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ABSTRACT OF THE DISSERTATION

Brain Dynamics Underlying Cognitive Flexibility in

Typical and Atypical Development

by

Lauren Breanna Kupis
Doctor of Philosophy in Neuroscience
University of California, Los Angeles 2024

Professor Lucina Qazi Uddin, Chair

Cognitive and behavioral flexibility necessitate mental and behavioral changes in response
to changing environmental demands. Cognitive flexibility, or the mental ability to change from
one thought to another, supports positive life outcomes. Individuals diagnosed with autism
spectrum disorder (ASD) often face challenges with cognitive flexibility as exhibited by a core
symptom of restricted and repetitive interests and behaviors (RRBs) and having poor adaptive
behavior skills. ASD is rising each year, with one in 36 children diagnosed annually. Early
diagnosis and treatment are critical for improving life outcomes. This makes it even more
important to investigate the neural underpinnings of cognitive flexibility during early stages of
development and across the lifespan to improve treatments and interventions. This dissertation

seeks to understand the neural mechanisms underlying healthy cognitive flexibility development



and the cognitive inflexibility observed in ASD. Chapter 1 includes an introduction to the research
involved in the following chapters, and provides a review of cognitive flexibility and its neural
correlates in typical development and in ASD. Chapter 2 includes a study exploring brain dynamics
and cognitive flexibility across the lifespan in a neurotypical population. Using a co-activation
pattern analysis method to investigate brain dynamics, brain networks including the salience (SN),
default mode (DMN), and central executive networks (CEN) underlie changes in cognitive
flexibility across the lifespan. Chapter 3 then explores the neural correlates of shifting in children
with and without autism during a task and resting state fMRI. Results of this study further revealed
brain dynamics among the SN, DMN and CEN were involved in shifting abilities and
abnormalities in these dynamics may underlie differences observed in children with ASD. Chapter
4 then examines early brain dynamics in toddlers with and without ASD and their relationship with
flexible behaviors. Findings reveal differences in brain dynamics among the SN, DMN, and CEN
in toddlers later diagnosed with ASD compared with non-ASD toddlers. Additionally, brain
dynamics among the SN, DMN, and CEN were associated with RRBs and real-world measures of
flexible behaviors across all toddlers. Chapter 5 discusses the overall findings of this dissertation,
limitations, and future directions. Overall, these data indicate the importance of investigating brain
dynamics associated with cognitive flexibility across the lifespan. Further, it has potential
implications for autism research, implying that brain network dynamics may be an early indicator

for behavioral symptoms.
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Abstract

Cognitive flexibility, or the ability to mentally switch between tasks accord-
ing to changing environmental demands, supports optimal life outcomes,
making it an important executive function to study across development.
Here we review the literature examining the development of cognitive flex-
ibility, with an emphasis on studies using task-based functional magnetic
resonance imaging (fMRI). The neuroimaging literature suggests that key
brain regions important for cognitive flexibility include the inferior frontal
junction and regions within the midcingulo-insular network, including the
insular and dorsal anterior cingulate cortices. We further discuss challenges
surrounding studying cognitive flexibility during neurodevelopment, in-
cluding inconsistent terminology, the diversity of fMRI task paradigms,
difficulties with isolating cognitive flexibility from other executive functions,
and accounting for developmental changes in cognitive strategy. Future di-
rections include assessing how developmental changes in brain network
dynamics enable cognitive flexibility and examining potential modulators of
cognitive flexibility including physical activity and bilingualism.
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INTRODUCTION

What Is Cognitive Flexibility?

Cognitive flexibility is a core aspect of executive function that facilitates adaptive responses to
changing environmental demands throughout the life span (Dajani & Uddin 2015, Diamond
2013, Logue & Gould 2014). Examples of cognitive flexibility include the ability to think dif-
ferently about a situation and to quickly switch between tasks or strategies to solve a problem.
Being flexible ultimately aids creativity (Lu et al. 2017, 2019), problem-solving (Ionescu 2012),
learning (Kehagia et al. 2010), and resilience to negative life events (Genet & Siemer 2011). Cog-
nitive flexibility benefits adaptation via the ability to quickly transition between different activities
or change perspective, making it an important feature of daily functioning. Cognitive flexibility
is also associated with positive life outcomes including academic achievement, such as stronger
reading and math skills (Yeniad et al. 2013), and the successful transition into adulthood (Burt &
Paysnick 2012). Conversely, cognitive inflexibility may be a risk factor for repetitive or ruminative
thoughts (Deveney & Deldin 2006, Genet et al. 2013, Whitmer & Banich 2007), which underlie
psychological disorders including anxiety, depression, obsessive-compulsive disorder, and autism
spectrum disorder (Keenan et al. 2018, McDougle et al. 1995, van Steensel et al. 2011). Ultimately,
cognitive flexibility is important during childhood and adolescence because these developmental
periods are marked by learning, susceptibility to psychological disorders [e.g., anxiety and depres-
sion (Coté et al. 2009)], and increased risk for substance use initiation (Rose et al. 2019). In all
cases, cognitive flexibility may buffer against negative mental health or cognitive outcomes.
Although cognitive flexibility contributes to positive adaptation and learning across develop-
ment, the underlying brain regions supporting the developmental changes of cognitive flexibility
are not yet fully understood. Characterizing the brain regions involved in cognitive flexibility
across development may clarify the mechanisms underlying its age-related improvement. The
frontoparietal network (FPN) has been found to be important in the development of executive
function broadly and in adult levels of cognitive flexibility specifically (Dajani & Uddin 2015).

Kupis « Uddin



Additional work examining brain network dynamics in adults demonstrates that flexible inter-
actions among brain regions and neural networks may contribute to greater cognitive flexibility
(Nomi et al. 2017a). Findings from studies primarily conducted in adults reflect the neural pro-
cesses associated with peak cognitive flexibility. A small but growing body of neuroimaging work
focuses on the development of cognitive flexibility from childhood through adolescence into adult-
hood. Better understanding of the neural mechanisms underlying the development of cognitive
flexibility can lead to the creation of treatments for neurodevelopmental disorders, tailored class-
room curricula, and preventative targeted and individualized measures for psychological disorders
or substance misuse (Uddin 2021a). To identify gaps in the literature and guide future studies,
the current review synthesizes findings from neurodevelopmental functional magnetic resonance
imaging (fMRI) studies utilizing a range of cognitive flexibility tasks.

We begin with summarizing common issues that arise when studying cognitive flexibility:
(#) the multiplicity of terms used to describe cognitive flexibility, (b)) the variety of fMRI task
paradigms used to assess cognitive flexibility, (c) difficulties in isolating cognitive flexibility from
the other core executive functions (i.e., inhibition and working memory), and () accounting for
cognitive strategy differences with age and development. These challenges each have important
implications for the neuroimaging findings discussed in this review. We conclude the review of
neurodevelopmental literature on cognitive flexibility with a discussion of the limitations of these
studies and proposed future directions.

CONCEPTUAL MODELS OF COGNITIVE FLEXIBILITY
Terminology

A major challenge to studying cognitive flexibility in developmental fMRI studies is that a variety
of terminologies are used to describe the construct. Here, we outline terminology in the con-
text of task paradigms commonly used in developmental neuroimaging studies (Figure 1). This
overview is not meant to redefine cognitive flexibility but rather to illustrate the types of studies
that are referred to throughout the review. Cognitive flexibility was first considered to be the um-
brella term used to describe studies using set-shifting and task-switching tasks (Konishi et al. 1998,
Monsell 2003). Relatedly, cognitive flexibility is referred to as shifting in latent models of executive

Cognitive flexibility
Mental readiness to switch or shift

Set-shifting
and task switching

Rule-switching Performance-based Attention-shifting Complex set-
tasks switching tasks tasks shifting tasks

Figure 1

Overview of task paradigms typically used to assess cognitive flexibility, which is the mental readiness to flexibly shift in response to
dynamic environmental demands. Task-switching and set-shifting tasks are often used to elicit cognitive flexibility. Variants of these
paradigms include rule-switching tasks, performance-based switching tasks, attention-shifting tasks, and complex set-shifting tasks.

www. Ireviews.org « Cognitive Flexibility: Neurodevel: ! Insigh 265
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function (Miyake et al. 2000). The various terminologies used to describe cognitive flexibility
and the tasks used to study it are important to clearly delineate, as different behavioral or neural
processes may be associated with the different terms.

Two types of experimental paradigms often used to assess cognitive flexibility are task switch-
ing and set-shifting. Task-switching paradigms involve alternating between tasks; performance is
measured by a switch cost, the difference in task performance (e.g., reaction time) between switch-
ing and nonswitching task blocks (Monsell 2003, Vandierendonck et al. 2010). An example of task
switching is in rule-switching tasks, which require participants to switch their response selection
(or task) based on the presented rule (Wendelken et al. 2012). Set-shifting, on the other hand,
involves shifting or switching within a task (Dajani & Uddin 2015). For example, a commonly
used set-shifting task requires participants to shift attention between color and shape dimensions
and choose a unique attribute (Casey et al. 2004) (Figure 24). Although these types of paradigms
differ in terms of switching within versus between tasks, they are both thought to engage cogni-
tive flexibility. However, these subtle differences may have important implications in the neural
processes underlying the different shifting processes occurring.

Task-Switching and Set-Shifting Paradigms

There are different types of task-switching and set-shifting paradigms used to study cog-
nitive flexibility in developmental neuroimaging studies (Figure 1). Broadly, these tasks
include attention-shifting, complex set-shifting, rule-switching, and performance-based switching
(Figure 2). These fMRI-based tasks are often adaptations of common behavioral test batteries that
assess cognitive flexibility such as the Dimensional Change Card Sort (DCCS) (Zelazo 2006),
the Wisconsin Card Sorting Task (WCST) (Heaton et al. 1993), and shifting tasks within the
Delis-Kaplan Executive Function System (D-KEFS) (Delis et al. 2001). In the DCCS, children
are presented with two cards (e.g., blue rabbit and red boat) and are asked to match a series of cards
to those two based on one dimension, such as color or shape (e.g., blue boat is matched with blue
rabbit) (Zelazo 2006). The WCST can be administered to individuals between 6.5 and 89 years
of age and requires cards to be sorted based on one of three dimensions (color, shape, or number).
Individuals must update the sorting criteria based on the experimenter’s feedback (Heaton et al.
1993). Lastly, the D-KEFS consists of several tasks (color-word interference, card sorting, design
fluency, and verbal fluency tasks) that can be used to assess shifting abilities across 8-89-year-olds
(Delis et al. 2001).

Attention-shifting. In attention-shifting tasks (Figure 24), participants shift attention between
stimulus dimensions (e.g., color, shape). Attention-shifting tasks are the primary cognitive flex-
ibility task utilized in developmental neuroimaging studies (Casey et al. 2004, Dirks et al. 2020,
Morton etal. 2009, Yerys et al. 2015). Attention-shifting tasks are often an adaptation of the DCCS
test battery (Ezekiel et al. 2013, Morton et al. 2009) and therefore can be given to children as young
as 3 years (Hanania & Smith 2010).

Set-shifting. In complex set-shifting tasks (Figure 2b), participants are still required to shift
within a trial but utilize more cognitive abilities than simply shifting attention (Yasumura et al.
2015). One example of a complex set-shifting task is the flexible item selection task (FIST) (Jacques
& Zelazo 2001). In one version, participants are presented with three cards and are instructed to
select two of them that match on one dimension (e.g., number, color, size) and then shift by select-
ing another matching pair based on a different dimension (Jacques & Zelazo 2001). The FIST
is similar to the DCCS and WCST but can vary in difficulty by including more abstract or com-
plex dimensional shifts, which can be further altered by increasing dimensions or shifts within a

Kupis « Uddin



a Attention-shifting task b Complex set-shifting task

Shape block — Now you choose
(n=12)

1,000 ms I

IS1=1,500 m;\4

Color block
(n=12)

Mixed block

Mixed block
(n=24)

Color block
(n=12) m— Selection 1
= == Selection 2

Shapeblock e Selection 3
(n=12)

€ Rule-switching task d Performance-based switching task

1,000 ms
500-6,000 ms Max 2,500 ms / 2,500 ms - RT
o] T
[ |
DIRECTION e I

200 ms 2,300 ms 1,500 ms

Figure 2

An overview of commonly used cognitive flexibility tasks in developmental cognitive neuroscience. Four general categories of
commonly used fMRI tasks to elicit cognitive flexibility are (#) attention-shifting, (b)) complex set-shifting, (¢) rule-switching, and

(d) performance-based switching tasks. (#) In attention-shifting tasks, participants shift attention among stimuli. As shown in the
example, participants are presented with three shapes and must shift their attention to the shape that is different from the other two in
one way (color or shape). (b)) In more complex set-shifting tasks, participants may need to utilize more executive functions or cognitive
abilities to complete the task. For the example in this panel, participants must select two items that are similar in one way (color, shape,
size, or number). Then they are asked to make two more selections within the same trial. (c) In rule-switching tasks, participants are
required to make a selection based on a rule (e.g., color or direction), and these rules switch randomly throughout the run. (4) In
performance-based switching tasks, participants make selections based on a probability and feedback from the experimenter.
Participants choose one stimulus and receive positive or negative feedback based on probabilistic rules (e.g., the first object receives
positive feedback 80% of the time whereas the other object receives positive feedback 20% of the time). Abbreviations: fMRI,
functional magnetic resonance imaging; ISI, interstimulus intervals; RT, reaction time.
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trial (Dajani et al. 2020, Dick 2014). As in the FIST, some complex set-shifting tasks appear to be
more difficult for children based on their behavioral performance (Dajani et al. 2020, Dick 2014)
compared with attention-shifting tasks. Therefore, complex set-shifting tasks may require greater
cognitive demands compared with attention-shifting tasks.

Rule-switching. Rule-switching tasks (Figure 2¢) require participants to flexibly respond to a
stimulus on the basis of the given rule (e.g., to respond based on color or direction) (Wendelken
etal. 2012). Rule-switching tasks sometimes have high working memory demands, as participants
must mentally maintain the rules (Dajani & Uddin 2015). Although other shifting tasks may also
draw on working memory skills to complete the task, rule-switching tasks sometimes require ex-
tended maintenance of the rule, rule retrieval, and suppression of previous rules, adding to the

difficulty of the task.

Performance-based switching. Lastly, performance-based switching tasks (Figure 2d) typically
involve (#) an adaptation of the WCST, where participants have to spatially switch between
three possible response rules (Crone et al. 2008), and (b) a probabilistic task (Hauser et al. 2015,
van den Bos et al. 2012), where participants have to switch their stimulus choice based on prob-
abilistic feedback (e.g., choosing stimulus A receives positive feedback 80% of the time whereas
choosing B results in positive feedback only 20% of the time). Variations of this task exist, such
as implementing reversal learning within a probabilistic framework. Reversal learning in humans
is primarily probabilistic and requires participants to change their behavioral response when the
reward contingency previously learned is reversed (Izquierdo et al. 2017).

Task-Dependent Brain Regions: Implications from Adult Findings

Understanding task-related brain activity in adult neuroimaging studies may highlight key find-
ings that could have implications for neurodevelopment. fMRI studies of adults using age-adjusted
versions of these tasks have shown the core brain regions and networks underlying cognitive flex-
ibility (Dajani & Uddin 2015) as well as task-dependent brain regions (Kim et al. 2011, 2012)
(Figure 3). Brain regions found to be involved in core cognitive flexibility across all task types
include the ventrolateral prefrontal cortex (PFC), dorsolateral PFC (dIPFC), anterior cingulate,
right anterior insula (AI), inferior frontal junction (IFJ), premotor cortex (PMC), inferior and su-
perior parietal cortices, inferior temporal cortex, occipital cortex, and subcortical structures such
as the caudate nucleus and thalamus (Dajani & Uddin 2015, Kim et al. 2012, Niendam et al.
2012). Figure 3 includes the core regions involved in cognitive flexibility; note that not all brain
regions listed above are included in the figure. Brain regions involved in cognitive flexibility fur-
ther differentiate depending on the type of task (Kim et al. 2011, 2012). More abstract switching
(e.g., complex set-shifting tasks with more dimensions or stimuli) recruits anterior PFC regions,
moderately abstract switching (e.g., complex set-shifting tasks with fewer dimensions or stim-
uli) recruits mid-PFC regions, and constrained switching (i.e., attention-shifting tasks) recruits
posterior PFC regions (Kim et al. 2011). Results from Kim and colleagues’ (2012) meta-analysis
further revealed region-specific activation during attention-shifting tasks in the dorsal portion of
the PMC and during set-shifting tasks in the frontopolar cortex. Due to findings of task-dependent
neural and behavioral responses associated with cognitive flexibility, it has been suggested there
may be different types of cognitive flexibility (Eslinger & Grattan 1993, Kim et al. 2011, Kraft
et al. 2020). Overall, the findings from adult neuroimaging studies of cognitive flexibility reveal
core brain regions and task-specific regions involved in this function. The difference between core
and task-dependent brain regions associated with cognitive flexibility is not yet well established
in children.
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Figure 3

Summary of core brain regions involved in cognitive flexibility across task types in adults. Switching is associated with activation in the
medial prefrontal cortex, lateral prefrontal cortex, and parietal, temporal, and occipital cortices, as well as subcortical structures such as
the caudate nucleus and thalamus. Abbreviations: dIPFC, dorsolateral prefrontal cortex; FPC, frontopolar cortex; IEJ, inferior frontal
junction; PMd, dorsal premotor cortex; PPC, posterior parietal cortex. Figure reproduced with permission from Kim et al. (2011).

Isolating Cognitive Flexibility from Other Executive Functions

in Neuroimaging Studies

Another challenge involves isolating cognitive flexibility from other core executive functions
(i.e., inhibition and working memory). This may impact our understanding of the brain regions
underlying cognitive flexibility specifically across development. Executive functions enable goal-
oriented behaviors, and the extant literature suggests that core executive functions are independent
yet highly interrelated constructs (Miyake et al. 2000). Therefore, isolating executive functions
from each other becomes difficult because many of these processes may in some cases depend on
each other. For example, many of the flexibility tasks described above involve working memory to
keep the task rules in mind and inhibition to prevent repetition of previously answered responses.
Additionally, in adult studies of the neural substrates underlying cognitive flexibility, there are
brain regions activated solely during cognitive flexibility tasks and brain regions activated across
tasks of executive functions more broadly (for a meta-analysis, see Rodriguez-Nieto et al. 2022).
Thus, fMRI studies of cognitive flexibility during childhood and adolescence may not always be
testing pure cognitive flexibility. Because of this, multiple considerations need to be made when
assessing the results from the developmental fMRI studies of cognitive flexibility, including the
type of task used, executive functions required to complete the task, and the developmental stage
of the participants, since executive functions have different developmental trajectories.

Accounting for Age Differences in the Context of Cognitive Flexibility

Another challenge of studying cognitive flexibility involves accounting for age differences associ-
ated with the development of cognitive flexibility. Cognitive flexibility and other core executive
functions develop differently across childhood (Anderson 2002). Cognitive flexibility may be
demonstrated as early as infancy (Shinya et al. 2022) but is typically first studied in preschool
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children as young as 3 years (Hughes 1998) in lower-order forms, such as shifting. Evidence
of the emergence of cognitive flexibility is supported by the ability to perform well on shift-
ing tasks, such as the DCCS (Diamond et al. 2005) and A-not-B tasks (Johansson et al. 2015).
Other executive functions such as inhibition and working memory also emerge in toddlerhood
and mature throughout adolescence (Dajani & Uddin 2015, Luna 2009). However, children show
difficulty with integrating multiple executive functions at once, as revealed by poorer performance
on tasks requiring the integration of various executive functions (Diamond et al. 2005). For exam-
ple, 4.5-year-old children successfully perform the DCCS task but perform poorly on the WCST
(Chelune & Baer 1986, Dick 2014), suggesting that cognitive flexibility can be altered by task dif-
ficulty and that higher-order flexibility takes longer to develop. Through elementary school age,
cognitive flexibility undergoes a prolonged development compared with other executive functions
(Davidson et al. 2006) and begins to rapidly increase around 10 years of age (Chelune & Baer
1986, Dick 2014, Rosselli & Ardila 1993, Welsh et al. 1991). However, cognitive flexibility skills
continue to develop into adolescence and adulthood (Anderson 2002), peaking between 21 and
30 years (Cepeda et al. 2001). Overall, considering the behavioral progression of cognitive flexi-
bility across development may be important for understanding the neural changes underlying the
development of cognitive flexibility across childhood and into adulthood.

NEURAL MARKERS OF COGNITIVE FLEXIBILITY ACROSS
DEVELOPMENT

Neurodevelopmental Findings

Developmental neuroimaging studies suggest that cognitive flexibility undergoes a prolonged tra-
jectory, as paralleled in behavioral findings (Table 1). Prolonged development is observed in
structural findings among the brain regions supporting cognitive flexibility, mainly in the FPN
(Gogtay et al. 2004), suggesting the gray matter in those regions mature and thin later than in
other regions (Casey et al. 2000, Giedd et al. 1999). Similar to findings in adults, brain regions
commonly activated in children across switching tasks include the FPN [the dIPFC, IFJ, and pre-
supplementary motor area (SMA)] (Morton et al. 2009, Wendelken et al. 2012) and the basal
ganglia (Casey et al. 2004, Crone et al. 2006b, Rubia et al. 2006). However, connectivity among
the FPN and insula increases in activation strength across development, and these regions activate
most strongly in adults, suggesting that cognitive flexibility strengthens as these regions develop
(Kupis et al. 2021b, Rubia et al. 2006, Taylor et al. 2012, Wendelken et al. 2012).

Attention-shifting. Much like in the behavioral findings, cognitive flexibility-related brain acti-
vation can also be differentiated by switching or shifting tasks. In attention-shifting tasks, children
and adults share common brain activation in regions including the superior parietal cortex, dIPFC,
IFJ, pre-SMA (Morton et al. 2009), and caudate nucleus (Casey et al. 2004). Key developmental
differences between children and adults, however, are seen during attention-shifting tasks. In a
study by Morton et al. (2009), children (11-13 years) exhibited unique activation in the right su-
perior frontal sulcus, whereas adults exhibited unique activation in the left superior parietal cortex
and right thalamus. This finding implies that children may have different switching strategies
compared with adults, resulting in differing brain activation patterns. The stronger parietal ac-
tivation in adults versus stronger frontal activation in children during the task may result from
adults relying on more attentional efforts to complete the shift, whereas children may be rely-
ing on more executive efforts. Casey et al. (2004) observed more prefrontal and parietal regions
activated in adults compared with children (7-11 years), suggesting greater recruitment of these
cortical regions across development. In Dirks et al. (2020), the same task from Casey et al. (2004)
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was used. The authors found typically developing children (7-12 years) had brain activation in
the L posterior supramarginal gyrus/angular gyrus during shift trials. The discrepancies among
the studies involving attentional-shift tasks may be due to small sample sizes and differences in the
shifting tasks used. It has been suggested that these types of simple attention-shifting tasks may
not strongly engage cognitive flexibility (Dirks et al. 2020).

