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ABSTRACT 

Invasive plants are non-native species that have detrimental economic, ecological, 
environmental or environmental effects on their surroundings and can spread rapidly. In 
aquatic ecosystems, they are particularly harmful because they can affect water quality and 
availability by disrupting flow patterns. In areas such as the Sacramento-San Joaquin River 
Delta in California, USA, management programs are in place which use imaging 
spectroscopy to map and track annual changes in invasive species patterns to inform 
treatment. These maps are constructed from imagery collected by an airborne imaging 
spectrometer. Advances in unmanned aircraft systems have enabled small imaging 
spectrometers such as the Headwall Photonics Nano-Hyperspec (Nano) to provide even 
higher spatial resolution imagery than manned flights. In this case a 5.1 cm pixel spatial 
resolution imagery in the VIS-NIR (400-1000 nm) was gathered by the Nano, while 
HyMap captured 1.7 m VIS-SWIR (400-2500 nm) imagery. For species mapping 
applications, the higher spatial resolution provided by the Nano allows detection of 
invasive weeds before they spread over larger areas. To compare the mapping capabilities 
and utility of unmanned aircraft and manned aircraft for mapping invasive species, aerial 
imagery was collected concurrently at a wetland study site using a Nano on board a 
unmanned aircraft (DJI M600P) and the HyMap sensor mounted on board a piloted aircraft 
(1975 Rockwell International 500-S). Maps were then created from similar remote sensing 
products using a random forest model. The Nano-Hyperspec was capable of identifying 
smaller patches of invasive plants, which did not appear in maps generated from the 
HyMap sensor. Three experiments were used to determine input criteria for the best model 
for map creation, which included training and test data proportions, flight direction, and 
acquisition. Results showed that increasing training data proportion resulted in higher 
median overall accuracies but the decrease in test data caused an increase in distribution 
width and interquartile range of model accuracy. Acquisition date also impacted model 
performance, but there were several confounding factors making it difficult to ascertain 
which, if a single variable was responsible. Flight direction relative to solar position was 
also significant to model performance; the Nano-generated map performed best when 
trained on labelled data collected in both flight directions then applied or tested only on 
data acquired while flying away from the solar plane. Map comparisons between those 
made from the Nano and those from the HyMap sensor show that the Nano performs as 
well as the HyMap as a source for spectral data to generate classification maps, with a 
higher overall accuracy for 2019, and comparable overall accuracies for other years. In 
addition, the higher resolution of the Nano imagery allowed detection of patches of water 
hyacinth present in the study site that the HyMap maps could not. However, it would not 
be feasible to operate the Nano as a replacement to the HyMap despite its improved 
detection capabilities to due to area coverage limitations. But the Nano could be used to 
supplement an existing invasive species management program to build an improved map 
of targeted areas.  
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1. INTRODUCTION 

Invasive plants are a rapidly growing global concern due to their negative ecological 
and economic impacts. Their introduction often results in extinction of native plants and a 
reduction biodiversity, either by outcompeting or hybridizing with native species [1]–[3]. 
Under most scenarios invasive plants arrive without their co-evolved competitors or 
parasites allowing them to spread rapidly, replacing native plants without assuming their 
ecological roles. Plant invasions have been shown to modify ecosystem processes such as 
nutrient availability, nutrient cycling, soil chemistry, water tables, hydrology, food waste, 
and habitats [4]. Management of these potentially detrimental impacts are complicated by 
changes in climate [5] and intensified by increases in invasion frequency due to 
globalization [6], [7]. Human-mediated introductions of invasive plants are most common 
and tend to be more rapid, increasing propagule pressure and exacerbating the threat of the 
economic and environmental damages associated with invasive plants [8]–[10].  

Over a decade and a half ago, global costs associated with management of invasive 
plants was estimated at $34.6 billion as a result of approximately 25,000 foreign plants, 
and costs are bound to be higher now as globalization has increased [2]. To mitigate the 
economic and environmental damage, governmental cooperation and management on 
national and international levels is required. The United Nations Sustainable Development 
Goal 15, Life on Land, includes a focus on invasion prevention, control and eradication 
[11]. Other governmental bodies such as the European Environmental Agency (EEA) and 
United States National Invasive Species Council (NISC) are also working to improve 
global management capabilities. The EEA has developed indicators summarizing invasion 
trends and biodiversity threats and the NISC has been attempting to standardize data 
formats and protocol [1]. Understanding invasion origins, pathways and processes is a key 
step in management and requires geographic observations.  

Imaging spectroscopy or hyperspectral remote sensing has become a favored tool for 
invasive plant species mapping due to its synoptic viewpoint and its proven success in 
providing sufficient spectral data to differentiate between species within complex 
communities such as wetlands [12]–[17]. The capability to detect plant traits and species 
using this technology coupled with map creation is invaluable for monitoring and 
management of invasive plants [18]. For this reason, airborne imaging spectroscopy 
campaigns have become a common practice because they offer the large volume of spectral 
information necessary to discriminate between species sharing similar attributes [1], while 
having moderate to high spatial resolution need to detect species patches.  

Improvements in technology of unmanned aircraft systems and sensors have allowed 
for an increase in their capabilities, offering the potential to fill critical gaps between field 
spectroscopy and manned flights. Field spectroscopy typically utilizes a researcher with a 
backpack spectrometer meaning it has a very small geographic coverage due to the 
difficulty and time associated with navigating field sites while manned flights have a much 
larger geographic coverage, but loses the extremely high spatial detail associated with field 
spectroscopy. Unmanned aircraft systems sit between this range of capability, providing 
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imagery with a geographic footprint smaller than manned flights but larger than the single 
points provided by field spectrometry. Unmanned aircraft systems also have high 
operational flexibility and low costs relative to manned flights as well as the extensive field 
campaigns required for field spectrometry [19], [20]. This gives unmanned aircraft the 
potential to conduct more frequent, small-footprint acquisitions. The capability to launch 
on-demand enables better characterization of phenological stages, differences in phenology 
between species, and allows sampling during specific events such as natural disasters. 
Multispectral cameras or simply high resolution RGB cameras are the most commonly 
used sensors with unmanned aircraft systems; however, newer pushbroom imaging 
spectrometers, such as the Headwall Nano-Hyperspec (Headwall Photonics, Bolton, MA, 
USA) offer tremendous potential for mapping species. Though there has historically been 
difficulty in achieving consistent spectral and radiometric quality with from unmanned 
aircraft mountable line scanners [21], studies have shown success in providing detailed 
community mapping in notoriously difficult regions such as wetlands [22] and grasslands 
[23]. 

The objective of this study is to compare mapping performance of imaging 
spectrometers mounted on unmanned aircraft and those mounted on manned aircraft 
spectrometers used routinely for species level monitoring. The unmanned aircraft mounted 
sensors offer much higher spatial resolution than manned aircraft mounted imaging 
spectrometers but have lower spectral quality and a smaller spectral range and spatial 
footprint. Manned airborne campaigns typically have high spectral and spatial coverage, 
moderate geographic coverage and low revisit time due to the complexity of flight planning 
and costs. To compare the wetland classification mapping capabilities of these two 
platforms equipped with imaging spectrometers, classification maps were creating using 
the Nano-sensor and compared with maps generated from the HyMap sensor using similar 
methods. To build the best model for classifying the data from the Nano, 3 experimental 
treatments were performed to determine the effects of: i) training and test data selection 
and quantities, ii) sun-sensor geometry or flight direction, and iii) phenology or acquisition 
date on the classification performance of the models developed. The unmanned aircraft 
mounted Headwall Nano-Hyperspec imaging spectrometer was flown concurrently with 
the manned aircraft-mounted HyMap imaging spectrometer that was tasked with the 
purpose of collecting annual invasives-mapping imagery. The data collected by the Nano 
were then used in multiple models to evaluate the impact of the 3 experimental treatments 
leading to selection of the best performing model to create a thematic map, which was 
compared with maps created from manned aircraft data as part of the aquatic weed-
mapping program in the Sacramento-San Joaquin River Delta (the Delta) by the University 
of California Davis. 
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2.  METHODS 

2.1 Overview 

The unmanned aircraft mounted Nano sensor was used to collect imaging spectroscopy 
data near Liberty Island, CA, a flooded island in the Delta concurrently with an annual 
manned flight by the HyMap sensor, flown as part of California’s aquatic weed mapping 
program in the Delta. Two sub-regions of the HyMap imagery collection, each 
approximately 200 x 200 m were selected for comparison based upon accessibility and 
presence of invasive species. Data collected by the HyMap sensor was delivered to UC 
Davis and processed into thematic maps using a random forest model [24]. Taking 
advantage of on-demand flight capability of unmanned aircraft, two subsequent unmanned 
flights were conducted on May 3 and June 13, 2019 with the Nano, capturing the same 200 
x 200m areas. The imagery collected by the Nano were pre-processed and thematic maps 
following the target classes (Table 1) were created using a random forest modeling 
approach. Three experimental treatments were performed with the unmanned aircraft data 
by limiting the training and test data provided to the models based upon the experimental 
treatment to determine the impacts of each treatment and select the best model 
classification performance. These are outlined in Figure 1. After a high performing model 
was selected, the map created from the HyMap sensor by the UC Davis Center for Spatial 
Technology and Remote Sensing (CSTARS) and the maps created from the Nano sensor 
were compared to evaluate their relative species detection capabilities.  
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Figure 1. Project flow diagram showing data processing chain, experimental treatments and map 
comparisons conducted. 

2.2 Study Site 

The Sacramento-San Joaquin River Delta, the upstream component of the San 
Francisco Estuary, is the largest tidal freshwater estuary in the western United States. It is 
a heavily engineered system consisting of complex waterways, reclaimed islands 
supporting agriculture, and flooded islands. The Delta provides a habitat for numerous 
species and has a disproportionately important role in biodiversity and providing vital 
ecosystem services [25], [26]. It also serves as a major hub for water in the state, providing 
drinking water to the bay area as well as southern California and the main water source for 
agriculture in California’s Central Valley. Agricultural production in the Central Valley 
accounts for roughly 80% of the state’s $50 billion agricultural industry [27]. For these 
reasons, maintaining water quality and availability in the Delta region is a priority for 
California. The state has legislated that Delta water management must meet the co-equal 
goals of providing reliable water supply while protecting Delta ecosystems. The Delta is 
one of the most invaded ecosystems in the world. Invasive plants in the region have been 
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detrimental to water pumping, water quality, commerce, recreation, and have impacted 
native species [24]. 

Due to the economic and ecological importance of the Delta, agencies need to know 
where to spray and remove invasive plants to minimize impacts. Efforts to map and monitor 
invasive plants using airborne imaging spectroscopy have been under development dating 
back to 2003, led by CSTARS at UC Davis [12], [15], [16], [28]. A combination of HyMap 
and AVIRIS imaging spectroscopy data has been collected nearly annually from 2003 – 
2008 and from 2014 – to present, and aquatic invasive species mapping is considered near-
operational. Currently, images are classified into 5-10 classes that include different species 
of aquatic macrophytes and other co-occurring vegetation categories using a random forest 
machine learning algorithm and GPS collected field data through extensive field 
campaigns. Overall map accuracies range from 85-95% and Kappa coefficients range from 
0.83-0.94. These maps have been used to quantify the effectiveness of management 
interventions including herbicide applications and salinity intrusion barriers [18], [29], 
investigate drivers and implications of biological invasions [30], [31], and their impact on 
the water quality and physical habitat (Hestir, Schoellhamer, Greenberg, Morgan-King, & 
Ustin, 2016).  

