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Cognitive and behavioral flexibility necessitate mental and behavioral changes in response 

to changing environmental demands. Cognitive flexibility, or the mental ability to change from 

one thought to another, supports positive life outcomes. Individuals diagnosed with autism 

spectrum disorder (ASD) often face challenges with cognitive flexibility as exhibited by a core 

symptom of restricted and repetitive interests and behaviors (RRBs) and having poor adaptive 

behavior skills. ASD is rising each year, with one in 36 children diagnosed annually. Early 

diagnosis and treatment are critical for improving life outcomes. This makes it even more 

important to investigate the neural underpinnings of cognitive flexibility during early stages of 

development and across the lifespan to improve treatments and interventions. This dissertation 

seeks to understand the neural mechanisms underlying healthy cognitive flexibility development 
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and the cognitive inflexibility observed in ASD. Chapter 1 includes an introduction to the research 

involved in the following chapters, and provides a review of cognitive flexibility and its neural 

correlates in typical development and in ASD. Chapter 2 includes a study exploring brain dynamics 

and cognitive flexibility across the lifespan in a neurotypical population. Using a co-activation 

pattern analysis method to investigate brain dynamics, brain networks including the salience (SN), 

default mode (DMN), and central executive networks (CEN) underlie changes in cognitive 

flexibility across the lifespan. Chapter 3 then explores the neural correlates of shifting in children 

with and without autism during a task and resting state fMRI. Results of this study further revealed 

brain dynamics among the SN, DMN and CEN were involved in shifting abilities and 

abnormalities in these dynamics may underlie differences observed in children with ASD. Chapter 

4 then examines early brain dynamics in toddlers with and without ASD and their relationship with 

flexible behaviors. Findings reveal differences in brain dynamics among the SN, DMN, and CEN 

in toddlers later diagnosed with ASD compared with non-ASD toddlers. Additionally, brain 

dynamics among the SN, DMN, and CEN were associated with RRBs and real-world measures of 

flexible behaviors across all toddlers. Chapter 5 discusses the overall findings of this dissertation, 

limitations, and future directions. Overall, these data indicate the importance of investigating brain 

dynamics associated with cognitive flexibility across the lifespan. Further, it has potential 

implications for autism research, implying that brain network dynamics may be an early indicator 

for behavioral symptoms. 
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CHAPTER 1: 

 

Developmental Neuroimaging of Cognitive Flexibility: Update and Future Directions 

Lauren B. Kupis1, and Lucina Q. Uddin12 

 

1Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California, USA; 

email: lkupis@g.ucla.edu 

2Department of Psychology, University of California, Los Angeles, California, USA; email: lucina@ucla.edu 
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Autism and Cognitive Inflexibility 
 
 Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by 

social deficits and restricted and repetitive behaviors (RRBs). RRBs are an understudied core 

symptom of ASD, yet negatively affect vital abilities such as social interactions, learning new 

skills, and completing daily activities (Aqdassi et al. 2021; Sadeghi and Pouretemad 2022). 

Autistic individuals additionally face greater cognitive flexibility difficulties (Lage, Smith, and 

Lawson 2024), and this dysfunction is thought to underlie RRBs (Gioia et al. 2002; Lopez et al. 

2005). Cognitive inflexibility poses a great challenge in daily living in children with ASD such 

as creating difficulties with transitioning between activities (Craig et al. 2016), emotion 

regulation (Gardiner and Iarocci 2017), and adaptive behavior (Gilotty et al. 2002). Cognitive 

inflexibility is vital to understand in early life as it can have detrimental impacts later in life, as 

manifested by lower rates of employment and independent living (Anderson et al. 2014), quality 

of living (Mason et al. 2018), and fewer relationships (Farley et al. 2009).  

Early identification of ASD and early cognitive flexibility intervention holds promise for 

improving life outcomes. There is abundant evidence that early diagnosis and intervention 

improves life outcomes of children diagnosed with ASD (Vivanti et al. 2014; Okoye et al. 2023), 

yet one in 36 children are diagnosed with ASD and the median age of diagnosis is not until 4 

years of age (Maenner et al. 2023). Due to a delayed diagnosis, children are missing out on 

critical treatment and intervention during critical years of formative brain development (Tierney 

and Nelson 2009a). There is also evidence that cognitive-focused intervention improves 

cognitive flexibility as demonstrated in improved classroom behavior, behavior flexibility, and 
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problem solving skills (Kenworthy et al. 2014). Therefore, early detection and intervention 

should be prioritized in ASD to improve cognitive flexibility, symptoms, and life outcomes. 

There are early behavioral indicators of ASD (Barbaro and Dissanayake 2009), but these signs 

are typically observed in the social domain (Ozonoff et al. 2010) and are not reliable enough to 

establish diagnosis and can lead to biases (Guthrie et al. 2019; Pierce et al. 2019; Jarquin et al. 

2011). Brain biomarkers hold promise in identifying early markers of risk for ASD in concert 

with overt behavioral signs (I. Molnar-Szakacs, Kupis, and Uddin 2021). Additionally, early 

brain markers of cognitive inflexibility may help improve intervention targets. Overall, 

identifying early brain markers of ASD and cognitive inflexibility is imperative to reduce the 

delay to diagnosis and treatment, and to improve outcomes for those affected. 

Early Detection and Methods 

Behavioral signs of ASD are rarely observable during the first year of life, and in 

subsequent years they are difficult to distinguish from both typical development and from other 

disorders (Istvan Molnar-Szakacs, Kupis, and Uddin 2020). However, risk of ASD appears to 

affect multiple brain systems prior to detectable behavioral signs of ASD (Eric Courchesne, 

Gazestani, and Lewis 2020; Xiao et al. 2021). Non-invasive techniques such as magnetic 

resonance imaging (MRI) are useful tools to identify early biomarkers for ASD and predict 

symptom severity to guide intervention and treatments (Muhle et al. 2018). Sleep MRI - that is 

MRI conducted during natural sleep - is a safe and effective method for examining the brain’s 

functional architecture, reducing the concerns related to participant head motion while obviating 

the need for anesthesia (Power et al. 2012). Sleep MRI has already been used to examine brain 
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activation patterns in toddlers with ASD (Redcay and Courchesne 2008; Lombardo et al. 2015; 

Eyler, Pierce, and Courchesne 2012) and brain network dynamics during sleep (“Connectivity 

Dynamics from Wakefulness to Sleep” 2020). Additionally, resting-state fMRI methods - that is 

MRI conducted with no stimuli - are used to investigate the intrinsic functional architecture of the 

brain and hold promise of mapping brain function with behavior (Lee, Smyser, and Shimony 2013) 

and have been used in children and adults with ASD. Task fMRI - MRI conducted while 

participants perform a task during the scan - is commonly used to understand the blood-oxygen 

level dependent (BOLD) changes (Dichter 2012) and uncover brain regions involved in a cognitive 

process and has been used across the lifespan. MRI methods paired with detection of early 

behavioral signs of a developmental delay hold potential to reduce the delay to diagnosis and 

advance targeted treatments of cognitive flexibility.  

Brain markers of autism and cognitive inflexibility: The Triple Network Model 

The use of resting-state and task fMRI methods has uncovered potential brain biomarkers 

for ASD and cognitive inflexibility in children and adults with ASD. Previous studies have found 

that children and adults with ASD show atypical brain patterns during both task performance and 

resting-states (Marshall et al. 2020a; Kupis, Goodman, Kircher, et al. 2021; “Brain Mechanisms 

Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 

2021; Lau, Leung, and Lau 2019; Hull et al. 2016; Dichter 2012). Most studies point towards 

patterns of hyper and hypo functional connectivity, a measure of how brain regions interact with 

each other, in ASD (Lucina Q. Uddin, Supekar, and Menon 2013) and especially evident during 

young age (Nomi and Uddin 2015). The broad hyper and hypo connectivity observed in ASD 
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appears to depend on task demands, brain networks under investigation, age, and method used 

(Hernandez et al. 2015; Rudie and Dapretto 2013). Despite the widespread findings, many studies 

consistently highlight dysfunction of three large-scale networks. These networks are the salience 

network (SN), comprised of the anterior cingulate cortex and anterior insula, involved in 

interoceptive, affective, attention, and control processes; the central executive network (CEN), 

comprised of the dorsolateral prefrontal cortex and the anterior inferior parietal cortex, involved 

in modulating goal-oriented behaviors and decisions; and the default mode network (DMN), 

comprised of the medial prefrontal cortex, posterior cingulate cortex, and the posterior parietal 

lobule, involved in self-related and social cognition (Lucina Q. Uddin, Yeo, and Spreng 2019; L. 

Q. Uddin et al. 2011; Lucina Q. Uddin et al. 2015a). These three large-scale brain networks form 

the basis for the influential “triple network model” (Vinod Menon and Uddin 2010). This theory 

and studies support the idea that the SN mediates the interaction between the CEN and DMN, and 

facilitates switching needed for successful cognitive flexibility (V. Menon 2015b; Chand et al. 

