzt, Λℓ ηd zt; ηt, Mt dzt

= ∑ℓ = 1
L πℓηn xt; bℓ + Hℓνt, Λℓ + HℓMtHℓ

⊤ ,

b = ∫ ztp xt zt ηd zt, νt, Mt dzt = ∑ℓ = 1
L πℓ∫ ztηn xt; bℓ + Hℓzt, Λℓ ηd zt; νt, Mt dzt

= ∑ℓ = 1
L πℓκtℓ∫ ztηd zt; ytℓ,Utℓ dzt = ∑ℓ = 1

L πℓκtℓytℓ,

c = ∫ ztzt⊤p xt zt ηd zt; νt, Mt dzt = ∑ℓ = 1
L πℓκtℓ∫ ztzt⊤ηd zt; ytℓ,Utℓ dzt

= ∑ℓ = 1
L πℓκtℓ Utℓ + ytℓytℓ

⊤ .

6.2 Independent Bernoulli mixtures

For the model in Section 4.3 we provide analytic expressions for the integrals in Equation 13 

for the special case of νt = 0 and Mt = S = Id, which are needed for the DKF. For each k = 1,

…,d, define Nk = {i : di = k}, Γk = {γi : i ∈ Nk}, nk = |Γk|, and let γk, 1 < ⋯ < γk, nk denote 

the sorted (distinct) values in Γk, using γk,0 = −∞ and γk, nk + 1 = + ∞. Using η(u) = η1(u;0, 

1) to denote the standard normal pdf and ϕ v = ∫−∞
v η u  to denote the corresponding 

distribution function, define

Φkj = ∫γk, j − 1

γk, j
η u du = ϕ γk, j − ϕ γk, j − 1 ,

Φkj′ = ∫γk, j − 1

γk, j
uη u du − Φkj = η γk, j − 1 − η γk, j − Φkj ,

Φkj″ = ∫γk, j − 1

γk, j
u2η u du − Φkj − 2 Φkj′ = γk, j − 1η γk, j − 1 − γk, jη γk, j − 2 Φkj′ ,

ρℓij = αℓi 1 γk, j ≤ γi + βℓi 1 γi < γk, j , i ∈ Nk ,

for k = 1,…,d and j = 1,…,nk + 1 and ℓ = 1, …,L.

Let xtNk = xti: i ∈ Nk  and define
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Dℓkj xtNk = ∏i ∈ Nkρℓij
xti 1 − ρℓij

1 − xti,

pℓ xtNk ztk = ∏i ∈ Nk αℓi
xti 1 − αℓi

1 − xti1 ztk < γi + βℓi
xti 1 − βℓi

1 − xti1 ztk ≥ γi

= ∑j = 1
nk + 1

1 γk, j − 1 ≤ ztk < γk, j Dℓkj xtNk

so that p xt |zt = ∑ℓ = 1
L πℓ∏k = 1

d pℓ xNk |ztk  and (with S = Id)

p xt zt ηd zt; 0.S = p xt zt ∏k = 1
d η ztk = ∑ℓ = 1

L πℓ∏k = 1
d pℓ xtNk ztk η ztk .

Hence, using δkr = 1 k = r .

a = ∫ p xt zt ηd zt; 0, S dzt = ∑ℓ = 1
L πℓ∏k = 1

d ∫ pℓ xtNk ztk η ztk dztk

= ∑ℓ = 1
L πℓ∏k = 1

d ∑j = 1
nk + 1

Dℓkj xtNk ∫γk, j − 1

γk, j
η ztk dztk

= ∑ℓ = 1
L πℓ∏k = 1

d ∑j = 1
nk + 1

Dℓkj xtNk Φkj ,

br = ∫ ztrp xt zt ηd zt; 0, S dzt

= ∑ℓ = 1
L πℓ∏k = 1

d ∑j = 1
nk + 1

Dℓkj xtNk Φkj + Φkj′ δkr ,

crs = ∫ ztrztsp xt zt ηd zt; 0, S dzt

= ∑ℓ = 1
L πℓ∏k = 1

d ∑j = 1
nk + 1

Dℓkj xtNk Φkj + Φkj′ δkr + Φkj′ δks + Φkj″ δkrδks ,

where in Equation 13 the vector b = (br : r = 1,…,d) and the matrix c = (crs : r,s = 1,…,d). 

