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Abstract 

Application of fiber-reinforced polymer (FRP) composites in strengthening of reinforced concrete 

(RC) structures has become an increasingly accepted engineering practice. In particular, the use of 

externally-bonded FRP wraps as a confining material for concrete can enhance both the 

compressive strength and the ultimate strain of concrete, making it suitable for strengthening 

and/or seismic retrofit of existing reinforced concrete columns. The confinement effect produced 

by the externally-bonded FRP acts in addition to the confining mechanism of the existing internal 

reinforcing steel, thus increasing the load-carrying capacity and ductility of the member. The 

transverse steel confinement contribution can be significant, although it is generally ignored in 

existing design guidelines for FRP wrapping, potentially leading to an excessively conservative 

retrofit design. 

This dissertation presents a confined concrete material constitutive model for use in finite element 

analysis, which is able to accurately model the combined confinement effects of FRP and internal 

steel reinforcement on the structural monotonic, cyclic, and/or dynamic response of reinforced 

concrete RC columns confined with externally-wrapped FRP. The proposed material constitutive 

model for FRP-and-steel confined concrete explicitly models the simultaneous confinement 

produced by FRP and steel on the core concrete to predict the combined effect on the structural 

response of circular RC columns. This proposed material model is combined with a force-based 

frame element to numerically predict the load-carrying capacity of FRP-confined RC columns 

subjected to different loading conditions. Numerical simulations are compared to experimental test 

data available in the literature and published by different authors. The numerically simulated 

responses agree very well with the corresponding experimental results. The proposed model is 

found to predict the ultimate load for FRP-confined RC circular columns with better accuracy than 
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models that do not consider the simultaneous confinement effects of FRP and steel. 

The proposed FRP-and-steel confined concrete model is employed in a comprehensive parametric 

study to numerically investigate the steel confinement effects and the relative importance of key 

modeling and design parameters on the axial strength of FRP-confined RC columns. The results 

show that the steel confinement effect can significantly increase the axial strength of FRP-confined 

RC columns, particularly for large cross-sections, low concrete compressive strengths, and low 

amounts of confining FRP. The steel confinement effects induce two distinct behaviors depending 

on the ratio between the FRP lateral confinement and the unconfined concrete peak strength. These 

two behaviors can be described as functions of two different relative confinement coefficients.  

The numerical investigation of the effects of the transverse steel confinement on FRP-confined 

circular RC columns from the case of pure axial loading is also extended to the case of combined 

axial load and bending moment. A thorough parametric study is conducted to investigate the 

effects of different design parameters when varied within their range for practical applications. 

The two synthetic coefficients previously proposed to quantify the effect of transverse steel 

confinement on concentrically-loaded FRP-confined circular RC columns are modified to 

incorporate the effects of load eccentricity. The outcome of this research could lead to significant 

benefits in terms of safer and/or more economic design of FRP-confinement retrofits of RC 

columns. 

Based on the results from the parametric study, a modification is proposed to the ACI 440.2R-17 

design equation of FRP-confined RC circular columns subjected to axial loading. The proposed 

design equation is calibrated through a structural reliability analysis approach, in which the 

capacity model (corresponding to the probability distribution for the axial load capacity of the 

columns) is generated via Monte Carlo simulation based on advanced nonlinear finite element 
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response analyses for multiple realistic combinations of design parameters. Under different design 

conditions, the newly proposed design equation provides a significantly less variable reliability 

index than that obtained using the current ACI 440.2R-17 design equation, which produces 

increasingly excessively conservative retrofit designs for increasing amounts of transverse steel 

reinforcement. A practical design procedure based on the proposed design equation is also 

presented. 

In order to reduce the associated computational cost of the proposed FRP-and-steel confined 

concrete model, and to increase the corresponding numerical robustness, this dissertation also 

proposes a new optimization procedure to obtain an analytical expression for the iteratively-

generated monotonic envelope of the original stress-strain model. Several analytical functions are 

tested and their capability to fit the iteratively-generated uniaxial stress-strain model for the 

monotonic envelope curve of FRP-and-steel confined concrete is evaluated. The newly-proposed 

analytical formulation of the uniaxial stress-strain model for FRP-and-steel confined concrete is 

compared with the original iterative formulation in terms of computational cost for an application 

example consisting in a nonlinear seismic time-history analysis of a five-span bridge structure with 

FRP-retrofitted RC piers. It is found that the use of the newly proposed optimization-based 

analytical monotonic envelope can reduce by more than 30% the computational time associated to 

the original iteration-based monotonic envelope with negligible changes in the structural response 

prediction at both global and local levels. 
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1 Introduction 

Aging reinforced concrete (RC) structures, in particular RC columns, can have their functionality 

affected by environmental deterioration, damage due to extreme events, or increased demands due 

to adaptive reuse projects. Traditional techniques of repairing and strengthening (e.g., welded steel 

or concrete jackets) can be expensive, excessively labor-intensive, and vulnerable to future 

corrosion, and can cause prolonged traffic disruption. The retrofit techniques based on the use of 

externally-bonded fiber-reinforced polymers (FRP) present several advantages over traditional 

methods, including high strength-to-weight ratio, excellent corrosion properties, simplified 

installation, and quick restoration of structural capacity. Externally-bonded FRP can be used to 

address several potential structural deficiencies in an RC column: (1) increase the axial and 

bending moment capacities through lateral confinement; (2) improve ductility due to provided 

confinement; (3) increase shear strength; (4) prevent and/or repair corroded members; (5) enhance 

seismic performance and resiliency; (6) prevent buckling of longitudinal reinforcing steel; (7) 

delay concrete spalling; and (8) strengthen lap splices (Parvin and Brighton 2014; ACI 2017). This 

research focuses on the study of the mechanical behavior of concrete associated with the lateral 

confinement produced by the internal transverse steel and its implications on the structural capacity 

of FRP-confined RC columns. 

Within the cross-section of these columns, the circumferentially-oriented fibers in the FRP 

laminates apply a confining pressure onto the concrete that enhances the load capacity and ductility 

of the structural member by restricting the concrete lateral dilation when subject to compressive 

loads (Fardis and Khalili 1982). This confinement acts simultaneously with the confining 

mechanism of the existing internal transverse steel in the concrete core, which can become 

significant in view of modern seismic design codes that lead to designs with considerable amounts 
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of both longitudinal and transverse reinforcing steel (Roy et al. 2010; Tatar et al. 2021). 

Nevertheless, the transverse steel confinement is typically ignored in design codes and guidelines 

(Kaeseberg et al. 2019), potentially leading to an excessively conservative retrofit design. Only 

the German DAfStb-Guideline directly addresses the transverse steel reinforcement by including 

it in the calculation of the confinement pressure, whereas ACI 318-19 and ACI 440.2R-17 

qualitatively account for the degree of steel confinement by assigning a different  -factor to the 

column’s axial strength depending on the type of transverse reinforcement (i.e., steel tie or spiral). 

This issue can be attributed to the fact that the simultaneous confinement phenomenon by FRP 

laminates and transverse steel is not as well understood and studied as the confinement action of 

FRP laminates only. In fact, whereas several constitutive models are available in the literature for 

FRP-confined concrete (Ozbakkaloglu et al. 2013), only a few confined concrete stress-strain 

models consider the concomitant confining mechanisms from both FRP and steel. Moreover, most 

of these few available FRP-and-steel confined concrete models are either derived from regression 

analysis of limited data points (Lee et al. 2010) or rely on the simplifying assumption of linear 

superposition of the confinement effects (Ilki et al. 2008; Hu and Seracino 2014; Teng et al. 2015). 

Therefore, the accuracy of these models is compromised.  

1.1 Objectives and Motivation 

The first objective of this work is to develop an accurate yet computationally inexpensive analysis-

oriented stress-strain model for confined concrete that accurately accounts for the complex 

nonlinear phenomenon associated with the simultaneous confining mechanisms produced by FRP 

laminates and transverse steel (Chapter 2). The specific outcomes of this study are: (1) 

development of a stress-strain model for the monotonic envelope of FRP-and-steel confined 

concrete; (2) development of hysteretic laws for the concrete model based on previously conducted 
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experimental tests to enable nonlinear finite element (FE) analysis involving cyclic and/or dynamic 

loading; (3) validation of the model against experimental data available in the literature 

corresponding to FRP-confined columns subject to different loading schemes (i.e., concentric 

compression, eccentric compression, and cyclic lateral load). 

The second objective is to better understand the structural behavior of FRP-strengthened RC 

columns and to quantify the effects of transverse steel confinement on the structural capacity of 

such columns. To this end, the proposed FRP-and-steel confined concrete model is employed in 

the numerical simulations of FRP-confined RC columns through extensive parametric studies, in 

which several key parameters are varied. This objective is accomplished in two phases, each 

corresponding to different chapters of this dissertation: (1) investigating columns subjected only 

to concentric axial loads (Chapter 3); and (2) investigating columns subjected to the combined 

action of axial compression and bending moment (Chapter 4). These two chapters provide an in 

depth understanding of the structural behavior of RC columns subject to the simultaneous 

confinement of transverse steel and FRP wraps, and propose relative confinement coefficients that 

can represent transverse steel confinement effects in a concise and effective manner. 

Based on the results of the parametric investigation carried out for concentrically-loaded columns, 

the third objective is to propose a design procedure for FRP-confined RC columns subject to pure 

compression that includes the transverse steel confinement effects and, therefore, reduce the 

conservativeness associated with existing design guidelines (Chapter 5). The specific outcomes of 

this study are: (1) to propose a design equation that incorporates the contribution of the internal 

steel confinement to the axial strength of FRP-confined RC columns; (2) to calibrate the design 

equation by means of robust structural reliability principles; (3) to develop  the statistical 

distributions for variables involved in the structural reliability calibration for which these 
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distributions are not available in the literature; and (4) to quantify the savings on FRP material 

associated with the proposed design equation in the strengthening of RC columns through a case 

study. 

Finally, the fourth objective is to reduce the associated computational cost and increase the 

corresponding numerical robustness of the proposed iteratively-generated FRP-and-steel confined 

concrete model (Chapter 6). The outcome of this study is a new optimization procedure to obtain 

an analytical expression for the monotonic envelope of the proposed confinement model while 

keeping the accuracy as close as possible to that of the original model. 

1.2 Scope 

The scope of this research work is limited to FRP-confined RC columns with circular cross-

sections with preserved structural integrity. Further research is needed to investigate its application 

to other shapes (e.g., rectangular cross-sections) or pre-damaged RC columns. 

1.3 Organization of the Dissertation 

In Chapter 2 of this dissertation, an analysis-oriented constitutive model for confined concrete 

simultaneously confined with FRP and steel is proposed. The complex nonlinear phenomenon of 

double confinement is handled at the material level by considering a superposition of confining 

pressures from both materials. It adopts an incremental-iterative approach to solve equilibrium and 

compatibility relationships involving the laterally-expanding concrete whose radial deformation is 

restricted by the confining devices. A hysteresis model is also proposed to enable use in cyclic 

and/or dynamic analysis. The FRP-and-steel confined concrete stress-train model is validated 

against experimental data in the literature for concentric compression, eccentric compression, and 

cyclic lateral loading conditions. 
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In Chapter 3, the proposed FRP-and-steel-confined concrete model is employed to simulate the 

mechanical behavior of confined concrete in the finite element modeling of FRP-strengthened RC 

columns. An extensive parametric analysis is carried out to investigate the structural behavior of 

these columns and to quantify the transverse steel confinement’s contribution to the axial load 

bearing capacity. Relative confinement coefficients are proposed in order to synthetically quantify 

the effects of the transverse steel confinement on the peak axial strength of FRP-strengthened RC 

columns. 

In Chapter 4, the parametric analysis conducted in Chapter 3 is extended to columns subjected to 

combined axial load and bending moment. It is noteworthy that FRP-and-steel confined concrete 

models have been rarely employed in the literature in the computation of axial load-bending 

moment interaction diagrams of FRP-confined RC columns. Only a very recent study by Yuan et 

al. (2022) was found to investigate the effects of internal steel hoops on the interaction diagram of 

such columns. The topic remains understudied, and the present research helps to systematically 

investigate these effects. 

In Chapter 5, in order to produce more efficient retrofit while keeping acceptable reliability levels, 

a new design equation is proposed for FRP-confined RC circular columns subject to pure 

compression, which accounts for the simultaneous confinement effects of transverse steel and FRP. 

The new equation is calibrated via structural reliability analysis methods, which account for the 

uncertainties associated with material, dimension, modeling, and loading variables. A new iterative 

design procedure is also proposed and demonstrated via a realistic application example. The 

savings on FRP material used in retrofit design associated with the new design equation are 

investigated and quantified. 

In Chapter 6, several analytical functions are tested and their capability to fit the original 
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iteratively-generated uniaxial stress-strain curve for the monotonic envelope of FRP-and-steel-

confined concrete is evaluated. A new optimization procedure to obtain an analytical expression 

for the corresponding monotonic envelope is developed. The computational costs associated with 

both the original iterative model and the analytical model are compared via the nonlinear seismic 

time-history analyses of: (1) a two-column bridge pier; and (2) a five-span bridge structure with 

FRP-retrofitted RC piers. 

Finally, Chapter 7 presents a summary of the conducted research, points out the conclusions 

derived from this study, and suggests future research directions. 

1.4 Journal publications derived from this Dissertation 

Journal article based on Chapter 2 (published): 

 Zignago, D.1, Barbato, M.2, and Hu, D.3 (2018). “Constitutive model of concrete 

simultaneously confined by FRP and steel for finite-element analysis of FRP-confined RC 

columns.” J. Compos. Constr., 22(6): 04018064. 

Journal article based on Chapter 3 (published): 

 Zignago, D., and Barbato, M. (2021). “Effects of transverse steel on the axial-compression 

strength of FRP-confined reinforced concrete columns based on a numerical parametric 

study.” J. Compos. Constr., 25(4): 04021024. 

 

 

 

1 Ph.D. candidate, Department of Civil & Environmental Engineering, University of California, Davis, One Shields 
Avenue, 2209 Academic Surge, Davis, California 95616, USA; Email: zignago@ucdavis.edu 
 
2 Professor, Department of Civil & Environmental Engineering, University of California, Davis, One Shields 
Avenue, 3149 Ghausi Hall, Davis, California 95616, USA; E-mail: mbarbato@ucdavis.edu 
 
3 Project Engineer, ATI Architects and Engineers; Email: lsu.hudan@gmail.com 



7 
 

Journal article based on Chapter 4 (submitted): 

 Zignago, D., and Barbato, M. “Numerical investigation of axial force-bending moment 

interaction for FRP-confined reinforced concrete columns with internal steel transverse 

reinforcement.” 

Journal article based on Chapter 5 (published): 

 Zignago, D., and Barbato, M. (2022). “Reliability-based calibration of a new design 

procedure for axially-loaded reinforced concrete circular columns accounting for 

simultaneous confinement by fiber reinforced polymers and steel.” J. Compos. Constr., 

26(3): 04022017. 

Journal article based on Chapter 6 (submitted): 

 Zignago, D., and Barbato, M. “New analytical analysis-oriented stress-strain model for 

FRP-and-steel confined concrete.”  
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2 Constitutive model of concrete simultaneously confined by FRP 
and steel for finite element analysis of FRP-confined reinforced 
concrete columns 

This chapter presents a confined concrete material constitutive model that is able to accurately 

model the combined confinement effects of FRP and internal steel reinforcement on the structural 

response of reinforced concrete columns confined with externally-wrapped FRP. The complex 

nonlinear phenomenon of simultaneous confinement is handled at the material level through an 

iterative-incremental approach, in which force equilibrium and strain compatibility relationships 

involving the radial deformation of concrete and the confining devices (FRP and steel) are 

enforced when their respective lateral confining pressures exerted to concrete are superimposed. 

This proposed material model is combined with a force-based frame element to numerically predict 

the load-carrying capacity of FRP-confined RC columns subjected to different loading conditions. 

Numerical simulations are compared to experimental test data available in the literature and 

published by different authors. The relative confinement coefficient fc  is introduced for the first 

time to help quantify the importance of the transverse steel confinement to the structural response 

of FRP-confined RC columns. 

2.1 Introduction 

Existing reinforced concrete (RC) structures often need rehabilitation or strengthening due to 

inappropriate design or construction, modification of the use and of the corresponding design 

loads, and damage caused by environmental factors and/or extraordinary loading events. 

Retrofitting and repairing of damaged and/or inappropriately designed concrete structures using 

externally-bonded fiber reinforced polymers (FRP) has proved to be an effective alternative to 

other types of strengthening techniques (e.g., steel jackets), presenting some advantages like 
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excellent corrosion resistance, fire resistance, ease of transportation and installation, high strength-

to-weight ratio of FRP sheets, which leads to a minimum increase of the structure’s weight and 

dimensions (Bakis et al. 2002; Cheng and Karbhari 2006; Basalo et al. 2012). This retrofit method 

has become more common during the last few decades, being widely applied specially to columns 

of bridges and buildings (Seible et al. 1997; Flaga 2000; Pantelides et al. 2000; Mertz 2003; 

Motavalli and Czaderski 2007). 

The amount of longitudinal and transverse reinforcement in RC columns must satisfy minimum 

design codes’ requirements in terms of flexural and shear strength. As a result, RC columns that 

need to be retrofitted with FRP laminates also contain longitudinal and transverse steel 

reinforcement. Thus, in these retrofitted RC columns, a significant portion of the concrete is 

subjected to two simultaneous confinement actions: the confinement due to FRP plates/sheets and 

the confinement due to internal (longitudinal and transverse) steel reinforcement. FRP jacketing 

of RC columns exerts a linearly increasing confining pressure up to rupture on the concrete due to 

its lateral dilation when loaded, while the internal reinforcing steel is responsible for a constant 

confining pressure after yielding (Spoelstra and Monti 1999). Both types of confinement enhance 

the seismic performance of the RC column, improving the concrete compressive strength and thus 

the ductility of the member, and making FRP-wrapped RC columns more suitable, e.g., to undergo 

large lateral displacements imposed by severe earthquakes. 

The majority of the stress-strain models available in the literature to model FRP-confined concrete 

do not account for the influence of the existing internal steel reinforcement on the mechanical 

behavior of concrete confined through externally-bonded FRP laminates (Fardis and Khalili 1982; 

Mirmiran and Shahawy 1996; Karbhari and Gao 1997; Samaan et al. 1998; Spoelstra and Monti 

1999; Toutanji 1999; Xiao and Wu 2000; Fam and Rizkalla 2001; Shao et al. 2006). Kawashima 



10 
 

et al. (2000) proposed two different confined concrete stress-strain models: one for concrete 

confined with carbon FRP only, and one for concrete confined simultaneously by carbon FRP and 

transverse steel ties. A regression analysis, based on the experimental results obtained through two-

phase loading tests on RC specimens with circular and rectangular sections, was used to calibrate 

the parameters needed to define these two stress-strain confined concrete models. The model was 

validated by comparing the envelope curves of the lateral force versus lateral displacement 

response of six specimens with the corresponding curves analytically obtained through a fiber 

analysis based on the developed equations. Li et al. (2003) developed a constitutive model for 

carbon FRP-confined concrete. The peak strength of the confined concrete was derived from the 

Mohr-Coulomb failure criterion, whereas the strain at the peak strength was obtained from a 

regression analysis based on experimental compression tests. This material constitutive model was 

modified to model concrete confined by both steel reinforcement and carbon FRP. In the modified 

model, the strength of the confined concrete was obtained as the sum of the unconfined concrete 

strength and the increments of strength due to the confinement of carbon FRP and steel 

reinforcement considered independently. This modified confined concrete model was also verified 

by comparisons with experimental tests. Using a similar approach to that employed in Li et al. 

(2003), Ilki et al. (2008) derived a set of empirical equations to describe the stress-strain response 

of concrete confined simultaneously by steel and FRP and used this new model to successfully 

predict the compressive strength and corresponding axial deformation of FRP jacketed columns. 

Pellegrino and Modena (2010) investigated the interaction mechanisms between internal steel 

reinforcement and external FRP confinement. An analytical model was proposed to describe the 

stress-strain monotonic envelope response of FRP confined elements with circular and rectangular 

cross-sections with or without internal steel reinforcement. The model was found to agree well 
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with experimental results available in the literature. Hu and Seracino (2014) developed an analysis-

oriented FRP-confined model that also accounts for the confinement produced by internal steel 

reinforcement. This model uses a stress-strain curve proposed by Popovics (1973), in which the 

peak strength of the confined material is obtained as the summation of the peak strength of the 

unconfined material and the strength contributions due to steel and FRP confinement considered 

as independent. These contributions are based on the models proposed by Mander et al. (1988) for 

the steel confinement and Teng et al. (2007) for the FRP confinement. Shirmohammadi et al. 

(2015) also developed a model that predicts the monotonic stress-strain relationship of confined 

concrete, considering the double confinement. The model was implemented in a fiber-based 

moment-curvature analysis, showing a better agreement with experimental results than other tested 

models. Ismail et al. (2017) modified a design-oriented model for FRP-confined concrete by 

adding the effect of steel confinement through a shift in the stress-strain curve without any 

modification of the stiffness. 

This paper extends an analysis-oriented material constitutive model of FRP-confined concrete, 

originally developed by Spoelstra and Monti (1999) and applied to FE analysis of FRP-retrofitted 

columns by Hu and Barbato (2014). This modified model accounts for the simultaneous 

confinement effects of internal steel reinforcement and externally-bonded FRP laminates on the 

structural monotonic, cyclic, and/or dynamic response of FRP-retrofitted RC columns. The 

proposed material constitutive model is validated against experimental data available in the 

literature for the structural response of FRP-retrofitted RC columns with circular cross-section and 

subjected to different loading conditions. The structural response of these columns was 

numerically predicted using the proposed material model in conjunction with a force-based frame 

FE with fiber-discretized sections (Spacone et al. 1996; Neuenhofer and Filippou 1997; Scott and 
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Fenves 2006; Hu and Barbato 2014).  

2.2 Research relevance 

The proposed material constitutive model enables a computationally efficient approach to model 

the simultaneous confinement mechanisms of reinforcing steel and FRP within the cross-section 

of a RC column. In conjunction with the fiber-section force-based frame element used in this 

research, it can provide structural analysts with a practical tool for performance assessment and 

design of FRP retrofit of deficient RC columns. The proposed model is particularly suitable for 

accurate and computationally efficient modeling of large-scale structures (e.g., building and 

bridges) subject to static and dynamic loadings, as well as for reliability assessment of real-world 

structures. Moreover, the accurate modeling of the simultaneous steel-FRP confinement effects of 

concrete could improve the efficiency of columns’ FRP retrofit by reducing the conservativeness 

of models that neglect the steel’s confining effect and by providing better estimates of the structural 

component ductility after retrofit, which is a crucial ingredient, e.g., for performance-based design 

of RC bridges. 

2.3 Material constitutive model for concrete confined with steel and FRP 

The material constitutive model proposed by Spoelstra and Monti (1999) (referred to as SM model 

hereinafter) provides an axial stress-axial strain curve based on an iterative numerical procedure 

that enforces equilibrium and compatibility between the radial stress and deformation for the 

confined concrete and the axial stress and hoop deformation for the confinement devices. The SM 

model is suitable to predict the structural behavior of concrete confined with externally-bonded 

FRP, steel jackets, or internal steel reinforcement. However, this model does not consider the 

interaction effects due to simultaneous confinement actions of steel and FRP and is valid only for 



13 
 

monotonic loading of the confined concrete.  

This study proposes a modified SM (mSM) confined concrete model that: (1) can account for 

simultaneous confinement by steel and FRP in determining the monotonic envelope of the 

confined concrete, and (2) possesses simple unloading and reloading rules that allow the use of the 

material constitutive model under general loading conditions. The mSM model is based on the 

same iterative procedure used by the SM model, but it differs from it for the calculation of the total 

confinement pressure. This new model is described in the following subsections. It is also noted 

here that both SM and mSM models assume that the confined concrete has zero stress and zero 

stiffness in tension, i.e., they neglect tension stiffening because the focus of this study is on the 

ultimate behavior of columns. However, tension stiffening (Lin 2010) can be easily integrated into 

the proposed material constitutive model. 

2.3.1 Monotonic envelope of the stress-strain curve 

The mSM model evaluates the lateral confinement pressure as the sum of the confinement pressure 

due to the externally-bonded FRP and internal transverse steel reinforcement. This approach differs 

from that used in most of the previous studies (Li et al. 2003; Ilki et al. 2008; Pellegrino and 

Modena 2010; Hu and Seracino 2014), which considers independently the sum of the strength 

increments due to the confinement action of each material (steel and FRP). 

The total confinement pressure, '
lf , for the mSM model is calculated as follows: 

                                             '
,steel ,FRP

1 1

2 2l l l s s s f f ff f f k k                       (2-1) 

The term ,steellf in Eq. (2-1)  represents the confinement action due to the transverse reinforcement 

steel, where sk  = steel confinement effectiveness coefficient (Mander et al. 1988), s  = transverse 

steel reinforcement ratio defined as 
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with stA = cross-sectional area of a transverse reinforcing stirrup/spiral, s = clear distance between 

adjacent hoops or spiral turns, and cd = diameter of the confined concrete core, and s  = stress of 

the transverse reinforcing steel. The stress of the transverse reinforcing steel is given by 
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where sE  = elastic modulus of the transverse reinforcing steel, ytf = yield strength of the transverse 

reinforcing steel, y = yield strain of the transverse reinforcing steel, su = rupture strain of the 

transverse reinforcing steel, and l  = lateral strain. 

The term ,FRPlf  in Eq. (2-1) represents the confinement action due to the externally-bonded FRP, 

where fk  = FRP confinement effectiveness coefficient (Saadatmanesh et al. 1994), f  
= FRP 

volume ratio defined as 
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f

t

D

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  (2-4) 

with ft = thickness of the jacket, D  = diameter of the FRP jacket/sheet; and 
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where ,rupf f fu f fu ff E       = rupture strain of FRP, f  efficiency factor, fu  ultimate 

strain from coupons tests, fuf = ultimate strength of the FRP material from coupons tests, and fE   

elastic modulus of the FRP. 
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The axial stress-axial strain relation is calculated incrementally through the iterative procedure 

described in Spoelstra and Monti (1999), in which the calculation of '
lf  is performed according to 

Eq. (2-1). The confining pressure for concrete confined simultaneously by steel and FRP is shown 

in Figure 2-1 as a function of the radial strain. Typical monotonic axial stress-strain response 

curves for the SM model and the mSM model are compared in Figure 2-2. As expected, the stress 

achieved in the mSM model for a given strain is higher than that in the SM model and depends on 

the amount and configuration of confining steel. It is also noted that the peak strength 

(corresponding to the FRP failure) occurs at different levels of strains, with the mSM model 

achieving at higher strain its peak strength.  

Figure 2-2 also plots the stress-strain curves corresponding to the steel-confined concrete model 

proposed by Mander et al. (1988) and the Popovics-Saenz model for unconfined concrete 

(Popovics 1973; Balan et al. 1997) with the same underlying properties. It is observed that, after 

the FRP failure (i.e., when only the confinement from the transverse steel reinforcement is active), 

the mSM model reduces to the Mander’s model, until the concrete lateral strain l  reaches the 

rupture strain of the transverse reinforcing steel ,su  after which the mSM model reduces to 

residual stress of the unconfined curve. On the other hand, the SM model reduces directly to the 

unconfined curve as soon as the confining FRP reaches its ultimate strain.  
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Figure 2-1. Confinement pressure acting on concrete that is simultaneously confined by steel and 
FRP. 

 

Figure 2-2. Monotonic envelopes for the stress-strain relations obtained using different models 

The description provided here implies that the FRP confining material reaches failure before the 

confining steel, which is the most common case in practice. However, it is noteworthy that the 

proposed model accounts also for the less likely cases in which the confining steel reaches its 
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ultimate strain before the confining FRP. In these cases, the mSM model first reduces to the SM 

model when the steel fails, and then to the Popovics-Saenz model when also the FRP fails. 

2.3.2 Hysteretic behavior of the stress-strain curve 

The hysteretic behavior of the mSM model is described by linear hysteretic unloading/reloading 

branches that are defined based on a set of experimental tests conducted by Barbato et al. (2003). 

The proposed model does not model strength deterioration due to the cumulative damage produced 

by repeated hysteresis loops, the effect of which was found to be very small in the experimental 

results. However, this effect could be added by introducing a cumulative damage parameter (e.g., 

see Fardis et al. (1983)). The stiffness degradation due to the propagation of internal cracks for 

increasing plastic strain is considered in the calculation of the reloading stiffness, relE , and is based 

on the model developed by Imran and Pantazopoulou (1996). It is noted here that the original SM 

model consisted only of a monotonic envelope, i.e., it did not consider the hysteretic response of 

FRP-confined concrete. The hysteretic behavior developed in this study for the mSM model is 

adopted also for the SM model, which is thus extended to allow the numerical analysis of the cyclic 

behavior of FRP-confined concrete. 

Figure 2-3 illustrates the unloading/reloading rules of the proposed hysteretic model by 

representing compression stress and strain as positive quantities for clarity’s sake. Starting from a 

virgin material condition with zero stress and strain (point (0) on Figure 2-3), the constitutive 

model follows the monotonic envelope for increasing compression strain up to point (1) defined 

by axial stress unl  and axial strain unl  where the unloading (i.e., decreasing compression strain) 

starts by following a straight line with a slope equal to the initial stiffness of concrete, rel cE E , 

until zero stress is reached at a residual strain, ,unlr , corresponding to point (2) in Figure 2-3. 

When the unloading initiates from the monotonic envelope, history variables representing the 
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unrecoverable plastic strain, ,relr  (corresponding to the axial strain at point (5) in Figure 2-3), and 

the corresponding reloading stiffness, relE  are evaluated as: 

unl
,rel unl

rel
r E


                (2-6) 

 rel
,unl1 2

c

l

E
E

 


  
            (2-7) 

where 20   (Imran and Pantazopoulou 1996) and ,unll   lateral strain coordinate of unloading 

point on the envelope (point (1)). Unless the axial strain reduces to values smaller than ,unlr , any 

reloading/unloading with strain values between ,unlr  and unl  happens along the straight line 

contained between points (1) and (2). For strain values smaller than ,unlr , the unloading follows a 

zero stress line. If a reloading occurs and the inversion point corresponds to an axial strain 

contained between ,relr  and ,unlr  (i.e., point (3) in Figure 2-3), the stress-strain relation follows a 

straight line pointing to the inversion point on the monotonic envelope (i.e., point (1)), which is 

defined by a slope unl,2E  given by: 

unl
unl,2

unl unl,2

E


 



              (2-8) 

in which unl,2  denotes the new inversion point from negative strain increment to positive strain 

increment, the value of which is used to update history variable ,unlr  (with the line between points 

(1) and (3) effectively replacing the line between points (1) and (2) as the unloading/reloading 

path). If the strain increment changes again direction (e.g., at point (4)), the hysteretic behavior 

follows the unloading/reloading rules previously described until the strain becomes smaller than 
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,relr , after which no further degradation of the plastic strain recovery is allowed. This assumption 

implies that any reloading/unloading cycle occurring afterward (e.g., at point (6)) follows a zero 

stress line for any strain value smaller than ,relr  (including negative values corresponding to 

tension strains), or the straight line between points (1) and (5) for strain values contained between 

,relr  and unl . Finally, if during a reloading phase the strain becomes larger than unl  (e.g., point 

(7) in Figure 2-3), the stress-strain relation follows again the monotonic envelope and all history 

variables governing the unloading/reloading behavior are reset to their initial zero values.  

 

Figure 2-3. Hysteretic behavior proposed for the mSM model 

It is noted here that this proposed hysteretic behavior is identical for any portion of the monotonic 

envelope, including early stages during which both FRP and steel confinements are active, the 

phases during which only FRP or only steel confinement is active (because one of the two has 

failed), and the phase in which the concrete is unconfined (i.e., when both FRP and steel have 

failed). 
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2.4 Computer implementation and finite element formulation 

The proposed material constitutive model was implemented in FEDEASLab (Filippou and 

Constantinides 2004), a Matlab-based (MathWorks 1997) program appropriate for linear and 

nonlinear, static and dynamic structural analysis. The mSM constitutive model was used to 

describe the stress-strain response of confined concrete fibers in a two-node one-dimensional 

force-based frame FE with fiber sections (Spacone et al. 1996; Hu and Barbato 2014). In particular, 

each section is discretized into concrete core fibers (simultaneously confined by steel and FRP and 

modeled using the newly developed mSM model), concrete cover fibers (confined only by FRP, 

for which the mSM model reduces to the SM model), and steel bar fibers, which are modeled using 

the model by Menegotto and Pinto (1973) as extended in Filippou et al. (1983) to include isotropic 

hardening effects. Figure 2-4 shows a representation of the cross-section fiber discretization of the 

FE model. The frame FE is based on the Euler-Bernoulli beam theory with small deformations and 

its element state determination employs the non-iterative algorithm (Neuenhofer and Filippou 

1997). 

 

Figure 2-4. Cross-section fiber discretization of the FE model 

It is pointed out here that any selection of finite element formulation (e.g., ordinary displacement-
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based frame elements or a single force-based frame element), numerical integration of section 

response (e.g., Gauss-Legendre or Gauss-Lobatto integration), and material constitutive models 

for steel fibers can be used in conjunction with the material constitutive model presented in this 

paper, as long as a fiber-section approach is employed. Based on the authors’ experience, the 

numerical integration scheme using five Gauss-Lobatto integration points in conjunction with 

force-based elements provides the best compromise between computational cost and accuracy for 

the majority of the cases. However, when there is a formation of a plastic hinge in the member 

(e.g., in correspondence of large lateral tip displacements of cantilever beams), the strain-softening 

behavior of the concrete can cause a localization issue and loss of objectivity in force-based 

elements, making their post-peak responses dependent on the number of integration points 

considered in the integration scheme (Coleman and Spacone 2001). This loss of response 

objectivity is controlled by the integration weight of the integration point closest to the plastic 

hinge formation, which corresponds to the strain-softening region assumed by the FE model and 

not necessarily to the actual plastic hinge length of the physical member. It is worth noting that 

this localization issue occurs also when displacement-based elements are used to model structural 

members with softening behavior, in which case it is controlled by the length of the FE that is 

closest to the plastic hinge formation (Coleman and Spacone 2001).  In order to solve this issue, 

several regularization techniques were suggested in the literature (Coleman and Spacone 2001; 

Scott and Fenves 2006). In this study, for columns subjected to a combination of axial and lateral 

loads, for which plastic hinge formation was expected in correspondence of large lateral loads, the 

force-based beam-column element developed by Scott and Fenves (2006) was adopted. This 

element’s formulation employs a plastic hinge integration method to overcome the non-objectivity 

problem of force-based elements’ response due to localization for softening structures. This 
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element considers a plastic hinge with nonlinear behavior at each end of the element, whereas the 

remaining portion of the element has a linear elastic behavior. The length of the plastic hinge was 

assumed equal to the experimentally observed plastic hinge length (when this information was 

available in the literature) or estimated based on Paulay and Priestley (1992) (when this 

information was not reported in the literature). 

2.5 Model validation through comparison of numerical estimates and 
experimental results 

The proposed material constitutive model was validated through a comparison between an 

extensive experimental database obtained from existing literature and numerical simulation of the 

FE response of circular RC columns retrofitted with FRP laminates. Different loading conditions, 

typically adopted in the existing literature, were considered separately, namely: (a) quasi-static 

compressive axial load only, (b) quasi-static eccentric axial load, and (c) constant axial load and 

quasi-static lateral load (Figure 2-5). For each quasi-static analysis, the columns were modeled as 

cantilever beams with the coarsest mesh possible (i.e., with a single frame FE unless differently 

required by the presence of cross-sectional changes in the physical specimen). These analyses were 

performed based on the Newton-Raphson iterative procedure (Bathe 1996) and incremental 

displacement control, in order to investigate also the post-peak behavior of the models.  
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Figure 2-5. Loading configurations considered in validation 

The experimental database for this study was collected from the literature in order to emphasize 

the contribution of internal steel on the confining pressure imposed to the core concrete. This 

contribution was measured by considering the ratio fc  between the steel and FRP confinement 

forces, defined as: 

                 ,steel ,core

,FRP

l c
f

l g

f A
c

f A





 (2-9) 

in which ,corecA  denotes the area of the concrete core (i.e., confined by the steel reinforcement) and 

gA  denotes the gross area of the member cross-section. The experimental results were selected so 

that the minimum value of fc  for all cases was larger than or equal to 5%, below which the effects 

of simultaneous confinement by steel and FRP was considered to be negligible (i.e., the mSM 

model effectively reduces to the SM model). 

2.5.1 Columns subject to compressive axial load only 

A set of 46 RC columns confined with FRP and subjected to a monotonically increasing and 

concentrically applied axial load was identified from nine different authors. The description of the 
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select column specimens’ geometry and material properties, as well as the references from which 

the data were taken are provided in Table 2-1. The selected database contains specimens with a 

wide range of cross-section diameters (from 150 mm to 400 mm), lengths (from 300 mm to 

2000 mm), concrete peak strength (from 23.9 MPa to 50.8 MPa), transverse steel reinforcement 

ratio (from 0.39% to 3.02%) and FRP volume ratio (from 0.22% to 2.01%). The ratio between 

steel and FRP confinement forces, fc , varies between 8.3% and 193.6%, with an average value of 

40.7%. 

Table 2-1. Experimental test database for FPR-confined RC column subjected to concentric axial 
loading: specimens’ identification, geometry, and material properties 

Ref. ID 
d 

(mm) 
L 

(mm) 
fc 

(MPa) 
fyt 

(MPa) 
fy 

(MPa) 
ρs   

(%) 
ρf   

(%) 
Ef 

(GPa) 
σf 

(MPa) 
ξf 

cf  
(%) 

Parretti 
and 

Nanni 
(2002) 

DB450-C 200 914 25.5 517 393 1.42 0.54 126 1689 0.45 45.7 

Matthys 
et al. 

(2006) 

K2 400 2000 32 560 620 0.39 0.59 198 2600 0.61 8.3 

K3 400 2000 32 560 620 0.39 0.94 480 1100 1.14 12.3 

K4 400 2000 32 560 620 0.39 1.8 60 780 0.58 9.0 

K5 400 2000 32 560 620 0.39 0.6 60 780 0.62 27.1 

K8 400 2000 32 560 620 0.39 0.49 120 1100 0.55 23.5 
Eid et al. 
(2009) 

A1NP2C 303 1200 31.7 602 486 2.49 1.01 78 1050 0.67 87.7 

A3NP2C 303 1200 31.7 602 550 1.6 1.01 78 1050 0.60 50.5 

A5NP2C 303 1200 29.4 602 423 0.75 1.01 78 1050 0.33 15.9 

C4NP2C 303 1200 31.7 456 423 1.59 1.01 78 1050 0.46 40.3 

C4NP4C 303 1200 31.7 456 423 1.59 2.01 78 1050 0.89 20.2 

B4NP2C 303 1200 31.7 456 550 1.59 1.01 78 1050 0.78 33.3 

C4MP2C 303 1200 50.8 456 423 1.59 1.01 78 1050 0.56 40.3 

C2NP2C 303 1200 31.7 456 423 2.44 1.01 78 1050 0.43 67.3 

C2N1P2C 303 1200 36 456 423 2.44 1.01 78 1050 0.49 67.3 

C2N1P4C 303 1200 36 456 423 2.44 2.01 78 1050 0.63 33.6 

C2MP2C 303 1200 50.8 456 423 2.44 1.01 78 1050 0.64 67.3 

C2MP4C 303 1200 50.8 456 423 2.44 2.01 78 1050 0.80 33.6 
Lee et al. 

(2010) 
S2F1 150 300 36.2 1200 - 3.02 0.29 250 4510 0.42 193.6 

S2F2 150 300 36.2 1200 - 3.02 0.59 250 4510 0.42 96.8 

S2F3 150 300 36.2 1200 - 3.02 0.88 250 4510 0.36 64.5 

S2F4 150 300 36.2 1200 - 3.02 1.17 250 4510 0.36 48.4 

S2F5 150 300 36.2 1200 - 3.02 1.47 250 4510 0.33 38.7 
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S4F1 150 300 36.2 1200 - 1.51 0.29 250 4510 0.31 88.9 

S4F2 150 300 36.2 1200 - 1.51 0.59 250 4510 0.33 44.4 

S4F3 150 300 36.2 1200 - 1.51 0.88 250 4510 0.31 29.6 

S4F4 150 300 36.2 1200 - 1.51 1.17 250 4510 0.35 22.2 

S4F5 150 300 36.2 1200 - 1.51 1.47 250 4510 0.35 17.8 

S6F1 150 300 36.2 1200 - 1.01 0.29 250 4510 0.22 54.0 

S6F2 150 300 36.2 1200 - 1.01 0.59 250 4510 0.38 27.0 

S6F4 150 300 36.2 1200 - 1.01 1.17 250 4510 0.31 13.5 

S6F5 150 300 36.2 1200 - 1.01 1.47 250 4510 0.27 10.8 
Demers 

and Neale 
(1999) 

U25-2 300 1200 23.9 400 400 1.07 1.2 84 1270 0.38 10.4 

U40-4 300 1200 43.7 400 400 1.07 1.2 84 1270 0.22 10.7 

Wang et 
al. (2012) 

C1H2L1M 305 915 47 397 340 1.05 0.22 244 4340 0.79 30.5 

C1H2L2M 305 915 24.5 397 340 1.05 0.44 244 4340 0.89 15.2 

C1H1L1M 305 915 24.5 397 340 0.53 0.22 244 4340 0.81 12.9 

C1H1L1C 305 915 24.5 397 340 0.53 0.22 244 4340 0.81 12.9 

C2H2L1M 204 612 24.5 397 312 1.05 0.33 244 4340 0.73 16.8 

C2H2L1C 204 612 24.5 397 312 1.05 0.33 244 4340 0.85 16.8 
Cairns 
(2001) 

#28 356 1524 29.8 510 402 0.56 1.12 82.3 1770 0.41 10.4 

Jaffry 
(2001) 

#16 356 1524 29.8 510 402 0.56 1.12 45.2 1070 0.48 17.2 

Carrazedo 
and Hanai 

(2006) 

C2S25 190 570 28.9 756 554.8 1.96 0.55 219 2801 0.85 65.2 

C2S50 190 570 26.2 756 554.8 0.98 0.55 219 2801 0.70 29.9 

C1S25 190 570 28.9 756 554.8 1.96 0.27 219 2801 0.85 130.5 

C1S50 190 570 26.2 756 554.8 0.98 0.27 219 2801 0.88 59.8 

 

Table 2-2 reports the experimental values and numerical estimates for both the load-carrying 

capacity and the strain at peak strength for the different FRP-confined RC columns. The numerical 

estimates obtained by employing the mSM model to describe the mechanical behavior of the core 

concrete fibers (i.e., those confined by both lateral steel and FRP) are also compared to those 

obtained by using the SM model for the entire cross-section (i.e., neglecting the reinforcing steel’s 

confinement effects) and to those (identified in Table 2-2 as “SM + steelP ”) obtained by 

superposing the contributions to the load-carrying capacity due to the FRP confinement (estimated 

using the SM model) and the steel confinement contribution ( steelP ), which is estimated based on 

the relation suggested by Nilson et al. (2010) as: 
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                 steel ,core2 s s yt cP k f A   (2-10) 

in which the sk  coefficient is taken from Mander et al. (1988). The constitutive material model 

parameters were taken from the data reported in the reference for each set of experiments, 

whenever the information was available. When some of the information needed to define the model 

was missing, typical values were used (e.g., the unconfined concrete strain at peak stress co was 

assumed equal to 0.0020, 0.0022, or 0.0024 when the concrete strength was less than 28 MPa, 

between 28 and 40 MPa, and greater than 40 MPa, respectively, and the parameter   was estimated 

according to Spoelstra and Monti (1999). Table 2-2 reports also the ratio between the numerical 

results and the experimental estimates for both maximum axial load and strain at peak strength for 

all specimens, as well as the global statistics of these ratios in terms of sample means (  ), 

coefficients of variations (COV), minima, and maxima for both models considered in this study. 