2017). There is further evidence that effective and flexible switching among these networks predict 

cognitive flexibility abilities (Lucina Q. Uddin 2021; “Cognitive Flexibility as the Shifting of 

Brain Network Flows by Flexible Neural Representations” 2024; Cao et al. 2021). Interestingly, 

these three networks have been previously associated with RRB symptoms and cognitive 

flexibility in ASD (Lucina Q. Uddin et al. 2015a; Marshall et al. 2020a; “Brain Mechanisms 

Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 

2021; Lucina Q. Uddin et al. 2013a). For example, In older children with ASD, the severity of 

RRBs were associated with connectivity among these three large-scale brain networks (SN, CEN, 



 
 

 

 28 

DMN) (Traynor and Hall 2015a; Lucina Q. Uddin et al. 2015a). Another study found static 

functional connectivity of the SN in 7-12 year old children predict individual differences in RRBs 

in ASD (Lucina Q. Uddin et al. 2013a). The SN, CEN, and DMN hold promise as potential 

biomarkers for ASD and early cognitive flexibility skills. 

Early neurodevelopment, brain markers of ASD, and cognitive inflexibility 

To date, there are few studies that have investigated early brain network development in 

typical development, early brain markers of ASD, and relationships between early brain 

development and emerging behavior. From the few studies that have investigated early functional 

networks in typical development, neural networks are observed in neonates and have even been 

observed in utero (Thomason et al. 2013; Grayson and Fair 2017; Keunen, Counsell, and Benders 

2017). The overall framework of mature brain wiring appears set at the time of birth, and intra and 

inter network FC continue to develop within the first years of life (Zhang, Shen, and Lin 2019). 

Formation of FC begins with primary networks followed by higher order networks (Keunen, 

Counsell, and Benders 2017), such that the visual network and sensorimotor networks emerge first 

followed by the SN, CEN, and DMN formation (W.-C. Liu et al. 2008; Zhang, Shen, and Lin 

2019). The first few years of life are characterized by rapid development with brain volume 

doubling in the first year and reaching adult volume by age three (E. Courchesne et al. 2000; 

Grayson and Fair 2017). By two years of age the neural networks appear to be established (Zhang, 

Shen, and Lin 2019; Grayson and Fair 2017) and both genetics and environment have important 

contributions to the development of brain functional networks (Gao et al. 2014). Additionally, 

early brain FC in neurotypical infants have been used to predict learning ability (Zhang et al. 2017), 
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language performance (Emerson, Gao, and Lin 2016), and higher order cognition at later ages 

(Alcauter et al. 2014).  

The investigation of early brain networks has clinical implications for at-risk populations 

such as ASD and for uncovering early markers associated with later cognitive inflexibility. The 

majority of neuroimaging studies examining infants or toddlers at-risk for ASD have examined 

structural MRI biomarkers that predict later developing ASD and few studies have investigated 

functional connectivity. Further, most studies mapping brain-behavior relationships have focused 

on later developing social deficits and language while few have focused on RRBs or flexible 

cognition and behavior (Istvan Molnar-Szakacs, Kupis, and Uddin 2020). From the studies 

completed, there is promising evidence of early brain biomarkers predictive of ASD and later 

developing behaviors (I. Molnar-Szakacs, Kupis, and Uddin 2021). Studies of infants and toddlers 

at-risk of ASD have revealed alterations in brain volume are predictive of ASD and severity of 

symptoms (Pote et al. 2019; Hazlett et al. 2012; Shen et al. 2013). Studies have revealed early 

language areas predictive of later language outcomes in toddlers later diagnosed with ASD 

(Lombardo et al. 2015). Studies investigating structural connectivity, or white matter tract 

microstructure (Edward Roberts, Anderson, and Husain 2013), also find promising brain markers 

predictive of later language development and ASD symptoms (J. Liu et al. 2019; Wolff et al. 2012).  

There is additionally a rise of studies investigating FC across all ages of autism (Lucina Q. 

Uddin, Supekar, and Menon 2013), making it a promising biomarker for investigating in the first 

years of life. For example, one study investigated FC in 6-month old HR infants and successfully 

identified subjects who later went on to develop ASD based on the FC measures (Emerson et al. 
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2017). They additionally found correlations between 6-month FC and 24-month social behavior, 

language, motor development, and repetitive behavior scores (Emerson et al. 2017). Another study 

found that alterations of the SN connectivity in 6 week old infants at high risk of ASD predicted 

subsequent ASD symptoms (Tsang et al. 2024). Another study specifically examined early brain 

networks associated with RRBs and ASD in infants at high risk of developing ASD (McKinnon et 

al. 2019). They found alterations in DMN and CEN FC were associated with RRBs at 12 and 24 

months of age. These studies provide seminal evidence of potential brain biomarkers of ASD and 

support the further investigation of brain network alterations during the first years of life in infants 

and toddlers at risk of ASD and behavioral difficulties.  

RRBs and the Relationship with Cognitive Flexibility 

Restricted and repetitive behaviors (RRBs) are a hallmark feature of ASD and are 

associated with cognitive inflexibility making this symptom important to investigate during early 

life. RRBs are a core symptom of ASD and behaviorally can present as stereotyped movements, 

insistence on sameness, and circumscribed or perseverative interests (American Psychiatric 

Association 2021). ASD is, however, heterogeneous (Masi et al. 2017), resulting in a diverse range 

of RRBs and severity. RRB severity is also predictive of later adaptive behaviors, or the ability to 

adjust to the environment appropriately and effectively (Troyb et al. 2016). Further, RRBs are not 

unique to ASD, as they are present in idiopathic neurodevelopmental conditions (e.g., Fragile 

X),(Lewis and Kim 2009) other neuropsychiatric conditions such as obsessive-compulsive and 

related disorders (Abramowitz and Jacoby 2015) and even in typical development (Thelen 1980). 

The heterogeneity of ASD and the overlap of RRBs across diagnostic categories make it difficult 
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to observationally discern RRBs in ASD from other conditions during early development (Jiujias, 

Kelley, and Hall 2017). However, RRBs are usually more severe and more frequent in ASD as 

children develop (Richler et al. 2010a; Harrop et al. 2014). Further, the severity of RRBs is 

associated with cognitive inflexibility in ASD (Lopez et al. 2005). This highlights the need to 

further investigate early brain mechanisms underlying RRBs and cognitive inflexibility in ASD. 

In children and adults with ASD, studies point toward atypical brain patterns of the CEN and SN 

during cognitive flexibility tasks (“Brain Mechanisms Supporting Flexible Cognition and 

Behavior in Adolescents With Autism Spectrum Disorder” 2021). However, little is known about 

early brain network functioning and their association with later developing RRBs and cognitive 

inflexibility in ASD. This further emphasizes the importance of investigating RRBs and their 

relationship with cognitive flexibility in ASD especially during the first years of life.  

The Research Domain Criteria (RDoC) framework includes psychological and biological 

‘domains’ intended to be studied along a range of functioning from normal to abnormal. RDoC 

suggests that focusing on symptom domains that cut across diagnostic categories may be beneficial 

to understanding the heterogeneity of ASD and their behavioral symptoms (Masi et al. 2017). 

Additionally, RDoC recommends exploring neural substrates linked with dimensions of behavior 

to inform individual diagnosis and treatment in service of improving well-being (Insel and Wang 

2010). Future work is needed to assess both dimensional and categorical brain-behavior 

relationships at early and longitudinal time-points in infants and toddlers later diagnosed with and 

without ASD. This approach will elucidate shared neural mechanisms between ASD and typically 

developing (TD) children and identify unique neural alterations in ASD.   
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Evolving fMRI methods: Brain Dynamics 

Resting-state fMRI (rsfMRI) studies provide insight into functional brain network 

organization in the absence of task performance (Biswal et al. 1995) and reveal intrinsic brain 

connectivity patterns associated with behavior and cognition (Smitha et al. 2017). Functional 

connectivity is the temporal correlation between two distinct brain regions (Friston et al. 1993) 

averaged over a given time period (typically around 10 minutes or the duration of a resting-state 

fMRI scan). Recent advances show that functional connectivity patterns are dynamic, and can 

change over the course of seconds (Chang and Glover 2010). Thus, previous ‘static’ functional 

connectivity approaches may be too simplistic to index moment-to-moment changes in resting-

state brain activity (Preti, Bolton, and Van De Ville 2017). FC methods, although valuable, rely 

on many assumptions and arbitrarily collapse data into time and space. Novel dynamic methods, 

such as co-activation pattern analysis (CAP) and dynamic FC (dFC), account for these changes 

over time, and in some instances may better capture brain-behavior relationships than static 

methods (Lurie et al. 2020). The temporal variability as measured using dynamic methods has 

already shown clinical utility (Damaraju et al. 2014), including in ASD (“Brain Mechanisms 

Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 

2021) and have been used to characterize brain network dynamics during sleep (“Connectivity 

Dynamics from Wakefulness to Sleep” 2020). Brain dynamic methods hold promise in elucidating 

early brain network dynamics in both ASD and typically developing infants and toddlers.   