We have f(x) = b/a and Q x = c/a − f x f x ⊤.

6.3 Measures to prevent numerical instabilities

The covariance matrix Σt must be positive definite for the DKF algorithm to make sense. As 

n gets large, using Q xt = V Zt |Xt = xt , the probability that Σt is positive definite goes to 1; 

see Lemma 1 below. However, when n is small or when Q is learned, Σt will often not be 

positive definite. An easy remedy is to force Q−1(x) − S−1 to be positive semidefinite for 

every x by shrinking the (generalized) eigenvalues of Q(x) for any x where this constraint is 

not satisfied. In particular, beginning with a target Q = Q(x) for a given fixed x, consider the 

generalized eigenvalue decomposition QV = SV D, where V ∈ ℝd × d is invertible and 
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D ∈ ℝd × d is diagonal. (This decomposition can be computed in Matlab using 

[V,D]=eig(Q,S).) Let D ∧ 1 denote the element-wise minimum of D and 1, and define Q′ = 

SV (D ∧ 1)V−1. By redefining Q(x) as Q′, we will ensure that Q−1(x) − S−1 is positive 

semidefinite, as required. Moreover, Q′ will be the same as the original Q if this condition 

was already satisfied by the original Q, showing that this modification to the DKF algorithm 

does not affect our asymptotic analysis. We used this modification for all of the experiments 

with the DKF. The robust DKF does not require this modification. Here is a proof of the 

claims about this method: Q−1 − S−1 is positive semidefinite if and only if S − Q is positive 

semidefinite if and only if S−1/2(S − Q)S−1/2 is positive semidefinite. We have S−1/2(S − Q)S
−1/2 = S−1/2(S − SV DV −1)S−1/2 = I − S1/2V D(S1/2V )−1 = (S1/2V )(I − D)(S1/2V )−1, 

which is positive semidefinite if and only if all entries of D (which is diagonal) are ≤ 1. 

Replacing D with D ∧ 1 exactly enforces this constraint.

For our DKF experiments with nonlinear state dynamics using an extended Kalman filter 

(EKF) approximation (not described here), we found that the DKF-EKF became unstable for 

small n, because the EKF approximation to the nonlinearity was quite poor. To remedy this, 

we modified the DKF algorithm to prevent µt from diverging too far from νt and f(xt) (the 

posterior means of Zt given X1:t−1 and given Xt, respectively). In particular, we forced |µt|2 ≤ 

|νt|2 + |f(xt)|2 (by scaling µt whenever its norm exceeded our bound). For larger n, once the 

DKF approximation becomes more accurate, this constraint was always satisfied in our 

experiments without intervention, but for smaller n, enforcing it was important for 

preventing numerical instabilities. The robust DKF did not require this modification. 

Although not used in this paper, we report this modification in case others find it useful in 

their application.

6.4 Nadaraya-Watson kernel regression

We can learn f :ℝn ℝd with a variety of regression methods. The well-known Nadaraya-

Watson kernel regression estimator (Nadaraya, 1964; Watson, 1964) is

f x =
∑i = 1

m zi′κX x, xi′

∑i = 1
m κX x, xi′

where the κX(x,x′) is a nonnegative kernel and m is the size of the training set. Bandwidth 

can be chosen using rule-of-thumb or with leave-one-out cross validation, the latter scaling 

as O m2 . Evaluation of f  scales like O m . In the examples we use a Gaussian kernel with a 

bandwidth chosen by minimizing leave-one-out mean squared error (MSE) on the training 

set.

6.5 Neural network regression

We can also learn f as a neural network (NN). NN’s are attractive for online filtering, 

because evaluation of f  scales O 1  with the size of the training set. With mean squared error 

(MSE) as an objective function, we optimize parameters over the training set. Typically, 

optimization continues until performance stops improving on a validation subset (to prevent 

overfitting), but instead we use Bayesian regularization to ensure network generalizability 

Burkhart et al. Page 26

Neural Comput. Author manuscript; available in PMC 2021 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(MacKay, 1992; Foresee and Hagan, 1997). Training costs depend on the training algorithm 

chosen. Traditional optimizers include: stochastic gradient descent, scaling with O m ; scaled 

conjugate gradient, with O m2 ; Levenberg–Marquardt, with O m3  (Castillo et al., 2010), 

where m is the size of the training set. More recently, Hessian-free approaches have been 

developed to train NN’s on larger data sets (Schmidhuber, 2015). Training costs also grow 

with d, depending on choice of architecture.

