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ABSTRACT OF THE DISSERTATION

The Analysis of Exclusive Decay of the B-meson to the Charmonium and a Kaon

by Means of Effective Field Theory

by

Mikhail A. Savrov

Doctor of Philosophy in Physics

University of California, San Diego, 2006

Professor Benjamı́n Grinstein, Chair

In this dissertation the matrix element (ME) for the weak decay of the B-

meson into J/ψ-particle and a kaonK is analysed from the first principles using the

method of effective field theory based on exploiting the decay kinematics. Namely,

the large masses of the b- and c-quarks, the large energy of the s-quark in the rest

frame of the B-meson makes it reasonable to use HQET, NRQCD, and SCET to

express the ME of the decay in terms of the MEs of these theories. The covariant

version of NRQCD necessary to describe the J/ψ in the B-meson rest frame is

proposed in the dissertation. The tree-level expression for the decay Lagrangian

in the effective theory is derived to all orders in gs. The Wilson coefficients for

the decay Lagrangian at the leading logarithmic approximation and their initial

values at µ = mb are calculated. It is shown that the singlet piece of the decay

Lagrangian factorizes into the product of two currents at the leading order in

power expansion in the effective theory but the octet piece doesn’t. It is shown

that the contribution due to the non-factorizable octet piece is of the same order

of magnitude as the singlet contribution at µ = mb and it is argued that the octet

contribution although suppressed by one power of αs compared to the singlet

contribution cannot be ignored.

x



1

Introduction

A picture of the Universe has emerged so far that is based on several

remarkably simple concepts. The simplicity of these concepts is illusory and it

actually takes years of study to acquire even a basic understanding of them. Nev-

ertheless they provide a logical guide into the vast world of well studied and doc-

umented physical phenomena. The world as we know it today can be thought

of as a space-time continuum where elementary particles (matter) propagate and

interact. There is a widespread belief that this picture is not final and actually

matter and space represent different sides of the same physical entity. However we

don’t know it yet and a search for the so-called “Theory of Everything” (with a

string theory as a favorite candidate) as exciting as it is has not produced a solid

theory so far that could be tested by experiment.

The subject of this dissertation is the study of one particular decay mode

of the B-meson, namely, when it decays into charmonium aka J/ψ particle and

a kaon. Like a small piece of a hologram is able to give a crude reproduction of

the whole image the study of a particular process alows one to obtain some first-

hand understanding of the basic principles of particle physics. Before going into

the details of this particular process I would like to give a brief overview of the

principles in the foundation of particle physics.

In Chapter 2 the concepts of elementary particles and their interactions

1



2

are discussed. The basic theoretical objects and principles used to actually build

testable theories, namely, quantum fields, gauge invariance, and renormalizability

are introduced. For a full and detailed discussion the reader may want to consult

the classical book by S. Weinberg [1].

In Chapter 3 the reader is introduced to the Standard Model (SM) of Par-

ticles and Interactions that incorporates the modern knowledge of particle physics.

For a careful and complete survey of the logics behind the SM (and beyond) see

the elegant book by P. Ramond [4]. The book by J. Donoghue et.al. [5] provides

a thorough introduction into the phenomenology of the SM.

However consistent and exhaustive the SM is it doesn’t explain the origin

of masses of elementary particles. The latter have to be introduced into the SM

more or less by hand by means of the Higgs mechanism. The so-called Cabibbo-

Kobayashi-Maskawa (CKM) matrix whose elements are directly related to decay

rates of hadrons provides an insight into the physics of the flavor changing inter-

actions. A large amount of concerted effort has been devoted to the extraction of

the numerical values of the elements of the CKM matrix from experiment.

There is a branch of particle physics called B-physics that studies decay

modes of heavy B-mesons consisting of one heavy b-quark and one light quark,

typically u or d, and s. The large mass of the b-quark and large energies of decay

products in some kinematic regions of the phase space allows one to implement

reliable theoretical methods (perturbative expansions, typically in several param-

eters) when extracting predictions from the SM and thereby making possible the

experimental measurement of the entries of CKM matrix related to the b-quark

(mostly Vub and Vcb). For an excellent introduction into the field of B-physics and

the detailed description of theoretical tools used see the book by A. Manohar and

M. Wise [6].

In this dissertation the effective theory for the particular decay B →

J/ψK is discussed. In developing a theoretical description of this decay it was

necessary to combine the three existing effective theories: soft-collinear effective
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theory (SCET), heavy quark effective theory (HQET), and non-relativistic quan-

tum chromodynamics (NRQCD) and to develop a covariant formulation of the

latter. This project has been done in collaboration with Christoph Bobeth under

the close supervision of professor Benjamı́n Grinstein who has suggested it in the

first place.

The main results of the dissertation are:

• the effective tree-level Lagrangian for the decay B → J/ψK at the leading

order in power expansion in the effective theory and to all orders in gs,

Chapter 4;

• the Wilson coefficients of the effective theory Lagrangian calculated at the

order αs, Chapter 5;

• a covariant version of NRQCD, section 7.2.

In Chapters 6 and 7 the actual derivations supporting the results of Chap-

ter 4 are given. Technical details like LSZ and renormalization factors and typical

Feynman diagrams supporting the results of Chapters 4 and 5 are presented in

Chapter 8.
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Particles and Fields

In this section the concepts of elementary particles and particle interac-

tions are introduced. The discussion follows the presentation given in Chapter 2

of [1].

2.1 Particles

To introduce elementary particles one should begin with the Galileo prin-

ciple, which in its modern form states that fundamental laws of physics which we

know nowadays must be the same in all inertial frames related by transformations

from the Poincaré group:

• Time-translations. The fundamental equations don’t change if one makes a

shift t→ t+ t0.

• Translations in space. The equations remain unchanged under the transfor-

mations ~x→ ~x+ ~x0, where ~x0 is an arbitrary vector.

• Lorentz Transformations. Laws of physics should be the same in all inertial

frames related by Lorentz boosts and rotations.

The only known limitations on the validity of Galileo’s principle come

from gravity. Poincaré transformations (PT) are symmetry transformations of

4
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Minkowski space and hold far away from large gravitating masses where space-time

is flat. According to Einstein’s equivalence principle any space-time is Minkowski

space locally. So, if a space-time is curved only slightly, i.e. essentially everywhere

not very close to the black holes, the transformations of the Poincaré group are

almost exact. PT could possibly become invalid also at very small time intervals

and distances. But currently we don’t know of any scale where deviations from

PT start showing up, except for the Planck scale MPl = 1.22 · 1019 GeV which is

far beyond the reach of modern accelerators including the Large Hadron Collider

(LHC).

PT form a group. Laws of physics (with a remarkable exception of grav-

ity) remain unchanged under the group transformations. Therefore physical states

must form representations of the Poincaré group. Symbolically this statement can

be written as follows.

Let O be some combination of observables (operators) and |Φ〉 be a vector

in the space of physical states. Let T = T (Λ, a) be a transformation of the Poincaré

group specified by three boost parameters, three rotation angles (called collectively

Λ), and by a four-vector a = (t0, ~x0). Then the statement that the law holds in

some frame of reference can be written as

O |Φ〉 = 0. (2.1)

Now the law is invariant under transformations of the Poincaré group. In a new

frame obtained from the original one by the transformation, the law holds as well:

O |Φ〉 = 0 =⇒ T O |Φ〉 = 0, (2.2)

T O T−1 T |Φ〉 = 0, (2.3)

O′ |Φ′〉 = 0. (2.4)

Then O′ = TOT−1 and |Φ′〉 = T |Φ〉 must be identified with the combination of

observables and the state vector as being viewed from the transformed frame of

reference.
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The state |Φ′〉 is obtained from state |Φ〉 by a symmetry transformation,

therefore it must belong to the same representation of the Poincaré group as the

vector |Φ〉. According to group theory any group representation is a linear combi-

nation of tensor products of irreducible representations of the group. Now we are

ready to come up with the first (but not the last) specification of an elementary

particle, namely, a set of physical states corresponding to the states of elemen-

tary particles forms one of the simplest irreducible representations of the Poincaré

group.

2.1.1 Poincaré Algebra

According to group theory a group of continuous transformations T can

be represented by a set of operators of U [T ]. These operators are unitary if the

group manifold M is compact and the unitary operators of the representation

according to Lie’s theorem can be written as exponents of hermitian operators J

(generators) which form a Lie algebra:

U [T (a)] = exp(iJ · a), where [Ji, Jj] = ifijkJk. (2.5)

Here a stands for the coordinates of group element on M and fijk are the group

constants.

The Poincaré group manifold is not compact, it is the direct product of

Minkowski space M4, the group manifold of boosts R3, and the group manifold of

rotations RP 3. Only the latter is compact but it is double-connected and therefore

topologically non-trivial. Nevertheless, it is customary to represent elements of

the Poincaré group using the set of generators, corresponding to the Hamiltonian,

momentum, boost, and angular momentum operators of the physical system whose

states form the group representation:

J = {H, ~P , ~K, ~J}. (2.6)

Operators H, ~P , and ~J are hermitian and the boost operators ~K are anti-

hermitian. Operators (2.6) form a Lie algebra, and from it one can see that the
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angular momentum operators ~J and the momentum operators ~P commute with

the Hamiltonian H while the boost operators ~K do not:

[ ~J, H] = 0, [~P , H] = 0, and [ ~K, H] 6= 0. (2.7)

The Hamiltonian H is the generator of translations in time, therefore angular

momentum ~J and momentum ~P correspond to conserved quantities. The compo-

nents of ~J and ~P along the same axis in position space commute; therefore the

Poincaré group has rank 2 and its irreducible representations can be classified by

two Casimir operators.

2.1.2 Irreducible Representations

One of the Casimir operators is the mass operator M2 = H2 − ~P 2, so

every irreducible representation is specified by its mass squared M2, which can be

both positive or negative. To specify the representation for non-negative M2 it is

necessary to choose the sign of the energy E, the eigenvalue of H, which is Lorentz

invariant. Then the classification of states according to the signs of M2 and E gives

six types of different representations, only three of those are known to correspond

to physical states. These states have non-negative M2, and non-negative energy E.

Further analysis of each of these three states is simplified in the frame where the

energy-momentum vector of the state has the so-called standard form. A specific

subgroup of Lorentz transformations that leaves the standard vector invariant is

called little group of the representation. The physical representations with their

standard vectors and little groups are listed below.

• |M2 > 0, E > 0〉, massive state, (M, 0, 0, 0), SO(3);

• |M2 = 0, E > 0〉, massless state, (E, 0, 0, E), ISO(2);

• |M2 = 0, E = 0〉, vacuum state, (0, 0, 0, 0), SO(3, 1).

Irreducible representations with positive mass are then classified accord-

ing to the irreducible representations of the rotation group SO(3). Such represen-
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tations have 2J + 1 states according to their spin J = 0, 1/2, 1, 3/2 . . .. Massless

representations are classified according to their helicity σ = 0, 1/2, 1, 3/2, . . . which

like spin takes both integer and half-integer values. Massless representations con-

tain either one state, or two states of opposite helicities ±σ if the states form parity

multiplets.

2.1.3 Elementary Particles

Finally we can list the irreducible representations of the Poincaré group

known to correspond to elementary particles.

• Spin 1/2 massive states (fermions of the SM: leptons and quarks);

• Spin 1 massive states (vector bosons of the SM: mediators of weak interac-

tion);

• Spin 1 parity multiplets of massless states (photons and gluons, mediators of

electromagnetic and strong interactions);

The LHC is expected to answer the question whether the Higgs boson, a

hypothetic massive particle with spin 0, is also a physical state actually existing

in nature.

A huge theoretical effort has been devoted to the study of the idea that at

high energies the Poincaré group should be extended to include the so-called su-

persymmetry transformations. Such an extended Poincaré group is usually called

superPoincaré group. Its irreducible representations are composed of doublets

of representations of Poincaré group whose spin differs by 1/2: supersymmetry

transformations combine bosons and fermions into supermultiplets. Despite of the

elegancy of this construction no traces of supersymmetry have been found/observed

experimentally so far.
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2.2 Fields and Interactions

Elementary particles interact and we need a theoretical description of

interactions. In this section we discuss some basic principles leading to such a

description. Then we will be able to complete the task of defining elementary

particles started in the previous section. Namely, in addition of being the sim-

plest irreducible representations of the Poincaré group interactions of elementary

particles are described by renormalizable gauge field theories. In this section we

introduce the concepts of field operators, gauge invariance, and renormalizability.

The discussion is based on Chapters 3-7 of [1].

2.2.1 Cluster Decomposition Principle

Interactions of elementary particles are described by the so-called S-

matrix. Suppose that the initial state of a physical system (it could be the in-

coming beam of an accelerator) at t → −∞ is given by vector |Φα〉 and the final

state (detector events) at t → +∞ by |Φβ〉. Here α and β are quantum numbers

specifying the states which are essentially wave packets localized in space. Between

initial and final moments particles interact, so that the initial vector |Φα〉 becomes

transformed by the evolution operator which in perturbation theory is customarily

written as U(t1, t2) = eiH0t1e−iH(t1−t2)e−iH0t2 to extract a large phase due to the

Hamiltonian H0 of non-interacting particles. Then the probability amplitude to

detect particles in the final state |Φβ〉 is given by the inner product of the final

state vector and the evolved vector of the initial state. This inner product is called

S-matrix:

Sβα = 〈Φβ|S |Φα〉 = 〈Φβ|U(+∞,−∞) |Φα〉 . (2.8)

The S-matrix must reproduce the experimentally observed fact that ex-

periments in spatially separated laboratories do not interfere. To write this require-

ment formally let’s assume that α = α1, . . . , αn and β = β1, . . . , βn are the sets of

quantum numbers specifying initial and final states, so that the states with differ-
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ent subindexes are spatially separated. Then the Cluster Decomposition Principle

(CDP) states that in the limit of large spatial separation between the states with

different indexes the S-matrix factorizes:

Sβ,α → Sβ1,α1 · · ·Sβn,αn . (2.9)

CDP can be reformulated in terms of the so-called connected parts of the

S-matrix, the latter term coming from perturbation theory where connected parts

of the S-matrix are represented by connected graphs of Feynman diagrams. In

terms of connected parts a generic S-matrix element becomes

Sβ,α =
∑
part

(±)SC
β1,α1

SC
β2,α2

. . . , (2.10)

where the sum is taken over all possible ways of partitioning the particles into

clusters α1, α2, . . . and β1, β2, . . . and the sign takes into account permutations of

fermion states. Then CDP is equivalent to the requirement that connected parts of

the S-matrix vanish when spatial separation between initial and final states goes

to infinity:

SC
βi,αi

|~xβi
−~xαi |→∞
→ 0 (2.11)

Using the Riemann-Lebesgue theorem and the translational invariance of the the-

ory which says that the S-matrix depends only on the differences between coordi-

nates ~xβi
− ~xαi

it is possible to show that the Fourier transform of the S-matrix

should be

SC
βi,αi

= δ4(pβi
− pαi

)C(pβi
, pαi

), (2.12)

where the function C(pβi
, pαi

) although in general not regular doesn’t contain a

δ-function singularity (see section 4.3 in [1]).

2.2.2 Field Operators

The interaction Hamiltonian H−H0 =
∫
d3~xH(x) generates the Lorentz-

invariant S-matrix if the interaction density is a Lorentz-scalar and satisfies the
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causality condition:

U(Λ, a)H(x)U−1(Λ, a) = H(Λx+ a),

[H(x),H(x′)] = 0 for (x− x′)2 ≤ 0. (2.13)

As it is shown in Ch. 5 in [1], Eqs. (2.11) and (2.13) together result in a

requirement that the interaction density H(x) must be a polynomial,

H(x) =
∑
1···N

gli···lNφl1(x) · · ·φlN (x), (2.14)

built out of field operators φl(x) (including their derivatives). The index li stands

for the internal quantum numbers of the field operator including spin. The field

operators must meet the following requirements:

• be linear combinations of creation/annihilation operators of one-particle states;

• transform according to some representation D of the Lorentz group (in gen-

eral reducible):

U(Λ, a)φl(x)U
−1(Λ, a) = Dll′(Λ

−1)φl′(Λx+ a); (2.15)

• be causal:

[φl(x), φl′(x
′)]± = 0 for (x− x′)2 ≤ 0. (2.16)

Here ± stands for anticommutator/commutator corresponding to fermion/boson

operators.

The properties of field operators listed above define field operators com-

pletely and using their explicit form it is possible:

• to prove the famous spin-statistics theorem which says that particles with

integer spin are bosons and particles with half-integer spin are fermions;

• to show that field operators provide a system of quantum operators qn(x)

and their conjugates pn(x).
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For example, for a scalar field φ(x) corresponding to a spin-0 particle the

following equal-time commutation relations hold:

[φ(~x, t), φ̇(~y, t)] = iδ3(~x− ~y), (2.17)

and equal-time fields and field derivatives separately commute. As it has been

mentioned before Eq. (2.15) the field operators are linear combinations of the

creation/annihilation operators of one-particle states. The commutation relations

between the creation/annihilation operators simply follow from the definition of the

Fock space of physical states as a tensor product of one-particle states. Eq. (2.17)

allows one to define canonical variables

q(~x, t) = φ(~x, t) and p(~x, t) = φ̇(~x, t) (2.18)

and then use the canonical formalism of classical field theory for quantization.

2.2.3 Gauge Fields and Renormalizability

One can see that the Lagrange formalism follows logically from the set

of well established principles: Poincaré invariance of physical laws, cluster decom-

position, and causality. The explicit form of field operators makes the free-field

Lagrangian (describing non-interacting particles) unambiguous. So, the next task

would be to try to find restrictions on possible interaction Lagrangians. It is not

obvious that such restrictions should exist but it has been found that the La-

grangians which describe the interactions in nature must satisfy the principles of

gauge invariance and renormalizability.

As an example let’s discuss the spin-1/2 Dirac particle. The free-field

Lagrangian density for this system is

L(x) = ψ̄(iγµ∂
µ −m)ψ, where {γµ, γν} = 2gµν . (2.19)

The Noether’s theorem applied to the Lagrangian shows that this system conserves

a quantity that can be identified with the electric charge after the standard quan-

tization procedure is applied to (2.19). This quantity is the difference between the
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number of particles and antiparticles and when written in terms of fields becomes

Q =

∫
d3~xψ̄γ0ψ. (2.20)

The volume of integration here is infinite because from the start we’ve assumed

validity of Poincaré transformations. Locally, the Noether’s theorem states that

there is a conserved current associated with the charge (2.20):

d

dt

∫
V

d3~x(ψ̄γ0ψ) +

∫
S

(ψ̄~γψ)d ~A = 0 =⇒ ∂µ(ψ̄γµψ) = 0. (2.21)

To introduce the interaction between the fermions we couple the con-

served current to the so-called gauge field. The modified Lagrangian,

L′(x) = ψ̄(iγµD
µ −m)ψ where D = ∂ + igA, (2.22)

is invariant under the local gauge transformations:

ψ → eigfψ, and A→ A− ∂f. (2.23)

It is straightforward to show that the newly introduced gauge field A

should be identified with the two helicity states of a massless spin-1 particle (see

Ch. 5.9 in [1]). The gauge field is ambiguous because of the gauge transforma-

tion (2.23) but this ambiguity matches perfectly the ambiguity arising when one

tries to write down the field operator for massless spin-1 particle in terms of creation

and annihilaton operators. However the second rank tensor Fµν = ∂µAν − ∂νAµ is

gauge invariant and unambigous and can be used to write down the Lagrangian

for the gauge field, which in general is an arbitrary function of Fµν .

The last principle that we have to use to keep our particles elementary

(structureless, point-like) is the requirement that the Lagrangian describing par-

ticle interactions contains as few parameters as possible. In the classical theory

this requirement is not really restrictive because one can write down an arbitrary

number of terms as long as gauge invariance is preserved. In quantum field theory

quantum corrections will generate new interactions even if the original interaction
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has the simplest form. The only exception is a renormalizable theory where the

quantum corrections do not generate new interactions but reproduce those present

in the theory from the beginning. So, our last requirement is that the Lagrangian

must be renormalizable.

The renormalizabilty requirement restricts the dimension of the interac-

tions in the Lagrangian to be less or equal to four. The minimal Lagrangian for

a spin-1/2 elementary particle interacting with the gauge field will then contain

only three terms 1, all other possible gauge invariant terms have the dimensions

greater than four and are forbidden:

LQED(x) = ψ̄(iγµD
µ −m)ψ +

1

4
F 2

µν . (2.24)

This is the Lagrangian of quantum electrodynamics (QED) that describes electrons

and photons.