Co-activation Pattern Analysis (CAP) 
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Novel dynamic methods such as co-activation pattern (CAP) analysis (X. Liu, Chang, 

and Duyn 2013; X. Liu et al. 2018) are increasingly utilized (Kupis, Romero, Dirks, Hoang, 

Parlade, et al. 2020; Kupis, Goodman, Kircher, et al. 2021) because they capture time-varying 

brain state alterations not otherwise observed using static methods and in some instances reveal 

more brain and behavior relationships compared with static methods (Lurie et al. 2020). The 

CAPs method deviates from traditional dynamic methods by accounting for single fMRI 

volumes at individual time points and focusing on recurring CAPs of the brain. The CAPs 

overall represent instantaneous brain configurations at single time points (X. Liu et al. 2018). 

This method is data driven and relies on a clustering algorithm to determine the brain co-

activations. This reveals recurring patterns of CAP states with distinct functional and neural 

relevance. For instance, a CAP could consist of DMN co-activation with subcortical regions such 

as the hippocampus (X. Liu, Chang, and Duyn 2013; X. Liu et al. 2018). These meaningful 

CAPs also appear to have important time varying instances that may reflect the dynamic 

organization of the brain and changes in the CAPs are found to underlie cognition and behavior 

(X. Liu et al. 2018; Bray et al. 2015). CAP method has also been used to investigate 

neurodiverse populations (Marshall et al. 2020b; Goodman et al. 2021; “Reproducible 

Coactivation Patterns of Functional Brain Networks Reveal the Aberrant Dynamic State 

Transition in Schizophrenia” 2021). The CAP method is promising for investigating brain 

dynamics across all ages, and in neurotypical and diverse populations. Additionally, since it is 

data driven and relies on independent component analysis and a clustering method (X. Liu et al. 
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2018), it holds promise to elucidate early brain biomarkers in infants and toddlers with and 

without ASD.  

Dynamic Functional Connectivity (DFC) 

 Another commonly used dynamic brain method is dynamic functional connectivity (dFC) 

using the sliding window approach (Hutchison et al. 2013). In this method, a fixed length of time 

(e.g., 30s, 60s, or 120s) is chosen and data points within that period of time are used to calculate 

the FC in that specific window. The window is then shifted over by a fixed number of data points 

allowing for a certain amount of overlap between each window. A FC measure is calculated for 

each window of time, and then a clustering method such as k-means clustering is applied to the 

data set and used to group the FC matrices based on their similarity. This results in averaged 

clusters or brain states representing FC patterns that recur throughout the duration of the fMRI 

scan. These repeating patterns provide insights into how the brain dynamically shifts and 

reorganizes itself throughout a task or rest state and holds promising cognitive and behavioral 

significance (Hutchison et al. 2013; Cohen 2018).  

Brain Dynamics in Autism and Cognitive Flexibility  

 Brain dynamic methods such as CAP and dFC are emerging in the field of ASD research 

and in the study of flexible cognition and behavior (Lurie et al. 2020; L. Q. Uddin and Karlsgodt 

2018). Dynamic methods have already revealed neural underpinnings of brain inflexibility, and 

cognitive and behavioral inflexibility in ASD (“Brain Mechanisms Supporting Flexible 

Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 2021). Studies have 

revealed aberrant dynamic interactions among the SN, CEN, and DMN in ASD. For example, 
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the frequency of the SN was altered in ASD children compared with neurotypical children 

(Marshall et al. 2020b). Other studies report reduced transitions between brain states in children 

and adults with ASD (de Lacy et al. 2017; Watanabe and Rees 2017). Another study 

investigating 774 6-10 year old children found a longer dwell time in a state characterized by 

global disconnection was associated with higher levels of ASD traits and ASD diagnosis (Rashid 

et al. 2018). These findings suggest an earlier neurodevelopmental origin and support 

investigating brain network dynamics in ASD and typical developmental in early life.  
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CHAPTER 4:  

Brain Dynamics in Toddlers with and without Autism Spectrum Disorder 

 

ABSTRACT 

Autism spectrum disorder (ASD) affects one in 36 children. Early diagnosis is critical for 

optimizing outcomes, yet children are not typically diagnosed until 4 years of age. In concert 

with early behavioral signs, early neural markers could identify toddlers at risk of developing 

ASD to aid earlier diagnosis and targeted interventions. Neuroimaging studies have primarily 

examined structural brain alterations in toddlers at high risk of developing ASD. While 

innovative dynamic functional magnetic resonance imaging (fMRI) methods reveal candidate 

brain networks of dysfunction in older children with ASD (7-12 years of age), little work has 

been done to examine brain network dynamics in toddlers with ASD. The goal of this project is 

to identify early functional brain biomarkers of ASD and their relationships with early flexible 

behaviors (e.g., repetitive and adaptive behaviors). Using data from 48 ASD and 27 non-ASD 

toddlers, we examined brain network dynamics in the whole brain and among the salience 

network (SN), default mode (DMN), and central executive networks (CEN). Early brain network 

dynamics were similar across all toddlers, however, ASD toddlers exhibited altered brain 

dynamics in a state consisting of SN, DMN, and CEN co-activation. Across both diagnostic 

groups, there were relationships between early brain dynamics and real-world measures of 

cognitive flexibility. At the whole brain level, greater dwell times and frequencies of states with 

core neural networks and visual and subcortical regions were associated with greater flexible 
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behaviors. While investigating interactions among the core neural networks (SN, DMN, and 

CEN), a greater dwell time of a state with DMN co-activation was associated with poorer RRBs 

and adaptive behaviors; conversely, greater frequency of a state with a greater SN and CEN co-

activation and DMN de-activation was associated with better RRB and adaptive behavior 

outcomes. Overall, this is one of the first studies to investigate brain network dynamics in typical 

and atypical toddlers.  

INTRODUCTION  

 Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition 

characterized by social communication deficits, and restricted and repetitive behavior, interests, 

or activities (American Psychiatric Association 2015). The prevalence rate of ASD in the United 

States is rising, with one in 36 children diagnosed each year (Maenner et al. 2023), and this rate 

continues to rise. Despite the increasing prevalence, the median age of ASD diagnosis remains at 

four years, leading to a delay in treatment initiation during crucial periods of brain development 

(Tierney and Nelson 2009b). Early diagnosis and intervention significantly improve cognitive, 

language, adaptive behavior, and overall quality of life for individuals with ASD (Elder et al. 

2017; Richler et al. 2010b). 

Currently, ASD diagnosis relies primarily on behavioral symptoms, including social 

deficits and restricted and repetitive behaviors (RRBs) (American Psychiatric Association 2015). 

RRBs present as restricted interests, insistence on sameness, repetitive speech (e.g., echolalia), 

and difficulties with behavioral transitions. RRBs interfere with learning, social development, 

daily activities, and family functioning (American Psychiatric Association 2015; Richler et al. 
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2010b), causing impairments in development and increased stress for caretakers (Bishop et al. 

2007). Moreover, RRB severity is linked to later developing comorbid psychiatric conditions 

such as anxiety and depression (“Relations among Restricted and Repetitive Behaviors, Anxiety 

and Sensory Features in Children with Autism Spectrum Disorders” 2014), highlighting the need 

for early identification and targeted intervention strategies. Early behavioral signs of ASD have 

been suggested (Barbaro and Dissanayake 2009) but these signs are typically observed in the 

social domain (Ozonoff et al. 2010) and are not always reliable enough to establish diagnosis 

(Pierce et al. 2019; Jarquin et al. 2011). Therefore, it is imperative to identify early biomarkers, 

particularly those based on brain functioning, to facilitate early intervention and improve 

outcomes for individuals with ASD.  

Neuroimaging techniques, such as magnetic resonance imaging (MRI), provide valuable 

insights into the neurobiology of ASD and potential brain biomarkers underlying overt 

behavioral symptoms in ASD. In particular, functional MRI (fMRI) methods, including resting-

state functional MRI (rsfMRI), have been used to reveal alterations in brain regions associated 

with children and adults with ASD compared with neurotypical peers (Lucina Q. Uddin, 

Supekar, and Menon 2013; Neufeld et al. 2017; K. Supekar et al. 2013). RsfMRI captures the 

intrinsic functional architecture of the brain based on the spontaneous low frequency fluctuations 

of the BOLD signal (Biswal et al. 1995; Lee, Smyser, and Shimony 2013). RsfMRI and sleep 

fMRI paradigms have revolutionized clinical research (Yang, Dong, and Lei 2021; Pierce 2011) 

by providing a way to study populations that would not otherwise be able to be studied under 

typical task conditions or without anesthesia. RsfMRI studies also reveal intrinsic connectivity 
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patterns that correlate with behavior and cognition in individuals with and without ASD 

(“Indices of Repetitive Behaviour Are Correlated with Patterns of Intrinsic Functional 

Connectivity in Youth with Autism Spectrum Disorder” 2018; Easson, Fatima, and McIntosh 

2019; K. Supekar et al. 2013). The promise of rsfMRI and sleep-based paradigms provide novel 

ways to investigate early brain development and understand the neural development underlying 

autism.  