The same global statistics were also reported for the estimates of the maximum axial loads obtained 

by superposing the FRP and steel confinement effects. 

Table 2-2. Comparison between experimental results and numerical simulation with both models 
of load-carrying capacity of RC column specimens subjected to concentric axial loading 

ID 

Maximum axial load (kN)   
Axial strain at peak strength 

(mm/m) 

Exp. 
mSM 
model 

Ratio 
SM 

model 
Ratio 

SM + 
ΔPsteel 

Ratio   Exp. 
mSM 
model 

Ratio 
SM 

model 
Ratio 

DB450-C 1715 1692 0.99 1502 0.88 1834 1.07   14.9 14.6 0.98 14.6 0.98 

K2 7460 7969 1.07 7744 1.04 8091 1.08   11.1 10.4 0.94 10.4 0.94 

K3 7490 7542 1.01 7455 1.00 7802 1.04   4.3 4.8 1.12 4.8 1.12 

K4 7580 7723 1.02 7458 0.98 7805 1.03   6.9 9.6 1.39 9.5 1.38 

K5 7580 7723 1.02 7458 0.98 7805 1.03   6.9 9.6 1.39 9.5 1.38 

K8 6230 6263 1.01 5930 0.95 6277 1.01   5.9 5.8 0.98 5.8 0.98 

A1NP2C 4571 5120 1.12 4106 0.90 5717 1.25   15 12.3 0.82 12.3 0.82 

A3NP2C 4331 4744 1.10 4095 0.95 5023 1.16   12.5 11 0.88 11 0.88 

A5NP2C 3326 3558 1.07 3333 1.00 3626 1.09   6.3 6.3 1.00 6.3 1.00 
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C4NP2C 3704 4164 1.12 3731 1.01 4474 1.21   7.7 8.3 1.08 8.3 1.08 

C4NP4C 5468 5765 1.05 5515 1.01 6258 1.14   20.8 22.7 1.09 22.7 1.09 

B4NP2C 4182 4776 1.14 4404 1.05 5017 1.20   13.6 11.5 0.85 11.5 0.85 

C4MP2C 5434 5869 1.08 5364 0.99 6107 1.12   8.8 8.8 1.00 8.8 1.00 

C2NP2C 4034 4278 1.06 3663 0.91 4899 1.21   8.1 6.5 0.80 6.5 0.80 

C2N1P2C 4502 4816 1.07 4080 0.91 5316 1.18   11 7.8 0.71 7.8 0.71 

C2N1P4C 5459 5856 1.07 5310 0.97 6546 1.20   17.5 13 0.74 13 0.74 

C2MP2C 5689 6308 1.11 5496 0.97 6732 1.18   10.4 8.5 0.82 8.5 0.82 

C2MP4C 7062 7770 1.10 7208 1.02 8444 1.20   15.9 13.8 0.87 13.8 0.87 

S2F1 1255 1354 1.08 767.9 0.61 1819 1.45   39 33.3 0.85 33.3 0.85 

S2F2 1590 1558 0.98 1045 0.66 2096 1.32   36 45.3 1.26 45.3 1.26 

S2F3 1873 1627 0.87 1194 0.64 2245 1.20   34 44.6 1.31 44.6 1.31 

S2F4 2015 1741 0.86 1351 0.67 2402 1.19   38 50.6 1.33 50.6 1.33 

S2F5 2651 1793 0.68 1446 0.55 2497 0.94   43 50 1.16 50 1.16 

S4F1 1025 1053 1.03 718.9 0.70 1201 1.17   19 23.3 1.23 23.3 1.23 

S4F2 1343 1265 0.94 979.5 0.73 1462 1.09   23 34 1.48 34 1.48 

S4F3 1572 1384 0.88 1144 0.73 1627 1.03   29 37.3 1.29 37.3 1.29 

S4F4 1820 1561 0.86 1342 0.74 1825 1.00   30 49 1.63 49 1.63 

S4F5 2209 1661 0.75 1473 0.67 1956 0.89   36 54 1.50 54 1.50 

S6F1 901.2 887.7 0.99 678.6 0.75 973 1.08   17 16 0.94 16 0.94 

S6F2 1202 1216 1.01 1016 0.85 1310 1.09   25 40 1.60 40 1.60 

S6F4 1696 1432 0.84 1292 0.76 1586 0.94   34 42 1.24 42 1.24 

S6F5 1767 1483 0.84 1364 0.77 1658 0.94   36 39.3 1.09 39.3 1.09 

U25-2 2950 3340 1.15 3180 1.08 3451 1.17   10 9 0.90 9 0.90 

U40-4 4650 4950 1.08 4783 1.03 5063 1.09   5.9 5 0.85 5 0.85 

C1H2L1M 3726 3666 0.98 3329 0.89 3810 1.02   23.1 19.5 0.84 19.5 0.84 

C1H2L2M 4807 4663 0.97 4457 0.93 4938 1.03   32.9 29.8 0.91 29.8 0.91 

C1H1L1M 3338 3497 1.05 3348 1.00 3554 1.06   18.3 20 1.09 20 1.09 

C1H1L1C 3445 3503 1.02 3358 0.97 3558 1.03   19.6 20.3 1.04 20.3 1.04 

C2H2L1M 1837 1810 0.99 1705 0.93 1883 1.02   25.3 21.2 0.84 21.2 0.84 

C2H2L1C 1992 1873 0.94 1775 0.89 1953 0.98   28 25.2 0.90 25.2 0.90 

#28 7329 6736 0.92 6070 0.83 6532 0.89   18.8 15.5 0.82 15.5 0.82 

#15 6020 6238 1.04 5276 0.88 5738 0.95   16.7 15 0.90 15 0.90 

C2S25 2097 2102 1.00 1795 0.86 2473 1.18   19.2 21.1 1.10 21.1 1.10 

C2S50 1855 1873 1.01 1693 0.91 2004 1.08   15.8 16.5 1.04 16.5 1.04 

C1S25 1692 1836 1.09 1409 0.83 2087 1.23   16.5 15.6 0.95 15.6 0.95 

C1S50 1482 1531 1.03 1344 0.91 1655 1.12   11.6 18.9 1.63 18.9 1.63 

  Mean 1.00 Mean 0.88 Mean 1.10    Mean 1.07 Mean 1.07 

  COV 0.10 COV 0.15 COV 0.10    COV 0.23 COV 0.23 
  Min 0.68 Min 0.55 Min 0.89    Min 0.71 Min 0.71 
  Max 1.15 Max 1.08 Max 1.45    Max 1.63 Max 1.63 

 

It is observed that, in average, the mSM model provides excellent estimates of the columns’ 
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maximum axial load capacity, with   1.00
 
and (i.e., in average the model predicts exactly the 

columns’ axial strength) and COV  0.10, which indicates a small dispersion of the results. The 

minimum and maximum values of the numerical to experimental axial strength are 0.68 and 1.15, 

respectively, which indicate that the mSM model can sometimes significantly underestimate the 

axial strength of the FRP-confined columns. The SM model produces less accurate and slightly 

more disperse results than the mSM model, with   0.88 and COV  0.15. In particular, the SM 

model tends to underestimate the axial load capacity of the specimens, which is consistent with 

the fact that it neglects the effects of steel confinement. This result is also confirmed by the 

minimum and maximum values of the numerical to experimental axial strength obtained using the 

SM model, which are 0.55 and 1.08, respectively. Conversely, both models provide practically 

identical estimates of the strain at peak strength, which slightly overestimate the experimental 

results (   1.07 for both models) and present a significantly larger dispersion of the results when 

compared to the axial strength estimates ( COV  0.23). This result was also expected, because the 

numerical prediction of the strain at peak strength is inherently more complex and more affected 

by uncertainties than the numerical prediction of the peak axial strength (e.g., due to 

uncertainties/potential inaccuracies in the experimental measurements and the lack of accurate 

measurements of modeling parameters that affect the numerical prediction of the strains). The 

results obtained considering a linear superposition of the effects of FRP and steel confinement tend 

to overestimate the columns’ axial load capacity by approximately 10% in average (   1.10), with 

a dispersion that is similar to that observed for the mSM results (COV = 0.10). This observation 

implies that using Eq. (2-10) to estimate the steel confinement effect of FRP-confined RC columns 

subject to concentric axial loads overestimates this effect by a factor approximately equal to 2. The 

reasons for this overestimation are that: (1) the maximum capacity corresponding to each confining 
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mechanism is achieved at different levels of strains, and (2) the linear combination of the FRP and 

steel confinement effects does not provide a realistic description of the highly nonlinear behavior 

of the confined RC columns, particularly near the peak strength region.  

Figure 2-5 plots the experimental and numerical axial force-axial strain responses for two select 

columns, i.e., specimens DB450-C (Parretti and Nanni 2002) and S2F1 (Lee et al. 2010), for which 

the coefficients fc  assume the values 45.7% (i.e., close to the average value for the specimens 

considered here) and 193.6% (i.e., the largest value in the considered database), respectively. In 

both cases, it is observed that the mSM model, which explicitly accounts for the simultaneous 

confinement of steel and FRP on the core concrete, shows a better agreement with the experimental 

results than the SM model not only in terms of the peak strength of the column, but also for the 

entire axial force-axial strain response curve up to and beyond the failure of the FRP confinement. 

As expected, the improvement in the experimental results’ prediction from the SM to the mSM 

model is more evident for increasing values of fc . 

 

Figure 2-6. Comparison between the analytical concrete models and test results for specimens 
subject to concentric axial load: (a) DB450-C (Parretti and Nanni 2002), and (b) S2F1 

(Lee et al. 2010) 
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2.5.2 Columns subject to eccentric axial load 

A set of 22 specimens of RC columns subjected to monotonically increasing eccentric axial loads 

was collected from five different authors. In order to accurately account for second order effects 

produced by the eccentricity of the load, the FE analysis was performed considering the nonlinear 

geometry conditions based on a P-Δ formulation (Fenves and Filippou 2004). The description of 

these specimens is given in Table 2-3, whereas  

Table 2-4 provides the comparison between experimental results and numerical estimates obtained 

using both SM and mSM models, including the means, COVs, minima, and maxima for each 

model. The experimental specimens include circular columns with cross-section diameters ranging 

between 150 mm and 205 mm; length between 500 mm and 1200 mm; concrete peak strength 

between 28 MPa and 75 MPa; transverse steel reinforcement ratio between 1.26% and 4.76%; and 

FRP volume ratio between 0.45% and 3.08%. The ratio between steel and FRP confinement forces, 

fc , varies between 9.8% and 55.7%, with an average value of 15.3%. The last three listed 

specimens from Fitzwilliam and Bisby (2010) presented longitudinal FRP reinforcement in 

addition to FRP confinement and were modeled using the FE proposed in Barbato (2009). The 

specimens from Mostofinejad and Moshiri (2014) were wrapped with discontinuous rings of FRP 

sheets. The results presented in  

Table 2-4 show that both SM and mSM models are able to predict accurately the load-carrying 

capacity of FRP-confined columns under a combination of a compressive axial load and the 

bending moment induced by load eccentricity, with a small improvement from a mean ratio of 

numerical to experimental strength equal to 0.97 for the mSM model and to 0.94 for the SM model. 

In addition, the COVs of the numerical to experimental strength ratio are also almost the same for 

the two models, i.e., 0.08 and 0.09 for the mSM and SM models, respectively. Thus, the differences 
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between the two models for this loading case are significantly smaller than the differences 

observed for the concentric axial load case. This results can be explained as follows: (1) the 

experimental database of specimens subject to eccentric axial loads contains specimens with 

significantly smaller amounts of transverse steel than the database available for specimens subject 

to concentric axial loads, as demonstrated by the smaller average value of fc  (i.e., 15.3% for the 

case of eccentric axial loads, compared to 42.2% for the case of concentric axial loads); (2) the 

presence of a bending moment induced by the eccentricity of the load produces a non-uniform 

compression or even some tension within the specimen’s cross-section, which reduces the 

effectiveness of the passive confining mechanism of both steel and FRP. 

Table 2-3. Experimental test database for FPR-confined RC column subjected to eccentric axial 
loading: specimens’ identification, geometry, and material properties 

Ref. ID 
d 

(mm) 
L 

(mm) 
fc 

(MPa) 
fyt 

(MPa) 
fy 

(MPa) 
ρs   

(%) 
ρf   

(%) 
Ef 

(GPa) 
σf 

(MPa) 
cf  

(%) 

Hadi (2006) C2 150 620 32 500 500 4.76 2.67 25 700 55.7 

Hadi (2009) 
CF-25 205 925 49.9 437 640 3.17 3.08 45.8 884.6 28.9 

CF-50 205 925 49.9 437 640 3.17 3.08 45.8 884.6 28.9 
Bisby and 

Ranger 
(2010) 

C-5 152 608 33.2 710 710 1.26 1.00 90 894 13.2 

C-10 152 608 33.2 710 710 1.26 1.00 90 894 13.2 

C-20 152 608 33.2 710 710 1.26 1.00 90 894 13.2 

C-30 152 608 33.2 710 710 1.26 1.00 90 894 13.2 

C-40 152 608 33.2 710 710 1.26 1.00 90 894 13.2 
Fitzwilliam 
and Bisby 

(2010) 

300C10A 152 300 30.5 693 710 1.26 1.00 88.2 1014 11.5 

300C10B 152 300 30.5 693 710 1.26 1.00 88.2 1014 11.5 

300C20B 152 300 30.5 693 710 1.26 1.00 88.2 1014 11.5 

600C10A 152 600 30.5 693 710 1.26 1.00 88.2 1014 11.5 

900C10A 152 900 30.5 693 710 1.26 1.00 88.2 1014 11.5 

1200C10A 152 1200 30.5 693 710 1.26 1.00 88.2 1014 11.5 

1200C10B 152 1200 30.5 693 710 1.26 1.00 88.2 1014 11.5 

1200C20A 152 1200 30.5 693 710 1.26 1.00 88.2 1014 11.5 

300C12A 152 300 30.5 693 710 1.26 1.00 88.2 1014 11.5 

1200C12A 152 1200 30.5 693 710 1.26 1.00 88.2 1014 11.5 

1200C14A 152 1200 30.5 693 710 1.26 1.00 88.2 1014 11.5 

IW-30 150 500 28 502 502 2.15 0.45 230 3900 9.8 

IW-60 150 500 28 502 502 2.15 0.45 230 3900 9.8 
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Mostofinejad 
and Moshiri 

(2014) 
IW-90 150 500 28 502 502 2.15 0.45 230 3900 9.8 

 

Table 2-4. Comparison between experimental results and numerical simulation with both models 
of load-carrying capacity of RC column specimens subjected to eccentric axial loading 

ID 

Maximum axial load (kN) 

Exp. 
mSM 
model 

Ratio 
SM 

model 
Ratio 

C2 409 404 0.99 373 0.91 

CF-25 2345 2377 1.01 2215 0.94 

CF-50 1372 1438 1.05 1387 1.01 

C-5 770 828 1.08 795 1.03 

C-10 664 708 1.07 691 1.04 

C-20 579 575 0.99 557 0.96 

C-30 337 361 1.07 360 1.07 

C-40 264 246 0.93 246 0.93 

300C10A 672 604 0.90 587 0.87 

300C10B 683 640 0.94 620 0.91 

300C20B 911 912 1.00 902 0.99 

600C10A 561 498 0.89 490 0.87 

900C10A 549 522 0.95 507 0.92 

1200C10A 449 455 1.01 447 1.00 

1200C10B 480 449 0.94 444 0.93 

1200C20A 537 494 0.92 482 0.90 

300C12A 681 622 0.91 604 0.89 

1200C12A 582 501 0.86 481 0.83 

1200C14A 671 529 0.79 479 0.71 

IW-30 544 602 1.11 592 1.09 

IW-60 279 269 0.96 265 0.95 

IW-90 168 154 0.92 152 0.91 

  Mean 0.97 Mean 0.94 

  COV 0.08 COV 0.09 
  Min 0.79 Min 0.71 
  Max 1.11 Max 1.09 

 

Figure 2-6 compares the experimental and numerical response (i.e., axial force versus 

displacement at mid-height) using both mSM and SM concrete constitutive models for specimens 

900C10A (Fitzwilliam and Bisby 2010) and C2 (Hadi 2006), for which the coefficients fc  assume 
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the values 11.5% (i.e., close to the average value for the specimens considered here) and 55.7% 

(i.e., the largest value in the considered database), respectively. It is observed that: (1) for specimen 

900C10A ( fc  = 11.5%), the two concrete constitutive models provide almost the same results in 

terms of peak axial strength and ultimate displacement at mid-height; (2) for specimen C2 ( fc  = 

55.7%), the mSM model provides significantly improved estimates of the peak strength and of the 

displacement at failure when compared to the corresponding results obtained using the SM model. 

This result indicates that the internal steel’s confinement can significantly affect the response of 

FRP-confined columns subject to eccentric axial loads when the amount of transverse steel 

reinforcement is sufficiently large relatively to the amount of FRP, as measured by the coefficient 

fc .  It is also observed that, for both specimens, the axial load-mid-height displacement responses 

obtained using the FE models present non-negligible differences with the experimental results. 

These differences may be due to: (1) the complexity of the experimental set-up for these eccentric 

axial load tests, which may affect the accuracy of the experimental displacement results; (2) the 

approximations of the P-Δ formulation, which considers only some of the nonlinear geometry 

effects that are affecting the response of these specimens; and (3) the presence of complex three-

dimensional nonlinear behavior in the concrete, e.g., triaxial stress conditions and concrete dilation 

(Kabir and Shafei 2012; Cao et al. 2018), that cannot be accurately represented by a simplified 

fiber-section frame model.  



34 
 

 

Figure 2-7. Comparison between the analytical concrete models and test results for specimens 

subject to eccentric axial load: (a) 900C10A (Fitzwilliam and Bisby 2010), and (b) C2 (Hadi 

2006) 

2.5.3 Columns subject to axial and lateral loads 

A set of 18 FRP-confined RC columns subjected to a constant axial load, Pa, and a cyclic lateral 

displacement was selected from seven different published works. These specimens are described 

in Table 2-5. The considered specimens consist of columns with cross-section diameters varying 

between 300 mm and 760 mm, lengths between 850 mm and 2000 mm, concrete peak strength 

between 18.6 MPa and 40.8 MPa, transverse steel reinforcement ratio between 0.13% and 2.22%, 

FRP volume ratio between 0.11% and 4.06%, and ratio between axial load and cross-section 

capacity (i.e., Pa/Po, where Po corresponds to the concrete strength fc times the gross area Ag) 

between 5% and 64%. The coefficient fc varies between 5.7% and 47.3%, with an average value 

of 13.2%. The efficiency factors for the FRP rupture strain were taken from the experimental data 

(when available) or estimated according to Lam and Teng (2004) (when not reported in the 

experimental investigations). 
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Table 2-6 reports the comparison of the experimental results with the numerical estimates of the 

maximum lateral load-carrying capacity and of the ductility obtained using both mSM and SM 

models. The ductility is measured here by the ductility parameter 2 / yI     (displacement 

ductility) or 2 / yI    (curvature ductility) (Paultre et al. 2015), which are obtained using an 

idealized bilinear load-displacement diagram (Sheikh and Khoury 1993). In this study, 2 and 2  

are conventionally defined as the displacement and curvature, respectively, where the specimens 

reach the 80% of the maximum lateral capacity in the post-peak response;  and yI  and yI  denote 

the conventional yield displacement and curvature, respectively, corresponding to the intersection 

between the peak strength’s horizontal line and the secant line of the lateral load-lateral 

displacement/curvature curve passing through the origin and 75% of the peak strength. The usage 

of the displacement or curvature ductility for different specimens was dictated by the manner in 

which the experimental data were presented in each publication considered in the experimental 

database. 
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Table 2-5. Experimental test database for FPR-confined RC column subjected to axial and lateral loads: specimens’ 
identification, geometry, and material properties 

Ref. ID 
d 

(mm) 
L 

(mm) 
fc 

(MPa) 
Pa/Po 

fyt 
(MPa) 

fy 
(MPa) 

db 
(mm) 

ρs   
(%) 

ρf   
(%) 

Ef 
(GPa) 

σf 
(MPa) 

ξf 
cf  

(%) 

Kawashima 
et al. (2000) 

A2 400 1350 30 0.05 296 296 16 0.23 0.11 243 4277 0.64* 6.1 

Li and Sung 
(2004) 

FCS-2 760 1750 18.6 0.11 426 426 19.6 0.13 0.14 232 4170 0.64* 6.7 

Paultre et al. 
(2015) 

S75P10C1 305 2000 36 0.09 470 415 19.6 2.13 1.32 70.6 849 0.91 47.3 

S150P10C1 305 2000 33.6 0.35 470 415 19.6 1.07 1.32 70.6 849 0.64 16.2 

S75P35C1 305 2000 33.6 0.1 470 415 19.6 2.13 1.32 70.6 849 0.91 47.3 

S150P35C1 305 2000 34.6 0.32 470 415 19.6 1.07 1.32 70.6 849 0.76 16.2 
Desprez et al. 

(2013) 
P1C 300 2000 35.8 0.1 470 415 19.5 2.22 4.06 70.6 849 0.61 16.6 

P2C 300 2000 34.9 0.35 470 415 19.5 2.22 4.06 70.6 849 0.61 16.6 

P3C 300 2000 34.4 0.1 470 415 19.5 1.11 4.06 70.6 849 0.61 5.7 

P4C 300 2000 34.3 0.35 470 415 19.5 1.11 4.06 70.6 849 0.61 5.7 
Gu et al. 
(2010) 

J1 300 850 28 0.05 350 400 19 0.33 0.34 60 1832 0.52 6.6 

J2 300 850 28 0.05 350 400 19 0.33 0.15 230 4232 0.43 6.6 
Sheikh and 
Yau (2002) 

ST-2NT 356 1473 40.4 0.64 450 450 25 0.3 1.4 20 400 0.74* 5.8 

ST-4NT 356 1473 44.8 0.32 450 450 25 0.3 0.56 75 900 0.64* 6.4 

ST-5NT 356 1473 40.8 0.32 450 450 25 0.3 1.4 20 400 0.74* 5.8 
Liu and 
Sheikh 
(2013) 

P271CF3 356 1473 40 0.32 490 496 25 0.3 1.12 76.4 939 0.83 6.2 

P401CF8 356 1473 40 0.47 490 496 25 0.3 1.12 76.4 939 0.91 6.2 

P401GF9 356 1473 40 0.47 490 496 25 0.3 1.4 25.5 518 0.82 9.0 
               Note: * efficiency factor estimated based on Lam and Teng (2004) 
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Table 2-6. Comparison between experimental results and numerical simulation with both models 
of load-carrying capacity of RC column specimens subjected to axial and lateral loads 

ID 

Maximum lateral load (kN) Ductility (-) 

Exp. 
mSM 
model 

Ratio 
SM 

model 
Ratio Exp. 

mSM 
model 

Ratio 
SM 

model 
Ratio 

A2 108.5 110.8 1.02 110.0 0.99 10.8* 13.3 1.05 12.4 0.99 

FCS-2 878.5 835.7 0.95 828.9 0.94 8.8* 8.8 1.00 8.8 1.00 

S75P10C1 64.0 59.8 0.93 57.0 0.89 14.4* 14.4 1.00 12.4 0.86 

S150P10C1 65.8 55.9 0.85 55.5 0.84 10.9* 10.9 1.00 10.9 1.00 

S75P35C1 91.5 76.9 0.84 74.9 0.82 9.5* 11.3 1.19 5.1 0.54 

S150P35C1 86.0 76.2 0.89 75.3 0.88 8.5* 10.7 1.12 6.6 0.69 

P1C 65.0 61.9 0.95 60.1 0.92 12.2* 12.2 1.00 7.4 0.61 

P2C 90.9 83.8 0.92 82.7 0.91 8.3* 10.6 1.08 3.4 0.35 

P3C 66.2 62.3 0.94 62.0 0.94 10.6* 10.6 1.00 7.2 0.68 

P4C 85.5 80.4 0.94 79.5 0.93 10.1* 8.2 0.81 4.4 0.43 

J1 179.2 177.1 0.99 175.4 0.98 9.7* 11.2 1.16 11.2 1.16 

J2 192.3 172.2 0.90 171.5 0.89 7.5* 9.5 1.15 9.5 1.15 

ST-2NT 131.0 142.3 1.09 139.0 0.98 12.7** 13.9 1.09 12.9 1.01 

ST-4NT 131.6 143.9 1.09 142.1 0.99 13.3** 10.4 0.78 9.5 0.71 

ST-5NT 124.8 144.3 1.16 141.3 0.98 16.2** 14.3 0.88 13.3 0.82 

P271CF3 118.6 125.7 1.06 125.1 1.05 14.6** 12.8 0.88 12.1 0.83 

P401CF8 98.7 108.6 1.10 107.6 1.09 17.3** 15.5 0.90 14.9 0.86 

P401GF9 115.5 97.3 0.84 94.0 0.81 12.3** 13.7 1.11 12.7 1.03 

  Mean 0.97 Mean 0.95  Mean 1.01 Mean 0.82 

  COV 0.10 COV 0.10  COV 0.12 COV 0.29 
  Min 0.84 Min 0.81  Min 0.78 Min 0.35 
  Max 1.16 Max 1.13  Max 1.19 Max 1.16 

        Note: * displacement ductility; ** curvature ductility 

 

It is observed that, also for this load case, both mSM and SM models provide very good estimates 

of the peak lateral load, with a mean equal to 0.97 for the mSM model and to 0.95 for the SM 

model. The corresponding dispersions are also very similar, i.e., COV = 0.10 for both mSM and 

SM models. This result is consistent with that obtained for the eccentric axial load case and can be 

explained in the same way (i.e., small values of fc  and smaller effectiveness of the confinement 

effect when the columns’ cross-sections are not subjected to uniform compression). Due to the 
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limited experimental database available, further investigations will be needed to determine the 

actual significance of the simultaneous confinement by steel and FRP on the lateral capacity of 

FRP-confined RC columns. 

With respect to the ductility predictions, the mSM model provides results that are in excellent 

agreement with the experimental results (with   1.01 and COV = 0.12), whereas the SM model 

tends to underestimate the experimental results and produce a greater dispersion of the ductility 

estimates (with   0.82 and COV = 0.29). This result seems to indicate that considering the 

simultaneous confinement of steel and FRP on the core fibers of FRP-confined RC columns could 

be important for the prediction of their ductility capacity, even if this simultaneous confinement 

has small or negligible effects on the lateral load capacity. However, additional studies and 

experimental data are necessary to confirm this preliminary observation, because it is based on a 

very limited experimental database. 

Figure 2-7 and Figure 2-8 compare the experimental and numerical cyclic lateral load-lateral 

displacement response for two select columns, i.e., specimens P1C (Desprez et al. 2013) and 

S75P10C1 (Paultre et al. 2015), respectively, for which the coefficients fc  assume the values 

16.6% (i.e., close to the average value for the specimens considered here) and 47.3% (i.e., the 

largest value in the considered database). The results for both specimens indicate that both the 

mSM and SM models are able to predict the overall cyclic behavior and the lateral load capacity 

of the specimens; however, the mSM model is also capable to simulate with accuracy the columns’ 

ductile behavior after peak strength, whereas the SM model predicts a strength degradation that is 

faster than that observed in the experimental results. This result suggests that, for the range of fc  

values in the available experimental database, the internal steel’s confinement has only a negligible 

effect on the lateral load capacity, but a larger effect on the lateral ductility capacity of FRP-
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confined RC columns subjected to a combined loading due to axial and lateral loads. It is pointed 

out that the columns were modeled considering a fixed base. The inclusion of a bond-slip model 

based on experimental data could improve the performance of the simulated results with respect 

to the pinching behavior of the hysteresis loops. 

 

Figure 2-8. Comparison between the analytical concrete models and test results for specimen 

P1C subject to axial and cyclic lateral loads (Data from Desprez et al. 2013) 

 

Figure 2-9. Comparison between the analytical concrete models and test results for specimen 

S75P10C1 subject to axial and cyclic lateral loads (Data from Paultre et al. 2015) 
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2.6 Conclusions 

This paper proposes a new confined concrete material constitutive model that accounts for 

simultaneous confinement of steel and fiber reinforced polymers (FRP). The monotonic envelope 

of the newly proposed model, referred to as modified Spoelstra-Monti (mSM) model, is a 

modification of the monotonic envelope of the Spoelstra-Monti (SM) model for FRP-confined 

concrete. Simple hysteresis rules are also proposed to allow the use of the mSM model for cyclic 

and dynamic loading conditions. This new model is implemented into a research-oriented general-

purpose finite element (FE) program and used in conjunction with a fiber-section force-based 

frame FE to analyze FRP-confined reinforced concrete columns for which experimental test results 

are available in the literature. The additional confining effect due to internal reinforcing steel is 

modeled through the use of the mSM model to characterize the stress-strain behavior of the core 

concrete’s fibers. A new relative confinement coefficient fc , defined as the ratio of the ultimate 

reinforcing steel’s and FRP’s confinement forces in a given cross-section, is proposed as a measure 

of the internal steel’s confinement effects on the response behavior of the FRP-confined columns. 

Three loading conditions are considered: (1) concentric axial load, (2) eccentric axial load, and (3) 

a combination of axial load and applied lateral displacement. It is found that the use of the mSM 

model provides very good agreement with the experimental results, with estimates of the peak 

strength and axial/lateral deformations that are always more accurate than those obtained using the 

SM model (i.e., by neglecting the internal reinforcing steel’s confinement effect). The internal 

steel’s confinement effect on the peak strength of FRP-confined columns subject to concentric 

axial loads is significant, whereas the same effect is found to be negligible on the value of the 

strain at peak strength. The internal steel’s confinement effect is found to be small but not 

negligible for the peak strength of FRP-confined columns subject to eccentric axial load. The same 
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effect appears to be even smaller for the lateral load capacity of FRP-confined columns subject to 

a combination of axial and lateral loads. However, this effect is larger and could be significant for 

the lateral ductility capacity of columns under axial and lateral loads. It is noted here that the 

observations made regarding columns subject to eccentric axial loads and to a combination of axial 

and lateral loads may require additional investigation to be fully confirmed, due to the limited size 

of the experimental database. 

The steel-and-FRP confined concrete model developed in this paper is suitable for use in FE 

models in conjunction with fiber-section force-based frame FE and can be used for accurate and 

computationally-efficient FE analysis of real-world large-scale structures (e.g., buildings and 

bridges) with FRP-confined RC columns, for which more accurate three-dimensional FE models 

could be computationally prohibitive. 
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3 Investigation of the transverse steel effects on the axial 
compression strength of FRP-confined reinforced concrete 
columns based on a numerical parametric study 

The proposed FRP-and-steel confined concrete model is employed in an extensive parametric 

study to quantify the contribution of the often-ignored steel confinement on the axial load-bearing 

capacity of FRP-strengthened RC columns. The impact of design limits on concrete deformation 

by design guidelines is also investigated. A new relative confinement coefficient Cs is proposed to 

describe the steel confinement effects in the structural behavior of FRP-confined RC columns 

considering design limitations on concrete deformation. 

3.1 Introduction 

Use of fiber-reinforced polymer (FRP) composites for retrofitting reinforced concrete (RC) 

structures has been extensively investigated throughout the last four decades (Fardis and Khalili 

1982; Lam and Teng 2003a; Raza et al. 2019). The utilization of FRP has gained particular 

attention in recent years as a repair technology to aging RC structures that have their functionality 

affected by environmental deterioration, damage due to extreme events, or increased demands 

produced by unplanned loads (Parvin and Brighton 2014). In many cases, the retrofit of RC 

columns using external FRP jackets or wraps represents a reasonable and cost-effective alternative 

to steel jackets or enlarged RC cross-sections (Fardis and Khalili 1982; Rocca 2007; Roy et al. 

2010). Among the possible applications, FRP wraps can be used to increase the axial compression 

strength of RC members by producing a confinement effect (Nanni and Bradford 1995; Toutanji 

1999; ACI 2017). Whereas RC members that are subject to axial compression only are quite rare 

in buildings and other structures, axial compression strength of FRP-confined columns has been 

widely investigated (Spoelstra and Monti 1999; Matthys et al. 2006; Rocca et al. 2006; Hu and 

Barbato 2014; Piscesa et al. 2018), is explicitly addressed in modern design codes and guidelines 
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(e.g., ACI 2017), and needs to be evaluated when constructing the axial force-bending moment 

interaction diagram for an RC column (Bank 2006). Axial rehabilitation of RC columns using FRP 

confinement is also common in practical applications (Parvin and Brighton 2014). 

The design of RC columns using modern design standards generally requires a ductile behavior, 

which leads to relatively higher volumetric ratios of transverse steel reinforcement when compared 

to columns designed using older standards (Roy et al. 2010). However, the presence of transverse 

steel reinforcement is generally neglected in the retrofit and rehabilitation of RC columns using 

FRP wraps, e.g., when using the ACI 440.2R-17 (ACI 2017) guidelines. This situation is probably 

due to the fact that, whereas the behavior of concrete confined by FRP only is extensively studied 

and documented in the literature (Fardis and Khalili 1982; Mirmiran and Shahawy 1996; Karbhari 

and Gao 1997; Samaan et al. 1998; Spoelstra and Monti 1999; Toutanji 1999; Xiao and Wu 2000; 

Fam and Rizkalla 2001; Lam and Teng 2003a; b; Shao et al. 2006), only a few studies have 

investigated the simultaneous confining mechanisms of FRP and steel (Demers and Neale 1999; 

Eid et al. 2009; Wang et al. 2012). Moreover, most of the existing stress-strain models of FRP-

and-steel confined concrete use a linear superposition of the confining effects of each material (Li 

et al. 2003; Ilki et al. 2008; Hu and Seracino 2014), and/or are based on regression analyses of 

limited data points (Lee et al. 2010), which may lead to inaccurate estimates of the axial strength 

of FRP-confined RC columns with parameters laying outside the models’ calibration ranges. Teng 

et al. (2015) proposed a model that considers the peak strength of simultaneously confined concrete 

as a linear superposition of the global contributions from the unconfined concrete strength, FRP, 

and steel, with the latter being a nonlinear function of the FRP reinforcement ratio. 

An FRP-and-steel confined concrete constitutive model based on an incremental procedure that 

efficiently accounts for the nonlinear interaction of FRP and steel confinement was recently 
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developed to model the stress-strain behavior of confined concrete within the cross-section of FRP-

confined circular RC columns (Zignago et al. 2018). This model, used in conjunction with a force-

based frame finite element (FE) with fiber-based cross-sections (Hu and Barbato 2014), was 

thoroughly validated and shown to produce accurate estimates of the structural response of FRP-

confined circular RC columns subject to different loading conditions for any realistic combination 

of design parameters and material properties.  

This paper investigates the effects of transverse steel confinement on the axial strength of FRP-

confined circular RC columns through an extensive parametric study by using these efficient and 

accurate nonlinear FE and FRP-and-steel confined concrete models (Hu and Barbato 2014; 

Zignago et al. 2018). The paper considers wide but realistic ranges of the different design 

parameters to quantify their relative importance and suggest possible improvements of existing 

design guidelines. To the authors’ knowledge, this is the first study to investigate systematically 

the issue of simultaneous confinement of RC columns by FRP and steel to understand its effects 

on the structural behavior of RC members retrofitted using FRP wrapping. This study also 

identifies easy-to-compute parameters that can synthetically describe the effects of transverse steel 

on the design strength of the structural members under consideration. The characterization of these 

parameters represents a preliminary but necessary step towards the improvement of existing design 

equations for FRP-confined RC columns subject to axial compression. 

3.2 FE modeling of FRP-confined RC columns 

This study estimates the axial strength of FRP-confined columns by using nonlinear FE analysis 

performed via the general-purpose software framework Open System for Earthquake Engineering 

Simulation (OpenSees) (Mazzoni et al. 2006). By assuming a concentric axial load condition 

applied to a short column, the axial strength of the column is calculated as the column sectional 
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capacity using a zero-length fiber-section element (Mazzoni et al. 2006). The material nonlinearity 

is modeled by associating to the different fibers in the cross-section the appropriate uniaxial stress-

strain constitutive models for the corresponding material. Both concrete cover and core fibers 

within the cross-section are modeled using the FRP-and-steel confined concrete model developed 

by Zignago et al. (2018), which reduces to the Spoelstra-Monti model (Spoelstra and Monti 1999) 

for concrete fibers confined by FRP only (i.e., concrete cover confined by FRP), to the Mander 

model (Mander et al. 1988) for concrete fibers confined by steel only (i.e., core concrete when no 

FRP is applied), and to the Popovics-Saenz model (Popovics 1973; Balan et al. 1997) for 

unconfined concrete fibers (i.e., concrete cover when no FRP is applied). A clear concrete cover 

thickness ct = 25 mm is assumed for all column models. The unconfined concrete initial tangent 

modulus, cE , is calculated as a function of the unconfined concrete compressive peak strength, 

cf  , as (Mander 1983): 

 5000  (MPa)c cE f   (3-1) 

The unconfined concrete strain at peak strength, c  , is calculated using the equation proposed by 

De Nicolo et al. (1994), which was obtained through regression analysis of experimental results 

from compressive tests of concrete cylinders collected from several different authors, as:  

  
0.5

70.00076 0.626 4.33 10  (MPa)c cf        
  (3-2) 

The maximum allowable strain of the concrete, εc,max, is assumed equal to the value specified by 

ACI 440.2R-17 (ACI 2017) as: 
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where b is the geometry efficiency factor and is equal to 1 for circular cross-sections; fe fu    

denotes the effective strain of the FRP at failure, in which   is the FRP strain efficiency factor 

determined by using the model proposed by Realfonzo and Napoli (2011) as a function of concrete 

strength and FRP confining stiffness 0.5f f fK E  (with f = FRP volumetric reinforcement 

ratio and fE = FRP elastic modulus),  and fu  denotes the ultimate strain of the FRP obtained from 

flat coupon tensile tests; and lf lfuf f  is the maximum confinement pressure exerted by the FRP, 

where lfuf  is the ultimate FRP lateral confining pressure. It is observed here that the FRP strain 

efficiency factor model proposed by Realfonzo and Napoli (2011) decreases linearly for increasing 

FRP confining stiffness Kf, which also implies that κε increases for increasing column diameter, 

when everything else is being kept the same. The Menegotto-Pinto plasticity model (Menegotto 

and Pinto 1973), as modified by Filippou et al. (1983) to include isotropic hardening effects, is 

used to model the longitudinal steel rebars. The sectional analyses are performed by applying 

quasi-static, monotonically increasing, and concentric axial loads.  

3.3 Parametric study 

The parameters considered in this study are: (1) fiber type, i.e.,  carbon FRP (CFRP) or glass FRP 

(GFRP); (2) FRP volumetric reinforcement ratio, with six different levels for each type of fiber, 

i.e., ρf = 0%, 0.25%, 0.5%, 1%, 2%, and 3% for CFRP, and ρf = 0%, 0.5%, 1%, 2%, 4%, and 6% 

for GFRP; (3) column diameter, with four different diameters, i.e., D = 150 mm, 300 mm, 600 

mm, and 1,200 mm; (4) concrete compressive strength, with four different strength levels, i.e., 

cf   = 20 MPa, 30 MPa, 50 MPa, and 70 MPa; and (5) transverse steel volumetric reinforcement 

ratio, with six different levels, i.e., st = 0%, 0.5%, 1%, 2%, 3%, and 4%. The combination of the 

different values for all the parameters results in a total of 1,152 nonlinear FE analyses. Table 3-1 
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summarizes the parameters considered and their values, whereas Table 3-2 shows the material 

properties considered as constants and their values used in the FE simulations. 

Table 3-1. Design parameters considered in the parametric study 

Parameter  Values 
Fiber type  Carbon (CFRP), Glass (GFRP) 

CFRP ratio, ρf (%)  0, 0.25, 0.5, 1, 2, 3 

GFRP ratio, ρf (%) 0, 0.5, 1, 2, 4, 6 

Column diameter, D (mm) 150, 300, 600, 1200 
Concrete strength, cf   (MPa) 20, 30, 50, 70 

Transverse steel ratio, ρst (%) 0, 0.5, 1, 2, 3, 4 
 

Table 3-2. Material properties used in the FE simulations 

Material Properties Value 

Transverse steel  
Yield strength, fyt (MPa) 450 

Young’s modulus, Est (GPa) 200 

Longitudinal steel  

Strain hardening ratio, b (-) 0.005 

Yield strength, fyl (MPa) 450 

Young’s modulus, Esl (GPa) 200 

Longitudinal steel ratio, ρsl (%) 1.0 

CFRP 
Tensile strength, ffu (MPa) 1200 

Young’s modulus, Ef (GPa) 100 

GFRP 
Tensile strength, ffu (MPa) 600 

Young’s modulus, Ef (GPa) 25 
 

The ultimate tensile strength, fuf , and modulus of elasticity, fE , of the CFRP material are two 

and four times larger than those of the GFRP material, respectively, leading to an ultimate strain 

for the GFRP sheets twice as large as that for the CFRP sheets. The GFRP reinforcement ratios 

are selected to be twice those for CFRP to allow for an easier comparison of both FRP ultimate 

lateral confining pressure, lfuf , and FRP confining stiffness, ,fK  for the different fiber types. The 
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range of the transverse steel reinforcement ratio, st , is selected to be between 0%, i.e., no stirrups 

or ties, and 4%, which represents a practical upper limit for real-world applications, as it is a 

slightly higher value than that obtained from the shear strength caps given in Provision 11.4.3 of 

ACI 440.2R-17 (ACI 2017).  