It is remarkable that the imposed restrictions are so severe that Eq. (2.24)

exhausts almost all possibilites for writing down Lagrangians of interacting elemen-

tary spin-1/2 particles in four dimensions. There are only two possibilities known

to date. The first one is to introduce a new internal degree of freedom for the

fermion (isospin, color), so that the symmetry group of the new theory is a di-

rect product of the Poincaré group and an internal symmetry group (non-abelian

gauge group). The famous Coleman-Mandula theorem (see Chapter 24 in [3])

states that under reasonable assumptions2 this is the only way to introduce inter-

nal symmetry into Poincaré invariant theories. The second possibility is to include

supersymmetry in the SM which is a subject of the ongoing research.

1There is one more term of dimension four but it is a total derivative and doesn’t contribute in the
abelian case.

2Finiteness of the number of particles below any given mass, the existence of scattering at almost all
energies, and the analyticity of the S-matrix.
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Standard Model

It is amazing but all the information we have today about elementary

particles and their interactions can be written down in a single formula: the Stan-

dard Model Lagrangian. The current state of affairs is such that wherever we’re

able to extract reliable predictions from the SM we don’t see statistically signifi-

cant deviations from experimental data [7]. Why is it so? Do we know already all

the elementary particles and their interactions or is the SM just the first step-stone

on the long road to the Planck scale?

There is still one danger to the SM looming in the Higgs sector. In spite

of extensive experimental searches the Higgs boson has not been discovered yet.

The LHC should be able to give a definite answer to the question of whether

the Higgs boson exists or it is a theoretical contrivance that makes possible the

formulation of the SM in the framework of gauge invariant renormalizable quantum

field theory. If the latter is the case the principal foundations of the SM should

be reconsidered, so that the presence of the Higgs field in the SM (at least in its

perturbative formulation) is explained.

In this chapter the SM is introduced. The discussion follows the logics

of the presentation given in Chapters 2&3 of [4] to which the interested reader is

referred for details.

15
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3.1 The SM Lagrangian

In this section we describe the Lagrangian of the SM that includes the

degrees of freedom which are more elementary than the particle spectrum observed

in experiment. The SM Lagrangian includes only massless particles (both bosons

and fermions) and possesses a higher degree of symmetry than what is actually ob-

served. We obtain a realistic Lagrangian after the so-called symmetry breaking of

the original Lagrangian. According to the modern interpretation of the symmetry

breaking mechanism, the vacuum of the SM is less symmetric than its Lagrangian.

Although symmetry breaking is a well understood phenomenon (e.g. in solid state

physics) we haven’t observed yet the particle dynamics corresponding to the re-

stored symmetry (above the electro-weak transition) and should keep in mind that

the physics underlying the SM could be very different.

3.1.1 Gauge Symmetries

The gauge symmetry group of the SM is a direct product: U(1)×SU(2)×

SU(3), reminding of the series of integers 1, 2, 3, . . .. The U(1) group corresponds

to the quantum number called hypercharge, the SU(2) quantum number is known

as weak isospin, and SU(3) corresponds to quark color (red, green, and blue). Each

gauge symmetry has a massless (at the level of Lagrangian) spin-1 gauge particle

as a mediator. The Lagrangians of the gauge fields are given by the only possible

gauge invariant dimension-four operators that are CP even:

• hypercharge − 1
4g2

1
B2

µν , where Bµν = ∂µBν − ∂νBµ;

• weak isospin − 1
2g2

2
Tr[F 2

µν ] where Fµν = [Dµ, Dν ] and D = ∂ + iW aτa;

• color − 1
2g2

3
Tr[G2

µν ] where Gµν = [Dµ, Dν ] and D = ∂ + iAata.

Here g1, g2, and g3 are dimensionless coupling constants and τa and ta are gener-

ators of fundamental representations of SU(2) and SU(3), respectively.
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3.1.2 Fermion Sector

Fermion Content

The original fermions are massless and described by the left-handed Weyl

fields which transform according to the (2, 1) representation of the Poincaré group.

Particles and antiparticles fall into different internal symmetry multiplets, so we

should distinguish between them, the symbol for the antiparticle has a bar over

it. There are three generations of fermions, two leptons and two quarks per gen-

eration, and they form exactly the same symmetry multiplets under the gauge

transformations:

• electron e and electron neutrino νe, u-quark and d-quark;

• muon µ and muon neutrino νµ, c-quark and s-quark;

• taon τ and tau neutrino ντ , t-quark and b-quark.

The symmetry multiplets are listed below according to the notation (SU(2), SU(3)c)Y ,

where the first entry is the dimension of SU(2) representation (singlet 1 or doublet

2), and SU(3)c is the dimension of the color representation (triplet 3c, antitriplet

3̄c, or singlet 1c). The subindex Y stands for hypercharge. Index i indicates the

generation.

• lepton weak doublet Li =

 νi

ei

 ∼ (2, 1c)−1,

• antilepton weak singlet ēi ∼ (1, 1c)2,

• quark weak doublet Qi =

 ui

di

 ∼ (2, 3c)1/3,

• antiquark weak singlet ūi ∼ (1, 3̄c)−4/3,

• antiquark weak singlet d̄i ∼ (1, 3̄c)2/3.
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Recently discovered neutrino oscillations have shown that the neutrinos

have mass [7] and therefore we have to extend the SM to account for this fact.

With the particle content given above it is not possible to make neutrinos mas-

sive without violating the renormalizability of the SM. We’ll address this issue in

section 3.1.4.

Fermion Lagrangian

Fermion Lagrangians include covariant derivatives that follow from the

fermion representations listed above:

DLi = (∂ + iW − i

2
B)Li,

Dēi = (∂ + iB)ēi,

DQi = (∂ + iA+ iW +
i

6
B)Qi,

Dūi = (∂ − iA∗ − 2i

3
B)ūi,

Dd̄i = (∂ − iA∗ +
i

3
B)d̄i. (3.1)

Then the fermion Lagrangian density that includes all three generations is:

Lf =
3∑

i=1

(
L†iσ

µDµLi + ē†iσ
µDµēi +Q†

iσ
µDµQi + ū†iσ

µDµūi + d̄†iσ
µDµd̄i

)
. (3.2)

Here σµ = (1, ~σ) where ~σ is Pauli matrix arising when free-field Lagrangian is

constructed for the massless spin-1/2 particle according to the general algortihm

described in Chapter 2.

The fermions we observe in Nature have masses. However massive spin-

1/2 representations of Poincaré group are parity doublets and that contradicts the

experimental fact that weak interaction violates parity. Only left-handed particles

exchange W bosons. We cannot couple left-handed weak doublets to right-handed

weak singlets (left-handed anifermions) through a mass term because that would

violate SU(2) gauge invariance. Fermion masses in the SM are provided by cou-

pling the left-handed doublets and right-handed singlets to a scalar field, the Higgs
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field H, which is a weak doublet and which acquires then a vacuum expectation

value (VEV), so that only one component of the left-handed doublet couples to

the right-handed singlet. The contrivance works so well that it provides not only

fermion masses but also gives self-consistency constraints on the relative strength

of fermion couplings to gauge fields that fixes them completely (see Eq. (3.1))

leaving only g1, g2, and g3 introduced in 3.1.1 to be determined from experiment.

Yukawa Sector

This is the only term in the SM Lagrangian that mixes all three genera-

tions:1

LY = iL̂iējH
∗Y e

ij + iQ̂id̄jH
∗Y d

ij + iQ̂iūjτ2HY
u
ij + c.c. (3.3)

Here ψ̂ = ψTσ2, so that ψ̂η is a Lorentz scalar built out of left-handed fields.

The symbol H stands for the Higgs field which is a weak doublet that transforms

according to (2, 1c)1 under the gauge group. Matrices Yij where subindices indicate

generations are called Yukawa matrices and are completely arbitrary complex. The

Yukawa Lagrangian (3.3) must be invariant under gauge symmetry transformations

so that the sum of U(1) charges of different fields in each term in the Lagrangian

is zero.

The values of hypercharge Y are unambiguously determined by the re-

quirement that the SM is anomaly free. The SM is a chiral theory and in chiral

theories the classical global U(1) symmetry of the Lagrangian associated with chi-

ral rotation, qL → eiαqL, is broken by quantum corrections. After renormalization

the measure of the path integral is not invariant under the chiral rotation. The

anomaly violates consistency of the theory, at least, on the perturbative level.

Technically, the anomaly is due to the contribution of a single anomalous triangle

diagram (which would be zero if the chiral symmetry were not broken, therefore

the name).

1It is also possible to write down the kinetic term (3.2) which is not generation-diagonal but then
field redefinitions will cast it into the diagonal form. So, the only non-trivial generation mixing comes
from Eq. (3.3).



20

The SM has several types of fermions that contribute to the same anomaly

amplitude. When contributions due to different fermions to the same anomaly am-

plitude are summed up, the result is proportional to a combination of hypercharges

that can be set to zero. It turns out that there are three different anomalies that

give three equations for five values of hypercharge and two more equations fol-

low from invariance of Eq. (3.3) under U(1) hypercharge transformations. The

hypercharge of the Higgs field is set to 1 without loss of generality.

3.1.3 CKM Matrix

The Yukawa matrices introduced in Eq. (3.3) do not bring 3×(2×3×3) =

54 new parameters into the SM. By doing field redefinitions it is possible to reduce

the number of parameters to only 13. Nine of them are fermion masses, and four

are the entries of the so-called CKM matrix. Three entries are the real rotation

angles and one is a complex phase responsible for CP violation. Since the topic

of the dissertation is closely related to the determination of one entry of the CKM

matrix (in fact a product of two!) let’s discuss how the CKM matrix comes into

the SM.

Any matrix can be written as a product of two (different) unitary matrices

and one real diagonal matrix. So, we can write the Yukawa matrix for leptons as

Y e = UT
e M

eVe where Ue and Ve are unitary matrices and Me is a real diagonal

matrix. The matrices Ue and Ve are then absorbed by field redefinitions L→ U−1
e L

and ē → V −1
e ē which does not affect the fermion Lagrangian Eq. (3.2). After the

field redefinition the first term in (3.3) simplifies to

Le
Y =

3∑
i=1

iL̂iēiH
∗ye

ii + c.c., (3.4)

where ye
ii are the diagonal elements of M e which after Higgs field H acquires its

VEV give rise to lepton masses.

Writing Yukawa matrices for quarks in the form Y u = UT
u M

uVu and

Y d = UT
d M

dVd and doing field redefinitions ū→ V −1
u ū, d̄→ V −1

d d̄, and Q→ U−1
d Q
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reduces the quark part of the Yukawa Lagrangian to

Lq
Y =

3∑
i=1

iQ̂id̄iH
∗yd

ii + iQ̂i(UuU
†
d)jiūjτ2Hy

u
jj + c.c.. (3.5)

The last simplification can be done if one uses unitarity of the matrix UuU
†
d . A

unitary matrix can be written as PTUP ′, where the matrices P and P ′ are diagonal

phase matrices generated by the elements of the Cartan subalgebra, so that the

matrix U is specified by the rest. For a unitary (3 × 3) matrix there are nine

parameters. One of them is the overall phase and there are two Cartan generators.

Redefining quark fields allows one to get rid of five parameters in the diagonal

matrices P and P ′. The matrix U then depends on four parameters, three of them

are rotation angles of SO(3) and are real and one must be a complex phase. The

matrix U is called Cabibbo-Kobayashi-Maskawa (CKM) matrix.

After the field redefinitions are done the Yukawa Lagrangian is given by

the sum of Eqs. (3.4) and (3.5), which contains only 13 parameters: nine fermion

masses and four parameters of the CKM matrix. Note that Eq. (3.5) gives Yukawa

Lagrangian before the spontaneous symmetry breaking (SSB) described in the next

section. After the SSB the last field redefiniton makes Yukawa Lagrangian diagonal

and moves the CKM matrix into the kinetic term.

3.1.4 Neutrino Mass

Recently measured differences of squares of neutrino masses (see [7]) in-

dicate that neutrinos are massive. This fact requires including at least one more

term in the Lagrangian of the SM. There are two different ways to do it and it

could be that Nature actually chooses both ways.

Dirac Neutrino

The first option is to add to the Yukawa Lagrangian (3.3) one more renor-

malizable term where the weak lepton doublet couples to the weak singlet ν, the
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new lepton field:

Lν = iL̂iν̄jτ2HY
ν
ij + c.c.. (3.6)

To be consistent with the symmetries of the SM and in order to reproduce the val-

ues of hypercharges for the rest of the fields following from equations for anomalies

the new field must transform under (1, 1c)0 representation, i.e. be completely neu-

tral. Therefore the corresponding kinetic term for the new lepton field is simply

the kinetic term of a free field:

Lν =
3∑

i=1

ν̄†i σ
µ∂µν̄i. (3.7)

The matrix Y ν
ij will then introduce a new lepton flavor mixing matrix into

the theory after removing the redundant parameters, the same way it is done for

quarks. It is called UMNS
ij , or Maki-Nakagawa-Sakata (MNS) matrix, the analog of

the CKM-matrix. Therefore Lagrangian (3.6) introduces seven more parameters

into the SM: three neutrino masses, three lepton mixing angles, and one more CP

violating parameter.

This is probably the most conservative way to introduce neutrino mass

into the SM. Eqs. (3.6) and (3.7) are the only terms one can possibly add without

violating renormalizability of the theory and adding new Higgs fields. In this sense

including these terms completes building the SM.

Majorana Neutrino

The second option to give masses to neutrinos is to assume that the SM is

only a low energy effective theory. If so, the Lagrangian of the SM will include an

infinite number of non-renormalizable terms in addition to the set of renormalizable

ones that we already know. The non-renormalizable terms have dimension greater

than four and come into the Lagrangian suppressed by inverse powers of a high

energy scale Λ. From this perspective the SM Lagrangian is viewed as an expansion

in inverse powers of Λ:

Leff = LSM +
1

Λ
L5 +

1

Λ2
L6 + . . . (3.8)
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It turns out there is only one dimension five operator that is consistent

with the symmetries of the SM. This term couples the left-handed weak doublet of

leptons to the Higgs field and after spontaneous symmetry breaking gives masses

to left-handed neutrinos:

L5 = c5(L̂iτ2H)(Ljτ2H)Y M
ij . (3.9)

Coupling the left-handed neutrino to itself means that lepton number is not con-

served. The Majorana neutrino is neutral in the sense that it is its own antiparticle.

Violation of lepton number can be observed in the so-called neutrinoless double

beta decay, when a light nucleus simultaneously emits two electrons and noth-

ing else. The amplitude of this process is proportional to the neutrino mass and

therefore small (see [7]).

3.1.5 Higgs Sector

The last part of the SM Lagrangian is the Lagrangian of the Higgs field.

The latter transforms according to (2, 1c)1 and therefore its covariant derivative is

DH = (∂ + iW +
i

2
B)H. (3.10)

The most general Lagrangian for the field is given by the sum of three terms which

are weak singlets of dimension four or less:

LH = (DµH)†(D µH) + µ2H†H − λ(H†H)2. (3.11)

Here µ and λ are positive parameters to be determined from experiment. The sign

of the third term must be negative to ensure stability of the vacuum at least at

the classical level. The sign of the second term is specifically chosen to give the

Higgs field a vacuum expectation value at tree level.

3.2 Spontaneous Symmetry Breaking

The paradigm used to extract predictions from the SM is a perturbative

expansion around the classical vacuum of the model. We do not know yet whether
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perturbative expansion is an intrinsic feature of the SM itself or the SM as it is can

be understood as a field theory with a cutoff and the use of perturbation theory

simply reflects the lack of more sophisticated computational methods. At least for

the QCD sector of the SM lattice calculations show convincingly enough that QCD

could and should be treated non-perturbatively in order to extract the spectrum

of light hadrons from QCD Lagrangian. In this dissertation we are concerned with

phenomena that happen at energies greater than ∼ 1 GeV, so for our purposes

even for QCD perturbation theory should suffice.

3.2.1 Classical Vacuum of the SM

The lowest energy configurations of the SM fields as required by gauge

invariance are:

• fermion fields should be set to zero due to Lorentz invariance of the vacuum:

〈0|ψ |0〉 = 0;

• gauge fields give positive definite contributions to the Hamiltonian and there-

fore should be set to pure gauge configurations, (A,B,W ) → iΩ†∂Ω;

• Higgs field should be set to a constant value to minimize the value of the

kinetic term and Higgs potential, V (H) = −µ2H†H + λ(H†H)2.

The last condition is non-trivial because the minimum of the Higgs po-

tential corresponds to a field configuration that singles out a direction in the weak

isospin space:

Hvac =
eiθ0

√
2
U

 0

v

 , where v =

√
µ2

λ
and U ∈ SU(2). (3.12)

The vacuum configurations form a manifold on which one can move by doing

SU(2)× U(1) transformations and in this sense the symmetry is preserved. How-

ever, a tunneling amplitude between different configurations is zero in the limit

when the volume of the system goes to infinity. So, once a direction in the isospin
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space is chosen the system sits there. This phenomenon is known as spontaneous

symmetry breaking (SSB).

The classical vacuum configuration breaks three quantum numbers as-

sociated with isospin and hypercharge transformations and leaves invariant only

one linear combination Q = I3 + Y/2 that corresponds to the electric charge of

QED. The broken symmetries give rise to massless Goldstone bosons which be-

come the longitudinal components of the massless gauge fields associated with the

broken symmetries. After ”eating up” Goldstone modes the gauge fields become

massive and are identified with massive vector bosons, the mediators of the weak

interaction. The linear combination of weak isospin and hypercharge gauge fields

corresponding to the unbroken symmetry (electric charge conservation) becomes

the massless photon.

3.2.2 The SM Lagrangian after SSB

Writing down the Lagrangian of the SM after SSB, imposing appropriate

gauge fixing conditions in the broken phase, and making sure that the Lagrangian

remains renormalizable after SSB is a difficult and non-trivial task. When com-

pleted it gives the spectrum of elementary particles and their interactions observed

in Nature. Here we write only the particle spectrum and the currents coupled to

gauge fields following [4] with a modification because of massive neutrinos.

Fermions

There are three generations of fermions in the SM listed in 3.1.2. Each

generation contains a massive neutrino of zero electric charge (either left-handed

Majorana neutrino, or Dirac neutrino, or both), one Dirac lepton of charge −1,

and two Dirac quarks of charge 2/3 and −1/3.

Gauge Particles

The SM after SSB contains the following gauge particles:
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• Massless photon mediating electromagnetic interactions, the unit for electric

charge (on tree-level) is given by:

e =
g1g2√
g2
1 + g2

2

; (3.13)

• Eight massless gluons mediating strong interactions;

• Massive neutral spin-1 boson, called Z-boson, with tree-level mass

MZ =
√
g2
1 + g2

2

v

2
; (3.14)

• Massive spin-1 boson of unit charge, called W+ (W− for antiparticle), with

mass

MW = g2
v

2
. (3.15)

Currents

Here we write down fermion currents coupled to gauge bosons of the

SM and the interaction Lagrangian. This Lagrangian is relevant for the process

studied in this dissertation. Index i = 1, 2, 3 stands for generation. Currents

are written in Dirac form because after SSB left-handed fermion and antifermion

fields are combined into massive CP pairs, so in the equations below ψ̄ = ψ†γ0

and PL = 1−γ5

2
.

• Electromagnetic current:

Jµ
em =

2

3
ūiγ

µui −
1

3
d̄iγ

µdi − ēiγ
µei; (3.16)

• Strong current:

Ja
µ = ūiγ

µtaui + d̄iγ
µtadi; (3.17)

• Charged weak currents (flavor changing currents):

J−µ = UijūiγµPLdj + UMNS
ij ν̄iγµPLej

J+
µ = U †

ij d̄iγµPLuj + U †MNS
ij ēiγµPLνj; (3.18)
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• Neutral weak current:

J3
µ =

1

2
ūiγµPLui −

1

2
d̄iγµPLdi +

1

2
ν̄iγµνi −

1

2
ēiγµei. (3.19)

The interaction between the weak currents and gauge fields is given by the La-

grangian:

i
g2√
2
(W+

µ J
−µ +W−µJ+

µ ) + i
e

sin θw cos θw

Zµ(J3
µ − sin2 θwJem µ), (3.20)

where sin θw = g1√
g2
1+g2

2

represents the so-called weak mixing angle (at tree-level).

3.2.3 Higgs Boson

After three degrees of freedom associated with the Higgs field have been

absorbed by the SU(2) gauge fields there is still one degree of freedom left. It

corresponds to a scalar neutral particle with mass mH = µ
√

2 = v
√

2λ called the

Higgs boson. Although the Higgs boson has not been observed yet the boundaries

on its mass are already fairly well known from fits to precision measurements to

the SM observables. (The SM is a renormalizable theory and beyond tree-level the

Higgs boson will contribute through loops even if it is not observed in the external

states.) The current best fit value is 95+45
−32 GeV at 95% confidence level (see [7]).