Emerging evidence from sleep fMRI studies of toddlers suggests that alterations in brain 

connectivity may serve as early markers for ASD. Structural connectivity, assessed through 

diffusion tensor imaging and MRI scans, has revealed aberrant white matter tract microstructure 

and network inefficiencies in high-risk infants as young as 6 weeks to 6 months, which predict 

later language development and autism symptoms (Wolff et al. 2012; Elison et al. 2014). 

Furthermore, functional connectivity studies using rsfMRI have identified potential risk markers 

in infants with a family history of ASD as young as 6 months of age (Hazlett et al. 2017; I. 

Molnar-Szakacs, Kupis, and Uddin 2021). Early brain connectivity differences in autism also 

reveal promising early biomarkers underlying emerging behavior. However, most studies have 

focused on social communication skills (Hazlett et al. 2017; I. Molnar-Szakacs, Kupis, and 

Uddin 2021; Lombardo et al. 2015). These findings provide valuable promise of fMRI as a 

biomarker for later developing ASD and behaviors. However, previous studies have primarily 

focused on static functional connectivity or structural MRI biomarkers, neglecting the dynamic 

nature of brain activity in ASD toddlers and the core behavioral deficit of RRBs. 
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Recent advances in dynamic functional connectivity analysis have demonstrated the 

temporal variability of brain networks, offering a more nuanced understanding of brain-behavior 

relationships (Hutchison et al. 2013; Braun et al. 2015). Brain dynamics capture moment-by-

moment changes in brain network configurations related to changes in cognition or behavior 

(Braun et al. 2015; Gu et al. 2020; “Brain Mechanisms Supporting Flexible Cognition and 

Behavior in Adolescents With Autism Spectrum Disorder” 2021). Dynamic methods such as 

dynamic functional connectivity (DFC; e.g., sliding window) (Chang and Glover 2010) and co-

activation pattern analysis (CAP) (X. Liu and Duyn 2013) are popularly used to quantify brain 

dynamics (Lurie et al. 2020). Brain connectivity dynamics also help explain differences in 

clinical populations and behavior (Kupis, Romero, Dirks, Hoang, Parladé, et al. 2020; Kupis, 

Goodman, Kircher, et al. 2021; Damaraju et al. 2014; Nomi et al. 2017; Matthew Hutchison and 

Bruce Morton 2015). Previous work has shown brain connectivity dynamics based on sliding 

window and CAP analyses may help explain cognitive and behavioral inflexibility associated 

with RRBs across the lifespan (Kupis, Goodman, Kornfeld, et al. 2021) and in 7-12 year old 

children with ASD (Kupis, Romero, Dirks, Hoang, Parladé, et al. 2020; Kupis, Goodman, 

Kircher, et al. 2021; Marshall et al. 2020b). Further, children with ASD show atypical brain 

dynamic patterns during both task performance and resting-states (Kupis, Romero, Dirks, Hoang, 

Parladé, et al. 2020; Marshall et al. 2020b). Despite the promise of dynamic fMRI methods, there 

is little work done utilizing resting-state dynamics as biomarkers for early signs of ASD and 

RRBs in toddlers.  
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Brain network dynamic methods have also revealed promising biomarkers underlying 

autism and later developing behavior difficulties. For instance, previous research has 

demonstrated associations between the severity of RRBs and brain connectivity dynamics among 

three core neural networks in older children with ASD (“Brain Mechanisms Supporting Flexible 

Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 2021), notably the 

salience (SN), default mode (DMN), and central executive networks (CEN). These networks, 

originally proposed within the influential "triple network model," have been extensively cited in 

the literature and consistently linked to psychiatric conditions such as autism (Vinod Menon 

2011). Previous studies have indicated associations between the severity of RRBs and 

connectivity among these large-scale brain networks in older children with ASD (Traynor and 

Hall 2015b; Lucina Q. Uddin et al. 2015b, 2013b). Network dynamics and time-varying 

interactions of these three large-scale networks are additionally associated with cognitive and 

behavioral flexibility (Marshall et al. 2020b; Kupis, Romero, Dirks, Hoang, Parladé, et al. 2020; 

Lucina Q. Uddin et al. 2015b). Therefore, it is critical to investigate the time-varying interactions 

of the SN, CEN, and DMN in toddlers prior to the diagnosis of ASD and their relationship with 

early-life RRBs. 

Our proposed research aims to utilize novel brain dynamic approaches to identify early 

biomarkers associated with ASD and RRB outcomes independent of diagnosis. Building upon 

previous work, which has elucidated brain connectivity dynamics in older children with ASD 

(“Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With Autism 

Spectrum Disorder” 2021) using both CAP and dFC methods, we seek to extend these findings 
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to toddlers, a critical developmental period characterized by rapid brain maturation and plasticity 

(Gilmore, Santelli, and Gao 2018). By investigating the dynamic interactions among large-scale 

brain networks, including the SN, CEN, and DMN, we aim to uncover neural substrates 

underlying RRBs and cognitive inflexibility in toddlers with and without ASD. Both CAPs and 

dFC methods will be utilized in the current study since both methods are popularly used in 

children and adult studies of ASD, and both methods differ methodologically and therefore may 

reveal different aspects of brain dynamics. This study will not only advance our understanding of 

the neurobiological underpinnings of ASD but also inform the development of targeted 

interventions aimed at mitigating RRBs and improving long-term outcomes for affected 

individuals. 

METHODS 

Participants 

Toddlers were recruited through community referral and a population-based screening 

method in collaboration with pediatricians via the Get SET Early Approach (Pierce et al. 2021). 

All toddlers participated in clinical assessments, including the Autism Diagnostic Observation 

Schedule (ADOS) (Lord et al. 2000), Mullen Scales of Early Learning (Mullen 1995) and 

Vineland Adaptive Behavior Scales (Sparrow 2005). Toddlers who received their initial 

diagnostic and clinical evaluations at <36 months were invited to return for repeat evaluations 

until they reached 48 months. Clinical scores at the most recent visit were used to determine the 

diagnosis group (Table 1). Clinical testing occurred at the University of California, San Diego 

Autism Center of Excellence.  
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Clinical scores and fMRI scans were collected from 75 toddlers (48 with ASD, 27 Non-

ASD; 52 male, 23 female, 14–55 months old). Resting-state fMRI data were collected from all 

75 subjects during natural sleep and most scans were completed before the final diagnosis (<33 

mos; mean = 26.56 mos). Participants were considered non-ASD if their diagnosis at the 

outcome visit was non-ASD and their Mullen Early Learning Composite score fell within 2 

standard deviations of the mean score (i.e., > 70). This allowed for the examination of brain 

dynamics along a continuum of RRB and cognitive abilities from below to above average in non-

ASD children as supported by RDOC (Cuthbert 2022) and previously done using this sample 

(Xiao et al. 2023). Further details of the methods can be found in our previous study (Xiao et al. 

2023). 

Table 1 

 ASD (N = 48) 
M (SD) 

Non-ASD (N = 27) 
M (SD) 

p-value 

Age at scan 29 mos (16-55 mos) 25.52 (14-46 mos) .12 

Sex 37 M 11 F 15 M 12 F .05 

Ethnicity 22 Hispanic or Latino  8 Hispanic or Latino .17 

Race 30 White; 5 Asian; 1 
Black; 5 more than 1 
race; 7 N/A 

22 White; 1 American 
Indian; 1 Black; 2 More 
than 1 race; 1 unknown  

.17 

ADOS-RRB 4.83 (2.59) 1.67 (2.61) .22 
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Vineland Adaptive 
Behavior 

82.9 (12.47) 97.04 (12.33) .29 

Mullen 68.44 (26.29) 97.15 (25.56) .03 

Mean FD .08 (.05) .09 (.05) .24 

 

Sleep fMRI 

Toddler scans were conducted during natural sleep, a method that has been previously 

used to study both toddlers with and without ASD (Pierce 2011). To ensure optimal conditions 

for sleep fMRI, parents were instructed to eliminate naps from their child's routine on the day of 

the scan and to keep the child awake at home until arriving at the scanning facility, 

approximately 1 hour past their usual bedtime. Toddlers were placed on the scanner bed 

approximately 20 minutes after the onset of sleep to standardize sleep stages during scanning. 

Previous studies have demonstrated that successful sleep fMRI acquisition predominantly occurs 

during non-REM stage 3 sleep (Mitra et al. 2017), thereby promoting uniformity in sleep state 

among scans that were successfully obtained. Studies have also explored brain dynamics during 

sleep and reveal that brain dynamics and brain states can be characterized during sleep (Rué-

Queralt et al. 2021; “Connectivity Dynamics from Wakefulness to Sleep” 2020; Stevner et al. 

2019) and stage 3 sleep state dynamics is distinguishable from head motion (“Connectivity 

Dynamics from Wakefulness to Sleep” 2020).  

Behavior Measures 

ADOS RRB 
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All participants underwent the ADOS, a semi-structured observational tool used by 

trained clinicians to score autism symptoms in two domains: social affective and restrictive, 

repetitive, behavior (RRB) (Lord et al. 2012). The RRB subdomain scores unstructured instances 

of restricted interests and repetitive, stereotyped behaviors. We hypothesized that early brain 

dynamics would correlate with ADOS RRBs across all participants.  