3.4 Parametric study results 

The parametric study results are expressed here in terms of the peak axial strength, maxP  or max ,P  

for the different columns. Hereinafter, quantities with a superposed bar represent strengths 

obtained by imposing the design limitation on concrete deformation given by Eq. (3-3); whereas 

the same symbol without the superposed bar indicates strengths obtained without imposing any 

limitation on the concrete deformation. In particular, the quantity maxP  is relevant when making 

design considerations, for which imposing a limitation on concrete crushing is a desirable feature; 

whereas the quantity maxP  can better describe experimental testing results when specimens are 

loaded up to their complete failure. In order to separate the confinement effects due to steel only 

from the FRP confinement effects, two reference axial strengths are considered for each given 

column: (1) the peak axial strength of the reference unconfined column, 0P  (i.e., a column with the 

same properties as the given column but with 0%f   and 0%st  ); and (2) the peak axial 

strength of the reference FRP-only-confined column without transverse steel, 0fP  and 0fP   (i.e., 

i.e., a column with the same properties as the given column but with 0%st  ). It is noteworthy 

that, for the reference unconfined column, the peak axial strengths obtained by imposing or not 

imposing the concrete deformation limit given by Eq. (3-3) coincide (i.e., 0 0P P ), as the columns 

reach their peak axial strengths at a concrete strain ,maxc c c    . For easy comparison, all 
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strength results are presented hereinafter in non-dimensional form, as relative strength increments 

normalized by 0P . 

3.4.1 Increment in peak axial strength due to simultaneous steel and FRP confinement 

Figure 3-1(a) through (d) summarize the effects of FRP confining stiffness, column diameter, 

concrete compressive strength, and transverse steel ratio, respectively, on the peak axial strength’s 

normalized total increment  max 0 0P P P . The results are presented in the form of box-and-whisker 

plots (Cleveland 1985) and exclude the data points for which 0%f   or 0%.st  The central 

horizontal line of each plot represents the median value, with the bottom and top edges of the 

boxed area indicating the first and third quartile of the data, respectively. The whiskers identify 

the complete range of the data. The notches in the boxed area display the confidence interval 

around the median. 

Figure 3-1(a) shows that  max 0 0P P P  significantly increases for increasing FRP confining 

stiffness, even though not monotonically. The median value of  max 0 0P P P increases from 

approximately 29% for fK   62.5 MPa to approximately 97% for fK   1.5 GPa. More dispersion 

in the results is found for low FRP reinforcement ratios. This result was expected, as the beneficial 

effect of FRP-confinement on the concrete compressive strength is well-known (Fardis and Khalili 

1982; Karbhari and Gao 1997). Figure 3-2 plots  max 0 0P P P  as a function of the ratio between 

the FRP confining pressure and the unconfined concrete strength, /lf cf f   (referred to as FRP 

confinement ratio hereinafter), which is known to be strongly positively correlated with the FRP-

confined concrete peak strength, ccf   (Fardis and Khalili 1982; Spoelstra and Monti 1999; Lam and 

Teng 2003a).  
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Figure 3-1. Box-and-whisker plots of the normalized total increment in peak axial strength, 

 max 0 0 ,P P P  for variations of: (a) FRP confining stiffness; (b) diameter; (c) concrete strength; 

and (d) transverse steel ratio 

 

Figure 3-2. Effect of FRP confinement ratio on the normalized total increment in peak axial 
strength,  max 0 0P P P  
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Figure 3-2 also reports the trendline of the numerical simulation results in conjunction with its 

coefficient of determination, R2 = 0.699. This trendline is computed based on a quadratic/linear 

rational function (i.e., a rational function in which numerator and denominator are polynomials of 

order 2 and 1, respectively). The vertical dashed line represents the value / 0.08lf cf f   , which is 

the lower limit for FRP confinement recommended in ACI 440.2R-17 (ACI 2017). The relatively 

low value of the coefficient of determination indicates a large dispersion of the data points. Based 

on the trendline, it is observed that, for the lower values of the FRP confinement ratio (i.e., 

/ 0.05lf cf f   ),  max 0 0P P P increases almost proportionally with /lf cf f  , whereas for the higher 

values of the FRP confinement ratio (i.e., / 0.10lf cf f   ), the increase of  max 0 0P P P  rapidly 

slows down, until only small increases are observed when / 0.30.lf cf f    It is concluded that, for 

small amounts of FRP, maxP  is mainly controlled by the FRP confinement ratio; whereas, for large 

amounts of FRP (and in particular for / 0.08lf cf f   ), maxP  is mainly controlled by the FRP 

confining stiffness. It is also observed that the value of the trendline for / 0lf cf f    (i.e., no FRP 

confinement) is approximately equal to 12%, which provides an approximate measure of the 

average effect of the transverse steel confinement on the core concrete for the range of geometries 

and material parameters considered in this study. 

Figure 3-1(b) shows that  max 0 0P P P  slightly increases as the column diameter increases. This 

effect is less significant than that of the FRP confining stiffness, but it is not negligible. In fact, the 

median value of  max 0 0P P P  increases from approximately 45% when D = 150 mm to 

approximately 66% for columns with D = 1200 mm. By contrast, the interquartile range is found 

to be almost independent of the diameter. The observed influence of the diameter on  max 0 0P P P  
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is attributed to the increase in the cross-sectional core to gross area ratio, /c gA A , for increasing 

column diameter, which is produced by the modeling choice of keeping the concrete cover’s 

thickness as constant and equal to 25 mm for all column diameters. Because the concrete core is 

subjected to the combined confinement of both FRP and steel, whereas the concrete cover is 

subjected to the confinement of the FRP only, an increase of /c gA A  is likely to produce an increase 

in the peak axial strength. To test this hypothesis, four additional numerical simulations were 

performed by setting / 0.840c gA A   (i.e., the ratio corresponding to a column with D = 600 mm 

and ct = 25 mm), considering the same four column diameters used in the parametric study (i.e., 

D = 150 mm with ct = 6.25 mm, D = 300 mm with ct = 12.5 mm,  D = 600 mm with ct  = 25 mm,  

and D = 1200 mm with ct = 50 mm), and assuming the following constant values for the other 

variables: concrete strength cf    30 MPa,  CFRP reinforcement ratio 1%,f   and steel 

reinforcement ratio 4%.st   The steel confinement effectiveness coefficient was also kept 

constant and equal to 0.99sk   (Mander et al. 1988). The four additional FE analyses produced 

the same value of max 0 0( ) / 106.8%P P P  , which confirms that the gain in strength observed in  

Figure 3-1(b) is due to the increase of / .c gA A  

Figure 3-1(c) shows that  max 0 0P P P  drastically decreases for increasing values of .cf   This result 

is consistent with existing confined concrete models that describe the relative gain in strength of 

confined concrete, i.e., ( ) /cc c cf f f   , as inversely proportional (Richart et al. 1929; Lam and Teng 

2003a) or approximately inversely proportional (Mander et al. 1988) to the unconfined concrete 

strength cf  . Figure 3-1(c) also shows a larger scatter of the results for lower strength concretes, 

which present a larger interquartile range than higher strength concretes. 
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Figure 3-1(d) shows an approximately linear increase in the median of  max 0 0P P P  for increasing 

values of .st  The interquartile range of these results is almost independent of the reinforcement 

level. This result was also expected, as the additional confinement effect due to the transverse steel 

generally increases the confined concrete’s peak strength, ccf    (Zignago et al. 2018).  

The results presented in Figure 3-1, albeit expected, lead to the conclusion that both the transverse 

steel volumetric ratio, ,st  and the column diameter, D, have significant beneficial effects on the 

peak axial strength of FRP-confined columns. This conclusion is important because current design 

codes and guidelines generally neglect the effects of these two parameters on the prediction of the 

load-carrying capacity of FRP-confined RC columns (ACI 2017). 

In order to investigate more in detail the effects of transverse steel confinement on the peak axial 

strength of FRP-confined columns, as well as the interaction among different parameters, Figure 

3-3(a) plots  max 0 0P P P  versus st  for columns strengthened with CFRP wraps and with 

cf   = 30 MPa, when the amount of FRP and the column diameter are varied. The observed 

interaction among the different parameters is quite complex. FRP confinement contributes 

significantly to  max 0 0P P P , e.g., with a value of 91.7% for a CFRP ratio of f = 3.0% when 

st  = 0, which increases to 134.4% when st  = 4% and D = 1200 mm. This increment is 

independent of the column diameter when no transverse steel is present. The value of  max 0 0P P P  

increases rapidly for lower values of f , up to f = 1%, whereas it increases in a decreasing 

fashion for higher values of ,f  indicating a diminishing effectiveness of the FRP confinement.   

These results also confirm that steel confinement effect can be significant and that the increase in 

axial strength of the FRP-confined columns strongly depends on both the column diameter, D, and 
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the transverse steel reinforcement ratio, .st  The increase in axial strength due to the steel 

confinement effect becomes more pronounced going from f = 0% with  max 0 0max P P P    = 

34.4%, to f = 1.0% with  max 0 0max P P P    = 68.3%, and then gradually decreases from 

f  = 1.0% to f = 3.0% with  max 0 0max P P P    = 44.4%. This result confirms the strong 

nonlinearity of the combination of FRP and steel confinement effects. It is noted here that similar 

behaviors were observed also for the other combinations of concrete strength and FRP materials 

considered in this study. 

 

Figure 3-3. Transverse steel confinement effect on the normalized total increment in peak axial 
strength,  max 0 0 ,P P P  for FRP-confined columns with: (a) cf = 30 MPa for varying 

amount of CFRP and column diameter, and (b) D = 600 mm and Kf = 0.5 GPa for 
varying FRP type and concrete strength 

Figure 3-3(b) plots  max 0 0P P P  versus st  for columns with diameter D = 600 mm and confining 

stiffness Kf = 0.5 GPa (which corresponds to f  = 1% for CFRP or f  = 4% for GFRP), when 

the FRP material and the concrete compressive strength are varied. The quantity  max 0 0P P P  

always increases for increasing transverse steel ratio, and this increase is more pronounced as the 

concrete compressive strength decreases. In general, for a fixed value of FRP confining stiffness, 
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 max 0 0P P P  for a column strengthened with GFRP wraps is greater than or equal to that of a 

column with CFRP sheets. This difference is larger for higher concrete compressive strengths, and 

it gradually decreases with cf  , until no differences are observed between columns strengthened 

with GFRP and CFRP for cf = 20 MPa.  

These results can be explained by considering the combination of two phenomena affecting the 

peak axial strength, maxP : (1) the limitation on the maximum concrete strain imposed by Eq. (3-3), 

which depends on /lf cf f   until ,maxc  reaches the value 0.01; and (2) the effects of the FRP and 

steel confinement, which depend on f cK E and /ls cf f  , respectively. To investigate more in depth 

these two phenomena, the FRP-and-steel confined concrete axial stress-strain behavior obtained 

using the model developed by Zignago et al. (2018) is plotted in Figure 3-4 for a concrete with cf 

= 30 MPa with four levels of FRP confining stiffness to concrete elastic modulus ratio (i.e., 

f cK E  0.0023, 0.0046, 0.0092, and 0.0274), and four levels of steel confinement ratio (i.e., 

 = 0, 0.05, 0.15, 0.25), for a total of 16 different FRP and transverse steel confinement 

configurations. These f cK E levels correspond to GFRP reinforcement ratios f  = 0.5%, 1%, 2%, 

and 6%, respectively, and to CFRP reinforcement ratios f  = 0.125%, 0.25%, 0.5%, and 1.5%, 

respectively; whereas the  considered /ls cf f   levels correspond to transverse steel ratios st  = 0% 

(identified by thicker lines), 0.67%, 2.0%, and 3.33%, respectively, and a constant steel 

confinement effectiveness coefficient 1.00sk   (Mander et al. 1988). Figure 3-4 also provides: the 

axial strains at which the GFRP and CFRP wraps fail, ,c fu  (identified by filled markers); the 

maximum allowable concrete compressive strain based on Eq. (3-3), ,max ,c  for each fiber type 

/ls cf f 
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(identified by unfilled markers); and the axial strains at which the transverse steel yields, ,c sy  

(identified by crosses). It is important to note that, for given properties of the unconfined concrete 

and confining steel, the confined concrete axial stress-axial strain curve is fully determined by the 

values of f cK E  and /ls cf f  , and that the only difference among various fiber materials is the 

axial strain at which the fibers fail, which is determined by their effective strain at failure, .fe   

 

Figure 3-4. Stress-strain responses of confined concrete with cf   = 30 MPa for different FRP and 

transverse steel confinement configurations 

The FRP-confined concrete stress-strain curves in Figure 3-4 can be classified into three categories 

(Lam and Teng 2003a): type I curves, which correspond to low confinement levels and have post-

peak decreasing branches with a concrete ultimate stress cu cf f  , e.g., the thick curve reported in 
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Figure 3-4(a); type II curves, which correspond to moderate confinement levels and have post-

peak branches with a softening or flat portion followed by a hardening portion with cu cf f  , e.g., 

the thick curve reported in Figure 3-4(b); and type III curves, which correspond to high 

confinement levels and are monotonically increasing everywhere, e.g., the thick curves reported 

in Figure 3-4(c) and (d). The stress-strain behavior of concrete confined simultaneously by steel 

and FRP generally have the same characteristics of the stress-strain behavior of FRP-confined 

concrete. Therefore, it is concluded that the compressive strain at which an FRP-confined RC 

column reaches its peak strength corresponds to the maximum allowable compressive strain of the 

concrete, ,maxc , when the confinement effect is sufficient to achieve a type III curve; whereas it is 

contained between c   and ,maxc  when the confinement effect is limited and the concrete stress-

strain behavior correspond to a type I or type II curve. 

From Figure 3-4, it is also observed that, as f cK E increases, the ,maxc increases faster for GFRP 

than for CFRP, until the ,maxc for GFRP reaches the upper limit of 0.01, at which point only the 

,maxc  for the CFRP keeps increasing until it also reaches the value of 0.01. This phenomenon 

contributes to the faster increase followed by a slower increase of  max 0 0P P P  for increasing ,f  

which is observed in Figure 3-3(a). It also explains why, for a given cf   and any level of st , the 

value of  max 0 0P P P  for GFRP confinement is higher than or equal to that for CFRP confinement, 

as observed in Figure 3-3(b). In particular, the equal peak axial strength of RC columns confined 

with GFRP and CFRP for cf   = 20 MPa is due to the fact that, for the given level of FRP confining 

stiffness, the value of ,maxc  has already reached the upper limit of 0.01 for both fiber types, similar 

to the case shown in Figure 3-4(d). The differences in  max 0 0P P P  for the two types of fiber at 
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any given value of fK  is amplified for increasing values of cf   because the FRP-confining stiffness 

ratio, ,f cK E  decreases due to the proportionality between cE  and cf   given by Eq. (3-1). 

Figure 3-4 also shows that, for low levels of f cK E  (i.e., low values of ,maxc ) and (in minor 

measure) of /ls cf f   (i.e., high values of ,c sy ), yielding of the transverse steel can take place at 

strains larger than ,maxc  (i.e., , ,maxc sy c  ), thus preventing the transverse steel confining 

mechanism from being fully utilized. By contrast, when , ,maxc sy c  , the transverse steel confining 

mechanism can fully develop. This phenomenon is the major contributor to the rapid increase in 

 max 0 0P P P  observed in Figure 3-3(a) for low values of f  going from 0% to 1.0%, as the 

corresponding increase in f cK E gradually allows full development of the transverse steel 

confining mechanism. 

3.4.2 Effects of concrete strain design limit on column peak axial strength 

Figure 3-5 shows the relative peak axial strength increment  max max 0P P P  obtained by removing 

the design limitation on concrete axial strain given by Eq. (3-3). In particular, Figure 3-5(a) plots 

 max max 0P P P versus st  for columns strengthened with CFRP wraps and with cf   = 30 MPa, 

when the amount of FRP and the column diameter are varied; whereas Figure 3-5(b) plots 

 max max 0P P P  versus st  for columns with diameter D = 600 mm and confining stiffness 

Kf = 0.5 GPa, when the FRP material and the concrete compressive strength are varied.  

The results in Figure 3-5(a) show that the columns most impacted by the concrete strain limitation 

are those with low amounts or no FRP, large amounts of transverse steel, and large diameters. As 

the transverse steel ratio increases, the concrete core’s peak strength increases; however, ,maxc  is 
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not affected by st , and the peak strength for steel-confined concrete and for concrete confined 

with large amounts of steel and small amounts of FRP is achieved only at axial strains that are 

often significantly larger than ,max .c  The quantity  max max 0P P P  can reach values as high as 

approximately 66% for columns with D = 1200 mm and st = 4.0% when no limitation is 

considered. It is observed that, for 0%f   and 0.25%, the column diameter has a major effect 

on  max max 0P P P , with larger diameters corresponding to large values of  max max 0P P P  and 

smaller diameters corresponding to small values of  max max 0P P P  (almost negligible for 

D = 150 mm). This phenomenon results from two effects: (1) the steel confinement effectiveness, 

ks, decreases rapidly for decreasing column diameters and constant ;st  (2) the transverse steel 

confinement effect increases for increasing column diameters, as the ratio /c gA A  also increases.  

 

Figure 3-5. Effect of concrete strain design limitation provision on columns’ peak axial strength: 
(a) for varying amount of FRP and column diameter, and (b) for varying FRP material 

and concrete compressive strength 

 max max 0P P P  increases for increasing values of st and D for all columns with f  = 0.0% and 

0.25%, and for columns with f  = 0.5% and 2%.st   These cases correspond to columns in 
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which the transverse steel reaches yielding at strains larger than ,maxc , as shown in Figure 3-4(a) 

through (c). For f  = 0.5%, there is a change of behavior between the cases with 2%st   and 

2%st  :  max max 0P P P  decreases for st  increasing from 0% to 1.0% and increasing column 

diameter, before increasing again for 2%.st   For larger amounts of CFRP (i.e., 1.0%f  ), 

 max max 0P P P  always slightly decreases for increasing st  and D. This phenomenon is the result 

of two contrasting effects: (1) maxP increases more than maxP  for increasing values of f  as the 

confined concrete stress-strain curve moves from a type I or type II curve to a type III curve, and 

the axial strain corresponding to FRP failure, ,c fu , is significantly larger than ,maxc  (see Figure 

3-4); and (2) as f  increases, a larger portion of the transverse steel contribution to the peak axial 

strength takes place before the axial strain reaches ,maxc  (i.e., the transverse steel contribution to 

maxP  increases more than its contribution to maxP ). 

The results in Figure 3-5(b) show that, for any value of cf   and st ,  max max 0P P P  is always 

higher for GFRP-confined columns than for CFRP-confined columns. This results is due to two 

superposing effects: (1) for a given f cK E , maxP is higher for RC columns confined with GFRP 

than for those confined with CFRP because of the higher values of fe  and, thus, of ,c fu  for GFRP 

than for CFRP; and (2) the GFRP-confined concrete reaches the upper limit ,max 0.01c   at a lower 

value of /lf cf f   than CFRP-confined concrete, thus reaching a cap for maxP  at lower values of 

f cK E . For example, assuming the average value   = 0.65 suggested by Realfonzo and Napoli 

(2011), ,max 0.01c   is reached at /lf cf f   = 0.158 for CFRP and at /lf cf f   = 0.116 for GFRP. It 

is also observed that, for GFRP,  max max 0P P P  decreases for increasing cf   and st , with values 



 

61 
 

as high as approximately 60% for cf = 20 MPa and st = 0%, and as low as 17% for cf = 70 MPa 

and 4%st  ; whereas for CFRP, the value of  max max 0P P P  presents only a small variability 

between 8% and 19% for all considered values of cf   and st , without a monotonic trend with 

respect of these two variables.  

3.4.3 Effects of transverse steel confinement on peak axial strength of FRP-confined 
columns 

Figure 3-6(a) through (d) summarize the effects of FRP confining stiffness, column diameter, 

concrete compressive strength, and transverse steel ratio, respectively, on  max 0 0fP P P . These 

results separate the transverse steel confinement effects on the peak axial strength of FRP-confined 

RC columns from the global effects due to the simultaneous FRP and steel confinement. Similar 

to Figure 3-1, these results are presented in the form of box-and-whisker plots (Cleveland 1985) 

and exclude the data points for which 0%f   or 0%.st   

Figure 3-6(a) shows that  max 0 0fP P P decreases significantly for increasing values of fK , with 

the median value going from approximately 27% for fK   62.5 MPa to approximately 13% for 

fK   1.5 GPa. This trend is the opposite of that observed in Figure 3-1(a) and indicates that the 

transverse steel confinement effects become less important for increasing amounts of FRP 

confinement, confirming the strongly nonlinear global behavior associated with the interaction 

between the FRP and steel confining mechanisms. The variability of the results, as indicated by 

both the interquartile ranges and the entire data ranges, is drastically reduced as fK  increases. 

Figure 3-7 plots  max 0 0fP P P  versus /lf cf f  . It also provides the trendline (based on a 

quadratic/linear rational function) of the numerical simulation results, which has a coefficient of 
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determination R2 = 0.031, and indicates the value / 0.08lf cf f    with a vertical dashed line. This 

trendline suggests that  max 0 0fP P P  increases with /lf cf f   for low values of the FRP 

confinement ratio (i.e., / 0.05lf cf f   ), whereas it slightly decreases with lf cf f   for high values 

of the FRP confinement ratio (i.e., / 0.10).lf cf f    These results seem to confirm that the behavior 

of FRP-confined RC columns changes for FRP confinement ratios that are lower or higher than 

the lower bound / 0.08lf cf f    recommended in ACI 440.2R-17 (ACI 2017). However, the very 

low value of the coefficient of determination for this trendline indicates that the dispersion of the 

results is very high and that the dependence of max 0 0( ) /f fP P P  on lf cf f   is most likely not 

meaningful.  

The results in Figure 3-6(b) show that  max 0 0fP P P  increases for increasing column diameters, 

with the median values going from 10.6% for D = 150 mm to 32.2% for D = 1200 mm. This 

positive correlation is stronger than that observed in Figure 3-1(b) between  max 0 0P P P  and D. 

In fact, the increases in the median values of  max 0 0fP P P  and  max 0 0P P P  from D = 150 mm 

to D = 1200 mm are both equal to approximately 21%, indicating that this increase is due 

exclusively to the steel confinement effect. This result is also confirmed by the four additional 

numerical simulations performed by setting / 0.840c gA A  , which yield the same value 

 max 0 0 60.7%.fP P P    

Figure 3-6(c) shows that both the median and the interquartile range of  max 0 0fP P P  slightly 

decreases as cf   goes from 20 MPa to 70 MPa. As expected, Figure 3-6(d) shows a drastic increase 

of both the median and the interquartile range of  max 0 0fP P P  for increasing values of .st  
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Again, these results are consistent with the steel confinement mechanism and its effects on the 

axial stress-axial strain behavior observed in Figure 3-4. 

 

Figure 3-6. Box-and-whisker plots of the normalized increment to axial strength due to steel 
confinement,  max 0 0 ,fP P P  for variations of: (a) FRP confining stiffness; (b) diameter; 

(c) concrete strength; and (d) transverse steel ratio 
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Figure 3-7. Effect of FRP confinement ratio on relative peak axial strength increment with 
respect to the reference FRP-only-confined columns 

3.4.4 Selection of synthetic parameters to describe the transverse steel confinement effects  

The results of the parametric study presented in this paper suggest that the transverse steel 

confinement effects on the peak axial strength of an FRP-confined RC columns depend on: (1) the 

ratio of the confinement separately exerted by the steel and the FRP, and (2) the ratio between the 

core area (confined by both steel and FRP) and the gross area of the columns. Therefore, the 

following two relative confinement effect coefficients are proposed to synthetically describe the 

effects of transverse steel confinement on the columns’ peak axial strength: 
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It is noteworthy that fc  was originally introduced in Zignago et al. (2018) and used in Zignago 
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which depends on the effective strain of the FRP at failure, fe . Thus, the use of cf is more 

appropriate for applications in which failure of the confining FRP is expected, e.g., in the 

prediction of the ultimate strength of experimental specimens loaded to failure. By contrast, Cs is 

a function of the FRP confining stiffness Kf, and its use is more appropriate for applications in 

which failure of the confining FRP should be avoided, e.g., in developing design equations. 

Figure 3-8(a) plots  max 0 0/f fP P P  versus fc  for / 0.08;lf cf f    Figure 3-8(b) plots 

 max 0 0/f fP P P  versus fc  for / 0.08;lf cf f    Figure 3-8(c) plots  max 0 0/f fP P P  versus fc  for 

/ 0.08;lf cf f    and Figure 3-8(d) plots  max 0 0/f fP P P  versus fc  for / 0.08.lf cf f    The different 

plots also report a bilinear fit with the corresponding coefficient of determination, R2. It is observed 

that, for / 0.08,lf cf f     max 0 0/f fP P P  is described very well by the bilinear fit (R2 = 0.982), 

whereas  max 0 0/f fP P P  presents a higher dispersion (R2 = 0.880). This result was expected, as 

fc  is directly related to the FRP confinement pressure achieved at the FRP failure, which is the 

predominant mechanism in determining the values of maxP  and 0.fP  This general behavior of 

higher dispersion for  max 0 0/f fP P P  than for  max 0 0/f fP P P  is observed also for FRP-confined 

columns with / 0.08;lf cf f    however, the dispersion is significantly higher than for the cases for 

which / 0.08.lf cf f    
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Figure 3-8. Steel confinement contribution to normalized peak axial strength increment versus 

relative confinement effect coefficient fc : (a)  max 0 0/f fP P P  for / 0.08;lf cf f    (b) 

 max 0 0/f fP P P  for / 0.08;lf cf f    (c)  max 0 0/f fP P P  for / 0.08;lf cf f    and (d) 

 max 0 0/f fP P P  for / 0.08.lf cf f    

Similar to Figure 3-8, Figure 3-9(a) plots  max 0 0/f fP P P  versus sC  for / 0.08;lf cf f    Figure 

3-9(b) plots  max 0 0/f fP P P  versus sC  for / 0.08;lf cf f    Figure 3-9(c) plots  max 0 0/f fP P P  

versus sC  for / 0.08;lf cf f    and Figure 3-9(d) plots  max 0 0/f fP P P  versus sC  for 

/ 0.08.lf cf f   Also in this case, the different plots report a bilinear fit with the corresponding R2. 

For / 0.08,lf cf f    the bilinear fit is a good representation of both  max 0 0/f fP P P  and 
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 max 0 0/f fP P P  as functions of sC . However, the dispersion is lower for  max 0 0/f fP P P  

(R2 = 0.957) than for  max 0 0/f fP P P   (R2 = 0.921), because sC  is directly related to the FRP 

confinement stiffness achieved when the axial strain in the concrete reaches ,maxc , which is the 

predominant mechanism in determining the values of maxP  and 0.fP  Also in this case, the 

dispersion observed for / 0.08lf cf f   is significantly higher than that for / 0.08.lf cf f     

 

Figure 3-9. Steel confinement contribution to normalized peak axial strength increment versus 

relative confinement effect coefficient Cs: (a)  max 0 0/f fP P P  for / 0.08;lf cf f    (b) 

 max 0 0/f fP P P  for / 0.08;lf cf f    (c)  max 0 0/f fP P P  for / 0.08;lf cf f    and (d) 

 max 0 0/f fP P P  for / 0.08.lf cf f    
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These results indicate that the effect of transverse steel confinement on the peak axial strength of 

FRP-confined RC columns is captured well by the two proposed coefficients fc  and sC  when 

/ 0.08.lf cf f    The use of coefficient fc  should be preferred when investigating the behavior of 

columns loaded up to their physical collapse (usually by fracture of the FRP confinement), whereas 

the coefficient sC  is better suited to describe the behavior of column designed to satisfy the 

deformation requirement imposed by Eq. (3-3). From the bilinear models in Figure 3-8 and Figure 

3-9, it is observed that max 0 0( ) / 0.05f fP P P   corresponds in average to a value of 20%fc   for

/ 0.08lf cf f    and to 28%fc   for / 0.08lf cf f   ; whereas max 0 0( ) / 0.05f fP P P   corresponds 

to a value of 15%sC   for / 0.08lf cf f    and to 31%sC   for / 0.08lf cf f   . Thus, it is 

recommended that the effect of simultaneous confinement by FRP and steel is considered 

whenever 20%fc   and/or 15%sC  . It is also observed that, for typical values of 100%fc   

and 200%,sC   the effect of transverse steel confinement can be very significant, with increases 

of the peak axial strength up to 30%-40% of the peak axial strength obtained by neglecting the 

transverse steel confinement effect. It is noted here that larger values of cf and Cs than these typical 

values are still possible (as shown in Figure 3-8 and Figure 3-9), albeit they are expected to be 

uncommon in practical applications, as they generally correspond to a combination of high 

transverse steel reinforcement and low FRP volumetric reinforcement ratios. 

3.5 Conclusions 

This paper investigates the effects of internal transverse steel confinement on the axial load-

carrying capacity of FRP-confined reinforced concrete (RC) columns through a numerical 

parametric study. This parametric study is based on 1,152 nonlinear finite element (FE) analyses 
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of FRP-confined RC columns considering a wide but realistic range of key parameters (i.e., type 

of FRP, volumetric FRP ratio, volumetric transverse steel ratio, concrete compressive strength, 

and column diameter). The nonlinear FE analyses are performed using a recently-developed 

confined concrete constitutive model able to accurately describe the simultaneous confinement 

effects of transverse steel reinforcement and FRP external wraps. The peak axial strengths of FRP-

confined RC columns are estimated both considering the design limitation on maximum allowable 

concrete strain recommended by ACI 440.2R-17 (ACI 2017), maxP , and without imposing any 

strain limitation on the concrete, max .P  For any given column, a reference unconfined column with 

strength 0P , and a reference FRP-only-confined column without transverse steel with strengths 

0fP (with imposed strain design limitation) and 0fP  (without imposed strain design limitation), are 

also considered.  It is noteworthy that maxP  is a better representation of the columns’ behavior for 

design purposes, whereas maxP  provides a better estimate of the behavior of columns loaded up to 

physical collapse, as often done in experimental tests available in the literature. 

It is observed that the normalized peak axial strength increment,  max 0 0P P P , of FRP-confined 

RC columns increases for increasing amounts of FRP and transverse steel, whereas it decreases 

for increasing unconfined concrete compressive strength. A small positive correlation is also found 

between  max 0 0P P P  and the ratio between concrete core and gross area, / .c gA A  The FRP 

confinement alone can increase the column’s peak axial strength by as much as approximately 

90%. The interaction between FRP confinement and transverse steel confinement is highly 

nonlinear. In fact, the transverse steel confinement contribution to the peak axial strength of the 

columns increases with the amount of FRP for smaller FRP reinforcement ratios, and then 

decreases for increasing amounts of FRP for larger FRP reinforcement ratios. The threshold 
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between smaller and larger FRP reinforcement ratios depends on the FRP material properties and 

the unconfined concrete compressive strength.  

It is found that the design limitation on maximum allowable concrete strain recommended by ACI 

440.2R-17 (ACI 2017) can have a significant impact (up to approximately 66% of the strength of 

the reference unconfined RC column) on the estimate of a column’s peak axial strength, 

particularly for columns with high amounts of transverse steel and low amounts of FRP, and for 

columns with high amounts of FRP. For a given FRP confining stiffness, the effects of the strain 

design limitation are more pronounced for FRP materials with lower stiffness and higher ultimate 

strain, i.e., they are higher for GFRP than for CFRP confinement.  

The contribution of the transverse steel confinement to the columns’ peak axial strength can be 

very significant, with normalized peak axial strength increments  max 0 0fP P P  as high as 111%. 

This relative contribution increases significantly with the transverse steel ratio and the /c gA A  

ratio, whereas it decreases for increasing FRP confining stiffness and unconfined concrete 

compressive strength. It is found that  max 0 0fP P P  is almost independent of the FRP confining 

ratio /lf cf f   for / 0.08.lf cf f    

In order to synthetically quantify the effects of the transverse steel confinement on the peak axial 

strength, two confinement pressure ratio coefficients are proposed in this study: 

   sf l c lf gc f A f A    and    s100s l c f gC f A K A   . It is found that, for / 0.08,lf cf f    the 

relationships between  max 0 0/f fP P P  and sC , and between  max 0 0/f fP P P  and fc  are very 

well described by a bilinear fit. For typical values of 100%fc   and 200%,sC   the transverse 

steel confinement effect can increase the peak axial strength up to 30%-40% of the peak axial 
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strength estimated by neglecting this effect. It is concluded that, for values of 20%fc   and 

15%,sC   the effect of the transverse steel confinement should be considered in order to obtain 

accurate estimates of the peak axial strength of FRP-confined RC columns.  

The synthetic parameters, cf and Cs, identified in this study to describe the effects of transverse 

steel confinement in experimental and design applications, respectively, represent a preliminary 

but necessary step towards the development of improved predictive strength and design equations 

for FRP-confined RC columns subject to axial compression. Current research is ongoing to 

develop a design procedure for axially loaded FRP-confined RC columns based on rigorous 

structural reliability analysis procedures. Additional research is also needed to investigate and 

understand the effects of transverse steel confinement on the axial force-bending moment 

interaction behavior of FRP-confined RC columns. 
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4 Numerical investigation of axial force-bending moment 
interaction for FRP-confined reinforced concrete columns with 
internal steel transverse reinforcement 

The parametric analysis conducted in Chapter 3 is extended to columns subjected to combined 

axial load and bending moment. The development of interaction diagrams of FRP-confined RC 

columns that take into account the effects of internal steel confinement is an understudied topic, 

and the present research helps to systematically investigate these effects. 

4.1 Introduction 

Reinforced concrete (RC) structures often require to be repaired and/or strengthened when 

damaged (e.g., due to environmental degradation or extreme events) or when use changes cause 

increased demand. In particular, RC columns can be retrofitted through a confinement mechanism 

produced by externally-bonded fiber-reinforced polymer (FRP) wraps, a retrofit technique 

thoroughly studied throughout the last four decades (Fardis and Khalili 1982; Raza et al. 2019). 

This technique has been efficiently employed in the strengthening of real-world structures, 

particularly for improving the load-bearing capacity and seismic resilience of structurally-deficient 

RC columns (Parvin and Brighton 2014; Tatar et al. 2021).  

In FRP-confined RC columns, the concrete confinement produced by the externally-bonded FRP 

wraps acts in addition to the confining action exerted by the internal transverse steel reinforcement 

(i.e., steel ties and spirals), although the transverse steel confinement contribution is typically 

ignored in current design codes and guidelines for strengthening of RC structures by use of FRP 

wrappings (Kaeseberg et al. 2019). This disregard of the internal steel confinement effects reflects 

the extensive availability in the literature of constitutive models for FRP-only confined concrete 

(Ozbakkaloglu et al. 2013), whereas the simultaneous confinement of concrete by FRP and steel 

has been investigated in a smaller number of studies (Wang and Restrepo 2001; Lee et al. 2010; 



 

73 
 

Teng et al. 2015; Zignago et al. 2018). Furthermore, the majority of current FRP-and-steel-

confined concrete stress-strain models: (1) assume a linear superposition of the global confinement 

effects from each confining material (Ilki et al. 2008; Hu and Seracino 2014; Teng et al. 2015); (2) 

are fitted to a limited number of data points that constrain their range of validity (Lee et al. 2010); 

or (3) are based on an oversimplified lateral-to-axial deformation relationship for confined 

concrete (Wang and Restrepo 2001). 

A new analysis-oriented material constitutive model for FRP-and-steel confined concrete was 

recently developed to describe the complex phenomenon of concurrent confinement by FRP 

laminates and transverse steel by superimposing the confining pressures exerted by each confining 

material at the material level (Zignago et al. 2018). This new stress-strain model was validated 

against experimental data available in the literature of FRP-confined RC columns subject to pure 

compression, eccentric compression, and cyclic lateral loading with constant axial load. The use 

of this material constitutive model, associated with fiber-discretized force-based frame finite 

element (FE) cross-sections (Hu and Barbato 2014), was found to produce accurate numerical 

estimations of the experimental structural response of FRP-confined columns. The effect of 

transverse steel confinement can be significant (Zignago and Barbato 2021, 2022), especially in 

light of modern design codes with higher ductility requirements, which leads to RC column designs 

with considerable amounts of longitudinal and transverse steel (Roy et al. 2010; Tatar et al. 2021). 

Columns are generally loaded through a combination of axial forces and bending moments. In fact, 

even columns nominally subjected to pure axial compression are expected to behave under the 

combined effects of axial and flexural loads (Nilson et al. 2010). The bending action on the 

columns can result from different causes, including accidental load eccentricities, vertical 

misalignment, and lateral forces such as earthquakes or wind. For this reason, design codes and 
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standards typically present design procedures that account for eccentric loading for columns 

subject to a nominally concentric loading condition (ACI 2017, 2019). 

This paper extends the numerical investigation of the effects of the transverse steel confinement 

on FRP-confined circular RC columns from the case of pure axial loading (Zignago and Barbato 

2021) to the case of combined axial load and bending moment. A thorough parametric study is 

conducted to investigate the effects of different design parameters when varied within their range 

for practical applications. Based on previous work for concentrically-loaded columns, two new 

synthetic coefficients are proposed to quantify the effect of transverse steel confinement on 

eccentrically-loaded FRP-confined circular RC columns.  

4.2 Novelty and relevance 

This study represents the first investigation of axial force-bending moment (P-M) interaction for 

FRP-confined RC circular columns accounting for simultaneous confinement of FRP and steel at 

the material level using frame FEs. To the authors’ knowledge, only another very recent study has 

investigated the effects of internal steel hoops on P-M interaction diagrams by employing an FRP-

and-steel confined concrete model (Yuan et al. 2022); however, this previous study used a 

significantly more computationally-expensive 3-dimensional FE model based on solid elements. 

The topic remains understudied and the present paper further advances the mechanical 

understanding of the concurrent confinement by FRP wrappings and internal reinforcing steel in 

FRP-wrapped RC columns subject to combined axial force and bending moments. 

The new knowledge gained in this study on the P-M interaction of FRP-confined RC columns, as 

well as the development of synthetic parameters to describe the confinement effect of internal steel 

reinforcement, represent essential steps toward the development of new and improved design 

equations for this type of structural components. Thus, this research could lead to significant 
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benefits in terms of safer and/or more economic design of FRP-confinement retrofits of RC 

columns. 

4.3 FE modeling and development of P-M interaction diagrams 

This study employs nonlinear FE analysis to develop P-M interaction diagrams of FRP-confined 

RC columns. In particular, each point of interest in a P-M interaction diagrams is obtained through 

a monotonic incremental analysis in which axial force and bending moment are proportionally 

increased to represent the behavior of the RC column for a given load eccentricity. The generated 

data points correspond to different values of assumed load eccentricity and are connected by 

straight lines. A sufficiently large number of points is computed to produce smooth interaction 

diagrams. The FE analyses are performed using the general purpose FE software framework 

OpenSees (Mazzoni et al. 2006), using a force-based frame or a zero-length FE with fiber-

discretized cross-sections (Spacone et al. 1996; Barbato 2009; Hu and Barbato 2014; Zignago et 

al. 2018; Zignago and Barbato 2021), in which the concrete behavior is modeled using the 

Zignago-Barbato-Hu (ZBH) model (Zignago et al. 2018) and the longitudinal steel fibers are 

modeled using the extended Menegotto-Pinto model (Menegotto and Pinto 1973; Filippou et al. 

1983). In particular, the FE models are based on a force-based frame element when, in addition to 

forces and moments, displacements and deflections are needed and/or slender columns are 

considered, for which nonlinear geometry effects may be significant; whereas the use of a zero-

length element is preferred when the focus is on strength, strains, and curvatures and/or on 

computational efficiency. Additional modeling details can be found elsewhere (Zignago et al. 

2018; Zignago and Barbato 2021, 2022).  

Figure 4-1(a) compares the experimentally-measured and numerically-estimated axial force versus 

mid-height lateral deflection response for two eccentrically-loaded FRP-confined RC columns for 
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which experimental results are documented in the literature (Hadi 2009). Figure 4-1(b) compares 

the experimental and numerical peak axial strength for both concentrically- and eccentrically-

loaded FRP-confined RC column specimens with a steel-to-FRP confinement ratio 0.05fc  , as 

reported elsewhere (Zignago et al. 2018). The experimental results reported in Figure 4-1 are 

obtained by using a 2-node force-based frame FE with spread plasticity, which is able to provide 

information on both strength and displacement response.  It is shown that the adopted model 

provides numerical results that are in excellent agreement with the experimental measurements. 

The full experimental validation of the FE modeling approach used to obtain these results is 

available elsewhere (Zignago et al. 2018). 

 

Figure 4-1. Comparison between experimental and numerical responses of FRP-confined RC 
columns: (a) axial force versus mid-height deflection (experimental data from Hadi 2009), and 

(b) axial strength of concentrically- and eccentrically-loaded columns. 

It is noted here that P-M interaction diagrams for FRP-confined RC columns are often obtained 

via conventional sectional analyses based on strain compatibility and force equilibrium, with the 

assumption of a linear strain profile along the cross-section for a given sectional rotation (Bank 

2006; Wight and MacGregor 2009). This approach is computationally very efficient, as it does not 

require a nonlinear FE analysis to obtain the P-M interaction diagram. However, this approach can 
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provide the load eccentricity only as a post-processed result, and thus it does not allow the 

investigation of the column behavior for a given eccentricity value or for a given load path.  