There is a firm hope that the LHC with its ATLAS and CMS detectors

optimized for Higgs searches will either find the Higgs boson in the predicted mass

range or rule it out. In the latter case that would bring back a question of the

foundations of the SM: what does the non-observable degree of freedom correspond

to? Integrating out the Higgs field most likely would not help because that would

result in a non-renormalizable theory whose terms are organized as a series in

inverse powers of an energy scale associated with Higgs sector (∼ v ≈ 246 GeV).

The latter would mean that elementary particles have a structure at this scale

which is not supported by data [7].
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Effective Field Theory for

B → J/ψK. Analysis

Precision calculations in the SM involving hadrons are complicated due

to the confinement of quarks and each particular process requires computational

tools developed specifically for that purpose. In this section we outline the basic

steps of the calculation of the matrix element for the process B → J/ψK by means

of an effective field theory leaving technical details to the next chapters.

4.1 What Can be Done Despite Complications Brought by

Confinement of Quarks

One of the decay modes of the B-meson is a decay into charmonium J/ψ

and a kaon K. On the quark level the decay can be described as the b-quark

decaying into the cc̄-pair and s-quark due to the weak interaction. The spectator

quark in the B-meson becomes the second quark in the kaon, the force binding the

spectator quark is due to quantum chromodynamics (QCD). The decay amplitude

is proportional to the Fermi constant GF and small, so it can be calculated by

means of perturbation theory. At the first order in perturbation theory in the

28
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electroweak coupling it is given by the matrix element (ME)

〈J/ψ, K|HW |B〉 , (4.1)

where HW is a flavor changing operator, it is essentially a product of two quark

currents introduced in Eq. (3.18). In the next section we discuss how to calculate

HW from the SM Lagrangian. The initial and final states are hadronic states.

Currently our understanding of hadronic states is far from being complete and we

don’t know how to compute hadronic matrix elements using approximate analytic

methods1. The best we can do with a matrix element like (4.1) is to write it down as

a combination of other matrix elements which we cannot compute as well but hope

that reducing a variety of matrix elements to just a few basic ones we can extract

the values of the latter from a restricted set of observables and thereby gain some

control over other observables. Mathematically the idea is to use Wigner-Eckart

theorem by exploiting approximate dynamical symmetries of QCD.

The approach outlined above is called effective field theory and works only

under certain kinematic conditions. In general the wavelengths of the particles

involved in the decay must be much less than the wavelength associated with

the confinement scale Λc ∼ 350 MeV−1, the effective mass of the constituent

quarks. In practice ”much less” often means only several times less. When this

condition is met we can use asymptotic freedom of QCD, the fact that the strong

coupling constant αs goes to zero when the transferred momentum goes to infinity,

so that the strong interaction between short wavelength quarks is well described

by perturbation theory.

In our case we use the fact that the b-quark undergoing the weak decay is

heavy, its mass is mb ∼ 4.2 GeV, one order of magnitude larger than the confine-

ment scale. The decay products are a cc̄-pair made of quark and antiquark whose

masses are mc ∼ 1.25 GeV each and a light s-quark with ms ∼ 0.1 GeV. The

relative velocity of quarks of the cc̄-pair must be small, so that the quarks could

1The only known general method is numerical evaluation of path integrals on the lattice but it takes
a lot of computational effort. We don’t discuss lattice calculations in the dissertation.



30

form a J/ψ bound-state. Therefore the process is essentially a two-body decay and

we can estimate the energy/momentum of the outgoing s-quark to be Es ∼ 1.4

GeV in the b-quark rest frame. So, the wavelengths of all quarks involved are

reasonably large except for the so-called spectator quark (one of the light quarks:

u, d, or s) that participates in the decay indirectly. Before the decay the spectator

quark belongs to the B-meson and after the decay it must become the constituent

quark of the kaon.

Temporarily neglecting the spectator quark we’ll develop an effective the-

ory for the ME (4.1) in the limit where mb → ∞, mc → ∞, and Es → ∞.

The corresponding effective theories are known as heavy quark effective theory

(HQET) [17], [18], and [19] non-relativistic quantum chromodynamics (NRQCD) [16],

and soft-collinear effective theory (SCET) [11]. To describe this particular process

we have to combine them all.

4.2 From MW Scale to mb Scale

Before dealing with hadronic states we discuss how to derive the effective

Hamiltonian of electroweak interactions HW from the SM. At tree-level (in the

lowest order of the electroweak coupling) the decay amplitude is given by the

Feynman diagram in Fig. 4.1. The amplitude is proportional to the propagator of

→
b

→
s

↑c ↑ c

W

Figure 4.1: b-quark decaying into c-, c̄-, and s -quarks.

W -boson, [(pb− pc)
2−M2

W ]−1. The external momenta of b and c quarks are much

smaller thanMW ≈ 80 GeV, so the first approximation is to expand the propagator
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in powers of quark momenta and keep only the leading term in the expansion, often

referred to as an operator product expansion (OPE). The decay amplitude given by

the leading term is the same as that produced by a local four-fermion interaction

aka the Fermi interaction:

LW = −HW = −4GF√
2
VcbV

∗
cs[s̄γµPLc][c̄γ

µPLb], (4.2)

where Gf =
g2
2

4
√

2M2
W

is the Fermi constant.

This Lagrangian would be a good zero order approximation if one could

make sure that the coupling constants g1, g2, and g3 are infinitesimally small.

In reality they are small but finite and when one calculates loop corrections in

perturbation theory they become multiplied by a large coefficient that gives a

substantial contribution to the decay amplitude. For example, gluon exchange

between two quarks, as in Fig. 4.2, gives a contribution proportional to αs

4π
ln

M2
W

m2 ,

where m is a heavy quark mass. This number is of order one. In fact there is an

→
b

→
s

↑c ↑ c

W

Figure 4.2: One of six diagrams with one gluon exchange in the full theory.

infinite subset of Feynman diagrams at higher orders in perturbation theory that

give contributions proportional to (αs

4π
)n lnn M2

W

m2 and we must sum them all to make

sure that all these leading logarithmic contributions have been taken into account.

This is a general property of perturbation theory to produce large logarithms for

problems with several largely separated scales - that is why one has to use effective

theories in the first place - to sum such logarithms.

Besides there is also an important qualitative effect associated with gluon

exchange. Gluon emission changes the quark color and that would change the order
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in which color indices are contracted in the original interaction (4.2). Explicitly,

with only the color indices shown:

[s̄ici][c̄jbj] → c1[s̄ici][c̄jbj] + c2[s̄icj][c̄jbi]. (4.3)

The coefficients c1 and c2 are called Wilson coefficients.

Evaluating the leading order (LO) contributions, often also referred to

as leading logarithmic approximation, (i.e. ∼ αn
s lnn M2

W

m2 ) is not difficult thanks

to the powerful technique of the renormalization group (RG). Nowadays this is a

textbook calculation [8]. Firstly, one has to evaluate the decay amplitude at one

loop in QCD in the effective theory of electroweak interactions which is given by

a sum of six diagrams of the type shown in Fig. 4.3 and which is a correction

to the operator (4.2). Without the W -boson propagator the loop diagrams are

→
b

→
s

↑c ↑ c

Figure 4.3: One of six diagrams with one gluon exchange in the effective theory.

UV -divergent and after renormalization the amplitude becomes dependent on the

renormalization scale µ. Secondly, setting µ = MW and equating this effective

theory decay amplitude to the amplitude of the full theory calculated at tree-level

allows one to obtain the initial Wilson coefficients in (4.3) at µ = MW
2. Thirdly,

from the renormalization constants of the effective theory operators one extracts

the so-called anomalous dimension matrix (ADM). Finally, using the ADM and

the initial values for Wilson coefficients one solves the RG equation of the effective

theory and finds the dependence of Wilson coefficients on the renormalization

scale µ. Setting µ = mb reproduces the result of summing up all LO contributions

2This procedure is called matching and it is discussed later in the Chapter 8.
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(∼ αn
s lnn M2

W

m2 ) coming from the diagrams of the type shown in Fig. 4.2 without

actually writing down the corresponding multi-loop diagrams.

After setting µ = mb the result is given by two operators:

LW = −4GF√
2
VcbV

∗
cs

(
C0(mb)[s̄γ

µPLb][c̄γµPLc] + C8(mb)[s̄γ
µPLT

ab][c̄γµPLT
ac]

)
(4.4)

with the LO Wilson coefficients

CLO
0 (µ) =

2

3

(
αs(MW )

αs(µ)

) 2
β0

− 1

3

(
αs(MW )

αs(µ)

)− 4
β0

,

CLO
8 (µ) =

(
αs(MW )

αs(µ)

) 2
β0

+

(
αs(MW )

αs(µ)

)− 4
β0

, (4.5)

where

β0 = 11− 2

3
nf and αs(µ) =

4π

β0 ln(µ2/Λ2
QCD)

. (4.6)

(For nf = 5, ΛQCD = 225 MeV.) Numerically,

CLO
0 (mb) = 0.076 and CLO

8 (mb) = 2.273. (4.7)

The operator basis in Eq. (4.4) is more convenient for our purposes than (4.3)

because the cc̄-pair eventually forms bound state, J/ψ. The two operator bases are

related by Fierz transformations and are linearly dependent, although beyond one

loop working out the transformation matrix between the two bases is technically

complicated3.

Unfortunately the LO approximation for the Wilson coefficients is not

sufficient. The bound state of the cc̄-pair is a color singlet and therefore the singlet

operator in Eq. (4.4) has the largest overlap with the ground state of J/ψ. The

coefficient of the singlet operator C0 is given by a difference of two approximately

equal numbers and is small. It turns out that the dominant contribution comes

from the NLO correction which requires a two-loop calculation of the ADM. The

Wilson coefficients for the operators in (4.3) have been calculated at three loops

(see [9]) and we can use those results. In that paper Wilson coefficients are given in

3In dimensional regularization the complications are due to the so-called evanescent operators
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the basis (4.3) which is different from the basis of Eq. (4.4), so we have to work out

coefficients of linear transformation at two loops (see section 8.1 for the results).

Then the Wilson coefficients at the NLO are given by

CNLO
0 (mb) = 0.206 (0.218) and CNLO

8 (mb) = 2.237 (2.210). (4.8)

The values in parentheses have been obtained using αs(mZ) = 0.119 as an initial

value for the RGE of the QCD-coupling instead of using Eq. (4.6) where αs is

defined in terms of ΛQCD = 0.225 MeV. The coefficient CNLO
0 (mb) is three times

larger than CLO
0 (mb) while the coefficient C8 stays approximately the same and

still it is an order of magnitude larger than C0. Therefore we should be careful

when estimating its contribution to the ME (4.1) because even a small admixture

of the state |(cc̄)8, gluon〉, where (cc̄)8 stands for the octet state of quark-antiquark

pair, can give a significant contribution.

4.3 From mb Scale to Confinement Scale

The Lagrangian (4.4) is different from the corresponding Lagrangian of

the SM. Degrees of freedom associated with the mediator of the weak interaction,

W -boson, whose wavelength is two orders of magnitude smaller than the wave-

lengths of particles participating in the decay have been ”integrated out”. The

resulting interaction is local and the functional dependence associated with the

large mass scale MW now comes into the theory through the Wilson coefficient

and GF . In other words in the effective Lagrangian (4.4) the dependence of the

decay amplitude on MW has been factorized.

This is essentially what effective theory is about: separation of scales.

Going down the energy scale we are not able to resolve fine structure of interactions

at higher energies and instead work with effective interactions in which the details

due to large energy scales are hidden in the Wilson coefficients. We may want to

ask if we can go further down the energy scale and integrate out more degrees of

freedom, so that the remaining ones would describe only the essential physics. This
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approach is especially relevant for QCD where the so-called soft degrees of freedom

associated with the confinement scale, Λc ∼ 350 MeV−1, are not well understood,

so it is important to separate them from the degrees of freedom that can be treated

perturbatively.

In early days of effective field theory people used to write down full QCD

Feynman diagrams and analyze the structure of infrared divergences of the in-

tegrals, looking for the regions of momenta contributing the most. Soon it was

found that the infrared divergences form a structure that could be reproduced by

an effective Lagrangian following from full QCD Lagrangian in a specific kinematic

limit.

In general such Lagrangians (in this dissertation we use three of them:

HQET, NRQCD, and SCET) consist of infinite series of terms organized by powers

of an expansion parameter. In HQET it is the ratio of the confinement scale and

the mass of the heavy quark, Λc/m, in NRQCD it is the relative velocity of the

quark/antiquark pair v � c (therefore the name), and in SCET the expansion

parameter is the ratio of the confinement scale and the energy of the relativistic

collinear quark, λ=(either Λc/Es or
√

Λc/Es, depending on the process). A search

for such a Lagrangian is not straightforward unlike the more direct approach of an-

alyzing full QCD Feynman diagrams but it is easier because such a Lagrangian can

be guessed. Whatever method is used to obtain an effective theory Lagrangian the

decay amplitude calculated with its help must have the same infrared divergences

as the full QCD amplitude order by order in an αs expansion.

4.3.1 Degrees of Freedom in the Effective Theory

At the beginning of this chapter we have mentioned that the limit mb, mc,

and Es → ∞ is a reasonable approximation for this particular decay mode. Inte-

grating out the corresponding degrees of freedom is similar to integrating out the

W -boson. The resulting effective theory depends on mb, mc, and Es only indirectly

through Wilson coefficients. The effective theory does not contain dynamical de-
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grees associated with the degrees of freedom of the scales higher than several Λc.

Nevertheless its dynamics is complicated because we have to separate scales in the

gauge sector as well and introduce different sorts of gluons.

Taking the limitmb, mc and Es →∞ is equivalent to sending wavelengths

to zero and is similar to the approximation made in geometrical optics. When

the wavelength changes slowly, dλ/dx ≤ 1, it is more convenient to work with

rays instead of wavefronts. In our case the rays are vectors in Minkowski space

corresponding to four-velocities of the in- and outgoing quarks, βb, βcc̄, and n. The

first two are unit vectors, the four-velocities of the b-quark and cc̄-pair. The vector

n is light-like: n2 = 0, and specifies the four-velocity of the collinear s-quark whose

mass has been neglected. The fields of the effective theory follow when fields of

the full QCD are projected on these directions; the list of the fields is given below.

• Quark sector. All quark fields are four-component Dirac spinors obtained

from the corresponding full QCD fields by applying projection operators.

Only two components of each field are linearly independent.

1. The heavy quark field hβb
(x) carries momentum that scales like the

confinement scale.

2. The heavy c-quark field ξβcc̄,p̃⊥(x) and the heavy c̄ anti-quark field

ηC
βcc̄,−p̃⊥

(x) carry momentum that scales like (mcv
2,mcv,mcv,mcv) where

v is the relative velocity of the cc̄-pair and the first entry stands for the

component of the quark momentum parallel to βcc̄. Numerically mcv
2

for J/ψ is of the same order as the confinement scale. The label p̃⊥

corresponds to the large momentum ∼ (0,mcv,mcv,mcv). The residual

momentum of the order of the confinement scale resides in the coordi-

nate x.

3. The field ξn, p(x) of the light s-quark carries momentum p = 1
2
(n̄ ·ps)n+

ps⊥+ 1
2
(n ·ps)n̄ (the label) which components scale like ∼ Es(1, λ, λ, λ

2)

plus the residual momentum of the order of the confinement scale resid-



37

ing in the x-dependence. The light-like vector n̄ corresponds to a wave

propagating in the opposite direction: (n̄ · n) = 2.

• Gluon sector. There are three types of gluons.

1. The ultrasoft gluon field Aus(x) has a typical momentum of the confine-

ment scale.

2. The collinear gluon field Ans, q(x) corresponds to gluons which are part

of the kaon wavefunction. Collinear gluons carry a fraction of the kaon

momentum ∼ pK and the components of the field Ans, q(x) scale like

momentum of the collinear s-quark ps: Ans, q = 1
2
(n̄ ·Ans, q)n+Ans, q⊥ +

1
2
(n · Ans, q)n̄ ∼ Es(1, λ, λ, λ

2).

3. The potential gluon field Ap(x) corresponds to degrees of freedom bind-

ing the cc̄-pair into charmonium. This field scales like the momentum of

the c-quarks in the bound state: the time-like component parallel to βcc̄,

A‖(x) scales like mcv
2 and transfers momentum (mcv

2,mcv,mcv,mcv).

The space-like component perpendicular to βcc̄, A⊥(x), scales like mcv

and transfers momentum ∼ (mcv,mcv,mcv,mcv).

The effective theory of the decay is considered in this dissertation only

at the leading order in the expansion parameters Λc/mb, v, and λ. At this order

the only interaction between HQET, NRQCD, and SCET sectors is due to the

exchange of ultrasoft gluons at the confinement scale Λc and the relation between

the expansion parameters is arbitrary.

4.3.2 Tree-Level Effective Theory Weak Decay Operator

We can sum up all tree-level diagrams for this process to all orders in

gs with the help of the procedure called tree-level matching. The details of the

calculation are given in Chapter 6, here we present only the result:

O
(tree)
ij = [ξ̄n,pWΓjCi hβb

][ξ̄βcc̄ p̃⊥Γj SCi S
† ηC

βcc̄ −p̃⊥
], (4.9)
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where C ⊗C stands for color singlet 11 ⊗ 11 or octet T a ⊗ T a operators and Γj is

an effective theory Dirac structure. Symbols W and S denote the so-called Wilson

lines, nonlocal operators whose expressions in momentum space are:

W =
∑
perm

exp

(
−gs

1

n̄ · Pc

n̄ · Ans, q

)
,

S =
∑
perm

exp

(
−gs

1

n · P⊥
n · Ap⊥

)
. (4.10)

These expressions should be understood as Taylor expansions. The operators Pc

and P⊥ are the so-called label operators that in each term of the Taylor series

should be replaced with the sum of momentum labels on the left. The operator

Pc picks up labels of collinear quarks and gluons and operator P⊥ picks up the

momentum component perpendicular to βcc̄ for potential gluons and quarks of the

cc̄-pair.

An important feature of Eq. (4.9) is that collinear and potential degrees

of freedom have been factorized: collinear quarks and gluons contribute to the (s̄b)

current and potential gluons only to the (cc̄)-current. This phenomenon is referred

to as factorization at tree level. Factorization holds even when loop corrections

including collinear and potential gluons are considered. Potential and collinear

gluons do not couple to each other at the leading order in v and λ (see the end

of section 6.3.3). The interaction between these two types of gluons is given by

subleading operators. The next question to address is whether the factorization

property holds when loop corrections due to ultrasoft gluons are taken into account.

4.3.3 Factorization at Operator Level

The hallmark of the effective field theories is that their leading order

Lagrangians can be made free of the ultrasoft gluon field Aus(x) by means of a

simple field redefinition of all the fields that carry labels (see [12]). This is the same

factorization phenomenon we’ve already encountered when integrating out the W -

boson: short and long wavelengths don’t interfere. This observation allows one to
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simplify greatly the analysis of loop corrections to the tree-level Lagrangian (4.9).

The details are given in section 6.3.5 and here we present only the result. After the

field redefinition has been made HQET, covariant NRQCD, and SCET Lagrangians

become free of ultrasoft fields. The singlet and octet operators in (4.9) acquire

explicit ultrasoft field dependence:

O
(tree)
0 =

∑
j

[ξ̄(0)
n,pW

(0)Γj Y
†
nYβb

h
(0)
βb

][ξ̄
(0)
βcc̄ p̃⊥

Γjη
C (0)
βcc̄ −p̃⊥

],

O
(tree)
8 =

∑
j

[ξ̄(0)
n,pW

(0)ΓjY
†
nT

aYβb
h

(0)
βb

][ξ̄
(0)
βcc̄ p̃⊥

Γj S Y
†
βcc̄
T aYβcc̄ S

† η
C (0)
βcc̄ −p̃⊥

].

(4.11)

Here Yn,βb,βcc̄ are the Wilson exponentials along n, βb, βcc̄ built of ultrasoft field

Aus(x) similarly to Eq. (4.10) and the superscript (0) stands for the ultrasoft-free

quark fields.

Eq. (4.11) makes it explicit that corrections due to ultrasoft gluons will

not mix the currents in the singlet operator, so it factorizes but the octet doesn’t.

Loop corrections to the singlet operator will modify the currents independently

and we can write down the general expression for the singlet which is valid to all

orders in αs:

L0 = [ξ̄n,pW C0
sb,j(P̄/µ)Γj hβb

][ξ̄βcc̄ p⊥C
0
cc̄,j(mc/µ)Γjη

C
βcc̄ −p⊥

]. (4.12)

Here the Wilson coefficients follow from matching with full QCD which has been

done at one loop both for the singlet and the octet operators and is discussed later

in this chapter. Factorization of the singlet operator has been verified explicitly at

one-loop level (see section 8.2.2 for the detailed discussion).