Vineland Adaptive Behavior  

The Vineland Adaptive Behavior Scales (VABS) is a parent-report measure of adaptive 

behavioral skills in children (Sparrow, Cicchetti, and Balla 2012). The VABS assesses adaptive 

behavior in domains of communication, daily living skills, and socialization. The subdomains are 

combined to form a composite score of adaptive functioning. The adaptive behavior composite 

score in the VABS has been found to negatively correlate with RRBs such that lower adaptive 

functioning is associated with more severe RRBs (Cuccaro et al. 2003). The VABS composite 

score will be used as a dimensional index of behavioral flexibility.  

fMRI Data Acquisition 

All fMRI data were acquired using a 3 T GE scanner at the University of California, San 

Diego Center for Functional MRI. Functional images were obtained using a multi-echo echo 

planar imaging protocol with four echo times (TEs) of 15 ms, 28 ms, 42 ms, and 56 ms, a 

repetition time (TR) of 2,500 ms, a flip angle of 78°, a matrix size of 64 × 64, a slice thickness of 

4 mm, and a field of view of 256 mm, covering 34 slices. Additionally, structural images were 

acquired using a T1-weighted 3D magnetization-prepared rapid gradient-echo sequence with a 

field of view of 256 mm, TE of 3.172 ms, TR of 8.142 ms, and a flip angle of 12°. 
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Imaging Data Preprocessing 

Functional data underwent preprocessing using the multi-echo independent component 

analysis pipeline 'meica.py' implemented in AFNI and Python. Prior to preprocessing, the first 

four volumes of each run were discarded to ensure steady-state magnetization and ME-ICA 

denoising was completed. To denoise the data, principal and independent component analyses 

were used to separate BOLD and non-BOLD signals. Only BOLD-like components were 

retained after denoising and the time series of the four TEs were combined into a single time 

series. Preprocessing steps included motion correction, followed by slice timing correction and 

normalization to an age-matched toddler template (e.g., 2-year-old template) (Shi et al. 2011) as 

a majority of participants were around this age (mean age: 2.21 years), and smoothing. Head 

motion was assessed using framewise displacement (FD), with minimal motion observed in 

sleeping toddlers (mean FD <0.3 mm). No significant differences in head motion were observed 

between ASD and non-ASD groups. 

Brain Dynamics 

Post-ICA fMRI processing 

The resting state data from all 75 toddlers were subjected to a high model order ICA by 

using the Group ICA of fMRI Toolbox (GIFT) (https://trendscenter.org/software/gift/). A model 

order of 30 independent components (ICs) was used as it is recommended in toddlers based on 

previous work (Ma, Wu, and Shi 2020). To ensure the stability of this estimation, the ICA 

algorithm was repeated 20 times using ICASSO (http://www.cis.hut.fi/projects/ica/icasso). The 

30 components were visually inspected and classified as noise or non noise. The components 
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related to movement or white matter were removed from the analysis. The remaining 27 

components were grouped into 7 functional networks based on a parcellation (Schaefer et al. 

2018) (Figure 1). Then the SN, DMN, and CEN components were examined independently as 

part of a triple network approach as these networks are commonly indicated to be altered in 

ASD. A 284 volume × 27 ICs matrix containing the time series for each subject was post-

processed using Matlab code from the GIFT toolbox. Post-processing included covariate 

regression of white matter, CSF, and Friston 24 head motion parameters, linear detrending, 

despiking (using AFNI’s 3D despike), and bandpass filtering (0.01–0.1 Hz) (Allen et al., 2014). 

Global signal regression was not used in this study after the evaluation of the resulting matrices 

with and without global signal and based on methods in previous studies in this population 

(Marshall et al. 2020b).  

Co-Activation Pattern Analysis 

The individual matrices of the non-noise components were concatenated into a single 

group matrix comprising all subjects (21,300 TR (284 volume × 75 subjects) × 27 non-noise ICs) 

and subjected to k-means clustering. Various k values (2–20) were tested, and the optimal value 

of k = 5 was determined using the elbow criterion, which applies a least-squares fit line to the 

cluster validity index (ratio of within-cluster to between-cluster differences). Utilizing squared 

Euclidean distance to cluster the patterns, a Co-activation Pattern (CAP) analysis was conducted 

with the optimal value of k = 5 on the group matrix. ASD and non ASD participants were 

combined into one group for the CAP analysis based on previous findings indicating no group 

differences between CAPs when groups are separated (Kupis et al., 2020; Marshall et al., 2020).  
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Dynamic metrics were then calculated for each subject. The CAP metric of Dwell Time 

(DT) was calculated as the average number of TRs that a participant continuously remained in a 

given brain state. DT measures the average number of unchanged TRs between the state and the 

subsequent TR. Additionally, the frequency of occurrence of brain states was calculated as a 

percentage over time that the states were observed. Lastly, the number of transitions, 

representing switches between brain states, was calculated. DT, frequency of occurrence, and the 

number of transitions were computed for each participant and compared between groups, and 

further associated with cognitive flexibility measures (RRB, Vineland). 

Sliding Window Dynamic Functional Network Connectivity 

 Dynamic functional network connectivity (dFNC) between all non-noise independent 

components (ICs) was computed using the GIFT dynamic-functional network connectivity (d-

FNC) toolbox. This toolbox employs a sliding-window analysis to compute dynamic functional 

connectivity, where correlations between ICs are calculated within time-specified windows 

across the rsfMRI scan. Given our data sets repetition time (TR) of 2.5 seconds, we opted for 

sliding windows spanning 30 volumes. This resulted in 284 windows per subject. As part of 

calculating the window and correlation matrices, the d-FNC toolbox applies a 3-sigma Gaussian 

curve to smooth transitions between windows are the resulting windowed correlation matrices 

were regularized using the graphical LASSO method (Varoquaux et al. 2010) to minimize 

within-window noise. The graphical LASSO method estimates functional connectivity by 

applying L1 regularization to the inverse covariance matrix, improving model performance and 

promoting sparsity (Allen et al. 2014). All the dynamic functional networks across all subjects 
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were used to estimate the FC states using a k-means clustering analysis. This was repeated 100 

times to cluster the dynamic FC windows. A Euclidean distance was used to group similar FC 

matrices of the different windows and elbow criterion was used to estimate the number of 

clusters, which was 5 states. The Pearson correlation coefficient was used for the clustering 

analysis.  

Statistics  

Group Differences 

For both the CAP and dFNC analyses, between group differences (ASD vs. non ASD) 

were assessed using multiple regression controlling for age and head motion for each of the brain 

dynamic metrics (DT, frequency, and transitions for CAPS, and DT for DFC).  

Brain-Behavior Relationships 

For the CAP analysis, the relationship between the dynamic metrics (DT, frequency, and 

transitions) and behavior (RRBs, and Vineland Adaptive Scale) was assessed using multiple 

regressions controlling for age and head motion. For the DFC analyses, the relationship between 

DT and behavior (RRBs, and Vineland Adaptive scale) was assessed using multiple regressions 

controlling for age and head motion. All analyses were completed using R studio 

(www.rstudio.com).  

RESULTS 

CAPS 

 ICA 
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 Out of 30 ICs that were estimated, three were classified as noise. The remaining 

components were then grouped into brain networks including visual, somatomotor, salience, 

dorsal attention, central executive, default mode, and subcortical regions (Figure 1A).  

Figure 1 

 

Figure 1. (A) Organization of ICA components into functional networks. (B) Triple network 

analysis of the salience, default mode, and central executive networks. CEN, central executive 

network.  

Figure 2 
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Figure 2. Whole brain and triple network co-activation patterns (CAPs)/Brain states. SN, 

salience network; DMN, default mode network; CEN, central executive network; DAN, dorsal 

attention network; SomMot, somato motor network; Sub, subcortical.  

Whole Brain 

There was an optimal k of 5 clusters across all toddlers. A) CAP 1 was characterized by 

greater SN and DMN co-activation. CAP 2 was characterized by greater CEN, DAN, DMN, 

visual, and subcortical network co-activation. CAP 3 was characterized by greater DMN, CEN; 

and visual co-activation, and SN, DMN, and CEN de-activation. CAP 4 was characterized by 

greater SN, DMN, and CEN co-activation. CAP 5 was characterized by greater DMN activation; 

and SN and DMN de-activation. There was a significant group difference in CAP 4 dwell time (p 

= .04) when controlling for age and head motion. There were no other significant group 

differences in the whole-brain CAPs (p’s > .05) (Figure 3; Table 2).  

Figure 3 



 
 

 

 76 

 

Figure 3. Between Group Differences. There was a significant group difference in the dwell time 

(DT) of state 4 between ASD and non-ASD groups such that ASD groups dwelled longer in this 

state. State 4 consisted of greater SN, CEN, and DMN co-activation.  

