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Mammalian touch catches up

Carolyn M. Walsh1, Diana M. Bautista1,*, and Ellen A. Lumpkin2,*

1Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 
94720-3200

2Departments of Dermatology and of Physiology & Cellular Biophysics, Columbia University 
College of Physicians & Surgeons, New York, New York USA 10032

Abstract

An assortment of touch receptors innervate the skin and encode different tactile features of the 

environment. Compared with invertebrate touch and other sensory systems, our understanding of 

the molecular and cellular underpinnings of mammalian touch lags behind. Two recent 

breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers 

allowed the functional and anatomical properties of sensory neurons to be matched, thereby 

unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal 

cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of 

Piezo genes as a new family of mechanically activated channels has fueled the discovery of 

molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors.

Introduction

Touch has fascinated philosophers and scientists for more than two millennia. The 

prevailing view in Aristotle’s time was that touch and taste (then considered a submodality 

of touch) are inferior senses because they require direct contact and are easily corrupted by 

our carnal needs for reproduction and sustenance [1]. By contrast, sight, hearing and smell 

allow action at a distance and, thus, room for contemplation. But Aristotle developed a 

different view, linking our power of tactile discrimination to human intelligence [2]:

“In the other senses man is inferior to many animals, but in the sense of touch he far 

surpasses them all in acuity; that is why he also the most intelligent of animals.” De anima, 

II, 9, 421a 20

Modern neuroscience recognizes the merit of both schools of thought. Touch is one form of 

mechanotransduction, which is the ability to sense and respond to mechanical disturbances 
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in the environment. In animals, tactile inputs guide fundamental behaviors required for 

species survival, including mating, obtaining nutrients and avoiding predation. On the other 

hand, discriminative touch allows us to accomplish uniquely human feats, from playing a 

concerto to typing a manuscript. Although genetic, behavioral and physiological studies of 

invertebrate nervous systems have identified basic principles of mechanosensory 

transduction [3], our understanding of the molecular and cellular basis of mammalian touch 

reception has been slow to emerge.

Two recent breakthroughs, however, have accelerated progress in the field. First, the 

development of selective genetic markers in transgenic mouse models has enabled 

functional dissection of identified classes of touch receptors. Second, the advent of rapid 

gene silencing technologies has fueled discovery of an entirely new family of 

mechanotransduction channels, the Piezo family. Here, we will summarize these advances, 

highlight ensuing progress with a particular focus on the past two years, and discuss open 

questions.

Getting a genetic grip on touch-receptor diversity

Somatosensory neurons located in trigeminal and dorsal root ganglia (DRG) initiate the 

senses of touch, proprioception and nociception. Each pseudounipolar neuron possesses a 

bifurcating sensory afferent that connects the periphery to the spinal cord. Sensory stimuli 

are transformed into action potentials in peripheral afferents that innervate skin and other 

target tissues. Central branches transmit these neural signals to the spinal cord and brain, 

where they are processed to direct behavior.

Somatosensory neurons display an array of sensory modalities, anatomical features and 

physiological properties (Table 1). Afferents can be categorized as Aβ (thickly myelinated), 

Aδ (thinly myelinated) or C-fibers (unmeylinated) based on action-potential conduction 

velocity. They are further classified by somatal diameter, sensory threshold, adaptation and 

modality. Gentle touch is encoded by low-threshold mechanoreceptors (LTMRs) that fall 

into Aβ, Aδ or C classes. These include slowly adapting type I (SAI) Aβ afferents, which 

complex with Merkel cells to form discriminative touch receptors [4]. Rapidly adapting 

(RA) Aβ LTMRs include corpuscular vibration receptors and hair-follicle afferents. Other 

hair-follicle afferents include Aδ LTMRs, which are among the most sensitive mammalian 

touch receptors, and C-LTMRs, which have been proposed to contribute to social touch [5]. 

Most nociceptors, which respond to noxious mechanical, chemical and/or thermal stimuli, 

are categorized as Aδ or C-fibers.

An important breakthrough has been the development of transgenic mice that selectively 

express genetic reporters in distinct somatosensory cell types (Table 1) [6–18]. These studies 

provide an battery of cell-type-specific molecular markers for matching the functional and 

anatomical properties of sensory neurons [14••]. These markers also allow selective 

manipulation of neuronal and non-neuronal cell types to determine their roles in tactile 

encoding (see Cellular Tuning Mechanisms, below).
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Piezo2 pushes to the forefront of mechanosensory transduction

The Piezo proteins are a recently discovered group of mechanically activated ion channels. 