4.3.4 Factorization of the ME

Ultrasoft degrees of freedom are the only ones common to all three ef-

fective theories and the fact the ultrasoft gluons decouple at the leading order in

power expansion means that the net Hilbert space is simply a direct product of
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Hilbert spaces of the theories. This observation allows one to simplify the MEs of

the operators O0,8 from Eq. (4.11) taken between the states of Eq. (4.1) by replac-

ing the latter by the effective theory states. The subindices βb, βcc̄, and n indicate

the states of the corresponding effective theories. First we discuss the exclusive

decay mode when the final state contains a kaon.

Exclusive Decay B → J/ψK. Singlet operator

The ME of the singlet operator between the effective theory states is a

product of the MEs of the currents:

〈Kn| [ξ̄n,pW C0
sb,j(P̄/µ)Γj hβb

] |Bβb
〉
〈
J/ψβcc̄

∣∣∣ [ξ̄βcc̄ p⊥C
0
cc̄,j(mc/µ)Γjη

C
βcc̄ −p⊥

] |0βcc̄〉 .

(4.13)

At the leading order in the effective theory the ME for the decay factorizes. The

first matrix element between eigenstates of the collinear kaon and the B-meson

vanishes at the leading order in λ and all orders in αs in the effective theory be-

cause the B-meson contains a spectator quark that represents the ultrasoft degrees

of freedom. The ultrasoft quark in the B-meson must become a collinear quark in

the kaon, and so we need an operator insertion that mixes ultrasoft and collinear

degrees of freedom. Such an operator is subleading (∼ λ2, see [10]) and comes

suppressed by at least one power of gs. The second matrix element is computable

because in NQRCD the J/ψ is a hydrogen-like bound state of the (cc̄)-pair. Al-

ternatively the second matrix element can be expressed in terms of the J/ψ decay

constant.

Exclusive Decay B → J/ψK. Octet operator

The ME of the octet operator between the effective theory states can be

reduced to:

〈Kn| [ξ̄(0)
n,pW

(0)ΓjY
†
nT

aYβb
h

(0)
βb

]×

×
〈
J/ψβcc̄

∣∣∣ [ξ̄
(0)
βcc̄ p̃⊥

Γj S
(0) Y †

βcc̄
T aYβcc̄ S

(0) † η
C (0)
βcc̄ −p̃⊥

] |0βcc̄〉 |Bβb
〉 . (4.14)
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For the octet, the ultrasoft degrees of freedom are not factorized and so the ME

between NRQCD vacuum and charmonium states remains trapped inside the ME

between the collinear kaon and the heavy B-meson states. However we can still

use the fact that both |J/ψβcc̄〉 and |0βcc̄〉 are color singlets and therefore the cor-

responding ME is proportional to the color trace

Tr
[
S Y †

βcc̄
T aYβcc̄ S

†
]
. (4.15)

The operators Y and S are unitary and the trace would have vanished if there were

no operator insertions due to the interactions that break ordering of the exponents.

At the tree-level there are none and the trace vanishes. Therefore we can argue

that the ME (4.14) is suppressed compared to the ME (4.13) by a factor of αs.

This suppression has a clear physical meaning: J/ψ is a colorless state invisible

for ultrasoft gluons responsible for confinement. The state becomes visible only

when the cc̄-pair forms a virtual color octet plus potential gluon and according to

Eq. (4.14) can emit an ultrasoft gluon.

The last observation could render the octet contribution to the decay

rate irrelevant but it is difficult to tell quantitatively without explicit numerical

evaluation of the MEs. The suppression comes from ultrasoft gluons and αs(µ)

becomes quite large close to Λc. Furthermore, the Wilson coefficient of the octet

operator is ten times larger than for the singlet, see Eq. (4.8). So, in spite of the

fact that the octet operator is sandwiched between two colorless states 〈J/ψβcc̄ |

and |0βcc̄〉 its contribution to the ME could be as significant or even greater than

that of the singlet operator when loop corrections are taken into account.

In the next section we give the expressions for the Wilson coefficients

calculated at the NLO. This calculation shows explicitly that the octet and the

singlet mix at the αs-order and so we can get some idea about the relative strength

of the octet contribution to the decay amplitude by comparing numerical values

of Wilson coefficients of the singlet and octet operators in the ET at µ = mb

(see Eqs. (5.2) and (5.4)). The zero order coefficients CET, (0)(0.30) ∼ 0.5. The

coefficients CET (1)(1, 0.30) which mix the singlet and the octet operators are of the
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order 10, as it follows from Eq. (5.5). Therefore:

CET, (0)(0.30) ∼ 0.5 versus
αs(mb)

4π
CET (1)(1, 0.30) ∼ 0.2. (4.16)

So, at µ = mb the LO and the NLO terms are of the same order of magnitude and

neglecting the octet contribution is not justified unless it could be argued that at

higher orders some cancellation happens.

To conclude: factorization of the singlet operator made explicit in Eq. (4.13)

at the leading order of the effective theory doesn’t really help in making quanti-

tative predictions about the decay amplitude of the process B → J/ψK. Rather

Eqs. (4.13) and (4.14) and the Wilson coefficients listed in Chapter 5 should be

considered as a necessary step towards a quantitative analysis of the decay.

Semi-inclusive Decay B → J/ψXs

In the semi-inclusive decay the final state is J/ψ and any hadron state

Xs that includes one and only one s-quark. This removes the restriction that the

spectator quark in the B-meson must necessarily become collinear but it doesn’t

help much. There is one collinear quark operator in the (s̄b) current and it is still

necessary to boost an ultrasoft quark (e.g. from vacuum) into a collinear meson:

all final states must be color singlets.4 Therefore the insertion of an operator that

mixes collinear and ultrasoft degrees of freedom is still required and everything that

has been said about the exclusive process remains also valid for the semi-inclusive

process.

4There is not enough energy to produce a relativistic baryon, so the collinear state(s) must be a
meson.
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Wilson Coefficients

In this chapter we present Wilson coefficients for the effective theory La-

grangian at LO in αs inclusive summing leading logarithmic terms. Also the NLO

initial Wilson coeffcients in αs of the effective theory at µ = mb are given. Evolving

Wilson coefficients with the help of the RG at NLO requires the anomalous dimen-

sion (AD) at two-loops which is not yet known. The singlet operator factorizes in

the product of two currents and therefore its anomalous dimension is just the sum

of anomalous dimensions for the currents. The octet operator doesn’t factorize as

we have seen in the previous Chapter and requires the two-loop calculations in the

effective theory.

5.1 Leading Order

At the leading order the RG-improved decay Lagrangian is given by

LLO
W (µ) = −4GF√

2
VcbV

∗
cs

[
αs(mb)

αs(µ)

] 4πCF
β2
0αs(mb) ∑

i=0,8

4∑
j=1

×

×Ci(mb)C
ET,(0)
j (r) [ξ̄n,pWΓjCi hβb

][ξ̄βcc̄ p̃⊥ΓjSCiS
† ηC

βcc̄ −p̃⊥
]. (5.1)

43
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In this equation Ci(mb) are Wilson coefficients from (4.8) and:

Ci ∈ {11, T a}, r = mc/mb, CF =
4

3

Γj ⊗ Γj ∈ {PR ⊗ n/∗⊥, PR ⊗ β/b⊥, PR ⊗ γ5, ε/− ⊗ ε/+⊥},

and C
ET,(0)
j (r) ∈

{
1

2
,

1

2
, − 1

4r
,−1

2

}
. (5.2)

For the derivation of the effective theory Dirac structures see Chapter 8. In

Eq. (5.1) we keep only the zero order term in the expansion of tree-level oper-

ator (4.9) in αs.

The LO AD used to run down the coefficients for singlet and octet turned

out to be the same and equal to the AD for (s̄b)-current [11]:

γ(µ) =
αs(µ)

π
CF ln

mb

µ
. (5.3)

Its derivation is given in 8.2.3.

5.2 Next to the Leading Order

Here we present the result of calculation at order αs of the Wilson coef-

ficients.

L
(1)
W = −4GF√

2
VcbV

∗
cs

∑
i,k=0,8

4∑
j=1

Ci(mb)
{
C

ET,(0)
j (r)δi k +

αs(µ)

4π
C

ET,(1)
i k;j (mb/µ, r)

}
×

×[ξ̄n,pWΓjCk hβb
][ξ̄βcc̄ p̃⊥Γj SCk S

† ηC
βcc̄ −p̃⊥

]. (5.4)

The matching procedure gives initial values of the Wilson coefficients (the expres-

sion in parentheses) when C
ET,(1)
i k;j (mb/µ, r) are evaluated at µ = mb. Summing

all next-to-leading logarithmic contributions requires anomalous dimension at two

loops which is not yet known. Below we give numerical values of Wilson coefficients
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at µ = mb and r = mc/mb = 0.30.

C
ET,(1)
i k;1 (1, 0.30) =

 −10.73 −11.14− 3.41i

−2.48− 0.76i 8.86− 11.55i

 ,

C
ET,(1)
i k;2 (1, 0.30) =

 −10.73 −11.52− 3.41i

−2.56− 0.76i 10.81− 11.55i

 ,

C
ET,(1)
i k;3 (1, 0.30) =

 15.20 19.64 + 6.58i

4.36 + 1.46i −14.47 + 20.29i

 ,

C
ET,(1)
i k;4 (1, 0.30) =

 10.20 10.81 + 1.23i

2.40 + 0.27i −8.42 + 9.00i

 . (5.5)

The coefficients C
ET,(1)
ij;k are not diagonal, meaning there is a mixing be-

tween singlet and octet operators at NLO . The octet operator is not factorizable

and so the redirection of the color flow starts at order αs
1.

5.2.1 Auxiliary Functions

Here we give the explicit analytic expressions for the coefficients

C
ET,(1)
i k;j (mb/µ, r). To simplify the output we introduce functions F1, F2, and F3:

F1 = −2

3
Log

[
µ2

m2
b (1− 4r2)2

]2

− 10

3
Log

[
µ2

m2
b

]
+

8

3
Li2

[
1− 1

1− 4r2

]
+

+
4

3
Log

[
1− 4r2

]2
, (5.6)

F2 =
(1− 4r2)

(1− 2r2)

(
Log

[
1− 4r2

]
− iπ

)
, (5.7)

1We’ve already discussed this phenomenon in Chapter 4. See Eq. (4.3).
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F3 = −2

3
Log

[
µ2

m2
b

]2

+

(
8

3
Log

[
1− 4r2

]
− 6Log[2r]

1− 4r2
− 13

3

)
Log

[
µ2

m2
b

]
−3iπLog

[
(2− 4r2)µ2

(1− 4r2)2m2
b

]
+

3 (1 + 4r2)

−1 + 4r2

(
Li2

[
1

2− 4r2

]
− Li2

[
2r2

1− 2r2

])
−3Li2

[
2r2

−1 + 4r2

]
− 1

3
Li2

[
4r2

−1 + 4r2

]
+ 2π2 − 13

3
Log

[
1− 4r2

]2

+3Log
[
1− 4r2

]
Log

[
1− 2r2

]
− 12Log[2r]Log [1− 4r2]

−1 + 4r2

+
12Log[r]Log [1− 2r2]

−1 + 4r2
+

3 (3 + 4r2) Log[2]Log [1− 2r2]

−1 + 4r2
+

6Log[r]2

1− 4r2

+
3 (3 + 4r2)

2 (−1 + 4r2)
Log[2]2. (5.8)

5.2.2 Coefficients C
ET,(1)
i j;k

The coefficients C
ET,(1)
i j;k are listed as elements of (2×2) matrices for every

ET Dirac structure k = 1, 2, 3, 4.

C
ET,(1)
00;1 =

1

2

(
F1 −

56

3
+

8

3
Log

[
1− 4r2

])
,

C
ET,(1)
08;1 =

1

2

(
−6Log

[
µ2

m2
b

]
+

3− 8r2

1− 2r2
F2 −

43− 92r2

2 (1− 2r2)
+
r2 (1− 4r2)

(1− 2r2)2 Log
[
2r2

])
,

C
ET,(1)
80;1 =

1

2

(
−4

3
Log

[
µ2

m2
b

]
+

2

9

3− 8r2

1− 2r2
F2 −

43− 92r2

9 (1− 2r2)

+
2r2 (1− 4r2) Log [2r2]

9 (1− 2r2)2

)
,

C
ET,(1)
88;1 =

1

2

(
F3 −

iπ (21− 104r2 + 152r4)

6 (1− 2r2)2 +
31− 76r2

−4 + 8r2

−18− 79r2 + 100r4

6 (1− 2r2)2 Log[2] +
7r2 (1− 4r2)

3 (1− 2r2)2 Log[r]

+
19− 96r2 + 144r4

6 (−1 + 2r2)2 Log
[
1− 4r2

])
. (5.9)
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C
ET,(1)
00;2 = C

ET,(1)
00;1 ,

C
ET,(1)
08;2 = C

ET,(1)
08;1 − r2Log [2r2]

(1− 2r2)2 ,

C
ET,(1)
80;2 = C

ET,(1)
80;1 − 1

9 (1− 2r2)
− 2r2Log [2r2]

9 (1− 2r2)2 ,

C
ET,(1)
88;2 = C

ET,(1)
88;1 − 7

12 (1− 2r2)
− (18− 65r2 + 44r4)

6 (1− 2r2)2 (1− 4r2)
Log[2]

− (9− 29r2 + 8r4)

3 (1− 2r2)2 (1− 4r2)
Log[r]. (5.10)

C
ET,(1)
00;3 = − 1

4r

(
F1 −

40

3
+

2Log [1− 4r2]

3r2

)
,

C
ET,(1)
08;3 = − 1

4r

(
−6Log

[
µ2

m2
b

]
+

(3− 4r2)

(1− 2r2)
F2 −

2 (11− 20r2)

1− 2r2

)
,

C
ET,(1)
80;3 = − 1

4r

(
−4

3
Log

[
µ2

m2
b

]
+

2

9

(
2 +

1

1− 2r2

)
F2 −

4 (11− 20r2)

9 (1− 2r2)

)
,

C
ET,(1)
88;3 = − 1

4r

(
F3 −

iπ (21− 76r2 + 40r4)

6 (1− 2r2)2 +
27− 40r2

−3 + 6r2
− 3Log[4r]

+
−1 + 46r2 − 156r4 + 80r6

12r2 (1− 2r2)2 Log
[
1− 4r2

])
. (5.11)

C
ET,(1)
00;4 = −1

2

(
F1− 56

3
+

(
4− 1

3r2

)
Log

[
1− 4r2

])
,

C
ET,(1)
08;4 = −1

2

(
−6Log

[
µ2

m2
b

]
+ F2 − 20− 4Log[2]

1− 2r2
− 8r2Log [r2]

1− 2r2

)
,

C
ET,(1)
80;4 = −1

2

(
−4

3
Log

[
µ2

m2
b

]
+

2

9
F2 −

40

9
− 8Log[2]

9 (1− 2r2)
− 16r2Log [r2]

9 (1− 2r2)

)
,

C
ET,(1)
88;4 = −1

2

(
F3 − 6− iπ (7 + 8r2)

6 (1− 2r2)
− 14Log[2]

3− 6r2
+

(−9 + 74r2)

−3 + 6r2
Log[r]

−1 + 14r2 + 56r4

24r2 (−1 + 2r2)
Log

[
1− 4r2

])
. (5.12)
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Derivation of ET Operators

In this chapter we give a detailed derivation of Eqs. (4.9) and (4.11).

6.1 Effective Theory Lagrangian at Tree-Level

The tree-Level ET Lagrangian follows from (4.4) if one replaces the FT

spinors with the spinors of the ET. In doing so, one obtains the following operator:∑
p̃⊥, p

[ξ̄n,pΓjChβb
][ξ̄βcc̄ p̃⊥ΓjC ηC

βcc̄ −p̃⊥
] where C = 11, T a, (6.1)

and Γj are the Dirac structures (5.2) of the ET operators. The corresponding

Feynman diagram in the ET is given in Fig. 6.1. Double line corresponds to the

incoming heavy b-quark (labeled by βb, the 4-velocity), the dashed line corresponds

to the outgoing light s-quark (labeled by ~p, the momentum), the solid lines corre-

spond to the outoging quarks of cc̄-pair (labelad by the label momenta ±p̃⊥). For

the c̄ anti-quark the fermion flow is reversed.

The operator (6.1) is a tree-level operator of zero order in coupling con-

stant gs. In addition to ultrasoft gluons which couple to all quark fields, the ET

has collinear and potential gluons which give rise to local operators of the order

gs. In general terms we have to take into account a possibility that the heavy

quark could emit a collinear gluon and become virtual (go off-shell). Likewise,

the collinear quark emitting potential gluon goes off-shell. Also, if potential and

48
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→
βb

→p

→

p⊥→

-p⊥

Figure 6.1: The ET amplitude at the tree-level. The heavy b-quark, the heavy

quark/antiquark cc̄-pair, and the light s-quark are shown. For the anti-quark the

fermion flow is reversed like in the FT.

collinear gluons fuse, the result will be an off-shell mode, see Fig. (6.12). Off-shell

degrees of freedom are integrated out and do not propagate in the ET: they are

not dynamical degrees of freedom. In the ET it neccessary to introduce the local

operators to account for the effects due to these modes. The local operators gener-

ate loops and possibly IR divergencies which should reproduce the corresponding

IR divergences of the FT. So, the next step is to find all possible local operators

that should be added to operator (6.1) to make sure that all IR divergences of the

full theory (FT) amplitude are reproduced at the leading order in v and λ.

6.2 Corrections of the First Order in gs

Now we are going to discuss tree-level corrections to the ET operator (6.1)

at the first order in gs. There are two types of corrections: due to collinear and

potential gluons.

6.2.1 Corrections due to Collinear Gluons

We start by attaching gluons which carry collinear momenta to the heavy

quark lines in the FT. Attaching the collinear gluon (wiggly line) to the b-quark

line gives the diagram shown in Fig. 6.2. The corresponding matrix element in

the ET follows by replacing spinors and momenta in the FT amplitude with their
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→pb

→
pb-q

→ps

→

pc→

pc

→
q

= [ū(ps)γ
νPLC

i(pb/− q/+mb)

(pb − q)2 −m2
b + i0

(−igsε/
aT a)u(pb)]

×[ū(pc)γνPLCv(pc̄)]. (6.2)

Figure 6.2: The b-quark interacting with a collinear gluon.

values at the leading order in v and λ:

q → 1

2
(n̄ · q)n, pb → mbβb, ε→ 1

2
(n̄ · εn,q)n, q2 ∼ λ2. (6.3)

The result is

−gs

n̄ · εan,q

(n̄ · q)− i0
[ξ̄n,pΓjCT

a hβb
][ξ̄βcc̄ p̃⊥ΓjC ηC

βcc̄ −p̃⊥
]. (6.4)

The corresponding Feynman diagram and the Lagrangian in the ET are:

→
βb

→p

→

p⊥→

-p⊥

← q

=⇒ L1 = − gs

(n̄ · q)− i0
[ξ̄n,pΓjC(n̄ · An,q)hβb

]

[ξ̄βcc̄ p̃⊥ΓjC ηC
βcc̄ −p̃⊥

]. (6.5)

Figure 6.3: Heavy b-quark interacting with collinear gluon in ET.

Attaching collinear gluon lines to heavy c and c̄ lines is almost identical.

The corresponding ET diagrams are shown in Fig. 6.4. The corresponding ET

→
βb

→p

→p⊥

→-p⊥

→
q

→
βb

→p

→p⊥

→-p⊥

→q

Figure 6.4: Heavy c and c̄ quarks interacting with collinear gluons.
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Lagrangians are:

L2 =
gs

(n̄ · q) + i0
[ξ̄n,pΓjChβb

][ξ̄βcc̄ p̃⊥(n̄ · An,q) ΓjC ηC
βcc̄ −p̃⊥

], (6.6)

L3 = − gs

(n̄ · q) + i0
[ξ̄n,pΓjChβb

][ξ̄βcc̄ p̃⊥ΓjC(n̄ · An,q) η
C
βcc̄ −p̃⊥

]. (6.7)

It is a straightforward exercise to verify that for the singlet and octet operators

the sum of all three operators L1,2,3 can be written as:

L0 = −gs[ξ̄n,p
(n̄ · An,q)

(n̄ · q)− i0
Γj hβb

][ξ̄βcc̄ p̃⊥Γj η
C
βcc̄ −p̃⊥

],

L8 = −gs[ξ̄n,p
(n̄ · An,q)

(n̄ · q)− i0
Γj T

a hβb
][ξ̄βcc̄ p̃⊥Γj T

a ηC
βcc̄ −p̃⊥

]

+ 2πδ(n̄ · q) gs f
abc[ξ̄n,pΓj T

b hβb
][ξ̄βcc̄ p̃⊥Γj(n̄ · Ac

n,q) η
C
βcc̄ −p̃⊥

]. (6.8)

In the last term the delta-function is non-zero only for n̄ ·q = 0, which corresponds

to the zero bin in the sum over collinear momenta (see [24]). When calculating loop

corrections to L1,2,3 due to collinear gluons the zero bin is excluded and therefore

the ±i0 terms (i.e. delta-functions) could be safely dropped. In other words n̄ · q

could be zero only for the ultrasoft momentum which is taken care of separately.