Complex set-shifting. Complex set-shifting tasks require different brain regions to complete
compared with lower-level shifting tasks. To our knowledge, only one study to date has examined
set-shifting abilities in children using a WCST task. Children showed activation in the right insula,
a region important for switching between brain networks to enable flexible behavior (Menon &
Uddin 2010), with increasing activation with age (Taylor et al. 2012). Only one study in adults
has used the FIST, a complex version of a set-shifting task that requires subjects to abstract a
matching dimension and switch flexibly to a new matching dimension (Dajani et al. 2020, Dick
2014). Although the neural correlates of the FIST have been studied only in adults, behavioral
evidence in children reveals age-related changes until at least 10 years of age, suggesting that
there may be age-related neural differences in set-shifting at least until 10 years (Dick 2014).

Rule-switching. Rule-switching has also been explored in few developmental neuroimaging stud-
ies to date. The earliest study found adolescents had similar brain activation as adults among
regions of the pre-SMA/SMA during rule-switching (Crone et al. 2006a). Wendelken and col-
leagues (2012) utilized a task that required participants to switch flexibly from one task rule to
another. In children (8-13 years) and adults, brain regions of the left dIPFC, left posterior parietal
cortex (PPC), and pre-SMA regions were active during rule-switching trials. The dIPFC and SMA
were similarly activated as in other cognitive flexibility studies. Further, there were key develop-
mental differences seen between children and adults in brain activation during the task. Adults
had greater activation overall and among the pre-SMA, PMC, and left PPC. Children also had
greater activation than adults in the right inferior parietal lobe and the cingulate gyrus. Addi-
tionally, children, but not adults, engaged the left superior temporal gyrus and the right middle
temporal gyrus more in the switch trials as compared with the non-switch trials. Children had
more initial dIPFC activation driven by the previous trial rule, suggesting children have more dif-
ficulties with rule-switching in particular (Wendelken et al. 2012). Rule-switching may therefore
create greater cognitive demands and may be more difficult for children compared with adults,
accounting for the observed neural differences.

Performance-based switching. Performance-based switching studies have revealed many be-
havioral and neurodevelopmental differences between children and adults (Crone et al. 2008,
Hauser et al. 2015, van den Bos et al. 2012). The insula appears to be an important contributor to
performance-based switching, as indicated by activation during the WCST-adapted task (Crone
et al. 2008), especially in adolescents, where greater activation occurred in the anterior insula
for reward prediction errors prior to switching. This is also in line with findings from a meta-
analysis of developmental executive functions, where the right anterior insular cortex was shown
to have age-related involvement among inhibition, switching, and working memory (Houdé et al.
2010). Other regions were important during performance-switching including the dIPFC, medial
PFC (mPFC), anterior cingulate cortex (ACC), striatum, ventromedial PFC, amygdala, left pos-
terior cingulate cortex, left putamen, right precentral gyrus, left superior frontal gyrus, and left
inferior parietal lobe. Activation in the mPFC was commonly observed across the three develop-
mental studies, consistent with reports of the role of the PFC in cognitive flexibility (Rougier et al.
2005).
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Summary of neurodevelopmental findings. The neurodevelopmental studies of cognitive flex-
ibility provide initial insight into the developmental processes surrounding switching and shifting,
abilities important for life outcomes. The brain regions commonly implicated during switching
or shifting across task types in children include the dIPFC and the pre-SMA/SMA. The dIPFC
is one region of the FPN involved in switching in adults and is primarily thought to be involved
with working memory (Thomason et al. 2009) and, specifically, generating the executive response
guided by the working memory (Barbey etal. 2013, D’Esposito & Postle 1999). This indicates that
children rely on working memory to complete flexibility tasks. Moreover, in cognitive flexibility
tasks with higher loads of working memory, children typically perform less accurately than adults
(Thomason et al. 2009, Wendelken et al. 2012), suggesting that the integration of working mem-
ory and switching processes is not fully developed during childhood. The pre-SMA/SMA was also
discovered to be activated in children across multiple developmental cognitive flexibility studies.
The pre-SMA is commonly activated during set-shifting tasks (Barber & Carter 2005) in adults
and, more broadly, during executive functioning tasks in general (Duncan & Owen 2000). Over-
all, the pre-SMA is thought to be involved in task-set reconfiguration, suppression of previous
responses, and error likelihood estimation (Morton et al. 2009).

Another set of regions commonly observed in flexibility tasks in adults includes the dorsal
ACC and AI, comprising the midcingulo-insular network (M-CIN). There were mixed find-
ings surrounding the M-CIN among developmental studies, with some instances of increased
activation of the insula in children (Ezekiel et al. 2013, Mogadam et al. 2018, Rodehacke et al.
2014) and, conversely, some instances of decreased or no activation of the insula during switching
(Crone et al. 2006a, 2008; Dibbets et al. 2006; Dirks et al. 2020; Nelson et al. 2007; Taylor et al.
2012; Wendelken et al. 2012). The M-CIN supports coordination among large-scale networks
and is thought to enable flexible behavior (Uddin et al. 2015). The mixed findings regarding the
M-CIN brain regions in children may be due to the various tasks (i.e., attention shifting versus
performance switching) or varying age groups across the studies (i.e., from 3 years to 17 years).
In most cases, children and adolescents were separately grouped, and generally, adolescents
showed more insula activation than children, suggesting an age-related increase in activation of
the insula (Taylor et al. 2012) associated with better behavioral performance (Chen et al. 2016).
The insula plays an important role in executive function and shifting broadly. The Al in particular
is thought to coordinate shifting between the default mode and executive control networks and
serves as a gatekeeper of executive control (Molnar-Szakacs & Uddin 2022). Overall, the studies
reviewed here support the notion that the brain regions involved in the salience (M-CIN) and
the executive control (FPN) networks may support the development and maturation of cognitive
flexibility (Figure 4).

The developmental neuroimaging studies reviewed also provided insight into the regions that
were not commonly activated in children during cognitive flexibility tasks. For example, only one
study found evidence of activation of the IF]J in both children and adults (Morton et al. 2009). The
IFJ has consistently been found to be activated across various cognitive flexibility tasks in adults
(Dajani et al. 2020, Kim et al. 2011). The IF]J was additionally found to coordinate switches among
brain regions during cognitive flexibility task performance (Dajani et al. 2020). As demonstrated
by Dajani and colleagues (2020), the IF] gets activated first and leads to activations in other regions
involved in cognitive flexibility. As this region was not commonly activated in cognitive flexibility
studies of children, this suggests that the ability to coordinate switching undergoes developmental
changes. Taken together, these studies provide valuable insight into the development of cognitive
flexibility. Still, many questions remain to be answered, including how the functional organization
of these brain regions enables changes in cognitive flexibility across development.
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Relationships between brain dynamics and cognitive flexibility across the life span. A coactivation pattern involving the default mode
and FPN shows increasing frequency of occurrence into young adulthood, decreasing again during older adulthood. Brain dynamics
were differentially associated with cognitive flexibility across the life span such that children and older adults who had fewer brain state
transitions showed poorer cognitive flexibility, whereas middle-aged adults had optimal cognitive flexibility at average and fewer brain
state transitions (Kupis et al. 2021b, Molnar-Szakacs & Uddin 2022). Abbreviations: FPN, frontoparietal network; IDLPFC, left
dorsolateral prefrontal cortex; IPPC, left posterior parietal cortex; PCC, posterior cingulate cortex; rDLPFC, right dorsolateral
prefrontal cortex; rPPC; right posterior parietal cortex; SD, standard deviation; vinPFC, ventromedial prefrontal cortex.
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Limitations of Neurodevelopmental Studies of Cognitive Flexibility:
Four Challenges

Although the neurodevelopmental studies reviewed here provide initial insight into the neural
mechanisms underlying cognitive flexibility, caution should be used when drawing conclusions
from the results. First, the idea that executive functioning constructs are separable yet highly cor-
related (Miyake & Friedman 2012, Rodriguez-Nieto et al. 2022) makes the study of cognitive
flexibility difficult, as it is uncertain if the studies reviewed strictly captured cognitive flexibility,
other components of executive functions (e.g., working memory), or executive function as a whole.
Additionally, many brain regions are active across various executive functions (Nowrangi et al.
2014), thereby making interpretations of what is uniquely accounted for by cognitive flexibility
difficult. Similarly, since various tasks elicit cognitive flexibility, it makes studying the construct
difficult. For example, both attention-shifting and rule-shifting are thought to elicit cognitive
flexibility; however, some think attention-shifting is a poor indicator of cognitive flexibility (Dirks
et al. 2020). In addition, many of the studies reviewed above have small sample sizes and poten-
tially confounding task designs that do not consistently isolate cognitive flexibility due to poorly
designed control tasks (Marek et al. 2022, Zhao et al. 2023). Additionally, the tasks differ on the
degree of cognitive effort required, often engaging varying levels of working memory demands.
Lastly, there is controversy regarding the ecological validity of some of the cognitive flexibility
tasks used as they do not always correlate with informant reports (Dang et al. 2020), suggesting
they may not be representative of real-world situations (Kenworthy et al. 2008). Overall, the stud-
ies reviewed provide initial insight into the development of cognitive flexibility, but these findings
should be considered in the context of these limitations.
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FUTURE DIRECTIONS

Many questions remain, including how dynamic brain network organization or neural flexibility
enables changes in cognitive flexibility across development. Future directions include studying
cognitive flexibility across development using tasks that better capture the cognitive flexibility
construct and have higher ecological validity. Additionally, it will be necessary to further inves-
tigate different potential forms of cognitive flexibility to disentangle the brain regions involved
with each type. It will also be necessary to study larger samples in future work to arrive at re-
producible results. Future studies may leverage large, public databases, such as the Adolescent
Brain Cognitive Development (ABCD) Study, which includes task and resting-state data and
out-of-scanner executive control measures to better characterize neural changes associated with
developing cognitive flexibility (Casey et al. 2018). As the ABCD Study provides longitudinal data
from over 10,000 children, it will be critical to leverage in order to gain insight into individual dif-
ferences in cognitive flexibility as they relate to the development of key brain networks. Further,
examination of additional factors that may modulate the relationship between cognitive flexibility
and brain functioning should be explored, such as health factors (Cserjési et al. 2007), exercise
(Bae & Masaki 2019), bilingualism (Becker et al. 2016, Christoffels et al. 2015), and neuropsychi-
atric disorders (Uddin 2021b). There is evidence that these factors may modulate or interact with
executive function, yet the impacts on shifting and flexibility (specifically) are not fully understood.
Further, studying modulators of shifting and cognitive flexibility skills may provide insight into
novel intervention targets. Additionally, adolescence is a unique period where cognitive flexibility
is heightened, the brain is undergoing many changes (Hauser et al. 2015), and executive function
skills are stabilizing (Friedman et al. 2016) (see Figure 4), making it a critical time period to study.

Another important future direction is the examination of intrinsic functional connectivity
dynamics and developmental changes within and across brain networks supporting cognitive
flexibility. Studies have begun to examine how brain networks dynamically act together to sup-
port neural and cognitive flexibility (Kupis et al. 2020, 2021a,b; Uddin 2021a,b). Evidence from
these studies supports the idea that connectivity within the salience (M-CIN) and executive con-
trol (FPN) networks may underlie the development of cognitive flexibility into young adulthood
(Kupis et al. 2021b) (Figure 4). Further, certain brain dynamic patterns measured by the WCST
have been associated with cognitive flexibility such that individuals exhibiting greater episodes of
more frequently occurring brain states showed greater cognitive flexibility (Nomi et al. 2017b).
Brain dynamics within the M-CIN and between the medial and left FPN have also been associ-
ated with cognitive flexibility (for a review see Uddin 202 1a). Future investigation needs to include
task-based fMRI approaches to map brain dynamics during a cognitive flexibility task and changes
across development.

Overall, neurodevelopmental findings of cognitive flexibility have various limitations, and
many questions are left to be answered regarding brain network flexibility and moderators of
cognitive flexibility and brain functioning across development.

CONCLUSION

Cognitive flexibility is challenging to study, as various tasks are used to elicit it. Emerging evidence
suggests that different brain regions are associated with different types of cognitive flexibility tasks.
Different brain regions are also engaged as a result of varying degrees of difficulty across task types
and inconsistent task instructions across studies. However, key brain regions support the devel-
opment of cognitive flexibility broadly, including the dIPFC, pre-SMA/SMA, IF], and the insula.
Large-scale brain networks such as the salience (M-CIN), executive (FPN), and default mode net-
works additionally support the development of cognitive flexibility. These core networks enhance
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behavioral performance through salience detection, performance monitoring, attention, and con-
trol (Menon & Uddin 2010). Initial work suggests that structural and functional maturation of
the M-CIN underlies the development of flexibility (Uddin et al. 2011). Future work is needed
to expand upon cognitive flexibility as a construct, determine the neural impacts of its potential
modulators, and investigate brain dynamics associated with shifting abilities across development.
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Autism and Cognitive Inflexibility

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by
social deficits and restricted and repetitive behaviors (RRBs). RRBs are an understudied core
symptom of ASD, yet negatively affect vital abilities such as social interactions, learning new
skills, and completing daily activities (Aqdassi et al. 2021; Sadeghi and Pouretemad 2022).
Autistic individuals additionally face greater cognitive flexibility difficulties (Lage, Smith, and
Lawson 2024), and this dysfunction is thought to underlie RRBs (Gioia et al. 2002; Lopez et al.
2005). Cognitive inflexibility poses a great challenge in daily living in children with ASD such
as creating difficulties with transitioning between activities (Craig et al. 2016), emotion
regulation (Gardiner and Iarocci 2017), and adaptive behavior (Gilotty et al. 2002). Cognitive
inflexibility is vital to understand in early life as it can have detrimental impacts later in life, as
manifested by lower rates of employment and independent living (Anderson et al. 2014), quality
of living (Mason et al. 2018), and fewer relationships (Farley et al. 2009).

Early identification of ASD and early cognitive flexibility intervention holds promise for
improving life outcomes. There is abundant evidence that early diagnosis and intervention
improves life outcomes of children diagnosed with ASD (Vivanti et al. 2014; Okoye et al. 2023),
yet one in 36 children are diagnosed with ASD and the median age of diagnosis is not until 4
years of age (Maenner et al. 2023). Due to a delayed diagnosis, children are missing out on
critical treatment and intervention during critical years of formative brain development (Tierney
and Nelson 2009a). There is also evidence that cognitive-focused intervention improves

cognitive flexibility as demonstrated in improved classroom behavior, behavior flexibility, and
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problem solving skills (Kenworthy et al. 2014). Therefore, early detection and intervention
should be prioritized in ASD to improve cognitive flexibility, symptoms, and life outcomes.
There are early behavioral indicators of ASD (Barbaro and Dissanayake 2009), but these signs
are typically observed in the social domain (Ozonoff et al. 2010) and are not reliable enough to
establish diagnosis and can lead to biases (Guthrie et al. 2019; Pierce et al. 2019; Jarquin et al.
2011). Brain biomarkers hold promise in identifying early markers of risk for ASD in concert
with overt behavioral signs (I. Molnar-Szakacs, Kupis, and Uddin 2021). Additionally, early
brain markers of cognitive inflexibility may help improve intervention targets. Overall,
identifying early brain markers of ASD and cognitive inflexibility is imperative to reduce the
delay to diagnosis and treatment, and to improve outcomes for those affected.
Early Detection and Methods

Behavioral signs of ASD are rarely observable during the first year of life, and in
subsequent years they are difficult to distinguish from both typical development and from other
disorders (Istvan Molnar-Szakacs, Kupis, and Uddin 2020). However, risk of ASD appears to
affect multiple brain systems prior to detectable behavioral signs of ASD (Eric Courchesne,
Gazestani, and Lewis 2020; Xiao et al. 2021). Non-invasive techniques such as magnetic
resonance imaging (MRI) are useful tools to identify early biomarkers for ASD and predict
symptom severity to guide intervention and treatments (Muhle et al. 2018). Sleep MRI - that is
MRI conducted during natural sleep - is a safe and effective method for examining the brain’s
functional architecture, reducing the concerns related to participant head motion while obviating

the need for anesthesia (Power et al. 2012). Sleep MRI has already been used to examine brain
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activation patterns in toddlers with ASD (Redcay and Courchesne 2008; Lombardo et al. 2015;
Eyler, Pierce, and Courchesne 2012) and brain network dynamics during sleep (“Connectivity
Dynamics from Wakefulness to Sleep” 2020). Additionally, resting-state fMRI methods - that is
MRI conducted with no stimuli - are used to investigate the intrinsic functional architecture of the
brain and hold promise of mapping brain function with behavior (Lee, Smyser, and Shimony 2013)
and have been used in children and adults with ASD. Task fMRI - MRI conducted while
participants perform a task during the scan - is commonly used to understand the blood-oxygen
level dependent (BOLD) changes (Dichter 2012) and uncover brain regions involved in a cognitive
process and has been used across the lifespan. MRI methods paired with detection of early
behavioral signs of a developmental delay hold potential to reduce the delay to diagnosis and
advance targeted treatments of cognitive flexibility.
Brain markers of autism and cognitive inflexibility: The Triple Network Model

The use of resting-state and task fMRI methods has uncovered potential brain biomarkers
for ASD and cognitive inflexibility in children and adults with ASD. Previous studies have found
that children and adults with ASD show atypical brain patterns during both task performance and
resting-states (Marshall et al. 2020a; Kupis, Goodman, Kircher, et al. 2021; “Brain Mechanisms
Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder”
2021; Lau, Leung, and Lau 2019; Hull et al. 2016; Dichter 2012). Most studies point towards
patterns of hyper and hypo functional connectivity, a measure of how brain regions interact with
each other, in ASD (Lucina Q. Uddin, Supekar, and Menon 2013) and especially evident during

young age (Nomi and Uddin 2015). The broad hyper and hypo connectivity observed in ASD
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appears to depend on task demands, brain networks under investigation, age, and method used
(Hernandez et al. 2015; Rudie and Dapretto 2013). Despite the widespread findings, many studies
consistently highlight dysfunction of three large-scale networks. These networks are the salience
network (SN), comprised of the anterior cingulate cortex and anterior insula, involved in
interoceptive, affective, attention, and control processes; the central executive network (CEN),
comprised of the dorsolateral prefrontal cortex and the anterior inferior parietal cortex, involved
in modulating goal-oriented behaviors and decisions; and the default mode network (DMN),
comprised of the medial prefrontal cortex, posterior cingulate cortex, and the posterior parietal
lobule, involved in self-related and social cognition (Lucina Q. Uddin, Yeo, and Spreng 2019; L.
Q. Uddin et al. 2011; Lucina Q. Uddin et al. 2015a). These three large-scale brain networks form
the basis for the influential “triple network model” (Vinod Menon and Uddin 2010). This theory
and studies support the idea that the SN mediates the interaction between the CEN and DMN, and
facilitates switching needed for successful cognitive flexibility (V. Menon 2015b; Chand et al.
2017). There is further evidence that effective and flexible switching among these networks predict
cognitive flexibility abilities (Lucina Q. Uddin 2021; “Cognitive Flexibility as the Shifting of
Brain Network Flows by Flexible Neural Representations” 2024; Cao et al. 2021). Interestingly,
these three networks have been previously associated with RRB symptoms and cognitive
flexibility in ASD (Lucina Q. Uddin et al. 2015a; Marshall et al. 2020a; “Brain Mechanisms
Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder”
2021; Lucina Q. Uddin et al. 2013a). For example, In older children with ASD, the severity of

RRBs were associated with connectivity among these three large-scale brain networks (SN, CEN,
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DMN) (Traynor and Hall 2015a; Lucina Q. Uddin et al. 2015a). Another study found static
functional connectivity of the SN in 7-12 year old children predict individual differences in RRBs
in ASD (Lucina Q. Uddin et al. 2013a). The SN, CEN, and DMN hold promise as potential
biomarkers for ASD and early cognitive flexibility skills.
Early neurodevelopment, brain markers of ASD, and cognitive inflexibility

To date, there are few studies that have investigated early brain network development in
typical development, early brain markers of ASD, and relationships between early brain
development and emerging behavior. From the few studies that have investigated early functional
networks in typical development, neural networks are observed in neonates and have even been
observed in utero (Thomason et al. 2013; Grayson and Fair 2017; Keunen, Counsell, and Benders
2017). The overall framework of mature brain wiring appears set at the time of birth, and intra and
inter network FC continue to develop within the first years of life (Zhang, Shen, and Lin 2019).
Formation of FC begins with primary networks followed by higher order networks (Keunen,
Counsell, and Benders 2017), such that the visual network and sensorimotor networks emerge first
followed by the SN, CEN, and DMN formation (W.-C. Liu et al. 2008; Zhang, Shen, and Lin
2019). The first few years of life are characterized by rapid development with brain volume
doubling in the first year and reaching adult volume by age three (E. Courchesne et al. 2000;
Grayson and Fair 2017). By two years of age the neural networks appear to be established (Zhang,
Shen, and Lin 2019; Grayson and Fair 2017) and both genetics and environment have important
contributions to the development of brain functional networks (Gao et al. 2014). Additionally,

early brain FC in neurotypical infants have been used to predict learning ability (Zhang et al. 2017),
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language performance (Emerson, Gao, and Lin 2016), and higher order cognition at later ages
(Alcauter et al. 2014).