Although airborne imaging spectroscopy data provide the highest spectral quality and 
often spatial quality of data for species-level mapping, it is limited to infrequent (e.g., 
annual, bi-annual) snapshot assessments of species distributions. Furthermore, it has 
relatively high costs, making it difficult to fund on an annual or seasonal basis. 
Consequently, there has been recent interest in using unmanned aircraft acquired imagery 
to increase spatial and temporal quality and reduce costs. Unmanned aircraft operations 
require much less coordination and planning due to smaller scale, lower flight altitudes, 
and less overhead. The ease of deployment makes it possible to collect data routinely and 
on-demand without high costs. 

  

(a) (b) 
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Figure 2. Maps of study region. (a) Flightlines conducted by HyMap in 2019 with Nano collection 
area highlighted in red and (b) enlarged Nano acquisition area. 

2.3 Target Classes 

Two major invasive species of concern in the Delta are water hyacinth (Eichohornia 
crassipes) and water primrose (Ludwigia spp.). Water hyacinth is a perennial, mat-forming 
floating aquatic plant that has been a problematic species in the Delta for decades [33]. 
Mats of water hyacinth can double biomass within 10 days [34], quickly overtaking areas, 
decreasing water quality and quantity by decreasing dissolved oxygen content and 
increasing transpiration [28], [35], and obstructing waterways for commerce and recreation 
[36]. Water primrose is a problematic amphibious plant which can form floating mats. Its 
amphibious capability and fast growth rates have made it a threat to the Delta, endangering 
native species in the region, as well as humans because primrose mats provide habitats for 
mosquitos transmitting the West Nile virus [4]. As the primary focus of this investigation 
they are the only species-level classes included. Other land cover classes were chosen to 
align with existing classes in HyMap-derived maps created by CSTARS the previous year 
[37]. A complete list of classes for each platform and their descriptions can be found in 
Table 1.  

Table 1. Classes of Interests and Descriptions 

Map Class Description 
Unclassified Unclassified land cover or area outside of analysis 
Bare Ground Asphalt, gravel, levee riprap, and bare soil 
Emergent 
Vegetation (EMR) 

Cat tail (Typha spp.), common reed (Phragmites australis), giant reed 
(Arundo donax), and tule (Schoenoplectus spp.) 

Water Hyacinth Water Hyacinth (Eichhornia crassipes)  
Water Primrose Water Primrose (Ludwigia spp.) 
Riparian Tree Trees in the area including willow species (Salix spp.) 
Riparian Shrub Shrubs in the area 

Submerged 
Aquatic 
Vegetation (SAV) 

Algae mats and submerged species: Brazillian waterweed (Egeria densa), 
Coontail (Ceratophyllum demersum), Curly leaf pondweed (Pomatogedon 
crispus), Fanwort (Cabomba caroliniana), Sago pondweed (Stuckenia 
pectinata), Watermilfoil (Myriophyllum spicatum), and Waterweed (Elodea 
canadensis)  

Water Water 

Other Vegetation Species or cover not obeserved in unmanned aircraft study region including 
pennywort (Hydrocotyle spp.) and mosquito fern (Azolla spp.) 

Non-
Photosynthetic 
Vegetation (NPV) 

Senescent or dead vegetation 
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2.4 Imaging Spectroscopy Data 

The Headwall Nano-Hyperspec is a small, lightweight, pushbroom imaging 
spectrometer that can be mounted on a unmanned aircraft. It can be purchased bought as a 
turnkey package including a DJI M600Pro, DJI Ronin gimbal, calibration tarps, and 
software (Headwall Photonics, Bolton, MA). The Nano records radiance data across 270 
bands of visible and near infrared light across the 400 to 1000 nm range of the 
electromagnetic spectrum (Table 2). 

Table 2. Sensor Specifications 

  HyMap Nano-Hyperspec 
Type whiskbroom pushbroom 

Spectral Range 450 - 2450 nm 400 - 1000 nm 

Number of bands 128 270 

Spectral Resolution 15-18 nm 2.2 nm 

Signal to Noise 
>500:1 > 15:1 (1000 nm) < 140:1 

(550 nm) 

Spatial Resolution 1.7 m 0.051 m 

Swath Width (FOV°) 61.3 15.85 

Operational Altitude > 458 m * < 122 m ** 

Platform 
1975 Rockwell International 

500-S 
DJI-M600P 

*Typical lowest safe altitude according to FAA. 
**Maximum altitude for unmanned aircraft without FAA approval. 

 
The flight plan was constructed to account for potential effects of solar geometry. Sun-

sensor directional effects can result in specular reflectance of water, large amounts of 
shadow, and variability of across track reflectance [38]. The data from the Nano sensor 
mounted on the unmanned aircraft were collected to deliberately enable the evaluation of 
these effects on classifier to performance in experiment 2. The flight plan was created and 
operations were conducted using Universal Ground Control Software (UgCS, SPH 
Engineering 2018). The layout consisted of two boxes of 16 flight lines each, to cover two 
200 x 200 m areas at 115 m. The flight lines were oriented so the unmanned aircraft would 
be flying toward (SE direction) or away (NW direction) from the solar plane and each box 
was designed with a very high, 60% overlap for flight lines to allow a full mosaic of the 
region to be created using only lines from the NW or SE direction and still have a 10% 
overlap.  

By flying at an altitude of 115 m, the Nano captured imagery with a 5.1 to 5.4 cm 
spatial resolution, varying slightly due to ground topography and wind conditions. A total 
of 32 flight lines in the specified study area were collected on each acquisition date, with 
the May 3 and June 13 acquisitions succeeding in capturing the green-up of several plant 
species including the target species water hyacinth. Flight conditions for the days of the 
study can be found in Table 3. 
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Table 3. Flight conditions for unmanned aircraft flights. 

Date 
Start 
Time 
(PDT) 

Stop 
Time 
(PDT) 

Start 
Solar 

Azimuth 
(°) 

Stop 
Solar 

Azimuth 
(°) 

Start 
Tide 

Height 
(ft) 

Stop 
Tide 

Height 
(ft) 

Wind 
Speed 
(mph) 

Solar 
Radiation 
(w/sq.m) 

2019-04-09 12:28 13:14 137.04 154.69 1 0.5 7.1 907 
2019-05-03 13:06 14:12 146.67 185.31 0.7 1.6 5.1 838 
2019-06-13 12:50 13:39 126.98 156.46 2.2 2.7 14.2 974 
The raw image cubes collected by the Nano were converted to radiance using a dark 

calibration of the sensor conducted preflight, then the imagery was orthorectified using an 
iterative procedure, adjusting offsets of pitch, roll, yaw, and altitude for the onboard GPS 
and IMU. Each iteration was compared to Google Maps imagery, as well as the previous 
iteration and known ground location points using Headwall’s SpectralView software [40] 
and ENVI 5.5 [41]. Several iterations adjusting the previously mentioned parameters were 
performed to achieve a best possible orthocorrection. After this step, the cubes were 
converted to reflectance in the Headwall SpectralView software using a radiance sample 
from the 56% reflectance section of the calibration tarp present in the imagery. Sampled 
healthy target vegetation had close to this reflectance in the NIR region and using similar 
reflectance to the intended target was recommended (G. Chenevert, personal 
communication, June 20, 2018). Savitzky-Golay smoothing was considered to reduce the 
noise present but was omitted from the processing chain because there was still a 
considerable amount of noise present afterwards, especially in the NIR region. 

2.5 Ground Reference Data 

Plant species and location data of the target classes (Table 1) were collected during the 
week following the concurrent flight on April 16-18 for use in training and testing a 
thematic classification of the Nano data. Using a 2017 HyMap classification map obtained 
from UC Davis, a stratified random sampling scheme was used to create 200 points, 
consisting of 10 points per class per flight box, to visit in the field and record [42]. This 
sampling design was chosen to maintain random sampling as best as possible while still 
collecting a sufficient number of samples from each class. Of the 200 ground reference 
points created, the 84 accessible ones were visited, and data were collected using field 
guides for species identification, a Trimble Geo7X RTK kit with a Zephyr-3 antenna for 
GNSS location, and a Zodiac Mk. II inflatable boat to the points (Figure 3A). 
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Figure 3. Ground reference point collection equipment and map. a) Zodiac and GPS setup for data 
collection. b) Ground reference points collected. 

At each of the 84 points visited, the target classes present were documented, photos 
were taken, and additional information regarding patch sizes, and the surrounding area was 
recorded. After subsequent flights in May and June, 10 randomly selected points from the 
84 visited were selected to re-visit and coverage at those locations was checked for 
consistency with previous month’s data. Since the spatial pixel resolution of the Nano-
Hyperspec was between 5.1 to 5.4 cm, great effort was taken to maximize positional 
accuracy of this survey and corrected GNSS coordinates fell within a 10 cm range after 
conducting a differential correction using GPS Pathfinder Office [43]. Points not accessible 
via watercraft were labelled using photographic and spectral interpretation of the 
unmanned aircraft collected imagery aided by Google Earth Imagery and USDA National 
Agriculture Imagery program (NAIP) aerial imagery. Water hyacinth had very few ground 
reference points and many patches were senescent during the April survey. Imbalance or 
low quantities of reference data for classes has been shown to hinder performance of 
classifiers [44], thus additional datapoints points for that class were added for the water 
hyacinth class by creating vegetation patch polygons in the unmanned aircraft imagery, 
then randomly sampling from those polygons to provide additional 72 reference points in 
total. 

2.6 Classification 

Random forests (RF) models [45] are a popular choice for remote sensing for 
classification of species from various types of imagery [1]. RF was chosen as the 
classification method because it was used by UC Davis on the HyMap data due to high 
accuracy and proven success for the chosen ecosystem and region [24]. RF works by 
building a set of classification trees which vote on the most probable class that a datapoint 
represents. Each tree randomly selects a subset of training data to be used for its 
construction, reducing the chances of overfitting the model. RF have specifically been 
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successful at mapping species in complex environments such as wetlands [44] and have 
performed better than other non-parametric classification methods [24]. Though RF often 
have improved classification accuracies over other methods, they lack a direct 
quantification error [46]. To account for the lack of direct error quantification from a 
random forest, a bootstrapping procedure of building multiple random forests was used to 
capture the range of accuracies of the RF model based upon the random selection of 
training and independent test data. This is important to capture this uncertainty because 
poor model inputs can cause considerable errors in classification [47] and random forests 
are sensitive to spatial autocorrelation [48]. The bootstrapping method should reveal some 
of these errors, giving a better idea of the model’s performance. After bootstrapping the 
RF models, accuracies metrics for each model were examined. These consisted of the 
overall accuracy, producer’s accuracy, user’s accuracy, and Cohen’s Kappa statistic [49]. 
The overall accuracy specifies the probability that the thematic class identified in the 
imagery is representative of ground reference data at that location. Producer’s accuracy 
(error of omission) indicates the probability that the land cover class identified at the 
ground reference has been correctly classified. User’s accuracy (error of commission) 
indicates that probability that a classified point in the map would have the same land cover 
class if visited in the field. Cohen’s Kappa indicates the overall level of agreement between 
the ground reference data and the classified data taking into account random agreement 
between reference data and classification results [50], [51]. Kappa was calculated for 
comparative purposes, but otherwise omitted due to its similar functionality to overall 
accuracy [52], [53]. 