They are highly evolutionarily conserved (Fig. 1A) and can form homotetramers, with each 

subunit consisting of over 30 transmembrane domains (Fig. 1B) [19••,20]. These proteins 

were first implicated in mechanotransduction through an RNA interference screen for 

mechanically activated currents in vitro. Fam38A (Piezo1) and Fam38B (Piezo2) are 

necessary for mechanically activated currents in N2A cells and DRG neurons, respectively, 

and are sufficient to confer mechanically activated currents in heterologous cells [19••]. 

Interestingly, Piezo-dependent currents can be activated by a variety of mechanical stimuli, 

including direct touch, membrane suction and shear stress [19••,21••] (Fig. 2A) These 

findings suggest that Piezo-dependent currents are intrinsically activated by membrane 

deformation. Although Piezo proteins lack sequence similarity with known ion-channel 

families, purified Piezo1 protein forms ion-conducting pores when reconstituted in lipid 

bilayers [20], and human disease-causing mutations slow channel gating kinetics [22–24]. 

Moreover, recent structure-function studies have narrowed the ion permeation pathway to 

the C-terminal domain and have identified a residue within a highly conserved motif that 

controls intrinsic pore properties [25,26]. Together, these findings suggest that Piezo genes 

encode bona fide ion channels rather than accessory subunits [20]. Both mammalian Piezo 

isoforms are expressed in tissues replete with mechanosensitive cells [19••]; however, the 

enrichment of Piezo2 transcripts in DRGs immediately suggested this gene as a prime 

candidate to encode transduction channels in touch receptors or nociceptors.

Acute mechanotransduction

Several studies support the hypothesis that Piezo2 mediates gentle touch in vertebrates. The 

first behavioral evidence emerged from a study of zebrafish Piezo2b, which is expressed in 

embryonic Rohon-Beard mechanoreceptors [27]. Morpholino-mediated Piezo2b gene 

silencing resulted in loss of behavioral responses to tactile stimulation but not to chemical 

and noxious mechanical stimuli. These findings indicate that Piezo2b is selectively required 

for touch-evoked behaviors.

Direct evidence that a mammalian Piezo gene is required for mechanotransduction in vivo 

stemmed from studies of epidermal Merkel cells, which are putative mechanosensory cells 

innervated by SAI afferents (see Cellular tuning mechanisms, below). Three groups found 

that rodent Merkel cells express Piezo2 and have mechanically activated currents that 

resemble Piezo2-dependent currents in other cell types [28•–30•] (Fig. 2B). These touch-

evoked currents were abolished in Merkel cells from epidermal-specific Piezo2 knockout 

mice (driven by Krt14Cre), as well as rat Merkel cells treated with Piezo2-targeted short 

hairpin RNAs [28•,30•]. Moreover, intact recordings demonstrated that Merkel-cell afferents 

from Krt14Cre;Piezo2flox/flox mice have truncated firing patterns rather than sustained SAI 

responses, demonstrating that Merkel-cell Piezo2 is needed for static firing in their 

associated afferents [29•,30•]. Finally, epidermal-specific Piezo2 knockout mice 

demonstrated a mild behavioral deficit to gentle touch in vivo [30•]. The subtle nature of this 

reflex behavioral deficit is not surprising, given the redundancy of mechanoreceptors (see 

Getting a genetic grip on touch-receptor diversity). Taken together, these data indicate a 
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requirement for Merkel-cell Piezo2 in acute touch reception, particularly for pressure 

sensation.

Disrupting Piezo2 in DRG neurons produces more dramatic deficits in touch sensitivity. For 

example, intrathecal injections of Piezo2 antisense oligonucleotides in mice increased 

withdrawal thresholds to touch [31]. Moreover, AdvillinCreERT2;Piezo2flox/flox mice, which 

lack Piezo2 in Merkel cells and DRG neurons, show a profound loss of gentle-touch 

responses [21••]. Using a battery of assays, the authors demonstrated that behaviors evoked 

by innocuous touch are almost completely abolished in AdvillinCreERT2;Piezo2flox/flox mice. 

The ability to respond to noxious mechanical and thermal stimulation remained intact in 

these mutants, confirming that Piezo2 function is not required for nocifensive responses in 

healthy animals [21••]. Additionally, in vitro recording from Piezo2-deficient DRG neurons 

demonstrated that rapidly inactivating currents were severely reduced. In intact recordings, 

approximately half of all Aβ LTMRs were rendered touch-insensitive, and those 

mechanoreceptors that remained showed impaired responsiveness. Together, these data 

indicate that Piezo2 is a principal component of mechanosensory signaling in mouse Aβ 

LTMRs.

A recent study promisingly indicates that Piezo2 is also required in human LTMRs. A 

neurotrophin cocktail was used to derive sensory neurons with LTMR properties from 

human induced pluripotent stem cells (iPSC) [32]. These human iPSC-derived neurons 

expressed Piezo2 transcripts and displayed mechanically activated inward currents with 

rapidly inactivating time constants, as in mouse LTMRs. When Piezo2 was ablated in these 

cells using CRISPR/Cas9 technology, mechanically activated currents were abolished. 