4.4 Validation of P-M interaction diagrams 

Figure 4-2 compares the normalized P-M interaction diagrams obtained by using the ZBH FRP-

and-steel confined concrete model (Zignago et al. 2018) and the Lam and Teng (LT) FRP-only 

confined concrete model (Lam and Teng 2003a) with experimental results for FRP-confined RC 

columns documented in the literature (Hadi 2009; Bisby and Ranger 2010; Mostofinejad and 

Torabian 2016; Xing et al. 2020). In this diagrams, the axial strength P is normalized by the 

nominal axial strength Pn calculated according to ACI 318-19 (ACI 2019) for the unconfined (no 

transverse steel and no FRP) member (i.e., as per equation 22.4.2.2 of ACI 318-19, excluding 

accidental eccentricity reduction factors); whereas the bending moment strength M is normalized 

by the nominal bending moment Mn according to ACI 318-19 (ACI 2019) (i.e. calculated in 

accordance with assumptions in Section 22.2 of ACI 318-19). The bending moment strengths from 

the experimental data are obtained as the sum of the applied moments and the second-order 

moments produced by the mid-height lateral deflection δ measured during the test, i.e., 

 iM P e     ,P e  in which ie  denotes the initial load eccentricity imposed in the experimental 

test, and e is the total load eccentricity. 

The development of the numerical P-M interaction diagrams is performed through a careful 

examination of the experimental data and testing procedures, with three parameters requiring 

particular attention: (1) the value of cf  , (2) the value fe , and (3) the precision of the testing 

equipment. Regarding cf  , all specimens in Figure 4-2(a)-(b) were built using the same batch of 

concrete, with a single value of cf   used for all points of the numerical P-M interaction diagrams. 
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The numerical value of cf   used for the specimens in Figure 4-2(b) (Hadi 2009) was obtained as 

the average of the compression strength from the two stronger concrete cylinders out of the three 

specimens tested in the reference work, as the third cylinder presented a significantly (26.3%) 

lower strength than the average of the other two and, thus, was considered as an outlier. The 

specimens in Figure 4-2(c) (Mostofinejad and Torabian 2016) and Figure 4-2(d) (Xing et al. 2020) 

were fabricated from different concrete batches; thus, the average cf   is used here to construct the 

theoretical P-M interaction diagram. Regarding fe , the authors of the experimental studies 

reported in Figure 4-2(a) and Figure 4-2(d) (Bisby and Ranger 2010; Xing et al. 2020), reported 

the FRP hoop strain at ultimate axial load for each eccentricity, from which the effective FRP 

rupture strain fe  is directly calculated and used for the points corresponding to the 

experimentally-tested eccentricities. The fe  values for the other points of the corresponding P-M 

interaction diagrams are obtained through linear interpolation the experimental fe  as a function 

of the eccentricity. For the other two studies for which the experimental values of the effective 

FRP rupture strain fe  were not reported, a single value of the FRP efficiency factor   is 

estimated based on a well-established model (Realfonzo and Napoli 2011) and used for all points 

of the P-M interaction diagrams. Regarding the precision of the testing equipment, for the 

specimens reported in Figure 4-2(a) (Bisby and Ranger 2010), the authors reported a testing 

machine precision of approximately 2 mm for the load eccentricity. Therefore, the final 

eccentricity considered for each data point on the experimental P-M interaction diagram is 

increased by 1 mm to account in an approximate averaged manner for the equipment precision. 

In general, the P-M interaction diagrams constructed by employing the FRP-and-steel confined 

concrete model show better agreement with the experimental data than the diagrams obtained by 



 

79 
 

using the FRP-only confined concrete model for all analyzed studies. In order to quantify the 

accuracy of the different models, the following relative error measure is introduced: 

 max, max,exp

max,exp

FE
R

R R

R



   (4-1) 

in which  

 
2 2

max
n n

P M
R

P M

   
    

   
  (4-2) 

represents a synthetic normalized measure of the combined axial and bending moment strength 

(referred to as combined strength hereinafter), and the subscripts “FE” and “exp” denote the 

numerical and experimental values of maxR , respectively. 

 

Figure 4-2. Comparison of theoretical and experimental normalized P-M interaction diagrams: 
(a) single-layer carbon FRP hoop wrap specimens (Bisby and Ranger 2010); (b) three-layer 
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carbon FRP wrap (CF) specimens (Hadi 2009); (c) FRP-wrapped (IW) specimens (Mostofinejad 
and Torabian 2016); and (d) four-layer carbon FRP wrap with length-to-diameter ratio equal to 6 

(Xing et al. 2020). 

Table 4-1 reports the relative error means, standard deviations, maxima, and minima for the two 

models (i.e., with and without accounting for the internal steel confinement effects) for all four 

sets of experimental data considered in this study. The errors are reported for all available 

experimental data points and for the points corresponding to axial loads higher than those of the 

balanced points, BP  (i.e., the points of attainment of both steel yielding and concrete crushing limit 

states). It is observed that, on average, the ZBH model provides excellent estimates of the columns’ 

combined strength, with the relative error mean and standard deviation calculated over all 

specimens equal to -0.039 and 0.070, respectively. The LT model produces less accurate although 

slightly less disperse results than the ZBH model, with an average relative error of -0.146 and 

standard deviation equal to 0.060. The LT model generally underestimates the combined strength 

Rmax of the specimens because it neglects the confinement effects of transverse steel. The results 

in terms of maximum and minimum error values also confirm the better performance of the ZBH 

over the LT model, with the ZBH model providing a maximum and minimum error of 0.112 and 

-0.028, respectively, whereas the LT model yields errors of -0.163 and -0.270, respectively. 

Table 4-1. Comparison of relative errors in combined strength obtained using the ZBH and LT 
models for the FRPP-confined RC column specimens in Figure 4-2 

Error 
(%) 

Bisby and 
Ranger (2010) 

Hadi (2009) 
Mostofinejad 
and Torabian 

(2016) 

Xing et al. 
(2020) 

All data 

ZBH LT ZBH LT ZBH LT ZBH LT ZBH LT 

All 
points 

Mean -2.0 -13.7 -6.2 -22.5 -4.7 -12.1 -4.3 -12.2 -3.9 -14.6 
St. Dev. 8.5 6.3 8.0 3.9 7.8 1.9 3.3 5.2 7.0 6.0 

Maximum 11.2 -2.8 0.9 -17.6 3.7 -10.0 0.8 -8.2 11.2 -2.8 
Minimum -10.7 -21.4 -16.3 -27.0 -13.8 -15.0 -6.7 -21.0 -16.3 -27.0 

BP P   

Mean -2.4 -16.3 -2.9 -22.6 2.9 -11.3 -1.8 -14.7 -1.4 -16.6 
St. Dev. 7.9 5.1 5.4 4.7 1.1 0.5 4.3 5.6 6.1 5.7 

Maximum 8.1 -9.5 0.9 -17.6 3.7 -10.9 0.8 -10.1 8.1 -9.5 
Minimum -10.7 -21.4 -9.0 -27.0 2.1 -11.7 -6.7 -21.0 -10.7 -27.0 
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The discrepancy between experimental results and numerical estimates based on the LT model is 

more pronounced in the compression-controlled region of the interaction diagram (i.e., for ),BP P

with an average relative error of -0.166. By contrast, the ZBH model becomes slightly more 

accurate, with an average relative error of -0.014. In the tension-controlled region of the diagram 

(i.e., for BP P ), both confinement models were found to generally underestimate the experimental 

combined strength and to produce very similar numerical predictions of the structural behavior of 

FRP-wrapped RC columns. This result was expected because the confinement effect is small in 

this region of the diagram, where only a small portion of the cross-section is subject to compression 

and, thus, the confining mechanism from FRP and transverse steel is not fully activated. In fact, it 

is observed that the ACI 440.2R-17 guidelines do not admit any strength enhancement in FRP-

confined RC columns for axial loads smaller than those corresponding to the balanced point (ACI 

2017). Based on P-M interaction diagrams constructed with the ZBH concrete model, the balanced 

point for each of the diagrams in Figure 4-2(a)-(d) is achieved at e/D = 0.232, 0.256, 0.249, and 

0.213, respectively. When the diagrams are constructed with the LT model, their corresponding 

balanced points are obtained at slightly higher eccentricity ratios, i.e., at e/D = 0.239, 0.280, 0.295, 

and 0.227, respectively. 

4.5 Parametric analysis of P-M interaction 

A parametric study is performed to numerically investigate the effects of relevant design variables 

on the structural capacity of FRP-confined RC columns subjected to the combined action of axial 

load and bending moment. In addition to the load eccentricity ratio /e D , this study considers the 

same design parameters considered in a previous study for FRP-confined RC columns subjected 

to axial load only (Zignago and Barbato 2021), i.e.: (1) fiber type (carbon or glass FRP); (2) FRP 
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volumetric reinforcement ratio, ;f  (3) column diameter, D;  (4) concrete compressive strength, 

;cf  and (5) transverse steel volumetric reinforcement ratio, st . Three different levels are 

considered for the load eccentricity ratio, i.e., /e D  0.05, 0.15, and 0.25. These values are selected 

to focus the investigation on the compression-controlled region of the P-M interaction diagram. 

The results for concentric axial loads (i.e., with / 0)e D   were already presented elsewhere 

(Zignago and Barbato 2021). It is noteworthy that the balanced point for ordinary RC columns can 

be achieved for load eccentricity ratios as high as 1.0 (Wight and MacGregor 2009), whereas the 

balanced point of FRP-confined compression members is generally reached at lower values of the 

load eccentricity ratio, often in the range / 0.20 0.25e D   , as previously observed for the results 

reported in Figure 4-2. Table 4-2 summarizes the parameters considered and their corresponding 

values, and Table 4-3 shows the material properties considered as constants and their values used 

in the FE simulations. The combination of the different parameter values results in a total of 3,456 

nonlinear FE analyses considered in this parametric study. Additional details on the selection of 

parameters and their respective considered range can be found elsewhere (Zignago and Barbato 

2021). 

Table 4-2 – Design parameter values considered in the FE-based parametric study  

Parameter  Values 
Fiber type  Carbon (CFRP), Glass (GFRP) 

CFRP ratio, ρf (%)  0, 0.25, 0.5, 1, 2, 3 

GFRP ratio, ρf (%) 0, 0.5, 1, 2, 4, 6 

Column diameter, D (mm) 150, 300, 600, 1200 
Concrete strength, cf   (MPa) 20, 30, 50, 70 

Transverse steel ratio, ρst (%) 0, 0.5, 1, 2, 3, 4 

Eccentricity ratio, e/D 0.05, 0.15, 0.25 
  



 

83 
 

Table 4-3 - Material properties modeled as constants in the FE-based parametric study 

Material Properties Value 

Transverse steel  
Yield strength, fyt (MPa) 450 

Young’s modulus, Est (GPa) 200 

Longitudinal steel  

Strain hardening ratio, b (-) 0.005 

Yield strength, fyl (MPa) 450 

Young’s modulus, Esl (GPa) 200 

Longitudinal steel ratio, ρsl (%) 1.0 

CFRP 
Tensile strength, ffu (MPa) 1200 

Young’s modulus, Ef (GPa) 100 

GFRP 
Tensile strength, ffu (MPa) 600 

Young’s modulus, Ef (GPa) 25 
 

4.5.1 Results obtained from the parametric study  

The parametric study results are reported here in terms of the combined strengths for any given 

eccentricity ratio e/D, as defined in Eq. (4-2). In particular, the following quantities are considered: 

(1) the combined strength accounting for both FRP and steel confinement effects, maxR  and max ;R  

(2) the combined strength accounting only for the FRP confinement (i.e., with 0%st  ), 0fR  and 

0fR ; and (3) the combined strength of the unconfined column (i.e., with 0%f   and 0%st  ), 

0 0R R , which also represents the reference conditions for all other columns with the same 

properties and same eccentricity ratio, but different values of f  and st .  All quantities without 

a superposed bar correspond to the maximum combined strength obtained by subjecting the 

corresponding column to a monotonically increasing displacement-controlled loading with a 

constant eccentricity ratio up to failure (i.e., up to rupture of the external FRP wraps for columns 

with 0%)f  ; these quantities can be used to predict the experimental structural behavior of 

specimens loaded up to failure (Zignago and Barbato 2021). By contrast, all quantities with a 
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superposed bar are obtained using the same loading procedure but ending the analysis when the 

design strain limitations recommended by the ACI 440.2R-17 guidelines (ACI 2017) are applied. 

In particular, unconfined columns are assumed to reach their ultimate axial and flexural capacities 

when the maximum strain at the extreme concrete compression fiber is equal to 0.003 as per ACI 

318-19 (ACI 2019); whereas FRP-confined columns are subject to two strain design limitations 

(ACI 2017): (1) the maximum compressive strain of concrete to avoid concrete crushing, which is 

given by: 

 

0.45

,max 1.5 12 0.01lf fe
c c b

c c

f

f


  



  
       

     

  (4-3) 

where c   is the unconfined concrete strain at peak stress; lff  denotes the maximum confinement 

pressure exerted by the FRP; and b is the geometry efficiency factor, which is equal to 1.0 for 

circular cross-sections; and (2)  the maximum effective hoop strain of FRP wraps fe , which is 

given by: 

 0.004fe fu      (4-4) 

in which fu  is the ultimate strain of the FRP ply obtained from flat coupon tensile tests. 

4.5.2 Combined strength increment due to simultaneous steel and FRP confinement 

Figure 4-3 reports the relative combined strength increment max 0 0( ) /R R R  versus the transverse 

steel reinforcement ratio st  for columns with cf   30 MPa retrofitted with CFRP jackets for 

different eccentricity ratios, FRP reinforcement ratios, and diameters. It is observed that this 

relative combined strength increment has a similar pattern for all the studied eccentricity ratios, 

indicating that max 0 0( ) /R R R  is only slightly influenced by the eccentricity ratios for /e D   0.25. 
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FRP confinement alone can significantly enhance the combined strength, with an increase of 

approximately 70% for a CFRP reinforcement ratio f   3% and st   0%, independently of the 

eccentricity level. This strength enhancement can reach 111%, 107%, and 99% for /e D  0.05, 

0.15, and 0.25, respectively, when FRP and steel reinforcement ratios are at their maximum 

considered levels (i.e., f   3% and st   4%) and D = 1200 mm. For comparison, the 

improvement reported in Zignago and Barbato (2021) for pure compression (i.e., /e D  0) was of 

134%. 

The contribution of transverse steel confinement to max 0 0( ) /R R R  is highly dependent on and 

monotonically increases with the transverse steel reinforcement, ,st  and the cross-section 

diameter, D. The relative combined strength increments also monotonically increase for increasing 

FRP reinforcement ratios, f , albeit less significantly than the other two parameters; this increase 

is more pronounced for lower levels of f .  

 
Figure 4-3. Effect of transverse steel confinement on the relative combined strength increment due 
to simultaneous steel and FRP confinement for FRP-confined RC columns with cf = 30 MPa for 

varying CFRP reinforcement ratio, column diameter, and eccentricity ratio: (a) e/D = 0.05; (b) 
e/D = 0.15; and (c) e/D = 0.25. 
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The maximum relative combined strength increment between columns with 0%st   and 

4%st   is reached always for 3%f   and D = 1200 mm, and is equal to 41.2%, 36.5%, and 

31.6% for /e D  0.05, 0.15, and 0.25, respectively. This behavior is different from that observed 

for pure compression cases, for which the maximum relative combined strength increment was 

equal to 68.3% and was reached for f  1%, whereas it decreased for larger values of f  

(Zignago and Barbato 2021). This difference is explained by the additional limit imposed by ACI 

440.2R-17 on the effective hoop strain of FRP wraps on FRP-confined RC columns, which affects 

the compressive concrete strain limit: because the compressive concrete strain is further restricted 

in the case of eccentric loads, the lateral dilation of concrete is significantly limited, preventing the 

transverse steel confinement from fully developing, or even keeping the transverse steel ties and/or 

hoops from yielding. This phenomenon is accentuated by the rotation of the cross-section, which 

makes the outermost fiber in the concrete core subject to compressive strains always smaller than 

that of the outermost concrete fiber in the cover (assuming a linear strain profile within the cross-

section), hence delaying the transverse steel yielding even further. 

Figure 4-4 plots max 0 0( ) /R R R  versus st  for 600-mm diameter RC columns strengthened with 

FRP wraps with a confining stiffness fK   0.5 GPa (corresponding to CFRP reinforcement ratio 

f  1% or GFRP reinforcement ratio f  4%), for different FRP material types, concrete 

compressive strengths, and eccentricity ratios.  
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Figure 4-4. Effect of transverse steel confinement on the relative combined strength increment due 
to simultaneous steel and FRP confinement for FRP-confined RC columns with D = 600 mm and 
Kf = 0.5 GPa for varying FRP type, concrete strength, and eccentricity ratio: (a) e/D = 0.05; (b) 
e/D = 0.15; and (c) e/D = 0.25. 

The relative combined strength increment is highly dependent on the concrete compressive 

strength, ,cf   and increases for decreasing concrete compressive strengths. The eccentricity ratio 

has a small influence on max 0 0( ) /R R R  values, which slightly decrease for increasing eccentricity 

ratios. The material type has no influence on max 0 0( ) /R R R  for a similar confining stiffness, 

because the FRP effective hoop strain is limited to the same value fe   0.004. The relative 

combined strength increments between columns with 0%st   and 4%st   are more 

pronounced for lower concrete strengths, and reach their maximum values for 20 MPa,cf    which 

are equal to 40.4%, 33.3%, and 28.2% for /e D  0.05, 0.15, and 0.25, respectively.  

4.5.3 Effects of strain design limits on combined strength  

This study investigates the effects of design limits on the concrete compressive strain ,maxc  in Eq. 

(4-3), and on the FRP hoop strain fe  in Eq. (4-4) on the combined strength of FRP-confined RC 

columns. Figure 4-5 reports the relative combined strength increment max max 0( ) /R R R  versus the 
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transverse steel reinforcement ratio st  for columns with cf   30 MPa retrofitted with CFRP 

jackets for different eccentricity ratios, FRP reinforcement ratios, and diameters.  

 
Figure 4-5. Effect of ACI 440.2R-17 strain design limits on the combined strength of FRP-
confined RC columns with cf = 30 MPa for varying CFRP reinforcement ratio, column diameter 

and eccentricity ratio: (a) e/D = 0.05; (b) e/D = 0.10; and (c) e/D = 0.15. 

As shown in Figure 4-5, the effects of the design strain limits are quite complex, but they follow 

similar patterns for all eccentricity ratios considered in this study. RC columns with small FRP 

ratios, large transverse steel reinforcement ratios, and large diameters are most affected by the 

imposed limits. The maximum normalized reduction in combined strength occurs for columns with 

0%f  , st  4%, and D = 1,200 mm, and is equal to 83.4%, 90.9%, and 84.2% for /e D  0.05, 

0.15, and 0.25, respectively. This result is because ,maxc  is not affected by st  and corresponds to 

a stricter deformation limit on columns strengthened with low amounts of FRP. For these columns, 

the steel confinement mechanism cannot be fully activated. This reduction is found to be more 

pronounced than the 66% strength reduction observed for FRP-confined RC columns subject to 

pure axial loads (Zignago and Barbato 2021). Conversely, columns with high amounts of FRP 
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weakly dependent on the eccentricity ratio. In fact, the max max 0( ) /R R R  values for columns with 

f   3% are contained between 41% and 51% among all combinations of parameters considered 

in Figure 4-5. 

 
Figure 4-6. Effect of ACI 440.2R-17 strain design limits on the combined strength of FRP-
confined RC columns with D = 600 mm and Kf = 0.5 GPa for varying FRP type, concrete strength, 
and eccentricity ratio: (a) e/D = 0.05; (b) e/D = 0.10; and (c) e/D = 0.15. 

Figure 4-6 plots max max 0( ) /R R R  versus st  for 600-mm diameter columns strengthened with an 

FRP confining stiffness fK   0.5 GPa, and varying eccentricity ratio, fiber type, and concrete 

compressive strength. Also in this case, the effects of the load eccentricity ratio are small. The 

max max 0( ) /R R R  increase for decreasing concrete compressive strength. When everything else is 

equal, the combined strength of columns confined using GFRP is significantly more affected by 

the design strain limits than that of CFRP-confined columns (with a difference contained between 

16.5% and 37.1%). This phenomenon is consistent with results available in the literature for FRP-

confined RC columns subjected to concentric axial load, although the max max 0( ) /R R R  values for 

eccentrically-loaded columns are significantly higher than those corresponding to pure axial loads 

(Zignago and Barbato 2021), because of the absence of the design strain limit on .fe  For example,  
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with 20 MPacf   , st  0%, and /e D  0.05, 0.15, and 0.25, respectively, whereas 

max max 0( ) / 60%R R R   for the same column and /e D  0 (pure axial load). 

4.5.4 Effects of transverse steel confinement on combined strength  

Figure 4-7 plots max 0 0( ) /fR R R  versus st  for CFRP-confined columns with cf = 30 MPa and 

varying levels of ,f  D, and / .e D  Figure 4-8 plots max 0 0( ) /fR R R  versus st  for FRP-confined 

columns with D = 600 mm and Kf = 0.5 GPa and varying FRP type, cf  , and / .e D   These results 

quantify the confinement effects on the combined strength due only to the internal steel 

reinforcement of FRP-strengthened RC columns.  

In Figure 4-7, it is observed that max 0 0( ) /fR R R  increases for increasing values of (in decreasing 

order of importance) st , D, and ,f  and decreases for increasing / .e D  The maximum 

increments occur for columns with f  3%, st  4%, and D = 1,200 mm, and are equal to 41.2%, 

36.5%, and 31.6% for /e D  0.05, 0.15, and 0.25, respectively. It is observed that the 

max 0 0( ) /fR R R  values for f  2% are very close to those for f  3%. Figure 4-8 shows that 

the max 0 0( ) /fR R R  significantly decreases for decreasing cf   and / ,e D  whereas it is insensitive 

to the FRP type because of the FRP hoop strain limitation. For cf   20 MPa, max 0 0( ) /fR R R  is 

equal to 40.4%, 33.3%, and 28.2% for /e D  0.05, 0.15, and 0.25, respectively. 
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Figure 4-7. Transverse steel confinement contribution to the combined strength, max 0 0( ) / ,fR R R  

of FRP-confined columns with cf = 30 MPa for varying levels CFRP reinforcement ratio, column 

diameter, and eccentricity ratio: (a) e/D = 0.05; (b) e/D = 0.15; and (c) e/D = 0.25. 

 

Figure 4-8. Transverse steel confinement contribution to the combined strength, max 0 0( ) / ,fR R R
of FRP-confined columns with D = 600 mm and Kf = 0.5 GPa for varying FRP type, concrete 
strength, and eccentricity ratio: (a) e/D = 0.05; (b) e/D = 0.15; and (c) e/D = 0.25. 

4.6 Modified synthetic parameters describing the transverse steel 
confinement effects  

Previous studies have proposed two synthetic parameters to describe the effects of transverse steel 

confinement on the peak axial strength of axially-loaded FRP-confined RC columns: fc  and sC  

(Zignago et al. 2018; Zignago and Barbato 2019, 2021). Coefficient fc  represents the steel-to-

FRP confinement pressure ratio at rupture of the FRP, and is highly correlated with the axial 
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strength increment produced by the internal steel confinement of FRP-confined RC columns at 

failure conditions, thus being useful in simulating experimental results (Zignago et al. 2018; 

Zignago and Barbato 2021). Coefficient sC  represents a scaled ratio the steel confinement pressure 

and the FRP confinement stiffness (Zignago and Barbato 2021), and is highly correlated with the 

axial strength increment produced by the internal steel confinement of FRP-confined RC columns 

subjected to the design strain limits given in Eq. (4-1) (ACI 2017), thus being useful in design-

oriented applications (Zignago and Barbato 2022).  Both parameters have been shown to perform 

better for / 0.08,lf cf f   i.e., when the FRP confinement ratio is sufficient to prevent a softening 

behavior in the confined concrete (Spoelstra and Monti 1999; Lam and Teng 2003a). 

Figure 4-9(a) plots max 0 0( ) /f fR R R  versus fc  for / 0.08lf cf f    when the design strain limits 

are not considered. The data presented in Figure 4-9(a) includes both the cases with e/D > 0 

(obtained in the present study) and those for columns subjected to pure axial load (i.e., with 

e/D = 0), which were presented in Zignago and Barbato (2021). Bilinear fit models for the 

concentrically-loaded and eccentrically-loaded columns are also shown. The two bilinear fits are 

almost coincident. The coefficients of determination, R2, for these bilinear fits are R2 = 0.924 for 

e/D > 0 and R2 = 0.982 for e/D = 0, suggesting a slightly higher scatter for the columns subjected 

to a combination of axial load and bending moment. 

Figure 4-9(b) plots max 0 0( ) /f fR R R  versus Cs for / 0.08lf cf f    when the design strain limits are 

imposed in the FE analysis. Also this data set includes the FE analysis results from the present 

study for eccentrically-loaded columns (i.e., with e/D > 0) and the results for concentrically-loaded 

columns (i.e., e/D = 0) reported in Zignago and Barbato (2021), which are plotted in conjunction 

with their respective bilinear fits. It is observed that the additional limitation on the FRP hoop 

strain (i.e., 0.004fe  ) for columns subject to combined axial compression and bending moment, 
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in conjunction with the / 0.08lf cf f    requirements, drastically limits the possible values of the 

relative confinement coefficient Cs. In fact, sC  is always less than 165% for eccentrically-loaded 

columns, with a maximum increment in combined strength due to the internal steel confinement 

only max 0 0max[( ) / ] 34.6%;f fR R R   whereas Cs can reach values as high as 661% for columns 

subjected to pure axial loads, with max 0 0max[( ) / ] 95%.f fR R R   The two branches of the bilinear 

fits have similar slopes; however, as another effect of the FRP hoop strain limitation, the slope 

change of the bilinear fit for e/D > 0 takes place at a lower value of Cs (i.e., 51%),sC  when 

compared to the bilinear fit for e/D = 0 (i.e., 97%).sC   Also in this case, the coefficients of 

determination are high (i.e., R2 = 0.957 for e/D = 0 and  R2 = 0.861 for e/D > 0), with a higher 

dispersion for the columns subjected to combined axial forces and bending moments.  

 

Figure 4-9. Relative contribution of transverse steel confinement to combined strength increment 

max 0 0( ) /f fR R R  as a function of relative confinement coefficient: (a) fc ; and (b) Cs. 

The increased dispersion in the bilinear fit models for e/D > 0 suggests that eccentricity-

independent confinement coefficients might not be ideal to describe the normalized resultant 

strength increment due to transverse steel confinement for varying eccentricity levels. For this 
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reason, a modification to the relative confinement coefficients fc  and sC  is proposed here to 

account for the effects of the eccentricity ratio e/D. The newly proposed coefficients are given by:  

 

   1 0.6 / 1 2.2 /e D e D
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fm

lf g

f A
c
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  (4-5) 
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  (4-6) 

These functional forms were selected so to provide the best bilinear fit to all data (i.e., for both 

e/D > 0 and e/D = 0) while converging to the corresponding original relative confinement 

coefficient when e/D = 0.  

Figure 4-10(a) plots the max 0 0( ) /f fR R R  values versus fmc  in conjunction with the corresponding 

bilinear fit, which achieves a very good coefficient of determination (R2 = 0.953). Based on the 

bilinear model, a small change in slope takes place at fmc  130% and max 0 0( ) /f fR R R  35%, 

suggesting only a minor reduction of the steel confinement effect for large values of .fmc  Figure 

4-10(b) plots max 0 0( ) /f fR R R  versus smC  with the corresponding bilinear fit. Also in this case, 

the coefficient of determination is high (i.e., R2 = 0.942). The change of slope is more pronounced 

than for the previous case and takes place at smC  63% and max 0 0( ) /f fR R R  22%, suggesting 

a more significant reduction of the steel confinement effect for large values of .smC  The high 

values of the coefficients of determination of the bilinear fits presented in Figure 4-10 indicates 

that the newly proposed modified relative confinement coefficients, fmc  and smC ,  can be reliably 

used to predict the internal steel confinement contribution to the combined strengths maxR  and 

max ,R  respectively.  
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Figure 4-10. Relative contribution of transverse steel confinement to combined strength increment  

as a function of modified relative confinement coefficient: (a) max 0 0( ) /f fR R R versus fmc , and 

(b) max 0 0( ) /f fR R R  versus .smC  

4.7 Conclusions 

This study numerically investigates the effects of the confinement produced by internal steel 

reinforcement on the strength of FRP-wrapped circular RC columns subject to a combination of 

axial compression and bending moment. First, the accuracy of a recently-developed FRP-and-steel 

confined concrete uniaxial model (Zignago et al. 2018) is validated against experimental data 

available in the literature. The FRP-and-steel confined concrete model is employed to generate 

axial force-bending moment (P-M) interaction diagrams of FRP-confined RC columns 

experimentally tested for different eccentricities. It is shown that this model is significantly more 

accurate in predicting the combined axial force-bending moment strength than a confined concrete 

model that considers only the effects of the FRP confinement.  

Second, an extensive numerical parametric analysis based on this FRP-and-steel confined concrete 

model is performed considering several key design parameters, i.e., fiber type, FRP volumetric 

ratio, transverse steel volumetric ratio, column diameter, unconfined concrete strength, and 

eccentricity ratio. This parametric study involves a total of 3,456 nonlinear FE analyses performed 
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by monotonically and proportionally increasing axial forces and bending moments. The combined 

strength of FRP-confined RC columns is defined as the distance between the origin and the point 

on the normalized P-M interaction diagram corresponding to the maximum load achieved for a 

given eccentricity. The following quantities are considered: (1) combined strength considering 

both FRP and steel confinement, maxR  and max ;R  (2) combined strength considering only FRP 

confinement, 0fR  and 0 ;fR  and (3) combined strength of the reference columns without any 

confinement, 0.R  In this study, the overbar notation indicates FE analysis results that are obtained 

by imposing the concrete and FRP hoop strain limits recommended by the ACI 440.2R-17 design 

provisions. The parametric study results show that the normalized combined strength increment 

max 0 0( ) /R R R  due to simultaneous FRP and steel confinement can be as high as 111%, and this 

increment slightly decreases as the eccentricity increases. The quantity max 0 0( ) /R R R   is 

positively correlated with FRP ratio, transverse steel reinforcement ratio, and column diameter, 

and negatively correlated with the unconfined concrete strength. Because of the FRP effective 

hoop strain design limit provision, the fiber type is found to have no influence on the column’s 

normalized combined strength increment when the FRP confining stiffness is kept constant. The 

design limitation on the FRP hoop strain was found to severely impact the column strength, with 

the normalized reduction in combined strength, max max 0( ) /R R R , being as high as 90.9%. 

Finally, two new modified relative confinement coefficients, fmc  and ,smC  are proposed to 

quantify the effects of internal steel confinement by taking into account the effects of load 

eccentricity. It is shown that contribution of the internal steel confinement to the combined 

strength, max 0 0( ) /f fR R R  and max 0 0( ) /f fR R R , can be accurately described by a bilinear fit as 

a function of the corresponding modified relative confinement coefficient, fmc  and ,smC  
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respectively. It is concluded that fmc  can be used to estimate the internal steel confinement 

contribution to the combined strength of FRP-confined RC columns at ultimate conditions; 

whereas smC  can be used to estimate the internal steel confinement contribution to the design 

strength of FRP-confined RC columns. 

Further investigations are needed to develop a reliability-based design procedure that is able to 

account for the internal steel confinement effects in FRP-confined RC columns subject to 

combined axial loads and bending moments. The results presented in this study are valid for 

columns with circular cross-section, and additional studies are necessary to extend these results to 

FRP-confined RC columns with different cross-section geometry. 
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5 Reliability-based calibration of new design procedure for 
reinforced concrete columns under simultaneous confinement by 
fiber-reinforced polymers and steel 

The results from the parametric study in Chapter 3 are used to propose a modification to the design 

equation for FRP-confined RC circular columns subject to pure compression with the objective to 

produce a more efficient retrofit while keeping acceptable reliability levels. This design equation 

accounts for the simultaneous confinement effects of internal transverse steel and externally-

wrapped FRP and is calibrated via structural reliability analysis methods. A new iterative design 

procedure is also proposed and demonstrated via a realistic application example. 

5.1 Introduction 

Externally-bonded fiber-reinforced polymer (FRP) systems have been adopted as an alternative to 

traditional materials and techniques for the retrofit of existing reinforced concrete (RC) structures, 

as they have been shown to be efficient and effective in strengthening and repairing aging RC 

structures, such as building columns and bridge piers (Rocca 2007; Roy et al. 2010; Parvin and 

Brighton 2014). In particular, FRP jacketing of columns can be used to: (1) increase the axial 

strength through a confinement effect; (2) provide confinement to improve ductility requirements; 

(3) improve corrosion resistance and/or repair corroded members; (4) improve seismic behavior; 

(5) prevent longitudinal rebar buckling; and (6) strengthen lap splices (Parvin and Brighton 2014; 

ACI 2017). This paper focuses on the design of FRP confinement to increase the axial strength of 

the compression members. In this case, the surface bonded FRP improves the columns’ strength 

and ductility through a confinement effect, in which the lateral dilation of concrete is restricted 

due to the confining action of the FRP sheets (Fardis and Khalili 1982). In the concrete core of an 

RC member, the lateral confining pressure exerted by the externally-bonded FRP sheets acts in 

addition to that produced by the existing internal transverse steel (e.g., steel ties and spirals), 
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although most of the stress-strain models for FRP-confined concrete found in the literature ignore 

the confining contribution from the existing transverse steel (Fardis and Khalili 1982; Spoelstra 

and Monti 1999; Lam and Teng 2003a), and only very few concrete constitutive models that 

account for the simultaneous confining mechanisms of FRP and steel are available (Wang and 

Restrepo 2001; Eid and Paultre 2008; Teng et al. 2015; Zignago et al. 2018). 

A number of international design standards and guidelines address the FRP confinement 

phenomenon in RC columns (GB50608 2010; DAfStb 2012; CNR-DT-200-R1 2013; ACI  2017; 

CSA 2017), differing in several aspects that include adopted predictive models, covered loading 

conditions and limits states, and limitations on cross-section dimensions and FRP wrapping 

schemes (Kaeseberg et al. 2019). Only ACI 440.2R-17 (ACI  2017) and the Italian CNR-DT-200-

R1 (2013) guidelines address explicitly the design for pure compression as an independent loading 

condition, whereas the other guidelines focus on the more common loading condition of combined 

axial load and bending moment in which the pure compression condition is considered only to 

build the axial force-bending moment interaction diagram for a given column. In addition, only 

the German guidelines (DAfStb 2012) adopt a predictive model that considers the interaction of 

transverse steel and FRP confining actions by including the lateral confining pressure from 

transverse steel into the equation for the confined concrete strength. A detailed comparison of 

design approaches for FRP confinement of RC structures used in different international design 

codes and guidelines can be found in Kaeseberg et al. (2019). A few studies (Val 2003; Zou and 

Hong 2011; Casas and Chambi 2014; Wang and Ellingwood 2015; Baji et al. 2016; Baji 2017) 

have conducted reliability assessments of FRP-wrapped RC columns. These studies were based 

on confinement models for FRP-only confined concrete, mainly to calibrate partial safety factors 

and resistance reduction factors for confined concrete and FRP materials. 
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This paper proposes a new design equation, based on an existing equation in ACI 440.2R-17 (ACI  

2017), for the axial capacity of FRP-confined RC circular columns. This new design equation 

accounts for the effects of the transverse steel confinement based on rigorous structural reliability 

procedures. In this study, the statistical distribution of the axial capacity of FRP-wrapped RC 

columns is estimated via Monte Carlo simulation based on advanced nonlinear finite element (FE) 

response analysis. The FE analyses employ a zero-length element with fiber-discretized cross-

sections (Barbato 2009; Hu and Barbato 2014) and a material constitutive model for FRP-and-

steel confined concrete (Zignago et al. 2018), which provide a computationally inexpensive and 

accurate tool to model the highly nonlinear behavior of FRP-confined RC columns under a wide 

range of parameters. This modeling tool is particularly suited for structural reliability analysis 

applications, which generally require considerable numbers of FE analyses.  

This paper focuses on axially-loaded RC circular columns with preserved structural integrity (i.e., 

undamaged columns), which are retrofitted using externally-bonded FRP confinement. This study 

does not consider the effect of aggressive environment exposure on the durability of FRP-confined 

RC columns. A detailed review on the long-term safety of FRP-confined RC columns exposed to 

harsh environment can be found in Micelli et al. (2015).  

The paper is organized as follows: the analysis-oriented model used to estimate the axial strength 

of FRP-confined RC columns is established and validated; the parameters involved in the analysis 

are identified and reduced through a dimensional analysis; the parametric design space is defined 

based on the realistic ranges of the different design parameters; the capacity and demand statistical 

models are developed; the proposed design equation is presented, calibrated, compared with 

admissible alternative forms, and validated in terms of reliability index values; and an iterative 
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design procedure is proposed and presented through a case study. Finally, the conclusions are 

presented, summarizing the main findings of this paper. 

5.2 Novelty and relevance 

Existing design equations for the axial capacity of FRP-confined RC columns do not account for 

the combined confinement effect due to internal steel reinforcement. The present manuscript 

proposes for the first time a simple modification of the design equation to take into account this 

effect based on reliability analysis principles. The development of a probabilistic model for the 

structural capacity employing nonlinear FE-based Monte Carlo simulation, is also new when 

applied to calibration of a design equation for FRP-confined RC columns. In fact, this study 

decouples the capacity term used in the structural reliability calculations, which is obtained here 

from nonlinear FE analyses based on an accurate analysis-oriented model for FRP-and-steel 

confined concrete, from the design strength obtained using a closed-form design equation. This 

methodology is different from those used, e.g., in Zou and Hong (2011), Casas and Chambi (2014), 

Wang and Ellingwood (2015), Baji et al. (2016), and Baji (2017), where an approximate closed-

form equation was used to estimate the capacity term in the stuctural reliability calculations. In 

particular, the approach used in the present study provides more accurate and less disperse 

estimates of the structural reliability indices when compared to investigations using the same 

closed-form equation for both structural reliability and design calculations. This manuscript is also 

the first structural reliability analysis study of FRP-wrapped RC columns based on an FRP-and-

steel confined concrete model. 

In terms of relevance, the design equation for FRP-confined RC columns loaded in pure 

compression is rarely used, as RC columns that can be considered nominally loaded only in 

compression are rare. Notwithstanding this consideration, the newly proposed design equation 
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represents an improvement with respect to the existing one for this loading condition. More 

importantly, the calculation of the design strength for this loading case is essential to build the 

axial force-bending moment interaction diagram that is needed for the very common design case 

of columns loaded through a combination of axial compression and bending moment.   

5.3 Adopted model for simultaneous FRP-and-steel confined concrete: 
description and validation 

To estimate the axial strength of an FRP-confined RC column, this investigation adopts the 

analysis-oriented material constitutive model for concrete simultaneously confined with FRP and 

steel developed by Zignago et al. (2018). This constitutive model rigorously accounts for the 

complex nonlinear phenomenon associated with the concurrent confinement of concrete by FRP 

and steel at the local level through a superposition of the confining pressures produced by the two 

confining mechanisms. It is based on an incremental-iterative approach that enforces equilibrium 

and compatibility of the radial deformation of concrete and the confining device (FRP and steel) 

at the interface of these materials. It has been shown that the superposition of confining pressure 

at the material level provides a significantly improved estimate of the ultimate strength of an FRP-

confined column when compared to the direct superposition of the independent confining effects 

(Zignago et al. 2018). This model can be used to predict the compressive strength of FRP-confined 

columns through nonlinear FE analysis, thus providing strength estimates that are generally more 

accurate than those obtained from simplified closed-form mathematical expressions, as typically 

done with design-oriented models of FRP-confined concrete.  

The Zignago et al. (2018) model was validated against the experimental load-carrying capacity of 

46 axially-loaded FRP-confined RC specimens available in the literature and reported by nine 

different authors. These experimental results were purposely selected among those available in the 
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literature to represent columns with significant amounts of transverse steel (i.e., significant steel 

confinement), as the focus was to quantify the effects of simultaneous concrete confinement by 

steel and FRP. The model was found to be accurate in numerically predicting the axial strength of 

the FRP-confined columns, with an average absolute normalized error between the experimental 

and numerical results equal to 7.6%, and a maximum absolute normalized error equal to 32.4%. 

Figure 5-1(a) reports the comparison of the experimentally measured axial strengths  max,expP  with 

those obtained from numerical simulation  max,numP . In addition to the results based on the Zignago 

et al. (2018) model, Figure 5-1(a) also reports the estimations provided by the design-oriented 

model by Lam and Teng (2003a), which is the basis of the current design equation in ACI 440.2R-

17 (ACI 2017), and the design-oriented model by Wang and Restrepo (2001), which includes the 

effects of the simultaneous confinement produced by the internal steel reinforcement and the 

externally-bonded FRP. The mean and coefficient of variation of the ratio between the numerical 

and the experimental estimates ( max,exp max,numP P  ) of the columns’ peak strength are equal to 

1.01 and 0.12, respectively, for the analysis-oriented model by Zignago et al. (2018); to 1.35 and 

0.16, respectively, for the Lam and Teng (2003a) design-oriented model; and to 1.19 and 0.12, 

respectively, for the Wang and Restrepo (2001) design-oriented model. The large bias of the Lam 

and Teng (2003a) design-oriented model is due to the fact that this model neglects the effects of 

the confinement produced by the internal steel reinforcement on the concrete core. The improved 

accuracy of the results for the Zignago et al. (2018) model when compared to those of the Wang 

and Restrepo (2001) model is mainly because the Zignago et al. (2018) model does not introduce 

any additional approximations needed to derive a design-oriented model.  

Figure 5-1(b) reports the strength ratio max,exp max,numP P  for the same three confinement models 

as a function of the relative steel confinement coefficient Cs proposed in Zignago and Barbato 
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(2021) to describe the effects of transverse steel confinement in design applications. This 

coefficient is defined as: 
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Figure 5-1. Experimental validation and comparison with other models of the proposed FRP-
and-steel confined concrete: (a) comparison of numerically estimated and experimentally 

measured strength of FRP-confined RC columns, and (b) ratio of experimental to numerical 
strength as a function of sC  

in which lsf  represents the confining pressure exerted by internal steel; cA  is the area of core 

concrete; 0.5 ,f f fK E   with f = FRP volumetric reinforcement ratio, and fE = FRP elastic 

modulus; and gA  is the gross cross sectional area. Figure 5-1(b) also includes the trend lines (and 

their respective equations) of the experimental to numerical strength ratios associated with the 

three considered models. It is observed that the strength ratio estimated with the Zignago et al. 