The RF models used to classify the Nano data were constructed and evaluated using 
the caret [54] and randomForest [55] packages in R [56]. A flowchart depicting an outline 
of the data processing procedure can be found in Figure 1. When constructing the models, 
selection of training and test data were restricted so that no geographic duplicates were 
chosen if using labelled data acquired in both flight directions. This was done to prevent 
inflation of accuracy statistics. To compare experimental results and select the best model 
for map-making, Kruskal-Wallis and pairwise Wilcoxon rank-sum tests were performed 
on accuracy metrics to determine if there was a significant difference in distributions 
between the experimental results with a p-value of 0.05. 

2.6.1 Input Variables 

The RF model inputs included reflectance data, occurrence texture data, a forward 
minimum noise fraction (MNF) transformation, 80 spectral indices, and image segments. 
During the preprocessing stages there was a lot of noise in the reflectance spectra collected. 
Texture occurrence data contains a kernel derived mean, variance, entropy, and skewness 
for each pixel and band within an image, effectively measuring how similar a pixel is to 
the other pixels within the kernel. The MNF transformation is a linear transformation 
process that consists of using a noise whitening, then uses a principle components analysis 
(PCA) transformation on the noise-whitened data [57]. This results in an output of bands 
with an axis of signal to noise ratio, creating a set of images ordered according to noisiness 
[58]. Occurrence textures metrics were calculated using a 3 x 3 kernel in ENVI 5.5 [41]. 
The forward MNF rotation was also conducted on all flight lines using ENVI 5.5. The 80 
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spectral indices included are meaningful indicators associated with plant biophysical 
properties (Appendix A). They were calculated using R [56], and the formulae from the 
hsdar package [59]. Image segmentation is the partitioning of an image into sets of pixels 
or objects based on the similarity of pixels values to one another. At high resolution, object-
based image analysis has shown great potential for image classification [60]–[62] and has 
performed better than pixel-based methods alone [62]. Segments were calculated using a 
Large-Scale Mean-Shift of the green, red, NIR bands in the segOptim package [63] in R 
utilizing Orfeo Tool Box [64]. Segmentation parameters are difficult to optimize, often 
being determined by visual inspection after the parameters relating to size and complexity 
of targets are chosen [60], [65], a procedure which was followed in this study. Model input 
data included 987 labelled points with 1702 variables each, and in total there were 96 flight-
line images for the Nano, adding up to roughly 8.6 TB of data. 

2.6.2 Random Forest Model Construction  

All RF models and accuracy statistics were constructed and calculated using R[56]. 
During construction of the RF models, the number of trees necessary was examined as well 
as the three experimental treatments hypothesized to affect performance of the models. 
Each of these factors was explored using a bootstrapping approach consisting of 1000 
bootstraps.  The 1000 bootstrap iteration approach was chosen to provide a thorough look 
at the variability of model performance, showing a measure of uncertainty and accounting 
for the lack of a direct error quantification. The distribution of accuracy statistics across 
the different factors were analyzed to determine if their role in the model was significant. 
Due to the extremely high data volume and available processing capabilities, variable 
importance was used to winnow the number of input variables and final classification 
models so they could be applied efficiently to classify large imagery.  

2.6.3 Data Reduction and Variable Importance 

RF are fairly robust to redundant data, there is evidence that reducing data 
dimensionality does not decrease RF performance [66]. Others suggest that data reduction 
is necessary when dealing with high dimensional datasets and resulted in improved 
performance when only important variables are used [67].  Combined with small sample 
sizes of training data, not reducing redundant high dimensional data may result in 
misclassification by exacerbating imbalances in class composition of the training data [68]. 
To reduce the amount of inputs data, variable importance was used to determine the 500 
most important variables, reducing the inputs down to 500 from 1702. Variables were 
selected by calculating an equally weighted combination of their mean decrease in 
accuracy and mean decrease in GINI impurity. GINI impurity (G, Equation 1) is a measure 
of how frequently a random selection from the dataset would be labelled incorrectly if it 
was randomly labelled based upon the distribution of labels in the dataset, where p is the 
probability of a selection i being chosen and nc is the number of classes. The mean decrease 
in GINI score (MDG, Equation 2) can be thought of as the average gain in purity or 
reduction in groups of data by a splitting a decision tree at that variable [69], where NT is 
the number of trees in the forest, and T represents all of the nodes where the selected class 
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is present. The mean decrease in accuracy (MDA, Equation 3) can be thought of as the 
change in out-of-bag error of observations that are incorrectly classified due to excluding 
a variable from the model in question [70], where NT is the total number of trees, t is the 
target node,𝑬𝑬(𝒕𝒕)𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 is the out of bag error with the variable removed and 𝑬𝑬(𝒕𝒕)𝒐𝒐𝒐𝒐𝒐𝒐 is the 
out-of-bag error without the variable removed. 
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These are both important factors to consider when evaluating variable importance and 
were therefore were weighted evenly in frequency calculations. After the 500 most 
important variables were identified for each iteration, they were ranked by the 500 
appearing most frequently across all experimental bootstrap iterations. These 500 
considered important most frequently were selected to be used in an updated model. 

2.6.4 N Trees 

Because the number of trees influences the total number of decisions in the model, 
more trees will typically increase performance up to a threshold, but may result in too rich 
of a model with unnecessary variance [71]. To assess the optimal number of trees to be 
used in the model, random forest models with 100, 500, 1000, and 5000 trees were 
constructed. The performance was assessed by evaluating the mean and variance of the 
overall, user’s, and producer’s accuracy of the classes, maintaining a constant of 100 
bootstrap iterations with each number of trees, all variables, and a simple 50/50% training 
and test data split. A Kruskal-Wallis ranked sum test was used to evaluate difference in 
overall accuracy, and a pairwise Wilcoxon rank sum test was used to assess the differences 
in user’s and producer’s accuracy between the differing number of trees.  

2.6.5 Experiment 1: Sensitivity to Training and Test Data 

With no direct quantification of error when using an RF model, capturing variability in 
the performance can serve as a proxy for the range of accuracies to be expected from use 
of a model with the same conditions and different training and test data. The quality of RF 
models is directly dependent on the quality of training and test data provided to them, and 
when evaluating a RF model, it’s important to maintain separate, independent training and 



13 

  

test data to fairly evaluate the model performance. Using the same dataset to train and test 
will result in inflated accuracy metrics. With a very low number of labelled data to use in 
training and testing, the performance of the classification in this study was expected to be 
even more dependent on the quality of these data. To quantify the variability in 
performance stemming from the reliability of the labels of the train and test datapoints, a 
bootstrapping approach was used. Different treatments were applied to the bootstrapping 
procedures by differing the ratios of training and test data. This enabled an evaluation of 
the individual training and test points influence the accuracy metrics. By decreasing the 
amount of training data, model performance was expected to decrease because the model 
is less prepared to handle the variability of each class. By decreasing the quantity of test 
data, the range of accuracy was expected to increase if some labelled data points are of 
poor quality. To evaluate RF sensitivity to labelled data, the independent test dataset was 
varied from 15 to 55 % of the total data available and the training dataset was varied from 
85 to 45 % of the total data available, and 1000 iterations of RF models were run for every 
test/train data split. One-thousand iterations were chosen to err on the side of caution, 
because it did not show significant variability from the other quantities of iterations. The 
variation in results across different splits were assessed using overall, producers’, and 
users’ accuracies and Kruskal-Wallis and pairwise Wilcoxon rank sum tests of these 
metrics. 

2.6.6 Experiment 2: Flight Direction Effects 

To test the impacts of sun-sensor geometry caused by flight direction, there were four 
model sets built varying only the flight direction of training and test flights. One set of 
models was built by training and testing on only on data collected flying away from the 
solar plane (Away-Away), one was built doing the same toward the solar plane (Toward-
Toward), and two were built by training the classifier using data collected from both flight 
directions, then independently tested only on away from solar plane or toward solar plane 
collected data (Both-Away and Both-Toward). For each model 1000 RF bootstrap 
iterations were evaluated, using 1000 trees and a 65/35% ratio of training to test data based 
on the results of Experiment 1. The resulting accuracies were compared using a Kruskal-
Wallis test and pairwise Wilcoxon rank sum tests to determine significance. 

2.6.7 Experiment 3: Flight Date Effects 

It was hypothesized that image acquisition date would have an impact on the 
performance of the classification because the quantity of non-photosynthetic vegetation 
greatly decreased across the spring season, changing their spectral signatures relative to the 
initial acquisition date. For this reason, it was necessary to determine whether the 
individual snapshots of each date could be better classified using data from that date alone, 
or if a broader, more representative dataset using information from all three unmanned 
aircraft acquisitions would increase performance of the model. It was anticipated that 
multiple acquisition dates may improve classification accuracies as a result of the spectral 
variation of water hyacinth due to phenology [12]. To determine if a single-date-based 
classification performed better or worse than a combined data classification, sets of RF 
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models were constructed by restricting the ground reference data used in training and 
testing by date and then comparing those results to models trained using data from all 
acquisition dates. For example, models trained and tested based on only the April data 
(April-April) were compared to models trained on all three acquisition dates and tested 
only on April data (April-All). This was also done for May and June acquisitions. Once 
again, accuracy metrics of overall accuracy, producer’s accuracy, user’s accuracy and 
Kappa were compared using Kruskal-Wallis and pairwise Wilcoxon rank sum tests.  

2.6.8 Selecting the Map-Making Model 

The results of each experimental treatment were used to inform the final model selected 
for map-making. The experimental results supported using a model built with the 500 most 
important variables, with the combination of 1000 trees, and a 65/35% training/test data 
split, April only acquisition date, and using labelled data from both flight directions for 
training but only testing on labelled data collected during flights in the away from solar 
plane direction. After the selection was narrowed to this set of 1000 model iterations, a 
model with high overall accuracy as well as high producer’s and user’s accuracies for the 
species of concern, water hyacinth and water primrose, was selected to support the goal of 
successfully mapping those two species effectively. 

2.6.9 Map Creation and Comparison 

After the final model was selected, one target class, non-photosynthetic vegetation, had 
to be added to match with the HyMap map provided by UC Davis. Initially, NPV was 
omitted as a class because it was thought that the Nano multi-date acquisitions would be 
able to better identify species that initially presented as senescent. To add the NPV class, 
all plant classes that were senescent were reclassified to NPV using an NDVI threshold. 
NDVI is a metric used to evaluate vegetation health or greenness [72], low values 
correspond to targets such as water or bare soil, while higher values correspond to green 
vegetation. Based upon values of ground reference data, the NDVI range of 0 to 0.3 was 
chosen to represent non-photosynthetic vegetation. The class of ‘other’ was used to 
describe duckweed or pennywort classes present in the HyMap analysis but missing from 
the Nano model. For that reason, ‘other’ was omitted from any location specific 
comparative analysis. After adding these classes, the final model was applied to the Nano 
imagery to generate a map. To improve spatial coherency of final thematic maps, the clump 
classes function in ENVI (Exelis Visual Information Solutions, Boulder, Colorado) with a 
3x3 pixel window was used to smooth the images and eliminate isolated pixels.  