We implemented all feedforward neural networks with Matlab’s Neural Network Toolbox 

R2019a. Our implementation consisted of a single hidden layer of tansig neurons trained via 

Levenberg-Marquardt optimization (Levenberg, 1944; Marquardt, 1963; Hagan and Menhaj, 

1994) with Bayesian regularization.

6.6 Gaussian process regression

Gaussian process (GP) regression is another popular method for nonlinear regression 

(Rasmussen and Williams, 2006). The idea is to put a prior distribution on the function f and 

approximate f with its posterior mean given training data. We will first briefly describe the 

case d = 1. We form an m×n-dimensional matrix X′ by concatenating the 1×n-dimensional 

vectors Xi′ and a m×d-dimensional matrix Z′ by concatening the vectors Zi′. We assume that 

p zi′ |xi′, f = η zi′; f xi′ , σ2 , where f is sampled from a mean-zero GP with covariance kernel 

K(·, ·). Under this model,

f x = E f x Z′, X′ = K x, X′ K X′, X′ + σ2Im
−1Z′,

where K(x,X′) denotes the 1×m vector with ith entry K x, Xi′ , where K(X′,X′) denotes the 

m×m matrix with ijth entry K Xi′, Xj′ , where Z′ is a column vector, and where Im is the 

m×m identity matrix. The noise variance σ2 and any parameters controlling the kernel shape 

are hyperparameters. For our examples, we used the radial basis function kernel with two 

parameters: length scale and maximum covariance. These hyperparameters were selected via 

maximum likelihood. For d > 1, we repeated this process for each dimension to separately 

learn the coordinates of f. Training costs for a single dimension scale as O m3 . Sparse 

approximations to GP’s can reduce training requirements to O m ⋅ NS
2  where NS is the size 

of the sparse GP (Quiñonero Candela and Rasmussen, 2005). Evaluation of f  scales O m  for 

each dimension, or O NS  for sparse approximations.

All GP training was performed using the publicly available GPML package (Rasmussen and 

Nickisch, 2010).

6.7 Comparison with a long short term memory (LSTM) neural network

An LSTM is a stateful recurrent neural network designed to overcome error backflow 

problems (Hochreiter and Schmidhuber, 1997). Such recurrent neural networks have 

previously been shown to outperform state-of-the-art Kalman-based filters on this primate 

neural decoding task and so provide a good point of comparison (Sussillo et al., 2012, 2016; 

Pandarinath et al., 2018; Hosman et al., 2019). While there are many variants on the LSTM 
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architecture, none seem to universally improve on the basic design (Jozefowicz et al., 2015; 

Greff et al., 2016). LSTM optimization uses many of the same methods that work for 

feedforward NN’s (Schmidhuber, 2015). Training and evaluation requirements are similar.

All LSTM trials were conducted with TensorFlow r1.4.0 in a Python 3.6.8 environment. The 

LSTM cell used in these trials was built from scratch in TensorFlow following Gers et al. 

(2000). Dropout was used to prevent overfitting (Srivastava et al., 2014), but it was only 

applied to feedforward connections, not recurrent connections (Pham et al., 2014; Zaremba 

et al., 2014). The recurrent states and outputs at each intermediate time step were batch-

normalized to accommodate internal covariate shift (Ioffe and Szegedy, 2015). Model 

parameters were initialized via a Xavier-type method (Glorot and Bengio, 2010) designed to 

stabilize variance from layer to layer. Optimization was then performed with Adadelta 

(Zeiler, 2012), an algorithm designed to improve upon Adagrad (Duchi et al., 2011) with the 

explicit goals of decreasing sensitivity to hyperparameters and permitting the learning rate to 

sometimes increase.

7 Mathematical results

Our main technical result is Theorem 2 below. After stating the theorem we translate it into 

the setting of the paper. Probability density functions (pdfs) are with respect to Lebesgue 

measure over ℝd. || · ||1 and || · ||∞ denote the L1 and L∞ norms, respectively, 
w

 denotes 

weak convergence of probability measures (equivalent, for instance, to convergence of the 

expected values of bounded continuous functions), and δc denotes the unit point mass at 

c ∈ ℝd. Define the Markov transition density τ y, z = ηd z; Ay, Γ , and let τℎ denote the 

function

τℎ z = ∫ τ y, z ℎ y dy

for an arbitrary, integrable h. Define p(z) = ηd(z;0,S), where S satisfies S = AS A⊤ + Γ.