(2018) model assumes values close to 1.0 for any values of Cs, as indicated by the corresponding 

trend line having an intercept equal to 1.0246 and a slope equal to -0.0002, which demonstrates 

that the bias of this model is almost independent of Cs. The design-oriented Wang and Restrepo 

(2001) model presents estimates that are overall less accurate when compared to those obtained by 

using the analysis-oriented model by Zignago et al. (2018). Its trend line shows a non-negligible 
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negative slope (equal to -0.0010), which indicates that the model tends to underestimate the 

column’s strength for lower values of Cs. Finally, the strength ratio estimated with the Lam and 

Teng (2003a) model, which considers only the effect of FRP confinement, significantly deviates 

from the ideal ratio of 1.0, with differences that increase as the coefficient Cs increases, i.e., it 

increasingly underestimates the column’s strength for increasing values of sC , as indicated by its 

trend line with a relatively large positive slope equal to 0.0014. It is concluded that the strength 

estimates obtained using the Zignago et al. (2018) model are the most accurate among the models 

considered in this study, and represent a significant improvement when compared to those obtained 

using the Lam and Teng (2003a) model and, thus, the current design equation in ACI 440.2R-17 

(ACI 2017). 

5.4 Dimensional analysis 

A dimensional analysis is performed to identify the relevant parameters and the minimum number 

of parameter groups that can be used to describe the design of an FRP-confined RC column. The 

design equation for axial compression strength in ACI 440.2R-17 (ACI 2017) can be expressed as: 

  0.85 ( )n cc g sl yl sl i i
i

P f A A f A Q                  (5-2) 

in  which   is the strength reduction factor as per ACI 318-19 (ACI 2019); nP  denotes the nominal 

axial strength of the member; α is an nondimensional coefficient that assumes a value of 0.80 or 

0.85, depending on the internal transverse steel type (ties or spirals, respectively); ccf   is the 

confined concrete peak strength; slA  is the total area of longitudinal reinforcing steel; ylf  is the 

yielding strength of longitudinal reinforcing steel; and i  and iQ  denote the partial load factors 

and the axial loads, respectively, corresponding to load case i in a given load combination 

considered for the design of the RC member. Based on Zignago et al. (2018), the best estimate of 
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the confined concrete peak strength ccf   can be expressed as an implicit function of eight 

mechanical and geometric parameters as follows: 

  , , , , , , ,cc cc c c c ls lf fe c gf f f E f f A A       (5-3) 

in which cf   denotes the unconfined concrete strength; cE  denotes the initial (tangent) concrete 

stiffness; c   denotes the unconfined concrete strain at peak strength; lff  denotes the effective 

confining pressure applied by FRP wraps; and fe fu     denotes the effective strain of FRP at 

failure, in which   = FRP strain efficiency factor and fu  = ultimate strain of the FRP obtained 

from flat coupon tensile tests.  

The load effects acting on a column derive from different load combinations of several load cases 

including, e.g., dead loads, live loads, wind loads, and seismic loads. This study considers the 

ultimate load combination due to dead and lives loads only, as specified by the ACI 318-19 

standard (ACI 2019), which constitutes the most common governing load combination for axial 

compression of short columns in most practical cases (Israel et al. 1987), i.e.,  

   1.2 1.6i i n n
i

Q DL LL     (5-4) 

where DLn and LLn represent the nominal values of dead and live loads, respectively.  

Considering that cE  and c   can be approximately described as functions of ,cf   nv = 11 variables 

are needed to describe Eq. (5-2), i.e.,  , , , , , , , , , ,V n c ls lf fu c g sl yl n nV P f f f A A A f DL LL . By using 

the modified Buckingham’s  -theorem (Butterfield 1999), mv = 3 independent primary 

dimensions can be selected (e.g., one quantity with dimension of stress, one with dimension of 

length, and one with dimension of force), and an acceptable set of repeating variables is Qv = 

 , ,c g nf A DL . Thus, the minimum number of dimensionless groups is N = nv – mv = 11 – 3 = 8, 
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and a valid set of dimensionless groups is given by:  π1 = / ,n c gP f A  π2 = / ,yl cf f   π3 = / ,lf cf f   

π4 = ,fu  π5 = / ,c gA A  π6 = / ,sl gA A  π7 = / ,ls cf f   and π8 = .n nLL DL  In this study, the 

nondimensional parameter describing the effects of the lateral steel confinement pressure (i.e., π7) 

is substituted by the dimensionless coefficient Cs defined by Eq. (5-1) and proposed in Zignago 

and Barbato (2021) to describe the effects of transverse steel confinement in design applications. 

Differently from the model proposed by Zignago et al. (2018) and described by Eq. (5-3), the value 

of ccf   recommended by ACI 440.2R-17 (ACI 2017) for design purposes assumes a simple closed-

form expression given by: 

 3.3cc c f a lff f f        (5-5) 

where 0.95f   is a reduction factor, and a  is a shape factor equal to 1.0 for circular cross-

sections. The corresponding maximum compressive strain in the FRP-confined concrete, ,ccu  is 

given by: 
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  (5-6) 

where b is the geometry efficiency factor and is equal to 1.0 for circular cross-sections. This value 

should be limited to a maximum allowable strain ,max 0.01c ccu    to prevent excessive cracking 

and, in this case, ccf   needs to be recalculated using the stress-strain model proposed in ACI 

440.2R-17 (ACI 2017). Therefore, the physical similarity of the normalized axial strength (i.e., π1) 

based on Eq. (5-2) is valid as long as the calculated value of ccu  is less than 0.01. This physical 

similarity is only approximately valid when the axial strength of a column is estimated using FE 

simulations, in which material nonlinearity and several other parameters are also needed to fully 
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describe the structural response (e.g., stress-strain model of concrete, steel strain hardening, load 

eccentricity). Thus, the presented dimensional analysis results are used in this study to allow a 

more compact representation of the structural reliability analysis results.  

5.5 Parametric design space 

Based on the dimensional analysis results, the design parameters considered in this study are: (1) 

ratio of longitudinal steel yield strength and concrete compressive strength, with four different 

levels, i.e., /yl cf f   = 5.9, 8.3, 13.8, 20.7 (corresponding to Grade 60 longitudinal rebars with 

ylf  = 414 MPa and concrete with cf   = 20 MPa, 30 MPa, 50 MPa, and 70 MPa, respectively); (2) 

FRP confining ratio, with five different levels, i.e., /lf cf f   = 0.08, 0.12, 0.2, 0.3, and 0.4; (3) 

ultimate FRP strain, with four different levels, i.e., fu  = 0.01, 0.012, 0.018, 0.024; (4) core to 

gross area ratio, with four different levels, i.e., /c gA A  = 0.6, 0.7, 0.8, and 0.9; (5) longitudinal 

steel ratio, with four different levels, i.e., /sl sl gA A   = 1%, 2%, 4%, and 8%;  (6) nominal live 

to dead load ratio, with five different levels, i.e., /n nLL DL  = 0.2, 0.5, 1, 2, and 3; and (7) relative 

steel and FRP confinement coefficient ,sC with six different levels, i.e., sC  = 0%, 30%, 60%, 90%, 

120%, and 200%. The considered design parameters are summarized in Table 5-1 and correspond 

to a total of 38,400 possible design combinations. It is highlighted here that the parameters’ ranges 

were deliberately chosen to be very wide, in order to include both common and extreme (i.e., 

allowable although unlikely) design conditions. This selection was performed to ensure that the 

design equation newly proposed in this study does not produce excessively low reliability index 

values (i.e., lower than 3.5), even under unlikely design conditions.  

Table 5-1. Design parameters considered in the structural reliability analysis 
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Parameter  Values 
/yl cf f   5.9, 8.3, 13.8, 20.7 

/lf cf f     0.08, 0.12, 0.2, 0.3, 0.4 

fu   0.01, 0.012, 0.018, 0.024 

/c gA A   0.6, 0.7, 0.8, 0.9 

/sl gA A   0.01, 0.02, 0.04, 0.08 

/n nLL DL   0.2, 0.5, 1, 2, 3 

 (%)sC  0, 30, 60, 90, 120, 200 

 

To facilitate the presentation and comparison of structural reliability analysis results, a reference 

column is defined hereinafter as a column with /yl cf f   = 13.8, /lf cf f   = 0.12, fu  = 0.012, 

/c gA A  = 0.8, /sl sl gA A   = 2%, and /n nLL DL  = 2.   

5.6 Structural reliability analysis and limit state function 

The reliability of FRP-confined RC columns can be assessed through a limit state function, g, 

defined in the design space as:  

    g R DL LL  X  (5-7) 

where  T
R DL LLX  denotes the vector or random variables, whose statistical models need 

to be defined to realistically represent all uncertainties affecting structural performance, and 

superscript T denotes the matrix transpose operator. Eq. (5-7) corresponds to the difference 

between the capacity of the structure, R, and the demand (expressed as the sum of dead and live 

load models, DL and LL, respectively). Failure occurs when   0,g X  i.e., when the values of the 

random parameters describing the structural response and the loading environment fall in the so-

called failure domain. The probability of failure, pf, corresponds to the probability content of the 

failure domain, i.e.,  
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   0fp P g   X  (5-8) 

and can be used to evaluate the generalized reliability index, β, as (Ditlevsen and Madsen 2005): 

  1 1 fp     (5-9) 

 where 1( )   denotes the inverse of the standard normal cumulative distribution function.  

Different structural reliability analysis methods can be employed to estimate the failure probability 

and the generalized reliability index, e.g., Monte Carlo simulation (MCS), the First-Order 

Reliability Method (FORM), the Second-Order Reliability Method (SORM), and Importance 

Sampling (IS) (Ditlevsen and Madsen 2005). MCS generates a large number of samples of the 

random variables in Eq. (5-7) and uses standard statistics methods to estimate fp  and .  FORM, 

SORM, and IS use the concept of “design point”, which is defined geometrically as the point of 

minimum distance from the origin in the space of transformed standard normal random variables 

under the constraint   0.g X  From a structural engineering point of view, the design point 

represents the most likely failure point in the standard normal space. In this study, the Hasofer and 

Lind (1974) iterative algorithm as modified by Rackwitz and Fiessler (1978) and improved by Liu 

and Der Kiureghian (1991) is used to find the design point. The modified Hasofer-Lind Rackwitz-

Fiessler algorithm is a specialized version of the steepest gradient descent method for numerical 

constrained optimization. A detailed description of this algorithm can be found in Nowak and 

Collins (2000). FORM approximates the failure surface   0g X  with the hyperplane tangent to 

the failure surface at the design point. In this method, the reliability index   has a geometric 

interpretation and is given by the distance between the origin and the design point in the standard 

normal space. SORM approximates the failure surface   0g X  with a paraboloid fitting the 

surface curvatures at the design point (Der Kiureghian et al. 1987; Breitung 1991). Finally, IS is a 
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variance reduction technique that uses random sampling based on a joint probability density 

function centered about the design point to increase the frequency of failure samples and, thus, to 

reduce the number of samples needed to accurately estimate the failure probability (Melchers 

1989). 

5.7 Capacity and demand statistical models 

Both structural capacity and structural demand in Eq. (5-7) need to be described by appropriate 

probability distributions, which in general depend on several other random parameters. In this 

study, the statistical descriptors for each random variable X are given by: (1) bias, λX, defined as 

the ratio between the mean value, μX, and its nominal value, Xn; (2) coefficient of variation, VX, 

corresponding to the ratio of the standard deviation, σX, to the mean value, μX; and (3) type of 

probability distribution. The complete statistical description of all random variables used in this 

study is found in Table 5-2.  

Table 5-2. Statistical description of random parameters 

Parameter 
Nominal 

Value 
λ V Distribution Reference 

Concrete 

fc' (MPa) Varies Eq. (5-10) 0.10 Normal Nowak and Szerszen (2003) 

Ec (MPa) Eq. (5-11) 1.00 0.086 Normal Scanlon (1995) 

κc (-) 0.83 1.00 0.12 Weibull * 

Longitudinal Steel  

fyl (MPa) 414 1.145 0.05 Normal Nowak and Szerszen (2003) 

Esl (GPa) 201 1.00 0.033 Lognormal Mirza and MacGregor (1982) 

b (-) 0.0053 1.00 0.30 Lognormal *  

Transverse Steel   

fyt (MPa) 414 1.145 0.05 Normal Nowak and Szerszen (2003) 

Est (GPa) 201 1.00 0.033 Lognormal Mirza and MacGregor (1982) 

εsu  (-) 0.094 1.00 0.149 Normal Pipa (1995) 

FRP 
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ffu (MPa) Varies 1.10 0.083 Weibull Okeil et al. (2013) 

Ef (GPa) Varies 1.04 0.058 Weibull Okeil et al. (2013) 

κε (-) 0.55 1.09 0.33 Weibull  Realfonzo and Napoli (2011) 

Dimension and Fabrication Errors 

D (mm) Varies 1.005 0.04 Normal Nowak and Szerszen (2003) 

c (mm)  50 1.00 0.04 Normal Nowak et al. (2008) 

s (mm)  Varies 1.00 0.04 Normal Nowak et al. (2012) 

As (mm2) Varies 1.00 0.015 Normal Nowak and Szerszen (2003) 

tf (mm) Varies 1.00 0.02 Normal Okeil et al. (2013) 

e/D 0.05/0.10 0.50 0.577 Uniform Baji et al. (2016) 

Modeling Uncertainty 

ξ 1.00 1.01 0.12 Inverse Weibull * 

Load Variability  

DL  DLn 1.05 0.10 Normal Ellingwood et al. (1980) 

LL LLn 1.00 0.25 Extreme Type I Ellingwood et al. (1980) 

* Probability distribution model derived in this study 

5.7.1 Probability distributions for the random parameters 

The random parameters considered in study represent material variability (concrete, longitudinal 

steel, transverse steel, and FRP), dimension and fabrication errors, modeling uncertainty, and load 

variability. Most of the probability distributions for these random parameters were directly 

obtained from the literature; however, some of these probability distributions were derived for the 

first time in this study based on data available in the literature. 

The concrete strength uncertainty depends on (Bartlett and MacGregor 1996): (1) the aleatory 

uncertainty of the concrete strength, ,cf   as estimated from concrete cylinder test results; and (2) 

the aleatory difference between the compressive strength of in-place concrete and the concrete 

from the same batch used for concrete cylinder tests, which is described by the parameter .c  The 

first source of uncertainty is described using the probabilistic model proposed by Nowak and 

Szerszen (2003), which was also used to calibrate the ACI 318 design code (ACI 2019). This 
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model assumes a uniform coefficient of variation 
cf

V   = 0.10 and a bias, ,
cf

   which is a function 

of cf   (in MPa) given by: 

 5  3 3  22.47 10 3.17 10 0.135 3.0649 1.15
cf c c cf f f  
            (MPa) (5-10) 

This model accounted for the variation from different concrete mix plants, different testing 

methods, and different mix and ingredients (Nowak and Szerszen 2003).  

A statistical model for the coefficient ,c  which was first introduced in Richart et al. (1929) and 

Richart and Brown (1934) as a constant value of 0.85, is not readily available in the literature. In 

this study, a database of 135 points compiled from five different sources (Richart et al. 1929; Slater 

and Lyse 1931; Richart and Brown 1934; Petersons 1968; Peng et al. 2012) is used to estimate the 

statistics of .c  This database includes core and cylinders data, as well as real-size columns and 

cylinders data, in which only concentric compression and concrete specimens with no transverse 

steel were considered to avoid strain gradient and confinement effects, respectively. A mean value 

of 0.83
c

   and a coefficient of variation 0.12
c

V   are determined, based on the available data. 

A Weibull distribution with scale parameter aw = 0.870 and shape parameter bw = 9.771 is found 

to describe well the collected data distribution, with the Kolmogorov-Smirnov test providing a p-

value of 0.359, and the Anderson-Darling test yielding a p-value equal to 0.134. Figure 5-2 

compares the experimental histogram and experimental data with the probability density function 

and the cumulative distribution function corresponding to the fitted Weibull distribution.  

Statistics for the initial tangent modulus of concrete are taken from Scanlon (1995), in which the 

mean value is equal to the nominal value and is given by (where cf    is expressed in MPa): 

 5000  (MPa)
cE cf    (5-11) 
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the bias is 1.0
cE  , and the coefficient of variation is 0.086.

cEV   The concrete strain at peak 

strength of the unconfined concrete, c  , is assumed here deterministic and given by model 

proposed by De Nicolo et al. (1994). 

Figure 5-2. Statistical distribution parameters for coefficient c : (a) experimental histogram 

and fitted Weibull probability density function; and (b) experimental data and fitted 
Weibull cumulative distribution function. 

The statistical descriptions for the yield strength of both longitudinal and transverse reinforcing 

steel follow the model recommended by Nowak and Szerszen (2003), while the statistical 

description for the steel modulus of elasticity is taken from Mirza and MacGregor (1982). The 

statistical distribution for the steel ultimate strain, ,su   is taken from Pipa (1995). The statistical 

distribution of the strain-hardening ratio, b, is not readily available in the literature and is derived 

here via Monte Carlo simulation using the statistical parameters of ultimate strength, ,suf  yield 

strength, ,yf  and ultimate strain, ,su  taken from Pipa (1995). A lognormal distribution with a 

mean value 0.0053b   and a coefficient of variation 0.30bV   is found to provide the best fit to 

the simulated results. 
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The statistical distributions for the FRP material parameters ( fuf  and fE ) are taken from Okeil et 

al. (2013), which also provides a correlation coefficient of , 0.6945.
fu ff E   The statistical 

distribution for the efficiency factor, ,  is taken from Realfonzo and Napoli (2011), which 

recommends a Weibull distribution with a mean value 0.60


   and a coefficient of variation of 

0.33.V

  The  nominal value , 0.55n   used in this study for design purposes is selected in 

accordance with ACI 440.2R-17 (ACI 2017). 

The statistical distributions for the geometric parameters and fabrication errors are taken from the 

literature. To account for accidental load eccentricity, ACI 318-19 (ACI 2019) reduces the nominal 

axial strength under pure compression by a factor of 0.80 or 0.85 for columns with closed ties or 

spirals, respectively. This strength reduction corresponds to an eccentricity-to-diameter ratio, e/D, 

of 0.10 and 0.05, respectively. The uncertainty associated to this accidental eccentricity is 

accounted for in this study by modeling e/D as a uniformly distributed random variable (Baji et al. 

2016) with range going from zero to 0.10 for columns with closed ties, and from zero to 0.05, for 

columns with spirals. The consideration of accidental load eccentricity in the nonlinear FE model 

provides a more realistic representation of the actual axial and bending moment interaction taking 

place in nominally concentrically loaded members. This is particularly relevant because previous 

studies suggested that load eccentricities are more detrimental to FRP-confined RC members than 

to conventional RC members (Li and Hadi 2003; Bisby and Ranger 2010). 

The statistical distribution for the modeling uncertainty, ξ, corresponding to the Zignago et al. 

(2018) model, is obtained here for the first time. This quantity is defined as the ratio between 

experimental estimates and numerical measurements of the peak strength of FRP-confined RC 

columns. The experimental and numerical values were taken from the tests reported in Zignago et 

al. (2018) and previously summarized in this paper’s section describing the validation of the 



 

116 
 

adopted confinement model. The coefficient ξ reflects the overall error associated with the 

nonlinear FE analysis. Based on the results of a Kolmogorov-Smirnov test (p-value = 0.860) and 

an Anderson-Darling test (p-value = 0.309) performed for the distribution of variable 1  , an 

inverse Weibull distribution with 1.01  , 1.00  , and 0.12V   was found to provide the 

best fit to the available data, with the associated Weibull distribution described by a scale 

parameter aw = 1.044 and a shape parameter bw = 13.485. 

The statistical models for dead and live loads are obtained from Ellingwood et al. (1980). For a 

given ratio of live to deal load, the nominal loads are obtained by equating the right- and left-hand 

sides of Eq. (5-2), as commonly done in the literature (Israel et al. 1987; Diniz and Frangopol 

1997).  

5.7.2 Structural capacity probabilistic model 

In this study, the structural capacity distribution for any specific combination of design parameters 

is obtained from Monte Carlo simulation based on advanced nonlinear FE analyses. In particular, 

for each combination of the design variables, 10,000 Monte Carlo simulations are performed to 

generate the statistics for the structural capacity, R. Each realization involves a nonlinear FE 

analysis of a short column with fiber-discretized cross-sections performed using the general-

purpose software Open System for Earthquake Engineering Simulation (OpenSees) (Mazzoni et 

al. 2006), in which each basic variable is randomly generated based on the probability distributions 

given in Table 5-2. The structural response of the column is obtained by employing a fiber-

discretized zero-length element (Mazzoni et al. 2006), which is subjected to a monotonically 

increasing combination of axial load and the associated bending moment due to accidental 

eccentricity. Figure 5-3 shows the zero-length element model and the cross-section fiber 

discretization. Different uniaxial constitutive models are associated to the different fibers in the 
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cross-section, as illustrated in Figure 5-3(b). The concrete fibers are modeled by employing the 

Zignago et al. (2018) confinement model. For the concrete cover fibers, which are confined only 

by FRP, the FRP-and-steel confined concrete model reduces to the Spoelstra and Monti (1999) 

model. The longitudinal steel reinforcement fibers are modeled using the Menegotto and Pinto 

(1973) model, as extended by Filippou et al. (1983) to include isotropic hardening effects. 

Additional details on the modeling and analysis of FRP-confined RC columns can be found in Hu 

and Barbato (2014) for the FE model, in Zignago et al. (2018) for the material constitutive model 

of the FRP-and-steel confined concrete, and in Zignago and Barbato (2021) for the use of a zero-

length fiber-section element. The ultimate compressive strength of the column is obtained as the 

largest axial load achieved until the maximum allowable strain of the concrete, ,max ,c  is attained 

by any concrete fiber in the FE model. The sample values of ,maxc  were calculated by using Eq. 

(5-6) with the randomly sampled values of the input parameters listed in Table 5-2, and assuming 

a deterministic upper limit value equal to 0.01. The axial load capacity obtained via FE analysis is 

then multiplied by a randomly generated modeling uncertainty value, ξ, to obtain the sample 

structural capacity. Figure 5-4 shows a histogram of the Monte Carlo simulation results for the 

reference column with Cs = 60% and steel ties, in which the simulated capacity is normalized with 

respect to the nominal axial strength, Rn. It is observed that a lognormal distribution provides a 

very good fit to the generated resistance model, with the Kolmogorov-Smirnov test providing a p-

value = 0.649, and the Anderson-Darling test yielding a p-value = 0.201. 
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Figure 5-3. FE model description: (a) zero-length element and (b) cross-section fiber 

discretization 

Figure 5-4. Statistical characterization of normalized capacity model for a reference column 
with Cs = 60% and steel ties: (a) histogram of normalized capacity model and fitted 
lognormal probability density function; and (b) normalized capacity model data and 

fitted lognormal cumulative distribution function 

5.7.3 Comparison of reliability index estimates obtained using different reliability 
analysis techniques for the reference column 

The different structural reliability techniques considered in this study are employed to estimate the 

generalized reliability indices corresponding to the reference column with steel ties designed by 

using the design equation for axially-loaded FRP-confined RC column given in ACI 440.2R-17 
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(ACI 2017). These reliability indices are reported in Table 5-3 for different levels of Cs. The 

SORM-based reliability indices are obtained using curvature fitting and the Breitung’s asymptotic 

formula (Breitung 1991). The MCS and IS estimates have a coefficient of variation equal to 5%, 

corresponding to 81.55 10  and 32.03 10  samples, respectively, for the reference column with Cs = 

60%. The maximum difference among the reliability indices obtained from different methods for 

any given value of Cs is equal to     max max min 0.017.
s

s s
C

C C             This result 

indicates that the reliability indices obtained from different structural reliability techniques are 

equivalent for this application. Therefore, FORM is adopted hereinafter to calculate all reliability 

indices and corresponding failure probabilities, as this method has been historically used to 

calibrate design equations based on Load and Resistance Factor Design (Ellingwood et al. 1980), 

and in particular to calibrate the design equations in ACI 318-19 and ACI 440.2R-17 for nominally 

axially-loaded RC columns without and with FRP confinement, respectively (Szerszen and Nowak 

2003; Baji et al. 2016; Baji 2017). 

Table 5-3. Reliability indices obtained using different structural reliability analysis methods for 
reference column with transverse steel ties 

Cs (%) FORM SORM MCS IS 

0 4.005 3.993 4.006 3.999 
30 4.364 4.356 4.357 4.358 
60 4.554 4.550 4.545 4.552 
90 4.676 4.673 4.661 4.678 

120 4.770 4.769 4.775 4.771 
200 4.888 4.887 4.900 4.889 

 

5.8 Proposed design equation and calibration 

This study proposes a new design equation that incorporates the steel confinement effect on the 

axial capacity of FRP-confined RC columns. This new design equation is obtained from the 
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equation of pure axial compression in ACI 440.2R-17 (ACI 2017) by adding a multiplicative 

coefficient, 1f  , as follows: 

 0.85 ( )r n f cc g sl yl slP P f A A f A                 (5-12) 

The strength amplification factor f  can be accurately described by a bilinear function of Cs 

(Zignago and Barbato 2021). In this study, the first branch of the function describing f  is 

assumed to have a cutoff point at Cs = 120%, with the second branch assumed to be flat for the 

sake of conservativeness. This cutoff value of Cs approximately corresponds to the location in 

which the bilinear model found in Zignago and Barbato (2021) changes slope, with the second 

slope being significantly smaller than the first one. It is noteworthy that realistic values of Cs are 

typically smaller or equal to 120%. The slope of the first branch of f  is calibrated based on the 

structural reliability analysis procedure previously described and applied to the reference column. 

In particular, the functional form assumed for f  is: 

 
1 for 0 1.2

 = 1.2
1 for 1.2

s
s

f

s

C
I C

I C


    

  

  (5-13) 

in which I represents the maximum relative increase of a column axial capacity due to the 

transverse steel confinement effect. 

Figure 5-5(a) and Figure 5-5(b) show the reliability indices for the reference column with 

transverse steel reinforcement given by closed ties and spirals, respectively, for several 

combinations of I and Cs. It is observed that the design based on the current ACI 440.2R-17 

equation (ACI 2017), which corresponds to the results obtained for I = 0.00 (i.e., no confinement 

effect from transvers steel reinforcement), becomes significantly excessively conservative (even 

reaching values of 4.5  ) for increasing values of Cs. Among the considered values of I, I = 0.25 
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provides the smaller variability of the reliability index with Cs for the columns with closed ties, as 

it is observed in Figure 5-5(a). For the columns reinforced with spirals, the results presented in 

Figure 5-5(b) suggest that a maximum increment I = 0.30 provides the smaller variability of the 

reliability index. This fact is attributed to the lower accidental eccentricity assumed in ACI 318-

19 (ACI 2019) for this type of transverse reinforcement. However, in order to avoid cases in which 

the final reliability index is smaller than for a column with 0sC   and for the sake of simplicity, 

the value I = 0.25 is recommended for all columns, regardless of their transverse steel 

reinforcement type (i.e., closed ties or spirals). Thus, the proposed new design equation assumes 

the following calibrated form: 

 
1 0.25 for 0 1.2

 = 1.2
1.25 for 1.2

s
s

f

s

C
C

C


    

 

  (5-14) 

which corresponds to a maximum relative increase in axial strength due to transverse steel 

confinement equal to 25% of the axial strength obtained neglecting the transverse steel 

confinement effect. 

Figure 5-5. Reliability-based calibration of maximum increment I for FRP-confined RC 
columns with transverse steel reinforcement corresponding to: (a) ties and (b) spirals 
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5.8.1 Possible alternative design equation expressions 

In addition to the design equation proposed in Eq. (5-12), the following two alternative 

mathematical expressions were also tested to identify the best compromise between accuracy and 

complexity:  

 1 0.85 ( ) 0.85 ( )n f cc c sl cc g c yl slP f A A f A A f A                    (5-15) 

 2 0.85 ( )n f cc g sl yl slP f A A f A                (5-16) 

in which the two multiplicative coefficients 1f  and 2f  are described by the same bilinear 

functional form as f  in Eq. (5-13). For each of these coefficients, the maximum increment I was 

separately calibrated to minimize the variability of the reliability index with Cs, thus obtaining 

maximum values of 1 1.40f   and 2 1.30f  , respectively. The three considered expressions for 

the design equation correspond to different levels of complexity and accuracy in estimating the 

strength of the FRP-confined RC column to be designed. In particular, Eq. (5-15) is expected to 

provide the best estimates of the column’s strength, as it rigorously accounts for the effects of 

FRP-and-steel confinement on the core concrete, effectively providing a modified estimate for the 

ccf   of the core concrete to account for the additional confinement provided by the internal steel 

reinforcement. Eq. (5-16) is expected to be less accurate than Eq. (5-15), as the simultaneous FRP-

and-steel confinement effect on the core concrete is averaged over the entire concrete area. Finally, 

Eq. (5-12) is expected to be the least accurate of the three proposed equations, as the simultaneous 

FRP-and-steel confinement effect on the concrete core is averaged over the entire strength 

contribution of both concrete and longitudinal steel. However, the complexity of the proposed 

design equation increases with its accuracy. It is observed here that a design equation based on a 

more accurate estimate of the column’s strength corresponds to a reliability index   closer to the 
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target reliability index, which here is assumed to be the reliability index corresponding to a column 

without internal steel confinement, based on the assumption used for the current design equation 

in ACI 440.2R-17 (ACI 2017).  

Figure 5-6 compares the reliability indices obtained by designing an FRP-confined RC column 

using Eqs. (4-12), (4-15), and (4-16), respectively. As expected, Eq. (5-15) provides the smallest 

variation of   among the three proposed equations. However, it is also observed that the 

differences in reliability indices obtained using the three equations are negligible for any 

engineering purpose, with a maximum difference   equal to 0.038 for columns with steel ties, 

and equal to 0.040 for columns with steel spirals. These differences are smaller than those 

produced by rounding the maximum values of the ,f  1f , and 2f  coefficient to the nearest 

multiple of 0.05, and are significantly smaller than those produced by the discrete variability of 

the FRP confinement thickness used for real-world design applications. Therefore, the three 

proposed equations are equivalent for any practical purpose in terms of accuracy, whereas Eq. (5-

12) is the simplest in terms of implementation and requires the minimum amount of changes for 

the existing design equation in ACI 440.2R-17 (ACI 2017). 

 

Figure 5-6. Reliability indices of the three possible alternative design equation expressions for 
FRP confined columns with: (a) steel ties and (b) steel spirals 
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5.9 Validation of the proposed design equation 

After calibration of the proposed design equation for the reference columns, the axial strength 

obtained using the newly proposed design equation is compared against the experimental data 

found in the literature and used to validate the Zignago et al. (2018) model. The data points used 

for this comparison include only 21 columns out of the 46 reported in Figure 5-1, for which the 

axial strength values of identically-built columns without internal steel reinforcement (i.e., with 

FRP confinement only) were also available in the literature. In particular, the proposed and 

calibrated strength amplification factor f  is directly compared to the ratio between the axial 

capacity maxP  of the specimens with both FRP wraps and internal transverse steel and the axial 

capacity 0fP  of the specimens reinforced with FRP wraps only. To take into account the design 

constraint on the maximum allowable concrete strain ,max ,c the experimentally obtained values of 

maxP  and 0fP  correspond to the specimens’ axial capacity at the compressive concrete axial strain 

,max ,c  as opposed to the ultimate axial capacity. The effect of this design strain limitation is 

analyzed in Zignago and Barbato (2021). Figure 5-7 plots the strength ratio max 0/ fP P  of the 

experimental data and the amplification factor f  as functions of the relative steel confinement 

coefficient Cs. It is observed that the proposed design equation generally underestimates the actual 

gain in strength attributed to the confinement produced by the internal transverse steel as measured 

by the strength ratio max 0/ .fP P  This is consistent with the fact that the proposed design equation 

with the calibrated amplification factor f  represents a fractile of the strength distribution that is 

lower than the mean (i.e., approximately a 20% fractile, based on the available experimental data). 
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Figure 5-7. Comparison of the experimental data strength ratio max 0/ fP P  with the calibrated 

amplification factor f  

The proposed design equation is also quantitatively validated by assessing the reliability index 

variability for all other design conditions corresponding to the parameters’ values given in Table 

5-1Table 6-1. Due to space limitations, only select results are reported and discussed in detail. The 

effects on the reliability index of the six design parameters considered in this study (i.e., steel to 

concrete strength ratio, FRP confining ratio, FRP ultimate strain, cross-section core to gross area 

ratio, longitudinal steel ratio, and live to dead load ratio) are separately analyzed as a function of 

Cs by changing one parameter at a time, while keeping all other parameter values constant and 

equal to their values for the reference column. Figure 5-8(a) through Figure 5-8(f) show the 

calculated reliability indices obtained by changing each of the design parameters. It is observed 

that, in all analyzed cases, the reliability indices are always larger than or equal to 3.73 for 0sC   

(i.e., 41.0 10 )fp    and larger than or equal to 3.78 for 0sC   (i.e., 58 10 )fp   . These results 

demonstrate that the proposed design equation is consistent with the design philosophy and the 

target reliability indices described in Section 9.1 of the ACI 440.2R-17 guidelines, in which FRP-

related reductions factors are calibrated targeting reliability indices usually above 3.5 (ACI 2017). 
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In particular, for brittle failures as the one considered in this paper (column failure due to axial 

compression), reliability index values between 3.5 and 4.5 are typically considered appropriate, as 

suggested in Table 1.3-1 of ASCE 7-16 (ASCE 2017). 

 

Figure 5-8. Reliability assessment of FRP-confined RC columns for each of the studied 
paremeters in the design space: (a) steel to concrete strength ratio; (b) FRP confining 
ratio; (c) FRP ultimate strain; (d) core to gross area ratio; (e) longitudinal reinforcing 

steel ratio; and (f) nominal live to dead load ratio 
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Figure 5-8(a) shows that the reliability index of the FRP-wrapped RC columns is highly affected 

by the longitudinal steel yield strength to unconfined concrete strength ratio, / .yl cf f   In particular, 

columns with lower concrete strength present higher reliability indices (e.g., for cf   = 20 MPa, 

corresponding to / 20.7,yl cf f    4.31 4.47  ) than those with higher concrete strength (e.g., 

for cf   = 70 MPa, corresponding to / 5.9,yl cf f    3.73 3.95  ). These changes in the 

reliability indices are consistent with the characteristics of the statistical model adopted for cf   in 

this study, which describes the bias 
cf

   as a decreasing function of cf  . This model was developed 

to statistically represent the concrete produced in the U.S. and to calibrate the ACI 318-19 design 

code (Nowak and Szerszen 2003; Wiśniewski et al. 2012; ACI 2019). It is also observed that the 

changes in reliability index for 0 200%sC   are very small for any given value of /yl cf f   (i.e., 

max min 0.23).
ss CC

        

Figure 5-8(b) shows that the reliability index is little sensitive to the FRP confining pressure levels 

for / 0.20,lf cf f    and generally increases for increasing /lf cf f   when / 0.20.lf cf f   This 

phenomenon is due to the fact that, for / 0.20lf cf f   , the nominal strength of the FRP-confined 

RC columns is controlled by the design strain limitation of ,max 0.01c ccu    and not by the ccf   

value calculated using Eq. (5-5). Also in this case, the variability of the reliability index with sC  

is very small for all considered /lf cf f   values (i.e., 0.30).   

Figure 5-8(c) shows the reliability results for varying FRP ultimate strains, which implicitly 

represent the effects of different types of fibers. It is observed that the reliability indices decrease 

as fu  increases. This phenomenon is explained by the diminished confinement effectiveness for 

fibers with larger ultimate strains due to the presence of a design strain limit (Zignago and Barbato 
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2021). Also in this case, the changes in the reliability index with sC  are small and practically 

independent of fu  (i.e., 0.23).   

Figure 5-8(d) shows that the core to gross area ratio, / ,c gA A  has a negligible influence on the 

reliability index for 0%;sC   however, its influence increases with the increase of Cs, as the 

reliability index is higher for higher values of / .c gA A  This result was expected because the steel 

confinement effect increases with / ,c gA A  everything else being the same (Zignago and Barbato 

2021). It is noteworthy that low values of /c gA A  generally correspond to columns with small 

diameters (e.g., assuming a concrete cover of 25 mm, a column with diameter 250 mmD   would 

correspond to / 0.64,c gA A   whereas a column with 1,000 mmD   would correspond to 

/ 0.90).c gA A   It is also observed that, for / 0.7c gA A   and 90% 120%,sC   the reliability 

index becomes slightly lower than the value corresponding to 0.sC  Therefore, for the unlikely 

design cases of small columns with high amounts of transverse steel and low amounts of FRP, the 

proposed design equation can produce a design that is slightly less safe than the design that would 

be obtained using the existing ACI 440.2R-17 equation (ACI 2017). However, the maximum 

reduction in reliability index is very small even for these extreme cases, as 

 max 0 min 0.15.
s

s C
C      

  

Figure 5-8(e) indicates that the reliability index of FRP-confined RC columns is affected by the 

longitudinal steel reinforcing ratio only for low values of Cs, for which larger amounts of 

longitudinal reinforcement lead to higher reliability indices. This phenomenon is due to the fact 

that, when a larger portion of a constant axial load capacity is provided by the longitudinal steel, 

the lower variability of the steel yield strength when compared to that of concrete produces a higher 
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reliability index. However, as the confinement effect of transverse steel increases, a higher portion 

of the axial load capacity is provided by the confined concrete and, thus, the reduction in variability 

due to the higher amounts of steel becomes negligible. It is observed that 4.0   for 0.sC    

Figure 5-8(f) shows that the live to dead load ratio has a significant effect on β, resulting in higher 

reliability index values for lower /n nLL DL  ratios, as result of the larger variability of the live 

loads when compared to the dead loads. However, for very low /n nLL DL  ratios, the effect of the 

dead load bias 1.05DL   becomes significant, resulting in slightly lower reliability indices, as 

shown by the comparison of the reliability indices obtained for /n nLL DL  ratios equal to 0.2 and 

0.5. It is observed that the reliability indices for 0sC   are always larger than or equal to those for 

0.sC   In addition, the changes in the reliability index with sC  are small (i.e., 0.30).   

5.10 Design procedure 

The retrofit design of a deficient RC column consists of determining the minimum number of FRP 

plies, n, required to satisfy a desired increased design demand, Pu,new. The design equation 

proposed in this study requires the computation of a coefficient f  by using Eq. (5-14), which 

implicitly depends on n. Thus, this study proposes an iterative procedure to determine an 

appropriate (optimal) solution, which is described by the flowchart shown in Figure 5-9. 

The proposed design procedure uses as input information the design demand of the original 

column, Pu,old, the desired increased design demand, Pu,new, and the FRP material’s properties. An 

initial value 1.00 1.25f   is assumed to compute a tentative minimum number of plies, n (first 

trial). The value of f  is then updated to obtain the strengthened column axial capacity, Pr, by 

using Eq. (5-12). A first minimum strength check is performed, i.e., to verify if ,new .r uP P  If this 
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condition is not satisfied, an FRP ply is added, i.e., n is set equal to n +1 (second trial and first 

iteration). This process is repeated until the design passes the minimum strength check, after which 

an efficiency check is performed, i.e., to verify if ,new ,r uP m P   in which the efficiency factor 

1.0m   reflects how much overdesign is considered acceptable by the designer. This study 

recommends to select 1.05 1.10,m   and uses hereinafter 1.05,m   based on which a 5% 

overstrength is considered acceptable. However, if efficiency is not a concern, a designer could 

also decide to skip the efficiency check and terminate the design as soon as the minimum strength 

check is satisfied, thus greatly simplifying the proposed design procedure. 

In case the efficiency check is not satisfied, the proposed design procedure requires an additional 

iteration to check for more economical design with n = n -1. The iterations associated with both 

strength and efficiency checks include an additional check to determine if a specific value of n has 

been already used in a previous trial, in order to avoid a possible infinite loop that could be 

produced by the selection of an excessively small value of .m  It is observed that the optimal 

solution (i.e., minimum number of plies that satisfies the strength check) is always achieved when 

the initially assumed value of f  is larger than its optimal value, whereas a slightly less efficient 

design is possible when the initial value assumed for f  is lower than the optimal value, and the 

selected value of m is large. 
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Figure 5-9. Proposed iterative design procedure 

5.11 Application Example 

The proposed design procedure for the FRP confinement strengthening of RC columns is 

illustrated here with an application example that is obtained through a slight modification of the  

design example presented in Wu and Eamon (2017). The considered unretrofitted column has 

diameter D = 711 mm (28 in.), concrete cover c = 50 mm (2 in), and unconfined concrete 

compressive strength cf   = 26.7 MPa (4 ksi). The transverse reinforcement consists of #6 

(diameter = 19 mm) Grade 60 steel spiral at a pitch s = 115 mm (4.5 in.), and the longitudinal 

reinforcement is comprised of 12 #8 (diameter = 25.4 mm) Grade 60 rebars. The design demand 
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for the unretrofitted RC column is assumed Pu,old = 7400 kN. Based on ACI 318-19 (ACI 2019), 

the unretrofitted column’s axial capacity is Pr,old = 7455 kN, with a lateral confining pressure 

exerted by the spirals equal to 3.16 MPalsf   (Mander et al. 1988). The column needs to be 

strengthened with FRP wraps to reach an increased design demand, e.g., due to a change in use 

classification of the building where the unretrofitted column is located. Three different 

strengthening levels are considered, i.e.,  ,new ,old1.25 ,u uP P  ,old1.35 ,uP  and ,old1.45 .uP The 

mechanical properties of the FRP reinforcement are: modulus of elasticity fE  = 228 GPa, ultimate 

strength *
fuf  = 3.8 GPa, ultimate strain * 0.0167fu  , and ply thickness ft  = 0.167 mm. 