The four map comparisons outlined in Figure 1 were performed between the thematic 
maps derived from the Nano sensor, and the HyMap map provided by CSTARS. One 
comparison simply compared areal coverage, while the three remaining comparison 
methods incorporated a positional component to evaluate whether the same spatial areas 
were shared the same class label. Despite rigorous orthorectification of both the Nano and 
the HyMap imagery, there remained a slight georegistration error that could not be 
evaluated precisely due to lack of ground control points, which are extremely difficult to 
collect in wetland environments. Positional agreement between the maps was estimated to 
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be within 3.0 m based upon positions of static objects within the study region visible on 
both maps. This quantity corresponds with the positional accuracy of the GPS unit and 
IMU onboard the unmanned aircraft, meaning any point from the Nano imagery should fall 
within a 1.5m radius in the HyMap imagery.  

The first comparison was a per-class area comparison across three maps, the Nano map, 
a Nano map resampled to the HyMap spatial resolution using nearest neighbor, and the 
HyMap map. Per-class areas for each map were calculated as the total number of pixels of 
each multiplied by the pixel size of the map. This comparison neglects the positional 
component of the maps but shows the quantity of each class detected. The second 
comparison was a location specific approach, which randomly sampled 100 points from 
each class in the HyMap imagery, then created a square buffer region equivalent in size to 
the HyMap pixel (1.7m) around the centroids of those pixels in the Nano imagery and 
extracted the values. This created a set of subpixels from the Nano image which were then 
compared to the sampled pixel values of the HyMap image by class. The third comparison 
uses a moving-window approach that reclassifies pixels in the Nano map based upon the 
mode of the classes occurring within a 3 x 3 m window (59 x 59 pixels), matching with the 
spatial uncertainty of the unmanned aircraft GPS sensor. The moving window was used to 
reassign each pixel in the imagery to the mode of the classes within. Then, 100 random 
samples of each class were selected from the reclassified Nano map, and the class values 
were extracted and compared with extracted values from the same locations in the HyMap 
map using a confusion matrix with the HyMap map as reference. The fourth comparison 
method resampled the Nano map to the same spatial resolution of the HyMap map using a 
nearest neighbor approach. After resampling, class areal comparisons were made between 
the two maps and 100 randomly sampled locations for each class were extracted from both 
maps and again evaluated for agreement using a confusion matrix with the HyMap map as 
reference.  

For comparisons 2 through 4, the distributions of the 100 samples per class were 
compared using a Pearson’s chi-squared test [73] to evaluate if the distribution of the points 
per class were the same between maps. Cramér’s V statistic (Cramér 1946) and Adjusted 
Rand Index [75] were used to determine the degree of correlation between the two 
distributions. For comparison 1, the total areal distributions per class were compared using 
the same methods. In a chi-squared test, the value of χ2 (Equation 4) is calculated, where 
Oi is the number of observations of type i, and Ei is the expected number of observations 
of type i, the χ2 value can then be compared to that of a χ2 distribution based upon the 
degrees of freedom. Cramér’s V (V, Equation 5) uses the chi-squared statistic to measure 
the association of the two nominal variables, resulting in a value in the range of 0 to 1 
corresponding to the degree of agreement between the two distributions. In equation 5, n 
represents the total number of observations, k represents the number of columns and r 
represents the number of rows. The Adjusted Rand Index (ARI, Equation 6), is a normalized 
count of the correctly classified pairs of elements, where n refers to the a value from the 
contingency table, i refers to the row number, j refers to the column number, a refers to the 
row sum, and b refers to the column sum. 
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3. RESULTS AND DISCUSSION 

3.1 Map-Making Model  

After conducting the three experimental treatments and reducing the quantity of input 
variables to 500, a final model set of 1000 iterations using the criteria of April collected, 
65/35% training/test data split consisting of training data from both flight directions and 
independent test data from only the away-from-solar-plane direction was built. Overall 
accuracy within the 25-75th quantiles ranges from 80 to 86% and Kappa coefficient ranges 
from 76 to 83%. With a median overall accuracy of 82% and a median Kappa statistic of 
0.79, the models performed well and are similar in performance to that of the 2019 HyMap 
classification map, which has an overall accuracy of 85.7 % and a Kappa statistic of 0.83. 
Thus, agreement of the classification scheme with test data can be considered good, falling 
slightly below the performance of HyMap in recent years (Table 4). Median user’s 
accuracy of the models for identifying the species of concern, water hyacinth and water 
primrose were 83.3% and 66.7%, and the median producer’s accuracy of the two species 
were lower at 62.5% and 50%. This suggests that the classification scheme may be missing 
some occurrences of those species in the field, but if it did identify them as present at a 
location, it is more likely that they are indeed present. The lower producer’s accuracy may 
be a result of fewer training and test points for these two classes due to overall class sparsity 
in the study region. 
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Figure 4. Overall, Producer's and User's accuracy ranges for all classes of the best performing 
selection of experimental treatment criteria for RF models. This set of models was constructed from 
the 500 most important variables with data acquired in both flight directions on April 9, 2019 only. 

Of the 1000 RF model iterations, the best performing model was chosen for use in map-
making. It had an overall accuracy of 91.8% and a Kappa of 0.90. For water hyacinth and 
water primrose, it had producer’s accuracies of 87.5% and 100%, and user’s accuracies of 
100% and 50%. The low user’s accuracy for water primrose is partially the result of low 
labelled data quantities. The high accuracies for water hyacinth are encouraging because 
at the time of acquisition what little hyacinth was present in the study area was senescent, 
which often makes it difficult to differentiate from other senescent vegetation. Due to the 
lack of healthy hyacinth to use for reference points, the HyMap classification used water 
hyacinth reference data collected in 2018 to classify water hyacinth in 2019 [24]. This 
likely lead to none of the water hyacinth in the study region being detected as such, only 
as NPV. From a management standpoint it is concerning that the user’s accuracy of water 
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primrose for the selected ‘best’ Nano model was only 50% because that implies that half 
of sites identified would not contain primrose increasing operational time for treatment, 
but the high producer’s accuracy means that if it was present in the area of concern it would 
be labelled properly and would not go untreated. It’s reasonable to attribute the confusion 
of primrose and riparian shrubs to their similarity in appearance because water primrose 
appeared mostly inland in the study area and was not flowering at the time the imagery was 
acquired. 

It is important to note that the selected model for map-making is in the upper quantile 
of the bootstrapped models, meaning it is unlikely that a repeat study would have a similar 
result without bootstrapping random forest iterations; but the goal in selection was to create 
the best map possible to fit the acquired data and the best candidate was selected. The 
selected model performed better than the HyMap model for 2019. One issue with the Nano 
model was the lack of labelled data. Having a larger set of labelled data may have further 
improved performance; however, this is uncertain due to lack of spectral information in the 
SWIR for the Nano sensor. The SWIR has been shown to be a useful predictor for 
classifying vegetation, specifically for discriminating between SAV, and floating or 
emergent vegetation [16], [76]. This is due to water’s high absorption within this range of 
the spectrum, as well as compounds like cellulose and lignin [77].  

Table 4. HyMap and Nano Classification Performance by Year 

Year Sensor 
Classification 

Model 
Overall 

Accuracy 
Kappa 

Coefficient 
2019 Nano RF 153 0.918 0.901 
2019 HyMap UC Davis 0.857 0.830 
2018 HyMap UC Davis 0.908 0.900 
2015 HyMap UC Davis 0.952 0.939 

3.2 Variable Importance and Variable Reduction 

The 30 most important variables from the final model selected for map-making can be 
seen in Figure 5. These highlight the importance and usefulness of the vegetation indices 
calculated for classification. Reflectance at 503 nm (RF_503), and other remote sensing 
products calculated, including the fifth component from the minimum noise fraction 
transform (MNF_5) and mean texture occurrence metrics for bands 50, 52, and 158 
(Mean_50, Mean_52, Mean_158) were important, though did not appear as frequently as 
indices.  
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Figure 5. Variable importance plots from the RF model of the 30 most important variables used in 
map creation. 

Variable importance of additional model sets (1000 bootstraps of the 10 models used 
in experiments) also showed that vegetation indices were considered most important during 
classification. The top subset of variables considered frequently most important to the 
classification can be seen in Figure 5. Other important variables across all model sets 
included mean kernel values from the texture analysis of bands in the NIR, and reflectance 
from the NIR. It is unsurprising that the NIR is important in addition to the vegetation 
indices. The majority of vegetation indices in this list use red and NIR bands using the 
large jump in reflectance that occurs near the red edge of the electromagnetic spectrum 
which enables separation of vegetation from other landcover classes. Wavelengths near the 
red edge correspond to biophysical and chemical properties of plants [78], which also 
enables discriminating between some classes, such as emergent vegetation and floating 
vegetation which typically has higher reflectance values in the NIR region [16]. Image 
segment also showed up as an important variable, which was expected due to its success 
when used for classification of high-resolution imagery of similar environments [79]. MNF 
5, which showed up as the most important variable by far in final model used for map 
creation also appears in most important 500 variables, but does not occur as frequently 
(8042) which indicates that its usefulness in classification may be more dependent on the 
selected training and test data, rather than some of the other variables. 
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Table 5. Frequency of 90th Percentile Variables from the 500 most important. Green denotes a 
vegetation index, red a texture product, yellow a reflectance band, and white an image segment 
number. 

Reducing the overall quantity of variables for the final model had no effect median 
overall accuracy with each model performing at 82.4% though there was a slight increase 
in the variance for the reduced variable model. The minimal change in performance based 
on the number of variables used in the model was statistically significant based upon a 
Kruskal-Wallis test (χ2= 23.609, df = 1, p < 0.01). For water hyacinth, the median 
producer’s accuracy was significantly higher (p < 0.01) for the 500 variable model set at 
75% and the median user’s accuracy was the same (p = 0.08) at 83.3%. For water primrose, 
the median producer’s accuracy was the same between model sets at 50%, but the data had 
significantly different distributions (p < 0.01). The user’s accuracy for water primrose was 
higher (p < 0.01) for the model using all variables at 66.7%.  
  