Table 2 

 Dynamic Metric ASD (N = 48) 
M (SD) 

Non ASD (N = 
27) 
M (SD) 

p-value 

 
CAP 1 

DT 2.55 (.38) 2.86 (.53) .86 

Frequency .19 (.04) .19 (.04) .80 

 DT 2.52 (.45) 2.88 (.40) .32 
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CAP 2 Frequency .17 (.04) .21 (.03) .35 

 
CAP 3 

DT 2.62 (.45) 2.82 (.53) .36 

Frequency .24 (.03) .18 (.04) .74 

 
CAP 4 

DT 2.52 (.51) 2.52 (.37) .04* 

Frequency .20 (.04) .19 (.03) .20 

 
CAP 5 

DT 2.33 (.34) 2.80 (.45) .61 

Frequency .20 (.03) .23 (.05) .78 

 

Triple-Network Approach 

Next, a triple network analysis of the salience, default mode, and central executive 

network dynamics across 5 brain states was examined. CAP 1 was characterized by greater SN, 

DMN, and CEN co-activation and DMN de-activation. CAP 2 had no strong co-activations. 

CAP 3 consisted of a greater DMN co-activation, and SN and CEN de-activation. CAP 4 

consisted of greater DMN co-activation, and SN, DMN, and CEN de-activation. CAP 5 

consisted of a greater SN and CEN co-activation, and DMN de-activation (Figure 2B). There 

were no significant group differences between the groups in the ROI CAP analyses (p’s > .05) 

(Table 3).   

Table 3 
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 Dynamic Metric ASD (N = 48) 
M (SD) 

Non-ASD (N = 
27) 
M (SD) 

p-value 

 
CAP 1 

DT 2.93 (.50) 2.79 (.51) .19 

Frequency .19 (.04) .19 (.04) .99 

 
CAP 2 

DT 2.38 (.36) 2.32 (.35) .62 

Frequency .20 (.04) .19 (.04) .31 

 
CAP 3 

DT 2.78 (.45) 2.66 (.45) .32 

Frequency .23 (.04) .22 (.04) .68 

 
CAP 4 

DT 3.00 (.60) 2.90 (.62) .36 

Frequency .19 (.04) .19 (.04) .74 

 
CAP 5 

DT 2.75 (.42) 2.79 (.39) .41 

Frequency .20 (.04) .21 (.04) .07 

 

CAPS Brain Behavior 
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 A dimensional analysis across both diagnostic groups was conducted to evaluate 

relationships between brain dynamics (dwell time, frequency, transitions) and RRBs and 

adaptive behaviors.  

Whole Brain 

First, the model was conducted using dynamics across the whole brain CAPs. A 

dimensional brain-behavior regression model revealed a significant relationship between the 

frequency of CAP 5 and ADOS RRB (p = .038) when controlling for age and head motion. 

There was also a significant relationship between the frequency of CAP 2 and the Vineland 

Adaptive Behavior measure (p = .048). There were no other significant brain-behavior 

relationships in the whole brain CAP dynamics with behavioral measures (p>.05).  

Triple Network Analysis 

Next, the regression model was conducted using the triple network CAP dynamics (SN, 

DMN, CEN) and their relationship with RRBs and adaptive behavior. Brain-behavior 

relationships were observed between the DT of CAP 1 and the ADOS RRB measure (p = .034), 

and the frequency of CAP 5 and the ADOS RRB measure (p = .024). Brain-behavior 

relationships were also observed between the DT of CAP 1 and the Vineland Adaptive Behavior 

measure (p = .046), and the frequency of CAP 5 and the Vineland Adaptive Behavior measure (p 

< .001). All significant results are summarized in Table 4 and Figure 4.  

Table 4. Summary of the regression analysis of CAP Brain States dynamic metrics and behavior 

measures. To simplify the presentation, we present only the variables of interest and not the 

covariates, and only significant findings.  
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 b SE t   p 

CAP State 4 DT and Diagnosis  

 -.18 .09 -2.09 .041 

CAP State 5 Frequency and RRB  

 -.004 .002 -2.11 .038 

CAP State 2 Frequency and 
Vineland Adaptive Behavior  

 .001 .0003 2.01 .048 

ROI CAP State 1 DT and RRB 

 .05 .02 2.17 .034 

ROI CAP State 5 Frequency and RRB 

 -.004 .002 -2.30 .024 

ROI CAP State 1 DT and Vineland 
Adaptive Behavior 

 -.01 .005 -2.03 .046 

ROI CAP State 5 Frequency and Vineland 
Adaptive Behavior 

 .001 .0005 3.66 .0005 

  
* Uncorrected p values < .05 
** Uncorrected p values < .01 
*** Uncorrected p values < .001 
ROI, region of interest 

 

Figure 4 
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Figure 4. A) Greater frequency of the whole brain state consisting of greater CEN, DAN, DMN, 

visual, and subcortical network co-activation was associated with greater adaptive behaviors. 

Conversely, in B), greater frequency of the whole brain state consisting of greater DMN 

activation; and SN and DMN de-activation was associated with poorer restricted repetitive 

behaviors (RRBs). In the region of interest (ROI) or triple network states, C), greater dwell time 

of a state consisting of greater SN, DMN, and CEN co-activation and DMN de-activation was 

associated with poorer RRBs and D) poorer adaptive behaviors. Next, the greater frequency of a 

state consisting of greater SN and CEN co-activation, and DMN de-activation was associated 

with E) fewer RRBs, and F) greater adaptive behaviors.  

Figure 5   

Dynamic Functional Connectivity (dFC) 

ICA 
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 The same ICA process for DFC was conducted for DFC using the GIFT toolbox and as 

described above.  

DFC States 

Following the elbow criterion, the whole sample showed 5 different states (see Figure 6). 

State 1 (14% of the windows) was characterized by strong connectivity between visual and 

subcortical networks and slightly elevated connectivity with the salience network. State 2 (22% 

of the windows) was characterized by strong connectivity between the subcortical, salience, and 

a few regions in the visual networks. State 3 (9% of the windows), was characterized by strong 

connectivity amongst the visual, somato motor, subcortical, DMN, and salience networks. State 

4 (34% of the windows) was characterized by strong connectivity within the subcortical network, 

and weak connectivity between the DAN and DMN. State 5 (22% of the windows), was 

characterized by strong connectivity within visual and subcortical networks, and weak 

connectivity between the DAN and DMN.  

Figure 5 
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Figure Legend: Dynamic functional network connectivity (dFNC) matrices for all subjects and 

5 states. The value in each cell in the FC is the Pearson correlation coefficient between two brain 

regions. The color bar represents the strength of the FC between two nodes (warm color, positive 

FC; cool color, negative FC). SomMot, somatomotor; DAN, dorsal attention network; DMN, 

default mode network; CEN, central executive network.  

Group 

There were no significant group differences in the dynamic brain state dwell times when 

controlling for age and head motion (p’s > .05).  

Table 5 
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 ASD (N = 48) 
M (SD) 

TD (N = 27) 
M (range) 

p-value 

CAP 1 DT 16.65 (24.89) 20.39 (25.46) .76 

CAP 2 DT 18.15 (18.08) 22.35 (18.31) .24 

CAP 3 DT 12.07 (30.79) 15.72 (31.74) .83 

CAP 4 DT 28.60 (37.62) 38.85 (37.58) .77 

CAP 5 DT 35.77 (50.20) 10.40 (51.74) .08 

 

Brain Behavior 

 A dimensional multiple regression analysis between the dynamic FC dwell times and 

behavior measures while controlling for age and head motion revealed significant relationships 

between State 4 DT and Vineland adaptive behavior (p = .049), and State 5 DT and ADOS RRB 

(p =.034). These results are after the removal of outliers. There were no other significant brain-

behavior relationships (p’s > .05).  

Table 6. Summary of the regression analysis of DFC dynamic metrics and behavior measures. 

To simplify the presentation, we present only the variables of interest and not the covariates, and 

significant findings.  

 b SE t   p 
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DFC State 4 DT and Vineland 
Adaptive Behavior  

 .56 .27 2.00 .049* 

DFC State 5 DT and RRB  

 2.27 1.05 2.17 .034* 

  
* Uncorrected p values < .05 
 
Figure 6 

 

Figure 6. A) Greater dwell time of a state consisting of strong connectivity with the subcortical, 

somato motor, and visual network nodes, and negative connectivity between the DAN and DMN 

was associated with greater adaptive behaviors. B) Greater dwell time of a state consisting of 

strong connectivity between visual and subcortical networks, and weak connectivity between the 

DAN and DMN was associated with poorer restricted and repetitive behaviors (RRBs).  

DISCUSSION 
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The current study sought to identify early brain biomarkers for autism spectrum disorder 

(ASD) in toddlers prior to their diagnosis of ASD and identify brain-behavior relationships in 

toddlers who went on to receive an ASD and non-ASD diagnosis. The current study used a data-

driven, ICA approach, and investigated brain dynamics using two methods: co-activation pattern 

analysis (CAP) and dynamic functional connectivity (DFC). While investigating both ASD and 

non-ASD toddlers, we observed that toddlers who went on to receive an ASD diagnosis dwelled 

longer in a brain state characterized by salience network (SN), central executive network (CEN), 

and default mode network (DMN) co-activation compared to non-ASD toddlers. Additionally, 

across both diagnostic groups, early brain dynamics in states associated with the core neural 

networks (DMN, SN, CEN) were associated with restricted and repetitive behaviors (RRBs) and 

behavioral flexibility.  