Theorem 2. Fix pdfs sn and un (n ≥ 1) so that the pdfs

pn = unτsn/p
unτsn/p 1

(25)

are well-defined for each n. Suppose that for some b ∈ ℝd and some probability measure P 

over ℝd

A1. sn
w P  as n → ∞;

A2. there exists a sequence of Gaussian pdfs sn′  such that sn − sn′ 1 0 as n → ∞;

A3. un
w δb as n → ∞;
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A4. there exists a sequence of Gaussian pdfs un′  such that un − un′ 1 0 as n → ∞;

A5. pn
w δb as n → ∞;

Then

C1. sn′
w P  as n → ∞;

C2. un′
w δb as n → ∞;

C3. the pdf

pn′ =
un′ τsn′ /p
un′ τsn′ /p 1

is well defined and Gaussian for n sufficiently large;

C4. pn′
w δb as n → ∞;

C5. pn − pn′ 1 0 as n → ∞;

Remark 1. The L1 distance between pdfs is equivalent to the total variation distance 
between the respective probability measures.

Remark 2. We are not content to show the existence of a sequence of Gaussian pdfs pn′  that 

satisfy C4–C5. Rather, we are trying to show that the specific pn′  defined in C3 satisfies C4–

C5 regardless of the choice of un′  and sn′ .

Remark 3. An inspection of the proof shows that the pdf

rn′ = pn′ p/ pn′ p 1 = un′ τsn′ / un′ τsn′ 1

is well-defined and Gaussian with rn′
w δb and

pn − rn′ 1 ≤ An + Bn + Cn

where the terms An, Bn, Cn are those defined in Equation 26, each of which tend to zero in 
the limit. Thus pn − rn′ 1 0. These rn′  are precisely the estimates formed using the robust 

DKF.

Remark 4. Suppose the pdfs sn, sn′ , un, un′ n ≥ 1 , the constant b, and the probability measure 

P are themselves random, defined on a common probability space, so that pn is well-defined 
with probability one, and suppose that the limits in A1–A5 hold in probability. Then the 
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probability that pn′  is a well-defined, Gaussian pdf converges to one, and the limits in C1–C5 

hold in probability.

For the setting of the paper, first fix t ≥ 1 and note that p is the common pdf of each Zt and τ
is the common conditional pdf of Zt given Zt−1. The limit of interest is for increasing 

dimension (n) of a single observation. To formalize this, we let each Xt be infinite 

dimensional and consider observing only the first n dimensions, denoted Xt
1:n ∈ ℝn. 

Similarly, X1: t
1:n = X1

1:n, …, Xt
1:n . We will abuse notation and use ℙ Zt = ⋅ |W  to denote the 

conditional pdf of Zt given another random variable W. These conditional pdfs (formally 

defined via disintegrations) exist under very mild regularity assumptions (Chang and 

Pollard, 1997). Note that we are in the setting of Remark 4, where the randomness comes 

from X1:t,Z1:t. With this in mind, define

un ⋅ = un ⋅ ; Xt1:n = ℙ Zt = ⋅ Xt1:n

un′ ⋅ = un′ ⋅ ; Xt1:n = ηd ⋅ ; fn Xt1:n , Qn Xt1:n

sn ⋅ = sn ⋅ ; X1: t − 1
1:n = ℙ Zt − 1 = ⋅ X1: t − 1

1:n t > 1

sn′ ⋅ = sn′ ⋅ ; X1: t − 1
1:n = ηd ⋅ ; μt − 1, n X1: t − 1

1:n , ∑t − 1, n X1: t − 1
1:n t > 1

pn ⋅ = pn ⋅ ; X1: t
1:n = ℙ Zt = ⋅ X1: t

1:n

pn′ ⋅ = pn′ ⋅ ; X1: t
1:n = ηd ⋅ ; μt, n X1: t

1:n , ∑t, n X1: t
1:n

b = Zt

P ⋅ = P ⋅ ; Zt − 1 = δZt − 1 t > 1 ,

and define sn ≡ sn′ ≡ P ≡ p when t = 0. The pdf un′  is our Gaussian approximation of the 

conditional pdf of Zt for a given Xt
1:n. We have added the subscript n to f and Q from the 

main text to emphasize the dependence on the dimensionality of the observations. The pdfs 

sn′  and pn′  are our Gaussian approximations of Zt−1 and Zt given X1: t − 1
1:n  and X1: t