Variable 

Frequency 
(out of 
10000) Variable 

Frequency 
(out of 
10000) 

Datt4 9997 SR1 9937 
MSAVI 9997 GMI2 9935 
MTVI 9997 Band 166 (768 nm) 9917 
OSAVI 9997 DDn 9902 
RDVI_1 9997 Band 156 (746 nm) 9900 
SAVI 9997 Tex Mean Band 154 (741 nm)  9895 
PARS 9996 Tex Mean Band 161 (757 nm)  9887 
RDVI_2 9996 Green 9881 
SR2 9993 Tex Mean Band 155 (743 nm) 9878 
NDVI 9992 Segment 9877 
SPVI 9990 Band 160 (755 nm) 9875 
TVI 9988 Datt6 9871 
SR 9985 Band 159 (752 nm) 9851 
SR5 9985 Band 171 (779 nm) 9844 
Tex Mean Band 156 (746 nm) 9974 Tex Mean Band 171 (779 nm) 9828 
Datt5 9969 NDVI2 9821 
PSSR 9969 Band 167 (770 nm) 9810 
Band 154 (741 nm) 9969 Band 155 (743 nm) 9807 
SR4 9961 Tex Mean Band 160 (755 nm) 9805 
SR3 9960 mSR2 9802 
PSND 9958 TCARI 9797 
GMI1 9957 Tex Mean Band 210 (867 nm) 9787 
NDVI3 9954 Tex Mean Band 164 (764 nm) 9772 
MCARI 9949 Band 178 (795 nm) 9766 
DWSI4 9945 Tex Mean Band 162 (759 nm) 9741 
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Figure 6. Overall, producer's and user's accuracies for variable reduction with model sets using all of 
the calculated variables (left) and the 500 most important variables only (right). 

These results aligned with our expectations that variable reduction may impact 
accuracies in various ways but should not drastically reduce performance. The reduction 
in variables considered a necessity due to the impossibly high computational overhead 
associated with keeping all 1702 variables, a challenge common in the literature of RF 
classification for remote sensing. Data reduction has long been an objective of imaging 
spectroscopy studies to reduce computational overhead and data redundancy [80], [81] and 
studies have also shown that data reduction often considered necessary has improved 
model performance if only the most important variables are used [82]. RF is relatively 
robust to redundant input variables [66], though not necessarily correlated predictor 
variables, which may result in inflated accuracy results[67]. While RF is robust to 
redundant data, and computational burdens are lessened by the rapid advances and access 
to HPC computing across the remote sensing community, data volumes continue to grow, 
especially for extremely high spatial resolution, high spectral resolution unmanned aircraft-
applications. Thus, eliminating redundant and unimportant variables was helpful. In this 
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study, the high quantity of spectral data associated with imaging spectroscopy appears 
useful, especially in the NIR, with several bands in the 740-770 nm region being identified 
as important. Conversely this could be a result of the variables being correlated which 
would inflate accuracy metrics. Common unmanned aircraft mountable multispectral 
sensors have a single NIR band located above 800nm which would miss much of this key 
information. Although this is the case, it is also important to consider the effect that the 
abundance of noise in the NIR region of the Nano spectra likely had. Noise increased upon 
proximity to the largest detectable wavelength (1000 nm), potentially reducing usefulness 
of data in this region, which would have in-turn reduced its importance in the model. 

3.3 Experiment 1: Sensitivity to Training and Test Data 

Varying the percentages of total data used for training and testing affected the 
performance of the model and served as an important predictor of model accuracy (Figure 
7). This was expected as varying quantities of training data used has been shown to effect 
performance [83]. In this case, increasing training data quantity increased accuracies. A 
Kruskal-Wallis test confirmed that at least one of the overall accuracies was significantly 
different (χ2= 155.72, df = 4, p < 0.01). Further examination using a pairwise Wilcoxon 
test showed that all models had statistically significant distributions of overall accuracy 
and kappa except for the 19% and 26% test pair (Table 6). Improvements in accuracy have 
been shown to occur as training data quantities are increased [83], and the same occurred 
here. It’s likely this is because less training data means a less representative sample on 
which the model bases votes. The range of these results for each model set also highlights 
the dependency of model performance on training data selection, and how mislabeled data 
can affect modelling results. There are probably some mislabeled/non-representative 
labelled data used here as a result of due to slight geographic misalignment of the imagery 
or the photointerpretation used to label some reference sites, and those effects can be seen 
here. 
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Figure 7. Overall, producer's and user's accuracies for model sets for experiment 1: examining 
variation in testing and training data percentages. 
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Table 6. Experiment 1 Wilcoxon Rank-Sum Test Statistics 

Wilcoxon Rank Sum Test p-values 
Overall Accuracy 

  19% Test 26% Test 35% Test 45% Test 
26% Test 0.15 NA NA NA 
35% Test < 0.001 0.004 NA NA 
45% Test < 0.001 < 0.001 < 0.001 NA 
55% Test < 0.001 < 0.001 < 0.001 < 0.001 

Water Hyacinth Producer's Accuracy  
  19% Test 26% Test 35% Test 45% Test 

26% Test 0.075 NA NA NA 
35% Test 0.015 0.540 NA NA 
45% Test < 0.001 < 0.001 0.001 NA 
55% Test < 0.001 < 0.001 < 0.001 0.005 

Water Hyacinth User's Accuracy 
  19% Test 26% Test 35% Test 45% Test 

26% Test 0.011 NA NA NA 
35% Test 0.011 0.996 NA NA 
45% Test < 0.001 0.004 0.004 NA 
55% Test < 0.001 < 0.001 < 0.001 0.034 

Water Primrose Producer's Accuracy 
  19% Test 26% Test 35% Test 45% Test 

26% Test 0.020 NA NA NA 
35% Test 0.012 0.040 NA NA 
45% Test < 0.001 0.078 < 0.001 NA 
55% Test < 0.001 0.072 < 0.001 0.957 

Water Primrose User's Accuracy 
  19% Test 26% Test 35% Test 45% Test 

26% Test 0.854 NA NA NA 
35% Test 0.440 0.440 NA NA 
45% Test 0.497 0.464 0.854 NA 
55% Test 0.280 0.280 0.584 0.440 

 

Median producer’s and user’s accuracies of water hyacinth varied from 40 - 60% and 
71.7- 86.6% based upon the training and test data split (Figure 7). For each class specific 
accuracy and training/test split, a pairwise Wilcoxon test was conducted showing that all 
pairs of user’s and producer’s accuracies were significantly different at the established p-
value of 0.05, except for the 35% and 26% test splits (Table 6). For water primrose, 
producer’s and user’s median accuracies for this experiment varied from 60 – 75% and 
71.4 to 80%. Producer’s accuracies for primrose were significantly different except 45% 
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and 55% test, 26% and 55% test, and 26 and 45% (Table 6). Pairwise comparison of user’s 
accuracies for primrose are quite different, with no significant differences in distributions 
between the splits (Table 6). This is likely a result of the low quantity of reference data for 
water primrose. When restricted to a single direction and date, there were less than 10 
labelled data points for this class, much fewer than any other class. This very low quantity 
would greatly limit the combinations of training and test data possible and widen the 
variability of accuracies based upon the quality of points which were selected during 
training. This small quantity is representative of the ratio of primrose present in the scene, 
which in hindsight should have been increased using a similar procedure to water hyacinth. 
Although imbalances in training data relative to presence in a scene do reduce classification 
accuracy, it has been shown that increasing quantities of sparse classes, such as primrose 
here, does not adversely affect classification accuracies [44]. For mapping purposes, the 
65% training and 35% test data quantities were chosen as a middle-of-the-road path 
because these quantities increased model performance without broadening the range of 
accuracy too severely. The 74% training 26% test split was also considered because of the 
insignificant differences between the class specific accuracies of the two species of 
concern, but this was decided against because of the increase in variance resulting from the 
decreased test data quantities. 

3.4 Experiment 2: Sensitivity to Flight Direction 

Flight direction of training and test data had a significant impact on model overall 
accuracy based upon a Kruskal-Wallis (χ2 = 917.85, df =3, p < 0.01), showing significant 
difference in overall accuracy distributions of the experimental treatments. Further 
examination using a pairwise Wilcoxon test shows that the overall accuracy of the model 
trained on both flight directions but applied to away-from-solar-plane data (Both-Away) 
performed best by a significant margin (Table 7). Other pairs also showed significantly 
different distributions except for models Away-Away and Both-Toward (Table 7). It was 
expected that there may be a difference in reflectance due to flight direction because of the 
bidirectional reflectance distribution function (BRDF). BRDF is a function resulting from 
the solar incidence angle, instrument viewing geometry, physical properties of the target, 
and shadow effects [38]. Studies have shown that these variances in reflectance will 
propagate through to the product maps [84]. Though some variation was expected, flying 
toward or away from the solar plane was expected to minimize cross-track effects [85], it 
was unclear exactly how performance would vary between those directions. Perhaps the 
use of class reflectances collected in both flight directions better represented the interclass 
variability due to BRDF effects, which led to a better performing model. BRDF correction 
has been considered extremely important for unmanned aircraft collected data because 
variation in reflectances due to geometry and illumination are more prevalent in unmanned 
aircraft imagery due to the fine spatial scale [86]. Some suspected causes of these resulting 
differences in model accuracy are wind direction, the slight misalignment of the sensor 
from the nadir angle, and platform instability. Although other environmental factors cannot 
be dismissed, flight design was supposed to marginalize cross-track illumination due to 
solar position relative to the sensor because flight lines were collected toward and away 
from the solar plane only. By looking at solar positions from Table 3, it is likely that the 
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sun moved enough during the flight to have an impact on reflectances as well. One potential 
reason that the model trained on both directions performed better could be that the 
additional variation in reflectance is mostly based upon physical properties and shadow on 
the ground, providing a better sample of the potential spectra of each class. 

 

Figure 8. Overall, producer's and user's accuracies for experiment 2: varying flight direction. 
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Table 7. Experiment 2 Wilcoxon Rank-Sum Test Statistics 

Wilcoxon Rank Sum Test p-values 
Overall Accuracy 

  Away-Away Both-Away Both-Toward 
Both-Away < 0.001 NA NA 
Both-Toward 0.573 < 0.001 NA 
Toward-Toward < 0.001 < 0.001 < 0.001 

Water Hyacinth Producer's Accuracy  
  Away-Away Both-Away Both-Toward 

Both-Away < 0.001 NA NA 
Both-Toward < 0.001 < 0.001 NA 
Toward-Toward < 0.001 < 0.001 0.742 

Water Hyacinth User's Accuracy 
  Away-Away Both-Away Both-Toward 

Both-Away < 0.001 NA NA 
Both-Toward < 0.001 < 0.001 NA 
Toward-Toward 0.198 < 0.001 < 0.001 

Water Primrose Producer's Accuracy 
  Away-Away Both-Away Both-Toward 

Both-Away < 0.001 NA NA 
Both-Toward < 0.001 < 0.001 NA 
Toward-Toward < 0.001 < 0.001 0.237 

Water Primrose User's Accuracy 
  Away-Away Both-Away Both-Toward 

Both-Away 0.057 NA NA 
Both-Toward < 0.001 < 0.001 NA 
Toward-Toward < 0.001 < 0.001 0.634 

Flight direction also affected class specific accuracies. Water hyacinth producer’s and 
user’s accuracies ranged from 40 – 58.3% and 77.7 – 85.7% (Figure 8). Wilcoxon rank 
sum tests of producer’s accuracies showed significant difference between all model sets 
for water hyacinth except Both-Toward and Toward-Toward (Table 7). Wilcoxon tests 
showed significant differences between all pairs of user’s accuracies for water hyacinth 
except Toward-Toward and Away-Away. For water primrose, producer’s and user’s 
accuracies ranged from 66.7 – 80% and 75 – 100%. Producer’s accuracy for water primrose 
was significantly different between all model set pairs except Both-Toward and Toward-
Toward (Table 7). User’s accuracy for primrose were significantly different for all pairs 
except Both-Toward and Toward-Toward, and Both-Away and Away-Away (Table 7). 
Considering these metrics, the Both-Toward model set performed best for classifying water 
hyacinth and the Both-Away models performed best for classifying water primrose. A 
potential explanation for this could be the differences appearances between the two species.  
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There was a large difference in producer’s and user’s accuracies for the water and SAV 
classes, which had their highest accuracies and less variability between the first and fourth 
quantiles with the Both-Away model set (Figure 8). Median producer’s and user’s 
accuracies for water in this model set were 89.5% and 94.4 %, and producer’s and user’s 
accuracies for SAV were 75% and 80%. Pairwise tests confirmed significantly different 
distributions for the Both-Away model sets for these two classes, except for the producer’s 
accuracy of SAV, which was not significantly different from the Away-Away model set 
(Table 7). The improved performance specific to these classes as well as overall when 
training data was from the away direction could be because there was much more specular 
reflectance of water present in the toward solar plane imagery. Based upon the overall 
improved performance from the Both-Away model, in addition to its higher performance 
for the water primrose class it was decided that the map-making model would be trained 
using both flight directions and applied to imagery collected in the away from solar plane 
direction. 