 First we found that ASD toddlers dwelled longer in a state consisting of co-activations of 

SN, CEN, and DMN (state 4) compared with non-ASD toddlers. Many psychiatric conditions 

including ASD are often characterized by dysfunction among these three neural networks (SN, 

CEN, DMN) (Jones et al. 2023; B. Menon 2019; Vinod Menon 2011). This finding is supported 

by the triple network theory that proposes the interactions among the SN, CEN, and DMN are 

important for mental health and underlies the dysfunction observed in ASD (Vinod Menon 

2011). Separately the networks hold important roles for cognition. The CEN is thought to be 

involved in cognitive decisions and tasks (e.g., executive function) and associated with flexible 

cognition (Marek and Dosenbach 2018); The DMN is thought to be involved in internal 

processes and social cognition such as theory of mind (Raichle 2015); The SN, is thought to 
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monitor salient information internally or in the environment and coordinate switching between 

the CEN and DMN for either task based (CEN) or internally focused (DMN) states (V. Menon 

2015b; Chand et al. 2017). The triple network model suggests that the interactions among the 

SN, CEN, and DMN are critical to overall cognitive function. However, in ASD and many 

psychiatric conditions, the switching between these neural networks underlying cognition 

appears to be dysfunctional (B. Menon 2019). Previous work has found under and over 

connectivity of these three neural networks in ASD (K. Wang, Li, and Niu 2021; L. Wang et al. 

2024; Hull et al. 2016; Lucina Q. Uddin, Supekar, and Menon 2013). Dysfunction within and 

among these three networks may result in network isolation especially during task states, limiting 

dynamic interactions between networks important for flexible cognition and behaviors (Cole et 

al. 2014). Altered connectivity within these networks have also been linked with and predictive 

of behavioral difficulties such as social communication deficits, RRBs, and adaptive behavior 

skills (McKinnon et al. 2019; Kaustubh Supekar et al. 2021; Plitt et al. 2015; Abbott et al. 2016). 

Dysfunction of these neural networks appear to underlie many of the symptoms observed in ASD 

and may underlie our finding of there being a greater dwell time of a state consisting of co-

activation of all three neural networks in ASD toddlers. Additionally, dynamic connectivity 

patterns in brain states and among the SN, CEN, and DMN are altered in ASD individuals 

compared with non-ASD individuals (Marshall et al. 2020b; Kupis, Romero, Dirks, Hoang, 

Parladé, et al. 2020; Kupis, Goodman, Kircher, et al. 2021; Yue et al. 2022). ASD individuals 

have been found to dwell longer and transition less between states (Yao et al. 2016; Watanabe 

and Rees 2017; de Lacy et al. 2017; “Brain Mechanisms Supporting Flexible Cognition and 
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Behavior in Adolescents With Autism Spectrum Disorder” 2021), and spend more time in states 

with altered patterns such as abnormal patterns of increased DMN activation (Harlalka et al. 

2019; Yue et al. 2022), as similarly found in this study. There is also some evidence of early 

functional connectivity dysfunction within these networks in high risk or later developing autistic 

infants and toddlers (McKinnon et al. 2019; Tsang et al. 2024). As these three neural networks 

are found to develop across the third trimester of gestation and the first postnatal month 

(Scheinost et al. 2022), it makes it even more important to further investigate in autism at these 

early stages.  

 Across all participants, we found states with primarily CEN and SN co-activation and 

DMN de-activation were associated with greater adaptive behaviors and fewer RRBs; conversely 

states with greater DMN co-activation were associated with poorer RRBs and adaptive 

behaviors. These findings are consistent with previous studies and relationships between brain 

and behavior findings (Sridharan, Levitin, and Menon 2008). Both the SN and CEN are often 

associated with cognitive processes (Sridharan, Levitin, and Menon 2008; Vinod Menon and 

D’Esposito 2022; Aron 2007; Dreher and Berman 2002; Bressler and Menon 2010; Shaw et al. 

2021) and have been associated with RRBs and adaptive behavior in previous studies with and 

without ASD participants (Lucina Q. Uddin et al. 2013b; Kupis, Romero, Dirks, Hoang, Parladé, 

et al. 2020; Kupis, Goodman, Kornfeld, et al. 2021; He et al. 2018; Harlalka et al. 2019; P. Lin et 

al. 2016; “Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With 

Autism Spectrum Disorder” 2021). Additionally, atypical brain network dynamics have been 

shown to underlie ASD and contribute to individuals’ cognitive and behavioral inflexibility  
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(Lucina Q. Uddin et al. 2015b; Marshall et al. 2020b; “Brain Mechanisms Supporting Flexible 

Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 2021). Proper 

functioning and switching between these three neural networks are broadly associated with 

healthy cognition (Chand et al. 2017). Dysfunction of the switching process, or disengagement of 

the CEN, SN, or DMN may contribute to cognitive and behavioral difficulties, and psychiatric 

conditions (Lucina Q. Uddin 2015; Kaustubh Supekar et al. 2019). In healthy populations, CEN 

and SN interactions in particular support positive cognitive control, behavioral and cognitive 

flexibility, and adaptive behaviors (Kupis, Goodman, Kornfeld, et al. 2021; Krönke et al. 2020; 

Cole et al. 2014). Greater DMN interactions with the SN typically support self referential 

processes (Gusnard et al. 2001), and when present during task states is usually associated with 

poorer task performance (Hutchison et al. 2013; V. Menon 2015a). Our finding of the increased 

state including DMN co-activation with the SN and CEN in toddlers who were later diagnosed 

with ASD compared with non-ASD toddlers may be an early sign of network dysfunction as 

observed in older children and individuals with ASD. Although brain network dynamics are not 

greatly studied in infants and toddlers at this time, there is promising work showing early brain 

alterations are predictive of later ASD diagnosis and cognitive and behavior functions (I. 

Molnar-Szakacs, Kupis, and Uddin 2021; Wolff, Jacob, and Elison 2018; Girault and Piven 

2020). Overall, our findings support the SN, CEN, and DMN as promising brain biomarkers for 

individuals at risk of ASD during young development and later emerging behavior difficulties 

associated with RRBs and behavioral flexibility.  
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In the dFNC method used (a sliding window approach), we found greater dwell time in a 

state consisting of weak overall connectivity and strong subcortical connectivity was associated 

with greater adaptive behavior; conversely greater dwell time in a state consisting of greater 

visual and subcortical connectivity was associated with poorer RRBs across all participants. In 

both cases, we found a weak (negative) connectivity between the DAN and DMN. Our findings 

are similar to findings in the literature using dFNC. For example, other studies have found DFC 

states predictive of symptom severity were mostly those associated with visual and sensorimotor 

regions (Harlalka et al. 2019; McKinnon et al. 2019). One of the earliest studies of FC and RRBs 

in toddlers at risk of ASD found abnormal brain network dynamics with the DMN, DAN and 

CEN were associated with RRBs and rigid behaviors (McKinnon et al. 2019). They found further 

evidence to support the hypothesis that inverse relationships between the DAN and DMN 

underlie healthy and adaptive behaviors. Here, we found weak FC between the DAN and DMN 

was associated with both positive and negative flexible behaviors. Our slightly different findings 

may be due to having a larger age range in our toddler sample, whereas the previous study 

separated toddlers by 12 mos and 24 mos of age. RRBs have also been previously linked to 

visual skills in ASD before and greater visual sensitivity has been correlated with more severe 

RRBs (W. Lin et al. 2023; Schulz and Stevenson 2020). Further studies have found RRBs may 

even be a response to sensory abnormalities (Gabriels et al. 2008) which supports the theory that 

early sensory abnormalities may be associated with long term dysfunction in higher order 

behaviors. Our finding of a longer dwell time in a visual/subcortical FC state associated with 

poorer RRBs further supports the idea of sensory abnormalities linked with later RRBs. One 
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study with some of the youngest infants at-risk for ASD (1.5 months and 9 months) found 

evidence of abnormal thalamus connectivity in at-risk infants, suggesting early subcortical, 

visual, and sensory abnormalities may cascade into later ASD symptoms and higher order issues 

(Wagner et al. 2023). Overall, our dFNC findings further support the ideas of early sensory 

connections underlie the development of later emerging RRBs and adaptive behaviors.  

 In this study, we utilized two methods to investigate early brain dynamics in toddlers 

with and without ASD. The dynamic functional network connectivity (dFNC; e.g., sliding 

window) (Chang and Glover 2010) and co-activation pattern analysis (CAP) (X. Liu and Duyn 

2013) methods were used and are both popularly used to quantify brain dynamics (Lurie et al. 