The investigation of early brain networks has clinical implications for at-risk populations
such as ASD and for uncovering early markers associated with later cognitive inflexibility. The
majority of neuroimaging studies examining infants or toddlers at-risk for ASD have examined
structural MRI biomarkers that predict later developing ASD and few studies have investigated
functional connectivity. Further, most studies mapping brain-behavior relationships have focused
on later developing social deficits and language while few have focused on RRBs or flexible
cognition and behavior (Istvan Molnar-Szakacs, Kupis, and Uddin 2020). From the studies
completed, there is promising evidence of early brain biomarkers predictive of ASD and later
developing behaviors (I. Molnar-Szakacs, Kupis, and Uddin 2021). Studies of infants and toddlers
at-risk of ASD have revealed alterations in brain volume are predictive of ASD and severity of
symptoms (Pote et al. 2019; Hazlett et al. 2012; Shen et al. 2013). Studies have revealed early
language areas predictive of later language outcomes in toddlers later diagnosed with ASD
(Lombardo et al. 2015). Studies investigating structural connectivity, or white matter tract
microstructure (Edward Roberts, Anderson, and Husain 2013), also find promising brain markers
predictive of later language development and ASD symptoms (J. Liu et al. 2019; Wolff et al. 2012).

There is additionally a rise of studies investigating FC across all ages of autism (Lucina Q.
Uddin, Supekar, and Menon 2013), making it a promising biomarker for investigating in the first
years of life. For example, one study investigated FC in 6-month old HR infants and successfully

identified subjects who later went on to develop ASD based on the FC measures (Emerson et al.

29



2017). They additionally found correlations between 6-month FC and 24-month social behavior,
language, motor development, and repetitive behavior scores (Emerson et al. 2017). Another study
found that alterations of the SN connectivity in 6 week old infants at high risk of ASD predicted
subsequent ASD symptoms (Tsang et al. 2024). Another study specifically examined early brain
networks associated with RRBs and ASD in infants at high risk of developing ASD (McKinnon et
al. 2019). They found alterations in DMN and CEN FC were associated with RRBs at 12 and 24
months of age. These studies provide seminal evidence of potential brain biomarkers of ASD and
support the further investigation of brain network alterations during the first years of life in infants
and toddlers at risk of ASD and behavioral difficulties.
RRBs and the Relationship with Cognitive Flexibility

Restricted and repetitive behaviors (RRBs) are a hallmark feature of ASD and are
associated with cognitive inflexibility making this symptom important to investigate during early
life. RRBs are a core symptom of ASD and behaviorally can present as stereotyped movements,
insistence on sameness, and circumscribed or perseverative interests (American Psychiatric
Association 2021). ASD is, however, heterogeneous (Masi et al. 2017), resulting in a diverse range
of RRBs and severity. RRB severity is also predictive of later adaptive behaviors, or the ability to
adjust to the environment appropriately and effectively (Troyb et al. 2016). Further, RRBs are not
unique to ASD, as they are present in idiopathic neurodevelopmental conditions (e.g., Fragile
X),(Lewis and Kim 2009) other neuropsychiatric conditions such as obsessive-compulsive and
related disorders (Abramowitz and Jacoby 2015) and even in typical development (Thelen 1980).

The heterogeneity of ASD and the overlap of RRBs across diagnostic categories make it difficult
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to observationally discern RRBs in ASD from other conditions during early development (Jiujias,
Kelley, and Hall 2017). However, RRBs are usually more severe and more frequent in ASD as
children develop (Richler et al. 2010a; Harrop et al. 2014). Further, the severity of RRBs is
associated with cognitive inflexibility in ASD (Lopez et al. 2005). This highlights the need to
further investigate early brain mechanisms underlying RRBs and cognitive inflexibility in ASD.
In children and adults with ASD, studies point toward atypical brain patterns of the CEN and SN
during cognitive flexibility tasks (“Brain Mechanisms Supporting Flexible Cognition and
Behavior in Adolescents With Autism Spectrum Disorder” 2021). However, little is known about
early brain network functioning and their association with later developing RRBs and cognitive
inflexibility in ASD. This further emphasizes the importance of investigating RRBs and their
relationship with cognitive flexibility in ASD especially during the first years of life.

The Research Domain Criteria (RDoC) framework includes psychological and biological
‘domains’ intended to be studied along a range of functioning from normal to abnormal. RDoC
suggests that focusing on symptom domains that cut across diagnostic categories may be beneficial
to understanding the heterogeneity of ASD and their behavioral symptoms (Masi et al. 2017).
Additionally, RDoC recommends exploring neural substrates linked with dimensions of behavior
to inform individual diagnosis and treatment in service of improving well-being (Insel and Wang
2010). Future work is needed to assess both dimensional and categorical brain-behavior
relationships at early and longitudinal time-points in infants and toddlers later diagnosed with and
without ASD. This approach will elucidate shared neural mechanisms between ASD and typically

developing (TD) children and identify unique neural alterations in ASD.
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Evolving fMRI methods: Brain Dynamics

Resting-state fMRI (rsfMRI) studies provide insight into functional brain network
organization in the absence of task performance (Biswal et al. 1995) and reveal intrinsic brain
connectivity patterns associated with behavior and cognition (Smitha et al. 2017). Functional
connectivity is the temporal correlation between two distinct brain regions (Friston et al. 1993)
averaged over a given time period (typically around 10 minutes or the duration of a resting-state
fMRI scan). Recent advances show that functional connectivity patterns are dynamic, and can
change over the course of seconds (Chang and Glover 2010). Thus, previous ‘static’ functional
connectivity approaches may be too simplistic to index moment-to-moment changes in resting-
state brain activity (Preti, Bolton, and Van De Ville 2017). FC methods, although valuable, rely
on many assumptions and arbitrarily collapse data into time and space. Novel dynamic methods,
such as co-activation pattern analysis (CAP) and dynamic FC (dFC), account for these changes
over time, and in some instances may better capture brain-behavior relationships than static
methods (Lurie et al. 2020). The temporal variability as measured using dynamic methods has
already shown clinical utility (Damaraju et al. 2014), including in ASD (“Brain Mechanisms
Supporting Flexible Cognition and Behavior in Adolescents With Autism Spectrum Disorder”
2021) and have been used to characterize brain network dynamics during sleep (“Connectivity
Dynamics from Wakefulness to Sleep” 2020). Brain dynamic methods hold promise in elucidating
early brain network dynamics in both ASD and typically developing infants and toddlers.

Co-activation Pattern Analysis (CAP)
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Novel dynamic methods such as co-activation pattern (CAP) analysis (X. Liu, Chang,
and Duyn 2013; X. Liu et al. 2018) are increasingly utilized (Kupis, Romero, Dirks, Hoang,
Parlade, et al. 2020; Kupis, Goodman, Kircher, et al. 2021) because they capture time-varying
brain state alterations not otherwise observed using static methods and in some instances reveal
more brain and behavior relationships compared with static methods (Lurie et al. 2020). The
CAPs method deviates from traditional dynamic methods by accounting for single fMRI
volumes at individual time points and focusing on recurring CAPs of the brain. The CAPs
overall represent instantaneous brain configurations at single time points (X. Liu et al. 2018).
This method is data driven and relies on a clustering algorithm to determine the brain co-
activations. This reveals recurring patterns of CAP states with distinct functional and neural
relevance. For instance, a CAP could consist of DMN co-activation with subcortical regions such
as the hippocampus (X. Liu, Chang, and Duyn 2013; X. Liu et al. 2018). These meaningful
CAPs also appear to have important time varying instances that may reflect the dynamic
organization of the brain and changes in the CAPs are found to underlie cognition and behavior
(X. Liu et al. 2018; Bray et al. 2015). CAP method has also been used to investigate
neurodiverse populations (Marshall et al. 2020b; Goodman et al. 2021; “Reproducible
Coactivation Patterns of Functional Brain Networks Reveal the Aberrant Dynamic State
Transition in Schizophrenia” 2021). The CAP method is promising for investigating brain
dynamics across all ages, and in neurotypical and diverse populations. Additionally, since it is

data driven and relies on independent component analysis and a clustering method (X. Liu et al.
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2018), it holds promise to elucidate early brain biomarkers in infants and toddlers with and
without ASD.
Dynamic Functional Connectivity (DFC)

Another commonly used dynamic brain method is dynamic functional connectivity (dFC)
using the sliding window approach (Hutchison et al. 2013). In this method, a fixed length of time
(e.g., 30s, 60s, or 120s) is chosen and data points within that period of time are used to calculate
the FC in that specific window. The window is then shifted over by a fixed number of data points
allowing for a certain amount of overlap between each window. A FC measure is calculated for
each window of time, and then a clustering method such as k-means clustering is applied to the
data set and used to group the FC matrices based on their similarity. This results in averaged
clusters or brain states representing FC patterns that recur throughout the duration of the fMRI
scan. These repeating patterns provide insights into how the brain dynamically shifts and
reorganizes itself throughout a task or rest state and holds promising cognitive and behavioral
significance (Hutchison et al. 2013; Cohen 2018).

Brain Dynamics in Autism and Cognitive Flexibility

Brain dynamic methods such as CAP and dFC are emerging in the field of ASD research
and in the study of flexible cognition and behavior (Lurie et al. 2020; L. Q. Uddin and Karlsgodt
2018). Dynamic methods have already revealed neural underpinnings of brain inflexibility, and
cognitive and behavioral inflexibility in ASD (“Brain Mechanisms Supporting Flexible
Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 2021). Studies have

revealed aberrant dynamic interactions among the SN, CEN, and DMN in ASD. For example,
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the frequency of the SN was altered in ASD children compared with neurotypical children
(Marshall et al. 2020b). Other studies report reduced transitions between brain states in children
and adults with ASD (de Lacy et al. 2017; Watanabe and Rees 2017). Another study
investigating 774 6-10 year old children found a longer dwell time in a state characterized by
global disconnection was associated with higher levels of ASD traits and ASD diagnosis (Rashid
et al. 2018). These findings suggest an earlier neurodevelopmental origin and support

investigating brain network dynamics in ASD and typical developmental in early life.
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Abstract

The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging
are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state
fMRI data (n =601, 6-85 years) and examined the interactions between age and brain dynamics among three neurocognitive
networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network,
L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain
dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions,
moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the
Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions
revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive
flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the
underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting
these networks with cognitive flexibility training to promote optimal outcomes across the lifespan.

Key words: aging, central executive network, default mode network, executive function, salience network

Introduction

and social outcomes throughout life (Davis et al. 2010; Genet

Flexible brain dynamics support cognition and behavior (Grady
and Garrett 2014; Jia et al. 2014). However, little is known regard-
ing brain dynamic changes across the lifespan associated with
cognitive flexibility, a component of executive function (Dia-
mond 2013) that supports the ability to adapt behavior to an
ever-changing environment (Dajani and Uddin 2015). Cognitive
flexibility is associated with positive academic, occupational,

and Siemer 2011; Burt and Paysnick 2012; Yeniad et al. 2013;
Colé et al. 2014). Understanding age-related changes in brain
dynamics and their relationship with cognitive flexibility is
crucial to identifying neural markers of risk and resilience across
development and aging.

Across the lifespan, greater dynamic brain flexibility is
increasingly being associated with younger adulthood and
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enhanced cognitive performance (jia et al. 2014; Braun et al.
2015; Nomi et al. 2017a; Xia et al. 2019; Battaglia et al. 2020).
A greater number of transitions among certain brain states
has been found in younger adults compared with older adults
(Xia et al. 2019) and children (Hutchison and Morton 2015).
The dwell time, or the time spent within a brain state, has
also been shown to differ across age, with shorter dwell times
in certain states in young adulthood (Hutchison and Morton
2015) potentially underlying efficient cognitive control. Dwell
time increases with older age (Xia et al. 2019), potentially
underlying cognitive changes and reduced cognitive efficiency
(i.e., perseveration) (Ridderinkhof et al. 2002). Lastly, the
frequency of occurrence of highly variable brain states has
also been associated with better performance on behavioral
measures of executive function including cognitive flexibility
(Nomi et al. 2017b). Although greater dynamic brain flexibility is
increasingly being associated with younger age and enhanced
cognitive performance, there is little known about variability in
brain dynamics supporting cognition across age. For example,
growing evidence suggests individuals have varying “brain ages,”
resulting in differences in functional brain maturity among
age-matched individuals (Dosenbach et al. 2010). Therefore,
age-related changes associated with brain network dynamic
variability and cognitive flexibility require further investigation
(Cohen 2018) as they may provide potential markers of risk
for, and resilience to, age-related cognitive decline across the
lifespan.

Within and between network connectivity among the
midcingulo-insular network (M-CIN; also known as salience),
medial frontoparietal network (M-FPN; also known as default),
and lateral frontoparietal network (L-FPN; also known as
executive control) (Uddin et al. 2019) has also been shown to
be important for aging (Ryali et al. 2016; Chand et al. 2017), and
cognitive and neural flexibility (Uddin et al. 2011; Chen et al.
2016). The M-CIN is involved in interoceptive, affective, atten-
tion, and control processes associated with subjective salience;
the L-PFN is involved in executive control and modulating goal-
oriented behaviors and decisions; and the M-FPN is involved in
self-related processes and social cognition (Uddin et al. 2019).
Together, these networks support various functions important
for adaptation across the lifespan (Masten and Obradovic 2006;
Touroutoglou et al. 2018). A longer dwell time within certain
states of the M-CIN, M-FPN, and L-FPN has been associated with
less flexibility in children’s brain dynamic repertoires compared
with young adults (Ryali et al. 2016). Greater flexibility within
these networks may therefore account for improved behavioral
performance across development. In older age, extant literature
suggests weaker modulation occurs among the M-FPN and L-
FPN, resulting in the greater reliance on crystallized knowledge,
and weaker fluency skills (Turner and Nathan Spreng 2015;
Spreng et al. 2018). Furthermore, temporal variability specifically
of the M-CIN has been shown to uniquely predict individual
differences in cognitive flexibility in young adults (Chen et al.
2016). Conversely, higher M-FPN and L-FPN functional dynamics
during the resting-state have been associated with poorer cogni-
tive flexibility (Douw et al. 2016). Overall, dynamic relationships
among the M-CIN, M-FPN, and L-FPN appear to be important
contributors to cognitive flexibility across the lifespan.

Despite its importance to optimal lifespan development, no
previous studies have characterized brain network dynamics
supporting cognitive flexibility from childhood to older adult-
hood. This study provides a novel framework for understand-
ing the relationship between brain dynamics and cognitive

Table 1 Participant Demographics

N=601; mean +sd (min—max)

Age (year) 37.22420.73 (6.18-85.62)

Gender 239 M 361F 1NR

Mean FD (mm) 0.25 +0.09 (0.08-0.50)

Ethnicity 514 (not Hispanic or Latino) 86
(Hispanic or Latino) 1 NR

Race 4 (1) 46 (2) 116 (3) 1 (4) 417 (5) 16 (6)
1(NR)

CWIT inhibition/switching 62.80+17.89 (32-146)

total completion time

CWIT inhibition/switching 1.92+2.24 (0-22)

total errors

TMT number-letter switching
total completion time

VF switching total correct

81.70 + 38.79 (25-240)

13.49+3.20 (4-23)

Note: SD, standard deviation; M, male; F, female; NR: no response; 1: American
Indian or Native Alaskan; 2: Asian; 3: Black or African American; 4: Native
Hawaiian or Other Pacific Islander; 5: White; 6: Other Race; CWIT, Color-Word
Interference Test; TMT, Trail Making Test; VF, Verbal Fluency.

flexibility and may lend insight into neuropsychiatric disorders
and resilience in typical development and aging. Previous
studies have found both linear and quadratic relationships
across the lifespan related to cognitive flexibility and brain
dynamics when examining within- and between-network
associations (Grady et al. 2006; Wang et al. 2012; Betzel et al. 2014;
Cao et al. 2014; Nomi et al. 2017a). To extend previous findings,
we examined the hypotheses that between-network dynamics
among the M-CIN, M-FPN, and L-FPN exhibit a quadratic
trajectory across the lifespan. To examine if varying levels of
brain dynamics supports optimal cognitive flexibility across
the lifespan, we also tested the hypothesis that brain dynamics
among these three large-scale networks interact with age to
enable cognitive flexibility changes associated with healthy
aging. Specifically, we hypothesized that greater brain dynamic
flexibility as indexed by dwell time, frequency of occurrence,
and transitions between states would be associated with greater
cognitive flexibility across the lifespan.

Methods

Neuroimaging, phenotypic, and behavioral data collected from
601 healthy adult participants were downloaded from the
Enhanced Nathan Kline Institute.

(NKI)-dataset (http://fcon_1000.projects.nitrc.org/indi/enha
nced/). Participants were selected according to the following
inclusion criteria: 1) availability of neuroimaging and behavioral
data, 2) no current or past DSM-diagnosis for psychiatric
disorders and/or attention deficit hyperactivity disorder, and
(3) resting-state fMRI data head motion <0.5 mm. See Table 1
for participant information and Supplementary Figure S1 for
information about the age distribution included in this study.
The study was approved by the NKI institutional review board
and all participants provided informed consent. Written consent
and assent was collected from child participants and their legal
guardian (Nooner et al. 2012)

MRI and Behavior Protocol

Participants were assessed during a 1- or 2-day examination by
trained experts. Details of the MRI and behavioral assessment
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procedures can be found at http://fcon_1000.projects.nitrc.org/i
ndi/enhanced/mri_protocol.html, and http://fcon_1000.projects.
nitrc.org/indi/enhanced/assessments.html, respectively. Some
participants were missing behavioral data for certain measures
and were omitted when necessary. Additionally, children below
the age of 8 years (n=7) were not administered the executive
function tests, as the test battery is only valid in 8-89 year
olds (Delis et al. 2001). These children were excluded from the
analyses with behavioral measures of executive function.

Cognitive Flexibility Measures

Participants were administered the Delis-Kaplan Executive
Function System (D-KEFS), a series of neuropsychological tests
designed to measure executive functions in children and adults
between the ages of 8-89 (Delis et al. 2001). The commonly used
cognitive flexibility tests within the D-KEFS include the Color-
Word Interference Task (CWIT), the Trail Making Test (TMT), and
the Verbal Fluency (VF) Task.

The CWIT is a modified Stroop task (Stroop and Ridley Stroop
1992) and consists of four conditions. The first two conditions
are similar to the Stroop interference task, and the last condition
involves Inhibition/Switching and is a commonly used cognitive
flexibility task (Bohnen et al. 1992; Mattson et al. 1999). In the
Inhibition/Switching condition, participants are presented with
a page containing the words “red,” “green,” and “blue,” written
in red, green, or blue ink. Some of the words are contained in
a box and the subject must switch between saying the color
of the ink (word is not inside a box) or the color of the word
(word inside a box). Participants are told to complete the task as
quickly as possible. Raw scores include the time to complete the
Inhibition/Switching condition in seconds and the total number
of errors made during the task. Higher scores indicate poorer
cognitive flexibility.

The TMT was created to isolate set-shifting abilities by
including baseline conditions such as visual scanning, number
sequencing, letter sequencing and motor speed (Fine et al.
2011). TMT also includes a Number-Letter Switching condition, a
commonly used cognitive flexibility task (Kleinhans et al. 2005;
Mcdonald et al. 2005; Yochim et al. 2007). During the Number-
Letter Switching condition, participants switch back and forth
between connecting numbers and letters (i.e, 1, A, 2, B etc.,)
(Yochim et al. 2007). They are instructed to connect the numbers
and letters as quickly as possible. The raw score measure for
the Number-Letter Switching task is the total time to complete
the task in seconds. Higher scores indicate poorer cognitive
flexibility.

The VF test requires participants to generate words begin-
ning with a letter (phonemic fluency) or from a category (cate-
gory fluency). The VF task also includes a Category Switching
condition where participants alternate between saying words
from two different semantic categories. The Category Switching
condition is a commonly used task to study cognitive flexibility
(de Paula et al. 2015; Ramanan et al. 2015). In the switching
condition, participants are told to produce as many words within
60 seconds. The VF category switching raw score is the total
correct number of responses and a higher score indicates better
cognitive flexibility.

MRI Data Acquisition

A Siemens Trio 3.0 T scanner was used to obtain the func-
tional images. Multiband (factor of 4) echo-planarimage
(EPI) sequenced resting-state images (rsfMRI; TR=1400 ms,

TE=30 ms, flip angle 65°, field of view (FOV) 224 mm, voxel
size=2x2x2 mm, 64 interleaved slices, 404 volumes) were
applied for the acquisition of the functional images. Participants
were instructed to keep their eyes open and fixate on a cross in
the center of the screen during the 9-min 19-s rsfMRI scan. For
detailed MRI protocol see: http://fcon_1000.projects.nitrc.org/i
ndi/enhanced/mri_protocol.html.

Neuroimaging Data Preprocessing and Postprocessing

The resting-state fMRI data were preprocessed using the Data
Preprocessing Assistant for Resting-State fMRI Advanced edition
(DPARSF-A, Yan and Zang, 2016), which uses FSL, SPM-12 (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/),and AFNI https://a
fni.nimh.nih.gov (Cox 1996). The preprocessing steps were the
following: removal of the first 5 volumes to allow scanner signal
to reach equilibrium, despiked using AFNI 3dDespike, realign-
ment, normalization to 3 mm MNI template, and smoothing
(6 mm FWHM) (Espinoza et al. 2019).

Independent component analysis (ICA) was conducted using
FSL's MELODIC by means of automatic dimensionality estima-
tion (Nomi et al. 2017a; Espinoza et al. 2019). The ICA-FIX clas-
sifier was trained on hand-classified independent components
separated into noise and non-noise categories using randomly
chosen participants (n=24) across the lifespan (Griffanti et al.
2014; Nomi et al. 2017b). The ICA-FIX classification algorithm
was applied to the data (FSL's ICA-FIX; (Griffanti et al. 2014)
to classify noise and non-noise components from individual
subject data before conducting nuisance regression of classi-
fied noise components from the resting-state scans in MNI
space. The ICA-FIX fMRI data then underwent nuisance covari-
ance regression (linear detrend, Friston 24 motion parameters
(6 motion parameters of each volume, the preceding volume,
and the 12 corresponding squared items) (Friston et al. 1996),
global mean signal, followed by bandpass filtering (0.01-0.10 Hz)
(Damoiseaux et al. 2006). Preprocessing and postprocessing were
additionally conducted without global mean signal regression
(GSR) to assess the effect of this step on subsequently derived
metrics, as there is yet no consensus regarding the extent to
which this step removes neural signal in addition to noise (Uddin
2020a).