According to this reasoning we can write operators L0 and L8 as

L(col) = −gs[ξ̄n,p
(n̄ · An,q)

(n̄ · q)
ΓjChβb

][ξ̄βcc̄ p̃⊥ΓjC ηC
βcc̄ −p̃⊥

], (6.9)

where C = 11, T a as usual.

6.2.2 Corrections due to Potential Gluons

Attaching potential gluons to b and s-quark lines proceeds through the

same steps as for the collinear gluons (see Fig. 6.5). One starts with full QCD

diagram and replaces spinors and momenta with their leading values in the ET:

q → q⊥ = q − βcc̄(βcc̄ · q), q2
⊥ ∼ (mv)2. (6.10)
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→
βb

→p

→p⊥

→-p⊥

→
q⊥

→
βb

→p

→p⊥

→-p⊥

←
q⊥

Figure 6.5: Light s and heavy b quarks interacting with potential gluons (the wiggle

line).

The corresponding ET Lagrangians are:

L4 = gs[ξ̄n,p
n · Aq̃

n · q⊥ + i0
ΓjChβb

][ξ̄βcc̄ p̃⊥ΓjC ηC
βcc̄ −p̃⊥

], (6.11)

L5 = −gs[ξ̄n,pΓjC
βb · Aq̃

βb · q⊥ − i0
hβb

][ξ̄βcc̄ p̃⊥ΓjCη
C
βcc̄ −p̃⊥

]. (6.12)

At the leading order in λ and v momentum conservation gives the follow-

ing relation between four-vectors βcc̄, βb, and n:

βb =
2mc

mb

βcc̄ +
Es

mb

n. (6.13)

Together with power counting for potential fields (see Chapter 7),

βcc̄ · Aq̃ ∼ mv2, Aq̃⊥ ∼ mv (6.14)

conservation of momentum allows us to write:

βb · Aq̃

βb · q⊥
=
n · Aq̃

n · q⊥
+ o(v). (6.15)

Therefore at leading order in v we can combine L4 and L5 into a single operator.

After a simple color algebra similar to what we have used when writing

down Eq. (6.9) the sum L4 + L5 can be written in a form where potential fields

appear only in the cc̄-current:

L(p) = −gs[ξ̄n,pΓjChβb
][ξ̄βcc̄ p̃⊥Γj[

n · Aq̃

n · q̃
,C] ηC

βcc̄ −p̃⊥
]. (6.16)

Here the ±i0 terms have been neglected because they contribute to the zero bin

which is considered separately. Also, the label ⊥ has been dropped because q̃ is

the momentum of longitudinal gluon.
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6.2.3 ET Lagrangian at the First Order in gs

Now we can combine operators (6.1), (6.9) and (6.16) into a single opera-

tor that suggests how the results of tree-level matching at o(gs) could be extended

to all orders in gs and at the leading order in v and λ:

L(tree) = [ξ̄n,pWΓjChβb
][ξ̄βcc̄ p̃⊥Γj SCS† ηC

βcc̄ −p̃⊥
], (6.17)

where

W = 1− gs
n̄ · An,q

n̄ · q
+ o(g2

s), and S = 1− gs
n · Aq̃

n · q
+ o(g2

s). (6.18)

The operators W and S look like the first terms in the expansion of

Wilson line operators introduced in Eq. (4.10). In the next section we extend the

matching calculation at tree-level to all orders in gs and show that (6.17), where

W and S are the collinear and potential Wilson lines, holds true to all orders in

gs.

6.3 Tree-Level ET Lagrangian to All Orders

We can extend the tree-level matching calculation for collinear and poten-

tial gluons to all orders in gs using the technique explained in Appendix A of [12].

The method is to introduce auxiliary fields corresponding to off-shell quarks and

gluons, further to write down a Lagrangian for the auxiliary and on-shell fields,

and then integrate out the auxiliary fields using EOM. The latter corresponds to

tree-level matching to all orders in gs.

6.3.1 Auxiliary Quark Fields

The first step is to draw all tree-level diagrams that introduce off-shell

fields in the FT and then to write down the corresponding analytic expressions at

the leading order in the ET power expansion. Figures 6.6, 6.7, and 6.8 show how

off-shell modes arise for quarks of cc̄-pair and s-quark, respectively.
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c
→pc

c’
→pc-qc

↑qc

=⇒ i gs
n̄ · Ac

n̄ · qc
i Pβcc̄ (6.19)

Figure 6.6: Collinear gluon interacting with c-quark field and off-shell c′-field.

ηc

→pc

ηc′
→pc-qc

↑qc

=⇒ i gs
−n̄ · Ac

n̄ · qc
i P−βcc̄

(6.20)

Figure 6.7: Collinear gluon interacting with ηc-field of the antiquark and off-shell

ηc′-field.

s
→ps

s’
→ps-qs

↑qs

=⇒ i gs
n · Ap

n · qp
i
n/

2
(6.21)

Figure 6.8: Potential gluon interacting with s-quark field and off-shell s′-field.

For the b-quark we have to match in two steps. Both potential and

collinear gluons give the b-quark an off-shell momentum but the corresponding

off-shellnesses are of different orders of magnitude. Recall that the potential mo-

mentum is ∼ mv and collinear momentum is ∼ m. Once a collinear gluon is

attached to a b-quark line any off-shell momentum brought by potential gluons

is absorbed by the off-shell momentum delivered by the collinear gluon. In dia-

grammatic language only the diagrams with potential gluons next to the heavy

quark field hβb
and collinear gluons next to the weak current operator shown in

Fig. (6.9) will contribute. To account for this we introduce two off-shell fields for

the b-quark: b′ which is off-shell by ∼ mv and b′′ which is off-shell by ∼ m. The
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hβb

Figure 6.9: Diagrams of the FT which contribute to the tree-level matching of the

heavy b-quark field. Potential gluons should matched before matching the collinear

gluons.

matching is then performed in two steps, see Figs. 6.10 and 6.11.

b
→pb

b’
→pb-qsp

↑qsp

=⇒ i gs
βb · Ap

βb · qp
i Pβb

(6.22)

Figure 6.10: Potential gluon interacting with the b-quark field and the off-shell

b′-field.

b’
→pb

b’’
→pb-qc

↑qc

=⇒ i gs
n̄ · Ac

n̄ · qc
i Pβb

(6.23)

Figure 6.11: Collinear gluon interacting with off-shell b′-quark field and off-shell

b′′-field.

6.3.2 Auxiliary Quark Lagrangian

Below we list the auxiliary Lagrangians that reproduce Feynman rules

depicted on Figs. 6.6 - 6.8 and 6.11. Only the leading terms in λ and v are kept in

each of the Lagrangians. The spinor structure of the auxiliary fields is the same as

of the primary fields and is suppressed for simplicity. Also we don’t show explicitly
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labels on the auxiliary fields.

Lcc′ = ξ̄βcc̄,p(gs n̄ · Ac + gs n̄ · AX)c′ + c̄′(n̄ · P + gs n̄ · Ac + gs n̄ · AX)c′,

Lηcηc′ = −η̄c′(gs n̄ · Ac + gs n̄ · AX) ηC
βcc̄ −p̃⊥

− η̄c′(n̄ · P + gs n̄ · Ac + gs n̄ · AX)ηc′,

Lb′b′′ = b̄′′(gs n̄ · Ac + gs n̄ · AX)b′ + b̄′′(n̄ · P + gs n̄ · Ac + gs n̄ · AX)b′′,

Lss′ = ξ̄n,p(gs n · Ap + gs n · AX)s′ + s̄′(n · Pp + gs n · Ap + gs n · AX)s′. (6.24)

Here P and Pp are label operators for collinear and potential momentum, respec-

tively. An auxiliary gluon field AX comes about when a potential gluon fuses with

a collinear one, see Fig. (6.12). The gluon Lagrangian for this off-shell field is

discussed in the next subsection.

Asp →qsp

Ac

↓qc

AX→qc+qsp

Figure 6.12: The potential gluon fusing with a collinear gluon into an off-shell field

AX .

The ET operator is then given by its tree-level formula (6.1) where quark

spinors are replaced by the sum of quark spinors and auxiliary fields:

O(tree) = [(ξ̄n,p + s̄′)ΓjC (b′′ + b′)][(ξ̄βcc̄ p̃⊥ + s̄′)ΓjC (ηc′ + ηC
βcc̄ −p̃⊥

)] (6.25)

Here the auxiliary fields should be understood as perturbative expansions of solu-

tions for the corresponding EOM following from (6.24). The latter is equivalent to

summing up all tree-level diagrams where auxiliary fields, potential, and collinear

gluons couple to each other and to on-shell quark fields. For the b-quark we have

to sum up first potential gluons using the auxiliary Lagrangian (see Fig. 6.10):

Lbb′ = b̄′(gs βb · Ap)hβb
+ b̄′(βb · Pp + gs βb · Ap)b

′ (6.26)
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and then use the off-shell field b′ in Eqs. (6.24) and (6.25). Otherwise the subleading

contribution due to potential fields will be eaten by collinear off-shellness and we’ll

not be able to reproduce the first order result in gs (see (6.17)).

Now the vector βb in the Lagrangian (6.26) can be replaced by the vector

n as it was the case for the first order correction (6.15). This follows from scaling

of the potential gluon (6.14) and the observation that the βcc̄ · Pp component of

the potential momentum label must scale like mv2 in order that potential gluons

end up in a charmonium eigenstate. So, at the leading order in v the vector βb

can be replaced with (Es/mb)n according to momentum conservation (6.13). The

kinematic constant Es/mb is then absorbed by a redefinition of the auxiliary field b̄′

which doesn’t enter into the matching Lagrangian (6.25) and therefore is irrelevant.

Then the Lagrangian (6.26) becomes:

Lbb′ = b̄′(gs n · Ap)hβb
+ b̄′(n · Pp + gs n · Ap)b

′. (6.27)

The EOM for the field b′ following from (6.27) is

−gs n · Ap hβb
= (n · Pp + gs n · Ap)b

′. (6.28)

Its solution is given by the path ordered exponential

b′ = (S − 1)hβb
where S = P exp

(
igs

∫ y

−∞
ds n · Ap(s n)

)
, (6.29)

where y is the Fourier transformed label of the potential field momentum label q̃.

The field b′ includes off-shell fluctuations of the heavy quark field hβb
induced by

its coupling to potential gluons. From now on we change the notation by replacing

b′ → b′ + hβb
= S hβb

, (6.30)

so that the redefined b′ includes both the heavy field and potential fluctuations.

The EOMs of the auxiliary fields following from the Lagrangian (6.24)
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are

−(gs n̄ · Ac + gs n̄ · AX)ξβcc̄,p = (n̄ · P + gs n̄ · Ac + gs n̄ · AX)c′,

−(gs n̄ · Ac + gs n̄ · AX) ηC
βcc̄ −p̃⊥

= (n̄ · P + gs n̄ · Ac + gs n̄ · AX)ηc′,

−(gs n̄ · Ac + gs n̄ · AX)b′ = (n̄ · P + gs n̄ · Ac + gs n̄ · AX)b′′,

−(gs n · Ap + gs n · AX)ξn,p = (n · Pp + gs n · Ap + gs n · AX)s′. (6.31)

The solutions to this set are given by

c′ = (WX − 1)ξβcc̄ ,

ηc′ = (WX − 1)ηc
βcc̄
,

b′′ = (WX − 1)b′,

s′ = (SX − 1)ξn,p, (6.32)

where WX and SX are path ordered exponentials

WX = P exp

(
igs

∫ y

−∞
ds [n̄ · AX(s n̄) + n̄ · Ac(s n̄)]

)
and

SX = P exp

(
igs

∫ y

−∞
ds [n · AX(s n) + n · Ap(s n)]

)
. (6.33)

Now we can combine Eqs. (6.25), (6.30), (6.32), and (6.33) to write down

the intermediate result for the tree-level ET Lagrangian:

L(tree) = [ξ̄n,p S
†
X ΓjCWX S hβb

][ξ̄βcc̄ p̃⊥ W
†
X ΓjCWX η

C
βcc̄ −p̃⊥

]. (6.34)

The last step is to to solve the EOM for auxiliary field AX and rewrite L(tree) in

terms of Ac and Ap only.

6.3.3 Auxiliary Gluon Lagrangian

In this section we briefly repeat the derivation given in Appendix A of [12].

The Lagrangian L[AX ] for the auxiliary field AX is the standard Lagrangian for a

non-abelian field in the background field gauge with Ac and Ap taken as (constant)

background fields:

L[AX ] =
1

2g2
s

Tr {[iDX + gsAX , iDX + gsAX ]}2 +
1

αL

Tr {[iDX , AX ]}2 , (6.35)
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where

iDX =
n

2
(n̄ · P + gsn̄ · Ac) +

n̄

2
(n · Pp + gsn · Ap). (6.36)

When writing down the derivative we keep only leading terms in n and n̄ directions.

Also we don’t write ⊥ components because they don’t appear when matching at

the leading order in power corrections.

The covariant derivative depends on two linearly independent vectors.

We’re looking for classical solutions to the EOM following from the Lagrangian,

and therefore ignore all possible loop corrections. By this reasoning it would suffice

to use the two-dimensional ansatz for the auxiliary field as well:

AX =
n

2
(n̄ · AX) +

n̄

2
(n · AX). (6.37)

The approximations (6.36) and (6.37) are valid only at the leading order in power

corrections.

Then the Lagrangian (6.35) is symmetric under the interchanges

n̄↔ n, n̄ · P ↔ n · Pp n̄ · Ac ↔ n · Ap. (6.38)

The EOM following from this Lagrangian,

[iDµ
X + gsA

µ
X , [iDµ

X + gsA
µ
X , iDX + gsAX ]] = 0, (6.39)

can be rewritten in terms of the path ordered exponentials WX and SX by means

of the identity

iDX + gsAX =
n

2
WX n̄ · PW †

X +
n̄

2
SX n · P S†X . (6.40)

Then Eq. (6.39) takes the form:[
WX n̄ · PW †

X ,
[
SXn · P S†X , WX n̄ · PW †

X

]]
= 0,[

SX n · PS†X ,
[
WX n̄ · PW †

X , SXn · P S†X
]]

= 0. (6.41)

Because of the symmetry (6.38) the second equation is equivalent to the first.

Expanding the first equation and using unitarity of the operators WX and SX
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gives:

2WX n̄ · P W †
X SX n · Pp S

†
XWX n̄ · P W †

X

−WX(n̄ · P )2W †
XSXn · PpS

†
X − SXn · PS†XWX(n̄ · P )2W †

X = 0. (6.42)

By means of simple algebra one can check that this equation is identically zero if

the following ansatz is used:

S†X WX = W S†, (6.43)

where W and S are the path ordered exponents that depend only on Ac and Ap:

W = P exp

(
igs

∫ y

−∞
ds n̄ · Ac(s n̄)

)
,

S = P exp

(
igs

∫ y

−∞
ds n · Ap(s n)

)
. (6.44)

The vanishing of the gauge fixing term in (6.35) gives an additional equation that

must be satisfied in order to remove the gauge ambiguity from AX .

Equation (6.43) is our master equation. It can be verified at lowest orders

in gs by direct tree-level matching calculation (see [12]). Eq. (6.43) simply extends

the pattern to all orders in gs. The method of auxiliary Lagrangian allows one to

prove that the extension is valid.

An important observation is that the auxiliary Lagrangian (6.35) vanishes

on classical solutions given by Eq. (6.43). This can be verified by writing the co-

variant derivative in the Lagrangian as (6.40) and using the master equation (6.43).

Therefore no interaction between potential and collinear gluons at tree-level is in-

duced by integrating out the off-shell field AX (see [12] for an explicit example at

order g2
s).

6.3.4 ET Lagrangian at All Orders in gs

The master equation (6.43) makes it possible to eliminate the auxiliary

field AX from the operator (6.34). The first step is to use the color identity

C⊗ U †CU = UCU † ⊗C, (6.45)
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where C is either 11 or T a and U is a unitary operator in the fundamental rep-

resentation of SU(3), so the path ordered exponentials (6.33) and (6.44) qualify.

Then (6.34) can be written as

L(tree) = [ξ̄n,p S
†
X WXΓjC S hβb

][ξ̄βcc̄ p̃⊥ ΓjC ηC
βcc̄ −p̃⊥

]. (6.46)

Using the master equation (6.43) and the identity (6.45) one more time gives

finally:

L(tree) = [ξ̄n,pWΓjC hβb
][ξ̄βcc̄ p̃⊥Γj SCS† ηC

βcc̄ −p̃⊥
]. (6.47)

When expanded in powers of strong coupling constant gs Eq. (4.9) repro-

duces the infinite set of tree-level Feynman diagrams of the ET generated by the

set of local operators arising when matching to the FT.

6.3.5 Eliminating Ultrasoft Gluons

Here we give a derivation of Eqs. (4.11). At the leading order in v and

λ the operator (6.47) can be written in terms of the fields which don’t couple to

ultrasoft gluons via the kinetic terms (see e.g. [12]):

ξn,p = Yn ξ
(0)
n,p, An,p = YnA

(0)
n,pY

†
n and W = YnW

(0) Y †
n ,

hβb
= Yβb

h
(0)
βb
,

ξβcc̄ p̃⊥ = Yβcc̄ξ
(0)
βcc̄,p̃⊥

, ηC
βcc̄ −p̃⊥

= Yβcc̄η
C (0)
βcc̄,−p̃⊥

,

Aβcc̄,q̃ = Yβcc̄ A
(0)
βcc̄,q̃Y

†
βcc̄

and S = Yβcc̄ S
(0)Y †

βcc̄
. (6.48)

Here Yl, with l = n, βb, or βcc̄, stands for the path ordered exponent:

Yl(y) = P exp

(
igs

∫ y

−∞
ds l · Aus(l s)

)
. (6.49)

Using the field redefinitions above one can rewrite Eq. (4.9) in terms of
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the ultrasoft free fields (6.48):

O(tree) = [ξ̄n,pWΓjC hβb
][ξ̄βcc̄ p̃⊥Γj SCS† ηC

βcc̄ −p̃⊥
]

= [ξ̄(0)
n,pY

†
nYnW

(0)Y †
n ΓjCYβb

h
(0)
βb

]×

×[ξ̄
(0)
βcc̄ p̃⊥

Y †
βcc̄
Yβcc̄ S

(0) Y †
βcc̄

ΓjCYβcc̄ S
(0) † Y †

βcc̄
Yβcc̄η

C (0)
βcc̄ −p̃⊥

]

= [ξ̄(0)
n,pW

(0)Y †
n ΓjCYβb

h
(0)
βb

][ξ̄
(0)
βcc̄ p̃⊥

S(0) Y †
βcc̄

ΓjCYβcc̄ S
(0) † η

C (0)
βcc̄ −p̃⊥

] (6.50)

In the last line we used the fact that operators Yn and Yβcc̄ are unitary. For

the singlet operator, C = 11, and then from unitarity of Yβcc̄ and S the first of

Eqs. (4.11) follows:

O
(tree)
0 =

∑
j

[ξ̄(0)
n,pW

(0)Γj Y
†
nYβb

h
(0)
βb

][ξ̄
(0)
βcc̄ p̃⊥

Γjη
C (0)
βcc̄ −p̃⊥

],

However, for the octet operator, C = T a, further simplification seems impossible,

so the second of Eqs. (4.11) follows:

O
(tree)
8 =

∑
j

[ξ̄(0)
n,pW

(0)ΓjY
†
nT

aYβb
h

(0)
βb

][ξ̄
(0)
βcc̄ p̃⊥

Γj S Y
†
βcc̄
T aYβcc̄ S

† η
C (0)
βcc̄ −p̃⊥

].

In Chapter 4 we used Eqs. (4.11) to analyse factorization properties of

the ET operator. After the field redefinition (6.50) ultrasoft fields do not couple

anymore to the ET quark and gluons and that simplifies the analysis greatly. The

derivation of Eqs. (4.9) and (4.11) given in this Chapter illustrates the power of

functional methods presented in [12]. These methods make straightforward the

resummation of the infinite subset of Feynman diagrams.
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ET Lagrangians

In this Chapter we give a brief survey of the ET Lagrangians used to

derive the results of the three previous Chapters. There are three of them: HQET,

NRQCD, and SCET Lagrangians, and each one has given rise to a prolific field of

research in B-physics and elsewhere.