3.5 Experiment 3: Sensitivity to Acquisition Date 

Acquisition date had an impact on overall accuracy(Figure 9), with a Kruskal-Wallis 
test showing at least one model having significantly different performance (χ2 = 580.78, df 
=5, p < 0.01). Pairwise comparison revealed that all experimental treatments were 
significantly different from one another except May-All and May-May (Table 8), with 
April-April having the highest median accuracy at 83.4%. Producer’s accuracies for water 
hyacinth ranged from 25 – 75% with May-May and June-June performing the best with 
non-significant differences in distributions (Table 8). User’s accuracies for water hyacinth 
ranged from 66 - 100% with May-All performing best, but not being significantly different 
from April-All or April-April (Table 9).  
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Figure 9. Overall, producer's and user's Accuracies for experiment 3: using multiple vs. single dates 
as training and test data. 
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Table 8. Experiment 3 Wilcoxon Rank-Sum Test Statistics 

Wilcoxon Rank Sum Test p-values 
Overall Accuracy 

  April-All April-April June-All June-June May-All 
April-April < 0.001 NA NA NA NA 
June-All < 0.001 < 0.001 NA NA NA 
June-June < 0.001 < 0.001 0.663 NA NA 
May-All < 0.001 < 0.001 < 0.001 < 0.001 NA 
May-May 0.013 < 0.001 < 0.001 < 0.001 0.190 

Water Hyacinth Producer's Accuracy  
  April-All April-April June-All June-June May-All 

April-April < 0.001 NA NA NA NA 
June-All < 0.001 0.514 NA NA NA 
June-June < 0.001 < 0.001 < 0.001 NA NA 
May-All < 0.001 < 0.001 < 0.001 < 0.001 NA 
May-May < 0.001 < 0.001 < 0.001 0.439 < 0.001 

Water Hyacinth User's Accuracy 
  April-All April-April June-All June-June May-All 

April-April 0.650 NA NA NA NA 
June-All < 0.001 < 0.001 NA NA NA 
June-June < 0.001 < 0.001 < 0.001 NA NA 
May-All 0.789 0.931 < 0.001 < 0.001 NA 
May-May < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Water Primrose Producer's Accuracy 
  April-All April-April June-All June-June May-All 

April-April < 0.001 NA NA NA NA 
June-All < 0.001 < 0.001 NA NA NA 
June-June < 0.001 < 0.001 0.049 NA NA 
May-All < 0.001 < 0.001 < 0.001 < 0.001 NA 
May-May < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

Water Primrose User's Accuracy 
  April-All April-April June-All June-June May-All 

April-April < 0.001 NA NA NA NA 
June-All < 0.001 < 0.001 NA NA NA 
June-June < 0.001 < 0.001 < 0.001 NA NA 
May-All < 0.001 < 0.001 < 0.001 < 0.001 NA 
May-May < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

During ground data reference collection, visible changes in species were observed 
between April and June, increasing the variability of labelled data for those classes. Water 
hyacinth initially appeared in April as senescent and greened up during the April to June 
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period, the typical growing season for water hyacinth [87], while a large portion of riparian 
shrubs along the shore senesced as the spring season passed. These and other phenological 
changes may have led to this trend in accuracies with individual acquisition trained and 
tested models performing better.  

For water primrose, the median producer’s accuracies ranged from 50 – 100%, with 
June-All, June-June, and May-May performing best at 100% accuracy. Pairwise tests 
showed a significant difference between all of these, but it is likely an artifact of very small 
number of labelled data for the primrose class for testing because there was no variance in 
the results across the 1000 bootstraps of the selected data for these model sets for this class. 
User’s accuracies for water primrose from 33 – 100%, with May-All and June-June 
performing best at 100%. These producer’s and user’s accuracies for water primrose can 
likely be attributed to the low quantities of labelled primrose data. 

While previous studies have exploited differences in phenology across multi-date 
imagery to improve species discrimination [88]–[90], and Hestir et al. [12] and Khanna et 
al. [30] suggest the case could be true for the target species in the Delta, it was not effective 
for improving species discrimination for this study; likely because of the experimental 
setup and low quantities of labelled data. We considered using the geographic duplicates 
from the second flight direction but did not want to inflate accuracy statistics. Other studies 
have shown similar challenges when using small training sets to discriminate highly 
variable classes with spectral overlap. For example, Millard and Richardson [67] found 
that increasing quantity of reference points for training and testing increased independent 
accuracy of models, but that spatial autocorrelation should be minimized because it was 
found to cause an increase in error during independent accuracy assessments. 

The April-trained, April-tested model was selected for use because the imagery was 
collected concurrently with the HyMap. In addition, the model’s improved overall accuracy 
from the other acquisition dates coupled with the inconclusiveness of the primrose class 
accuracy statistics supported omission of the imagery from other dates. Although none of 
the ground reference locations had different species when visited in May and June, there 
were visible changes to the study area, which were thought to potentially impact 
classification. With the visible changes associated with the study site and the limited single 
acquisition date of April for HyMap, this choice seemed further justified because the 
labelled data needed to match up as best as possible between the two imagery sets. 
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3.6 Map Comparison 

 

  
(a) (b) 

Figure 10. Classification Maps of the study region. (a) Nano classification and (b) HyMap 
classification 

3.6.1 Comparison 1: Total Class Area 

Total class area comparisons between the Nano and HyMap maps highlight the 
usefulness of the Nano for detecting smaller patches of classes. The Nano map showed 
1589 m2, of water hyacinth, while the HyMap map had no occurrences (Table 8), 
illustrating the differences due to spatial mapping scale. Ground reference data collection 
confirmed water hyacinth presence in the region and the amount is significant considering 
its rapid growth rate [34]. The majority of water hyacinth in the Delta was senescent during 
April, leading to a low quantity of labelled data for the class. During the HyMap 
classification process, imagery from prior years was used to compensate for the lack of 
labelled data [24]. The earlier acquisition date may have also affected mapping 
performance of other classes due to different phenological stages of plant species, 
potentially a cause for the decrease in overall HyMap accuracy from 2018 to 2019 (Table 
4).  
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Table 9. Map Comparison 1: Class area coverage for the Nano and nearest neighbor 
resampled Nano maps and percent difference for each from HyMap (reference). 

Class 
HyMap 

Area (m2) 
Nano 

Area (m2) 

Nano 
Resampled 
Area (m2) NanoDifference 

Nano 
ResampledDifference 

Unclassified 128570.32 126528.80 126899.9 -1.59% -1.30% 
Bare ground 858.33 930.35 956.59 8.39% 11.45% 
EMR 19097.12 12077.12 14686.98 -36.76% -23.09% 
Water Hyacinth 0 1589.43 124.27 NA NA 
Water Primrose 349.69 1616.53 317.9 362.28% -9.09% 
Riparian Shrub 7262.57 2217.58 916.13 -69.47% -87.39% 
Riparian Tree 7690.29 10365.43 10539.83 34.79% 37.05% 
SAV 6988.02 9022.95 8594.86 29.12% 22.99% 
Water 41269.20 44822.89 42422.31 8.61% 2.79% 
Other 679.15 0 0 NA NA 
NPV 13577.22 16989.30 20883.14 25.13% 53.81% 

Typically, direct area comparisons are not helpful when assessing classification 
performance because errors of omission and commission can cancel each other out, in 
which case having good area matchups between classes may have little meaning [91]. 
However, in this situation the area comparison highlighted usefulness of the Nano’s higher 
spatial resolution via the detection of water hyacinth and the differences in areal coverage 
of classes gives insight into potentially improved detection capabilities. Comparing these 
to the nearest neighbor resampled class areas shows how the total areas of more sparse 
classes, such as water primrose, were drastically lower after the resampling process. If the 
same loss of detail is occurring in the HyMap map, some invasive species may be missed, 
allowing them to spread. The Nano classification found significantly higher quantities of 
water primrose (360% more) than the HyMap classification, with an area of 1617 m2 while 
the resampled Nano map showed only 318 m2. 

Additional comparison of class area coverage showed that the classes with the best 
matchup between the Nano and the HyMap are water, with an 8.61% difference and bare 
ground, with an 8.39% difference within the study region. These classes are may be in high 
agreement because they are spectrally unique in the region, offering little to be confused 
with in the image area. The unclassified areas can be ignored because they consist mostly 
of masked areas which exclude all values from the HyMap except those contained within 
the Nano flight area, the only exception being a few pixels in each image where shadowing 
was very heavy. NPV and SAV show the next best match between class areas with 
difference in total area coverage are SAV and bare ground with 25.13 % and 29.12 % 
differences respectively. All other classes differed by 30% or more in total area coverage. 
As mentioned earlier, a potential cause of these discrepancies could be the difference in 
spatial scales. Reducing contents of a large (1.7m pixel) to a single class, is unrealistic for 
heterogenous regions such as wetlands. The Nano image would contain more than 1100 
pixels in that same area (0.052 m pixel), capable of classification on a much smaller spatial 
scale. Many of the smaller patches of vegetation would be obscured by the dominant class 
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present in the larger pixel. The dominance of other classes within the study region can be 
seen by the reduction in area of the water hyacinth when the HyMap is compared to the 
Nano. Additionally, when a nearest neighbor resampling was done of the Nano data there 
was also a large reduction in sparse classes. Though nearest neighbor is not a majority 
resampling technique where this is expected [92], it occurs as a consequence of the very 
low quantities of these classes in the region. It is less likely that one of these classes will 
be at the location where the nearest neighbor pixel is sampled for upscaling. This is also 
supported by knowledge of the study area from field observations while conducting ground 
reference sampling. Both water hyacinth and primrose in the study area consisted of small 
patches mixed in with other classes. Another explanation for mismatch between the area 
coverage is a potential mismatch in class definitions. For example, riparian shrubs and 
trees, have a high level of disagreement (30%+), even with the resampled Nano areas but 
they share a similar overall area when combined, 12583.01 m2 and 14952.86 m2 only an 
approximately 12% difference. Whether these differences in areas are a consequence of 
class definitions or simply confusion between classes of similar appearance should become 
apparent during the site-specific comparison.  