1:n, 
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respectively. Again, we added the subscript n to µt and Σt from the text. Note that Equation 

25 above is simply a condensed version of Equation 6 in the main text, and, for the same 

reason, the pn′  defined in C3 is the same pn′  defined above.

The Bernstein–von Mises (BvM) Theorem gives conditions for the existence of functions fn 

and Qn so that A3–A4 hold in probability. We refer the reader to van der Vaart (1998) for 

details. Very loosely speaking, the BvM Theorem requires Zt to be completely determined in 

the limit of increasing amounts of data, but not completely determined after observing only a 

finite amount of data. The simplest case is when Xt
1:n are conditionally iid given Zt and 

distinct values of Zt give rise to distinct conditional distributions for Xt
1:n, but the result 

holds in much more general settings. A separate application of the BvM Theorem gives A5 

(in probability). In applying the BvM Theorem to obtain A5, we also obtain the existence of 

a sequence of (random) Gaussian pdfs pn″  such that pn − pn″ 1 0 (in probability), but we 

do not make use of this result, and, as explained in Remark 2, we care about the specific 

sequence pn′  defined in C3.

As long as the BvM Theorem is applicable, the only remaining thing to show is A1–A2 (in 

probability). For the case t = 1, we have sn ≡ sn′ ≡ P ≡ p, so A1–A2 are trivially true and the 

theorem holds. For any case t > 1, we note that sn and sn′  are simply pn and pn′ , respectively, 

for the case t − 1. So the conclusions C4–C5 in the case t − 1 become the assumptions A1–

A2 for the subsequent case t. The theorem then holds for all t ≥ 1 by induction. The key 

conclusion is C5, which says that our Gaussian filter approximation pn′  will be close in total 

variation distance (see Remark 1) to the true Bayesian filter distribution pn with high 

probability when n is large.

Proof. C1 follows immediately from A1 and A2. C2 follows immediately from A3 and A4. 

C3 and C4 are proved in Lemma 1 below. To show C5 we first bound

pn − pn′ 1 ≤ pn − pnp
p b 1

An

+ pnp
p b − pnp

pnp 1 1
Bn

+ pnp
pnp 1

− pn′p
pn′p 1 1

Cn

+ pn′p
pn′p 1

− pn′p
p b 1

Bn′

+ pn′p
p b − pn′

1
An′

.
(26)

Since pn
w δb and p(z) is bounded and continuous,

An = ∫ pn 1 − p
p b = EZn pn 1 −

p Zn
p b 1 − p b

p b = 0

and
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Bn = ∫ pnp
pnp 1

pnp 1
p b − 1 =

pnp 1
p b − 1

=
EZn pn p Zn

p b − 1 p b
p b − 1 = 0.

Similarly, since pn′
w δb,

An′ = ∫ pn′ 1 − p
p b = EZn pn′ 1 −

p Zn
p b 1 − p b

p b = 0

and

Bn′ = ∫ pn′ p
pn′ p 1

pn′ p 1
p b − 1 =

pn′ p 1
p b − 1

=
EZn pn′ p Zn

p b − 1 p b
p b − 1 = 0.

All that remains is to show that Cn → 0.

We first observe that

pnp
pnp 1

=
unτsn
unτsn 1

and
pn′ p
pn′ p 1

=
un′ τsn′
un′ τsn′ 1

.

Define

α = E Y , Z P × δb ηd Z; AY , Γ = EY P ηd b; AY , Γ ∈ 0, ∞ .

Since sn
w P , un

w δb, and z, y τ y, z = ηd z; Ay, Γ  is bounded and continuous, we have

unτsn 1 = ∬ ηd z; Ay, Γ sn y un z dydz = E Yn, Zn sn × unηd Zn; AYn, Γ α .

Similarly since, sn′
w P  and un′

w δb,

un′ τsn′ 1 = ∬ ηd z; Ay, Γ sn′ y un′ z dydz = E Yn, Zn sn′ × un′ ηd Zn; AYn, Γ α .