Nine regions-of-interest (ROIs) representing the three large-
scale networks (Uddin et al. 2011) were selected (Table 2), includ-
ing the right and left fronto-insular cortex (rFIC) and anterior
cingulate cortex (ACC) of the M-CIN; right and left dorsolateral
prefrontal cortex (rDLPFC) and right and left posterior parietal
cortex (rPPC) of the L-FPN; and the ventromedial prefrontal cor-
tex (VMPFC) and posterior cingulate cortex (PCC) of the M-FPN.
These networks and regions were chosen because of previous
work demonstrating their functional roles in flexible cognition
(Uddin et al. 2011) and aging (Ryali et al. 2016; Chand et al.
2017). Additionally, these ROIs have long been recognized as
critical nodes in the three neural networks (Seeley et al. 2007;
Menon and Uddin 2010; Chand et al. 2017) and as evidenced
by recent ICA group analyses (Marshall et al. 2020; Kupis et al.
2021). A trained research assistant examined all ROIs in older
participants (= 70-85 years), the years where the most marked
changes in brain atrophy can occur (Scahill et al. 2003), to ensure
the masks were within the cerebral cortex for each individual
subject.

Co-Activation Pattern Analysis

For each individual subject, time series extracted from the nine
ROIs were converted to z-statistics and then concatenated into
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Table 2 Coordinates of M-CIN, M-FPN, and L-FPN regions

Network Region BA Peak MNI coordinates (mm)
M-CIN rFIC 47 39,23, -4
IFIC 47 —34,20, -8
ACC 24 6, 24,32
L-FPN rDLPFC 9 46, 20, 44
IDLPFC 9 —46, 20, 44
rPPC 40 52, 52, 50
1PPC 40 —40, 56, 44
M-FPN VMPFC 11 -2,38,-12
PCC 23/30 —6, —44, 34

one matrix containing all subjects [(399 TR x 601 subjects) x 9
ROIs], following previous studies (Hutchison and Morton 2015;
Kupis et al. 2020). Both children and adults were included due to
prior evidence suggesting the brain’s repertoire of states are gen-
erally preserved across age (Hutchison and Morton 2015). The
matrix was then subjected to k-means clustering to determine
the optimal number of clusters. The elbow criterion was applied
to the cluster validity index (the ratio between within-cluster
to between-cluster distance) for values of k=2-20 to determine
the optimal value of k=5 (Supplementary Figure S2) (Liu et al.
2013).

K-means clustering using a squared Euclidean distance was
then applied to the matrix using the optimal k=5 to produce
5 co-activation pattern (CAP) “brain states.” The CAP metrics
included: a) dwell time, calculated as the average number of
continuous TRs that a participant stayed in a given brain state,
b) frequency of occurrence of brain states, calculated as an
overall percentage that the brain state occurred throughout the
duration of the scan compared with other brain states, and c)
the number of transitions, calculated as the number of switches
between any two brain states.

In the processing pipeline including the data without GSR,
k-means analysis was again conducted to obtain the optimal k,
determined to be k=5.

Statistical Analysis

To test our first hypothesis that the dynamic network integra-
tion among networks important for cognitive flexibility differs
across age, linear and quadratic regressions were conducted
with Age and Age?, predicting the dynamic brain state metric
(dwell time, frequency, and transitions) for each CAP. Covariates
included head motion and sex. Age? was included due to prior
evidence revealing age has a quadratic or curvilinear relation-
ship with certain brain regions and networks (DuPre and Nathan
Spreng 2017; Chen et al. 2018). Overall, this model was conducted
to extend prior “static” results by using dynamic brain network
states.

¥ =Bo +B1(Age) + B2 (Age?) + By (Covariates).

To test our second hypothesis that brain dynamics moderate
the relationship between age and cognitive flexibility, hierarchi-
cal multiple regressions were conducted. Hierarchical multiple
regression analysis includes adding variables into the model in
separate steps (Francis et al. 1975). In the first step, Age and
Age? were included as predictors of cognitive flexibility, with sex
and mean FD included as covariates. This tested for quadratic
relationships between age and cognitive flexibility before the
moderation analysis were conducted. In the second step, the

brain dynamic metric (dwell time, frequency, and transitions)
for each CAP was included as a predictor. In the last step,
the interaction between Age and the dynamic metric and the
interaction between Age? and the dynamic metric were included
into the regression analysis. Brain dynamics were tested as the
moderator in this study due to the idea that there may be
variability in brain functioning among subjects of the same age
(Dosenbach et al. 2010). This approach supports assessing vari-
ability in brain dynamics associated with cognitive flexibility
across the lifespan, while still revealing age-related changes.
The cognitive flexibility measures used were the CWIT Inhibi-
tion/Switching, the TMT Color/Number Switching, and the VF
Category Switching raw scores. Following significant interac-
tions, the simple slopes were examined to aid interpretation.
Simple slopes were computed to explore the effect of Age? on
the cognitive flexibility measure at three different levels of the
moderator as represented by the brain dynamic metric (i.e.,
at —1 SD below the mean, at the mean, and at +1 SD above
the mean). All analyses were conducted using R (Computing
and Others 2013) (https://www.R-project.org/) and all analyses
are publicly available (https://github.com/lkupis/lifespan_Dyna
mics). Additional analyses were also conducted with more ROIs
using the Schaefer parcellation (Schaefer et al. 2018), and are
available in the Supplementary Materials.

¥ =By +B1(Age) + By(Age?) + B, (Covariates) [Step 1]
¥ =Bo +B1(Age) + B2 (Age?) + B3(Brain Dynamic)
+ Bp(Covariates) [Step 2]

¥ =By +B1(Age) + B2 (Age?) + B3(Brain Dynamic)
+B1(Age x Brain Dynamic) + B2(Age? x Brain Dynamic)
+ Bp(Covariates) [Step 3]

Results
Recurrent CAP Analysis

Results from the CAP analysis among the M-CIN, L-FPN, and M-
FPN are presented in Figure 1. The first brain state (CAP 1) was
characterized by stronger co-activation among the M-FPN nodes
relative to the L-FPN and M-CIN. The second brain state (CAP
2) was characterized by co-activation among the M-CIN nodes.
The third brain state (CAP 3) was characterized by co-activation
among the M-CIN and the M-FPN. The fourth brain state (CAP 4)
was characterized by co-activation among the L-FPN and M-CIN.
The last brain state (CAP 5) was characterized by co-activation
among the L-FPN and M-FPN.
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CAP Analysis without Global Signal Regression

Results from the CAP analysis using data without GSR are pre-
sented in Supplementary Figure S3. The resulting CAPs revealed
the influence of the global signal, notably in CAPs 1 and 2.
CAP 1 shows all nodes with inactivity and CAP 2 shows all
nodes with activity representing the global signal across all
nodes. Prior work suggests that the decision to remove the
global signal or not depends on the scientific question, and
should be considered when interpreting the results (Murphy
and Fox 2017). The removal of the global signal as a prepro-
cessing step significantly mitigates artifacts from a variety of
sources (Power et al. 2017; Ciric et al. 2018). Although in some
cases the global signal can represent neuronal signal (Hyder and
Rothman 2010; Schélvinck et al. 2010); in the current dataset,
removal of the global signal was beneficial to revealing CAPs
associated with cognition. Therefore, all statistical analyses and
results presented are derived from data that was preprocessed
with GSR.

Associations between Brain Dynamics and Quadratic
Effects of Age

Curvilinear regressions were conducted with Age and Age? pre-
dicting the brain dynamic metric for each brain state (CAP 1-
5), while controlling for sex and mean FD. There was a posi-
tive quadratic effect of age when predicting the frequency of
CAP 3, characterized by co-activation among the M-CIN and
M-FPN, 8 = 0.42, b=<0.001, SE =< 0.001, P=0.030, uncorrected.
CAP 3 occurred less frequently as age increased, but increased
in occurrence with older age (see Fig. 2A). There was also a
negative quadratic effect of age when predicting the frequency
of CAP 5, characterized by co-activation among the L-FPN and
M-FPN, 8 = —0.40, b= <0.001, SE = < 0.001, P=0.037, uncorrected.
CAP 5 occurred more frequently as age increased; however, it
decreased with older age (see Fig. 2B). Lastly, there was a pos-
itive quadratic effect of age predicting the dwell time of CAP
4, characterized by co-activation among the M-CIN and L-FPN,
B =0.37,b=<0.001, SE = < 0.001, P=0.053, uncorrected. The dwell
time of CAP 4 decreased with age, and increased with older age
(see Fig. 2C).

Main Effects of age ? and Brain Dynamics Predicting
Cognitive Flexibility

Age, Age?, and the brain dynamic metric were included in steps
1 and 2 of the hierarchical regression analyses. There were
significant quadratic effects of age for the cognitive flexibil-
ity measures including the CWIT total errors raw score, TMT
completion time raw score, and VF total correct number of
responses raw score (P's <0.001), but not for CWIT completion
time raw score (P’s > 0.05). The brain dynamic metrics were not
significant predictors of cognitive flexibility when included into
the regression equations (P’s > 0.05).

Interactions between Age and Brain Dynamics
Predicting Cognitive Flexibility

There were multiple significant interactions between the
dynamic brain states and Age? predicting cognitive flexibility
(Supplementary Table S1). Only the significant interactions
that survived Bonferroni correction ((.05/10)=0.005) will be
discussed. The dwell time of CAP 5, characterized by co-
activation among the L-FPN and M-FPN, moderated the
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relationship between the quadratic effect of age and cognitive
flexibility (TMT switching completion time), b=0.02, SE=0.01,
P=0.002. Simple slope analyses indicated there was a significant
slope between Age? and TMT switching completion time at low
(~1 SD), b=0.02, SE=0.01, P=0.003, average, b=0.03, SE=0.004,
P=<0.001, and high (+1 SD), b=0.04, SE=0.01, P <0.001 CAP
5 dwell times. A low CAP 5 dwell time was associated with
improved cognitive flexibility across the lifespan; Average CAP
5 dwell time consisted of slightly poorer cognitive flexibility at
young and older ages and improved cognitive flexibility mid age.
A higher CAP 5 dwell time was associated with poorer cognitive
flexibility at younger and older ages and improved cognitive
flexibility performance during mid-age. Although the simple
slopes were significant at low, average, and high levels of CAP
5 dwell time, examination of the slopes in Figure 3A further
revealed the effect was minimal at a low level (Li 2018). Overall,
the dynamics of a brain state consisting of co-activation among
the L-FPN and M-FPN moderated the relationship between
cognitive flexibility with Age? (see Fig. 3A).

The number of brain state transitions also moderated the
relationship between the quadratic effect of age and cogni-
tive flexibility for TMT switching completion time, b=-0.001,
SE=<0.001, P=0.005. Simple slope analyses indicated there was
a significant slope between Age? and TMT switching comple-
tion time at low (-1 SD), b=0.04, SE=0.01, P=<0.001, aver-
age, b=0.03, SE=0.004, P=<0.001, and high (+1 SD), b=0.02,
SE=0.01, P=0.001, transitions. Simple slopes analyses indicated
that greater numbers of transitions were associated with stable/-
good cognitive flexibility throughout the lifespan, with a reduc-
tion in cognitive flexibility around mid-age. In both average
and low transitions, cognitive flexibility was poorer in younger
and older ages, but peaked during mid-age. Overall, transitions
moderated the relationship between cognitive flexibility and
Age? (see Fig. 3B).

Discussion

Cognitive flexibility is an important executive function enabling
optimal outcomes in academic achievement, transitions into
adulthood, quality of life, and resilience to negative life events
(Uddin 2021). Examining brain dynamic changes across the
lifespan aids the understanding of the neural mechanisms
underlying optimal and flexible cognition (Grady and Garrett
2014) and may inform studies of cognitive (Zhang et al.
2020a) and neuropsychiatric disorders (Rabany et al. 2019;
Uddin 2020b). The large-scale networks known as the M-
CIN (salience), L-FPN (executive), and M-FPN (default), are
thought to be important for flexible cognition (Uddin et al.
2011; Qin et al. 2015) across aging (Chand et al. 2017; Adnan
et al. 2019a). The present study examined brain dynamics
among the M-CIN, L-FPN, and M-FPN as they relate to lifespan
development, and as a moderator between age and cognitive
flexibility.

The present study revealed five recurring CAP (CAPs or
“brain states”) involving the M-CIN, L-FPN, and M-FPN across
the lifespan. Quadratic relationships were observed between
age and the brain dynamic metrics, primarily within hybrid
brain states characterized by between-network coupling.
Furthermore, brain dynamics moderated the relationship
between a quadratic effect of age and cognitive flexibility. We
demonstrate differences in intrinsic brain network dynamics
across aging associated with cognitive flexibility, specifically
within the M-FPN/L-FPN co-activation state (CAP 5), and brain
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Figure 1. Top: CAPs or brain states from dynamic CAP analysis. CAP 1 was characterized by stronger co-activation among the M-FPN nodes relative to the L-FPN and
M-CIN. CAP 2 was characterized by co-activation among the M-CIN nodes. CAP 3 was characterized by co-activation among the M-CIN and the M-FPN. CAP 4 was
characterized by co-activation among the L-FPN and M-CIN. Lastly, CAP 5 was characterized by co-activation among the L-FPN and M-FPN. Bottom: Graphical brain
representation of each CAP as demonstrated by the ROIs. Note: PCC, posterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; 1PPC, left posterior parietal
cortex; rPPC, right posterior parietal cortex; IDLPFC, left dorsolateral prefrontal cortex; rDLPFC, right dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; IFIC,
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Figure 2. Positive and negative quadratic effects of age (years) predicting dynamic brain metrics for specific CAPs. For all graphs, regression coefficients from the
regression lines of quadratic effects of age predicting each dynamic brain state were plotted. Y-axes were z-scored to facilitate interpretation across graphs. For
A and B, a negative value represents lower frequency of occurrence compared with the average, whereas positive values represent greater frequency of occurrence
compared with the average. (A) A positive quadratic relationship among age and CAP 3 freq of CAP3 d freq ly during childt
in frequency during young adulthood, and i d in again tt middle- to older adulthood. CAP 3 consisted of co-activation among the M-CIN
(salience) and the M-FPN (default). (B) A negative quadratic relationship among age and CAP 5 frequency of occurrence. CAP 5 occurred less frequently during childhood,
increased in frequency during young- and middle-adulthood, and decreased again in freq 'y in older adulthood. CAP 5 ¢ d of co-activation among the L-FPN
(executive) and M-CIN. Lastly, (C) A positive quadratic relationship among age and CAP 4 dwell time. CAP 4 exhibited longer dwell times during childhood, shorter dwell
times during young- and middle-adulthood, and longer dwell times again in older adulthood. CAP 4 consisted of co-activation among the L-FPN and M-FPN. In A, B,
and C, children and older adults had similar brain dynamic patterns for each CAP, whereas young adults had different brain dynamic patterns. For example, in B, CAP

S occurred less frequently in early childhood and older adulthood, but occurred more frequently in early adulthood.

network transitions. We found that a greater M-FPN/L-FPN
dwell time in children and older adults was associated with
poorer cognitive flexibility. Furthermore, greater brain state
transitions in children and older adults was associated with
better cognitive flexibility, consistent with prior observations
(Grady and Garrett 2014; Battaglia et al. 2020). Mid-adulthood,
however, was associated with different dynamic patterns
associated with optimal cognitive flexibility. This age represents
a change in cognition from greater fluid to semantic abilities
(Park et al. 2001). Our findings suggest children and older
adults are most vulnerable to cognitive flexibility deficits,
however, a “deficit” in children is defined by having worse
cognitive flexibility compared with age-matched peers, with the
potential of improvement in adulthood. Cognitive inflexibility
in children and adults was associated with brain dynamic
alterations among the M-CIN, M-FPN, and L-FPN based on time
spent in the hybrid M-FPN/L-FPN state and variability in state
transitions.

U-Shaped Trajectories of between-Network Dynamics

Previous studies have demonstrated quadratic effects of age
associated with between-network connections (Betzel et al.

2014; Cao et al. 2014). Prior studies are consistent with our
findings of quadratic or U-shaped trajectories in between-
network dynamics among three large-scale brain networks of
the M-CIN, L-FPN, and M-FPN (Chen et al. 2018). We found the
brain state consisting of co-activation of the M-CIN and M-FPN
(CAP 3) decreased in frequency of occurrence during middle
adulthood but increased during both childhood and older
adulthood. Functional connectivity between the M-CIN and M-
FPN has been previously shown to be associated with greater
cognitive control (jilka et al. 2014), behavioral performance
on cognitive tasks (Putcha et al. 2016), and memory in older
adults (Zhang et al. 2020b). Additionally, there is evidence that
coupling between the M-FPN and M-CIN may be an intermediary
“switching mechanism” prior to later M-FPN and L-FPN coupling
(Beaty et al. 2016), potentially underlying greater use of semantic
or crystallized knowledge (Spreng and Turner 2019).

Previous work examined M-CIN and M-FPN connections
using static functional connectivity approaches, whereas we
explored the relationship using dynamic or time-varying
methods. Therefore, dynamic interactions between the M-CIN
and M-FPN may be critical to further assess in relation to
previous static functional connectivity findings. Furthermore,
we expand upon previous findings by demonstrating increased
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Figure 3. Brain dynamics moderate the relationship between age and cognitive flexibility: simple slopes. The interactions presented in A and B were between Age? and
the brain dynamic metrics for CAP 5 and brain state transitions; however, they are presented across age (years) for visual purposes. Additionally, the simple slopes for
both interactions are presented to visually determine the effect of age on the cognitive flexibility across three di levels of the mod: as

by the brain dynamic metric (i.e., —1 SD below the mean, at the mean, and + 1 SD above the mean). Additionally, the y-axes were reversed and standardlzed so better
cognitive flexibility is at higher ends (the top) and poorer cognitive flexibility is at lower ends (the bottom) of the y-axes. (A) The CAP S dwell time (DT) moderated
the relationship between Age? and the TMT Switching condition (total time to complete the task) as represented by the simple slopes. CAP 5 is characterized by co-
activation among the L-FPN (executive control) and M-FPN (default). Children and older adults who spent a longer time in CAP 5 had poorer cognitive flexibility, whereas
younger adults had optimal cognitive flexibility regardless of their CAP 5 brain dynamics. Similar findings were seen at average levels of CAP 5 dwell time. Children
and older adults who spent less time in CAP 5 had optimal cognitive flexibility relative to those with average and greater time spent in CAP 5, whereas younger
adults had poorer, yet still optimal, cognitive flexibility. (B) The number of transitions moderated the relationship between Age? and the TMT switching condition
(total time to complete the task) as represented by the simple slopes. Children and older adults who had fewer brain state transitions had poorer cognitive flexibility,
whereas younger adults had optimal cognitive flexibility at average and fewer transitions. Similar findings were seen across individuals with average numbers of brain
state transitions. Children and older adults with greater brain state transitions had optimal cognitive flexibility relative to those with average and fewer brain state

transitions, whereas young adults had poorer cognitive flexibility.

dynamic interactions or frequency of occurrence of the M-CIN
and M-FPN state is associated with older age and development.
This may be due to its role as an intermediary switching
mechanism prior to M-FPN and L-FPN connections, which
is greater in older adults (Spreng and Turner 2019). Thus,
M-CIN/M-FPN coupling may occur more frequently prior to
M-FPN/L-FPN coupling. Within- and between-brain network
integration increases with age, therefore, brain network
variability between certain brain networks may be greater in
children due to less integration (Gu et al. 2015; Kundu et al.
2018). Furthermore, connectivity with the M-FPN is important
for brain network development (Dosenbach et al. 2010). Together,
the M-CIN/M-FPN hybrid state exhibits a quadratic trend across
the lifespan, and children and older adults may be more
likely to enter this state prior to engaging other functional
configurations.

Similarly, we found the co-activation between the L-FPN and
M-CIN (CAP 4) decreased in dwell time during middle adult-
hood and increased during childhood and older adulthood. The
effect size for this finding was moderate (8 = 0.37) (Schifer
and Schwarz 2019). Previous work demonstrates the M-CIN may
independently act as a switching mechanism between the M-
FPN and L-FPN (Goulden et al. 2014). In children and older adults,
a longer time was spent in the L-FPN/M-CIN state during a
task-free environment, suggesting the M-CIN related switching
mechanism may not be fully developed in children (Uddin et al.
2011), and may be “stickier” or less efficient in older adults. Con-
versely, middle-aged-adults dwelled less in this state, potentially

due to having greater brain state transitions and variability than
children and older adults (Grady and Garrett 2014; Ryali et al.
2016; Xia et al. 2019).

Lastly, we found the connection between the L-FPN and M-
FPN decreased in frequency of occurrence during childhood
and older adulthood and increased during middle adulthood.
Although reliance on semantic knowledge and subsequently
greater M-FPN/L-FPN connections is not as prevalent in mid-
adulthood, evidence suggests mid-adulthood is characterized
by the intersection of greater reliance on semantic knowledge
while fluency abilities are still retained (Park et al. 2001; Spreng
and Turner 2019). Therefore, the M-FPN/L-FPN state may still
occur in middle adulthood and may occur more frequently due
to there being more flexible brain dynamics compared with
older adults and children.

Together, our results demonstrate that hybrid between-
network dynamics in certain brain states exhibit quadratic
relationships across age, and may underlie the cognitive
changes observed through development and aging. Our results
are in line with behavioral studies of cognitive flexibility, which
reveal cognitive flexibility takes an inverted U-shaped trend
across the lifespan (Cepeda et al. 2001; Zelazo et al. 2014).
Cognitive flexibility increases throughout childhood and into
adulthood, and declines in older age (Cepeda et al. 2001; Zelazo
et al. 2014). Although the frontoparietal regions are overall
thought to support these changes (Gogtay et al. 2004; Luna
et al. 2010), we extend this prior work by revealing between-
network dynamic coupling among the M-CIN, M-FPN, and L-FPN
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may also facilitate changes associated with cognitive flexibility
across aging.

Brain Dynamics as a Moderator of Age and Cognitive
Flexibility: L-FPN and M-FPN

We examined brain dynamics as a moderator between quadratic
effects of age and cognitive flexibility to directly examine
how brain dynamics among networks impact the relationship
between aging and cognitive flexibility (Dajani and Uddin 2015).
First, the brain state characterized by co-activation among the
L-FPN and M-FPN moderated the relationship between the
quadratic effect of age and cognitive flexibility as measured
by the TMT. This finding was also replicated using more
regions of interest within the M-FPN, L-FPN, and M-CIN (see
Supplementary Materials). Emerging evidence suggests that
greater connectivity between the M-FPN and L-FPN is a central
feature of neurocognitive aging (Spreng and Schacter 2012;
Turner and Nathan Spreng 2015; Spreng et al. 2018; Adnan
et al. 2019a; Adnan et al. 2019b), termed the “default-executive
coupling hypothesis of aging” (DECHA) (Turner and Nathan
Spreng 2015; Spreng et al. 2018). Relatedly, at each end of the
lifespan, behavioral evidence suggests that cognitive flexibility
performance is poorer in both childhood and older adulthood
(Cepeda et al. 2001; Ridderinkhof et al. 2002; Wasylyshyn et al.
2011; Dajani and Uddin 2015).