The HQET section of this Chapter is based on [6]. The NRQCD section

is based on [13], [14], and [6]. The SCET section is based on [11], [12], and [15].

7.1 HQET Lagrangian

There are three heavy quarks participating in the decay: the b and c

quarks and the c̄ anti-quark. In this section tree-level Lagrangians for heavy quarks

and anti-quarks are derived.

7.1.1 Effective Lagrangian for a Heavy Quark

To derive the effective Lagrangian for a heavy quark we extract the large

quark momentum mv and split the quark field into two spinor subspaces using the

projectors Pv = 1+v/
2

and P−v = 1−v/
2

:

Q(x) = e−imv·x(h(x)+h̃(x)), h(x) = eimv·xPvQ(x), and h̃(x) = eimv·xP−vQ(x).

(7.1)

63
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One can easily check the following identities:

Pv + P−v = 1, PvP−v = 0, v/h = h, v/h̃ = −h̃,

PvA/Pv = v · APv, P−vA/P−v = −v · AP−v,

P−vA/Pv = P−vA/⊥Pv, and PvA/P−v = PvA/⊥P−v. (7.2)

In the last identities A⊥ = A− (v · A)v.

The quark Lagrangian of the full theory is then written in terms of the

heavy fields h and h̃:

L = Q̄(iD/−m)Q = (h̄+ ¯̃h)[iD/+mv/−m](h+ h̃). (7.3)

It is straightforward to verify that using identities (7.2) allows one to reduce the

Lagrangian to a form that makes obvious the separation between the two subsets

of quark fields in the limit m→∞:

L = h̄iv ·Dh+ h̄iD/⊥h̃+ ¯̃hiD/⊥h− ¯̃h(iv ·D + 2m)h̃. (7.4)

For large m the derivative iv · D is small compared to m and can be

neglected, so that h̃ is not a dynamical field and can be integrated out using

equations of motion (EOM). When m is large but not infinite integrating it out

results in the asymptotic expansion near the mass-shell of the heavy quark. The

higher order terms in this expansion describe effects of quark-anti-quark coupling

and are suppressed by inverse powers of m. The EOM for the field h̃ reads:

δL
δ¯̃h

= iD/⊥h− (iv ·D + 2m)h̃ = 0 =⇒ h̃ =
1

iv ·D + 2m
iD/⊥h. (7.5)

Substituting the solution back in Eq. (7.4) gives finally the tree-level Lagrangian

for the heavy quark where the second term can be expanded now in 1/m:

Lh = h̄

[
iv ·D + iD/⊥

1

iv ·D + 2m
iD/⊥

]
h. (7.6)

The expansion in powers of 1/m produces an infinite number of terms whose

coefficients can be improved systematically to account for radiative corrections by

matching with the full theory at the scale µ = m. The matching procedure gives

the ET Lagrangian at tree-level, at one-loop, etc.
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7.1.2 Effective Lagrangian for Heavy Anti-Quark

The derivation of the effective Lagrangian for the anti-quark is almost

identical. This time we split the field as

Q(x) = eimv·x(y(x) + ỹ(x)), y(x) = e−imv·xP−vQ(x) and ỹ(x) = e−imv·xPvQ(x).

(7.7)

Obviously v/y = −y and v/ỹ = ỹ. The quark Lagrangian of the FT is then written

in terms of the heavy fields y and ỹ:

L = Q̄(iD/−m)Q = (ȳ + ¯̃y)[iD/−mv/−m](y + ỹ). (7.8)

Using the identities (7.2) allows one to reduce the Lagrangian to the form where

the fields y and ȳ manifestly decouple in the limit m→∞:

L = −ȳiv ·Dy + ȳiD/⊥ỹ + ¯̃yiD/⊥y + ¯̃y(iv ·D − 2m)ỹ. (7.9)

The EOM for the field ỹ reads:

δL
δ ¯̃y

= iD/⊥y + (iv ·D − 2m)ỹ = 0 =⇒ ỹ = − 1

iv ·D − 2m
iD/⊥y. (7.10)

Substituting the solution back in Eq. (7.9) gives the tree-level Lagrangian of the

heavy anti-quark:

Ly = −ȳ
[
iv ·D + iD/⊥

1

iv ·D − 2m
iD/⊥

]
y. (7.11)

Note that the Lagarangian (7.11) is not normal ordered. That is, applying

the quantization procedure to it will give a Hamiltonian where creation operators

are on the right. To get the normal ordered Lagrangian we should rewrite Eq. (7.11)

in terms of the charge conjugated fields:

Ly = ȳc

[
iv · D̄ + iD̄/⊥

1

iv · D̄ + 2m
iD̄/⊥

]
yc where yc = Cy∗ = eimv·xPvQ

c,

(7.12)

and C is the charge conjugation matrix which in the Dirac basis is C = iγ2.

The symbol D̄ stands for the covariant derivative in which the generators T a are
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replaced with the generators for the complex conjugate representation: −(T a)∗.

Other than that Eq. (7.12) is identical to Eq. (7.6), so its quantization yields the

normally ordered Hamiltonian.

7.1.3 HQET Gluons

In HQET there are only ultrasoft gluons Aus(x). In the ET Aus(x) play

the role of a background field. Each component of the Aus(x) field scales homo-

geneously like Λc. The gauge group of the ultrasoft gluons is the gauge group of

the full theory. For the ultrasoft field we can take Feynman gauge with the gauge

fixing Lagrangian

Lus = −1

2
(∂ · Aus)

2. (7.13)

Then the propagator of the ultrasoft gluons becomes the usual Feynman propagator

Dus
µν(q) =

−igµν

q2 + i0
. (7.14)

7.1.4 Feynman Rules for HQET

Here Feynman rules for HQET Lagrangian that are sufficient for one-loop

calculation in the ET are given. The Feynman rules for the ultrasoft gluons are

the same as in the full theory. The symbol βb now replaces the symbol v which

have been used above during the derivation of the HQET Lagrangian.

k
=

i Pβb

βb · k + i0

Figure 7.1: Propagator of the heavy b-quark; βb is the 4-velocity of b-quark.

µ,a

= −igsβ
µ
b T

a

Figure 7.2: Interaction vertex of the ultrasoft gluon and the heavy b-quark.
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q
→µ, a ν, b =

−igµνδab

q2 + i0

Figure 7.3: Propagator of the ultrasoft gluon.

7.2 NRQCD Lagrangian in Covariant Form

To describe the bound state of two heavy quarks we need an effective

theory which is different from HQET (see, e.g. section 4.8 in [6]). In the center-of-

mass (COM) of the heavy cc̄-pair the effective Lagrangian for the pair is given by

the NRQCD Lagrangian. The COM has 4-velocity βcc̄ in the b-quark rest frame.

Boosting the NRQCD Lagrangian to the frame where the COM velocity is βcc̄ gives

the desired covariant Lagrangian. Our derivation proceeds through the same steps

as the derivation of the NRQCD Lagrangian [14], only we don’t specify the frame

of reference.

7.2.1 Covariant NRQCD Lagrangian

To get started we combine the Lagrangians (7.6) and (7.12) and keep only

the first term in 1/m expansion:

Lcc̄ = h̄c

[
iβcc̄ ·D +

(iD/cc̄,⊥)2

2m

]
hc + h̄c̄

[
iβcc̄ · D̄ +

(iD̄/cc̄,⊥)2

2m

]
hc̄. (7.15)

In this equation

hc = eimβcc̄·xPβcc̄Q and hc̄ = eimβcc̄·xPβcc̄Q
c (7.16)

where Q is the c-quark field operator in the full theory.

The Lagrangian (7.15) is the HQET Lagrangian for the heavy quark

and anti-quark. To obtain the covariant NRQCD Lagrangian we need to split the

residual momentum of heavy quarks further as p̃+k. The component of p̃ along the

Wilson line β · p̃ scales like mv2 and the perpendicular component p̃⊥ = p̃−β(β · p̃)

scales like mv as it can be seen from the on-shell condition (mβ + p̃)2 = m2, or

2mβ · p̃+ p̃2 = 0. The residual momentum k is of the order Λc.
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So, we separate the large momentum component by taking the Fourier

transform and assigning the label p̃⊥ to the quark fields:

h(x) =
∑
p̃⊥

exp(−ip̃⊥x)hβcc̄, p̃⊥(x) (7.17)

Then the Lagrangian (7.15) becomes:

Lcc̄ =
∑
p̃⊥

ξ̄βcc̄ p̃⊥

[
iβcc̄ ·D +

(6 p̃⊥ + iD/cc̄,⊥)2

2m

]
ξβcc̄ p̃⊥ + (ξ → η, T a → T

a
)

with P−βcc̄ξβcc̄ p̃⊥ = 0 and P−βcc̄ηβcc̄ p̃⊥ = 0. (7.18)

Here Dµ = (∂0 + igsA
0
us,−∇ + igsAus) and we use the conventional NRQCD

symbols ξ and η for the quark and anti-quark spinors, respectively.

However unlike in the standard derivation we keep all four components

of the spinors to ensure relativistic covariance and treat the constraints (7.18) as

equations which the 4-spinors must satisfy. The solutions of Eqs. (7.18) are such

that in the COM frame their upper components become the conventional NRQCD

two-component spinors and the lower components are zero: ξp and ηp:

ξβcc̄ p̃⊥ =

√
1 + β0

cc̄

2

 ξp
~βcc̄~σ

1+β0
cc̄
ξp

 and ηβcc̄ p̃⊥ =

√
1 + β0

cc̄

2

 ηp
~βcc̄~σ

1+β0
cc̄
ηp

 .

(7.19)

In other words ξβcc̄ p̃⊥ and ηβcc̄ p̃⊥ are the NRQCD spinors ξp and ηp boosted into

the frame moving at the velocity − ~βcc̄(β
0)−1 with respect to the COM frame. In

the frame βcc̄ = (1,0) we reproduce the standard form of the NRQCD Lagrangian.

This formalism is essentially the same as that one discussed in [25].

When calculating one-loop corrections to the ET Lagrangian it is more

convenient to work with the charge conjugated field ηC
βcc̄ p̃⊥

because it creates the

anti-quark c̄ in the final state and this is exactly what we need in the ET for

the B → J/ψK decay. To write down a covariant NRQCD Lagrangian for the

antiquark in terms of ηC
βcc̄ p̃⊥

remember that the covariant NRQCD Lagrangian

for the heavy anti-quark (the second term in Eq. (7.15)) follows from the La-

grangian (7.11) after charge conjugation. Therefore Eq. (7.15) is the Lagrangian
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for the heavy anti-quark written in terms of the charge conjugated field ηC
βcc̄, p̃⊥

:

Lc̄ = −
∑
p̃⊥

η̄C
βcc̄, p̃⊥

[
iβcc̄ ·D + iD/cc̄⊥

1

iβcc̄ ·D − 2mc

iD/cc̄⊥

]
ηC

βcc̄, p̃⊥
,

with P−βη
C
βcc̄, p̃⊥

= ηC
βcc̄, p̃⊥

. (7.20)

Note that the fields ηC
βcc̄ p̃⊥

and ξβcc̄ p̃⊥ transform under the same representation of

SU(3), therefore the symbol D instead of D̄.

7.2.2 Full Theory Spinors in Terms of ξ and η

In order to match a full QCD ME onto the ME of the covariant NRQCD

we have to write down the spinors u and v in terms of ξ and η. This can be done

in the same way as in NRQCD only the frame of reference is not specified. For

example:

(mβ/+ p̃/c −m)u = 0,

(−2mP−β + p̃/c)u = 0,

(−2mP−β + P−β p̃/c)(Pβ + P−β)u = 0,

(−2mP−β + P−β p̃/c⊥Pβ − β · p̃cP−β)u = 0,

Pβu = ξβcc̄ p̃⊥ , P−βu = u−, u = ξβcc̄p⊥ + u−,

−(2m+ β · p̃c)u− + P−β p̃/c⊥ξβcc̄ p̃⊥ = 0,

u− =
1

2m+ β · p̃c

P−β p̃/c⊥ξβcc̄ p̃⊥ ,

u(mβ + p̃c) =

[
1 +

1

2m+ β · p̃c

P−β p̃/c⊥

]
ξβcc̄ p̃⊥

β=(1,~0)→

 ξp
~p~σ

E+m
ξp

 .(7.21)

In the fifth line the ET spinor ξβcc̄ p̃⊥ is introduced as a projection of the full QCD

spinor u onto the subspace restricted by the constraint (7.18). The second half

of the bispinor subspace u− accounts for the difference of the order v between

the full and effective theories. One can see that in the COM frame the full QCD

spinor is reproduced. Unlike the ξ-spinor which has only two upper components
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in the COM frame, the full QCD spinor has also two non-zero lower components

suppressed by the first power of velocity in the COM frame.

To parameterize the v-spinor of the FT by the ηC-spinor notice that

the charge conjugated spinor vc = Cv∗ satisfies the same equation as the u-spinor.

The covariant NRQCD Lagrangian for the anti-quark is derived from the FT using

charge conjugation. Therefore the vc-spinor must be written in terms of the ET

η-spinor in the same way as the u-spinor is written in terms of the ξ-spinor and

then the v-spinor follows after charge conjugation:

v = iγ2vc∗ = iγ2

[
1 +

1

2m+ β · p̃c

P−β p̃/c⊥

]∗
η∗βcc̄, p̃⊥

,

=

[
1− 1

2m+ β · p̃c

Pβ p̃/c⊥

]
(iγ2η∗βcc̄, p̃⊥

),

=

[
1− 1

2m+ β · p̃c

Pβ p̃/c⊥

]
ηC

βcc̄, p̃⊥
. (7.22)

Here, componentwise:

ηC
βcc̄, p̃⊥

= (iγ2η∗βcc̄, p̃⊥
) =

 ~β~σ
1+β0 (−iσ2η∗p)

(−iσ2η∗p)

 where (−iσ2η∗) = (−η†↓, η
†
↑)

T .

(7.23)

Notice that the spinor ηC
βcc̄, p̃⊥

satisfies P−βη
C
βcc̄, p̃⊥

= ηC
βcc̄, p̃⊥

, i.e. for the charge

conjugated spinor the 4-velocity is reversed.

7.2.3 Potential Gluon Field

The Lagrangians (7.15) and (7.20) contain only the ultrasoft field Aus

and are label-diagonal. However we can add a term that changes label p̃⊥ on the

quark field without knocking the quark off-shell:

Lp = −gs

∑
p̃⊥, q̃ 6=0

ξ̄βcc̄ p̃⊥+q̃(βcc̄ · Aβcc̄, q̃)ξβcc̄ p̃⊥ . (7.24)

Notice that q̃ = 0 corresponds to the ultrasoft field Aus(x) and should be excluded

to avoid double counting. The field Aβcc̄, q̃ will not remove the quark off-shell

provided that its longitudinal component A‖ = βcc̄ · Aβcc̄, q̃ transfers the on-shell
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momentum ∼ (mv2, mv). This condition implies that the propagator of A‖ should

be:

D‖
µν(q) =

−iδab

q̃2
⊥ + i0

βcc̄, µβcc̄, ν . (7.25)

Hereafter we refer to the field Aβcc̄, q̃ as a potential gluon. It is straightforward

to check that potential gluon exchange at one loop gives the same expression

as the tree-level amplitude generated by the local (in ET) four-fermion Coulomb

interaction in the standard approach to NRQCD (see [13]). In the covariant version

of NRQCD it is necessary to develop a covariant description of the force binding

together quarks of the cc̄-pair.

To make sure that the only interaction between potential gluons and

heavy quarks at leading order in v is due to Eq. (7.24) we have to choose a gauge

fixing condition for the potential field Aβcc̄, q̃ such that

βµ
cc̄D

(0)
µν = − i ββcc̄, ν

q2
⊥ + i0

, (7.26)

where D
(0)
µν is the tree-level propagator in this gauge. In an arbitrary gauge the

Compton scattering of potential gluons off a heavy quark gives rise to an infinite

set of effective theory interactions at higher orders in αs which have the same

power counting as the four-fermion Coulumb interaction that scales like αs(mv)
4

(see [13]). Figure 7.4 shows explicitly how the first of these terms arises upon

matching with the FT.

+ + →

Figure 7.4: Effective interaction in NRQCD due to Compton scattering of two

gluons carrying momenta ∼ mv off the quark in the FT. Note that in QED the first

two diagrams cancel each other and there is no third, so the effective interaction

due to Compton scattering appear only in a non-abelian gauge theory.

However if Eq. (7.26) holds then after taking the effective theory limit

for quark propagators in the first three FT diagrams in Fig. (7.4) the momentum
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transferred does not take the quark off-shell. Then all three diagrams become

covariant NRQCD diagrams and do not produce a new vertex in the ET. It should

be obvious that the same conclusion will hold for Compton scattering involving

arbitrary number of gluons.

Covariant Coulomb Gauge

Let’s now check that choosing the covariant Coulomb gauge (CCG) for

the potential gluon Aβcc̄q̃(x) gives a propagator that satisfies Eq. (7.26). The CCG

is defined by the gauge fixing Lagrangian:

LCG = λ(x) (∂⊥ · A⊥) = λ(x) [∂ · Aβcc̄q̃ − (βcc̄ · ∂)(βcc̄ · Aβcc̄q̃)], (7.27)

where λ(x) is the Lagrange multiplier. In the CCG the propagator of the potenial

gluon takes the form:

DCG
µν (q) =

−iδab

q2 + i0

[
gµν +

(qµβν + βµqν)(β · q)− qµqν
q2 − (β · q)2 + i0

]
. (7.28)

In the COM frame βcc̄ = (1,~0) and the propagator splits into the propagator of

the longitudinal off-shell gluons and the propagator of transverse gluons:

DCG
00 =

iδab

k2 − i0
, DCG

0, i = 0, DCG
i j =

iδab

q2 + i0

[
δi j −

ki kj

k2

]
, (7.29)

and Eq. (7.26) is manifestly satisfied. The CCG imposes a gauge fixing condition

only on the transversal component A⊥ = A−A‖ of the potential gluon Aβcc̄q̃. As a

result the longitudinal component A‖ does not propagate in time (along βcc̄) and

becomes an auxiliary field that must be integrated out.

Decoupling of the longitudinal A‖ and the transverse components A⊥ of

the potential gluon implies that they can be assigned different power counting. The

longitudinal component A‖ must scale like mv2 if we want the Lagrangian (7.24)

to have the same scaling as Eq. (7.18). This is consistent with treating the longi-

tudinal component of the ultrasoft field in Eq. (7.18) as a zero bin of Eq. (7.24).

The realistic scaling for the ultrasoft field Aus(x) in the bound state of the cc̄-pair
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p p-q1-q2

q1 q2

= −ig2
s [ε

µ
2⊥, ε1µ⊥]

βcc̄ · (q2 − q1)

(q1 + q2)2
⊥ + i0

Figure 7.5: An ET vertex generated by the three-gluon coupling of the FT in the

covariant NRQCD. Both gluons correspond to transversal fields A⊥.

in the J/ψ is mv2 (see [13]). The scaling of the transverse fields is determined

in [13] and here we repeat their argument.

In the CCG the first three diagrams of the FT in Fig. 7.4 become the

covariant NRQCD diagrams when the ET limit is taken. Nevertheless we can think

of the third diagram in Fig. (7.4) as giving rise to a new interaction (the fourth

diagram) in the ET at order g2
s , where the longitudinal field A‖ has been integrated

out. Taking the ET limit in the third diagram in Fig. (7.4) and assuming that

both gluons correspond to the transverse fields A⊥ gives (see Fig. (7.5)):

L2 = −1

2
g2

s

∑
p̃⊥ q̃1 q̃2 6=0

ξ̄βcc̄ p̃⊥+q̃1+q̃2 [A
µ
q̃2⊥, Aq̃1µ⊥]ξβcc̄ p̃⊥

βcc̄ · (q2 − q1)

(q1 + q2)2
⊥ + i0

. (7.30)

According to [13] the new interaction should be thought of as giving rise to a

correction to the Coulomb interaction, so it must scale like αsv
4. Recall that the

fermion fields scale like (mv)3/2. Therefore the transverse field A⊥ must scale like

mv and we were justified in keeping only the transverse component in the vertex

because terms involving the longitudinal component A‖ are subleading. So we

conclude that the potential gluon field Aβcc̄, q̃ scales like the momentum that leaves

the heavy-quark on-shell:

A‖ ∼ mv2 and A⊥ ∼ mv. (7.31)

At one loop we don’t need the self-interaction terms for the potential

gluons. If we want to go beyond one loop we will need the effective Lagrangian

for the potential field at the leading order in v to all orders in gs. On the grounds

of gauge invariance it must be the full QCD Lagrangian for the non-abelian gauge
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field in which the scaling (7.31) has been employed plus the action for ghosts

following from the gauge fixing condition (7.27). The Lagrangian must be a usual

trace of the square of the commutator of two covariant derivatives. Each derivative

is written as a sum of the longitudinal and transversal components and only the

leading terms in each components are retained:

iDµ = iDµ
‖ + iDµ

⊥ = iDµ
us ‖ − gsA

µ
p ‖ + Pµ

⊥ − gsA
µ
p⊥ (7.32)

The spatial derivative in the transversal component is replaced by the label op-

erator P⊥ and its ultrasoft component has been discarded. Also we don’t keep

the perpendicular component of the ultrasoft field here. From this expression one

could see that at leading order in v only the longitudinal component of the ultra-

soft field couples to the potential field and therefore the field redefinition (6.48)

removes the ultrasoft field dependence from the potential gluons.