Considering an exterior exposure for carbon FRP (CFRP), an environmental reduction factor 

CE = 0.85 is applied, which gives an effective ultimate strength *
fu E fuf C f   3.23 GPa, and an 

effective ultimate strain *
fe E fuC       0.00781. Due to space limitations, the complete 

calculations are reported in Table 5-4 only for the case ,new ,old1.45 10,730 kNu uP P   and a 

starting value 1.25.f   

Table 5-4. Design calculations for the case ,new ,old1.45u uP P  and initial 1.25.f   

Initialization 

Assume 1.25f   

Calculate 

3
,new

5

10730 10
414 6080

1.25 0.75 0.85
32.94 MPa

0.85( ) 0.85 (3.973 10 6080)

u
y sl

f

cc
g sl

P
f A

f
A A
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   
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51.113 0.75 0.85 0.85 38.09 (3.973 10 6080) 414 6080 10771 kNrP               

,new10771 kN 10730 kN OKr uP P     

,new10771 kN<1.05 =11267 kN OKr uP P  Design is complete with n = 4 

Table 5-5 summarizes the results of the considered application example by comparing the final 

designs obtained by using the design equation in ACI 440.2R-17 (ACI 2017) and the one proposed 

in this work. This table reports three sets of   values: (1) the target  , which corresponds to the 

reliability index for the retrofitted column designed using the ACI 440.2R-17 equation and 

assuming no transverse steel reinforcement; (2) the actual   for a column designed according to 

ACI 440.2R-17, which is calculated by accounting for the effect of the actual transverse steel 

reinforcement; and (3) the actual   for a column designed according to the newly proposed design 

equation and calculated by accounting for the effect of the actual transverse steel reinforcement. 

The target   values correspond to the desired safety levels according to ACI 440.2R-17 guidelines 

(ACI 2017), but these values are inaccurate reliability index estimates for any columns with 

internal transverse steel reinforcement, as previously shown in this paper. By contrast, the actual 

  values reported in Table 5-5 are accurate estimates of the reliability index corresponding to the 

different designs. It is observed that the newly proposed design equation produces a more efficient 

and economical design (with FRP savings up to 43%) than the existing design equation, while 

maintaining adequate reliability index values (i.e., always higher than the corresponding target   

values).  
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Table 5-5. Comparison of application example results using ACI 440.2R-17 design equation 
(ACI 2017) and proposed design equation for different load increments 

Pu,new 
n (ACI 440 
equation) 

n (proposed 
equation) 

FRP 
saved 

Target β 
(ACI 440 
equation) 

Actual β 
(ACI 440 
equation) 

Actual β 
(proposed 
equation) 

 

1.25Pu,old 4 3 25% 3.77 4.41 4.28  

1.35Pu,old 5 3 40% 3.67 4.23 4.02  

1.45Pu,old 7 4 43% 3.61 4.13 3.90  

 

The effects of using different initial values of f  are also investigated. Table 5-6 compares the 

final designs and the number of trials (and corresponding iterations) needed to achieve 

convergence of the design corresponding to each of the three considered strengthening levels for 

three different initial values of f , i.e., 1.000,1.125,1.250.f   It is observed that: (1) in general, 

the initial value of f  has only a small effect, if any, on the final design; (2) the proposed design 

methodology converges to an acceptable design in a very small number of trials (i.e., 1 to 3 trials 

in this example, or 0 to 2 iterations); (3) when starting with an initial value of f  close or greater 

than the optimal value, the proposed design procedure converges very quickly to the optimal 

design; (4) when starting with an initial value of f  smaller than the optimal value, if multiple 

solutions exist in the range ,new ,new ,u r uP P m P    the design procedure converges to the higher 

strength solution; and (5) if a solution does not exist in the range ,new ,newu r uP P m P    (i.e., when 

the condition / 0.08lf cf f    controls, or when the selected m is too small), the procedure converges 

to the most efficient design with a strength higher than ,new .um P  As a result, an initial choice of 

1.250f   ensures that the most efficient design is always found, but at potential cost of a few 

additional iterations than if a smaller value (e.g., 1.125)f   were to be used. By contrast, an 
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initial choice of 1.000f   can produce a less efficient but still acceptable design, and it can 

require additional iterations than selecting a larger initial value for .f   

Table 5-6. Effects of initial choice of f  for m = 1.05 

Pu,new 1.25Pu,old 1.35Pu,old 1.45Pu,old 

Starting γf 1.000 1.125 1.250 1.000 1.125 1.250 1.000 1.125 1.250 

Final γf 1.151 1.151 1.151 1.151 1.151 1.151 1.091 1.113 1.113 

Final Pr/Pu,new 1.135 1.135 1.135 1.051 1.051 1.051 1.040 1.004 1.004 

Final n 3 3 3 3 3 3 5 4 4 

Number of trials 
(iterations) 

2 (1) 1 (0) 1 (0) 3 (2) 1 (0) 1 (0) 2 (1) 1 (0) 2 (1) 

 

5.12 Conclusion 

This paper proposes a new design equation for FRP-confined RC circular columns subject to axial 

compression, which accounts for the simultaneous confinement effects of transverse steel and 

FRP. This newly proposed equation depends on an easy-to-compute coefficient f  that measures 

the axial strength ratio for an RC column confined by both transverse steel and FRP when the 

strength is obtained by considering and by neglecting the transverse steel effects. The coefficient 

f  is calibrated by using a structural reliability analysis approach, which accounts for the 

uncertainties associated with material, dimension, modeling, and loading variables. Monte Carlo 

simulation is employed to develop the probability distribution for the axial capacity of the columns 

by means of advanced nonlinear FE response analysis. The first-order reliability indices for a wide 

range of design parameters are evaluated via the Hasofer-Lindt Rackwitz–Fiessler iterative 

algorithm. The newly proposed design equation generally yields a more efficient design with a 

reliability index that is not lower than that implied by the existing design equation for axial 
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compression given in ACI 440.2R-17 (ACI 2017). In fact, the proposed equation produces almost 

uniform reliability indices for varying levels of transverse steel reinforcement, whereas the ACI 

440.2R-17 equation becomes excessively conservative for large amounts of transverse steel. A 

new iterative design procedure is also proposed and demonstrated via a realistic application 

example. It is shown that the proposed procedure yields an efficient design solution within 1 to 3 

trials (i.e., 0 to 2 iterations), thus being very efficient, and is only slightly affected (in terms of 

final design and of algorithm efficiency) by different initial assumptions of the f  value. 

The proposed design equation has been calibrated for axially-loaded RC circular columns with 

preserved structural integrity only. Further research is needed to investigate its application to other 

shapes (e.g., rectangular cross-sections) or pre-damaged RC columns. 
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6 New analytical analysis-oriented stress-strain model for FRP-and-
steel confined concrete  

The performance of eight candidate families of analytical functions in fitting the monotonic 

envelope of the original iterative formulation of the stress-strain curve of FRP-and-steel confined 

concrete is evaluated in terms of computational cost, simplicity, and accuracy. A new optimization 

procedure to obtain an analytical expression for the corresponding monotonic stress-strain 

envelope is developed. The computational costs associated with both the original iterative model 

and the analytical model are compared via the nonlinear seismic time-history analysis of (1) a 

two-column bridge pier; and (2) a five-span bridge structure with FRP-retrofitted RC piers. 

6.1 Introduction 

External confinement by fiber-reinforced polymer (FRP) composites can enhance both the 

compressive strength and ductility of reinforced concrete (RC) columns, and can be used as a 

means to strengthen and/or repair these structural members when structurally deficient or damaged 

(Parvin and Brighton 2014). The confinement effect produced by the externally bonded FRP acts 

simultaneously with the confining mechanism of the existing internal reinforcing steel in the 

concrete core of RC columns, while the concrete cover is solely subject to FRP wrapping 

confinement (Zignago et al. 2018). 

FRP-confined concrete has been extensively studied in the last four decades (Fardis and Khalili 

1982; Lam and Teng 2003a; Raza et al. 2019), including (although to a lesser degree) FRP-and 

steel-confined concrete  (Demers and Neale 1999; Wang and Restrepo 2001; Eid et al. 2009; Wang 

et al. 2012), with several stress-strain models for confined concrete being developed based on these 

studies (Li et al. 2003; Ilki et al. 2008; Lee et al. 2010; Megalooikonomou et al. 2012; Hu and 

Seracino 2014; Teng et al. 2015; Zignago et al. 2018).  These models can be classified into two 



 

139 
 

main categories (Lam and Teng 2003a; Teng and Lam 2004): (1) design-oriented models and (2) 

analysis-oriented models. The first group contains models that are expressed by closed-form 

equations and are generally obtained by fitting experimental testing results. Because design-

oriented models are mainly developed to predict ultimate conditions, they usually cannot be used 

for analysis purposes or present lower accuracy at intermediate loading stages than analysis-

oriented models; however, they are convenient to use for design purposes (Teng and Lam 2004; 

Ozbakkaloglu et al. 2013). By contrast, analysis-oriented models predict the behavior of FRP-

confined concrete by using equilibrium and compatibility conditions between the confined 

concrete and the confining FRP through an incremental approach (Teng and Lam 2004; 

Ozbakkaloglu et al. 2013), in which the externally-wrapped FRP composites apply a linearly-

increasing confining pressure into the radially-expanding concrete that is loaded in compression. 

However, these models often use explicit lateral-to-axial strain relationships that are fitted to 

experimental data via regression analysis (Mimiran and Shahawy 1997; Harries and Kharel 2002; 

Moran and Pantelides 2002; Albanesi et al. 2007; Jiang and Teng 2007; Teng et al. 2007; Xiao et 

al. 2010) and, thus, may result in lower accuracy in representing the stress-strain response of FRP-

confined concrete for design parameter combinations that are outside the calibration range 

(Ozbakkaloglu et al. 2013). Some of these models are based on iterative procedures that satisfy 

equilibrium and compatibility relationships at the material level (Spoelstra and Monti 1999; Fam 

and Rizkalla 2001; Chun and Park 2002; Marques et al. 2004; Binici 2005; Aire et al. 2010; 

Zignago et al. 2018), but at a higher computational cost than fitted models through regression 

analysis. 

This paper proposes an efficient procedure for finding a mathematical closed-form expression for 

a recently-developed analysis-oriented model for FRP-and-steel confined concrete, referred to as 
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Zignago-Barbato-Hu (ZBH) model hereinafter, which can accurately model the highly nonlinear 

confining mechanisms from both confining materials, individually and simultaneously (Zignago 

et al. 2018). The original ZBH model is first modified to remove discontinuities in the monotonic 

envelope deriving from the FRP and steel ruptures. Different families of mathematical functions 

are considered as potential fits for the stress-strain curves generated using the ZBH model. A global 

optimization algorithm is employed to identify the feasible domain of the fitting parameters where 

the global optimum solution is located. The analytical expression for the stress-strain curve’s 

monotonic envelope is found using a local optimization algorithm. Then, the different function 

families are compared in terms of accuracy, complexity, and robustness in fitting the stress-strain 

curves generated using the ZBH model. Finally, the computational costs of the original iterative 

ZBH model and a select analytical function fitted to the model are compared with the aid of a 

numerical example consisting in the nonlinear dynamic finite element (FE) analysis of a realistic 

bridge structure subject to an earthquake ground motion record.  

6.2 Novelty and relevance 

The proposed procedure to obtain the monotonic envelope of the FRP-and-steel confined 

concrete’s stress-strain constitutive model is innovative, because it does not rely on parameter 

calibration to fit analytical curves to available experimental data for concrete confined by FRP 

only or by both FRP and steel. In contrast with existing analysis-oriented models based on explicit 

lateral-to-axial strain relationships with calibrated fitting parameters, the newly proposed model 

uses numerical optimization to fit the analytical expression of the monotonic envelope to the ZBH 

model’s stress-strain curve corresponding to any specific set of material and geometric properties 

under consideration, thus retaining the original model’s ability to describe the FRP-and-steel 
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confined concrete stress-strain curve based on fundamental equilibrium and compatibility 

properties at the material level. 

The newly proposed FRP-and-steel confined concrete model can improve the computational 

efficiency and robustness of nonlinear FE analysis of FRP-confined RC structures, while 

accounting in a rigorous manner for the simultaneous confinement of steel and FRP. The properties 

of computational efficiency and robustness are particularly relevant for applications involving 

large FE models and/or numerous repetitions of the FE analyses, such as structural reliability 

analysis, probabilistic response analysis, reliability-based design, parametric studies, and 

performance-based engineering analysis and design. 

6.3 Smoothed Zignago-Barbato-Hu (ZBH) model 

The original ZBH model is based on the constitutive model developed by Spoelstra and Monti 

(1999), which uses the formulation proposed by Mander et al. (1988) as the basic constant 

pressure-confined model, and iteratively solves the force equilibrium and compatibility between 

axial strain and lateral deformation of concrete and FRP wrap at each axial strain level. Thus, the 

ZBH model provides the axial-to-lateral strain relationship only implicitly, and builds the 

monotonic envelope of the FRP-and-steel confined concrete’s stress-strain response for different 

levels of axial deformation through an iterative procedure (Zignago et al. 2018). This iterative 

procedure increases the computational cost of FE analyses of fiber-discretized RC members, since 

the iterative procedure is carried out for every fiber at each time step of the analysis, and can 

introduce numerical convergence issues in nonlinear dynamic FE analyses of large structures. This 

effect can be exacerbated in nonlinear dynamic FE analyses of large structures, for which small 

and/or adaptive time steps may be needed to compute an accurate tangent stiffness matrix, which 

is needed to achieve global convergence of the solution algorithm. It is noted here that the Spoelstra 
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and Monti (1999) model suffers from the same numerical limitation. However, the accuracy of the 

ZBH model in describing the FRP-and-steel confined concrete’s stress-strain response derives 

from simultaneously satisfying force equilibrium and strain compatibility at the material/fiber 

level. Therefore, the development of an FRP-and-steel confined concrete constitutive model that 

can overcome this numerical limitation while retaining the accuracy of the original ZBH model is 

highly relevant and non-trivial. 

An additional issue that can create numerical instability in the original ZBH model is the presence 

of a discontinuity in the monotonic envelope in the event of a rupture of either confining 

mechanism (i.e., FRP wraps or transverse steel). These discontinuities divide the monotonic 

envelope into three independent branches. The first branch corresponds to concrete confined by 

both FRP and steel and is characterized by an implicit relation between stress and strain that needs 

to be resolved through an iterative procedure (Zignago et al. 2018; Zignago and Barbato 2021). 

The second branch commonly starts after the confining FRP rupture and corresponds to concrete 

confined only by steel; thus, it coincides with the Mander model (Mander et al. 1988), which 

explicitly provides the relation between stress and strain. Finally, the third branch starts after the 

confining steel breaks, corresponds to unconfined concrete, and coincides with the Popovics-Saenz 

model (Popovics 1973), which also consists in an explicit relation between stress and strain. 

It has been shown for other material constitutive models that this type of discontinuities can create 

numerical issues, particularly for applications requiring repetitions of FE analyses with different 

values of the modeling parameters, such as structural reliability analysis (Barbato and Conte 2005, 

2006). In order to address this issue, a smoothed ZBH model is introduced in this study by 

connecting two subsequent branches of the monotonic envelope through linear branches with 

negative slopes equal in absolute value  to the initial concrete stiffness, 0cE , as shown in Figure 
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6-1. 

 

Figure 6-1. Monotonic envelope curves for the original and smoothed ZBH models 

This simple modification removes the discontinuities in the monotonic envelope of the original 

ZBH model with minimal changes in the actual structural response of any FE model adopting this 

confined concrete model, and without requiring any modifications to the hysteretic portion of the 

model (Zignago et al. 2018). It is noted here that the obtained stress-strain model is a continuous 

function with discontinuous derivatives with respect to the modeling parameters (i.e., with 

discontinuous response sensitivities), which is suboptimal for structural engineering applications 

requiring response sensitivity calculations, such as structural reliability analysis (Barbato and 

Conte 2006; Haukaas and Kiureghian 2006). However, further smoothing of the constitutive model 

can be performed without loss of generality to obtain continuous response sensitivities. This further 

smoothing of the ZBH constitutive model is outside the scope of the present study. Hereinafter, 

the smoothed ZBH model with the first branch of the monotonic envelope obtained using the 

iterative procedure is, in short, referred to as iterative ZBH model. 

Figure 6-2 presents the experimental validation of the original ZBH model, conducted in Zignago 

et al. (2018), with experimental data available in the literature. It demonstrates the capability of 
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the model to predict the structural behavior of FRP-confined RC columns for different loading 

conditions, namely: concentric axial loads, eccentric axial loads, and cyclic lateral loads. 

 

Figure 6-2. Experimental validation of the ZBH model for: (a) concentric axial loads; (b) 
eccentric axial loads; and (c) cyclic lateral loads 

It is also noted here that the current fiber-section FE implementation does not include a transfer of 

information across different fibers within a cross-section to account for the sudden failure of FRP 

or steel confinement. However, previous results indicate that this effect is negligible (Hu and 

Barbato 2014; Zignago et al. 2018; Megalooikonomou and Papavasileiou 2019). 

6.4 Dimensional analysis and parameter range of validity  

A dimensional analysis is performed here to identify the minimum set of nondimensional variables 

needed to describe the stress-strain curve of the FRP-and-steel confined concrete model (Zignago 

et al. 2018). Based on the model developed in Zignago et al. (2018), the concrete stress cf  at a 

given axial strain c  depends on the following seven mechanical properties: unconfined concrete 

strength, ;cf   concrete initial tangent stiffness, 0;cE  unconfined concrete strain at peak strength, 

;c   effective confining pressure applied by the FRP wraps, lff  0.5 ,f f feE   in which f  is the 
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FRP volumetric reinforcement ratio, Ef  is the FRP Young’s modulus, and fe  is the effective strain 

of FRP at rupture; confining pressure exerted by the internal steel, lsf  0.5 ,s s yk f  in which sk  is 

the steel confinement effectiveness coefficient (Mander et al. 1988), s  is the transverse steel 

volumetric reinforcement ratio, and yf  is the transverse steel yielding strength; yielding strain of 

transverse steel, y ; and effective strain of FRP at failure, fe fu   , in which   = FRP strain 

efficiency factor, and fu  = ultimate strain of the FRP obtained from flat coupon tensile tests. 

Therefore, a total of nv = 9 variables are needed to fully describe the stress-strain curve, i.e., 

 0, , , , , , , , ,V c c c c c lf ls y feV f f E f f      among which the m = 2 variables Qv = ,c cf    are selected 

as repeating variables, where m = number of independent primary dimensions and Qv is the set 

containing the repeating variables.  By using the modified Buckingham’s  -theorem (Butterfield 

1999) and by normalizing the results in terms of /c cf f   as a function of / ,c c    a valid set of 

dimensionless groups is given by:  π1 = / ,c cf f   π2 = / ,c c    π3 = / ,lf cf f   π4 = / ,ls cf f    π5 = 

0 / ,c c cE f    π6 = / ,y c    and π7 = / .fe c    Therefore, π-groups π3 through π7 completely define the 

normalized curve π1 = /c cf f   versus π2 = / .c c    It is pointed out that the dimensional analysis 

performed here is more general than that presented in Zignago and Barbato (2022) because: (1) it 

identifies the nondimensional groups needed to describe the entire stress-strain response of the 

FRP-and-steel confined concrete instead of focusing only on the peak strength, and (2) it considers 

0cE  and c   as independent parameters instead of calculating them from .cf    

Based on the identified π-groups, realistic parameter ranges are selected as follows: (1) /lf cf f   = 

FRP confining ratio ranges from 0.00 to 0.40 with increments equal to 0.01 (41 levels); (2) 

/ls cf f   = transverse steel confining ratio ranges from 0.00 to 0.25 with increments equal to 0.01 
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(26 levels); (3) 0 /c c cE f      1.64, 1.70, 1.79, and 1.86 (4 levels), which correspond to concrete 

with cf   = 20 MPa, 30 MPa, 50 MPa, and 70 MPa, respectively, associated with commonly used 

expressions for Ec0 and c   (Mander et al. 1988; De Nicolo et al. 1994); (4) /y c    = 0.75, 1.05, 

and 1.25 (3 levels); and (5) /fe c    = 4, 8, and 12 (3 levels). The upper bound of the FRP confining 

ratio is selected to be slightly higher than the upper limits recommended by Equation 5.3.2.2-2 of 

AASHTO (2014) and the limit of 0.33 recommended by the ISIS Canada Manual No. 4 (ISIS 

Canada 2002). The values of 0 /c c cE f   , / ,y c   and /fe c    are selected based on mechanical 

properties of commercially available FRP laminates, U.S. reinforcement steel, and U.S. concrete 

(De Nicolo et al. 1994). The upper bound of the transverse steel confining ratio is selected to 

represent a practical limit for real-world applications, based on the shear strength cap in Provision 

11.4.3 of ACI 440.2R-17 (2017). This selection of parameter values corresponds to a total 38,376 

stress-strain curves, which were evaluated using the original version of the ZBH model. The 

considered parameters with their corresponding values/ranges are summarized in Table 6-1. 

Table 6-1. Parameters considered in this study 

Parameter  Values 
/lf cf f   0.00 – 0.40 

/ls cf f    0.00 – 0.25 

0 /c c cE f     1.64, 1.70, 1.79, 1.86 

/y c     0.75, 1.05, 1.25 

/fe c     4, 8, 12 

The following parameter values are assumed as reference values (rv) to help visualize the effects 

of each parameter on the FRP-and-steel confined concrete stress-strain curve: /lf cf f   = 0.16, 

/ls cf f   = 0.12, 0 /c c cE f    = 1.70, /y c    = 1.05, and /fe c    = 8. Figure 6-3 shows how the first 
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branch of the normalized stress-strain curves of the ZBH model change when only one parameter 

at a time is changed while the other parameters are kept constant and equal to their respective 

reference values.  

It is observed that the FRP confining ratio, /lf cf f  , the steel confining ratio, /ls cf f  , and the ratio 

of effective strain of FRP at failure to unconfined concrete strain at peak strength, /fe c   , have a 

significant effect on the stress-strain curves (Figure 6-3a, b and e), whereas the other two 

parameters, 0 /c c cE f    and / ,y c    have a very small influence on the stress-strain curves. In 

particular, an increasing value of 0 /c c cE f    results in a small shift upward of the curve (Figure 

6-3(c)); whereas an increasing value of /y c    has a very small and localized effect corresponding 

to a curvature decrease at the confining steel’s transition point between elastic and plastic behavior  

(Figure 6-3(d)). 
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Figure 6-3. Sensitivity of normalized stress-strain curve to different nondimensional 
parameters. 
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6.5 Optimization-based analytical monotonic envelope 

As previously noted, the monotonic envelope of the original ZBH model (Zignago et al. 2018) 

consists of three different branches, of which only the first branch is obtained through an iterative 

procedure. Therefore, an analytical expression needs to be identified only for the first branch of 

the FRP-and-steel confined concrete model. It is highlighted that the same procedure developed in 

this paper for the FRP-and-steel confined concrete model is also valid for the Spoelstra and Monti 

model (Spoelstra and Monti 1999), which represents the special case of the FRP-and-steel confined 

concrete model when there is no confining steel. 

The analytical expression for the first branch of the ZBH model’s monotonic envelope is obtained 

through an optimization procedure that provides a different curve for each specific combination of 

nondimensional parameters. Preliminary test results indicated that: (1) the fitting parameters are 

functions of the nondimensional parameters; (2) the functional dependence of the fitting 

parameters on the nondimensional parameters is extremely complex even for the simplest 

analytical functions (thus, making any explicit equation unfeasible for practical use); (3) when 

calculating the fitting parameter values via optimization, multiple local optimum solutions 

generally exist, sometimes corresponding to physically-unrealizable stress-strain curves; and (4) 

the computational cost of using global optimization to obtain the analytical curve with the best fit 

to the ZBH model’s monotonic envelope can exceed the computational saving associated with 

using the analytical curve in the FE analyses. Therefore, the following approach is used to derive 

the optimization-based analytical expression of the FRP-and-steel confined concrete’s stress-strain 

monotonic envelope: (1) a set of function families is selected, (2) the curve fitting problem is cast 

as a nonlinear constrained minimization problem, (3) a global optimization algorithm is used to 

identify the feasible domain of the fitting parameters corresponding to the global optimum and the 
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starting points for local optimization, (4) an optimization procedure based on local optimization  

is proposed to find the analytical expression for the ZBH model’s stress-strain monotonic 

envelope, and (5) the proposed methodology is validated and the function family with the best 

overall performance (in terms of computational cost, simplicity, and accuracy) is identified. 

6.5.1 Selected families of analytical functions 

Eight families of analytical functions are considered in this study, as described in Table 6-2:  two 

of them (i.e., I and II) are inspired by the equation proposed by Popovics (1973) to describe the 

stress-strain behavior of unconfined concrete, whereas the other six function families (i.e., III 

through VIII) are rational functions of polynomials with different orders, inspired by the general 

expression in the model proposed by Sargin (1971). Among this sub-group, analytical functions 

V, VII, and VIII consist of two rational function branches intersecting at the axial strain value 

,c c y   (i.e., the axial concrete strain corresponding to the yielding of the lateral confining steel). 

Analytical functions VI through VIII are characterized by an additional constraint imposing that 

the tangent stiffness at any point of the stress-strain curve, cE , is smaller than or equal to the 

unconfined concrete initial stiffness 0cE .  

Table 6-2. Summary of considered analytical fit functions 
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6.5.2 Definition of curve fitting problem 

The curve fitting problem is cast as a nonlinear constrained minimization problem with the 

objective function corresponding to the sum of the squares of the residuals, and is expressed by: 

 
  2

1

min ,

subject to ( ) 0,  

n

j j
j

F x y


  

  


c

c

r c lb c ub

  (6-1) 

in which the residuals correspond to the difference between the target normalized stress 

, /j c j cy f f   obtained from the iterative ZBH model and the fitted normalized stress 

   , , /j c j cF x f x f c c  corresponding to the considered analytical function, F, calculated at the 

normalized strain , /j c j cx    ;  n denotes the total number of data points in which the stress-strain 

curve is discretized; 1, ,
T

pc c   c   denotes the vector of fitting parameters that need to be 

optimized, with the superscript T = transpose operator and p   number of fitting parameters for a 

given function family and varying between 3 and 9 (see Table 6-2); ( ) 0r c denotes the vector of 

nonlinear constraints listed in Table 6-2; and lb  and ub  correspond to the lower and upper bound 

values, respectively, of the fitting parameters. The vector inequalities in Eq. (6-1) represent 

component-wise inequalities. In order to ensure an approximately homogeneous discretization of 
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all stress-strain curves, the normalized strain increments are assumed constant and equal to 

1 0.1j j jx x x     , with 1, ,j n   and  0 0.x   By assuming zero initial stresses corresponding 

to zero strain,  0 0, 0.F x y c  

6.5.3 Global optimization and identification of parameter bounds 

Each mathematical function from Table 6-2 is fitted to the 38,376 stress-strain curves obtained 

from the ZBH model and corresponding to all possible combinations of nondimensional 

parameters listed in Table 6-1. This optimization is performed by using the multiple starting point 

algorithm GlobalSearch (Ugray et al. 2007; Mathworks 2021), which is available in the global 

optimization toolbox of MATLAB, version R2021a (Mathworks 2021). This algorithm generates 

a set of potential start points (trial points) within the domain bounds, lb  and ub , based on a 

scatter-search method, i.e., an iterative heuristic search method used to find global optima in 

optimization problems (Ugray et al. 2007; Mathworks 2021). These trial points are then filtered 

out to increase efficiency. Finally, the local nonlinear constrained optimization solver fmincon is 

employed to evaluate the local minima associated with each of the remaining trial points 

(Mathworks 2021). Preliminary results showed that all components ic  of the optimized 

coefficients *c  assumed values contained within the interval [-2, 20]. Thus, this interval was used 

as the feasible domain of the optimization variables in the global optimization procedure. The first 

global optimization step is used to: (1) identify the lower and upper bounds containing the global 

optima *c  corresponding to physically-realizable stress-strain curves, and (2) find appropriate hot 

starting points for the local optimization algorithm used to obtain the analytical function 

representing the stress-strain monotonic envelope. The lower and upper lower boundary values 

identified in this first global optimization step are reported in Table 6-3. They were obtained by 
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analyzing both local and global minima obtained through the global optimization algorithm and 

restricting the feasible domain to avoid regions with starting points that produced local minima 

that diverged from the corresponding global minimum.  

Table 6-3. Parameter bounds for local optimization 

Fit 
function 

  c1 c2 c3 c4 c5 c6 c7 c8 c9 

I 
ub 5.0 4.6 2.6 - - - - - - 
lb 1.0 1.1 0.7 - - - - - - 

II 
ub 12.0 3.1 10.0 2.6 - - - - - 
lb -0.2 1.2 0.0 0.6 - - - - - 

III 
ub 0.5 12.0 8.0 5.0 - - - - - 
lb -0.2 -0.6 0.0 -0.5 - - - - - 

IV 
ub 0.1 1.2 25.0 7.0 7.0 - - - - 
lb -0.05 -1.2 -14.0 -0.1 -0.2 - - - - 

V 
ub 2.4 15.0 7.2 5.2 0.5 4.2 0.6 12.0 20.0 
lb -0.1 -2.0 0.0 -0.7 -0.5 -0.9 -0.6 -0.6 -2.0 

VI 
ub 0.4 12.0 7.0 5.0 - - - - - 
lb -0.2 -0.6 0.0 -0.5 - - - - - 

VII 
ub 2.4 15.0 7.2 5.2 0.5 4.2 0.7 12.0 20.0 
lb -0.1 -2.0 0.0 -0.7 -0.5 -0.9 -0.6 -0.6 -2.0 

VIII 
ub 2.4 15.0 7.2 5.2 0.5 0.8 12.0 - - 
lb -0.1 -2.0 0.0 -0.7 -0.5 -0.4 -0.9 - - 

 

6.5.4 Constrained local optimization and error measures 

The analytical functions that provide the best fits to the 38,376 stress-strain curves corresponding 

to the iterative ZBH model are obtained using the local nonlinear constrained optimization solver 

fmincon (Mathworks 2021) in conjunction with the feasibility domains provided in Table 6-3. The 

start point of this local optimization step corresponds to the midpoint of the feasibility domain for 

each fitting parameter, i.e., 0 ( ) / 2i i ic lb ub   for 1, , .i p   For all cases, the local optimization 

solutions coincided (within the assumed tolerance 410tol   for the numerical optimization 
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algorithm) with the global optimization solutions *c , thus corresponding to physically-realizable 

stress-strain curves. 

In order to assess the accuracy of the different function families in fitting the target normalized 

stress-normalized strain curves, the relative area error  area  and the relative local error  local  

are introduced as follows:  
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in which fx   normalized strain corresponding to the failure of the FRP confinement.  

Table 6-4 summarizes the performance of the different function families in fitting the stress-strain 

curves generated using the ZBH model in terms of mean and maximum values of area  and local  

calculated over the 38,376 cases considered. It is observed that all eight fit functions have a mean 

area  smaller than 1%, maximum area  smaller than 6%, mean local  smaller than 3%, and maximum 

local  smaller than 15%. The best performance in terms of accuracy is achieved by fit function V, 

which presents the smallest values for all four error measures used in this study among all of the 

considered fit functions (mean area  = 0.079%, maximum area  = 0.902%, mean local  = 0.474%, 

and maximum local  = 3.922%), but also requires the largest number of parameters (i.e., nine 

parameters). As expected, the use of additional constraints, such as the constraint on the tangent 

stiffness 0c cE E , produces a small increase in the error measures, as confirmed by the comparison 

of the results of fit functions III and V with fit function VI and VII, respectively. 
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The relative runtimes (i.e., the total runtimes normalized by the total runtime of the local 

optimization step for fit function I, which is equal to 90.59 s) are also reported in Table 6-4 for 

both global and local optimization. These runtimes are obtained by running a parallelized 

MATLAB code on a 6-node machine (Intel® Core™ i7-8700 CPU @ 3.20GHz and 16.0 GB 

RAM) with the following optimization options: step size = function tolerance = 410 , maximum 

number of iterations = maximum number of function evaluations = 103, local optimization 

algorithm = sequential quadratic programming (Gill et al. 1981),  and all other options equal to the 

MATLAB default values. It is observed that the computational cost to obtain each analytical 

function by using the proposed optimization based approach (i.e., by using local optimization in 

conjunction with the feasibility domains given in Table 6-3 and using the midpoints as starting 

points) is contained between 0.002 s and 0.010 s, and that these computational times are slightly 

higher than those that would be obtained by running a serial code instead of a parallel one. These 

computational costs are negligible when compared to the computational cost of a nonlinear FE 

analysis of a structural system with more than a few hundreds of degrees of freedom. 

Table 6-4. Assessment of fit functions’ statistics after second optimization round 

Fit 
function 

Mean area  

(%) 

Maximum 

area  (%) 
Mean local  

(%) 

Maximum 

local  (%) 

Relative 
runtime 
(global) 

Relative 
runtime 
(local)  

I 0.878 5.948 2.884 14.935 38.93 1.00 
II 0.490 3.809 2.783 11.769 93.14 3.01 
III 0.403 1.259 1.745 4.571 44.31 1.42 
IV 0.332 1.635 1.516 4.067 27.90 2.73 
V 0.079 0.902 0.474 3.922 140.68 4.32 
VI 0.412 1.839 1.807 5.639 32.08 1.45 
VII 0.082 1.342 0.481 4.532 132.31 4.40 
VIII 0.125 2.117 0.531 5.117 97.81 3.33 
 

For further evaluation of the fitted functions and to help visually examine the accuracy of different 
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family of fit functions, ZBH model curves and their corresponding fitted curves are compared 

inFigure 6-4  and Figure 6-5. In particular, Figure 6-4 plots the iterative and analytical ZBH models 

for fit function III, selected as representative of the fit functions defined with a single mathematical 

expression. Figure 6-4(a) plots a case in which area  is close the mean value of area  in Table 6-4, 

whereas Figure 6-4(b) plots the results for the case in which area  is maximum. Figure 6-5 plots 

the iterative and analytical ZBH models for fit function VII, selected as representative of piecewise 

fit functions. Figure 6-5(a) plots a case in which area  is close the mean value of area  in Table 6-4, 

whereas Figure 6-5(b) plots the results for the case in which area  is maximum. In all cases, the 

accuracy of the analytical ZBH model is found to be satisfactory for numerical modeling of real-

world structures. 

 

Figure 6-4. Comparison of the iterative and  ZBH model and Fit function III for: (a) area  close to 

the mean area ; and (b) maximum area  in Table 6.4 
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Figure 6-5. Comparison of the iterative and ZBH models using Fit function VII for: (a) area  

close to the mean area ; and (b) maximum area  in Table 6.4 

6.5.5 Validation, performance comparison, and fitting function selection 

The proposed optimization procedure is further validated by: (1) randomly generating (by 

associating to all π-groups a discrete uniform distribution and considering all design variables as 

statistically independent) 100,000 samples of FRP-and-steel confined concrete properties, (2) 

obtaining the corresponding stress-strain curve from the iterative ZBH model, (3) finding the 

optimum values of the fitting parameters based on the proposed local optimization procedure, and 

(5) calculating the corresponding error measures and relative runtimes for all eight fit functions 

considered in this study, as show in Table 6-5. The performance of the candidate fit functions is 

evaluated taking into account the number of coefficients ci to be optimized, the relative area error 

area , the relative local error ,local  and runtime. 

Table 6-5. Validation of performance of fit functions 

Fit 
function 

Mean area  

(%) 

Maximum 

area  (%) 
Mean local  

(%) 

Maximum 

local  (%) 
Relative 
runtime  

I 0.880 5.261 2.811 14.193 2.12 
II 0.469 3.266 2.842 12.270 7.13 
III 0.374 1.175 1.724 4.381 2.37 
IV 0.299 1.405 1.510 4.095 6.51 
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V 0.077 0.827 0.465 3.246 9.88 
VI 0.380 1.570 1.772 4.592 3.19 
VII 0.079 1.240 0.464 6.962 10.31 
VIII 0.111 1.388 0.489 5.152 8.04 

 

It is observed that fit functions I and II present the largest relative area and local errors among the 

studied functions, with mean area  equal to 0.880% and 0.469%, respectively, and mean local  equal 

to 14.193% and 12.270%, respectively. Although these two fit functions are inspired by the 

equation proposed by Popovics (1973) for unconfined concrete, they do not provide good curve 

fitting results for FRP-and-steel confined concrete. 

Among the fit functions defined with a single mathematical expression (i.e., fit functions I, II, III, 

IV and VI), fit function IV contains the largest number of the optimization coefficients ci (i.e., 

five) and performs the best in terms of mean area  (i.e., 0.299%), mean local   (i.e., 1.510%), and 

maximum local  (i.e., 4.095%). Fit function III requires one less coefficient ci than fit function IV; 

however, it presents a slightly better performance than fit function IV when considering the 

maximum area  (i.e., 1.175% when compared to 1.405%). Fit function VI, which has the same 

analytical form of fit function III with the addition of a constraint on the tangent stiffness, presents 

also a similar performance. 

The piecewise fit functions V and VII, which have the same functional form with the latter 

including a constraint on the tangent stiffness, present the overall best performance among all 

tested fit functions, with a mean area  equal to 0.077% and 0.079%, a maximum area  equal to 

0.827% and 1.240%, a mean local  equal to 0.465% and 0.464%, and a maximum local  equal 

to.3.246% and 6.962%, respectively. For comparison, the best performance among the fit functions 

with a single mathematical expression (i.e., fit function VI) presents mean area  and local  
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approximately 3.8 and 3.2 times higher than those of fit function VII, respectively. Fit functions V 

and VII present also the two highest runtimes (i.e., approximately 1.52 and 1.58 times that of fit 

function IV) and the largest number of optimization coefficients (i.e., nine coefficients). However, 

these computational cost increases are practically insignificant when compared to the 

computational cost of the FE analyses in which these material constitutive models would be 

typically used. In addition, the constraint on the tangent stiffness avoids spurious increases in 

stiffness that were observed in a few cases when using fit function V. Based on these 

considerations, it is concluded that fit function VII provides the overall best fit to the original ZBH 

model’s stress-strain curve for FE analysis applications. 

6.5.6 Construction of stress-strain curve for FE analysis applications 

Based on the previously presented analysis, the following procedure is proposed here to obtain the 

non-iterative FRP-and-steel confined concrete constitutive model based on the newly-developed 

optimization-based analytical monotonic envelope (referred to as analytical ZBH model 

hereinafter) for FE analysis applications: 

1) Build the FRP-and-steel confined concrete stress-strain curve using the iterative ZBH 

model for each representative concrete fiber (i.e., each fiber with different material 

parameters) in the FE model to be analyzed. Use a maximum axial strain sufficiently large 

to identify the axial strains corresponding to failure of the FRP and steel confinement. 

2) For each of these concrete fibers, find the values of the fitting parameters for fit function 

VII using a local nonlinear constrained optimization solver (e.g., fmincon) and the 

parameter bounds provided in Table 6.3 to fit the first branch of the corresponding stress-

strain curve obtained using the iterative ZBH model. 

3) Use the analytical expressions for the Mander and the Popovics-Saenz models to describe 



 

161 
 

the second and third branches, respectively, of each stress-strain curve. 

4) Assign these newly-obtained analytical curves to the corresponding concrete fibers of the 

FE model to be analyzed. 

It is observed here that even large and complex structural FE models contain only a small number 

of concrete fibers with different material properties (typically, two different fibers for each 

different cross-section), whereas each column cross-section can contain up to hundreds of 

individual concrete fibers. Therefore, the computational overhead of obtaining the analytical ZBH 

model from the original ZBH model is generally small, independent of the FE model discretization, 

and relatively decreasing for increasing complexity and size of the FE model. 

6.6 Application example 1: Experimental validation of seismic analysis for an 
FRP-confined column 

The analytical ZBH model was implemented in OpenSees (Mazzoni et al. 2006) and is tested 

through a nonlinear seismic response analysis of a concrete filled FRP tube (CFFT) bridge column 

of a two-column bridge pier subjected to seismic loads, by using the experimental results presented 

in Zaghi (2009) and Zaghi et al. (2012). The two-column bridge pier consists of two 356-mm (14 

in) diameter, 1511-mm (59.5 in) long columns with a center-to-center spacing of 2134 mm (84 in) 

between them, in addition to a concrete footing and a cap beam. One of the columns is a 

conventional RC column, while the second column is a CFFT bridge column, consisting of an FRP 

pipe with a wall thickness ft  7 mm (0.27 in), and fibers aligned at 55° with respect to the tube 

longitudinal axis, which contribute to the strength in both the longitudinal and hoop directions of 

the column. Additional geometric details and the values of the modeling parameters for the 

material constitutive models are provided in Zaghi (2009) and Zaghi et al. (2012). 

The columns are modeled with fiber-discretized cross-sections (Spacone et al. 1996; Barbato 2009; 
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Hu and Barbato 2014) within nonlinear force-based beam-column elements with nonlinear 

rotational springs at the bottom to account for bond-slip rotations. At the top, flexural releases and 

a pipe-pin macro model were added to take into account the effects of slippage in the pipe-pin 

connections (Zaghi 2009). The cap beam is modeled with an elastic element, with the effective 

weight of the mass rig equal to 445 kN (100 kip), as shown in Figure 6-6(a). An additional axial 

load equal to 178 kN (50 kip) is also applied to each column. Figure 6-6(b) illustrates the columns’ 

fiber-discretized cross-sections. The sectional fiber discretization employed in the analysis consists 

of 20 radial layers for the concrete core, 10 radial layers for the concrete cover, and 20 angular 

divisions, although Figure 6-6(b) shows only five radial layers for the concrete core and two layers 

for the concrete cover for the sake of clarity. Both iterative and analytical ZBH models are 

employed to describe the axial stress-axial strain response of the bridge piers’ concrete fibers in 

order to quantitatively compare their performance. An outer layer is also included to model the 

longitudinal behavior of the FRP tube. The longitudinal steel rebar fibers are modeled using the 

extended Menegotto-Pinto model (Menegotto and Pinto 1973; Filippou et al. 1983). 

 

Figure 6-6. Structural model of the two-column bridge pier (units in m): (a) finite element model 
of the bridge pier; and (b) fiber discretization of the CFFT column cross-section 

 The two-column pier model is subjected to the 1994 Northridge earthquake ground acceleration 
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time-history recorded at the Sylmar Converter Station, as shown in Figure 6-7, applied 

synchronously at the base of both columns. The unscaled ground acceleration time-history is then 

filtered and compressed to take into account scaling effects, as explained in Zaghi (2009). The 

model is subjected to six subsequent ground acceleration time-histories of increasing intensity 

(referred to as runs hereinafter) obtained by applying to the recorded ground acceleration time-

history a series of scale factors equal to 0.1, 0.4, 0.7, 1.0, 1.3, and 1.6, respectively. The axial loads 

are incrementally applied in a quasi-static manner prior to the application of the earthquake ground 

motion. The Krylov-Newton algorithm is employed, in conjunction with the unconditionally stable 

Newmark-beta stepping integration scheme (Chopra 2016).  