Consistent with DECHA and behavioral evidence associated
with cognitive flexibility across aging, we show individuals with
greater M-FPN/L-FPN dwell time, or individuals with less mod-
ulation of the M-FPN and L-FPN, perform worse on cognitive
flexibility tasks than older individuals with average or shorter
CAP 5 (M-FPN/L-FPN) dwell time. Although the DECHA model
has primarily been applied to older individuals, we additionally
found evidence that a greater CAP 5 dwell time is associated with
cognitive inflexibility during childhood. This may contribute to
the poorer performance on cognitive flexibility tasks observed
during childhood (Dick 2014; Buttelmann and Karbach 2017).
Additionally, previous evidence suggests there is less flexibility
among the M-CIN, M-FPN, and L-FPN during childhood (Ryali
et al. 2016). Our results extend this finding by relating reduced
network flexibility (M-FPN and L-FPN) with reduced cognitive
flexibility. Furthermore, our findings suggest that older adults
are more severely impacted by reduced M-FPN/L-FPN modu-
lation than children. Overall, our findings support the DECHA
model of aging, and extend previous work by revealing M-FPN/L-
FPN coupling is associated with cognitive flexibility during both
childhood and aging.

Furthermore, our results demonstrate different neural pat-
terns associated with cognitive flexibility during mid-adulthood
compared with older adults and children. This finding suggests
that a greater M-FPN/L-FPN dwell time may be beneficial to
cognitive flexibility during mid-adulthood. Additionally, average
and reduced M-FPN/L-FPN dwell time during mid-adulthood
were also associated with higher levels of cognitive flexibility.
Mid-adulthood has previously been shown as a turning point of
declining cognitive control and increased reliance on semantic
(crystallized) knowledge (Park et al. 2001). However, there is
evidence that fluid skills are declining yet intact, while semantic
knowledge is increasing, and may actually bolster cognition (Li
et al. 2015; Samanez-Larkin and Knutson 2015). Therefore, mid-
adulthood has been seen as an optimal period for decision-
making (Samanez-Larkin and Knutson 2015; Spreng and Turner
2019) due to the ability to integrate both fluid and semantic
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knowledge. Overall, our results reflect this idea and demonstrate
mid-adulthood is associated with optimal cognitive flexibility
that may additionally be aided by semantic knowledge.

Brain Dynamics as a Moderator of Age and Cognitive
Flexibility: Transitions

We found that the number of brain state transitions moder-
ated the relationship between a quadratic effect of age and
cognitive flexibility. This finding was also replicated using addi-
tional regions of interest within the M-FPN, L-FPN, and M-CIN
(see Supplementary Materials). Specifically, a greater number of
brain state transitions was associated with stable or high cog-
nitive flexibility across the lifespan. As expected, average and
lower number of brain state transitions were associated with
poorer cognitive flexibility during childhood and older adult-
hood, consistent with the literature (Hutchison and Morton 2015;
Xia et al. 2019; Battaglia et al. 2020). Our findings suggest that
the childhood and the older adulthood stages of life are most
vulnerable to reduced brain state transitions associated with
poorer cognitive flexibility compared with mid-adulthood. This
finding has implications for development during both child-
hood and older adulthood. Overall, our findings demonstrate
direct relationships between brain dynamics associated with
age and cognitive flexibility changes across the lifespan (Uddin
2021).

Conclusion

Using CAP analysis, we identified brain states characterized by
between- and within-network connectivity of neural networks
important for cognitive flexibility. We discovered that between-
network dynamics of a state characterized by co-activation
among the M-FPN and L-FPN, and brain state transitions,
moderated the relationship between aging and cognitive
flexibility. Our results reveal dynamic brain mechanisms
contributing to poorer cognitive flexibility in youth and older
individuals. Preventative measures and interventions should
prioritize strategies targeting brain dynamics among the M-CIN,
M-FPN, and L-FPN, and focus on cognitive flexibility training to
promote optimal outcomes across the lifespan.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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ARTICLE INFO ABSTRACT

Objective: Brain dynamics underlie flexible cognition and behavior, yet little is known regarding this relationship
in autism spectrum disorder (ASD). We examined time-varying changes in functional co-activation patterns
(CAPs) across rest and task-evoked brain states to characterize differences between children with ASD and
typically developing (TD) children and identify relationships with severity of social behaviors and restricted and
repetitive behaviors.

Method: 17 children with ASD and 27 TD children ages 7-12 completed a resting-state fMRI scan and four runs
of a non-cued attention switching task. Metrics ind. brain dy ics were g d from dy ic CAPs
computed across three major large-scale brain networks: midcingulo-insular (M-CIN), medial frontoparietal (M-
FPN), and lateral frontoparietal (L-FPN).

Results: Five time-varying CAPs representing dynamic co-activations among network nodes were identified
across rest and task fMRI datasets. Significant Diagnosis x Condition interactions were observed for the dwell
time of CAP 3, representing co-activation between nodes of the M-CIN and L-FPN, and the frequency of CAP 1,
representing co-activation between nodes of the L-FPN. A significant brain-behavior association between dwell
time of CAP 5, representing co-activation between nodes of the M-FPN, and social abilities was also observed
across both groups of children.

Conclusion: Analysis of brain co-activation patterns reveals altered dynamics among three core networks in
children with ASD, particularly evident during later stages of an attention task. Dimensional analyses demon-
strating relationships between M-FPN dwell time and social abilities suggest that metrics of brain dynamics may
index individual differences in social cognition and behavior.

Keywords:

Attention

Cognitive flexibility
Social cognition

Salience network

Default mode network
Central executive network
Set-shifting

1. Introduction connectivity to cognitive and behavioral profiles in ASD has yet to
emerge (Kana et al., 2014; Falahpour et al., 2016; Rane et al., 2015;

Vissers et al., 2012). To date, brain functional connectivity (FC) and co-

Autism spectrum disorder (ASD) is a prevalent neurodevelc 1

condition characterized by deficits in social communication and re-
stricted and repetitive behaviors (American Psychiatric Association,
2013) (RRBs), and associated with atypical brain connectivity (Chen
et al., 2017, 2018; Di Martino et al., 2011; Fishman et al., 2018; Keown
et al., 2013; Miiller and Fishman, 2018; Supekar et al., 2013; Mash
et al., 2019). Despite decades of neuroimaging research exploring brain
connectivity in ASD, a clear picture linking specific patterns of atypical

activation patterns among brain regions as measured with fMRI has
primarily been studied using “static” measures (Falahpour et al., 2016;
White and Calhoun, 2019). Static FC methods average the entire time
series across an fMRI scan, missing the opportunity to characterize
moment-to-moment changes in coupling between brain regions (Allen
et al., 2014; Calhoun et al., 2014). Recent FC research has used time-
varying dynamic approaches that examine how brain function may
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change over time (Chang and Glover, 2010) thereby better capturing
flexible aspects of brain systems (Allen et al., 2014).

Various methods exist to study dynamic, time-varying changes in
the brain, including dynamic functional connectivity (dFC) and time-
varying co-activation pattern analysis (CAP) (see Uddin & Karlsgodt
(Uddin and Karlsgodt, 2018) and Uddin (Uddin, 2020) for a review).
Dynamic FC most commonly capitalizes on the ‘sliding window’ ap-
proach (Chang and Glover, 2010). Despite its increasing use (Lurie
et al., 2020), a limitation of this approach is the examination of FC over
a fixed window length over which connectivity may fluctuate (Lurie
et al., 2020; Preti et al., 2017). Rather than relying on sliding windows,
CAP methods identify critical co-activating patterns that recur over
time (Liu and Duyn, 2013). CAP methods seek to identify co-activation
patterns by averaging time points with similar spatial distributions of
brain activity by using a k-means clustering algorithm applied either at
the whole-brain or region-of-interest (ROI) level (Liu et al., 2018).

Application of time-varying dynamic analyses to resting-state and
task-based fMRI has revealed brain states, or recurring patterns of ac-
tivity or connectivity (Allen et al., 2014; Liu et al., 2018), that can be
quantified using metrics such as dwell time, frequency of occurrence,
and number of transitions between states. Emerging evidence suggests
that flexible resting-state dynamics underlies behavioral adaptation,
enhancing the ability of the brain to dynamically reconfigure (Allen
et al., 2014; Bassett et al., 2011; Jia et al., 2014). Similarly, the degree
of brain network reconfiguration during a cognitive task has been de-
monstrated to relate to cognitive flexibility, or the ability to selectively
switch between mental processes and respond behaviourally (Braun
et al., 2015; Dajani and Uddin, 2015). Additional work comparing rest
and task-based fMRI data has led to discoveries of network common-
alities between the two, but also task-specific network changes (Bolt
et al., 2017; Cole et al., 2014).

Multiple studies indicate that dynamic brain states may be im-
portant for uncovering novel insights into various psychiatric disorders,
including ASD (Buckley et al., 2015; Uddin et al., 2015; Barttfeld et al.,
2012). State-specific changes across resting and task fMRI paradigms
may provide a more precise characterization of brain connectivity ab-
normalities in ASD, yet little research to date has concurrently ex-
amined both task and resting-state fMRI dynamics in ASD (Uddin et al.,
2015). For example, Barttfeld et al. (Barttfeld et al., 2012) found that
changes in the pattern of functional connectivity between individuals
with ASD and neurotypical individuals were state-dependent (inter-
oceptive and exteroceptive states). Additionally, the classification of
static FC using a support vector machine algorithm based on the dif-
ference between states outperformed classification using connectivity
of a single state (Barttfeld et al., 2012). The few resting-state fMRI
studies of brain dynamics have found atypicalities in individuals with
ASD using whole brain dFC. You et al. (You et al., 2013) found children
with ASD had transitions between unconstrained resting states to sus-
tained attention states characterized by widespread functional con-
nectivity among frontal and parietal regions in addition to atypical
modulation of distant connectivity during sustained attention relative
to rest. Hypervariant dynamic connections have been identified in
youth with ASD (Chen et al., 2017, 2018; Mash et al., 2019; Falahpour
et al., 2016), with associations to symptom severity in the domains of
both RRBs and social functioning (Chen et al., 2017, 2018; He et al.,
2018). Decreased state transitions and longer dwell times have also
been reported in children with ASD (de Lacy et al., 2017; Yao et al.,
2016; Rashid et al., 2018). Crucially, higher levels of ASD symptoms are
associated with longer dwell times and fewer transitions in globally
disconnected states (Rashid et al., 2018; Watanabe and Rees, 2017).
These results suggest that infrequent brain state switching and hyper-
variant dynamic connections might underlie the behavioral difficulties
seen in ASD (Falahpour et al., 2016; Harlalka et al., 2019).

Previous work has focused on whole-brain time-varying changes,
yet recent work has highlighted the importance of understanding
transient patterns within specific large-scale brain networks (Ciric
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et al., 2017). Specific brain areas have been identified in subserving
flexible behavior, including the midcingulo-insular network (M-CIN or
salience network), which mediates switches between the lateral fron-
toparietal network (L-FPN or central executive network) and the medial
frontoparietal network (M-FPN, or default mode network) (Uddin et al.,
2015, 2019). In ASD, it has been demonstrated that weak modulation of
brain states among these networks is associated with the severity of
RRBs (Uddin et al., 2015). Using time-varying approaches, atypical
dynamic interactions among these regions have additionally been re-
lated to social deficits (He et al., 2018). Further work has demonstrated
that decreased switching between brain states among the M-FPN and L-
FPN occurs within ASD populations and may be related to behavioral
inflexibility (de Lacy et al., 2017). Despite emerging evidence that M-
FPN, M-CIN, and L-FPN regions are critically involved in ASD pa-
thology, no studies have directly compared task-related (evoked) and
resting-state (intrinsic) time-varying relationships in ASD among these
three core neurocognitive networks.

Here we examine co-activation patterns among six key nodes of the
M-CIN, M-FPN, and L-FPN in children with and without ASD during
both task and resting states for the first time. We hypothesized that
children with ASD and typically developing (TD)/neurotypical children
would exhibit differences in dynamic brain state metrics such as fre-
quency of occurrence and dwell time across rest and task conditions.
We further expected to find relationships between metrics of brain
dynamics and parent-report measures of RRBs and social behaviors.

2. Methods
2.1. Participants

Participant enrollment included 35 children with ASD and 36 TD
children recruited from the University of Miami and the University of
Miami Center for Autism and Related Disabilities (CARD, http://
www.umcard.org/). Exclusionary criteria included 1) less than 10 min
of resting-state fMRI data 2) less than 4 usable task-fMRI runs 3) in-
cidental findings. Subjects were additionally excluded if they had > 1

mm mean framewise displacement (FD) or failed a visual Quality
Control inspection indicating that they had one or more visually iden-
tifiable artifacts including but not limited to: excessive motion, ringing,
blurring, ghosting, wrapping, signal loss, and head coverage. This re-
sulted in a final sample of 17 children with ASD (M = 9.95, SD = 1.51)
and 27 TD children (M = 9.79, SD = 1.88) that did not differ sig-
nificantly in gender, age, full scale IQ, and mean FD (p’s > 0.05)
(Table 1) (Power et al., 2014).

All participants underwent an initial phone screening followed by 1)
neuropsychological assessment at the University of Miami Autism
Spectrum Assessment Clinic (ASAC, http://www.umasac.org/) within
CARD, and a 2) mock MRI scanner training followed by functional and
structural brain imaging and completion of questionnaire forms. ASD
participants were also administered the Autism Diagnostic Observation
Schedule, Second Edition (ADOS-2) (Lord et al., 2012) by research-re-
liable examiners at the University of Miami ASAC. All participants were
MRI compatible, able to perform the task, had a full-scale IQ > 65 as
measured by the Wechsler Abbreviated Scale of Intelligence-Second
Edition (WASI-II) (Wechsler, 2011), and were right-handed. Inclusion
criteria for ASD participants included a previous diagnosis of ASD based
on the DSM-5 criteria (American Psychiatric Association, 2013) by a
community neurologist, psychologist, or other medical/mental health
professional and meeting the cut-off for autism or autism spectrum on
the ADOS-2, Module 3. See Table 1 for participant information. This
study was approved by the Institutional Review Board at the University
of Miami and conducted in compliance with the Declaration of Helsinki.
All participants provided written informed consent and received fi-
nancial compensation for their participation.
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Table 1
Participant Demographics.

Diagnostic Group

N =44 T (n = 27) ASD (n = 17)
Mean (SD) Mean (SD) p value

Sex 18 M/9F 14 M/3F 0.343
Age 9.79 (1.88) 9.95 (1.56) 0.489

range [7.08-12.92] [8.17-12.67] -
Race * 0,1,1,18,4,3 0,1,1,13,1,1 0.843
Ethnicity, Hispanic/Latino 17 1 0.041
FSIQ ® 107.88 (10.77) 106.9 (16.48) 0.836

range [90-133] [74-132] -
Motion ©

Rest FD 0.146 (0.118) 0.148 (0.086) 0.958

Task 1 FD 0.145 (0.096) 0.110 (0.039) 0.160

Task 2 FD 0.151 (0.122) 0.143 (0.076) 0.813

Task 3 FD 0.195 (0.091) 0.227 (0.176) 0.420

Task 4 FD 0.197 (0.124) 0.221 (0.195) 0.618
SRS-2, T score 45.08 (4.57) 69.24 (12.34) < 0.001
RBS-R, T score 2.148 (2.957) 15.941 (11.882) < 0.001
ADOS-2

Social Affect - 8.56 (3.35) -

Restricted and Repetitive - 2.00 (1.10) -

Behaviors
Comparison Score - 6.31 (1.54) -

Note: FSIQ: Full Scale Intelligence Quotient; SRS-2: Social Responsiveness Scale,
Second Edition; RBS-R: Repetitive Behaviors Scale-Revised; ADOS-2: Autism
Diagnostic Observation Schedule-Second Edition

-

. Numbers for each of the following racial categories presented in the fol-
lowing order: African American, Asian, Biracial, Caucasian, Other, Not
Reported.

. FSIQ: WASI-II full-scale 1Q, 4 participants did not have WASI-II because
WISC-V was administered within a year and had IQ > 65.

. Power framewise displacement for raw rs-fMRI data calculated in dpabi.

N

w

2.2. Neuropsychological measures and assessments

The first session included a visit to the ASAC, where the WASI-II, a
standardized measure of intelligence that provides three measures of
1Q: Verbal, Performance, and Full (Wechsler, 2011), and ADOS-2, a
standardized measure of communication, social interaction, play, and
RRBs (Lord et al., 2012), were administered. These assessments were
administered by licensed clinical psychologists who had previously
achieved research-reliability on the ADOS-2.

1.000msI

ISI = 1,500 ms\

Shape Block
(n=12)
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Parents or caregivers completed the SRS-2 (Constantino and Gruber,
2012) and RBS-R (Lam and Aman, 2007), used to assess social abilities
and RRBs continuously and quantitatively. The SRS-2 is a 65-item
parent report measure that yields a total T-score indicating overall so-
cial ability. The RBS-R is a 44-item parent report measure that yields a
total T-score indicating overall repetitive behaviors. The SRS-2 and
RBS-R total raw scores were converted to age equivalent T-scores, with
higher scores indicating more severe impairment (Constantino and
Gruber, 2012; Lam and Aman, 2007).

2.3. fMRI data acquisition parameters

Children initially participated in a mock scan to adjust to the
scanning environment and to practice the fMRI task. MRI data were
acquired using a 3 T GE scanner with a 32-channel head coil. Functional
images were collected using a gradient echo sequence (TR/TE/flip
angle/FOV = 2 s5/30 ms/75°/220 mm; orientation: 42 axial slices an-
gled along the AC-PC; slice thickness: 3.4 mm no inter-slice skip, in-
terleaved acquisition order and anterior-posterior encoding). At the
beginning of the scanning session, participants completed a 10-min
resting-state run consisting of 295 volumes. They were instructed to lie
still with their eyes closed while remaining awake. The resting-state run
was followed by four 122- vol task runs. The first 5 volumes of each run
were discarded to account for gradient stabilization.

2.4. Non-cued attention switching task

Participants completed four runs of a task examining the ability to
shift attention between stimulus dimensions (Casey et al., 2004; Britton
et al., 2010). While in the scanner, participants viewed a display with
three stimuli presented on a black background. One of the three objects
differed from the other two in either shape (S), (e.g., square or circle) or
color (C), (e.g., gray or white) (Fig. 1). Participants were instructed to
identify the differing object by pressing a button corresponding to the
unique object. They were not explicitly told how the objects differed (S
or C). (See Supplement 1 for further details).

On each trial, three objects were presented for 1000 ms with a
1500 ms interstimulus interval (ISI). One object had a unique attribute,
either shape (square or circle) or color (gray or white). Participants
indicated the location of the unique object via a button press. The sti-
muli were presented in a blocked design with 12 trials per shape/color
and 24 trials per mixed block. Each run lasted 4 min and 16 s (see Dirks
et al. (Dirks et al., 2020) for further details).

Color Block
(n=12)

Mixed Block
(n=24)

Shape Block
(n=12)

Fig. 1. Task Paradigm.
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3. Data analysis
3.1. Behavioral data

Total accuracy was computed across all trials in each block and
reported as the proportion of correct trials relative to the total number
of trials the subject completed. Reaction time (RT) was calculated for
each subject for correct trials only and computed as a total mean RT
across all correct trials in each block (see supplementary Table S1).
Accuracy and RT were analyzed using a 2 Diagnosis (ASD, TD) x 4
Condition (task run 1, task run 2, task run 3, task run 4) mixed-model
ANOVA.

3.2. fMRI data preprocessing and region-of-interest (ROI) selection

The resting-state run and four task runs were preprocessed sepa-
rately using the Data Processing and Analysis for Brain Imaging
(DPABI) version 3.1 toolbox (http://rfmri.org/dpabi) (Yan et al., 2016).
The following steps were completed in the same order for all task and
rest datasets: despiking (AFNI's 3dDespike), slice timing correction
(Parker and Razlighi, 2019), realignment, brain extraction, segmenta-
tion, normalization to a standard SPM EPI template (3 X 3 X 3 mm),
and smoothing (FWHM = 6 mm). Despiking identifies voxelwise TR
outliers > 2.5 standard deviations of the time series and replaces them
with an adjusted value based on the mathematical formula: s’ =
¢l + (c2-c1)*tanh((s-c1/(c2-c1)) where c1 = 2.5, c2 = 4, s = original
TR value, s' = replaced TR value. Despiking was chosen over other
censoring methods to preserve temporal continuity in the rest and task
data.

Six ROIs were selected, including the right fronto-insular cortex
(rFIC) and anterior cingulate cortex (ACC) of the M-CIN; right dorso-
lateral prefrontal cortex (rDLPFC) and right posterior parietal cortex
(rPPC) of the L-FPN; and the ventromedial prefrontal cortex (VMPFC)
and posterior cingulate cortex (PCC) of the M-FPN. Coordinates deli-
neating these ROIs in a previous study were used (Table S2) (Uddin
et al., 2011).

3.3. Independent component analysis (ICA) denoising

Each subject’s rest and task fMRI datasets were individually de-
noised by hand-classifying ICA components after running FSL’s Melodic
ICA algorithm with automatic dimensionality estimation. Components
identified as noise (e.g. those containing artifacts such as white matter,
cerebrospinal fluid, head motion, or proportionally large amounts of
high-frequency information) were regressed out of the data prior to
subsequent post-processing using the fsl_regfilt command (Griffanti
et al., 2017; Jenkinson et al., 2012).

3.4. Post-ICA processing and analysis

After ICA denoising, the average time series were extracted from 6-
mm radius spheres of six ROIs in key nodes of the M-CIN, M-FPN, and L-
FPN. Time courses were then linearly detrended, low pass filtered
(0.01-0.1 Hz), and subjected to regression of the Friston 24 head mo-
tion parameters (6 motion parameters of each volume, the preceding
volume, and the 12 corresponding squared items) (Friston et al., 1996),
white matter, and CSF, as calculated in the DBAPI toolbox (Yan et al.,
2016).