To conclude: in the covariant NRQCD the force binding the heavy cc̄-pair

is described by the Lagrangian (7.24) with the potential field Aβcc̄, q̃ in a gauge that

satisfies Eq. (7.26). One example is the covariant Coulomb gauge (7.27). We have

constructed a covariant version of NRQCD formalism discussed in many papers

(see e.g. [13] and [14]).

7.2.4 Feynman Rules in Covariant NRQCD

To do perturbative calculations with the Lagrangian (7.18) we need the

quark/anti-quark propagator. Most straightforwardly it can be obtained from the

full theory propagator by making the substitution p → mβ + p̃ + k and keeping

only the leading terms in v = p/m both in the numerator and denominator:

i Pβcc̄

β · k +
p̃2
⊥

2mc
+ i0

. (7.33)

Since we work with the four-component spinors we should keep the projector Pβ as

the Dirac structure of the propagator. Recall that in the canonical formulation of

the NRQCD the propagator has no Dirac structure. The propagator for the charge
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conjugated spinor can be obtained from the Lagrangian (7.20) using canonical

methods (see Chapter 8 for the derivation):

i P−βcc̄

−β · k +
p̃2
⊥

2mc
+ i0

. (7.34)

The Feynman rules necessary for calculating one-loop diagrams in covari-

ant NRQCD are shown in Figs. 7.6-7.9.

(p⊥ ,k)
→ =

i Pβcc̄

βcc̄ · k +
p2
⊥

2mc
+ i0

or =
i P−βcc̄

−βcc̄ · k +
p̃2
⊥

2mc
+ i0

Figure 7.6: Propagator of c-quark and/or c̄-antiquark in covariant NRQCD; βcc̄

is 4-velocity of COM of cc̄ pair. The second expression is the propagator of the

charge conjugated field ηC .

q
→µ, a ν, b =

−iδab

q̃2
⊥ + i0

βcc̄, µβcc̄, ν .

Figure 7.7: Propagator of potential gluon.

µ,a

c

= −igsβ
µ
cc̄T

a

µ,a

c

= −igsβ
µ
cc̄T

a
or igsβ

µ
cc̄T

a

Figure 7.8: Interaction vertex of ultrasoft gluon and c-quark and/or c̄-antiquark in

covariant NRQCD. The last expression is the vertex for ηC field.

7.3 SCET Lagrangian

7.3.1 Lagrangian of Collinear Quarks

Now we have to work out the effective Lagrangian for the light s-quark.

This is done by introducing the light-cone coordinates parameterized by vectors n
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µ,a

cp⊥ p⊥ -q⊥

↑ q⊥

= −igsβ
µ
cc̄T

a

µ,a

cp⊥ p⊥ -q⊥

↑ q⊥

= −igsβ
µ
cc̄T

a
or igsβ

µ
cc̄T

a

Figure 7.9: Interaction vertex of potential gluon and c-quark and/or c̄-antiquark

in covariant NRQCD. The last expression is for the interaction with ηC .

and n̄, which satisfy n2 = n̄2 = 0, and n · n̄ = 2. For motion in the z-direction nµ =

(1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). The momentum vector in light-cone coordinates

becomes

pµ = p−
nµ

2
+ (p⊥)µ + p+ n̄

µ

2
, (7.35)

where p+ = n·p and p− = n̄·p. The on-shell condition then reads p+p−+p2
⊥ = 0. At

large energies the light-cone components are widely separated and can be assigned

power counting according to p− ∼ λ0, p⊥ ∼ λ, and p+ ∼ λ2. The effective theory

that describes this kinematic domain is called the soft-collinear effective theory

(SCET).

The tree-level Lagrangian for the soft-collinear quark can be obtained by

expanding the full theory Lagrangian in powers of λ. The derivation is similar

to that of covariant NRQCD. We start with the QCD Lagrangian for a massless

quark:

Lq = ψ̄iD/ψ. (7.36)

Here Dµ = (∂0 + igsA
0,−∇+ igsA). The first step is to split the quark momentum

as

p =
1

2
(n̄ · p)n+ p⊥ + k, (7.37)

where the components scale like λ0, λ, and λ2, respectively. The momentum k ∼ λ2

stands for the residual momentum. To derive the ET Lagrangian we subtract the

largest component p = 1
2
(n̄ · p)n+ p⊥ and put the label n, p on the fields:

ψ(x) = ψus(x) +
∑
p6=0

e−i( 1
2
(n̄·p)+p⊥)xψn, p(x) (7.38)
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Note that zero bin p = 0 corresponds to the ultrasoft degrees of freedom and is

excluded from the collinear part of the field. The residual component k is of the

order of Λc and gives the position dependence to the field ψn, p(x). Substituting

Eq. (7.38) into Eq. (7.36) we obtain:

Lq = Lc + Lc us + Lus, where

Lc =
∑

p,p′ 6=0

ei(p′−p)xψ̄n,p′

[
(n̄ · p+ in̄ ·D)

n/

2
+ (p/⊥ + iD/⊥) + (in ·D)

n̄/

2

]
ψn,p,

Lcus =
∑
p6=0

eipxψ̄n,p

[
(in̄ ·D)

n/

2
+ (iD/⊥)

]
ψus + h. c.,

Lus = ψ̄usiD/ψus. (7.39)

In Lcus we keep only the terms which contain collinear gluon fields, so that mo-

mentum conservation is preserved.

The collinear quark field ψn,p can be split into the large and small com-

ponents ξn, p and ξn̄, p, respectively, by means of the projection operators

Pn =
n/n̄/

4
, and Pn̄ =

n̄/n/

4
, so that ξn, p = Pnψn, p, and ξn̄, p = Pn̄ψn̄, p.

(7.40)

One can see that the spinors ξn, p and ξn̄, p satisfy

n/ ξn, p = 0 and n̄/ ξn̄, p = 0. (7.41)

Now we write down the Lagrangian (7.39) in terms of these spinors. The following

identities involving the projection operators will be useful:

Pnn/Pn̄ = n/, Pn̄n̄/Pn = n̄/, PnX/⊥Pn̄ = 0, and Pn̄X/⊥Pn = 0. (7.42)

The collinear Lc and collinear-ultrasoft Lagrangians written in terms of

ET spinors are:

Lc =
∑

p, p′ 6=0

[
ξ̄n̄, p′(n̄ · p+ in̄ ·D)

n/

2
ξn̄, p + ξ̄n, p′(p/⊥ + iD/⊥)ξn̄, p

+ξ̄n̄, p′(p/⊥ + iD/⊥)ξn, p + ξ̄n, p′(in ·D)
n̄/

2
ξn, p

]
.

Lc us =
∑
p6=0

[
ξ̄n̄, p(in̄ ·D)

n/

2
+ ξ̄n, p(iD/⊥) + ξ̄n̄, p(iD/⊥)

]
ψus + h. c. (7.43)
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At large energies the term n̄ · p dominates over the derivative in the

collinear Lagrangian. The collinear component of the gluon field could in principle

cancel it but it is multiplied by gs which is small in the perturbative regime.

Therefore in this kinematic domain the field ξn̄, p ceases to be dynamical and can

be integrated out by using the EOM:

∂Lq

∂ξ̄n̄, p′
= (n̄ · p+ in̄ ·D)

n/

2
ξn̄, p + (p/⊥ + iD/⊥)ξn, p = 0,

or (n̄ · p+ in̄ ·D)ξn̄, p = (p/⊥ + iD/⊥)
n̄/

2
ξn, p (7.44)

The first step in deriving the SCET Lagrangian is to use Eq. (7.44) and write down

Eq. (7.43) in terms of the spinor ξn, p only:

Lq =
∑
p, p′

ξ̄n, p′

[
in ·D + (p/⊥ + iD/⊥)

1

n̄ · p+ in̄ ·D
(p/⊥ + iD/⊥)

]
n̄/

2
ξn, p. (7.45)

The kinematics of energetic light quarks is more peculiar than that of the

heavy quarks. An energetic quark with momentum p1 can emit a collinear energetic

gluon with momentum q and remain on-shell, as it follows from the simple relation,

where each term is of the order ∼ λ2:

p2
1 = (p2 + q)2 = p2

2 + q2 + (p2 · n̄)(q · n) + 2p⊥q
⊥ + (p2 · n)(q · n̄). (7.46)

To account for the possibility of collinear gluon emission we have to split the gluon

field into collinear and ultrasoft parts: Aµ = Aµ
c +Aµ

us. The light-cone components

of Aµ
c scale like the components of the collinear momentum (7.37) Aµ

c ∼ (λ0, λ, λ2)

and the components of Aµ
us scale like λ2. Collinear gluons can change quark la-

bels, so we have to single them out. It is done by putting labels on gluon fileds,

so that Aµ
c → e−i( 1

2
(n̄·q)+q⊥)An,q(x). Under the ultrasoft gauge transformations

collinear gluons transform homogeneously like matter fields without a derivative

term. Physically this means that we can treat collinear gluons as matter fields

propagating on the ultrasoft background. The Lagrangian (7.45) then becomes:

Lq =
∑
p, p′,q

ξ̄n, p′

[
in ·D − gsn · An, q + (p/⊥ + iD/⊥ − gsA/

⊥
n, q)×

× 1

n̄ · p+ in̄ ·D − gsn̄ · An, q

(p/⊥ + iD/⊥ − gsA/
⊥
n, q)

] n̄/
2
ξn, p. (7.47)
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where conservation of label momenta is assumed.

Expanding the denominator in Eq. (7.47) gives the SCET Lagrangian

as a series expansion in powers of λ similarly to that of the covariant NRQCD

Lagrangian that is expanded in powers of v. The elegant way to ensure momentum

conservation is to treat n̄ · p as the momentum operator P̄ applied to the labels of

field operators on the right. Then up to O(λ) terms:

Lsc = ξ̄n, p

[
in ·D +

p2
⊥

n̄ · p

]
n̄/

2
ξn, p − gs ξ̄n̄, p+q

[
n · An, q +

+A/⊥n, q

p/⊥
n̄ · p

+
p/⊥ + q/⊥
n̄ · (p+ q)

A/⊥n, q −
p/⊥ + q/⊥
n̄ · (p+ q)

n̄ · An, q
p/⊥
n̄ · p

] n̄/
2
ξn, p. (7.48)

7.3.2 Lagrangian of Collinear Gluons

The components of the collinear gluon field Ac scale like the components

of collinear momentum: n̄ · Ac ∼ 1, A⊥ ∼ λ, and n · Ac ∼ λ2. The Lagrangian

for collinear gluons must remain invariant under the soft-collinear gauge trans-

formations which preserve power counting. This can be done by introducing the

covariant derivative

iDµ =
nµ

2
P̄µ + Pµ

⊥ +
n̄µ

2
i n ·D where iDµ = i∂µ − gsA

µ
us (7.49)

and writing the QCD Lagrangian in the background gauge with collinear gluons

as a matter field and ultrasoft gluons as a background field. For completeness we

write here the Lagrangian in λ0 order, although for our purposes it will be sufficient

to retain only the terms of the order g0
s :

Lc =
1

2g2
s

Tr
{[
iDµ − gsA

µ
n,q, iDν − gsA

ν
n,q

]}2

+2Tr
{
c̄n,p′

[
iDµ

[
iDµ − gsA

µ
n,q, cn,p

]]}
+ Tr

{
[iDµ, A

µ
n,q]

}2
(7.50)

7.3.3 Feynman Rules of SCET

In this section we give Feynman rules for the SCET that are sufficient for

one-loop calculation.



80

(p,k)
= i

n/

2

n̄ · p
n · kn̄ · p+ p2

⊥ + i0

Figure 7.10: Propagator of collinear quark; n is the light vector of the s-quark.

(q,k)
→µ, a ν, b =

−igµνδab

n̄ · q n · k + q2
⊥ + i0

.

Figure 7.11: Propagator of collinear gluon in Feynman gauge.

µ,a

= −igsT
anµ n̄/

2

Figure 7.12: Interaction vertex of the ultrasoft gluon and collinear quark.

µ,a

p p’

= −igsT
a

[
nµ +

γµ
⊥p/⊥
n̄ · p

+
p/′⊥γ

µ
⊥

n̄ · p′
− p/′⊥p/⊥
n̄ · pn̄ · p′

n̄µ

]
n̄/

2

Figure 7.13: Interaction vertex of the collinear gluon and collinear quark.
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Technical Notes

In this Chapter we give some details of the derivations omitted in the

body of the dissertation.

8.1 Transformation of Operator Basis

In this section we present without derivation (which is technically com-

plicated and will be given in the upcoming paper) the relation used to calculate

the Wilson coefficients CNLO
0 (mb) and CNLO

8 (mb) given in Eq. (4.8).

The Wilson coefficients for the set of operators

P1 = [s̄γµPLT
ac][c̄γµPLT

ab], P2 = [s̄γµPLc][c̄γ
µPLb]. (8.1)

have been calculated in [9] at the NNLO in αs. We need however the Wilson

coefficients in the different operator basis

O1 ≡ [s̄γµPLT
ab][c̄γµPLT

ac], O2 ≡ [s̄γµPLb][c̄γ
µPLc]. (8.2)

At the LO the two bases are related by a linear transformation which follows when

one applies the Fierz transformations in the color and spinor spaces: O1

O2

 =

 −1
3

4
9

2 1
3

  P1

P2

 . (8.3)
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At the NLO the one-loop corrections have to be taken into account and

that brings complications due to the so-called evanescent operators. The dimen-

sional regularization used when calculating Feynman integrals doesn’t have an

unambiguous definition for the matrix γ5, which is essentially a four-dimensional

object. There is a systematic way of coping with this difficulty (see, e.g. [23]) by

introducing the infinite set of the operators vanishing in the limit D = 4. Working

out the relation between the bases (8.1) and (8.2) at the NLO requires calculating

six more diagrams involving the evanescent operators. The relation is given by:

~C ′(µ) =

 −1
3

2

4
9

1
3

  C
(0)
1 (µ)

C
(0)
2 (µ)

 +
αs(µ)

4π

 C
(1)
1 (µ)

C
(1)
2 (µ)


+

αs(µ)

4π

 0 6

−4
3

0

  C
(0)
1 (µ)

C
(0)
2 (µ)

 . (8.4)

Here ~C ′(µ) are the Wilson coefficients for the basis (8.2) and ~C(µ) for the ba-

sis (8.1). The first matrix in Eq. (8.4) is the transposed matrix in Eq. (8.3) corre-

sponding to the tree-level transformation of the operator basis. The second matrix

in Eq. (8.4) is the contribution of the evanescent operators.

The explicit expressions for the Wilson coefficients ~C(µ) can be found in

Eqs. (39)-(44) in [9]. Substituting them into Eq. (8.4) gives the expressions for

CNLO
0 (mb) and CNLO

8 (mb) whose numerical values are presented in Eq. (4.8).

8.2 Effective Theory Amplitude

In this section we present the results of one-loop calculation of the ET

amplitude for the decay b→ (cc̄)s. Feynman diagrams have been calculated in the

MS-scheme. The momenta of the four external particles have been set on-shell and

the corresponding IR divergences have been regulated with dimensional regular-

ization. Technically all ET diagrams calculated according to this prescription are

zero because the corresponding Feynman integrals are scaleless. However, if the

off-shellness of the external particles is kept the amplitude is non-zero and after the
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counterterm removes the UV -divergence, the resulting IR-diverging terms repro-

duce exactly the IR-diverging terms of the FT amplitude. The latter is expected

because the ET is the low-energy limit of the FT.

The above observation suggests that the UV-divergences of an ET ampli-

tude are equal to the IR-divergences of the FT amplitude with negative sign when

momenta of external particles are set on-shell and dimensional regularization is

used. By itself this is an elegant technical trick but there is also a clear physical

interpretation behind it. The IR-singularities of the FT amplitudes are actually

special kinematic domains where the number of degrees of freedom is limited com-

pared to the FT and the dynamics is simplified. For example, non-realitivistic

quantum electrodynamics (NRQED) is a special limit of QED when the speed of

light goes to infinity [14]. In a sense this is the limit of Newtonian physics.

8.2.1 ET Diagrams

Overall there are eight amputated diagrams in the ET which contribute

to the decay amplitude at one loop. Seven of them are due to loop corrections to

the zero order term in the gs expansion of the tree-level Lagrangian (4.9):

L(0) = [ξ̄n,pΓjChβb
][ξ̄βcc̄ p̃⊥ΓjC ηC

βcc̄ −p̃⊥
]. (8.5)

Six diagrams where the ultrasoft gluon is being exchanged between the ET quarks

are shown in Fig. 8.1. The seventh diagram corresponds to the potential gluon

exchange between the quarks of the (cc̄)-pair and is shown in Fig. 8.2. The last

diagram is a one-loop correction to the first order term in the gs expansion of (4.9),

L(1),col = −gs[ξ̄n,p
(n̄ · An,q)

(n̄ · q)
ΓjChβb

][ξ̄βcc̄ p̃⊥ΓjC ηC
βcc̄ −p̃⊥

], (8.6)

due to collinear gluon exchange. It is shown in Fig. 8.3. The first order correction

in gs due to the potential gluon,

L(1),p = −gs[ξ̄n,pΓjChβb
][ξ̄βcc̄ p̃⊥Γj[

n · Aq̃

n · q⊥
,C] ηC

βcc̄ −p̃⊥
], (8.7)

doesn’t give rise to a one-loop correction because the corresponding Feynman in-

tegral vanishes identically.
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Figure 8.1: Diagrams with the ultrasoft gluon exchange in ET.

Figure 8.2: The potential gluon exchange between the quarks of cc̄-pair.

8.2.2 ET Amplitude

The non-renormalized amplitude is given by the sum of the diagrams in

Figs. 8.1, 8.2, and 8.3. The UV -divergences in the non-renormalized amplitude

are then removed by the field renormalization factors for three heavy and one light

quarks, ZH and Zl, and by the renormalization matrix Zij, where i, j = 0, 8 stands
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Figure 8.3: Correction due to collinear gluon.

for the singlet and octet operators:

ZH = 1 +
αs

4π
2CF

1

εUV

, Zl = 1− αs

4π
CF

1

εUV

, CF =
4

3
,

Z00 = 1 +
αs

4π
CF

{
1

ε2
UV

+
2

εUV

ln
µ

2Es

+
5

2

1

εUV

}
, Z08 = 1, Z80 = 1,

Z88 = 1 +
αs

4π

{
CF

[
1

ε2
UV

+
2

εUV

ln
µ

2Es

]
+

6

εUV

mb

2Es

ln
2mc

mb

+
3πi

εUV

+
19

3

1

εUV

}
,

(8.8)

Here Es =
m2

b−4m2
c

2mb
is the energy of s-quark in the b-quark frame. Finally the

MS-renormalized amplitude is multiplied by the LSZ-factor to get the expression

corresponding to the on-shell renormalized ET amplitude:

RH = 1− αs

4π
2CF

1

εIR

, Rl = 1 +
αs

4π
CF

1

εIR

,

=⇒
√
R3

H ·Rl = 1− αs

4π

5

2
CF

1

εIR

. (8.9)

The resulting expression is given by:∑
i=0,8

ci[ξ̄n,pΓjCi hβb
][ξ̄βcc̄ p̃⊥ΓjCi η

C
βcc̄ −p̃⊥

] where (8.10)

c0 = 1 +
αs

4π
CF

{
− 1

ε2
IR

− 2

εIR

ln
µ

2Es

− 5

2

1

εIR

+
2πi

v

[
− 1

εIR

− ln
µ2

m2
cv

2
− iπ

]}
,

c8 = 1 +
αs

4π

{
CF

[
− 1

ε2
IR

− 2

εIR

ln
µ

2Es

]
− 6

εIR

mb

2Es

ln
2mc

mb

− 3πi

εIR

− 19

3

1

εIR

−πi
3v

[
− 1

εIR

− ln
µ2

m2
cv

2
− iπ

]}
. (8.11)
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At one loop there is no mixing between the singlet and the octet oper-

ators: Z08 = Z80 = 0. One can see why by writing down the color structure of

the diagrams that can potentially mix the singlet and the octet. These are the

four last diagrams in Fig. 8.1, the rest of the ET diagrams obviously contribute

independently to the renormalization of (s̄b) and (cc̄) currents. The interaction

vertices for the c and c̄ quarks have different signs as can be seen in Fig. 7.8 and

therefore the color structure of the sum of the third and the fourth and/or the fifth

and the sixth diagrams in Fig. 8.1 will be:

T aC⊗ [T a,C] and CT a ⊗ [T a,C]. (8.12)

Using color identities it is not difficult to check that both structures are propor-

tional to C⊗C both for the singlet and the octet operators and therefore do not

mix them.