3.6.2 Comparison 2: HyMap Pixel to Nano Subpixels by Class 

The two maps have a lower agreement for more sparse classes, with water hyacinth at 
0% and water primrose at 6.9% (Table 9). More homogenous classes like water, NPV and 
SAV had higher agreements. The Nano map captured more of the complexity of the study 
area, showing a larger presence of less dominant classes based on the area comparison. 
This adds a spatial component revealing that either the Nano is successfully mapping at a 
finer scale, or that there is noise present in the Nano resulting in misclassification. A 
surprising result was the 48.9% agreement for bare ground because it was expected to be 
mixed within some of the other classes. This was the only class where agreement here did 
not trend inversely with the difference percentages calculated in the first comparison. One 
explanation for this could be the large homogenous area of road that accounts for much of 
the bare ground within the study site.  
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Table 10. Map Comparison 2: Percent 
Agreement of Nano polygons with 
HyMap Pixels by class. 

Class  Percent Agreement 
Bare ground 0.489 
EMR 0.323 
Water Hyacinth 0 
Water Primrose 0.069 
Riparian Shrub 0.103 
Riparian Tree 0.637 
SAV 0.702 
Water 0.924 
Other NA 
NPV 0.706 

3.6.3 Comparison 3: Moving window mode adjusted Nano 

The moving window adjusted Nano map samples showed a showing a 44.7% overall 
accuracy (agreement) when the HyMap classification was used as reference. Table 8 shows 
the producer’s and user’s accuracies calculated with the HyMap map as reference. 
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Table 11. Map Comparison 3 and 4: User's and Producer's 
Accuracies (agreement) for each class using HyMap as a 
reference. 

Map Species Nano-MW Nano-Resampled 

User's 
Accuracy 

(Commission)  

Unclassified 87.4% 100.0% 
Bare ground 40.2% 28.2% 
EMR 38.6% 62.0% 
Water Hyacinth NA 0.0% 
Water Primrose NA 0.0% 
Riparian Shrub 6.0% 29.8% 
Riparian Tree 39.5% 45.7% 
SAV 58.1% 35.0% 
Water 55.2% 88.5% 
Other NA NA 
NPV 48.8% 52.5% 

Producer's 
Accuracy 

(Omission) 

Unclassified 98.0% 98.7% 
Bare ground 37.0% 36.0% 
EMR 39.0% 41.0% 
Water Hyacinth NA NA 
Water Primrose 0.0% 0.0% 
Riparian Shrub 5.0% 3.9% 
Riparian Tree 77.0% 73.1% 
SAV 54.0% 49.2% 
Water 90.0% 88.4% 
Other 0.0% 0.0% 
NPV 78.0% 81.4% 

This table shows poor producer’s accuracies (<40%) for some classes, such as bare 
ground, EMR, riparian shrub, and water primrose. A possibility for the low agreement for 
bare ground is spatial scale. Bare ground appears in several individual or small groups of 
pixels in the imagery due to canopy cover. This is probably also true for primrose, of which 
no Nano pixels sampled in the manner were. EMR seems to be getting confused with NPV 
frequently, which is not a surprise due to the similarity in appearance and the near senescent 
state of those species in April. Riparian shrubs also have a very low producer’s accuracy 
at 5%, which is surprising, but probably due to the idea of mismatched class definitions 
with riparian trees, which were confused with shrubs several times, but only in one 
direction. Riparian trees were not confused with shrubs at a high rate when trees were the 
reference in the HyMap data. The classes of NPV, Water, and riparian trees all showed 
high producer’s accuracies (>70%), while SAV showed a 51% producer’s accuracy 
between the maps. This could easily be due to the variability in specular reflectance or 
surface appearance of water, or the patchiness of SAV only detectable at higher spatial 
resolutions. The differences in distribution between the sampled points in moving window 
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Nano map and the HyMap map were significant based upon a χ2 test (χ2 =2217.4, df = 49, 
p < 0.01) but did appear to be moderately correlated with each other based on Cramér’s V 
(V = 0.630). This comparison omitted the water hyacinth and water primrose classes 
because they were absent from the sampled data from one of the maps, making the mapped 
locations of those classes significantly different. Having zero observed points also caused 
expected values in the χ2 test denominator to be zero, prohibiting its use with those classes 
included. Two concerning issue with χ2 were the extremely high value, and some expected 
frequencies being very low, which would support use of an exact test instead [93]. The 
adjusted Rand index calculation was conducted including all classes (ARI = 0.343), 
showing some similarity between maps.  

3.6.4 Comparison 4: Nearest Neighbor Resampled Nano 

A comparison of the nearest neighbor resampled Nano map to the spatial resolution of 
the HyMap map resulted in moderate to high agreement between maps. Using HyMap as 
a reference, the overall percent agreement between maps was 85%. It is not surprising that 
this has a higher level of agreement for than the moving window pixel to pixel comparison 
for two reasons. The moving window pixel to pixel comparison functions as a majority 
aggregation, picking the center pixel out of a region of over 1000 pixels (Nano-Hyperspec) 
and reassigning it based on the mode. This altered the Nano map significantly, increasing 
the quantity of dominant classes like water, and decreasing the quantities of sparse classes 
like primrose as. This was expected from a majority aggregation [92], but reduced primrose 
to so few occurrences that none remaining were in agreement with the HyMap map. The 
nearest neighbor method proved to be a less biased resampling, leaving more occurrences 
of primrose, and a higher level of agreement with the HyMap. Table 7 shows the similarity 
in producer’s accuracy between the comparisons, which suggests either consistency of the 
Nano classification relative to the HyMap, or the correlation between the Nano’s central 
pixel relative to each HyMap pixel and the nearest neighbor resampling method. The 
difference in user’s accuracy can be attributed to general misidentification of classes in the 
model intensified by the nearest neighbor resampling process. 

There was a significant difference in class distribution between the sampled points from 
each map (χ2 =2140.1, df = 49, p < 0.01) and a moderately strong correlation between the 
two distributions (V= 0.618). Similar to comparison 3, the classes of water hyacinth and 
primrose were omitted from these statistical comparisons for the same reasons. Likewise, 
the very high χ2 values cast doubt on the usefulness of these statistical metrics in this 
scenario. Adjusted Rand index (ARI = 0.344) shows some correlation between the 
distributions of sample points between classes.  

The statistical tools here show that the maps are statistically different but somewhat 
correlated; however, based upon area comparisons and visual inspection of the maps, it’s 
clear that classes generally occur in similar quantities and within the same spatial location 
in both maps, even if there is a slight geolocational mismatch. It seems unusual that they 
are so different statistically considering the models used for creating both had similar 
performance. From this one can surmise that the differences can likely be attributed to the 
comparative process. Two potential factors causing the statistical results could be that: 1) 
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The consequences of the extremely different minimum mapping units, such as spectral 
mixing or effects from resampling, and 2) geographic misalignment between the maps. 

3.6.5 Qualitative Assessment 

Additional qualitative assessment of the maps suggest that the Nano has the capability 
to detect smaller patches of species as expected, which is important to locating invasive 
plants for treatment. This is further supported from in-field experience in the study site and 
visual assessment of species and quantities present in the area. For example, water hyacinth 
patches mapped in the Nano imagery were small and mixed in with emergent and non-
photosynthetic vegetation. Another example is a small tule colony visible only to the Nano 
can be found in Figure 9. Not only is the tule colony visible, but a small region of SAV is 
visible along the side, which was typical of the individual tule colonies seen in the field. 
This highlights the ability of the higher resolution unmanned aircraft technology to obtain 
this more detailed information, which may be helpful for management of invasive species 
in the region. 

 

 

Figure 11. Close-up of a tule colony showing the improved spatial detail of the Nano classification 
(right) versus the HyMap classification (left). 
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4. MANAGEMENT RELEVANCE AND OPERATIONAL 
CONSIDERATIONS 

The higher spatial resolution unmanned aircraft-based sensors were capable of 
detecting  water hyacinth where the lower spatial resolution manned flight could not, which 
is beneficial for management. This capability to detect smaller patches allows for early 
detection and herbicide applications; however, the small footprint of unmanned aircraft 
operations would make this process difficult to implement broadly. Specific, targeted 
deployment at problem areas identified from the previous growing season is likely the best 
implementation of this process. In addition to increased detail possible with the unmanned 
aircraft, flexibility of deployment could be a benefit. The 2019 HyMap flight over the Delta 
was conducted in early April, slightly too soon to catch the greening of water hyacinth at a 
large scale. This is evidenced by the lack of training data reported by CSTARS and their 
use of data from previous years to map water hyacinth during 2019, likely resulting in their 
lower accuracies for that year (Table 4). Maps built using the unmanned aircraft imagery 
had a similar accuracy range to that of those created with HyMap during more successful 
years, but also provided a much higher spatial resolution. As mentioned, the primary 
disadvantage of using unmanned aircraft would be the cost and logistics of putting large 
scale unmanned aircraft mapping into practice.  

Table 12. Nano and HyMap Operational Information and Cost Estimates 

Sensor 

Area 
Covered 

(hectares) 

Time 
Estimate 

(hrs) 

Approximate 
Data Volume 

(GB) 

Approximate 
Deployment 

Costs 
HyMap 74123.42 5 700 $150,000* 
Nano - This Study 10.53 1 600 $62,780 
Nano - Entire Delta 74123.42 7040 2111880 $865,014 
*Estimate, pers. Comm, Shruti Khanna (2020) 

The small spatial footprint relative to the HyMap would require thousands of flights, 
even with multiple units to cover the entire Delta region covered by HyMap. Table 9 shows 
data associated with the conducted HyMap and Nano flights, and estimates of time, data 
volume, and deployment costs to fly the entire Delta with the Nano. For this estimate, the 
high overlap used in this study to acquire imagery from two directions was abandoned, 
effectively halving the time estimates, data volume, and associated deployment costs. Even 
with this reduction, using the Nano to cover the entire Delta would likely be cost 
prohibitive. Time estimates include 4 hours of collection time per day corresponding to 
solar windows, plus launch preparation time, downloading data, and travel amounting to 
roughly the other 4 working hours per day. Approximate data volume estimates for HyMap 
only consist of orthorectified reflectance data, where Nano data volume includes raw image 
cubes, orthorectified reflectance data, and the intermediate steps. Approximate deployment 
cost includes initial purchase cost for the Headwall Nano-Hyperspec turnkey package, 
assumes a team of 3 members, pilot, designated observer, and calibration technician to 
operate a portable field spectrometer working 8 hour days at $20 per hour, a rental vehicle 
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for $60/day, a 60% overhead to cover additional travel expenses such as hotel rooms, and 
data storage priced at $0.02 per GB. With this design, a survey of the entire Delta would 
take more than a year to complete with one team, negating much of the advantages of using 
unmanned aircraft. Multiple teams with multiple units may be able to complete a survey of 
the entire Delta in a shorter time frame but would have additional costs associated with 
personnel operating on multiple teams and capital expenditures on multiple pieces of 
equipment. An additional concern for large-scale usage of the unmanned aircraft for 
mapping would be data volume. To cover the entire data following the protocols outlined 
here, roughly 2100 TB of storage space at an estimated cost of $42,238 would be necessary 
to collect and convert the data to a orthorectified reflectance product, not including the 
storage necessary to create remote sensing products or construct a map. One potential way 
to reduce data volume could be by using a multispectral camera, but a different 
methodology that did not utilize narrow band indices would be required. The small 
geographic footprint associated with the high spatial and spectral resolution capabilities of 
unmanned aircraft imaging spectrometers make them difficult to implement as a detection 
method over such a large area. For this reason, if unmanned aircraft mounted imaging 
spectrometers were to be utilized in invasive species management applications, targeted 
flights in a low quantity of locations of high concern would be recommended.  