Along with directly demonstrating that Piezo2 is necessary for mechanotransduction in 

human LTMRs, this study opens up new avenues for analyzing and genetically correcting, 

disease-causing Piezo2 mutations in human cell types [22,33,34].

Whether Piezo2 also contributes to acute transduction in Aδ and C afferents is not clear. 

Piezo2 expression has been reported in medium and small diameter neurons; however, in 

AdvillinCreERT2;Piezo2flox/flox mice, the proportion of mechanosensitive Aδ LTMRs and A-

mechanonociceptors did not differ significantly between mutant and control genotypes 

[21••]. Aδ LTMRs showed normal sensitivity, but mechanical thresholds were increased in 

Piezo2 mutant A-mechanonociceptors. Although C-LTMRs were not analyzed in this study, 

C nociceptors did not differ between genotypes, indicating that Piezo2 is not required for 

mechanically evoked signaling in these afferents.

Mechanical sensitization

Recent studies also implicate Piezo2 in mechanosensory signaling under conditions of 

inflammation or injury. For example, intrathecal Piezo2 antisense oligonucleotides reduced 

mechanical allodynia — a condition in which normally innocuous stimuli are experienced as 

painful — in two different mouse models of neuropathic pain [31]. Moreover, shRNA-

mediated gene silencing of Piezo2 in whisker follicles reduced behavioral responses to 

whisker deflection after capsaicin-induced sensitization [28•]. At a cellular level, bradykinin 

(BK), an inflammatory algogen that mediates hyperalgesia, sensitized Piezo2 currents when 

co-expressed with bradykinin receptor beta 2 in heterologous systems or in a subset of 
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putative nociceptors [35]. These data provide a potential mechanism for mechanical 

hyperalgesia under conditions of inflammation. Moreover, TRPV1 stimulation inhibited 

Piezo2 currents in heterologous cells and a subset of DRG neurons, which highlights the 

potential for crosstalk between Piezo2 and ion channels involved in thermal hyperalgesia 

[36]. Defining the role of Piezo2 and other transduction channels in mechanical 

hypersensitivity may point the way toward new therapies for common and debilitating pain 

conditions.

Customizing Piezo function

The biophysical properties of mechanotransduction channels are important for setting the 

speed, sensitivity and dynamic range of mechanosensory signaling. Mechanisms that govern 

these biophysical properties in different types of touch receptors are under active 

investigation.

To evaluate the dynamic range of mechanically activated channels in DRG neurons, a novel 

elastomeric pillar assay was developed to deliver cellular deflections as small as 10 nm 

[37•]. This assay was used to analyze mechanical thresholds in neurons lacking stomatin-

like protein 3 (STOML3), which is required for normal touch sensitivity in mice [38]. 

Mechanical activation thresholds of rapidly inactivating Piezo2 currents were increased by 

an order of magnitude in a subset of Stoml3 mutant DRG neurons. Conversely, co-

expressing Piezo1 or Piezo2 with STOML3 in HEK293 dramatically lowered the stimulus 

threshold for mechanically evoked currents [37•]. Thus, STOML3 is capable of broadening 

the dynamic range of Piezo channels by reducing their activation thresholds.

The mechanical sensitivity of transduction channels is another important determinant of 

sensory signaling. A recent study of trigeminal sensory neurons from tactile foraging ducks 

showed that their mechanically activated currents have unusually steep displacement-

response relations and that a high proportion of their trigeminal neurons express Piezo2 

compared with other species [39]. By contrast, the ultra-tactile-sensitive star organ of the 

star-nose mole is primarily innervated by trigeminal neurons highly enriched with Piezo1, 

whereas DRG neurons express primarily Piezo2 [40]. Future studies of these and other 

tactile-specialist species hold promise for uncovering new mechanisms of tactile sensation 

[41–43].

Cellular tuning mechanisms

In touch receptors, firing patterns are thought to be shaped by terminal specializations that 

comprise sensory afferents juxtaposed to non-neuronal cell types. Recent studies have taken 

advantage of cell-type-specific transgenic technology to dissect how anatomical 

specializations and non-neuronal cell types contribute to distinctive firing properties in 

LTMRs.

In mice, hair follicles are innervated by RA Aβ LTMRs, Aδ-LTMRs and/or C-LTMRs, 

whose innervation patterns have been recently reviewed [5,44]. These neurons form similar 

lanceolate endings; however, they differ in their physiological responses [14••]. In most 

cases, different classes of LTMRs innervate the same hair follicle, forming interdigitating 
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endings enwrapped by a common terminal Schwann cell [45]. This observation suggests that 

functional differences between these touch receptors reflect intrinsic neuronal mechanisms, 

such as distinct transduction machinery or ion channels that set membrane excitability. 