3.5. Co-activation pattern (CAP) analysis

Time series extracted from the six ROIs during task and resting-state
runs were converted to z statistics and then concatenated into a single
group matrix (787 TR X 44 subjects) following previous studies
(Hutchison and Morton, 2015; Denkova et al., 2019). The concatenated
matrix was subjected to k-means clustering. Testing values of k = 2-20,
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the optimal value of k = 5 was determined using the elbow criterion by
applying a least-squares fit line to the cluster validity index, defined as
the ratio of within-cluster to between-cluster differences (Figure 51)
(Allen et al., 2014; Damaraju et al., 2014). A CAP analysis was con-
ducted using k-means clustering (squared Euclidean distance) using the
optimal k of 5 on the group concatenated time series of the 6 ROIs
across all subjects (Liu et al., 2013). CAP metrics were then calculated
separately for each of the five conditions (rest run, task run 1, task run
2, task run 3, task run 4) and for all task runs combined (task all = task
runs 1-4). The CAP metrics computed included a) dwell time (DT),
calculated as the average number of TRs that a participant stayed in a
given brain state in each condition b) frequency of occurrence of brain
states, calculated as a percent over time that the brain state occurred
throughout the duration of each condition, and c) the number of
transitions, calculated as the number of switches between brain states.

3.6. Statistical analysis

DT and frequency of occurrences were subjected to a 2 Diagnosis
(ASD, TD) X 5 Condition (rest run, task run 1, task run 2, task run 3,
task run 4) mixed model ANOVA. DT and frequency of occurrences
were additionally subjected to a 2 Diagnosis (ASD, TD) X 2 Condition
(rest run, task all) mixed model ANOVA. Post-hoc two-tailed t-tests
were conducted to identify differences in the means for each of the
runs. Number of transitions during rest were subjected to a t-test, and
task run transitions were analyzed using a 2 Diagnosis (ASD, TD) x 4
Condition (task run 1, task run 2, task run 3, task run 4) mixed model
ANOVA. (See Supplement 1 for details regarding analyses of con-
founding variables).

3.7. Brain-behavior analysis

The relationship between brain state metrics and social and re-
petitive behaviors were assessed by calculating Pearson correlations
between the CAP metrics (DT, frequency of occurrences, and transi-
tions) and SRS-2 and the RBS-R T-scores in dimensional analyses across
all subjects. We additionally calculated partial Pearson correlations
between DT and SRS-2 while controlling for age.

4. Results
4.1. Time-varying resting-state and task fMRI

CAP analyses revealed five brain states that dynamically occurred
during rest and task runs (Fig. 2). CAP 1 was characterized by co-ac-
tivation among the nodes of the L-FPN. CAP 2 was characterized by co-
activation among the nodes of the M-CIN. CAP 3 was characterized by
co-activation among the nodes of the M-CIN and the nodes of the L-
FPN. CAP 4 was characterized by co-activation among the nodes of the
M-FPN, the L-FPN, and M-CIN. CAP 5 was characterized by co-activa-
tion among the nodes of the M-FPN.

4.2. Behavioral

For RT, a mixed model ANOVA revealed there was a significant
linear effect of Condition (F(1,34) = 13.580, p = 0.001). Pairwise
comparisons between runs showed that the RTs for task run 1 were
significantly higher (slower) than both task run 3 and 4 (p’s < 0.05).
There were no significant differences between RTs of task runs 1 and 2,
2 and 3, and 2 and 4 (p’s > 0.05). There were no significant interac-
tions for RT, and RT did not significantly differ by diagnostic group
(p’s > 0.05) (Fig. 3A).

Mean accuracy was greater than 90% for each run in both ASD and
TD groups (See supplementary Table §1). A mixed model ANOVA re-
vealed that there were no significant main effects or interactions for
accuracy (p’s > 0.05) (Fig. 3B).
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Fig. 2. Time series from 6 regions of interest (ROIs) were extracted across rest and task runs for both children with ASD and TD children, and z-scored and
concatenated into a single matrix. The matrix was subjected to k-means clustering and CAP analysis using a k of 5. The intensity of colors in the CAP matrix indicate

the z-scored activation value of the ROIs within each centroid.

4.3. CAP frequency of occurrence

A mixed model ANOVA revealed a significant linear interaction for
the frequency of occurrence of CAP 1, the state with co-activation
among nodes of the L-FPN, [F(1,42) = 6.512, p = 0.014], (Fig. 3C).
Thus, the occurrences of CAP 1 were similar between groups during

rest, and children with ASD initially had fewer occurrences of CAP 1
during the first two task runs but then showed more occurrences of CAP
1 in the last two task runs compared with TD children. Post-hoc t-tests
were conducted on each run, revealing a significant difference between
diagnostic groups within task run 4 (p = 0.021). No other run com-
parisons were significant (p’s > 0.05), (Figure S3). A post-hoc
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Fig. 3. Behavioral data and CAP frequency, dwell time, and transitions during rest and task states. A) Box plot of RT in children with ASD and TD children. There
were no significant differences between groups in RT (p’s > 0.05). B) Box plot of Accuracy in children with ASD and TD children. There were no significant
differences between groups in accuracy (p’s > 0.05). C) Frequency of occurrence of CAP 1, characterized by co-activation of L-FPN nodes, was greater in Task Run 4
for children with ASD than TD children. D) Dwell time of CAP 3, characterized by co-activation of M-CIN and L-FPN nodes, was shorter in Task Run 4 for children

with ASD than TD children. E) Transitions between CAPs during rest were not significantly different b

groups. F) T between CAPs during task

performance were not significantly different between groups when high motion subjects were removed. Results from mixed model ANOVA are shown inside graphs

with significant interactions (C and D). * = p < 0.05 from post-hoc t-test.

regression model comparing frequency of occurrences between ASD
and TD for task run 4 while controlling for head motion during task run
4 was significant (p = 0.035). Thus, head motion did not influence the
group differences observed in task run 4. A post-hoc mixed model
ANOVA was conducted excluding four high motion subjects, and a
significant linear interaction was still observed, [F(1,38) = 6.526,
p = 0.015].

There was a significant cubic main effect of Condition for the fre-
quency of occurrences of CAP 3, [F(1, 42) = 6.25,p = 0.016], however
there was no significant main effect of Diagnosis [F(1, 42) = 0.001,
p = 0.976]. There was a significant quadratic main effect of Condition
for the frequency of occurrences of CAP 5, [F(1, 42) = 6.346,
p = 0.016], however there was no significant main effect of Diagnosis
[F(1, 42) = 0.324, p = 0.572]. There were no significant main effects
or interactions for CAP 2 and CAP 4 (p’s > 0.05).

Additionally, there were no significant main effects or interactions
for the 2 Diagnosis (ASD, TD) x 2 Condition (rest run, task all) mixed
model ANOVAs for CAPs 1-5 (p’s > 0.05).

4.4. CAP dwell time

A mixed model ANOVA revealed a significant quadratic main effect
of Condition for DT of CAP 1, [F(1,42) = 22.316,p < 0.001], however
there was no significant main effect of Diagnosis [F(1, 42) = 0.574,
p = 0.453]. There was a significant quadratic main effect of Condition
for the DT of CAP 2, [F(1, 42) = 11.368, p = 0.002], however there
was no significant main effect of Diagnosis [F(1, 42) = 0.875,
p = 0.355]. There was a significant quadratic interaction for DT of CAP
3, where the M-CIN is coupled with the L-FPN [F(1, 42) = 12.785,
p = 0.001] (Fig. 3D). These results demonstrate that the DT of CAP 3
was similar between groups during rest, and children with ASD initially
spend more time in CAP 3 for task runs 1-3, then spend less time in CAP
3 for task run 4 compared with TD children. Post-hoc t-tests were

conducted on each condition to compare diagnostic groups and re-
vealed a significant difference in task run 4 (p = 0.034) (Figure $4). No
other condition comparison was significant (p’s > 0.05). A post-hoc
regression model comparing DT between ASD and TD for task run 4
while controlling for head motion was significant (p = 0.029). A post-
hoc mixed model ANOVA was conducted excluding four high motion
subjects, and a significant quadratic interaction was still observed [F
(1,38) = 8.625, p = 0.006]. There were no significant main effects or
interactions for CAP 4 and CAP 5 (p’s > 0.05).

2 Diagnosis (ASD, TD) x 2 Condition (rest run, task all) mixed
model ANOVAs for CAPs 1-5 revealed main effects of Condition for
CAP 1, [F(1, 42) = 22.366,p = < 0.001], CAP 2, [F(1, 42) = 29.003,
p = < 0.001], and CAP 4, [F(1, 42) = 7.745, p = 0.008] and CAP 5, [F
(1, 42) = 9.387, p = 0.004]. CAP 3 did not exhibit a significant main
effect (p = 0.389). There were no main effects of Diagnosis for any of
the CAPs (p’s > 0.05).

4.5. CAP transitions

A mixed model ANOVA revealed a significant cubic interaction for
the number of transitions [F(1, 42) = 4.124, p = 0.049], indicating TD
children have more transitions in task run 1, but have fewer in task run
2, then more in task run 3 and again fewer in task run 4 compared to
children with ASD (Fig. 3E). However, there was no significant main
effect of Diagnosis [F(1, 42) = 0.008, p = 0.930]. A post-hoc mixed
model ANOVA using a low motion sample (N = 40) revealed the in-
teraction was no longer significant [F(1, 38) = 3.360, p = 0.075]. We
conducted t-tests comparing ASD and TD groups on the resting-state run
(Fig. 3F), on each task run separately, and on the task runs combined,
and found no significant differences between the diagnostic groups
(p’s > 0.05) (Table $6).
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Fig. 4. Pearson correlation between resting-state CAP 5, the M-FPN CAP, and
symptom severity indexed by the Social Responsiveness Scale (SRS-2)
(Constantino and Gruber, 2012).

4.6. Brain-behavior results

Pearson correlations between SRS-2 and RBS-R total T-scores with
each CAP metric revealed a significant correlation between SRS-2 and
DT during CAP 5 in the rest condition (r = —0.337, p = 0.027) (un-
corrected) (Fig. 4). No other significant correlations were observed
between SRS-2, RBS-R, and any other CAP metrics for CAP 5, nor any
metrics for CAPSs 1-4 (p’s > 0.05). Partial Pearson correlations be-
tween SRS-2 and DT while controlling for age revealed that the corre-
lation between SRS-2 and DT during CAP 5 in the rest condition was
still significant (r = —0.341, p = 0.027). We additionally found a
significant correlation between SRS-2 and DT during CAP 3 in the task 4
condition (r = —0.472, p = 0.002) (uncorrected). No other correla-
tions were significant (p’s > 0.05).

5. Discussion

Here, we investigate brain dynamics among three neurocognitive
networks ubiquitously present in the functional neuroimaging literature
(Uddin, 2015). The M-CIN, comprising the anterior insula and anterior
cingulate cortices, is thought to enable dynamic switching between the
M-FPN (comprising medial prefrontal and posterior cingulate cortices
and involved in internally oriented cognition) and the L-FPN (com-
prising lateral prefrontal and posterior parietal cortices and involved in
goal-directed behaviors) (Goulden et al., 2014; Fox et al., 2006). A large
literature supports the role of the M-CIN as a mediator of incoming
stimuli, guiding appropriate behavioral responses (Uddin, 2015;
Goulden et al., 2014; Menon and Uddin, 2010; Uddin and Menon,
2009). Specific regions of the M-CIN such as the ACC have also been
shown to have varying modulatory interactions with brain regions
during rest and task conditions (Di et al., 2020). While atypical patterns
of brain activation and connectivity of these networks have previously
been documented in ASD (Uddin et al., 2013), very few studies have
examined network configurations as they change between rest and task
states (Uddin et al., 2015). Characterizing dynamic changes in the brain
lends insight into these alterations, but most studies to date have fo-
cused on whole-brain dynamics using sliding window dynamic func-
tional connectivity approaches that have limitations including the use
of an arbitrary window length (Allen et al., 2014; Uddin, 2020). In-
flexibility among these networks has been shown to underlie core
symptoms of ASD (Uddin et al., 2015), yet no previous studies have
examined time-varying patterns of co-activation among these networks
during intrinsic and evoked states in children with the disorder. Here
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we used CAP, a method that relies on fewer model assumptions than the
sliding window approach, for the first time to characterize brain dy-
namics among the M-CIN, L-FPN, and M-FPN during a resting-state scan
and four runs of an attention task in children with ASD and TD children.

Using CAP, we found evidence for five recurring brain states in-
volving dynamic patterns among M-CIN, M-FPN, and L-FPN nodes
during task and resting states. CAP 1 and CAP 2 states exhibited co-
activation patterns within L-FPN and within M-CIN, respectively. CAP 3
was characterized by a co-activation among both the M-CIN and L-FPN,
a state commonly associated with cognitive task performance (Corbetta
and Shulman, 2002) and sometimes referred to as “task-positive” net-
works (Di and Biswal, n.d.). Together, these results suggest the M-CIN
and L-FPN may function independently or simultaneously as needed in
the service of task demands or during resting conditions. CAP 4 was
characterized by co-activation among all three networks, a brain state
which is consistent with evidence from prior studies (Marshall et al.,
2020). CAP 5 was a state in which strong M-FPN node co-activation was
observed. M-FPN, typically referred to as the “task-negative” network,
recently has been revealed to play a role in specific task conditions
(Krieger-Redwood et al., 2016; Mars et al., 2012; Spreng et al., 2014;
Vatansever et al., 2015) potentially during minimally demanding cog-
nitive tasks (Vatansever et al., 2015). Taken together, these five CAPs
display patterns that are consistent with the role of the M-CIN in
mediating both the L-FPN and M-FPN, and suggests dynamic interac-
tions among the networks during both task and resting-states (Goulden
et al., 2014).

For CAPs 1 and 3, distinct group differences were identified in dy-
namic metrics of frequency of occurrences and dwell time.
Interestingly, in the last two task runs children with ASD exhibited
more frequent occurrences of CAP 1 and spent less time in CAP 3 during
task run 4 compared to TD children. Greater frequency of occurrences
of the L-FPN and less dwell time of simultaneous M-CIN and L-FPN co-
activation during the last task runs in children with ASD suggests they
rely more on the L-FPN when needing to exert greater effort to reach
the same behavioral outcomes as children with TD. Previous work has
shown that high functioning individuals with ASD may perform a task
at an above-average level, as shown here, but may require more de-
tailed-focused processing (Happé and Frith, 2006). This type of beha-
vior has been previously associated with overly stable brain dynamics
in adults with ASD (Watanabe and Rees, 2017). The lack of behavioral
differences found in this study suggests that children with ASD per-
formed at a high level across all four task runs, and this behavior is
supported by altered changes in dynamic fluctuations across the net-
works from the early to the later phases of the task.

The observed disruption in the coordination of the L-FPN and M-CIN
nodes, evident in the last task runs, is consistent with emerging evi-
dence using dynamic methods of disruptions in between-network con-
nectivity in children with ASD (de Lacy et al., 2017). Similarly, co-
ordination among all three neurocognitive networks has been
previously shown to dynamically occur less frequently during intrinsic
states in children with ASD compared to TD children, indicating a re-
duced co-activation of the M-CIN with nodes of the M-FPN and L-FPN
(Marshall et al., 2020). Although our finding is across evoked states, our
results are consistent with the prior study suggesting the nodes of the
M-CIN have reduced coordination with the nodes of the L-FPN, pri-
marily during the last task runs. A disruption in the coordination of
networks may underlie cognitive and behavioral inflexibility seen in
children with ASD (Uddin et al., 2015; Barttfeld et al., 2012). Ad-
ditionally, dynamics assessed during evoked states may reveal unique
network re-configurations under varying task demands, and differential
employment of cognitive effort in ASD (Cheng et al., 2018). Dynamic
analyses can track differential brain responses in ASD across changing
task demands over time. The current findings imply that CAP metrics
computed across multiple task runs can be more revealing of neural
profiles in autism than differences between task and rest contexts,
which have been the focus of previous similar works (Uddin et al.,
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2015). However, further studies are needed to support this interpreta-
tion. There were no group differences in transitions observed, primarily
after removing subjects with excessive motion. This is contradictory to
a growing dynamic functional connectivity literature suggesting that
transitions between states are altered in ASD (Uddin, 2020; de Lacy
et al., 2017; Watanabe and Rees, 2017). Our results may be influenced
by our limited sample size and the relatively short duration of our task
and rest scans; future studies including larger sample sizes and longer
scan times are needed to further explore this issue. Additionally, our
lack of significant findings for transitions may be attributed to our
analysis of three neurocognitive networks rather than whole-brain
analyses, as conducted in previous studies (Uddin, 2020; de Lacy et al.,
2017; Watanabe and Rees, 2017).

The only significant relationship between the brain dynamic metrics
and behavior was identified in the M-FPN. Greater dwell time in the M-
FPN was associated with better social abilities as indexed by the SRS-2.
This is in line with previous research linking the M-FPN with social
ability in ASD (He et al., 2018; Padmanabhan et al., 2017) and in the
general population (Mars et al., 2012; Li et al., 2014). The dynamic
analyses presented here provide new insight into the relationship be-
tween the M-FPN and social behaviors. Our findings indicate that
children who exhibit greater M-FPN engagement during resting states
are those who are higher functioning in the social domain. This is in
line with a large literature implicating the M-FPN in thinking about
others (Uddin et al., 2007).

During task performance, we observed no behavioral differences in
reaction time and accuracy between children with ASD and TD chil-
dren. In both groups, accuracy remained elevated across the four task
runs (Accuracy > 90%), indicating there was not an underlying be-
havioral change across the four task runs to account for the brain dy-
namic changes we observed. As previously reported, high accuracy and
a lack of behavioral differences between groups indicate that this task
was relatively easy for both children with ASD and TD children to
complete (Dirks et al., 2020). Nevertheless, children with ASD recruited
brain regions involved in executive control to a greater extent than TD
children by task run 4, indicating that they exerted greater cognitive
effort to reach the same level of performance as TD children. This
suggests that children with ASD may neurally compensate to reach the
same level of behavioral performance as TD children across the dura-
tion of a task (Livingston and Happé, 2017).

5.1. Limitations

There are a few limitations important to note in the present study.
Our sample size was limited as we maintained strict requirements in-
cluding a visual Quality Control inspection, a full 10 min of resting-
state fMRI, and completion of all four task runs. While these require-
ments increased power related to our study aims, they reduced our
sample size, as several children were excluded due to our strict criteria.
Future work with larger sample sizes is needed to confirm and extend
the results presented here. Lastly, other large-scale networks including
the dorsal attention network (DAN)/dorsal frontoparietal network (D-
FPN) have also been shown to interact with the three networks in-
vestigated here, depending on context (Dixon et al., 2018). Future
studies should further expand on the current work by investigating the
D-FPN and its dynamic relationship to the L-FPN, M-CIN and M-FPN in
children with ASD.

5.2. Conclusions

This study investigated brain dynamic metrics concurrently during
rest and an attention task in children with ASD and TD children. Group
differences between children with ASD and TD children were evident in
brain states consisting of the L-FPN and M-CIN specifically during the
fourth task run, suggesting atypical between-network coordination in
children with ASD during prolonged periods of task engagement.
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Atypical between-network coordination may underlie neural compen-
sation in children with ASD, enabling comparable behavioral perfor-
mance as TD children. Finally, greater M-FPN dwell time was associated
with stronger social abilities, indicating that the dynamics of this net-
work may be important in our understanding of social dysfunction in
both ASD and the general population.
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CHAPTER 4:

Brain Dynamics in Toddlers with and without Autism Spectrum Disorder

ABSTRACT

Autism spectrum disorder (ASD) affects one in 36 children. Early diagnosis is critical for
optimizing outcomes, yet children are not typically diagnosed until 4 years of age. In concert
with early behavioral signs, early neural markers could identify toddlers at risk of developing
ASD to aid earlier diagnosis and targeted interventions. Neuroimaging studies have primarily
examined structural brain alterations in toddlers at high risk of developing ASD. While
innovative dynamic functional magnetic resonance imaging (fMRI) methods reveal candidate
brain networks of dysfunction in older children with ASD (7-12 years of age), little work has
been done to examine brain network dynamics in toddlers with ASD. The goal of this project is
to identify early functional brain biomarkers of ASD and their relationships with early flexible
behaviors (e.g., repetitive and adaptive behaviors). Using data from 48 ASD and 27 non-ASD
toddlers, we examined brain network dynamics in the whole brain and among the salience
network (SN), default mode (DMN), and central executive networks (CEN). Early brain network
dynamics were similar across all toddlers, however, ASD toddlers exhibited altered brain
dynamics in a state consisting of SN, DMN, and CEN co-activation. Across both diagnostic
groups, there were relationships between early brain dynamics and real-world measures of
cognitive flexibility. At the whole brain level, greater dwell times and frequencies of states with

core neural networks and visual and subcortical regions were associated with greater flexible
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behaviors. While investigating interactions among the core neural networks (SN, DMN, and
CEN), a greater dwell time of a state with DMN co-activation was associated with poorer RRBs
and adaptive behaviors; conversely, greater frequency of a state with a greater SN and CEN co-
activation and DMN de-activation was associated with better RRB and adaptive behavior
outcomes. Overall, this is one of the first studies to investigate brain network dynamics in typical
and atypical toddlers.

INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition
characterized by social communication deficits, and restricted and repetitive behavior, interests,
or activities (American Psychiatric Association 2015). The prevalence rate of ASD in the United
States is rising, with one in 36 children diagnosed each year (Maenner et al. 2023), and this rate
continues to rise. Despite the increasing prevalence, the median age of ASD diagnosis remains at
four years, leading to a delay in treatment initiation during crucial periods of brain development
(Tierney and Nelson 2009b). Early diagnosis and intervention significantly improve cognitive,
language, adaptive behavior, and overall quality of life for individuals with ASD (Elder et al.
2017; Richler et al. 2010b).

Currently, ASD diagnosis relies primarily on behavioral symptoms, including social
deficits and restricted and repetitive behaviors (RRBs) (American Psychiatric Association 2015).
RRBs present as restricted interests, insistence on sameness, repetitive speech (e.g., echolalia),
and difficulties with behavioral transitions. RRBs interfere with learning, social development,

daily activities, and family functioning (American Psychiatric Association 2015; Richler et al.
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2010b), causing impairments in development and increased stress for caretakers (Bishop et al.
2007). Moreover, RRB severity is linked to later developing comorbid psychiatric conditions
such as anxiety and depression (“Relations among Restricted and Repetitive Behaviors, Anxiety
and Sensory Features in Children with Autism Spectrum Disorders” 2014), highlighting the need
for early identification and targeted intervention strategies. Early behavioral signs of ASD have
been suggested (Barbaro and Dissanayake 2009) but these signs are typically observed in the
social domain (Ozonoff et al. 2010) and are not always reliable enough to establish diagnosis
(Pierce et al. 2019; Jarquin et al. 2011). Therefore, it is imperative to identify early biomarkers,
particularly those based on brain functioning, to facilitate early intervention and improve
outcomes for individuals with ASD.