There is no reason to believe that this pattern will hold at the higher

orders in αs. For example, the finite parts in the FT amplitude at one loop (which

are precisely the coefficients C
ET,(0)
ij;k ) do mix singlet and octet operators suggesting

that already at the NLO singlet and octet contributions become entangled. As we

have already shown in Chapter 5 the entanglement at µ = mb is of the same order

of magnitude as the LO coefficient.

8.2.3 Anomalous Dimension at the LO

In this section we derive the expression for the anomalous dimension (AD)

at the LO and solve the RG equation to get the RG improved Wilson coefficient

at the LO (see Eq. (5.1)).

The renormalization matrix Zij in Eq. (8.8) is diagonal and contains terms

1/ε2, (1/ε) log µ, and 1/ε. The terms proportional to 1/ε are subleading and will

contribute to the AD at NLO (see [11]). One of them is imaginary indicating

that it should be canceled by a term coming from the two-loop diagrams. There-

fore at LO the renormalization factors Z00 = Z88 are the same and equal to the
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renormalization factor for the (s̄b)-current (see [11]):

Z00 = Z88 = 1 +
αs(µ)

4π
CF

[
1

ε2
UV

+
2

εUV

ln
µ

2Es

]
. (8.13)

This observation can be understood as an independent check of the factorization

at one loop for the singlet ET Lagrangian discussed in 4.3.3. At one loop the

cc̄-current doesn’t get renormalizied and therefore the renormalization factor is

completely due to the renormalization of the (s̄b)-current only.

The anomalous dimension is given by

γ(µ) = Z−1µ
d

dµ
Z = −αs(µ)

π
CF ln

µ

mb

+ o(1), (8.14)

where in addition to Eq. (8.13) we have used the explicit expression for the β-

function, β(gs) = −εgs + o(g3
s) and replaced 2Es → mb. Now we use Eq. (8.14)

to solve the RG equation for the Wilson coeffcients C
ET,(0)
j (µ/mb, r). The RG

equation is the same for all Dirac structures j = 1, . . . , 4 and has the form

µ
d

dµ
C(µ) = γ(µ)C(µ), (8.15)

with the C
ET,(0)
j (µ = mb, r) given by Eq. (5.2) as initial conditions. When solving

this equation we use the explicit expression for the running coupling constant αs

at one loop (see Eq. (4.6)). The result is:

C(µ) = C(mb) exp

(
4πCF

β2
0αs(mb)

[
ln
αs(mb)

αs(µ)
+ 1− αs(mb)

αs(µ)

])
. (8.16)

The last two terms in the exponent probably exceed the logarithmic ac-

curacy of the calculation and at the LO should be discarded. Then keeping only

the large logarithm we can write down the RG improved values for the Wilson

coefficients in the ET at the LO as

CET
j (µ) = CET

j (mb)

[
αs(mb)

αs(µ)

] 4πCF
β0αs(mb)

. (8.17)
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8.3 Full Theory Amplitude

The FT amplitude is given by the sum of six diagrams which look exactly

like those in Fig. (8.1) except that all four quark propagators are represented by the

same solid lines. Calculating the FT diagrams is much more difficult because now

we have to deal with the full quark propagators which depend on the mass of the

particle and have a non-trivial Dirac structure. Unlike in the ET the interaction

vertices in the FT change the Dirac structure of a diagram. The diagrams are cal-

culated with the external particle momenta set on-shell in the MS-renormalization

scheme. The expression for the FT amplitude follows when one multiplies the sum

of the six diagrams by the field renormalization factors, the operator renormaliza-

tion matrix, and the LSZ factors to get the on-shell value of the amplitude. These

factors are given below:

Zq = 1− 1

εUV

CF ,

Z00 = 0, Z08 = − 4

3εUV

, Z08 = − 6

εUV

, Z88 =
2

εUV

,√
RbR2

cRs = − 10

3εUV

− 2 ln
µ2

m2
b

− 4 ln
µ2

m2
c

− 8,

(8.18)

The explicit expression for the FT amplitude is given by the sum of

the IR-divergent pieces (see 8.11) which are the same both for the ET and FT

amplitudes and the finite piece which is given by Wilson coefficients C
ET,(1)
ij:k in

Chapter 5. The next section explains how the Wilson coefficients are obtained and

would help to restore the expression for the FT amplitude if one needs it.

8.4 Matching Procedure

In this section we give a schematic outline of the matching procedure at

one loop which allows one to determine the Wilson coefficients in the ET at the

first order in αs.
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8.4.1 Tree-Level Matching

On the FT side we have the ME which at the leading order in the ET

power expansion can be schematically written as

A
(0)
i 〈Oi〉. (8.19)

This is basically Eq. (5.1), where A
(0)
i stands for the product Ci(mb)C

ET,(0)
j (1, r)

with i being a cumulative index for (i, j) and 〈Oi〉 stands for the Dirac-color struc-

ture. At tree-level the Wilson coefficients of the ET coincide with the Wilson

coefficients of the FT. This is how we obtained Eq.(5.1) in the first place. So, the

tree-level matching is simply:

A
(0)
i 〈Oi〉 = C

(0)
i 〈Oi〉 =⇒ A

(0)
i = C

(0)
i , (8.20)

where C
(0)
i are the Wilson coefficients of the ET at the leading order in αs. We used

them as the initial values for the RG equations when deriving the RG-improved

ET Lagrangian at the LO.

8.4.2 One-Loop Matching

At one loop the ME on the FT side upon expanding the Dirac structures

in terms of the ET structures becomes:

[A
(0)
i +

αs

4π
A

(1)
i ]〈Oi〉. (8.21)

On the ET side the ME now has the form:[
C

(0)
i +

αs

4π
C

(1)
i

] [
〈Oi〉+

αs

4π
X

(1)
i j 〈Oj〉

]
, (8.22)

where C
(1)
i is the first order correction to the Wilson coefficient and the second

bracket is the ME in the ET at first order in αs as it comes from the ET diagrams

at one-loop. Equating (8.21) and (8.22) gives the matching condition at one-loop:

C
(1)
i = A

(1)
i − C

(0)
j X

(1)
j i = A

(1)
i − A

(0)
j X

(1)
j i . (8.23)
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The coefficients X
(1)
j i are IR divergent and don’t contain any finite parts, they are

given by Eq. (8.11). The coefficients A(1) contain both the finite part and the IR di-

vergences originated by the same prescription. Cancellation of the IR divergences

between the full and the effective theory amplitudes serves as an independent check

of the calculation.

8.5 Effective Theory Dirac Structures

In this section we derive the reduction formulae necessary to project the

ME of the FT into the ME of the ET. The generic Dirac structure of the ME on

the FT side has the form

[s̄Γ1 b] [c̄Γ2 c] , (8.24)

where Γ1,2 is one of the following products of Dirac matrices

Γ = {1; γ5; γ
µ; γµγ5; γ

µγν ; γµγνγ5; γ
µγνγη; γµγνγηγ5} . (8.25)

Here the last four entries come from loop corrections to the tree-level FT operator.

On the ET side the generic ME is

[ξ̄n,pΓ
ET
sb hβb

][ξ̄βcc̄ p̃⊥ΓET
cc̄ ηC

βcc̄ −p̃⊥
], (8.26)

where ΓET
sb and ΓET

cc̄ are the set of operators which form the complete set on the

corresponding subspace of Dirac spinors.

In this section we derive the relations between the ME (8.24) of the FT

side and the ME (8.26) on the ET side. Firstly, for [c̄ . . . c], then for [s̄ . . . b], and

finally for their dot-products [s̄ . . . b][c̄ . . . c].

8.5.1 Reduction Formulae for [c̄ . . . c]

The Dirac structures ΓET
cc̄ follow by sandwiching the FT structures in

Eq. (8.25) between the projectors Pβcc̄ and P−βcc̄

Pβcc̄ΓP−βcc̄ → ΓET
cc̄ . (8.27)
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The calculations are straightforward and the results are summarized be-

low. The structure on the left comes from the FT side and the structure on the

right is it’s ET counterpart. Below β stands for βcc̄.

1 → 0,

γ5 → γ5,

γµ → γµ
⊥ where γµ

⊥ = γµ − βµβ/,

γµγ5 → βµγ5,

γµγν → βµγν
⊥ − βνγµ

⊥. (8.28)

This is a complete set of Dirac structures in D = 4. It follows that any of the

sixteen basic Dirac structures of the FT in D = 4 is a linear combination of the

four Dirac structures in the ET, so

ΓET
cc̄ = {γ5; γ

µ
⊥} , where γµ

⊥ = γµ − βµβ/. (8.29)

The remaining structure

γµγνγ5 → gµνγ5 + iεµνρηβργη,⊥, (8.30)

where ε0123 = 1 and γ5 = iγ0γ1γ2γ3, follows from the identity σµν = i
2
εµναβσαβγ5

valid in D = 4 and the last line of (8.28). Eqs. (8.28) and (8.30) complete the

necessary list of the relations between the MEs of the FT and the ET for the

[c̄ . . . c] current.

8.5.2 Reduction Formulae for [s̄ . . . b]

Working out the Dirac structures ΓET
sb requires more work because now

the original Dirac structure from the list (8.25) is sandwiched between the two

projectors for different subspaces: Pn̄ and Pβb
. The most straightforward way to

work out the necessary relations is to use the ”orthogonality” relation Eq. (17)

from [22] that reads

ΓET
sb =

n̄/

2
Tr

[
n/

2
Pn̄ΓPβb

]
− n̄/

2
γ5 Tr

[
n/

2
γ5Pn̄ΓPβb

]
+ γµ

⊥ Tr
[
γ⊥µ Pn̄ΓPβb

]
. (8.31)
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The formulae below summarize the results. The symbol β stands for βb.

1 → (β · n)
n̄/

2
+ β/⊥,

γ5 → −(β · n)
n̄/

2
γ5 +

i

2
γµ
⊥εµνηρn̄

νnηβρ,

γµ → nµ n̄/

2
+ γµ

⊥ where γµ
⊥ = γµ − nµ n̄/

2
− n̄µn/

2
,

γµγ5 → nµ n̄/

2
γ5 +

i

2
γν⊥ε

µναβn̄αnβ,

γ[µγν] → (nµβν − nνβµ)
n̄/

2
− iεµναγnαβγ

n̄/

2
γ5 + γµ

⊥β
ν
⊥ − γν

⊥β
µ
⊥

+(β · n̄)(γµ
⊥n

ν − γν
⊥n

µ)− 1

2
β/⊥(n̄µnν − n̄νnµ),

γ[µγν]γ5 → iεµναγnαβγ
n̄/

2
− (nµβν − nνβµ)

n̄/

2
γ5 +

i

2
(εβγαµβν − εβγανβµ)n̄βnγγα⊥

+
i

2
εµναη(βηγα⊥ − βαγη⊥). (8.32)

where γ[µγν] = 1
2
[γµ, γν ].

8.5.3 Specifying the Rest Frame of the b-Quark

The relations (8.32) can be considerably simplified by means of a standard

trick. Using this trick one can reduce the relations (8.32) to a more simple set of

relations derived in [11] which is equivalent to working in the basis

ΓET
sb = {1, γ5, γ

µ
⊥} . (8.33)

The sum of the two light-like vectors n and n̄ is always a time-like vector. This

time-like vector can be chosen to be any unit time-like vector in the problem. In

particular, one can choose βb, the unit vector along the world-line of b-quark. So,

n

2
+
n̄

2
= βb. (8.34)

This property follows from the observation that for any light-like vector n one can

always find a frame in which the vector has the components nµ = (1, 0, 0, 1) and

therefore n̄µ = (1, 0, 0,−1). Time direction in this frame is specified by the unit

time-like vector βµ = (1, 0, 0, 0). In our case, the choice (8.34) corresponds to the
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rest frame of the b-quark. If we choose βcc̄ instead we would end up with the

equivalent set of relations corresponding to the rest frame of the J/ψ. It follows

from Eq. (8.34) that:

(βb · n) = (βb · n̄) = 1, (βb · γ⊥) = β/⊥ = 0, and βµ
⊥ = 0. (8.35)

One more relation follows trivially from (8.34) but it is important when casting

the structures of Eq. (8.32) into a more simple form:

n̄/

2
= β/b −

n/

2
. (8.36)

The operator β/b applied to the heavy b-quark spinor hβb
gives the spinor back, and

the operator n/
2

annihilates the SCET spinor ξn, p.

Using Eqs. (8.34), (8.35), and (8.32) we reproduce Eq. (27) from [11]:

1 → 1,

γ5 → γ5,

γµ → nµ + γµ
⊥,

γµγ5 → −nµγ5 + iεµν
⊥ γν⊥ where εµν

⊥ = εµνηρβb ηnρ,

γ[µγν] → (nµβν
b − nνβµ

b )− iεµν
⊥ γ5 + (γµ

⊥n
ν − γν

⊥n
µ),

γ[µγν]γ5 → −iεµν
⊥ + (nµβν

b − nνβµ
b )γ5 + i(nµενα

⊥ − nνεµα
⊥ )γα⊥. (8.37)

8.5.4 Reduction Formulae for [s̄ . . . b][c̄ . . . c]

Here we present the reduction formulae which are necessary when reduc-

ing the Dirac structures of the FT to the structures of ET at the leading order in

v and λ. To simplify the results we use the relations

γµ
⊥ − iεµν

⊥ γν⊥ = −2εµ
+ε/−, γµ

⊥ + iεµν
⊥ γν⊥ = −2εµ

−ε/+, (8.38)

where ε± are the polarization vectors of s-quark with ± corresponding to the spin

direction along/opposite to the quark momentum. These relations can be verified

in the frame where nµ = (1, 0, 0, 1), βµ
b = (1, 0, 0, 0), and εµ

± = 1√
2
(0, 1,±i, 0). Using
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the polarization vectors we can write down the ”cumulative” reduction formulae.

Eqs. (8.28), (8.30), and (8.37) together with Eq. (8.38) are used below to write

down the reduction relations for Dirac structures of the FT in terms of polarization

vectors.

On the cc̄-side the following relations hold:

⊗γµPL → ⊗1

2
γµ
⊥ −⊗

1

2
βµ

cc̄γ5,

⊗γµPR → ⊗1

2
γµ
⊥ +⊗1

2
βµ

cc̄γ5,

⊗γ[µγν]PL → ⊗1

2
(βµ

cc̄γ
ν
⊥ − βν

cc̄γ
µ
⊥)−⊗ i

2
εµνρηβcc̄ ργη⊥ ,

⊗γ[µγν]PR → ⊗1

2
(βµ

cc̄γ
ν
⊥ − βν

cc̄γ
µ
⊥) +⊗ i

2
εµνρηβcc̄ ργη⊥ . (8.39)

On the s̄b-side we can use relations

γµPL⊗ → nµPR ⊗−εµ
+ε/−⊗,

γµPR⊗ → nµPL ⊗−εµ
−ε/+⊗,

γ[µγν]PL⊗ → (nµβν
b − nνβµ

b )PL ⊗+iεµν
⊥ PL ⊗+(nµεν

− − nνεµ
−)ε/+⊗,

γ[µγν]PR⊗ → (nµβν
b − nνβµ

b )PR ⊗−iεµν
⊥ PR ⊗+(nµεν

+ − nνεµ
+)ε/− ⊗ .(8.40)

We also use the leading order relations between the quark momenta:

pb = mbβb, pc = pc̄ = mcβcc̄, and ps = Esn. (8.41)

At the leading order the conservation of momentum requires that the 4-vectors

satisfy

mbβb = 2mcβcc̄ + Esn, where n2 = 1 and βb · n = 1. (8.42)

The last condition is due to the convention (8.34). Then the vector βcc̄ becomes a

linear combination of vectors βb and n:

βcc̄ =
mb

2mc

βb −
Es

2mc

n. (8.43)
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In particular the latter relation says that the dot-product (βcc̄ ·ε±), where ε± is the

s-quark polarization vector, vanishes. Also, using Eq. (8.42) allows one to write

the dot-products of four velocities in terms of the quark masses, which gives

(βcc̄ · n) =
mb

2mc

and (βb · βcc̄) =
mb − Es

2mc

with Es =
m2

b − (2mc)
2

2mb

.

(8.44)

The last step is to make sure that the ET structures are linearly inde-

pendent. Remember that the structures have the form:

ΓET
sb ⊗ ΓET

cc̄ where ΓET
sb ∈ {PL, PR, γ

µ
⊥}, and ΓET

cc̄ ∈ {γ5, γ
µ
⊥}. (8.45)

Note that γµ
⊥ on sb and cc̄ sides are different, and have different number of com-

ponents. If the matrices γµ
⊥ are contracted with the orthogonal vectors we can be

sure that the ET structures are linearly independent. We use the following basis

of orthogonal vectors:

βb, ε+, ε− and n∗ = n− βb, (8.46)

which in the b-quark restframe become

βµ
b = (1, 0, 0, 0) εµ

± =
1√
2
(0, 1,±i, 0) and n∗µ = (0, 0, 0, 1). (8.47)

Finally, using the equations of this section we can write down the expres-

sion for the FT Dirac structure in terms of the ET Dirac structures introduced in

Eq. (5.2):

γµPL ⊗ γµPL →
1

2
PR ⊗ n/∗⊥ +

1

2
PR ⊗ β/b⊥ −

1

2
(βcc̄ · n)PR ⊗ γ5 −

1

2
ε/− ⊗ ε/+⊥. (8.48)

8.6 The Propagator of ηC Field

Let’s outline the derivation of the propagator (7.34). We’ll work in the

COM frame and then write the outcome in the covariant form. The field ηC is a

subject to the constraint P−βcc̄ηβcc̄ p̃⊥ = 0, so the Dirac structure of the propagator
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is given by the projector P−βcc̄ . In the COM frame the Lagrangian (7.20) has the

form:

L = −
∫

d3x

(2π)3

[
ηC†

i η̇C − ηC† ∆

2m
ηC

]
(8.49)

where we’ve dropped all unnecessary indices. The canonical momentum is then

P =
δL
δη̇C

= −iηC† ⇒ ηC†
= i P. (8.50)

The canonical momentum and the field ηC satisfy the anticommutation

relation for grassman fields (see Ch. 9 in [1]):{
P (x), ηC(y)

}
= +iδ3(x− y). (8.51)

The fields ηC and P are then expanded in terms of the creation and the annihilation

operators b†k and bk for the anti-quarks:

ηC(y) =

∫
d3k

(2π)3
e−ikyb†k, −i P (x) =

∫
d3k

(2π)3
eikxbk,

where {bk′ , b†k} = (2π)3δ3(k− k′). (8.52)

Then the Hamiltonian where εk = k2/2m is

H = P · ˙ηC−L =

∫
d3x

(2π)3
i P
−∆

2m
ηC = −

∫
d3k

(2π)3
εkbkb

†
k =

∫
d3k

(2π)3
εkb

†
kbk−

∫
d3k

(2π)3
εk.

(8.53)

The last term here corresponds to the contribution due to the Dirac sea of negative

energy states, the constant that must be dropped.

With the Hamiltonian (8.53) the time-dependent fields become

ηC(x) =

∫
d3k

(2π)3
e−ikx+iεkt1b†k, η̄C(y) =

∫
d3k

(2π)3
eiky−iεkt2bk. (8.54)

The vacuum is the state without anti-quarks:

bk|vac〉 = 0. (8.55)

Finally the propagator for field ηC follows. In the covariant form and with the

Dirac structure explicit it becomes

〈TηC(x)η̄C(y)〉 =

∫
d4k

(2π)4
e−ik(x−y) iP−βcc̄

−βcc̄ · k +
p̃2
⊥

2mc
+ i0

. (8.56)
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Note that this propagator corresponds to the reversed fermion flow, so the direction

of the fermion flow for the cc̄-part of a diagram in the effective theory is the same

as in the FT. The line corresponding to the c̄-quark goes into the diagram. Like

in the FT the sign of the momentum of the ET propagator must be reversed if the

direction of momentum of a fermion line is opposite to that of the fermion flow.
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