Defining β = ηd(0;0, Γ) ∈ (0, ∞), gives

τℎ ∞ ≤ sup
z
τℎ z ≤ sup

z, y
ηd z; Ay, Γ ∫ ℎ t dt ≤ ηd 0; 0, Γ ℎ 1 = β ℎ 1
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for any integrable h. With these facts in mind we obtain

Cn =
unτsn
unτsn 1

−
un′ τsn′
un′ τsn′ 1 1

≤
unτsn
unτsn 1

−
un′ τsn
unτsn 1 1

+
un′ τsn
unτsn 1

−
un′ τsn′
un′ τsn′ 1 1

≤
τsn ∞
unτsn 1

un − un′ 1 +
τsn
unτsn 1

−
τsn′
un′ τsn′ 1 ∞

un′ 1

≤ β
unτsn 1

un − un′ 1 +
τsn
unτsn 1

−
τsn′
un′ τsn′ 1 ∞

+
τsn
un′ τsn′ 1

−
τsn′
un′ τsn′ 1 ∞

≤ β
unτsn 1

un − un′ 1 +
τsn ∞
unτsn 1

1 −
unτsn 1
un′ τsn′ 1 ∞

+
τsn − τsn′ ∞
un′ τsn′ 1

≤ β
unτsn 1
β /α

un − un′ 1
0

+ β
unτsn 1
β /α

1 −
unτsn 1
un′ τsn′ 1

1 − α/α = 0

+ β
un′ τsn′ 1
β /α

sn − sn′ 1
0

Since α > 0, we see that Cn → 0 and the proof of the theorem is complete.

Remark 4 follows from standard arguments by making use of the equivalence between 

convergence in probability and the existence of a strongly convergent subsequence within 

each subsequence. The theorem can be applied to each strongly convergent subsequence.

Lemma 1 (DKF equation). If sn′ z = ηd z; an,V n  and un′ z = ηd z; bn,Un , then defining

pn′ =
un′ τsn′ /p
un′ τsn′ /p 1

,

gives

pn′ z = ηd z; cn, Tn ,

where Gn = AV nA⊤ + Γ, Tn = Un
−1 + Gn

−1 − S−1 −1
, and cn = Tn Un

−1bn + Gn
−1Aan , as long 

as Tn is well-defined and positive definite. Furthermore, if sn′
w P , then un′

w δb then pn′  is 

eventually well-defined and pn′
w δb.

Proof. See above for the definition of τ, p, A, Γ, S. Assuming un′τsn′ /p is integrable, we have

pn′ z ∝
ηd z; bn,Un
ηd z; 0, S ∫ ηd z; Ay, Γ ηd y; an,Vn dy .

Since

∫ ηd z; Ay, Γ ηd y; an,Vn dy = ηd z; Aan, AVnA⊤ + Γ = ηd z; Aan,Gn

and
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ηd z; bn,Un
ηd z; 0, S ∝

exp − 1
2 z − bn ⊤Un−1 z − bn

exp − 1
2z⊤S−1z

∝ exp − 1
2 z⊤ Un−1 − S−1 z − 2z⊤Un−1bn

∝ exp − 1
2 z − bn′ ⊤ Un′ −1 z − bn′

∝ ηd z, bn′ ,Un′

for Un′ = Un
−1 − S−1  and bn′ = Un′Un

−1bn, we have

pn′ z ∝ ηd z; bn′ ,Un′ ηd z; Aan,Gn
∝ ηd z; Tn Un′ −1bn′ + Gn−1Aan , Tn
= ηd z; cn, Tn .

As the normal density integrates to 1, the proportionality constant drops out.