2020). Both DFC and CAP methods are similar in that they account for brain network changes 

across multiple time points throughout the scan, rather than averaging across the entire duration 

of the scan. DFNC, however, uses sliding windows, or 30-60 second windows that break up the 

time series. From there an average is taken from each window, thus arbitrarily collapsing the 

data into time. CAPs on the other hand, does not collapse the data into arbitrary window lengths 

and instead relies on all of the data and a data-driven approach to cluster the data into the brain 

states. These methodological differences, further depicted here, may account for the differences 

observed in the results between these two methods. In the whole-brain CAP analyses, we found 

most of the brain states contained a variety of co-activated brain regions including the SN, DMN, 

and CEN. Only CAP brain state 5 had weaker co-activations of brain regions. These findings are 

similar to other CAP studies (Marshall et al. 2020b; Kupis, Romero, Dirks, Hoang, Parladé, et al. 

2020; Kupis, Goodman, Kornfeld, et al. 2021). The dFNC states had similar connectivity 
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patterns including strong FC of the core neural networks as in the CAP states but had more states 

with a stronger visual network FC. Additionally, the dFNC results had states of widespread 

connectivity and low strength in connectivity. Interestingly, studies using dFNC methods 

typically report that ASD groups tend to spend more time in FC states characterized by weak or 

absent connectivity compared with healthy controls (Rabany et al. 2019; de Lacy et al. 2017; 

Rashid et al. 2018; Chen et al. 2017). Although we did not find a significant difference in dFNC 

states in ASD versus non-ASD groups, overall we found similar states to previous studies. In 

both methods, we did find brain-behavior relationships across diagnostic groups. Although we 

found differences in the dFNC and CAPs methods, both methods may be used to reveal 

interesting and nuanced insights into early brain development and brain-behavior relationships.   

 Limitations of this study include a limited sample size. Collecting sleep MRI scans poses 

a challenge as it is difficult to recruit families for night-time scans and there are difficulties with 

children remaining asleep during the scan duration. Additionally, there were too few 

neurotypical toddlers to create a diagnostic group based on that criteria. Therefore, the non-ASD 

group was based on the standardized scores to allow for more toddlers within the neurotypical 

range and to include more toddlers of varying levels as suggested by RDOC criteria. 

Additionally, sleep dynamics and dynamics in toddlers in general are a new field and more work 

is needed for this research. Additionally, further analyses need to be done with the dFNC method 

including a triple network approach, and investigating the results using more sliding window 

lengths (e.g., 30 sec, 60 sec, 45 sec) and a comparison of global signal regression on the dFNC 

results.  
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CHAPTER 5: 
 

CONCLUSION 
 

 Cognitive flexibility or the ability to mentally shift in response to change is a crucial 

ability for lifelong success. FMRI and brain network dynamics have been used to advance our 

understanding of the neural underpinnings of healthy and abnormal brain functioning and brain-

behavior relationships. Autism spectrum disorder (ASD) in particular is a heterogeneous 

condition with core difficulties with cognitive and behavioral flexibility. This dissertation 

advances our understanding of how brain network dynamics underlie healthy cognitive 

flexibility across the lifespan, development of cognitive inflexibility in autism spectrum disorder, 

and early predictors of autism and emerging cognitive and behavioral inflexibility. The 

identification of neural signatures underlying cognitive flexibility, biomarkers of ASD, and 

behavioral difficulties may help increase early diagnosis and intervention and ultimately improve 

life outcomes in typical and atypical populations.  

 In chapter 2, resting-state intrinsic brain network dynamics was examined across the 

lifespan in a healthy sample. Further, brain network dynamics were examined in relation to 

flexible cognition and behavior across the lifespan. By investigating the co-activation patterns of 

the salience (SN), default mode (DMN), and central executive (CEN) networks, we found brain 

dynamics of coupled states of these networks (e.g., SN co-activated with CEN) had U-shaped 

trajectories across the lifespan. Next, between-network dynamics of a state consisting of the 

CEN and DMN co-activation moderated the relationship between aging and cognitive flexibility. 

Additionally, brain state transitions also moderated the relationship between aging and cognitive 
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flexibility. This is one of the first studies to investigate brain network dynamic changes across 

the lifespan and the relationship between brain network flexibility and cognitive and behavioral 

flexibility. This study revealed the importance of discovering brain-biomarkers for preventative 

measures and intervention for later developing cognitive flexibility problems, and highlighted the 

dynamic interactions among the SN, DMN, and CEN as promising biomarkers for cognitive and 

behavioral flexibility across the lifespan.   

 Chapter 3 extended these findings by investigating brain network dynamics in children 

with and without autism spectrum disorder (ASD; ages 7-12 years) during task and rest fMRI 

states. This study used the same co-activation pattern analysis method and further investigated 

the SN, DMN, and CEN dynamic interactions during a flexibility task and during a resting-state 

MRI scan. ASD children had altered brain dynamics in later stages of the flexibility task. During 

the fourth run of the task, ASD children had a greater frequency of occurrence of a state with 

CEN, and dwelled less in a state with co-active SN and CEN. Across both groups, a greater 

DMN dwell time was associated with stronger social skills. These findings support the 

importance of the SN, CEN, and DMN in development, flexible cognition and behavior, and in 

ASD. Additionally, these findings suggest atypical between-network coordination may underlie 

neural compensation in children with ASD but may be exacerbated by long durations of a task. 

Additionally, DMN dynamics may be important for social cognition and dysfunction in both 

ASD and healthy development. Taken together, these brain network dynamic studies in a healthy 

lifespan sample and in youth with and without ASD indicate the importance of brain network 

interactions underlying brain development and flexible and inflexible cognition. These results 
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also highlight the importance of the core neural networks (SN, DMN, and CEN) in atypical and 

typical development and predicting brain-behaviors.  

 The study in chapter 4 then investigated early brain network dynamics in toddlers later 

diagnosed with and without ASD and their relationship to flexible behaviors including restricted 

and repetitive behaviors and adaptive behaviors. ASD toddlers dwelled longer in a state 

consisting of co-activation of all three neural networks (SN, CEN, and DMN) compared with 

non-ASD toddlers. Next, various brain states consisting of the core neural networks were 

associated with RRBs and adaptive behaviors across both ASD and non ASD toddlers. The 

findings extended the findings in the previous studies such that states with SN and CEN co-

activation were associated with positive flexible behaviors while states with DMN co-activation 

were associated with negative flexible behaviors. This is one of the first studies to investigate 

brain network dynamic interactions in toddlers with and without ASD, and how early brain 

network interactions may be predictive of later behaviors. This study is one of the first to show 

the importance of the core neural networks (SN, DMN, CEN) in early brain development and 

autism, and emerging behaviors.  

Limitations and Future Directions 

 All of the studies discussed included a novel brain dynamic method and a fMRI scan at a 

single time point for each participant. The novel brain dynamic methods, although informative, 

need to be further assessed methodologically. Additionally, there are always concerns with head 

motion with time-varying methods which also limits the sample and may pose as a confound. 

Future studies need to test the time-varying methods further especially in neurodiverse 
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populations where head motion is a greater concern. Additionally, longitudinal studies of brain 

development are needed to elucidate causal interactions between brain network dynamics and 

behavior along the lifespan. Repeat fMRI scans may be useful to elucidate early neural 

signatures of autism, critical time periods for behavior and development, and the extent that brain 

networks can alter and change across the lifespan. Another limitation was the inconsistency of 

the timing of the fMRI scans especially in the toddlers investigated. Studies have begun to 

investigate and observe brain differences in those later diagnosed with autism as early as 6 

weeks. Future work ideally would scan infants and toddlers at the same time points and 

repeatedly throughout the first three years of life. As the brain develops rapidly in the first years 

of life, consistent, repeat scans would potentially elucidate the neural mechanisms underlying 

autism and better identify early biomarkers for later developing autism and behavior outcomes. 

Another limitation of the studies was sample size making the studies not as generalizable to the 

population. Head motion and completion of the fMRI scan poses a challenge when scanning 

children and neurodiverse populations. It will be important for future studies to consider novel 

methods and strategies to include participants of varying abilities and across the lifespan.  

Concluding Remarks  

 The ability to flexibly respond to a constantly changing environment is paramount to 

survival and positive life outcomes. Understanding the brain network dynamics underlying 

cognitive and behavioral flexibility and inflexibility is important to inform development and 

aging in typical and atypical populations. This thesis used functional magnetic resonance 

imaging and time-varying methods to investigate how three core neural networks dynamically 
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interact across the lifespan, and how they support cognitive flexibility during sleep, rest, and task 

states, and how they are altered in autism spectrum disorder during the first years of life. We 

found brain network interactions among the salience network (SN), default mode network 

(DMN), and central executive networks (CEN) supported cognitive flexibility across the 

lifespan, and are altered in children with autism, and in toddlers later diagnosed with autism 

compared with neurotypical toddlers. This dissertation lays the groundwork for further 

investigating the SN, DMN, and CEN dynamic interactions as a biomarker for autism spectrum 

disorder and underlying cognitive flexibility across the lifespan. The work in this dissertation 

also supports the development of targeted individualized treatments to improve the outcomes for 

those diagnosed with autism and those who face difficulties with cognitive and behavioral 

flexibility.  

 

 

 

 