Interestingly, Piezo2 is required for mechanically evoked firing in RA and SA Aβ LTMRs, 

and set the mechanical thresholds observed in A-mechanonociceptors. How one channel can 

contribute to distinct mechanical properties in these diverse cell types remains to be 

determined.

Many lanceolate endings polarize to the caudal side of hair follicles [46]. These include 

TrkB-expressing Aδ LTMRs, which preferentially respond to hair movements in the caudal-

to-rostral direction [47•]. Interestingly, keratinocytes located on the caudal side of hair 

follicles express the TrkB ligand BDNF, and epidermal-specific BDNF knockout disrupts 

the caudal polarization of Aδ LTMR endings [47•]. Individual Aδ LTMRs displayed 

directional selectivity in BDNF mutant mice; however, the orientation of their selectivity 

vectors did not show a strong rostral preference. Together, these findings suggesting that 

BDNF-independent mechanisms confer polarity in Aδ LTMRs, and that keratinocyte-

derived BDNF properly orients this polarity.

Merkel cells are another epidermal cell type that governs the firing properties of LTMRs 

(see Acute mechanotransduction, above). Whether Merkel cells actively function in sensory 

transduction has long been debated. To address this question, optogenetic tools were used to 

selectively excite or silence Merkel-cell signaling in the intact skin [29•]. When the skin was 

illuminated to activate Merkel cells, SAI afferents produced sustained volleys of action 

potentials that mimicked the response to static pressure. Conversely, touch-evoked SAI 

firing was reversibly inhibited when Merkel cells were optogenetically silenced. Thus, 

Merkel cells are both necessary and sufficient to confer sustained firing in SAI afferents. 

Moreover, electrophysiological analysis of mutant mice devoid of Merkel cells 

demonstrated that Merkel-cell afferents are capable of transducing dynamic touch, but with 

markedly reduced activity. This finding suggests that Merkel cells facilitate high-frequency 

firing during dynamic touch. Together with studies of Merkel-cell Piezo2 summarized 

above, these findings indicate that the Merkel cell-neurite complex is a compound touch 

receptor. Future studies are needed to identify neurotransmitters and receptors that mediate 

signaling between Merkel cells and sensory afferents.

Conclusions and pressing questions

Recent studies have made significant progress in our understanding of the mechanisms 

underlying mammalian somatosensory transduction. The identification of Piezo proteins and 

the demonstration that Piezo2 can account for mechanotransduction in most mammalian 

touch receptors, answers a long-standing question in the field of mechanotransduction. 

Likewise, the identification of molecular markers for distinct subtypes of touch receptors 

enables the selective disruption of candidate genes and the ability to temporally manipulate 

activity in individual classes of sensory neurons. Such approaches can now be used to 

understand how different neuronal classes contribute to encoding of tactile stimuli. 

Nonetheless, a number of key questions remain to be addressed. First, how intrinsic 

neuronal mechanisms differ between functionally distinct somatosensory neurons remains 
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enigmatic. A recent tour de force used single-cell RNA sequencing to identify unique 

transcriptional profiles for different classes of somatosensory neurons [48]. These datasets 

provide an excellent starting point for defining such intrinsic mechanisms. Second, there is a 

need for new motivated tactile behavioral tasks (rather than reflexive tasks) to assay the 

function of discriminative touch receptors. Third, the ion channels that transduce noxious 

mechanical stimuli have yet to be identified. Finally, whether Piezo2 contributes to human 

tactile disorders or sensory dysfunction remains largely unknown. The significant strides in 

our understanding of mammalian touch over the past few years suggest that answers to these 

questions are within reach.
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Highlights

• Selective genetic markers allow functional dissection of identified touch 

receptors

• Piezo genes encode mechanically activated ion channels

• Piezo2 is a principal component of mechanotransduction in mammalian touch 

receptors

• Cellular and molecular mechanisms tune the mechanosensory function of touch 

receptors
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Figure 1. Piezo proteins are evolutionarily conserved, widely expressed ion channels
(A) Unrooted circular dendrogram clustering of Piezo1 and Piezo2 proteins (B) Piezo 

channels are proposed to be homomeric tetramers. Each subunit is predicted to contain over 

30 transmembrance domains (orange circles).
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Figure 2. The many modalities of Piezo
(A) Sample currents demonstrating mechanical activation of Piezo1-transfected HEK293T 

cells via pressure [19••], suction [19••], and shear stress [50]. (B) Representative touch-

evoked Piezo2 currents in transfected HEK293T cells [19••], DRG neurons [19••] and 

Merkel cells [29•].
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