5. CONCLUSIONS 

This study outlines a procedure for determining an optimal model and mapping 
invasive plants in a wetland ecosystem using a Headwall Nano-Hyperspec, and shows the 
higher spatial resolution provided by the Nano can improve detection of small patches of 
invasives relative to an operational government funded program. Additionally, we show 
that a similar methodology using a RF classification with data acquired from an unmanned 
aircraft mounted Nano-Hyperspec can result in similar accuracies to that of the same 
operational procedure that is conducted annually. This improved fine scale detection does 
come at a cost, the operational footprint. The small footprint makes coverage of the entire 
Delta with unmanned aircraft highly impractical if not impossible, restricting unmanned 
aircraft applications to specific areas of concern with the specified procedure.  

There were several challenges to overcome, including the inability to resolve the spatial 
misalignment between Nano and HyMap imagery, which made location specific 
comparisons difficult. Though great considerations were taken in attempts to eliminate 
these issues up front, such as use of high precision GPS equipment and several attempts at 
orthorectification of the unmanned aircraft data, they seem inevitable working at a scale of 
5cm pixels. Another challenge was data volume. The project require 8.6 TB of data storage 
due to the several remote sensing products used in the project, amounting to the 1702 
variables originally used in the model, which proved to be too large for efficient processing, 
which was resolved by reducing the quantity of variables to only those of high importance. 

In the future, this study may be used as a template for invasive species mapping using 
a Nano-Hyperspec. The capability to detect small patches as shown here is highly useful 
for weed management applications, as well as mapping that requires fine resolution. 
Improvement of the orthorectification procedure for the Nano through automation, would 
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greatly simplify this mapping process and make utilizing the Nano for mapping more 
practical. Though there are still hurdles to overcome, technological advances will make 
this application more practical in the near future.  
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APPENDIX 

A. Table of Vegetation Indices 

Abbreviation Name Relevance 

Boochs Boochs/SB703 
Chlorophyll/Red 
Edge 

Boochs2 Boochs2/SB720 
Chlorophyll/Red 
Edge 

CARI Chlorophyll Absorption Ratio Index 
Chlorophyll/Red 
Edge 

Carter Carter 
Chlorophyll/Red 
Edge 

Carter2 Carter2 
Chlorophyll/Red 
Edge 

Carter3 Carter3 
Chlorophyll/Red 
Edge 

Carter4 Carter4 
Chlorophyll/Red 
Edge 

Carter5 Carter5 
Chlorophyll/Red 
Edge 

Carter6 Carter6 
Chlorophyll/Red 
Edge 

CI Coloration Index Other 
CI2 Coloration Index 2 Other 
CRI1 Carotenoid Reflectance Index 1 Other 
CRI2 Carotenoid Reflectance Index 2 Other 
CRI3 Carotenoid Reflectance Index 3 Other 
CRI4 Carotenoid Reflectance Index 4 Other 

D1 Derivative Index 1 
Chlorophyll/Red 
Edge 

D2 Derivative Index 2 
Chlorophyll/Red 
Edge 

Datt Datt 
Chlorophyll/Red 
Edge 

Datt2 Datt2 
Chlorophyll/Red 
Edge 

Datt3 Datt3 
Chlorophyll/Red 
Edge 

Datt4 Datt4 
Chlorophyll/Red 
Edge 

Datt5 Datt5 
Chlorophyll/Red 
Edge 

Datt6 Datt6 
Chlorophyll/Red 
Edge 

DD Double Difference Index 
Chlorophyll/Red 
Edge 

DDn New Double Difference Index 
Chlorophyll/Red 
Edge 
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DPI Double Peak Index 
Chlorophyll/Red 
Edge 

DWSI4 Disease Water Stress Index 4 Other 

EVI Enhanved Vegetation Index 
Chlorophyll/Red 
Edge 

GI Greenness Index 
Chlorophyll/Red 
Edge 

Gitelson Gitelson 
Chlorophyll/Red 
Edge 

Gitelson2 Gitelson2 
Chlorophyll/Red 
Edge 

GMI1 Gitelson and Merzlyak Index 1 
Chlorophyll/Red 
Edge 

GMI2 Gitelson and Merzlyak Index 2 
Chlorophyll/Red 
Edge 

Green NDVI Green Normalized Difference Vegetation Index  
Chlorophyll/Red 
Edge 

Maccioni Maccioni 
Chlorophyll/Red 
Edge 

MCARI Modified Chlorophyll Absorption in Reflectance Index 
Chlorophyll/Red 
Edge 

MCARI2 
Modified Chlorophyll Absorption in Reflectance Index 
2 

Chlorophyll/Red 
Edge 

mND705 Modified Normalized Difference Vegetation Index 705 
Chlorophyll/Red 
Edge 

mNDVI Modified Normalized Difference Vegetation Index 
Chlorophyll/Red 
Edge 

MPRI Modified Photochemical Reflectance Index Other 

MSAVI Modified Soil Adjusted Vegetation Index 
Chlorophyll/Red 
Edge 

mSR Modified Simple Ratio 
Chlorophyll/Red 
Edge 

mSR2 Modified Simple Ratio 2 
Chlorophyll/Red 
Edge 

mSR705 Modified Simple Ratio 705 
Chlorophyll/Red 
Edge 

MTCI MERIS Terrestrial Chlorophyll Index 
Chlorophyll/Red 
Edge 

MTVI Modified Triangular Vegetation Index Structural 
NDVI Normalized Difference Vegetation Index  Structural 

NDVI2 Normalized Difference Vegetation Index 2 
Chlorophyll/Red 
Edge 

NDVI3 Normalized Difference Vegetation Index 3 
Chlorophyll/Red 
Edge 

NPCI Normalized Pigment Chlorophyll Index 
Chlorophyll/Red 
Edge 

OSAVI Optimized Soil Adjusted Vegetation Index Structural 

OSAVI2 Optimized Soil Adjusted Vegetation Index 2 
Chlorophyll/Red 
Edge 

PARS Published Analysis of Reflectance Spectra Other 
PRI Photochemical Reflective Index Other 
PSND Pigment Specific Normalized Difference Other 
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PSRI Plant Sensecence Reflectance Index Other 
PSSR Pigment Specific Simple Ratio Other 
PWI Plant Water Index Water 
RDVI Renormalized Difference Vegetation Index Structural 

RDVI Renormalized Difference Vegetation Index 
Chlorophyll/Red 
Edge 

SAVI Soil Adjusted Vegetation Index Structural 
SPVI Spectral Polygon Vegetation Index Other 

SR Simple Ratio 
Chlorophyll/Red 
Edge 

SR1 Simple Ratio 1 
Chlorophyll/Red 
Edge 

SR2 Simple Ratio 2 
Chlorophyll/Red 
Edge 

SR3 Simple Ratio 3 
Chlorophyll/Red 
Edge 

SR4 Simple Ratio 4 
Chlorophyll/Red 
Edge 

SR5 Simple Ratio 5 
Chlorophyll/Red 
Edge 

SR6 Simple Ratio 6 
Chlorophyll/Red 
Edge 

SR7 Simple Ratio 7 
Chlorophyll/Red 
Edge 

SR8 Simple Ratio 8 
Chlorophyll/Red 
Edge 

SRPI Simple Ratio Pigment Index 
Chlorophyll/Red 
Edge 

TCARI Transformed Cholorophyll Absorbtion Ration 
Chlorophyll/Red 
Edge 

TCARI2 Transformed Cholorophyll Absorbtion Ration 2 
Chlorophyll/Red 
Edge 

TGI Triangular Greenness Index Other 

TVI Transformed Vegetation Index 
Chlorophyll/Red 
Edge 

Vogelmann Vogelmann 
Chlorophyll/Red 
Edge 

Vogelmann2 Vogelmann2 
Chlorophyll/Red 
Edge 

Vogelmann3 Vogelmann3 
Chlorophyll/Red 
Edge 

Vogelmann4 Vogelmann4 
Chlorophyll/Red 
Edge 

WBI Water Band Index Water 
Note: All indices formulas can be found in the hsdar packages for R. 
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B. Map Comparison Contingency Tables 

Comparison 3: MW Resampled Nano v. HyMap 

 

Comparison 4: Nearest Neighbor Resampled Nano v. HyMap 

 

Unclassified Bare 
Ground EMR Water 

Hyacinth
Water 
Primrose

Riparian 
Shrub

Riparian 
Tree SAV Water O ther NPV Sum

Unclassified 97 2 1 0 4 0 0 1 0 5 1 111

Bare ground 0 37 1 0 23 3 0 0 1 26 1 92

EMR 0 2 39 0 8 21 15 1 1 2 12 101

Water Hyacinth 0 0 0 0 0 0 0 0 0 0 0 0

Water Primrose 0 0 0 0 0 0 0 0 0 0 0 0

Riparian Shrub 0 14 0 0 7 5 1 0 0 57 0 84

Riparian Tree 0 7 8 0 40 51 77 0 2 8 2 195

SAV 1 16 6 0 3 4 0 54 5 0 4 93

Water 0 7 3 0 12 5 0 44 90 0 2 163

O ther 0 0 0 0 0 0 0 0 0 0 0 0

NPV 1 15 42 0 3 11 7 0 1 2 78 160

Sum 99 100 100 0 100 100 100 100 100 100 100 999

Unclassified Bare 
Ground EMR Water 

Hyacinth
Water 
Primrose

Riparian 
Shrub

Riparian 
Tree SAV Water O ther NPV Sum

Unclassified 98 0 0 0 0 0 0 0 0 0 0 98

Bare ground 0 35 1 0 25 3 0 0 1 27 1 93

EMR 0 3 43 0 10 23 15 1 2 5 11 113

Water Hyacinth 0 0 0 0 0 0 0 0 0 0 0 0

Water Primrose 0 0 0 0 0 0 0 0 0 1 0 1

Riparian Shrub 0 17 0 0 10 4 1 0 0 56 0 88

Riparian Tree 0 9 8 0 38 51 78 0 2 10 3 199

SAV 1 19 7 0 4 2 0 54 8 0 4 99

Water 0 5 2 0 11 7 0 44 86 0 2 157

O ther 0 0 0 0 0 0 0 0 0 0 0 0

NPV 1 12 39 0 2 10 6 1 1 1 79 152

Sum 100 100 100 0 100 100 100 100 100 100 100 1000
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