Now, suppose additionally that sn′
w P  and un′

w δb. Consider the characteristic functions

ϕsn′ t = EX sn′ e
itX = eit

⊤an − 1
2 t⊤Unt

for these random variables. Lévy’s continuity theorem (Thm. 2.13 in van der Vaart, 1998) 

implies that ϕsn′ t ϕP t  and ϕun′ t ϕδb t  for all t ∈ ℝd where

ϕP t = eit
⊤a − 1

2 t⊤V t and ϕδb t = eit
⊤b

denote the characteristic functions for P and δb, respectively. Here, a and V are the mean 

vector and covariance matrix, respectively, of the distribution P, which must itself be 

Gaussian, although possibly degenerate. It follows that

it⊤an − 1
2 t⊤Vnt it⊤a − 1

2 t⊤V t

and, as ϕsn′ −t ϕP −t ,

−it⊤an − 1
2 t⊤Vnt −it⊤a − 1

2 t⊤V t

so t⊤an t⊤a and t⊤V nt t⊤V t for all t ∈ ℝd. Choosing t to be coordinate vectors, we see 

that this implies an → a and Vn → V coordinate-wise. An analogous argument allows us to 

conclude that bn → b and Un → 0d×d. Thus, Gn G = AV A⊤ + Γ, which is invertible, since 

Γ is positive definite, and so Gn
−1 G−1.
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The Woodbury matrix identity gives

Tn = Un
−1 + Gn

−1 − S−1 −1 = Un − Un Gn
−1 − S−1 −1 + Un

−1
Un . (27)

Since Un → 0d×d and Gn
−1 − S−1 −1 + Un

−1
G−1 − S−1, we see that Tn → 0d×d.

To show Tn is eventually well-defined and strictly positive definite, it suffices to show the 

same for

Tn−1 = Un−1 +Dn

where we set Dn = Gn
−1 − S−1. For a symmetric matrix M ∈ ℝd × d, let λ1(M) ≥ ··· ≥ λd(M) 

denote its ordered eigenvalues. As a Corollary to Hoffman and Wielandt’s result (see Cor. 

6.3.8 in Horn and Johnson, 2013), it follows that

max
j
λj Tn−1 − λj Un−1 ≤ Dn 2

where || · ||2 denotes the Frobenius norm. Since ||Dn||2 → ||G−1 − S−1||2 < ∞, the difference 

between the jth ordered eigenvalues for Tn
−1 and Un

−1 is upper bounded independently of n 

for 1 ≤ j ≤ d. Since Un is positive definite and since Un → 0d×d, it follows that 

λj Un
−1 ≥ λd Un

−1 = 1/λ1 Un ∞. Hence, all eigenvalues of Tn
−1 must eventually become 

positive, so that Tn
−1 becomes positive definite, hence also Tn. For the means, we have

cn = TnUn−1bn + TnGn−1Aan .

Because Tn 0d × d, Gn
−1 G−1, and an → a, we have TnGn

−1Aan 0 . Using Equation 27 

for Tn gives

TnUn−1bn = bn − Un Gn−1 − S−1 −1 + Un
−1

bn,

where the eventual boundedness of Gn
−1 − S−1 −1 + Un

−1
 implies

Un Gn−1 − S−1 −1 + Un
−1

bn 0 .

As bn → b, we conclude cn → b. Hence, pn′
w δb . □
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Figure 1: Kalman observation mixtures.
This figure shows filtering performance on an instance of the model in Section 4.2 for 

various approximation algorithms as the observation dimension n increases. The hidden state 

dimension is d = 10, and the state model parameters are S = Id, A = 0.95Id − 0.05, and 

Γ = S − AS A⊤. The number of categories is L = 2, the category probabilities are π = (0.5, 

0.5), and the Kalman parameters are b1 = b2 = b = 0, Λ1 = In, Λ2 = 5In, and H2 = −H1, so 

that H = 0; see Equation 21. The entries of H1 were generated as independent N(0,d−1) using 

the Matlab 9.6 code rng(42,’twister’); H = randn(1000,10)/sqrt(10);. The data was generated 

for an observation dimension of 1000 and the plot shows filter performance using only the 

first n dimensions of Xt for selected n between 1 and 1000. Filter performance was measured 

using root mean squared error (RMSE, left panel) and computation time (s, right panel) on a 

single test sequence of length T = 104. Because Xt and Zt are uncorrelated, linearization 

methods (e.g., KF, EKF, and UKF) ignore Xt and always predict Zt ≈ E Zt = 0 giving an 