 

Figure 6-7. Unscaled ground acceleration time-history of the 1994 Northridge earthquake 

recorded at the Sylmar Converter Station 

Figure 6-8(a) plots the displacement time-histories of the CFFT column’s top node, simulated 

using both the iterative and analytical ZBH models, for runs 4, 5, and 6. The simulated responses 

are in very good agreement with the experimental results, with a maximum absolute difference 

equal to 21.610 mm (19.511% of the peak displacement) and 21.391 mm (19.313% of the peak 

displacement) for the iterative and analytical ZBH model, respectively. It is observed that the two 

G
ro

un
d 

ac
ce

le
ra

ti
on

 (
g)



 

164 
 

simulated response time-histories are practically identical, with a maximum absolute difference of 

0.232 mm during run 6, which corresponds to approximately 0.209% of the peak displacement 

experimentally recorded during run 6. Similarly, a very good agreement between simulated 

responses and the base shear versus top displacement experimentally recorded for the CFFT 

column is observed in Figure 6-8(b).  

The total execution times of the FE analyses employing the iterative and analytical ZBH model 

are also compared, based on a personal computer with Intel® Core™ i7-8700 CPU @ 3.20GHz 

and 16.0 GB RAM. The corresponding analysis clock time for the iterative ZBH model was 

26.723 s, whereas the FE analysis using the analytical ZBH model required 23.147 s for all 

consecutive runs. This result corresponds to a reduction in computational time of approximately 

13%. It is pointed out that this relative improvement in efficiency due to the use of the analytical 

ZBH model for the confined concrete is obtained for an example in which the difference in runtime 

stems from only one out of two columns, and a relatively complex and computationally expensive 

model is employed for the column-cap beam connection.  

 

Figure 6-8. Experimental and simulated dynamic responses of the two-column bridge bent tested 
in Zaghi et al. (2012): (a) displacement time-history of the CFFT column’s top node 

corresponding to runs 4, 5, and 6, with scale factors equal to 1.0, 1.3, and 1.6, respectively; and 
(b) base shear versus top displacement of the CFFT column 
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6.7 Application example 2: Nonlinear seismic analysis of a 3-dimensional 
RC bridge retrofitted with FRP 

The analytical ZBH model is also tested through a nonlinear dynamic FE response analysis of a 

three-dimensional reinforced concrete bridge retrofitted using FRP wraps and subject to a seismic 

base excitation time-history. The considered bridge corresponds to design example #8 from 

NCHRP Project 12-49 (ATC/MCEER 2003), which is a five-span bridge with a total length of 

152.40 m (500 ft) and five spans of 30.48 m (100 ft) supported by four two-column bents and two 

abutments, as represented in Figure 6-9(a). Additional geometric details and the values of the 

modeling parameters for the material constitutive models are provided in ATC/MCEER (2003). 

For the present application example, all columns of the original structure are retrofitted by using 

carbon FRP wraps with an elastic modulus fE  137.9 GPa (20,000 ksi), a tensile strength f 

1241 MPa (180 ksi), an FRP strain efficiency factor   0.679 (Realfonzo and Napoli 2011), and 

10 FRP plies resulting in a total FRP thickness ft   1.67 mm (0.06575 in). This FRP amount 

provides an FRP confinement pressure ratio /lf cf f   = 0.082, which complies with the minimum 

ratio /lf cf f   = 0.08 recommended by ACI 440.2R-17 guidelines. Figure 6-10 plots the complete 

stress-strain curve for the iterative and analytical ZBH models employed in the analysis for the 

concrete core and concrete cover fibers. The monotonic envelopes of the iterative and analytical 

ZBH models are extremely close, as confirmed by the reported error measurements for the first 

branch of each curve, with area  = 0.070% and local = 0.228% for the constitutive model assigned 

to the concrete cover fibers, and area  = 0.081% and local = 0.359% for the constitutive model 

assigned to the concrete core fibers. 
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Figure 6-9. Structural model of the bridge (units in m): (a) finite element model of the bridge; (b) 
fiber discretization of columns cross-section; (c) finite element model of a bent 

 

Figure 6-10. Complete stress-strain curve using the iterative and analytical ZBH models for: (a) 
core concrete fibers; and (b) cover concrete fibers 

The columns are modeled with nonlinear force-based beam-column elements with plastic hinges 

based on the modified Gauss-Radau quadrature (Scott and Fenves 2006) and fiber-discretized 

cross-sections (Spacone et al. 1996; Barbato 2009; Hu and Barbato 2014), while the superstructure 

and the cap beams are modeled with elastic elements, as depicted in Figure 6-9(c). For each span, 
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the superstructure is divided into four 7.62 m (25 ft) elements, with the centerlines of the elements 

placed along the centroid of the superstructure and passing through the centroid of the cap beams. 

Figure 6-9(b) shows a representation of the columns’ fiber-discretized cross-sections. The sectional 

fiber discretization employed in the analysis consists of 20 radial layers for the concrete core, 10 

radial layers for the concrete cover, and 20 angular divisions, although Figure 6-9(b) shows only 

five radial layers for the concrete core and two layers for the concrete cover for the sake of clarity. 

The longitudinal steel fibers are modeled using the extended Menegotto-Pinto model (Menegotto 

and Pinto 1973; Filippou et al. 1983). For simplicity, all supports for piers and abutments are 

modeled as fixed restraints. Both iterative and analytical ZBH models are employed to describe 

the axial stress-axial strain response of the bridge piers’ concrete fibers in order to quantitatively 

compare their performance. 

The structural model of this bridge is subjected to the first 20 s of the 1994 Northridge earthquake 

ground acceleration time history recorded at the Arleta-Nordhoff Fire Station, as shown in Figure 

6-11. The base excitation is applied synchronously at all supports in the transverse direction. In 

order to assess the effects of different levels of nonlinear behavior, three different nonlinear 

dynamic FE analyses are performed with the earthquake ground acceleration time history scaled 

by factors equal to 1, 2, and 4, respectively. Before application of the earthquake ground motion, 

both dead and live loads are incrementally applied in a quasi-static fashion, in which the dead loads 

are calculated form the geometry of the bridge’s components and the unit weight of the materials, 

and the live-to-dead load ratio is assumed equal to 1. The modified Newton-Raphson algorithm is 

employed associated with the unconditionally stable Newmark-beta stepping integration scheme 

and a time discretization t  0.01 s.  
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Figure 6-11. Unscaled ground acceleration time history of the 1994 Northridge earthquake 
recorded at the Arleta-Nordhoff Fire Station 

The time histories for the transverse displacement of bent #3’s top node, which are obtained using 

both the iterative and analytical ZBH models, are shown in Figure 6-12(a) for the earthquake 

ground acceleration time history scaled by a factor of 4. It is observed that the two response time 

histories are practically identical, with a maximum absolute difference of 0.401 mm over the entire 

20 s of the response time histories, which corresponds to approximately 0.066% of the time history 

peak displacement. However, the FE analysis’ total execution times depend on the level of 

nonlinearity and are significantly different between the FE models based on the iterative and 

analytical ZBH model. In particular, the nonlinear dynamic FE analyses performed using the 

iterative ZBH model required 16.617 s, 18.001 s, and 20.582 s for the ground motion records 

scaled by factors 1, 2, and 4, respectively, when using a personal computer with Intel® Core™ i7-

8700 CPU @ 3.20GHz and 16.0 GB RAM. By contrast, the corresponding analysis clock times 

recorded when using the analytical ZBH model were 10.821 s, 11.486 s, and 12.843 s, 

respectively, with a reduction in computational time of approximately 35%, 36%, and 38%, 

respectively. The improved computational efficiency for the analytical ZBH model is obtained by 

removing the need for iterations at the material level in each of the confined concrete fibers 
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exhibiting nonlinear behavior, as demonstrated by the fact that the relative improvement in 

efficiency increases for increasingly nonlinear responses. It is observed that the computational 

savings are higher than those for the single column application example. This result was expected, 

as the proposed analytical constitutive model becomes more computationally efficient as the 

number of fibers included in the FE model increases, because the initial overhead associated with 

fitting the analytical curves to the corresponding iterative ZBH stress-strain curves becomes 

relatively smaller when compared to the overall computational cost of the nonlinear FE analysis. 

It is pointed out that, when the original non-smoothed ZBH model is employed, similar runtimes 

to those of the smoothed iterative ZBH are observed for the analyses with ground acceleration 

time-histories scaled by factors equal to 1 and 2. Conversely, when a scale factor equal to 4 is used, 

the FE analysis fails to achieve convergence at the FRP failure, when the same analysis parameters 

(i.e., fiber mesh and time step discretization) are used. 

 

Figure 6-12. Dynamic response of the benchmark bridge subject to the 1994 Northridge 
earthquake ground acceleration time history scaled by factor equal to 4: (a) transverse 

displacement of the top node of bent #3; (b) axial stress-strain time-history of the outermost 
concrete fiber at the bottom plastic hinge of one of the columns in bent #3  

Figure 6-12(b) shows the axial stress-axial strain response corresponding to the outermost concrete 

fiber at the bottom section of the plastic hinge formed at the base of one of the columns in bent #3 
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when the input ground motion is called by a factor equal to 4. This fiber was selected because it 

experiences one of the largest axial strains across the entire structure, up to reaching FRP failure. 

Also in this case, the responses obtained using the iterative and analytical ZBH models are 

practically identical. This observations demonstrates that: (1) the monotonic envelopes of iterative 

and analytical ZBH models are extremely close, with area  equal to 0.007% and local equal to 

0.228% for the constitutive model assigned to the concrete cover fibers, and area  equal to 0.008% 

and local equal to 0.359% for the constitutive model assigned to the concrete core fibers; and (2) 

the two models produce practically coincident results in terms of both global and local responses 

when used in nonlinear dynamic FE analyses of structural systems.  

6.8 Conclusions 

This paper proposes a new analytical expression based on an optimization procedure for a recently 

developed analysis-oriented iterative FRP-and-steel confinement model for concrete (called 

hereinafter ZBH model). The monotonic envelope of the original ZBH model is made continuous 

everywhere by removing the discontinuities at the failure of FRP and transverse steel confinement. 

Five dimensionless parameters that fully describe the normalized axial stress-strain envelope curve 

of the ZBH model are identified through a dimensional analysis. The performance of eight 

candidate families of analytical functions in fitting the iteratively-generated uniaxial stress-strain 

curve for the monotonic envelope of FRP-and-steel-confined concrete over realistic ranges of the 

identified dimensionless parameters is evaluated in terms of computational cost, simplicity, and 

accuracy. The selected family of fitting functions (fit function VII) consists of a piecewise rational 

function with a total of nine coefficients to be optimized. On average, this method generates 
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analytical expressions for the ZBH model monotonic envelope with relative area error of 0.079% 

and relative local error of 0.464% when compared to the original iteratively generated ZBH model. 

The efficiency and accuracy of the newly proposed analytical expression of the ZBH model are 

compared with the original iterative formulation through two application examples consisting of 

nonlinear dynamic FE analyses of: (1) a concrete filled FRP tube (CFFT) bridge column of a two-

column bridge pier experimentally subjected to seismic loads, and (2) a three-dimensional five-

span bridge structure with FRP-retrofitted RC piers subject to a seismic base excitation time-

history. It is found that the newly proposed optimization-based analytical monotonic envelope 

model produces dynamic responses that are practically coincident to those obtained using the 

original iterative model for the analyzed bridge at both global and local levels. It is also observed 

that the analytical model can reduce the computational time associated with the nonlinear dynamic 

FE analysis by more than 30%, and that its computational efficiency increases with increasing 

nonlinearity of the analysis. It is concluded that the newly proposed analytical model can be used 

in place of the original iterative model because it provides the same modeling accuracy at a 

significantly lower computational cost. 

  



 

172 
 

7 Research Summary and Conclusion 

Externally-bonded fiber-reinforced polymer (FRP) laminates have been widely used in the 

retrofitting and rehabilitation of reinforced concrete (RC) columns through a confinement 

mechanism, in which the axial and bending moment capacities of these compression members can 

be greatly improved. The confinement produced by FRP laminates acts concurrently with the 

confining mechanism of the internal transverse steel, although the latter is often neglected in design 

standards and guidelines. In this dissertation, an analysis-oriented model of concrete that 

accurately accounts for the simultaneous confinement with FRP and steel is proposed. The 

complex nonlinear phenomenon of simultaneous confinement is handled at the material level 

through an iterative-incremental approach, in which force equilibrium and strain compatibility 

relationships involving the radial deformation of concrete and the confining devices (FRP and 

steel) are enforced when their respective lateral confining pressures exerted to concrete are 

superimposed. New hysteresis rules are also proposed based on previously experimental tests 

results to allow the use of the under cyclic and dynamic loading conditions. The relative 

confinement coefficient fc  is first introduced to help quantify the importance of the transverse 

steel confinement to the structural response of FRP-confined RC columns. The model is validated 

against experimental data available in the literature for three loading conditions: (1) concentric 

compression, (2) eccentric compression, and (3) combined axial and cyclic lateral loads.  

The proposed FRP-and-steel confined concrete model is then employed in parametric studies to 

quantify the contribution of the often-ignored steel confinement on the load-bearing capacity of 

FRP-strengthened RC columns. A new design equation for pure compression is proposed and 

calibrated via structural reliability method. A procedure is also proposed to obtain an analytical 

expression for the envelope curve of the iteratively-generated original FRP-and-steel confined 
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concrete model. In the following sections, the major conclusions of this research work are 

summarized, and future research ideas are listed. The steel-and-FRP confined concrete model 

developed in this dissertation is suitable for use in finite element (FE) models in conjunction with 

fiber-section force-based frame and/or zero-length FEs, and can be used for accurate and 

computationally-efficient FE analysis of real-world large-scale structures (e.g., buildings and 

bridges) with FRP-confined RC columns, for which more accurate three-dimensional FE models 

could be computationally prohibitive. Also, the proposed steel-and-FRP confined concrete model 

can be used to achieve more efficient and economical retrofit design of RC columns through FRP 

confinement. 

7.1 Conclusions 

In Chapter 2, an analysis-oriented model of FRP-and-steel confined concrete is proposed. The 

proposed model is found to provide very good agreement with experimental data. The proposed 

model is also shown to provide more accurate estimates of the structural behavior of FRP-confined 

RC column specimens than models that either do not take into account the transverse steel 

confinement or that linearly superimpose the confinement effects from FRP and internal materials. 

The confinement effects of transverse steel are found to be significant, particularly for the 

concentric axial loading conditions. These effects on the columns’ strength are comparatively 

smaller when the columns are subjected to the combined action of axial compression and bending 

moment, mainly as a result of the reduced average fc  values of the available data for eccentric 

and cyclic lateral cases. However, these effects are significantly larger for the lateral ductility 

capacity of columns subject to axial and lateral loads. 

In Chapter 3, the proposed FRP-and-steel confined concrete model is employed in a 

comprehensive parametric study to investigate the steel confinement effects and the relative 
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importance of key modeling and design parameters on the axial strength of FRP-confined RC 

columns. The results show that the steel confinement effect can significantly increase the axial 

strength of FRP-confined RC columns, particularly for large cross-sections, low concrete 

compressive strengths, and low amounts of confining FRP. The impact of design limits on concrete 

deformation by design guidelines are also investigated. It is found that the imposition of design 

strain limits can reduce the gained strength by as much as 66% when compared to columns loaded 

up to failure. The steel confinement effects induce two distinct behaviors depending on the ratio 

between the FRP lateral confinement and the unconfined concrete peak axial strength. These two 

behaviors can be described as functions of two relative confinement coefficients (i.e., fc , 

corresponding to the ratio between the steel and FRP confinement forces, and sC , corresponding 

to a scaled ratio between the steel confinement force and the FRP confinement stiffness). 

In Chapter 4, the parametric study carried out in Chapter 3 for FRP-confined RC columns subject 

pure compression is extended to the eccentric compression loading condition to investigate the 

interaction between axial load and bending moment. Design deformation limits as per ACI 440.2R-

17 are found to significantly impact the column strength, with a reduction of 90.9% the normalized 

combined strength (defined as the distance between the origin and the point on the normalized 

axial-flexural interaction diagram corresponding to the maximum load achieved for a given 

eccentricity). The effect of steel confinement is affected by the load eccentricity. For this reason, 

the two relative confinement coefficients proposed in Chapter 3 are modified to quantify the effects 

of internal steel confinement by taking into account the effects of load eccentricity. 

In Chapter 5, the results from the parametric study in Chapter 3 are used to propose a modification 

the design equation for FRP-confined RC circular columns subject to pure compression to include 

the transverse steel confinement effects. The new equation is calibrated by means of a structural 
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reliability analysis approach, taking into account uncertainties related to material, dimension, 

modeling, and loading variables. The probability distribution for the axial capacity of the columns 

is developed via Monte Carlo simulation based on advanced nonlinear FE response analysis, in 

which the FRP-and-steel confined concrete model is used to simulate the structural behavior of 

confined concrete within the FE model. The Hasofer-Lindt Rackwitz–Fiessler iterative algorithm 

is used to evaluate the first-order reliability indices for a wide range of design parameters. The 

newly proposed design equation generally yields a more efficient design than current design 

guidelines while keeping appropriate reliability indices. In fact, the proposed design equation is 

shown to produce up to 43% of savings on FRP material based on an application example 

concerning a retrofit design of a RC column within an adaptive reuse project context. A new 

iterative design procedure is also proposed and discussed. 

In Chapter 6, the performance of eight candidate families of analytical functions in fitting the 

monotonic envelope of the original iterative formulation of the FRP-and-steel confined concrete 

curve is evaluated in terms of computational cost, simplicity, and accuracy. The selected family of 

fitting functions consists of a piecewise rational function with a total of nine coefficients to be 

optimized. On average, this method generates analytical expressions for the monotonic envelope 

of the original model with relative area error of 0.079% and relative local error of 0.464% when 

compared to the original iteratively-generated model. The efficiency and accuracy of the newly-

proposed analytical expression of the FRP-and-steel confined concrete model are compared with 

the original iterative formulation through two application examples consisting in nonlinear seismic 

time-history analyses of: (1) a two-column bridge pier, and (2) a five-span bridge structure with 

FRP-retrofitted RC piers. Practically coincident dynamic responses are obtained for both iterative 

and analytical models, whereas the computational time associated with the nonlinear dynamic FE 
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analysis can be reduced by more than 30% when the analytical model is employed. It is concluded 

that the proposed procedure to generate analytical models can be used in place of the original 

iterative model due to similar modeling accuracy associated with both models, although at a 

significantly lower computational cost. 

7.2 Future research work 

 Based on the results presented in this dissertation, some ideas for further research are proposed: 

1) The FRP-and-steel confined concrete model has been validated for circular cross-sections 

only. Additional research is needed to extend the proposed model to other shapes (e.g., 

rectangular). For this purpose, it is crucial to identify the regions within the cross-section 

that are effectively confined by FRP and steel, by steel only, and by FRP only, and employ 

the confinement model accordingly. 

2) The calibration of the proposed design equation is only valid for circular cross-sections 

subject to nominal pure compression. A new calibration procedure needs to be conducted 

for different cross-sections and different loading conditions. For this purpose, a procedure 

similar to the one adopted in Chapter 4 can be employed. The random variable regarding 

the modeling error needs to be evaluated for each case. 

3) The proposed confinement model has been validated only for specimens presenting 

preserved structural integrity. Additional research is needed to investigate the behavior of 

pre-damaged columns. Available data in the literature can be collected to validate the 

model. In addition, new experimental studies could also be conducted. The results would 

help develop a database of pre-damaged RC specimens with substantial transverse 

reinforcement and retrofitted with FRP wraps. 

4) The present dissertation focuses on the structural capacity of strengthened columns. 
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Although the enhanced lateral ductility capacity due to steel confinement is evaluated in 

Chapter 2, additional research is needed to fully understand and quantify this behavior 

improvement, especially in light of Provision 13.3 of ACI 440.2R-17 guidelines for seismic 

rehabilitation. Parametric studies similar to those presented in Chapters 3 and 4 can be 

carried out to identify important parameters regarding the lateral ductility of FRP-confined 

RC columns and the effects of internal steel. 
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APPENDIX. C++ code for constitutive models 

A1 – Original ZBH model 

#include <elementAPI.h> 
#include "ConcreteZBH_original.h" 
 
#include <Vector.h> 
#include <Channel.h> 
#include <math.h> 
#include <float.h> 
 
#ifdef _USRDLL 
#define OPS_Export extern "C" _declspec(dllexport) 
#elif _MACOSX 
#define OPS_Export extern "C" __attribute__((visibility("default"))) 
#else 
#define OPS_Export extern "C" 
#endif 
 
static int numConcreteZBH_original = 0; 
 
OPS_Export void * 
OPS_ConcreteZBH_original() 
{ 
  // print out some KUDO's 
  if (numConcreteZBH_original == 0) { 
    opserr << "ConcreteZBH_original uniaxial material - Use at your Own Peril\n"; 
    numConcreteZBH_original =1; 
  } 
 
  // Pointer to a uniaxial material that will be returned 
  UniaxialMaterial *theMaterial = 0; 
 
  // parse the input line for the material parameters 
  int    iData[1]; 
  double dData[18]; 
  int numData; 
  numData = 1; 
  if (OPS_GetIntInput(&numData, iData) != 0) { 
    opserr << "WARNING invalid uniaxialMaterial ConcreteZBH_original tag" << endln; 
    return 0; 
  } 
 
  numData = 18; 
  if (OPS_GetDoubleInput(&numData, dData) != 0) { 
    opserr << "WARNING invalid ...\n"; 
    return 0; 
  } 
 
  // 
  // create a new material 
  // 
 
  theMaterial = new ConcreteZBH_original(iData[0], dData[0], dData[1], dData[2], dData[3], dData[4], dData[5], dData[6], dData[7], 
                                dData[8], dData[9], dData[10], dData[11], dData[12], dData[13], dData[14], dData[15], 
                                dData[16], dData[17]); 
 
  if (theMaterial == 0) { 
    opserr << "WARNING could not create uniaxialMaterial of type ConcreteZBH_original\n"; 
    return 0; 
  } 
 
  // return the material 
  return theMaterial; 
} 
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ConcreteZBH_original::ConcreteZBH_original(int tag, double _fc0, double _ec0, double _Ec, 
         double _Es, double _fy, double _eults, double _s, double _As_t, 
         double _Ef, double _eultf, double _tf, double _D, double _Ds, 
         double _As_l, double _kg_f, double _ks_s, double _ks_f, double _type_reinf) 
:UniaxialMaterial(tag, 0), 
 fc0(_fc0), ec0(_ec0), Ec(_Ec), Es(_Es), fy(_fy), eults(_eults), 
  s(_s), As_t(_As_t), Ef(_Ef), eultf(_eultf), tf(_tf), 
  D(_D), Ds(_Ds), As_l(_As_l), kg_f(_kg_f), ks_s(_ks_s), 
  ks_f(_ks_f), type_reinf(_type_reinf) 
{ 
  sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  flp    = 0.0; 
  flunlp = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  fl     = 0.0; 
  flunl  = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
 
  roj_f  = 4 * tf / D;   //reinforcement ratio 
  roj_s  = 4 * As_t / (s*Ds); 
  roj_sl = As_l / (0.25*3.1416*pow(Ds, 2)); 
  kg_s = (1 - 0.5*(s - 2 * pow((As_t / 3.1416), 0.5)) / Ds); 
  kg_s = (kg_s > 0) ? (pow((1 - 0.5*(s - 2 * pow((As_t / 3.1416), 0.5)) / Ds), type_reinf) / (1 - roj_sl)) : 0; 
  kg_s = fmin(kg_s, 1.0);   //effectiveness coefficient by Mander et al. (1988) 
   
  beta = Ec/fabs(fc0)-1/fabs(ec0); 
 
  double fls = 0.5 * ks_s * kg_s * roj_s * fy; 
  double fccs = (2.254 * pow((1 + 7.94 * fls / fabs(fc0)), 0.5) - 2 * fls / fabs(fc0) - 1.254) * fc0; 
  eccus = -0.004 - 1.4 * roj_s * fy * eults / fabs(fccs); 
 
} 
 
ConcreteZBH_original::ConcreteZBH_original() 
:UniaxialMaterial(0, 0), 
 fc0(0.0), ec0(0.0), Ec(0.0), Es(0.0), fy(0.0), eults(0.0), 
  s(0.0), As_t(0.0), Ef(0.0), eultf(0.0), tf(0.0), 
  D(0.0), Ds(0.0), As_l(0.0), kg_f(0.0), ks_s(0.0), 
  ks_f(0.0), type_reinf(0.0) 
{ 
sigp   = 0.0; 
  Ep     = Ec; 
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  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  flp    = 0.0; 
  flunlp = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  fl     = 0.0; 
  flunl  = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
} 
 
ConcreteZBH_original::~ConcreteZBH_original() 
{ 
  // does nothing 
} 
 
int 
ConcreteZBH_original::setTrialStrain(double strain, double strainRate) 
{ 
 // retrieve concrete hitory variables 
 
 //emin = eminp; 
 flagg = flaggp; 
 
  sig   = sigp; 
  Et    = Ep; 
  el    = elp; 
  eps   = epsp; 
  emin  = eminp; 
  eunl1  = eunl1p; 
  eunl2 = eunl2p; 
  eunl3 = eunl3p; 
  Eunl  = Eunlp; 
  Eunl2 = Eunl2p; 
  Et3   = Et3p; 
  sunl  = sunlp; 
  fl    = flp; 
  flunl = flunlp; 
  elunl = elunlp; 
  muunl = muunlp; 
 
 // calculate current strain 
 
 eps = strain; 
 double deps = eps - epsp; 
 emin = fmin(eps, eminp); 
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    if (fabs(deps) < 10*DBL_EPSILON){ 
            sig = sigp; 
            Et  = Ep; 
   el  = elp; 
    } 
    else if (eps <= 0.) {                      // compression 
            if (flagg == 4) {                  // monotonic envelope 
                if (deps < 0.)  {              // negative strain increment: loading 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else {                        // deps > 0 - unloading 
                    elunl = elp; 
                    Eunl2 = Ec/(1+2*20*elunl); 
                    sunl  = sigp; 
                    eunl1 = emin-sigp/Ec; 
                    eunl2 = emin-sigp/Eunl2; 
                    muunl = 0.4*elunl*Eunl2/sunl; 
                    if (eps > eunl2) {        // crack has opened 
                        flagg = 2; 
                        sig   = 0.; 
                        //Et    = 0.; 
      Et    = 1e-10; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                    } 
                    else if (eps > eunl1) { 
                        flagg = 1; 
                        sig   = 0.; 
                        //Et    = 0.; 
      Et    = 1e-10; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                    } 
                    else { 
                        sig   = Ec*(eps-eunl1); 
                        Et    = Ec; 
                        flagg = 0; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eps-emin); 
                    } 
                } 
            } 
            else if (flagg == 0) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (eps > eunl1) { 
                    flagg = 1; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                         // eunl1 > eps > emin 
                    sig   = Ec*(eps-eunl1); 
                    Et    = Ec; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eps-emin); 
     flagg = 0; 
                } 
            } 
            else if (flagg == 1) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
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                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (deps < 0.) {            // loading 
                    flagg = 3; 
                    eunl3 = epsp; 
                    Et3   = sunl/(emin-eunl3); 
                    Et    = Et3; 
                    sig   = Et*(eps-eunl3); 
                    el    = elunl+(Et3/Eunl2)*muunl*(eps-emin); 
                } 
                else {                         // keeps flag = 1 
                    //Et    = 0.; 
                    flagg = 1; 
     Et    = 1e-10; 
                    sig  = 0.; 
     el   = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
            } 
            else if (flagg == 2) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                  //  emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                         // eunl2 > eps > emin 
                    flagg = 2; 
                    sig   = Eunl2*(eps-eunl2); 
                    Et    = Eunl2; 
                    el    = elunl+muunl*(eps-emin); 
                } 
            } 
            else if (flagg == 3) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {         // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (eps > eunl3) { 
                    flagg = 1; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                          // eunl3 > eps > emin 
                    flagg = 3; 
                    Et    = Et3; 
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                    sig   = (eps - eunl3)*Et; 
                    el    = elunl+(Et3/Eunl2)*muunl*(eps-emin); 
                } 
            } 
    } 
    else {                                  //eps > 0 
            flagg = 2; 
            sig   = 0.; 
            //Et    = 0.; 
   Et    = 1e-10; 
   el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
    } 
 return 0; 
 
} 
 
double 
ConcreteZBH_original::getStrain(void) 
{ 
  return eps; 
} 
 
double 
ConcreteZBH_original::getStress(void) 
{ 
  return sig; 
} 
 
 
double 
ConcreteZBH_original::getTangent(void) 
{ 
  return Et; 
} 
 
int 
ConcreteZBH_original::commitState(void) 
{ 
  sigp   = sig; 
  Ep     = Et; 
  elp    = el; 
  epsp   = eps; 
  eminp  = emin; 
  eunl1p = eunl1; 
  eunl2p = eunl2; 
  eunl3p = eunl3; 
  Eunlp  = Eunl; 
  Eunl2p = Eunl2; 
  Et3p   = Et3; 
  sunlp  = sunl; 
  flp    = fl; 
  flunlp = flunl; 
  elunlp = elunl; 
  muunlp = muunl; 
  flaggp = flagg; 
 
  return 0; 
} 
 
 
int 
ConcreteZBH_original::revertToLastCommit(void) 
{ 
  sig   = sigp; 
  Et    = Ep; 
  el    = elp; 
  eps   = epsp; 
  emin  = eminp; 
  eunl1  = eunl1p; 
  eunl2 = eunl2p; 
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  eunl3 = eunl3p; 
  Eunl  = Eunlp; 
  Eunl2 = Eunl2p; 
  Et3   = Et3p; 
  sunl  = sunlp; 
  fl    = flp; 
  flunl = flunlp; 
  elunl = elunlp; 
  muunl = muunlp; 
  flagg = flaggp; 
 
  return 0; 
} 
 
 
int 
ConcreteZBH_original::revertToStart(void) 
{ 
  sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  flp    = 0.0; 
  flunlp = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  fl     = 0.0; 
  flunl  = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
  return 0; 
} 
 
 
UniaxialMaterial * 
ConcreteZBH_original::getCopy(void) 
{ 
  ConcreteZBH_original *theCopy = 
    new ConcreteZBH_original(this->getTag(), fc0, ec0, Ec, Es, fy, eults, 
         s, As_t, Ef, eultf, tf, D, Ds, As_l, kg_f, ks_s, 
ks_f, type_reinf); 
 
  return theCopy; 
} 
 
 
int 
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ConcreteZBH_original::sendSelf(int cTag, Channel &theChannel) 
{ 
  int res = 0; 
  static Vector data(37); 
 
data(0) =fc0; 
data(1) =ec0; 
data(2) =Ec; 
data(3) =Es; 
data(4) =fy; 
data(5) =eults; 
data(6) =s; 
data(7) =As_t; 
data(8) =Ef; 
data(9) =eultf; 
data(10) =tf; 
data(11) =D; 
data(12) =Ds; 
data(13) =As_l; 
data(14) =kg_f; 
data(15) =ks_s; 
data(16) =ks_f; 
data(17) = type_reinf; 
data(18) =sigp; 
data(19) =Ep; 
data(20) =elp; 
data(21) =epsp; 
data(22) =eminp; 
data(23) =eunl1p; 
data(24) =eunl2p; 
data(25) =eunl3p; 
data(26) =Eunlp; 
data(27) =Eunl2p; 
data(28) =Et3p; 
data(29) =sunlp; 
data(30) =flp; 
data(31) =flunlp; 
data(32) =elunlp; 
data(33) =muunlp; 
data(34) =flaggp; 
data(35) = eccus; 
  data(36) = this->getTag(); 
 
  res = theChannel.sendVector(this->getDbTag(), cTag, data); 
  if (res < 0) 
    opserr << "ConcreteZBH_original::sendSelf() - failed to send data\n"; 
 
  return res; 
} 
 
int 
ConcreteZBH_original::recvSelf(int cTag, Channel &theChannel, 
     FEM_ObjectBroker &theBroker) 
{ 
  int res = 0; 
  static Vector data(37); 
  res = theChannel.recvVector(this->getDbTag(), cTag, data); 
  if (res < 0) 
    opserr << "ConcreteZBH_original::recvSelf() - failed to recv data\n"; 
  else { 
   fc0 = data(0); 
   ec0 = data(1); 
   Ec = data(2); 
   Es = data(3); 
   fy = data(4); 
   eults = data(5); 
   s = data(6); 
   As_t = data(7); 
   Ef = data(8); 
   eultf = data(9); 
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   tf = data(10); 
   D = data(11); 
   Ds = data(12); 
   As_l = data(13); 
   kg_f = data(14); 
   ks_s = data(15); 
   ks_f = data(16); 
   type_reinf = data(17); 
   sigp = data(18); 
   Ep = data(19); 
   elp = data(20); 
   epsp = data(21); 
   eminp = data(22); 
   eunl1p = data(23); 
   eunl2p = data(24); 
   eunl3p = data(25); 
   Eunlp = data(26); 
   Eunl2p = data(27); 
   Et3p = data(28); 
   sunlp = data(29); 
   flp = data(30); 
   flunlp = data(31); 
   elunlp = data(32); 
   muunlp = data(33); 
   flaggp=   int(data(34)); 
   eccus = data(35); 
   this->setTag(int(data(36))); 
  } 
 
  eps = epsp; 
  sig = sigp; 
  Et  = Ep; 
  el  = elp; 
  fl  = flp; 
 
  return res; 
} 
 
void 
ConcreteZBH_original::Print(OPS_Stream &s, int flag) 
{ 
  s << "ConcreteZBH_original tag: " << this->getTag() << endln; 
 
} 
 
void 
ConcreteZBH_original::Conf_Pressure (double eps, double flp, double &fc, double &fl, double &el) 
{ 
 
double fcc   = (2.254*pow((1+7.94*flp/fabs(fc0)),0.5)-2*flp/fabs(fc0)-1.254)*fc0; 
double ecc   = ec0*(1+5*(fcc/fc0-1)); 
double x     = eps/ecc; 
double Esecc = fcc/ecc; 
double r     = Ec/(Ec-Esecc); 
fc    = fcc*x*r/(r-1+pow(x,r)); 
el    = (Ec*eps-fc)/(2*beta*fc); 
double el0   = 0; 
double el1   = 0; 
 
if (el >= eultf) { 
    el0 = 0; 
} 
else { 
    el0 = fabs(el); 
} 
if (eps <= eccus) { 
 el1 = 0; 
} 
else { 
 el1 = fabs(el); 



 

206 
 

} 
 
fl    = 0.5*ks_f*kg_f*roj_f*Ef*el0+0.5*ks_s*kg_s*roj_s*fmin(Es*fabs(el1),fy); 
 
  return; 
} 
 
void                    
ConcreteZBH_original::envelope (double eps, double deps, double &fl, double &sig, double &Et, double &el) 
{ 
 this->Conf_Pressure(eps, flp, sig, fl, el); 
 int count = 0; 
 while(fabs(fl-flp)>fmax(fl/10000,0.0000001)) 
 { 
  count = count+1; 
  flp = fl; 
  this->Conf_Pressure(eps, flp, sig, fl, el); 
  if (count>20){break;} 
 } 
 Et  = (sig-sigp)/deps; 
 
 return; 
} 

 

 

A2 – Smoothed ZBH model 

#include <elementAPI.h> 
#include "ConcreteZBH_smoothed.h" 
 
#include <Vector.h> 
#include <Channel.h> 
#include <math.h> 
#include <float.h> 
 
#ifdef _USRDLL 
#define OPS_Export extern "C" _declspec(dllexport) 
#elif _MACOSX 
#define OPS_Export extern "C" __attribute__((visibility("default"))) 
#else 
#define OPS_Export extern "C" 
#endif 
 
static int numConcreteZBH_smoothed = 0; 
 
OPS_Export void * 
OPS_ConcreteZBH_smoothed() 
{ 
  // print out some KUDO's 
  if (numConcreteZBH_smoothed == 0) { 
    opserr << "ConcreteZBH_smoothed uniaxial material - Use at your Own Peril\n"; 
    numConcreteZBH_smoothed =1; 
  } 
 
  // Pointer to a uniaxial material that will be returned 
  UniaxialMaterial *theMaterial = 0; 
 
  // 
  // parse the input line for the material parameters 
  // 
  int    iData[1]; 
  double dData[18]; 
  int numData; 
  numData = 1; 
  if (OPS_GetIntInput(&numData, iData) != 0) { 
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    opserr << "WARNING invalid uniaxialMaterial ConcreteZBH_smoothed tag" << endln; 
    return 0; 
  } 
 
  numData = 18; 
  if (OPS_GetDoubleInput(&numData, dData) != 0) { 
    opserr << "WARNING invalid ...\n"; 
    return 0; 
  } 
 
  // 
  // create a new material 
  // 
 
  theMaterial = new ConcreteZBH_smoothed(iData[0], dData[0], dData[1], dData[2], dData[3], dData[4], dData[5], dData[6], dData[7], 
                                dData[8], dData[9], dData[10], dData[11], dData[12], dData[13], dData[14], dData[15], 
                                dData[16], dData[17]); 
 
  if (theMaterial == 0) { 
    opserr << "WARNING could not create uniaxialMaterial of type ConcreteZBH_original\n"; 
    return 0; 
  } 
 
  // return the material 
  return theMaterial; 
} 
 
ConcreteZBH_smoothed::ConcreteZBH_smoothed(int tag, double _fc0, double _ec0, double _Ec, 
         double _Es, double _fy, double _eults, double _s, double _As_t, 
         double _Ef, double _eultf, double _tf, double _D, double _Ds, 
         double _As_l, double _kg_f, double _ks_s, double _ks_f, double _type_reinf) 
:UniaxialMaterial(tag, 0), 
 fc0(_fc0), ec0(_ec0), Ec(_Ec), Es(_Es), fy(_fy), eults(_eults), 
  s(_s), As_t(_As_t), Ef(_Ef), eultf(_eultf), tf(_tf), 
  D(_D), Ds(_Ds), As_l(_As_l), kg_f(_kg_f), ks_s(_ks_s), 
  ks_f(_ks_f), type_reinf(_type_reinf) 
{ 
  sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  flp    = 0.0; 
  flunlp = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  fl     = 0.0; 
  flunl  = 0.0; 
  elunl  = 0.0; 
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  muunl  = 0.0; 
  flagg  = 4; 
 
  roj_f  = 4 * tf / D; 
  roj_s  = 4 * As_t / (s*Ds); 
  roj_sl = As_l / (0.25*3.1416*pow(Ds, 2)); 
  kg_s = (1 - 0.5*(s - 2 * pow((As_t / 3.1416), 0.5)) / Ds); 
  kg_s = (kg_s > 0) ? (pow((1 - 0.5*(s - 2 * pow((As_t / 3.1416), 0.5)) / Ds), type_reinf) / (1 - roj_sl)) : 0; 
  kg_s = fmin(kg_s, 1.0); 
  //kg_s = pow((1 - 0.5*(s - 2 * pow((As_t / 3.1416), 0.5)) / Ds), 2) / (1 - roj_sl); 
   
  beta = Ec/fabs(fc0)-1/fabs(ec0); 
 
  fls = 0.5*ks_s*kg_s*roj_s*fy; 
  fccs = (2.254 * pow((1 + 7.94 * fls / fabs(fc0)), 0.5) - 2 * fls / fabs(fc0) - 1.254) * fc0; 
  eccs = ec0 * (1 + 5 * (fccs / fc0 - 1)); 
  eps_ccus = -0.004 - 1.4 * roj_s * fy * eults / fabs(fccs); 
  double x = eps_ccus / eccs; 
  double Esecs = fccs / eccs; 
  rs = Ec / (Ec - Esecs); 
  sig_ccus = fccs * x * rs / (rs - 1 + pow(x, rs)); 
 
  double flf = 0.5 * ks_f * kg_f * roj_f * Ef * eultf + 0.5 * ks_s * kg_s * roj_s * fy; 
  double fccf = (2.254 * pow((1 + 7.94 * flf / fabs(fc0)), 0.5) - 2 * flf / fabs(fc0) - 1.254) * fc0; 
  double eccf = ec0 * (1 + 5 * (fccf / fc0 - 1)); 
  double Esecf = fccf / eccf; 
  double Esecu = Ec / (1 + 2 * beta * eultf); 
  eps_ccuf = eccf * pow(((Esecf * (Ec - Esecu)) / (Esecu * (Ec - Esecf))), 1 - (Esecf / Ec)); 
  sig_ccuf = Esecu * eps_ccuf; 
 
  r0 = Ec / (Ec - fc0 / ec0); 
 
  if (fabs(eps_ccuf) > fabs(eps_ccus)) { 
   eps_ccus = eps_ccuf; 
      sig_ccus = sig_ccuf; 
  } 
 
} 
 
ConcreteZBH_smoothed::ConcreteZBH_smoothed() 
:UniaxialMaterial(0, 0), 
 fc0(0.0), ec0(0.0), Ec(0.0), Es(0.0), fy(0.0), eults(0.0), 
  s(0.0), As_t(0.0), Ef(0.0), eultf(0.0), tf(0.0), 
  D(0.0), Ds(0.0), As_l(0.0), kg_f(0.0), ks_s(0.0), 
  ks_f(0.0), type_reinf(0.0) 
{ 
sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  flp    = 0.0; 
  flunlp = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
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  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  fl     = 0.0; 
  flunl  = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
} 
 
ConcreteZBH_smoothed::~ConcreteZBH_smoothed() 
{ 
  // does nothing 
} 
 
int 
ConcreteZBH_smoothed::setTrialStrain(double strain, double strainRate) 
{ 
 // retrieve concrete hitory variables 
 
 //emin = eminp; 
 flagg = flaggp; 
 
  sig   = sigp; 
  Et    = Ep; 
  el    = elp; 
  eps   = epsp; 
  emin  = eminp; 
  eunl1  = eunl1p; 
  eunl2 = eunl2p; 
  eunl3 = eunl3p; 
  Eunl  = Eunlp; 
  Eunl2 = Eunl2p; 
  Et3   = Et3p; 
  sunl  = sunlp; 
  fl    = flp; 
  flunl = flunlp; 
  elunl = elunlp; 
  muunl = muunlp; 
 