Neuroimaging techniques, such as magnetic resonance imaging (MRI), provide valuable
insights into the neurobiology of ASD and potential brain biomarkers underlying overt
behavioral symptoms in ASD. In particular, functional MRI (fMRI) methods, including resting-
state functional MRI (rsfMRI), have been used to reveal alterations in brain regions associated
with children and adults with ASD compared with neurotypical peers (Lucina Q. Uddin,
Supekar, and Menon 2013; Neufeld et al. 2017; K. Supekar et al. 2013). RsfMRI captures the
intrinsic functional architecture of the brain based on the spontaneous low frequency fluctuations
of the BOLD signal (Biswal et al. 1995; Lee, Smyser, and Shimony 2013). RsfMRI and sleep
fMRI paradigms have revolutionized clinical research (Yang, Dong, and Lei 2021; Pierce 2011)
by providing a way to study populations that would not otherwise be able to be studied under

typical task conditions or without anesthesia. RsfMRI studies also reveal intrinsic connectivity
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patterns that correlate with behavior and cognition in individuals with and without ASD
(“Indices of Repetitive Behaviour Are Correlated with Patterns of Intrinsic Functional
Connectivity in Youth with Autism Spectrum Disorder” 2018; Easson, Fatima, and McIntosh
2019; K. Supekar et al. 2013). The promise of rsftMRI and sleep-based paradigms provide novel
ways to investigate early brain development and understand the neural development underlying
autism.

Emerging evidence from sleep fMRI studies of toddlers suggests that alterations in brain
connectivity may serve as early markers for ASD. Structural connectivity, assessed through
diffusion tensor imaging and MRI scans, has revealed aberrant white matter tract microstructure
and network inefficiencies in high-risk infants as young as 6 weeks to 6 months, which predict
later language development and autism symptoms (Wolff et al. 2012; Elison et al. 2014).
Furthermore, functional connectivity studies using rsfMRI have identified potential risk markers
in infants with a family history of ASD as young as 6 months of age (Hazlett et al. 2017; 1.
Molnar-Szakacs, Kupis, and Uddin 2021). Early brain connectivity differences in autism also
reveal promising early biomarkers underlying emerging behavior. However, most studies have
focused on social communication skills (Hazlett et al. 2017; I. Molnar-Szakacs, Kupis, and
Uddin 2021; Lombardo et al. 2015). These findings provide valuable promise of fMRI as a
biomarker for later developing ASD and behaviors. However, previous studies have primarily
focused on static functional connectivity or structural MRI biomarkers, neglecting the dynamic

nature of brain activity in ASD toddlers and the core behavioral deficit of RRBs.
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Recent advances in dynamic functional connectivity analysis have demonstrated the
temporal variability of brain networks, offering a more nuanced understanding of brain-behavior
relationships (Hutchison et al. 2013; Braun et al. 2015). Brain dynamics capture moment-by-
moment changes in brain network configurations related to changes in cognition or behavior
(Braun et al. 2015; Gu et al. 2020; “Brain Mechanisms Supporting Flexible Cognition and
Behavior in Adolescents With Autism Spectrum Disorder” 2021). Dynamic methods such as
dynamic functional connectivity (DFC; e.g., sliding window) (Chang and Glover 2010) and co-
activation pattern analysis (CAP) (X. Liu and Duyn 2013) are popularly used to quantify brain
dynamics (Lurie et al. 2020). Brain connectivity dynamics also help explain differences in
clinical populations and behavior (Kupis, Romero, Dirks, Hoang, Parladé, et al. 2020; Kupis,
Goodman, Kircher, et al. 2021; Damaraju et al. 2014; Nomi et al. 2017; Matthew Hutchison and
Bruce Morton 2015). Previous work has shown brain connectivity dynamics based on sliding
window and CAP analyses may help explain cognitive and behavioral inflexibility associated
with RRBs across the lifespan (Kupis, Goodman, Kornfeld, et al. 2021) and in 7-12 year old
children with ASD (Kupis, Romero, Dirks, Hoang, Parladé, et al. 2020; Kupis, Goodman,
Kircher, et al. 2021; Marshall et al. 2020b). Further, children with ASD show atypical brain
dynamic patterns during both task performance and resting-states (Kupis, Romero, Dirks, Hoang,
Parladé, et al. 2020; Marshall et al. 2020b). Despite the promise of dynamic fMRI methods, there
is little work done utilizing resting-state dynamics as biomarkers for early signs of ASD and

RRBs in toddlers.
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Brain network dynamic methods have also revealed promising biomarkers underlying
autism and later developing behavior difficulties. For instance, previous research has
demonstrated associations between the severity of RRBs and brain connectivity dynamics among
three core neural networks in older children with ASD (“Brain Mechanisms Supporting Flexible
Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 2021), notably the
salience (SN), default mode (DMN), and central executive networks (CEN). These networks,
originally proposed within the influential "triple network model," have been extensively cited in
the literature and consistently linked to psychiatric conditions such as autism (Vinod Menon
2011). Previous studies have indicated associations between the severity of RRBs and
connectivity among these large-scale brain networks in older children with ASD (Traynor and
Hall 2015b; Lucina Q. Uddin et al. 2015b, 2013b). Network dynamics and time-varying
interactions of these three large-scale networks are additionally associated with cognitive and
behavioral flexibility (Marshall et al. 2020b; Kupis, Romero, Dirks, Hoang, Parladé, et al. 2020;
Lucina Q. Uddin et al. 2015b). Therefore, it is critical to investigate the time-varying interactions
of the SN, CEN, and DMN in toddlers prior to the diagnosis of ASD and their relationship with
early-life RRBs.

Our proposed research aims to utilize novel brain dynamic approaches to identify early
biomarkers associated with ASD and RRB outcomes independent of diagnosis. Building upon
previous work, which has elucidated brain connectivity dynamics in older children with ASD
(“Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With Autism

Spectrum Disorder” 2021) using both CAP and dFC methods, we seek to extend these findings
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to toddlers, a critical developmental period characterized by rapid brain maturation and plasticity
(Gilmore, Santelli, and Gao 2018). By investigating the dynamic interactions among large-scale
brain networks, including the SN, CEN, and DMN, we aim to uncover neural substrates
underlying RRBs and cognitive inflexibility in toddlers with and without ASD. Both CAPs and
dFC methods will be utilized in the current study since both methods are popularly used in
children and adult studies of ASD, and both methods differ methodologically and therefore may
reveal different aspects of brain dynamics. This study will not only advance our understanding of
the neurobiological underpinnings of ASD but also inform the development of targeted
interventions aimed at mitigating RRBs and improving long-term outcomes for affected
individuals.
METHODS
Participants

Toddlers were recruited through community referral and a population-based screening
method in collaboration with pediatricians via the Get SET Early Approach (Pierce et al. 2021).
All toddlers participated in clinical assessments, including the Autism Diagnostic Observation
Schedule (ADOS) (Lord et al. 2000), Mullen Scales of Early Learning (Mullen 1995) and
Vineland Adaptive Behavior Scales (Sparrow 2005). Toddlers who received their initial
diagnostic and clinical evaluations at <36 months were invited to return for repeat evaluations
until they reached 48 months. Clinical scores at the most recent visit were used to determine the
diagnosis group (Table 1). Clinical testing occurred at the University of California, San Diego

Autism Center of Excellence.
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Clinical scores and fMRI scans were collected from 75 toddlers (48 with ASD, 27 Non-

ASD; 52 male, 23 female, 14—55 months old). Resting-state fMRI data were collected from all

75 subjects during natural sleep and most scans were completed before the final diagnosis (<33

mos; mean = 26.56 mos). Participants were considered non-ASD if their diagnosis at the

outcome visit was non-ASD and their Mullen Early Learning Composite score fell within 2

standard deviations of the mean score (i.e., > 70). This allowed for the examination of brain

dynamics along a continuum of RRB and cognitive abilities from below to above average in non-

ASD children as supported by RDOC (Cuthbert 2022) and previously done using this sample

(Xiao et al. 2023). Further details of the methods can be found in our previous study (Xiao et al.

2023).
Table 1
ASD (N =48) Non-ASD (N =27) p-value
M (SD) M (SD)
Age at scan 29 mos (16-55 mos) 25.52 (14-46 mos) A2
Sex 37M11F ISMI12F .05
Ethnicity 22 Hispanic or Latino 8 Hispanic or Latino 17
Race 30 White; 5 Asian; 1 22 White; 1 American 17
Black; 5 more than 1 Indian; 1 Black; 2 More
race; 7 N/A than 1 race; 1 unknown
ADOS-RRB 4.83 (2.59) 1.67 (2.61) 22

67




Vineland Adaptive 82.9 (12.47) 97.04 (12.33) .29
Behavior

Mullen 68.44 (26.29) 97.15 (25.56) .03
Mean FD .08 (.05) .09 (.05) 24
Sleep fMRI

Toddler scans were conducted during natural sleep, a method that has been previously
used to study both toddlers with and without ASD (Pierce 2011). To ensure optimal conditions
for sleep fMRI, parents were instructed to eliminate naps from their child's routine on the day of
the scan and to keep the child awake at home until arriving at the scanning facility,
approximately 1 hour past their usual bedtime. Toddlers were placed on the scanner bed
approximately 20 minutes after the onset of sleep to standardize sleep stages during scanning.
Previous studies have demonstrated that successful sleep fMRI acquisition predominantly occurs
during non-REM stage 3 sleep (Mitra et al. 2017), thereby promoting uniformity in sleep state
among scans that were successfully obtained. Studies have also explored brain dynamics during
sleep and reveal that brain dynamics and brain states can be characterized during sleep (Rué-
Queralt et al. 2021; “Connectivity Dynamics from Wakefulness to Sleep” 2020; Stevner et al.
2019) and stage 3 sleep state dynamics is distinguishable from head motion (“Connectivity
Dynamics from Wakefulness to Sleep” 2020).

Behavior Measures

ADOS RRB
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All participants underwent the ADOS, a semi-structured observational tool used by
trained clinicians to score autism symptoms in two domains: social affective and restrictive,
repetitive, behavior (RRB) (Lord et al. 2012). The RRB subdomain scores unstructured instances
of restricted interests and repetitive, stereotyped behaviors. We hypothesized that early brain
dynamics would correlate with ADOS RRBs across all participants.

Vineland Adaptive Behavior

The Vineland Adaptive Behavior Scales (VABS) is a parent-report measure of adaptive
behavioral skills in children (Sparrow, Cicchetti, and Balla 2012). The VABS assesses adaptive
behavior in domains of communication, daily living skills, and socialization. The subdomains are
combined to form a composite score of adaptive functioning. The adaptive behavior composite
score in the VABS has been found to negatively correlate with RRBs such that lower adaptive
functioning is associated with more severe RRBs (Cuccaro et al. 2003). The VABS composite
score will be used as a dimensional index of behavioral flexibility.
fMRI Data Acquisition

All fMRI data were acquired using a 3 T GE scanner at the University of California, San
Diego Center for Functional MRI. Functional images were obtained using a multi-echo echo
planar imaging protocol with four echo times (TEs) of 15 ms, 28 ms, 42 ms, and 56 ms, a
repetition time (TR) of 2,500 ms, a flip angle of 78°, a matrix size of 64 x 64, a slice thickness of
4 mm, and a field of view of 256 mm, covering 34 slices. Additionally, structural images were
acquired using a T1-weighted 3D magnetization-prepared rapid gradient-echo sequence with a

field of view of 256 mm, TE of 3.172 ms, TR of 8.142 ms, and a flip angle of 12°.
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Imaging Data Preprocessing

Functional data underwent preprocessing using the multi-echo independent component
analysis pipeline 'meica.py' implemented in AFNI and Python. Prior to preprocessing, the first
four volumes of each run were discarded to ensure steady-state magnetization and ME-ICA
denoising was completed. To denoise the data, principal and independent component analyses
were used to separate BOLD and non-BOLD signals. Only BOLD-like components were
retained after denoising and the time series of the four TEs were combined into a single time
series. Preprocessing steps included motion correction, followed by slice timing correction and
normalization to an age-matched toddler template (e.g., 2-year-old template) (Shi et al. 2011) as
a majority of participants were around this age (mean age: 2.21 years), and smoothing. Head
motion was assessed using framewise displacement (FD), with minimal motion observed in
sleeping toddlers (mean FD <0.3 mm). No significant differences in head motion were observed
between ASD and non-ASD groups.
Brain Dynamics
Post-ICA fMRI processing

The resting state data from all 75 toddlers were subjected to a high model order ICA by

using the Group ICA of fMRI Toolbox (GIFT) (https://trendscenter.org/software/gift/). A model

order of 30 independent components (ICs) was used as it is recommended in toddlers based on
previous work (Ma, Wu, and Shi 2020). To ensure the stability of this estimation, the ICA

algorithm was repeated 20 times using ICASSO (http://www.cis.hut.fi/projects/ica/icasso). The

30 components were visually inspected and classified as noise or non noise. The components
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related to movement or white matter were removed from the analysis. The remaining 27
components were grouped into 7 functional networks based on a parcellation (Schaefer et al.
2018) (Figure 1). Then the SN, DMN, and CEN components were examined independently as
part of a triple network approach as these networks are commonly indicated to be altered in
ASD. A 284 volume x 27 ICs matrix containing the time series for each subject was post-
processed using Matlab code from the GIFT toolbox. Post-processing included covariate
regression of white matter, CSF, and Friston 24 head motion parameters, linear detrending,
despiking (using AFNI’s 3D despike), and bandpass filtering (0.01-0.1 Hz) (Allen et al., 2014).
Global signal regression was not used in this study after the evaluation of the resulting matrices
with and without global signal and based on methods in previous studies in this population
(Marshall et al. 2020b).
Co-Activation Pattern Analysis

The individual matrices of the non-noise components were concatenated into a single
group matrix comprising all subjects (21,300 TR (284 volume % 75 subjects) % 27 non-noise ICs)
and subjected to k-means clustering. Various k values (2-20) were tested, and the optimal value
of k=5 was determined using the elbow criterion, which applies a least-squares fit line to the
cluster validity index (ratio of within-cluster to between-cluster differences). Utilizing squared
Euclidean distance to cluster the patterns, a Co-activation Pattern (CAP) analysis was conducted
with the optimal value of k = 5 on the group matrix. ASD and non ASD participants were
combined into one group for the CAP analysis based on previous findings indicating no group

differences between CAPs when groups are separated (Kupis et al., 2020; Marshall et al., 2020).
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Dynamic metrics were then calculated for each subject. The CAP metric of Dwell Time
(DT) was calculated as the average number of TRs that a participant continuously remained in a
given brain state. DT measures the average number of unchanged TRs between the state and the
subsequent TR. Additionally, the frequency of occurrence of brain states was calculated as a
percentage over time that the states were observed. Lastly, the number of transitions,
representing switches between brain states, was calculated. DT, frequency of occurrence, and the
number of transitions were computed for each participant and compared between groups, and
further associated with cognitive flexibility measures (RRB, Vineland).
Sliding Window Dynamic Functional Network Connectivity

Dynamic functional network connectivity (dFNC) between all non-noise independent
components (ICs) was computed using the GIFT dynamic-functional network connectivity (d-
FNC) toolbox. This toolbox employs a sliding-window analysis to compute dynamic functional
connectivity, where correlations between ICs are calculated within time-specified windows
across the rsfMRI scan. Given our data sets repetition time (TR) of 2.5 seconds, we opted for
sliding windows spanning 30 volumes. This resulted in 284 windows per subject. As part of
calculating the window and correlation matrices, the d-FNC toolbox applies a 3-sigma Gaussian
curve to smooth transitions between windows are the resulting windowed correlation matrices
were regularized using the graphical LASSO method (Varoquaux et al. 2010) to minimize
within-window noise. The graphical LASSO method estimates functional connectivity by
applying L1 regularization to the inverse covariance matrix, improving model performance and

promoting sparsity (Allen et al. 2014). All the dynamic functional networks across all subjects
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were used to estimate the FC states using a k-means clustering analysis. This was repeated 100
times to cluster the dynamic FC windows. A Euclidean distance was used to group similar FC
matrices of the different windows and elbow criterion was used to estimate the number of
clusters, which was 5 states. The Pearson correlation coefficient was used for the clustering
analysis.
Statistics
Group Differences

For both the CAP and dFNC analyses, between group differences (ASD vs. non ASD)
were assessed using multiple regression controlling for age and head motion for each of the brain
dynamic metrics (DT, frequency, and transitions for CAPS, and DT for DFC).
Brain-Behavior Relationships

For the CAP analysis, the relationship between the dynamic metrics (DT, frequency, and
transitions) and behavior (RRBs, and Vineland Adaptive Scale) was assessed using multiple
regressions controlling for age and head motion. For the DFC analyses, the relationship between
DT and behavior (RRBs, and Vineland Adaptive scale) was assessed using multiple regressions
controlling for age and head motion. All analyses were completed using R studio
(www.rstudio.com).
RESULTS
CAPS

ICA
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Out of 30 ICs that were estimated, three were classified as noise. The remaining
components were then grouped into brain networks including visual, somatomotor, salience,

dorsal attention, central executive, default mode, and subcortical regions (Figure 1A).
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Figure 1. (A) Organization of ICA components into functional networks. (B) Triple network
analysis of the salience, default mode, and central executive networks. CEN, central executive
network.

Figure 2
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Figure 2. Whole brain and triple network co-activation patterns (CAPs)/Brain states. SN,
salience network; DMN, default mode network; CEN, central executive network; DAN, dorsal
attention network; SomMot, somato motor network; Sub, subcortical.
Whole Brain

There was an optimal k of 5 clusters across all toddlers. A) CAP 1 was characterized by
greater SN and DMN co-activation. CAP 2 was characterized by greater CEN, DAN, DMN,
visual, and subcortical network co-activation. CAP 3 was characterized by greater DMN, CEN;
and visual co-activation, and SN, DMN, and CEN de-activation. CAP 4 was characterized by
greater SN, DMN, and CEN co-activation. CAP 5 was characterized by greater DMN activation;
and SN and DMN de-activation. There was a significant group difference in CAP 4 dwell time (p
=.04) when controlling for age and head motion. There were no other significant group
differences in the whole-brain CAPs (p’s > .05) (Figure 3; Table 2).

Figure 3
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Figure 3. Between Group Differences. There was a significant group difference in the dwell time

(DT) of state 4 between ASD and non-ASD groups such that ASD groups dwelled longer in this

state. State 4 consisted of greater SN, CEN, and DMN co-activation.

Table 2
Dynamic Metric ASD (N=48) | Non ASD (N= | p-value
M (SD) 27)
M (SD)
DT 2.55(.38) 2.86 (.53) .86
CAP 1
Frequency .19 (.04) .19 (.04) .80
DT 2.52 (.45) 2.88 (.40) 32
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CAP2 Frequency 17 (.04) 21 (.03) 35

DT 2.62 (.45) 2.82 (.53) .36
CAP3
[
Frequency 24 (.03) .18 (.04) 74
[
DT 2.52 (.51) 2.52 (.37) .04%*
CAP 4
[
Frequency 20 (.04) .19 (.03) 20
[
DT 2.33 (.34) 2.80 (.45) .61
CAP S5
[
Frequency 20 (.03) 23 (.05) 78

Triple-Network Approach

Next, a triple network analysis of the salience, default mode, and central executive
network dynamics across 5 brain states was examined. CAP 1 was characterized by greater SN,
DMN, and CEN co-activation and DMN de-activation. CAP 2 had no strong co-activations.
CAP 3 consisted of a greater DMN co-activation, and SN and CEN de-activation. CAP 4
consisted of greater DMN co-activation, and SN, DMN, and CEN de-activation. CAP 5
consisted of a greater SN and CEN co-activation, and DMN de-activation (Figure 2B). There
were no significant group differences between the groups in the ROI CAP analyses (p’s > .05)
(Table 3).

Table 3
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Dynamic Metric ASD (N=48) | Non-ASD (N = | p-value
M (SD) 27)
M (SD)

DT 2.93 (.50) 2.79 (.51) .19
CAP 1

Frequency .19 (.04) .19 (.04) .99

DT 2.38 (.36) 2.32 (.35) .62
CAP2

Frequency 20 (.04) .19 (.04) 31

DT 2.78 (.45) 2.66 (.45) 32
CAP3

Frequency 23 (.04) 22 (.04) .68

DT 3.00 (.60) 2.90 (.62) .36
CAP 4

Frequency .19 (.04) .19 (.04) 74

DT 2.75 (42) 2.79 (.39) 41
CAP S5

Frequency 20 (.04) 21 (.04) .07

CAPS Brain Behavior
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A dimensional analysis across both diagnostic groups was conducted to evaluate
relationships between brain dynamics (dwell time, frequency, transitions) and RRBs and
adaptive behaviors.

Whole Brain

First, the model was conducted using dynamics across the whole brain CAPs. A
dimensional brain-behavior regression model revealed a significant relationship between the
frequency of CAP 5 and ADOS RRB (p =.038) when controlling for age and head motion.
There was also a significant relationship between the frequency of CAP 2 and the Vineland
Adaptive Behavior measure (p = .048). There were no other significant brain-behavior
relationships in the whole brain CAP dynamics with behavioral measures (p>.05).

Triple Network Analysis

Next, the regression model was conducted using the triple network CAP dynamics (SN,
DMN, CEN) and their relationship with RRBs and adaptive behavior. Brain-behavior
relationships were observed between the DT of CAP 1 and the ADOS RRB measure (p = .034),
and the frequency of CAP 5 and the ADOS RRB measure (p =.024). Brain-behavior
relationships were also observed between the DT of CAP 1 and the Vineland Adaptive Behavior
measure (p =.046), and the frequency of CAP 5 and the Vineland Adaptive Behavior measure (p
<.001). All significant results are summarized in Table 4 and Figure 4.