RMSE of approximately 1 (black line) in this case. The accuracy of particle filtering 

increases with the number of particles at the expense of increased computation, and we show 

performance for different numbers of particles: 101, 102, 103, 104, 105 (blue lines, ordered as 

expected). We also show RMSE for the optimal prediction using only Xt (as opposed to the 

entire history X1:t), namely, Zt ≈ E Zt |Xt = f Xt  (dotted red line). (This serves to 

demonstrate the performance gain that filtering provides.) Finally, we caution that the model 

parameters have much more influence on the relative performance of the different Gaussian 

approximation methods when n is small than when n is large. The parameters in this model 

were chosen so that the DKF also performs well for small n, even though we only have 

guarantees about its performance in the large n setting.
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Figure 2: Independent Bernoulli mixtures.
This figure shows filtering performance on an instance of the model in Section 4.3 for 

various approximation algorithms as the observation dimension n increases. The state model 

(Zt) and the figure conventions (and cautions) are the same as those described in the Figure 1 

caption. (Using this many particles with higher n was too time consuming.) The number of 

categories is L = 2, the category probabilities are π = (0.5, 0.5), and for each i, α1i = β2i = 

0.01 and α2i = β1i = 0.99, so that each gi ≡ 0.5; see Equation 22. The d1:n were chosen as 

independent uniform{1,…,d}, and the γ1:n were chosen as independent N(0, 1).
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Figure 3: Nonlinear state dynamics.
This figure shows filtering performance on an instance of the model in Section 4.4 for 

various approximation algorithms as the observation dimension n increases. The observation 

model (Xt|Zt) and the figure conventions (and cautions) are the same as those described in 

the Figure 1 caption. The state model is now nonlinear and µt and Mt in the DKF, robust 

DKF, and G-ADF are approximated using an UKF.
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Figure 4: 
On the left, we plot movement time vs. index of difficulty for T9 during the Radial-8 task. 

On the right, we compare Fitts metrics for the DKF to those for Kalman ReFit. In particular, 
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the slope and intercept from the line of best fit on the left correspond to the yellow bars for 

slope and intercept on the right. Error bars correspond to a 95% confidence interval for each 

estimated parameter. Following the discussion in Section 4.6.4, lower values for the slope 

parameter (a in Equation 24) correspond to less of an increase in movement time for more 

difficult targets. Estimates for the intercept parameter correspond to b in Equation 24.

Burkhart et al. Page 46

Neural Comput. Author manuscript; available in PMC 2021 July 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Burkhart et al. Page 47

Table 1:

This figure compares the normalized RMSE (nRMSE) for various filtering methods on the Flint dataset from 

Section 4.5. The nRMSE is computed by dividing the RMSE by the root mean square of the observation 

vector, so that predicting identically zero would yield a nRMSE of 1. The top row shows the nRMSE of the 

Kalman filter. Each remaining row shows the percentage change in nRMSE relative to the Kalman filter, with 

methods ordered from best (top) to worst (bottom) average performance. Columns 1–6 refer to completely 

separate trials using new training and testing data. The final column gives average performance across the six 

trials.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Avg.

Kalman 0.765 0.942 0.788 0.793 0.780 0.765 0.805

DKF-NW −21% −18% −17% −23% −20% −23% −20%

DKF-GP −21% −19% −15% −20% −18% −20% −19%

DKF-NN −19% −15% −13% −13% −13% −17% −15%

LSTM −15% −19% −16% −13% −16% −11% −15%

EKF 2% 24% 12% 18% 12% 3% 12%

UKF 2% 31% 18% 18% 15% 6% 15%

Neural Comput. Author manuscript; available in PMC 2021 July 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Burkhart et al. Page 48

Table 2:

This figure compares the mean absolute angular error (radians) for various filtering methods on the Flint 

dataset from Section 4.5. Because cursor speed is often adjustable in BCIs (Willett et al., 2019), this may 

provide a more informative measure of performance. See the caption for Table 1 for more details about the 

table arrangement. Note that 45° = π/4 ≈ 0.79 radians, so all of these methods have fairly substantial angular 

error over 100 ms prediction intervals. Chance performance would be π/2 ≈ 1.57 radians.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Avg

Kalman 0.889 0.955 1.025 0.933 0.964 0.926 0.949

DKF-NW −15% −1% −20% −17% −25% −28% −18%

DKF-GP −11% 7% −22% −16% −24% −25% −15%

DKF-NN −7% −2% −17% −16% −21% −23% −14%

LSTM −2% −2% −12% −6% −10% −8% −7%

UKF 0% 3% −3% −3% −8% −6% −3%

EKF 4% 3% −2% −4% −8% −7% −2%
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