 // calculate current strain 
 
 eps = strain; 
 double deps = eps - epsp; 
 emin = fmin(eps, eminp); 
 
    if (fabs(deps) < 10*DBL_EPSILON){ 
            sig = sigp; 
            Et  = Ep; 
   el  = elp; 
    } 
    else if (eps <= 0.) {                    // compression 
            if (flagg == 4) {                  // monotonic envelope 
                if (deps < 0.)  {              // negative strain increment: loading 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else {                        // deps > 0 - unloading 
                    elunl = elp; 
                    Eunl2 = Ec/(1+2*20*elunl); 
                    sunl  = sigp; 
                    eunl1 = emin-sigp/Ec; 
                    eunl2 = emin-sigp/Eunl2; 
                    muunl = 0.4*elunl*Eunl2/sunl; 
                    if (eps > eunl2) {        // crack has opened 
                        flagg = 2; 
                        sig   = 0.; 
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                        //Et    = 0.; 
      Et    = 1e-10; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                    } 
                    else if (eps > eunl1) { 
                        flagg = 1; 
                        sig   = 0.; 
                        //Et    = 0.; 
      Et    = 1e-10; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                    } 
                    else { 
                        sig   = Ec*(eps-eunl1); 
                        Et    = Ec; 
                        flagg = 0; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eps-emin); 
                    } 
                } 
            } 
            else if (flagg == 0) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (eps > eunl1) { 
                    flagg = 1; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                         // eunl1 > eps > emin 
                    sig   = Ec*(eps-eunl1); 
                    Et    = Ec; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eps-emin); 
     flagg = 0; 
                } 
            } 
            else if (flagg == 1) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (deps < 0.) {            // loading 
                    flagg = 3; 
                    eunl3 = epsp; 
                    Et3   = sunl/(emin-eunl3); 
                    Et    = Et3; 
                    sig   = Et*(eps-eunl3); 
                    el    = elunl+(Et3/Eunl2)*muunl*(eps-emin); 
                } 
                else {                         // keeps flag = 1 
                    //Et    = 0.; 
                    flagg = 1; 
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     Et    = 1e-10; 
                    sig  = 0.; 
     el   = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
            } 
            else if (flagg == 2) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                  //  emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                         // eunl2 > eps > emin 
                    flagg = 2; 
                    sig   = Eunl2*(eps-eunl2); 
                    Et    = Eunl2; 
                    el    = elunl+muunl*(eps-emin); 
                } 
            } 
            else if (flagg == 3) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, fl, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {         // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (eps > eunl3) { 
                    flagg = 1; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                          // eunl3 > eps > emin 
                    flagg = 3; 
                    Et    = Et3; 
                    sig   = (eps - eunl3)*Et; 
                    el    = elunl+(Et3/Eunl2)*muunl*(eps-emin); 
                } 
            } 
    } 
    else {                                  //eps > 0 
            flagg = 2; 
            sig   = 0.; 
            //Et    = 0.; 
   Et    = 1e-10; 
   el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
    } 
 return 0; 
 
} 
 
double 
ConcreteZBH_smoothed::getStrain(void) 
{ 
  return eps; 
} 
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double 
ConcreteZBH_smoothed::getStress(void) 
{ 
  return sig; 
} 
 
 
double 
ConcreteZBH_smoothed::getTangent(void) 
{ 
  return Et; 
} 
 
int 
ConcreteZBH_smoothed::commitState(void) 
{ 
  sigp   = sig; 
  Ep     = Et; 
  elp    = el; 
  epsp   = eps; 
  eminp  = emin; 
  eunl1p = eunl1; 
  eunl2p = eunl2; 
  eunl3p = eunl3; 
  Eunlp  = Eunl; 
  Eunl2p = Eunl2; 
  Et3p   = Et3; 
  sunlp  = sunl; 
  flp    = fl; 
  flunlp = flunl; 
  elunlp = elunl; 
  muunlp = muunl; 
  flaggp = flagg; 
 
  return 0; 
} 
 
 
int 
ConcreteZBH_smoothed::revertToLastCommit(void) 
{ 
  sig   = sigp; 
  Et    = Ep; 
  el    = elp; 
  eps   = epsp; 
  emin  = eminp; 
  eunl1  = eunl1p; 
  eunl2 = eunl2p; 
  eunl3 = eunl3p; 
  Eunl  = Eunlp; 
  Eunl2 = Eunl2p; 
  Et3   = Et3p; 
  sunl  = sunlp; 
  fl    = flp; 
  flunl = flunlp; 
  elunl = elunlp; 
  muunl = muunlp; 
  flagg = flaggp; 
 
  return 0; 
} 
 
 
int 
ConcreteZBH_smoothed::revertToStart(void) 
{ 
  sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
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  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  flp    = 0.0; 
  flunlp = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  fl     = 0.0; 
  flunl  = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
  return 0; 
} 
 
 
UniaxialMaterial * 
ConcreteZBH_smoothed::getCopy(void) 
{ 
  ConcreteZBH_smoothed *theCopy = 
    new ConcreteZBH_smoothed(this->getTag(), fc0, ec0, Ec, Es, fy, eults, 
         s, As_t, Ef, eultf, tf, D, Ds, As_l, kg_f, ks_s, 
ks_f, type_reinf); 
 
  return theCopy; 
} 
 
 
int 
ConcreteZBH_smoothed::sendSelf(int cTag, Channel &theChannel) 
{ 
  int res = 0; 
  static Vector data(46); 
 
  data(0) = fc0; 
  data(1) = ec0; 
  data(2) = Ec; 
  data(3) = Es; 
  data(4) = fy; 
  data(5) = eults; 
  data(6) = s; 
  data(7) = As_t; 
  data(8) = Ef; 
  data(9) = eultf; 
  data(10) = tf; 
  data(11) = D; 
  data(12) = Ds; 
  data(13) = As_l; 
  data(14) = kg_f; 
  data(15) = ks_s; 
  data(16) = ks_f; 
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  data(17) = type_reinf; 
  data(18) = beta; 
  data(19) = fls; 
  data(20) = eps_ccuf; 
  data(21) = eps_ccus; 
  data(22) = sig_ccuf; 
  data(23) = sig_ccus; 
  data(24) = fccs; 
  data(25) = eccs; 
  data(26) = rs; 
  data(27) = r0; 
  data(28) = sigp; 
  data(29) = Ep; 
  data(30) = elp; 
  data(31) = epsp; 
  data(32) = eminp; 
  data(33) = eunl1p; 
  data(34) = eunl2p; 
  data(35) = eunl3p; 
  data(36) = Eunlp; 
  data(37) = Eunl2p; 
  data(38) = Et3p; 
  data(39) = sunlp; 
  data(40) = flp; 
  data(41) = flunlp; 
  data(42) = elunlp; 
  data(43) = muunlp; 
  data(44) = flaggp; 
 
  data(45) = this->getTag(); 
 
  res = theChannel.sendVector(this->getDbTag(), cTag, data); 
  if (res < 0) 
    opserr << "ConcreteZBH_original::sendSelf() - failed to send data\n"; 
 
  return res; 
} 
 
int 
ConcreteZBH_smoothed::recvSelf(int cTag, Channel &theChannel, 
     FEM_ObjectBroker &theBroker) 
{ 
  int res = 0; 
  static Vector data(46); 
  res = theChannel.recvVector(this->getDbTag(), cTag, data); 
  if (res < 0) 
    opserr << "ConcreteZBH_smoothed::recvSelf() - failed to recv data\n"; 
  else { 
   fc0 = data(0); 
   ec0 = data(1); 
   Ec = data(2); 
   Es = data(3); 
   fy = data(4); 
   eults = data(5); 
   s = data(6); 
   As_t = data(7); 
   Ef = data(8); 
   eultf = data(9); 
   tf = data(10); 
   D = data(11); 
   Ds = data(12); 
   As_l = data(13); 
   kg_f = data(14); 
   ks_s = data(15); 
   ks_f = data(16); 
   type_reinf = data(17); 
   beta = data(18); 
   fls = data(19); 
   eps_ccuf = data(20); 
   eps_ccus = data(21); 
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   sig_ccuf = data(22); 
   sig_ccus = data(23); 
   fccs = data(24); 
   eccs = data(25); 
   rs = data(26); 
   r0 = data(27); 
   sigp = data(28); 
   Ep = data(29); 
   elp = data(30); 
   epsp = data(31); 
   eminp = data(32); 
   eunl1p = data(33); 
   eunl2p = data(34); 
   eunl3p = data(35); 
   Eunlp = data(36); 
   Eunl2p = data(37); 
   Et3p = data(38); 
   sunlp = data(39); 
   flp = data(40); 
   flunlp = data(41); 
   elunlp = data(42); 
   muunlp = data(43); 
   flaggp = int(data(44)); 
this->setTag(int(data(45))); 
  } 
 
  eps = epsp; 
  sig = sigp; 
  Et  = Ep; 
  el  = elp; 
  fl  = flp; 
 
  return res; 
} 
 
void 
ConcreteZBH_smoothed::Print(OPS_Stream &s, int flag) 
{ 
  s << "ConcreteZBH_smoothed tag: " << this->getTag() << endln; 
  /*s << "  E: " << E << endln; 
  s << "  ep: " << ep << endln; 
  s << "  stress: " << trialStress << " tangent: " << trialTangent << endln;*/ 
} 
 
void 
ConcreteZBH_smoothed::Conf_Pressure (double eps, double flp, double &fc, double &fl, double &el) 
{ 
 
double fcc   = (2.254*pow((1+7.94*flp/fabs(fc0)),0.5)-2*flp/fabs(fc0)-1.254)*fc0; 
double ecc   = ec0*(1+5*(fcc/fc0-1)); 
double x     = eps/ecc; 
double Esecc = fcc/ecc; 
double r     = Ec/(Ec-Esecc); 
fc    = fcc*x*r/(r-1+pow(x,r)); 
el    = (Ec*eps-fc)/(2*beta*fc); 
 
 
fl = 0.5*ks_f*kg_f*roj_f*Ef*el + 0.5*ks_s*kg_s*roj_s*fmin(Es*fabs(el), fy); 
  return; 
} 
 
void                    
ConcreteZBH_smoothed::envelope(double eps, double deps, double &fl, double &sig, double &Et, double &el) 
{ 
 if (fls == 0.0) { 
  if (eps >= eps_ccuf) { 
   this->Conf_Pressure(eps, flp, sig, fl, el); 
   int count = 0; 
   while (fabs(fl - flp) > fmax(fl / 100000000, 0.00000000001)) 
   { 
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    count = count + 1; 
    flp = fl; 
    this->Conf_Pressure(eps, flp, sig, fl, el); 
    if (count > 20) { break; } 
   } 
   Et = (sig - sigp) / deps; 
  } 
  else { 
   double sig2 = sig_ccuf - (eps - eps_ccuf) * Ec; 
   double sig1 = fc0 * r0 * (eps / ec0) / (r0 - 1 + pow((eps / ec0), r0)); 
   if (sig1 <= sig2) { 
    sig = sig1; 
    Et = (fc0 * r0 / ec0) / (r0 - 1 + pow((eps / ec0), r0)) - 
     (fc0 * pow(r0, 2) * (pow((eps / ec0), r0)) / ec0) / pow((r0 - 1 + pow((eps / ec0), r0)), 2); 
    el = (Ec * eps - sig) / (2 * beta * sig); 
   } 
   else { 
    sig = sig2; 
    Et = -Ec; 
    el = (Ec * eps - sig) / (2 * beta * sig); 
   } 
  } 
 } 
 else { 
  if (eps >= eps_ccuf) { 
   this->Conf_Pressure(eps, flp, sig, fl, el); 
   int count = 0; 
   while (fabs(fl - flp) > fmax(fl / 100000000, 0.00000000001)) 
   { 
    count = count + 1; 
    flp = fl; 
    this->Conf_Pressure(eps, flp, sig, fl, el); 
    if (count > 20) { break; } 
   } 
   Et = (sig - sigp) / deps; 
  } 
  else if (eps >= eps_ccus) 
  { 
   double sig1 = fccs * (eps / eccs) *rs / (rs - 1 + pow((eps / eccs), rs)); 
   double sig2 = sig_ccuf - (eps - eps_ccuf) * Ec; 
   if (sig1 <= sig2) { 
    sig = sig1; 
    Et = (fccs * rs / eccs) / (rs - 1 + pow((eps / eccs), rs)) - 
     (fccs * pow(rs, 2) * (pow((eps / eccs), rs)) / eccs) / pow((rs - 1 + pow((eps / eccs), rs)), 2); 
    el = (Ec * eps - sig) / (2 * beta * sig); 
   } 
   else { 
    sig = sig2; 
    Et = -Ec; 
    el = (Ec * eps - sig) / (2 * beta * sig); 
   } 
  } 
  else { 
   double sig_p2 = sig_ccuf - (eps_ccus - eps_ccuf) * Ec; 
   double sig_p = fmin(sig_ccus, sig_p2); 
 
   double sig2 = sig_p - (eps - eps_ccus) * Ec; 
   double sig1 = fc0 * r0 * (eps / ec0) / (r0 - 1 + pow((eps / ec0), r0)); 
   if (sig1 <= sig2) { 
    sig = sig1; 
    Et = (fc0 * r0 / ec0) / (r0 - 1 + pow((eps / ec0), r0)) - 
     (fc0 * pow(r0, 2) * (pow((eps / ec0), r0)) / ec0) / pow((r0 - 1 + pow((eps / ec0), r0)), 2); 
    el = (Ec * eps - sig) / (2 * beta * sig); 
   } 
   else { 
    sig = sig2; 
    Et = -Ec; 
    el = (Ec * eps - sig) / (2 * beta * sig); 
   } 
  } 
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 } 
  
 return; 
} 

 

 

A3 – Fitted ZBH model 

 
#include <elementAPI.h> 
#include "ConcreteZBH_fitted.h" 
 
#include <Vector.h> 
#include <Channel.h> 
#include <math.h> 
#include <float.h> 
 
 
#ifdef _USRDLL 
#define OPS_Export extern "C" _declspec(dllexport) 
#elif _MACOSX 
#define OPS_Export extern "C" __attribute__((visibility("default"))) 
#else 
#define OPS_Export extern "C" 
#endif 
 
static int numConcreteZBH_fitted = 0; 
 
OPS_Export void * 
OPS_ConcreteZBH_fitted() 
{ 
  // print out some KUDO's 
  if (numConcreteZBH_fitted == 0) { 
    opserr << "ConcreteZBH_fitted uniaxial material - Use at your Own Peril\n"; 
    numConcreteZBH_fitted =1; 
  } 
 
  // Pointer to a uniaxial material that will be returned 
  UniaxialMaterial *theMaterial = 0; 
 
  // 
  // parse the input line for the material parameters 
  // 
  int    iData[1]; 
  double dData[20]; 
  int numData; 
  numData = 1; 
  if (OPS_GetIntInput(&numData, iData) != 0) { 
    opserr << "WARNING invalid uniaxialMaterial ConcreteZBH_fitted tag" << endln; 
    return 0; 
  } 
 
  numData = 20; 
  if (OPS_GetDoubleInput(&numData, dData) != 0) { 
    opserr << "WARNING invalid ...\n"; 
    return 0; 
  } 
 
  // 
  // create a new material 
  // 
 
  theMaterial = new ConcreteZBH_fitted(iData[0], dData[0], dData[1], dData[2], dData[3], dData[4], dData[5], dData[6], dData[7], 
                                dData[8], dData[9], dData[10], dData[11], dData[12], dData[13], dData[14], dData[15], dData[16], dData[17], dData[18], 
dData[19]); 
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  if (theMaterial == 0) { 
    opserr << "WARNING could not create uniaxialMaterial of type ConcreteZBH_fitted\n"; 
    return 0; 
  } 
 
  // return the material 
  return theMaterial; 
} 
 
ConcreteZBH_fitted::ConcreteZBH_fitted(int tag, double _fc0, double _ec0, double _Ec, double _fccs, double _eccs, double _rs, 
         double _e1, double _e2, double _e3, double _e4, double _e5, double _e6, double _e7, double _e8, double _e9, 
            double _eps_cy, double _eps_ccuf, double _sig_ccuf, double _eps_ccus, double _sig_ccus) 
:UniaxialMaterial(tag, 0),  
  fc0(_fc0), ec0(_ec0), Ec(_Ec), fccs(_fccs), eccs(_eccs), rs(_rs), 
  e1(_e1), e2(_e2), e3(_e3), e4(_e4), e5(_e5), e6(_e6), e7(_e7), e8(_e8), e9(_e9), 
 eps_cy(_eps_cy), eps_ccuf(_eps_ccuf), sig_ccuf(_sig_ccuf), eps_ccus(_eps_ccus), sig_ccus(_sig_ccus) 
   
{ 
  sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4;  
 
  beta = (Ec / fabs(fc0) - 1 / fabs(ec0)); 
  r0 = Ec / (Ec - fc0/ ec0); 
 
} 
 
ConcreteZBH_fitted::ConcreteZBH_fitted() 
:UniaxialMaterial(0, 0), 
fc0(0.0), ec0(0.0), Ec(0.0), fccs(0.0), eccs(0.0), rs(0.0), 
e1(0.0), e2(0.0), e3(0.0), e4(0.0), e5(0.0), e6(0.0), e7(0.0), e8(0.0), e9(0.0), 
eps_cy(0.0), eps_ccuf(0.0), sig_ccuf(0.0), eps_ccus(0.0), sig_ccus(0.0) 
{ 
sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
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  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
 
 
} 
 
ConcreteZBH_fitted::~ConcreteZBH_fitted() 
{ 
  // does nothing 
} 
 
int 
ConcreteZBH_fitted::setTrialStrain(double strain, double strainRate) 
{ 
 // retrieve concrete hitory variables 
 
 //emin = eminp; 
 flagg = flaggp; 
 
  //sig   = sigp; 
  //Et    = Ep; 
  //el    = elp; 
  //eps   = epsp; 
  emin  = eminp; 
  eunl1 = eunl1p; 
  eunl2 = eunl2p; 
  eunl3 = eunl3p; 
  Eunl  = Eunlp; 
  Eunl2 = Eunl2p; 
  Et3   = Et3p; 
  sunl  = sunlp; 
  elunl = elunlp; 
  muunl = muunlp; 
 
 // calculate current strain 
 
 eps = strain; 
 double deps = eps - epsp; 
 emin = fmin(eps, eminp); 
 //emin = eminp; 
 
    if (fabs(deps) < 10*DBL_EPSILON){ 
            sig = sigp; 
            Et  = Ep; 
   el  = elp; 
    } 
    else if (eps <= 0.) {                    // compression 
            if (flagg == 4) {                  // monotonic envelope 
                if (deps < 0.)  {              // negative strain increment: loading 
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                    this->envelope(eps, deps, sig, Et, el); 
                    //emin = eps; 
                } 
                else {                        // deps > 0 - unloading 
                    elunl = elp; 
     if (elunl < 0) { 
      elunl = 0; 
     } 
     sunl = sigp; 
     Eunl = Ec; 
     Eunl2 = Ec / (1 + 40 * elunl); 
                    eunl1 = emin-sunl/Eunl; 
     //eunl1 = fmin(eunl1, 0.0); 
                    eunl2 = emin-sunl/Eunl2; 
     if (eunl2 > 0.0) { 
      Eunl2 = sunl / emin; 
      Eunl = Eunl2 * (1 + 40 * elunl); 
      eunl2 = 0.0; 
      eunl1 = emin - sunl / Eunl; 
     } 
     //eunl2 = fmin(eunl2, 0.0); 
                    muunl = 0.4*elunl*Eunl2/sunl; 
                    if (eps > eunl2) {        // crack has opened 
                        flagg = 2; 
                        sig   = 0.; 
                        //Et    = 0.; 
      Et    = 1e-10; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                    } 
                    else if (eps > eunl1) { 
                        flagg = 1; 
                        sig   = 0.; 
                        //Et    = 0.; 
      Et    = 1e-10; 
                        el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                    } 
                    else { 
                        sig   = Eunl*(eps-eunl1); 
                        Et    = Eunl; 
                        flagg = 0; 
                        el    = elunl+(Eunl/Eunl2)*muunl*(eps-emin); 
                    } 
                } 
            } 
            else if (flagg == 0) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, sig, Et, el); 
                    //emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (eps > eunl1) { 
                    flagg = 1; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
                    el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                         // eunl1 > eps > emin 
                    sig   = Eunl*(eps-eunl1); 
                    Et    = Eunl; 
                    el    = elunl+(Eunl/Eunl2)*muunl*(eps-emin); 
     flagg = 0; 
                } 
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            } 
            else if (flagg == 1) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, sig, Et, el); 
                    //emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (deps < 0.) {            // loading 
                    flagg = 3; 
                    eunl3 = epsp; 
                    Et3   = sunl/(emin-eunl3); 
                    Et    = Et3; 
                    sig   = Et*(eps-eunl3); 
                    el    = elunl+(Et3/Eunl2)*muunl*(eps-emin); 
                } 
                else {                         // keeps flag = 1 
                    //Et    = 0.; 
                    flagg = 1; 
     Et    = 1e-10; 
                    sig  = 0.; 
     el   = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
            } 
            else if (flagg == 2) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, sig, Et, el); 
                    //emin = eps; 
                } 
                else if (eps > eunl2) {        // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else {                         // eunl2 > eps > emin 
                    flagg = 2; 
                    sig   = Eunl2*(eps-eunl2); 
                    Et    = Eunl2; 
                    el    = elunl+muunl*(eps-emin); 
                } 
            } 
            else if (flagg == 3) { 
                if (eps <= emin) {             // the strain increment brings back on the envelope 
                    flagg = 4; 
                    this->envelope(eps, deps, sig, Et, el); 
                   // emin = eps; 
                } 
                else if (eps > eunl2) {         // crack has opened 
                    flagg = 2; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
                else if (eps > eunl3) { 
                    flagg = 1; 
                    sig   = 0.; 
                    //Et    = 0.; 
     Et    = 1e-10; 
     el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
                } 
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                else {                          // eunl3 > eps > emin 
                    flagg = 3; 
                    Et    = Et3; 
                    sig   = (eps - eunl3)*Et; 
                    el    = elunl+(Et3/Eunl2)*muunl*(eps-emin); 
                } 
            } 
    } 
    else {                                  //eps > 0 
            flagg = 2; 
            sig   = 0.; 
            //Et    = 0.; 
   Et    = 1e-10; 
   el    = elunl+(Ec/Eunl2)*muunl*(eunl1-emin); 
    } 
 return 0; 
 
} 
 
double 
ConcreteZBH_fitted::getStrain(void) 
{ 
  return eps; 
} 
 
double 
ConcreteZBH_fitted::getStress(void) 
{ 
  return sig; 
} 
 
 
double 
ConcreteZBH_fitted::getTangent(void) 
{ 
  return Et; 
} 
 
int 
ConcreteZBH_fitted::commitState(void) 
{ 
  sigp   = sig; 
  Ep     = Et; 
  elp    = el; 
  epsp   = eps; 
  eminp  = emin; 
  eunl1p = eunl1; 
  eunl2p = eunl2; 
  eunl3p = eunl3; 
  Eunlp  = Eunl; 
  Eunl2p = Eunl2; 
  Et3p   = Et3; 
  sunlp  = sunl; 
  elunlp = elunl; 
  muunlp = muunl; 
  flaggp = flagg; 
 
  return 0; 
} 
 
 
int 
ConcreteZBH_fitted::revertToLastCommit(void) 
{ 
  sig   = sigp; 
  Et    = Ep; 
  el    = elp; 
  eps   = epsp; 
  emin  = eminp; 
  eunl1  = eunl1p; 
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  eunl2 = eunl2p; 
  eunl3 = eunl3p; 
  Eunl  = Eunlp; 
  Eunl2 = Eunl2p; 
  Et3   = Et3p; 
  sunl  = sunlp; 
  elunl = elunlp; 
  muunl = muunlp; 
  flagg = flaggp; 
 
  return 0; 
} 
 
 
int 
ConcreteZBH_fitted::revertToStart(void) 
{ 
  sigp   = 0.0; 
  Ep     = Ec; 
  elp    = 0.0; 
  epsp   = 0.0; 
  eminp  = 0.0; 
  eunl1p = 0.0; 
  eunl2p = 0.0; 
  eunl3p = 0.0; 
  Eunlp  = fc0/ec0; 
  Eunl2p = fc0/ec0; 
  Et3p   = fc0/ec0; 
  sunlp  = 0.0; 
  elunlp = 0.0; 
  muunlp = 0.0; 
  flaggp = 4; 
 
  sig    = 0.0; 
  Et     = Ec; 
  eps    = 0.0; 
  el     = 0.0; 
  emin   = 0.0; 
  eunl1  = 0.0; 
  eunl2  = 0.0; 
  eunl3  = 0.0; 
  Eunl   = fc0/ec0; 
  Eunl2  = fc0/ec0; 
  Et3    = fc0/ec0; 
  sunl   = 0.0; 
  elunl  = 0.0; 
  muunl  = 0.0; 
  flagg  = 4; 
 
 
  return 0; 
} 
 
 
UniaxialMaterial * 
ConcreteZBH_fitted::getCopy(void) 
{ 
  ConcreteZBH_fitted *theCopy = 
    new ConcreteZBH_fitted(this->getTag(), fc0, ec0, Ec, fccs, eccs, rs, 
                    e1, e2, e3, e4, e5, e6, e7, e8, e9, 
             eps_cy, eps_ccuf, sig_ccuf, eps_ccus, sig_ccus); 
 
  return theCopy; 
} 
 
 
int 
ConcreteZBH_fitted::sendSelf(int cTag, Channel &theChannel) 
{ 
 int res = 0; 
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 static Vector data(36); 
 data(0) = fc0; 
 data(1) = ec0; 
 data(2) = Ec; 
 data(3) = fccs; 
 data(4) = eccs; 
 data(5) = rs; 
 data(6) = e1; 
 data(7) = e2; 
 data(8) = e3; 
 data(9) = e4; 
 data(10) = e5; 
 data(11) = e6; 
 data(12) = e7; 
 data(13) = e8; 
 data(14) = e9; 
 data(15) = eps_cy; 
 data(16) = eps_ccuf; 
 data(17) = sig_ccuf; 
 data(18) = eps_ccus; 
 data(19) = sig_ccus; 
 data(20) = sigp; 
 data(21) = Ep; 
 data(22) = elp; 
 data(23) = epsp; 
 data(24) = eminp; 
 data(25) = eunl1p; 
 data(26) = eunl2p; 
 data(27) = eunl3p; 
 data(28) = Eunlp; 
 data(29) = Eunl2p; 
 data(30) = Et3p; 
 data(31) = sunlp; 
 data(32) = elunlp; 
 data(33) = muunlp; 
 data(34) = flaggp; 
 data(35) = this->getTag(); 
 
 
 
  res = theChannel.sendVector(this->getDbTag(), cTag, data); 
  if (res < 0) 
    opserr << "ConcreteZBH_fitted::sendSelf() - failed to send data\n"; 
 
  return res; 
} 
 
int 
ConcreteZBH_fitted::recvSelf(int cTag, Channel &theChannel, 
     FEM_ObjectBroker &theBroker) 
{ 
  int res = 0; 
  static Vector data(36); 
  res = theChannel.recvVector(this->getDbTag(), cTag, data); 
  if (res < 0) 
    opserr << "ConcreteZBH_fitted::recvSelf() - failed to recv data\n"; 
  else { 
   fc0 = data(0); 
   ec0 = data(1); 
   Ec = data(2); 
   fccs = data(3); 
   eccs = data(4); 
   rs = data(5); 
   e1 = data(6); 
   e2 = data(7); 
   e3 = data(8); 
   e4 = data(9); 
   e5 = data(10); 
   e6 = data(11); 
   e7 = data(12); 
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   e8 = data(13); 
   e9 = data(14); 
   eps_cy = data(15); 
   eps_ccuf = data(16); 
   sig_ccuf = data(17); 
   eps_ccus = data(18); 
   sig_ccus = data(19); 
   sigp = data(20); 
   Ep = data(21); 
   elp = data(22); 
   epsp = data(23); 
   eminp = data(24); 
   eunl1p = data(25); 
   eunl2p = data(26); 
   eunl3p = data(27); 
   Eunlp = data(28); 
   Eunl2p = data(29); 
   Et3p = data(30); 
   sunlp = data(31); 
   elunlp = data(32); 
   muunlp = data(33); 
   flaggp = int(data(34)); 
   this->setTag(int(data(35))); 
 
  } 
 
  eps = epsp; 
  sig = sigp; 
  Et  = Ep; 
 
  return res; 
} 
 
void 
ConcreteZBH_fitted::Print(OPS_Stream &s, int flag) 
{ 
  s << "ConcreteZBH_fitted tag: " << this->getTag() << endln; 
  /*s << "  E: " << E << endln; 
  s << "  ep: " << ep << endln; 
  s << "  stress: " << trialStress << " tangent: " << trialTangent << endln;*/ 
} 
 
void 
ConcreteZBH_fitted::envelope (double eps, double deps, double &sig, double &Et, double &el) 
{  
 if ((eps / ec0) < eps_ccuf) { 
  sig = ((eps / ec0) < eps_cy) ? (e1 * pow((eps / ec0), 3) + e2 * pow((eps / ec0), 2) + (Ec * ec0 / fc0) * eps / ec0) / (e3 * 
pow((eps / ec0), 2) + e4 * (eps / ec0) + 1.) : ((e1 * pow(eps_cy, 3) + e2 * pow(eps_cy, 2) + (Ec * ec0 / fc0) * eps_cy) / (e3 * pow(eps_cy, 2) + e4 
* eps_cy + 1) + (e5 * pow(((eps / ec0) - eps_cy), 3) + e6 * pow(((eps / ec0) - eps_cy), 2) + e7 * ((eps / ec0) - eps_cy)) / (e8 * pow(((eps / ec0) - 
eps_cy), 2) + e9 * ((eps / ec0) - eps_cy) + 1.)); 
  sig = sig * fc0; 
  /*Et = (eps / ec0 < eps_cy) ? ((3 * e1 * pow(eps / ec0, 2) + 2 * e2 * eps / ec0 + (Ec * ec0 / fc0)) * (e3 * pow(eps / ec0, 2) + 
e4 * eps / ec0 + 1) - (e1 * pow(eps / ec0, 3) + e2 * pow(eps / ec0, 2) + (Ec * ec0 / fc0) * eps / ec0) * (2 * e3 * eps / ec0 + e3)) / pow((e3 * 
pow(eps / ec0, 2) + e4 * eps / ec0 + 1), 2) 
   : ((3 * e5 * pow((eps / ec0 - eps_cy), 2) + 2 * e6 * (eps / ec0 - eps_cy) + e7) * (e8 * pow((eps / ec0 - eps_cy), 2) 
+ e9 * (eps / ec0 - eps_cy) + 1) - (e5 * pow((eps / ec0 - eps_cy), 3) + e6 * pow((eps / ec0 - eps_cy), 2) + e7 * (eps / ec0 - eps_cy)) * (2 * e8 * (eps 
/ ec0 - eps_cy) + e9)) / pow((e8 * pow((eps / ec0 - eps_cy), 2) + e9 * (eps / ec0 - eps_cy) + 1), 2); 
  Et = Et * fc0 / ec0;*/ 
  Et = (sig - sigp) / deps; 
  el = (Ec * eps - sig) / (2. * beta * sig); 
 } 
 else if ((eps / ec0) <= eps_ccus) { 
  double sig1 = fccs * (eps / eccs) *rs / (rs - 1. + pow((eps / eccs), rs)); 
  double sig2 = sig_ccuf*fc0 - (eps - eps_ccuf*ec0) * Ec; 
  if (sig1 < sig2) { 
   sig = sig1; 
   Et = (fccs * rs / eccs) / (rs - 1 + pow((eps / eccs), rs)) - 
    (fccs * pow(rs, 2) * (pow((eps / eccs), rs)) / eccs) / pow((rs - 1 + pow((eps / eccs), rs)), 2); 
   el = (Ec * eps - sig) / (2. * beta * sig); 
  } 
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  else { 
   sig = sig2; 
   Et = -Ec; 
   el = (Ec * eps - sig) / (2 * beta * sig); 
  } 
 } 
 else { 
  double sig_p2 = sig_ccuf * fc0 - (eps_ccus - eps_ccuf)*ec0 * Ec; 
  double sig_p = fmin(sig_ccus*fc0, sig_p2); 
 
  double sig2 = sig_p  - (eps - eps_ccus*ec0) * Ec; 
  double sig1 = fc0 * r0 * (eps / ec0) / (r0 - 1. + pow((eps / ec0), r0)); 
  if (sig1 < sig2) { 
   sig = sig1; 
   Et = (fc0 * r0 / ec0) / (r0 - 1. + pow((eps / ec0), r0)) - 
    (fc0 * pow(r0, 2) * (pow((eps / ec0), r0)) / ec0) / pow((r0 - 1. + pow((eps / ec0), r0)), 2); 
   el = (Ec * eps - sig) / (2 * beta * sig); 
  } 
  else { 
   sig = sig2; 
   Et = -Ec; 
   el = (Ec * eps - sig) / (2. * beta * sig); 
  } 
 } 
 return; 
} 

 

 

MATLAB code for Analytical ZBH model: 

clear; 
close all; 
clc; 
  
fc0 = 4.; 
ec0 = 0.002; 
Ec0 = 57000*sqrt(fc0*1000)/1000; 
D = 48; 
cov = 2.3125; 
nb = 20; 
dsl = 1.27; 
Est = 29000; 
fy = 60; 
s = 3.25*1; 
dst = 0.625; 
reinf_type = 1; % (2) for 'tie' or (1) for 'spiral' 
Ef = 20000; 
efe = 0.006; 
tf = 0.065748; 
  
ejult_s = 0.102; 
  
format long 
  
v = Get_analytical_function(fc0,ec0,Ec0,D,cov,nb,dsl,Est,fy,s,dst,ejult_s,Ef,efe,tf,reinf_type) 
  
  
  
function [varout] = 
Get_analytical_function(fc0,ec0,Ec0,D,cov,nb,dsl,Est,fy,s,dst,ejult_s,Ef,efe,tf,reinf_type) 
fc0 = -abs(fc0); 
ec0 = -abs(ec0); 
  
Ds = D - 2*cov;   %core diam. 
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s_p = s - dst;          %s' (Mander) 
% e_s = 0.1;             %ultimate strain steel     
%reinf_type = 1;          
rho_long = nb*dsl^2/D^4;        %long. steel rho 
  
ke = (1-0.5*s_p/Ds); 
if ke >=0 
    if reinf_type == 2 
        ke = (1-0.5*s_p/Ds)^2/(1-rho_long); 
    else 
        ke = (1-0.5*s_p/Ds)/(1-rho_long); 
    end 
else 
    ke = 0; 
end 
ke = min(ke,1); 
  
ey = fy/Est; 
  
rho_f = 4*tf/D; 
rho_s = 4*(0.25*pi*dst^2)/(s*Ds); 
  
flf = 0.5*rho_f*Ef*efe; 
fls = 0.5*ke*rho_s*fy; 
  
fccs   = (2.254*(1+7.94*fls/abs(fc0))^0.5-2*fls/abs(fc0)-1.254)*fc0; 
eccs   = ec0*(1+5*(fccs/fc0-1)); 
Eseccs = fccs/eccs; 
rs     = Ec0/(Ec0-Eseccs); 
  
  
  
r_f = abs(flf/fc0); 
r_s = abs(fls/fc0); 
Ec = Ec0*ec0/fc0; 
ey = abs(ey/ec0); 
ejult_f = abs(efe/ec0); 
  
eff = (2*tf*Ef/D)*(-0.00003)+0.6806; 
  
beta = (Ec/abs(-1)-1/abs(-1));   %beta SM model 
% beta1 = (Ec0/abs(fc0)-1/abs(ec0));   %beta SM model 
  
Ej_s = 1/ey; 
Ej_f = 1/ejult_f; 
  
n_ec0 = 10; 
[epss, stress, ell] = get_curve(-1,-1,Ec,beta,Ej_f,Ej_s,1,ejult_f,r_f,r_s,n_ec0); 
% [epss1, stress1, ell] = get_curve(fc0,ec0,Ec0,beta1,Ef,Est,fy,efe,rho_f/2,ke*rho_s/2,n_ec0); 
% plot(epss,stress,'b-',epss1,stress1,'r--'); 
[xx,eps_cy,eps_ccuf,sig_ccuf] = optimizationfun(epss,stress,ell,ey,Ec); 
  
  
  eps_ccus = -0.004 - 1.4 * rho_s * fy * ejult_s / abs(fccs); 
  x = eps_ccus / eccs; 
  sig_ccus = fccs * x * rs / (rs - 1 + x^rs); 
   
  eps_ccus=eps_ccus/ec0; 
  sig_ccus=sig_ccus/fc0; 
  
if fls == 0 || abs(eps_ccus)<=abs(eps_ccuf) 
    eps_ccus = eps_ccuf; 
    sig_ccus = sig_ccuf; 
end 
  
  
  
% if fls == 0 
%     eps_ccus = eps_ccuf; 
%     sig_ccus = sig_ccuf; 
% else 
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%     [epss, stress, ell] = get_curve(-1,-1,Ec,beta,Ej_f,Ej_s,1,abs(ejult_s/ec0),0,r_s,n_ec0); 
%     % plot(epss,stress,'b-'); 
%     eps_ccus = epss(end); 
%     sig_ccus = stress(end); 
% end 
  
varout = [fc0, ec0, Ec0, fccs, eccs, rs, xx, eps_cy, eps_ccuf, sig_ccuf, eps_ccus, sig_ccus]; 
end 
  
function [c11,eps_cy,eps_ccuf,sig_ccuf] = optimizationfun(epss,stress,ell,ey,Ec) 
A = []; % No other constraints 
b = []; 
Aeq = []; 
beq = []; 
  
ub = [2.4  15 7.2 5.2  0.5  4.2  0.7  12  20]; 
lb = [-0.1 -2  0 -0.7 -0.5 -0.9 -0.6 -0.6 -2]; 
  
dd = find(ell>ey,1,'first'); 
eps_cy = epss(dd)+0.00000001; 
  
c0 = (ub+lb)/2; 
model = @(c,x) (x<eps_cy).*(c(1)*x.^3+c(2)*x.^2+Ec*x)./(c(3)*x.^2+c(4)*x+1) + 
(~(x<eps_cy)).*((c(1)*eps_cy.^3+c(2)*eps_cy.^2+Ec*eps_cy)./(c(3)*eps_cy.^2+c(4)*eps_cy+1) + 
(c(5)*(x-eps_cy).^3+c(6)*(x-eps_cy).^2+c(7)*(x-eps_cy))./(c(8)*(x-eps_cy).^2+c(9)*(x-eps_cy)+1)); 
fun = @(x)sum((model(x,epss) - stress).^2); 
nonlcon = @(x)confuneq(x,epss,stress,Ec); 
% options = optimoptions(@fmincon,'Algorithm','sqp','TolX',1e-4,'MaxFunEvals',1e3,'TolFun',1e-
4,'MaxIter',1e3); 
% problem = 
createOptimProblem('fmincon','objective',fun,'x0',c0,'lb',lb,'ub',ub,'nonlcon',nonlcon,'options',
options); 
% gs = GlobalSearch; 
% [c11] = run(gs,problem); 
options = optimoptions(@fmincon,'Algorithm','sqp','TolX',1e-4,'MaxFunEvals',1e3,'TolFun',1e-
4,'MaxIter',1e3); 
c11 = fmincon(fun,c0,A,b,Aeq,beq,lb,ub,nonlcon,options); 
f11 = model(c11,epss); 
aerr = sum(abs(f11-stress))/sum(abs(stress)); % error area over total area 
lerr = max(abs(f11-stress))/max(abs(stress)); 
% c11(10) = eps_cy; 
eps_ccuf = epss(end); 
sig_ccuf = f11(end); 
  
  
  
plot(epss,stress,'k--','LineWidth',1.3);hold on; 
plot(epss,f11,'b-');hold off; 
aerr 
end 
  
function [c,ceq] = confuneq(x,epss,stress,Ec) 
e = epss(2); 
% s = stress(2); 
c(1) = (3*x(1)*e^2+2*x(2)*e+Ec)/(x(3)*e^2+x(4)*e+1)-
(x(1)*e^3+x(2)*e^2+Ec*e)*(2*x(3)*e+x(4))/(x(3)*e^2+x(4)*e+1)^2-Ec; 
c(2) = x(4)^2-4*x(3); 
% c(1) = x(4)^2-4*x(3); 
ceq = []; 
end 
%%--------------------------------------------------------------------- 
  
function [epss, stress, ell]= get_curve(fc0,ec0,Ec,beta,Ej_f,Ej_s,fy,ejult_f,r_f,r_s,n_ec0) 
  
% flf_max  = kf*abs(fc0);           %max FRP lateral pressure 
% fls_max  = ks*abs(fc0); 
% 
% r_f = flf_max/(Ej_f*ejult_f); 
% r_s = fls_max/fy; 
  
eps = 0;                            %concrete axial strain 
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el  = 0;                            %concrete lateral strain 
flp = 0;                            %lateral pressure - past 
fl  = 0;                            %lateral pressure - current 
i   = 1; 
epss   = 0; 
stress = 0; 
ell    = 0; 
  
  
while abs(el) < ejult_f 
    i   = i + 1; 
    eps = eps + ec0/n_ec0; 
    [fc,el,fl]= Conf_Pressure(eps,fc0,flp,ec0,Ec,beta,Ej_f,Ej_s,fy,r_f,r_s); 
    cont=0; 
    while abs(fl-flp) > max(fl*1e-10,1e-10) 
        cont = cont+1; 
        flp  = fl; 
        [fc,el,fl]= Conf_Pressure(eps,fc0,flp,ec0,Ec,beta,Ej_f,Ej_s,fy,r_f,r_s); 
        if cont>40, break, end 
    end 
    epss(i)    = eps; 
    stress(i)  = fc; 
    ell(i)     = el; 
end 
epss = epss/ec0; 
stress = stress/fc0; 
end 
  
function [fc,el,fl]= Conf_Pressure(eps,fc0,flp,ec0,Ec,beta,Ej_f,Ej_s,fy,r_f,r_s) 
  
fcc   = (2.254*(1+7.94*flp/abs(fc0))^0.5-2*flp/abs(fc0)-1.254)*fc0; 
ecc   = ec0*(1+5*(fcc/fc0-1)); 
x     = eps/ecc; 
Esecc = fcc/ecc; 
r     = Ec/(Ec-Esecc); 
fc    = fcc*x*r/(r-1+x^r); 
el    = (Ec*eps-fc)/(2*beta*fc); 
  
fl    = r_f*Ej_f*el + r_s*min(Ej_s*abs(el),fy); 
end 
 