Table 4. Summary of the regression analysis of CAP Brain States dynamic metrics and behavior
measures. To simplify the presentation, we present only the variables of interest and not the

covariates, and only significant findings.
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b SE t p

CAP State 4 DT and Diagnosis

-.18 09  -2.09 .041

CAP State S Frequency and RRB

-.004 002 -2.11 .038

CAP State 2 Frequency and
Vineland Adaptive Behavior

.001 .0003 2.01 .048

ROI CAP State 1 DT and RRB

.05 02 217 .034

ROI CAP State S Frequency and RRB

-.004 002 -2.30 .024

ROI CAP State 1 DT and Vineland
Adaptive Behavior

-.01 005 -2.03 .046

ROI CAP State 5 Frequency and Vineland
Adaptive Behavior

.001 .0005 3.66  .0005

* Uncorrected p values < .05

** Uncorrected p values <.01
*#* Uncorrected p values <.001
ROI, region of interest

Figure 4
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Figure 4. A) Greater frequency of the whole brain state consisting of greater CEN, DAN, DMN,

visual, and subcortical network co-activation was associated with greater adaptive behaviors.

Conversely, in B), greater frequency of the whole brain state consisting of greater DMN

activation; and SN and DMN de-activation was associated with poorer restricted repetitive

behaviors (RRBs). In the region of interest (ROI) or triple network states, C), greater dwell time

of a state consisting of greater SN, DMN, and CEN co-activation and DMN de-activation was

associated with poorer RRBs and D) poorer adaptive behaviors. Next, the greater frequency of a

state consisting of greater SN and CEN co-activation, and DMN de-activation was associated

with E) fewer RRBs, and F) greater adaptive behaviors.

Figure 5

Dynamic Functional Connectivity (dFC)

ICA
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The same ICA process for DFC was conducted for DFC using the GIFT toolbox and as
described above.
DFC States

Following the elbow criterion, the whole sample showed 5 different states (see Figure 6).
State 1 (14% of the windows) was characterized by strong connectivity between visual and
subcortical networks and slightly elevated connectivity with the salience network. State 2 (22%
of the windows) was characterized by strong connectivity between the subcortical, salience, and
a few regions in the visual networks. State 3 (9% of the windows), was characterized by strong
connectivity amongst the visual, somato motor, subcortical, DMN, and salience networks. State
4 (34% of the windows) was characterized by strong connectivity within the subcortical network,
and weak connectivity between the DAN and DMN. State 5 (22% of the windows), was
characterized by strong connectivity within visual and subcortical networks, and weak
connectivity between the DAN and DMN.

Figure 5

82



State 1

2560 (14%)

State 2

4007 (22%)

visual

Sontiol SomMot [ SomMot

subcortical \ subcortical

DAN

DMN

CEN

Salience ! Salience

salience 5,

g
B
B

State 4 State 5

6208 (34%) 3996 (22%)

SomMot . SomMot

subcortical ., 1 T t =t £ subcortical

5 DAN

DMN
CEN

Salience

Salience

Figure Legend: Dynamic functional network connectivity (dFNC) matrices for all subjects and
5 states. The value in each cell in the FC is the Pearson correlation coefficient between two brain
regions. The color bar represents the strength of the FC between two nodes (warm color, positive
FC; cool color, negative FC). SomMot, somatomotor; DAN, dorsal attention network; DMN,
default mode network; CEN, central executive network.
Group

There were no significant group differences in the dynamic brain state dwell times when
controlling for age and head motion (p’s > .05).

Table 5
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ASD (N=48) | TD (N=27) p-value
M (SD) M (range)
CAP 1 DT 16.65 (24.89) 20.39 (25.46) .76
CAP2 DT 18.15 (18.08) 22.35 (18.31) 24
CAP3 DT 12.07 (30.79) 15.72 (31.74) .83
CAP 4 DT 28.60 (37.62) 38.85(37.58) 7
CAP 5 DT 35.77 (50.20) 10.40 (51.74) .08

Brain Behavior

A dimensional multiple regression analysis between the dynamic FC dwell times and
behavior measures while controlling for age and head motion revealed significant relationships
between State 4 DT and Vineland adaptive behavior (p =.049), and State 5 DT and ADOS RRB
(p =.034). These results are after the removal of outliers. There were no other significant brain-
behavior relationships (p’s > .05).
Table 6. Summary of the regression analysis of DFC dynamic metrics and behavior measures.

To simplify the presentation, we present only the variables of interest and not the covariates, and

significant findings.

SE t
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DFC State 4 DT and Vineland
Adaptive Behavior

.56 27 200  .049*

DFC State 5 DT and RRB

2.27 1.05 2.17  .034*

* Uncorrected p values < .05

Figure 6
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Figure 6. A) Greater dwell time of a state consisting of strong connectivity with the subcortical,
somato motor, and visual network nodes, and negative connectivity between the DAN and DMN
was associated with greater adaptive behaviors. B) Greater dwell time of a state consisting of
strong connectivity between visual and subcortical networks, and weak connectivity between the
DAN and DMN was associated with poorer restricted and repetitive behaviors (RRBs).

DISCUSSION
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The current study sought to identify early brain biomarkers for autism spectrum disorder
(ASD) in toddlers prior to their diagnosis of ASD and identify brain-behavior relationships in
toddlers who went on to receive an ASD and non-ASD diagnosis. The current study used a data-
driven, ICA approach, and investigated brain dynamics using two methods: co-activation pattern
analysis (CAP) and dynamic functional connectivity (DFC). While investigating both ASD and
non-ASD toddlers, we observed that toddlers who went on to receive an ASD diagnosis dwelled
longer in a brain state characterized by salience network (SN), central executive network (CEN),
and default mode network (DMN) co-activation compared to non-ASD toddlers. Additionally,
across both diagnostic groups, early brain dynamics in states associated with the core neural
networks (DMN, SN, CEN) were associated with restricted and repetitive behaviors (RRBs) and
behavioral flexibility.

First we found that ASD toddlers dwelled longer in a state consisting of co-activations of
SN, CEN, and DMN (state 4) compared with non-ASD toddlers. Many psychiatric conditions
including ASD are often characterized by dysfunction among these three neural networks (SN,
CEN, DMN) (Jones et al. 2023; B. Menon 2019; Vinod Menon 2011). This finding is supported
by the triple network theory that proposes the interactions among the SN, CEN, and DMN are
important for mental health and underlies the dysfunction observed in ASD (Vinod Menon
2011). Separately the networks hold important roles for cognition. The CEN is thought to be
involved in cognitive decisions and tasks (e.g., executive function) and associated with flexible
cognition (Marek and Dosenbach 2018); The DMN is thought to be involved in internal

processes and social cognition such as theory of mind (Raichle 2015); The SN, is thought to
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monitor salient information internally or in the environment and coordinate switching between
the CEN and DMN for either task based (CEN) or internally focused (DMN) states (V. Menon
2015b; Chand et al. 2017). The triple network model suggests that the interactions among the
SN, CEN, and DMN are critical to overall cognitive function. However, in ASD and many
psychiatric conditions, the switching between these neural networks underlying cognition
appears to be dysfunctional (B. Menon 2019). Previous work has found under and over
connectivity of these three neural networks in ASD (K. Wang, Li, and Niu 2021; L. Wang et al.
2024; Hull et al. 2016; Lucina Q. Uddin, Supekar, and Menon 2013). Dysfunction within and
among these three networks may result in network isolation especially during task states, limiting
dynamic interactions between networks important for flexible cognition and behaviors (Cole et
al. 2014). Altered connectivity within these networks have also been linked with and predictive
of behavioral difficulties such as social communication deficits, RRBs, and adaptive behavior
skills (McKinnon et al. 2019; Kaustubh Supekar et al. 2021; Plitt et al. 2015; Abbott et al. 2016).
Dysfunction of these neural networks appear to underlie many of the symptoms observed in ASD
and may underlie our finding of there being a greater dwell time of a state consisting of co-
activation of all three neural networks in ASD toddlers. Additionally, dynamic connectivity
patterns in brain states and among the SN, CEN, and DMN are altered in ASD individuals
compared with non-ASD individuals (Marshall et al. 2020b; Kupis, Romero, Dirks, Hoang,
Parladé, et al. 2020; Kupis, Goodman, Kircher, et al. 2021; Yue et al. 2022). ASD individuals
have been found to dwell longer and transition less between states (Yao et al. 2016; Watanabe

and Rees 2017; de Lacy et al. 2017; “Brain Mechanisms Supporting Flexible Cognition and
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Behavior in Adolescents With Autism Spectrum Disorder” 2021), and spend more time in states
with altered patterns such as abnormal patterns of increased DMN activation (Harlalka et al.
2019; Yue et al. 2022), as similarly found in this study. There is also some evidence of early
functional connectivity dysfunction within these networks in high risk or later developing autistic
infants and toddlers (McKinnon et al. 2019; Tsang et al. 2024). As these three neural networks
are found to develop across the third trimester of gestation and the first postnatal month
(Scheinost et al. 2022), it makes it even more important to further investigate in autism at these
early stages.

Across all participants, we found states with primarily CEN and SN co-activation and
DMN de-activation were associated with greater adaptive behaviors and fewer RRBs; conversely
states with greater DMN co-activation were associated with poorer RRBs and adaptive
behaviors. These findings are consistent with previous studies and relationships between brain
and behavior findings (Sridharan, Levitin, and Menon 2008). Both the SN and CEN are often
associated with cognitive processes (Sridharan, Levitin, and Menon 2008; Vinod Menon and
D’Esposito 2022; Aron 2007; Dreher and Berman 2002; Bressler and Menon 2010; Shaw et al.
2021) and have been associated with RRBs and adaptive behavior in previous studies with and
without ASD participants (Lucina Q. Uddin et al. 2013b; Kupis, Romero, Dirks, Hoang, Parladé,
et al. 2020; Kupis, Goodman, Kornfeld, et al. 2021; He et al. 2018; Harlalka et al. 2019; P. Lin et
al. 2016; “Brain Mechanisms Supporting Flexible Cognition and Behavior in Adolescents With
Autism Spectrum Disorder” 2021). Additionally, atypical brain network dynamics have been

shown to underlie ASD and contribute to individuals’ cognitive and behavioral inflexibility
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(Lucina Q. Uddin et al. 2015b; Marshall et al. 2020b; “Brain Mechanisms Supporting Flexible
Cognition and Behavior in Adolescents With Autism Spectrum Disorder” 2021). Proper
functioning and switching between these three neural networks are broadly associated with
healthy cognition (Chand et al. 2017). Dysfunction of the switching process, or disengagement of
the CEN, SN, or DMN may contribute to cognitive and behavioral difficulties, and psychiatric
conditions (Lucina Q. Uddin 2015; Kaustubh Supekar et al. 2019). In healthy populations, CEN
and SN interactions in particular support positive cognitive control, behavioral and cognitive
flexibility, and adaptive behaviors (Kupis, Goodman, Kornfeld, et al. 2021; Kronke et al. 2020;
Cole et al. 2014). Greater DMN interactions with the SN typically support self referential
processes (Gusnard et al. 2001), and when present during task states is usually associated with
poorer task performance (Hutchison et al. 2013; V. Menon 2015a). Our finding of the increased
state including DMN co-activation with the SN and CEN in toddlers who were later diagnosed
with ASD compared with non-ASD toddlers may be an early sign of network dysfunction as
observed in older children and individuals with ASD. Although brain network dynamics are not
greatly studied in infants and toddlers at this time, there is promising work showing early brain
alterations are predictive of later ASD diagnosis and cognitive and behavior functions (I.
Molnar-Szakacs, Kupis, and Uddin 2021; Wolff, Jacob, and Elison 2018; Girault and Piven
2020). Overall, our findings support the SN, CEN, and DMN as promising brain biomarkers for
individuals at risk of ASD during young development and later emerging behavior difficulties

associated with RRBs and behavioral flexibility.

89



In the dFNC method used (a sliding window approach), we found greater dwell time in a
state consisting of weak overall connectivity and strong subcortical connectivity was associated
with greater adaptive behavior; conversely greater dwell time in a state consisting of greater
visual and subcortical connectivity was associated with poorer RRBs across all participants. In
both cases, we found a weak (negative) connectivity between the DAN and DMN. Our findings
are similar to findings in the literature using dFNC. For example, other studies have found DFC
states predictive of symptom severity were mostly those associated with visual and sensorimotor
regions (Harlalka et al. 2019; McKinnon et al. 2019). One of the earliest studies of FC and RRBs
in toddlers at risk of ASD found abnormal brain network dynamics with the DMN, DAN and
CEN were associated with RRBs and rigid behaviors (McKinnon et al. 2019). They found further
evidence to support the hypothesis that inverse relationships between the DAN and DMN
underlie healthy and adaptive behaviors. Here, we found weak FC between the DAN and DMN
was associated with both positive and negative flexible behaviors. Our slightly different findings
may be due to having a larger age range in our toddler sample, whereas the previous study
separated toddlers by 12 mos and 24 mos of age. RRBs have also been previously linked to
visual skills in ASD before and greater visual sensitivity has been correlated with more severe
RRBs (W. Lin et al. 2023; Schulz and Stevenson 2020). Further studies have found RRBs may
even be a response to sensory abnormalities (Gabriels et al. 2008) which supports the theory that
early sensory abnormalities may be associated with long term dysfunction in higher order
behaviors. Our finding of a longer dwell time in a visual/subcortical FC state associated with

poorer RRBs further supports the idea of sensory abnormalities linked with later RRBs. One
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study with some of the youngest infants at-risk for ASD (1.5 months and 9 months) found
evidence of abnormal thalamus connectivity in at-risk infants, suggesting early subcortical,
visual, and sensory abnormalities may cascade into later ASD symptoms and higher order issues
(Wagner et al. 2023). Overall, our dFNC findings further support the ideas of early sensory
connections underlie the development of later emerging RRBs and adaptive behaviors.

In this study, we utilized two methods to investigate early brain dynamics in toddlers
with and without ASD. The dynamic functional network connectivity (dFNC; e.g., sliding
window) (Chang and Glover 2010) and co-activation pattern analysis (CAP) (X. Liu and Duyn
2013) methods were used and are both popularly used to quantify brain dynamics (Lurie et al.
2020). Both DFC and CAP methods are similar in that they account for brain network changes
across multiple time points throughout the scan, rather than averaging across the entire duration
of the scan. DFNC, however, uses sliding windows, or 30-60 second windows that break up the
time series. From there an average is taken from each window, thus arbitrarily collapsing the
data into time. CAPs on the other hand, does not collapse the data into arbitrary window lengths
and instead relies on all of the data and a data-driven approach to cluster the data into the brain
states. These methodological differences, further depicted here, may account for the differences
observed in the results between these two methods. In the whole-brain CAP analyses, we found
most of the brain states contained a variety of co-activated brain regions including the SN, DMN,
and CEN. Only CAP brain state 5 had weaker co-activations of brain regions. These findings are
similar to other CAP studies (Marshall et al. 2020b; Kupis, Romero, Dirks, Hoang, Parladg¢, et al.

2020; Kupis, Goodman, Kornfeld, et al. 2021). The dFNC states had similar connectivity
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patterns including strong FC of the core neural networks as in the CAP states but had more states
with a stronger visual network FC. Additionally, the dFNC results had states of widespread
connectivity and low strength in connectivity. Interestingly, studies using dFNC methods
typically report that ASD groups tend to spend more time in FC states characterized by weak or
absent connectivity compared with healthy controls (Rabany et al. 2019; de Lacy et al. 2017;
Rashid et al. 2018; Chen et al. 2017). Although we did not find a significant difference in dFNC
states in ASD versus non-ASD groups, overall we found similar states to previous studies. In
both methods, we did find brain-behavior relationships across diagnostic groups. Although we
found differences in the dFNC and CAPs methods, both methods may be used to reveal
interesting and nuanced insights into early brain development and brain-behavior relationships.
Limitations of this study include a limited sample size. Collecting sleep MRI scans poses
a challenge as it is difficult to recruit families for night-time scans and there are difficulties with
children remaining asleep during the scan duration. Additionally, there were too few
neurotypical toddlers to create a diagnostic group based on that criteria. Therefore, the non-ASD
group was based on the standardized scores to allow for more toddlers within the neurotypical
range and to include more toddlers of varying levels as suggested by RDOC criteria.
Additionally, sleep dynamics and dynamics in toddlers in general are a new field and more work
is needed for this research. Additionally, further analyses need to be done with the dFNC method
including a triple network approach, and investigating the results using more sliding window
lengths (e.g., 30 sec, 60 sec, 45 sec) and a comparison of global signal regression on the dFNC

results.
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CHAPTER 5:

CONCLUSION

Cognitive flexibility or the ability to mentally shift in response to change is a crucial
ability for lifelong success. FMRI and brain network dynamics have been used to advance our
understanding of the neural underpinnings of healthy and abnormal brain functioning and brain-
behavior relationships. Autism spectrum disorder (ASD) in particular is a heterogeneous
condition with core difficulties with cognitive and behavioral flexibility. This dissertation
advances our understanding of how brain network dynamics underlie healthy cognitive
flexibility across the lifespan, development of cognitive inflexibility in autism spectrum disorder,
and early predictors of autism and emerging cognitive and behavioral inflexibility. The
identification of neural signatures underlying cognitive flexibility, biomarkers of ASD, and
behavioral difficulties may help increase early diagnosis and intervention and ultimately improve
life outcomes in typical and atypical populations.

In chapter 2, resting-state intrinsic brain network dynamics was examined across the
lifespan in a healthy sample. Further, brain network dynamics were examined in relation to
flexible cognition and behavior across the lifespan. By investigating the co-activation patterns of
the salience (SN), default mode (DMN), and central executive (CEN) networks, we found brain
dynamics of coupled states of these networks (e.g., SN co-activated with CEN) had U-shaped
trajectories across the lifespan. Next, between-network dynamics of a state consisting of the
CEN and DMN co-activation moderated the relationship between aging and cognitive flexibility.

Additionally, brain state transitions also moderated the relationship between aging and cognitive
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flexibility. This is one of the first studies to investigate brain network dynamic changes across
the lifespan and the relationship between brain network flexibility and cognitive and behavioral
flexibility. This study revealed the importance of discovering brain-biomarkers for preventative
measures and intervention for later developing cognitive flexibility problems, and highlighted the
dynamic interactions among the SN, DMN, and CEN as promising biomarkers for cognitive and
behavioral flexibility across the lifespan.

Chapter 3 extended these findings by investigating brain network dynamics in children
with and without autism spectrum disorder (ASD; ages 7-12 years) during task and rest fMRI
states. This study used the same co-activation pattern analysis method and further investigated
the SN, DMN, and CEN dynamic interactions during a flexibility task and during a resting-state
MRI scan. ASD children had altered brain dynamics in later stages of the flexibility task. During
the fourth run of the task, ASD children had a greater frequency of occurrence of a state with
CEN, and dwelled less in a state with co-active SN and CEN. Across both groups, a greater
DMN dwell time was associated with stronger social skills. These findings support the
importance of the SN, CEN, and DMN in development, flexible cognition and behavior, and in
ASD. Additionally, these findings suggest atypical between-network coordination may underlie
neural compensation in children with ASD but may be exacerbated by long durations of a task.
Additionally, DMN dynamics may be important for social cognition and dysfunction in both
ASD and healthy development. Taken together, these brain network dynamic studies in a healthy
lifespan sample and in youth with and without ASD indicate the importance of brain network

interactions underlying brain development and flexible and inflexible cognition. These results
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also highlight the importance of the core neural networks (SN, DMN, and CEN) in atypical and
typical development and predicting brain-behaviors.

The study in chapter 4 then investigated early brain network dynamics in toddlers later
diagnosed with and without ASD and their relationship to flexible behaviors including restricted
and repetitive behaviors and adaptive behaviors. ASD toddlers dwelled longer in a state
consisting of co-activation of all three neural networks (SN, CEN, and DMN) compared with
non-ASD toddlers. Next, various brain states consisting of the core neural networks were
associated with RRBs and adaptive behaviors across both ASD and non ASD toddlers. The
findings extended the findings in the previous studies such that states with SN and CEN co-
activation were associated with positive flexible behaviors while states with DMN co-activation
were associated with negative flexible behaviors. This is one of the first studies to investigate
brain network dynamic interactions in toddlers with and without ASD, and how early brain
network interactions may be predictive of later behaviors. This study is one of the first to show
the importance of the core neural networks (SN, DMN, CEN) in early brain development and
autism, and emerging behaviors.

Limitations and Future Directions

All of the studies discussed included a novel brain dynamic method and a fMRI scan at a
single time point for each participant. The novel brain dynamic methods, although informative,
need to be further assessed methodologically. Additionally, there are always concerns with head
motion with time-varying methods which also limits the sample and may pose as a confound.

Future studies need to test the time-varying methods further especially in neurodiverse
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populations where head motion is a greater concern. Additionally, longitudinal studies of brain
development are needed to elucidate causal interactions between brain network dynamics and
behavior along the lifespan. Repeat fMRI scans may be useful to elucidate early neural
signatures of autism, critical time periods for behavior and development, and the extent that brain
networks can alter and change across the lifespan. Another limitation was the inconsistency of
the timing of the fMRI scans especially in the toddlers investigated. Studies have begun to
investigate and observe brain differences in those later diagnosed with autism as early as 6
weeks. Future work ideally would scan infants and toddlers at the same time points and
repeatedly throughout the first three years of life. As the brain develops rapidly in the first years
of life, consistent, repeat scans would potentially elucidate the neural mechanisms underlying
autism and better identify early biomarkers for later developing autism and behavior outcomes.
Another limitation of the studies was sample size making the studies not as generalizable to the
population. Head motion and completion of the fMRI scan poses a challenge when scanning
children and neurodiverse populations. It will be important for future studies to consider novel
methods and strategies to include participants of varying abilities and across the lifespan.
Concluding Remarks

The ability to flexibly respond to a constantly changing environment is paramount to
survival and positive life outcomes. Understanding the brain network dynamics underlying
cognitive and behavioral flexibility and inflexibility is important to inform development and
aging in typical and atypical populations. This thesis used functional magnetic resonance

imaging and time-varying methods to investigate how three core neural networks dynamically
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interact across the lifespan, and how they support cognitive flexibility during sleep, rest, and task
states, and how they are altered in autism spectrum disorder during the first years of life. We
found brain network interactions among the salience network (SN), default mode network
(DMN), and central executive networks (CEN) supported cognitive flexibility across the
lifespan, and are altered in children with autism, and in toddlers later diagnosed with autism
compared with neurotypical toddlers. This dissertation lays the groundwork for further
investigating the SN, DMN, and CEN dynamic interactions as a biomarker for autism spectrum
disorder and underlying cognitive flexibility across the lifespan. The work in this dissertation
also supports the development of targeted individualized treatments to improve the outcomes for
those diagnosed with autism and those who face difficulties with cognitive and behavioral

flexibility.
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