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On the Minimum Average Distortion of Quantizers
with Index-Dependent Distortion Measures

Erdem Koyuncu, Member, IEEE, and Hamid Jafarkhani, Fellow, IEEE

Abstract—In many applications, one is interested in optimally
deploying a network of unidentical agents to a certain area of
interest; examples include heterogeneous sensor networks and
cellular networks. Such deployment problems can equivalently
be formulated as quantizer design problems where different dis-
tortion measures should be associated with different quantization
indices. In this paper, we consider the case where the distortion
measure is the rth power (r ≥ 1) of the distance between
the reproduction point and the source sample weighted by a
factor that varies from one index to another. For a uniform
distribution of source samples, we determine the corresponding
optimal scalar quantizers and their average distortions. For non-
uniform distributions and vector quantization, we provide a high-
resolution analysis of the minimum possible average distortion.
Applications to sensor and cellular networks are also discussed
together with numerical design examples.

I. INTRODUCTION

A. Index-Dependent Distortion Measures

Let n be a positive integer, In � {1, . . . , n} be a quantizer

index set, X � {x1, . . . , xn} ⊂ R
d be a quantizer codebook,

and U � {S1, . . . , Sn} be a partition of R
d to Borel mea-

surable quantization cells Si, i ∈ In. For a source sample

q ∈ R
d, we consider an n-level d-dimensional vector quantizer

(X,U) given by the encoder mapping α(q) � i whenever

q ∈ Si, i ∈ In, and the decoder mapping β(i) � xi, i ∈ In.

Let r ≥ 1, and ωi, i ∈ In be a sequence of positive weights.

We associate the distortion measure hi(q, x) � ωi‖q − x‖r
to quantizer index i ∈ In. Correspondingly, the distortion of

quantizing the source sample q using (X,U) can be expressed

as hα(q)(q, β(α(q))), or equivalently as ωi‖q−xi‖r whenever

q ∈ Si. The average distortion with (X,U) is then

D(X,U) � E
[
hα(q)(q, β(α(q)))

]
(1)

=
∑
i∈In

ωi

∫
Si

‖q − xi‖rf(q)dq, (2)

where E[·] is the expected value, and f(q) is the probability

density function of the source random variable Q. We assume

E‖Q‖r < ∞ so that D(X,U) is finite for any (X,U).
In the formulation above, the distortion measure varies

across different quantization indices. We thus say that the

distortion measure is quantization index dependent, or simply,
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index-dependent. In contrast, in most quantization problems,

the distortion measure associated to every quantization index

is the same: The distortion of quantizing the source sample q
via (X,U) is given by h(q, β(α(q))) for some unique index-
independent distortion measure h.

The main goal of this paper is to determine the n → ∞
asymptotic performance of optimal quantizers that minimize

the average distortion in (2) given the weights ωi, i ∈ In. In

fact, in addition to accomplishing this goal for a general d
and f , for the special case of one-dimensional uniform source

distributions, we will find an optimal quantizer for every n.

B. Multiplicatively-Weighted Voronoi Diagrams

Regarding the minimization of the average distortion in (2),

given i ∈ In, let us first define the Voronoi cell

Vi(X) � {q : ωi‖q − xi‖r ≤ ωj‖q − xj‖r, ∀j ∈ In}. (3)

Ties are broken in favor of the smaller index. The tie-breaking

rule ensures that each Vi(X) is a Borel set. The collection

W (X) � {Vi(X) : i ∈ In} (4)

is commonly referred to as the (multiplicatively) weighted

Voronoi diagram [1] generated by xi, i ∈ In with weights

ωi, i ∈ In. Given any codebook X , it can be shown that

the Voronoi regions Vi(X), i ∈ In are the optimal encoding

regions in the sense that we have

D(X,U) ≥ D(X,W (X)), ∀U. (5)

A proof of (5) will be provided later on. We thus call

(X,W (X)) the optimal quantizer given X .

In the special equally-weighted case ω1 = · · · = ωn,

the Voronoi cells are always convex polytopes and a given

cell Vi(X) can be thought as the intersection of the half-

planes {q : ‖q − xi‖ ≤ ‖q − xj‖}, j 
= i. In general,

Vi(X) is the intersection of the sets {q : ωi‖q − xi‖r ≤
ωj‖q − xj‖r}, j ∈ In − {i}, each of which is either a half-

plane (when ωi = ωj), a closed d-ball (when ωi > ωj), or

the complement of a closed d-ball (when ωi < ωj). A two-

dimensional weighted Voronoi diagram example is illustrated

in Fig. 1. As can be observed in Fig. 1, unlike Voronoi

diagrams generated by points with equal weights, the cells

of a weighted Voronoi diagram are in general non-convex,

non-star-shaped,1 or even disconnected. This also implies

that the corresponding optimal quantizer encoders cannot be

1A set Rd is called a star-shaped set if there exists a ∈ A such that for
every point b ∈ A, the line segment that joins a and b is contained in A.
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implemented using the standard Euclidean nearest-neighbor

encoding rule. It is known that optimal entropy-constrained

quantizers may similarly have disconnected Voronoi cells in

certain cases [2]. Certain structured quantizers such as polar

quantizers [3], [4] and spherical quantizers [5] also utilize non-

convex quantization cells.

Fig. 1. The optimal encoding regions (Voronoi cells) W (X) corresponding
to the reproduction points x1 = (0.1, 0.1), x2 = (0.9, 0.8), x3 =
(0.3, 0.3), x4 = (0.4, 0.1), x5 = (0.1, 0.5), x6 = (0.8, 0.4), x7 =
(0.7, 0.8), x8 = (0.2, 0.9) and weights ω1 = ω2 = 1, ω3 = ω4 =
4, ω5 = · · · = ω8 = 10, when r = 2. The large solid black disks, the
crosses, and the squares represent the locations of the reproduction points
whose indices have weights 1, 4, and 10, respectively. The light gray region
is the Voronoi cell V1(X) and consists of 3 disconnected components. The
darker gray region represents the cell V2(X), and it is connected but neither
convex nor star-shaped. The remaining white regions represent the remaining
Voronoi cells.

C. Related Work and Applications

Index-dependent distortion measures have appeared in the

context of a variety of applications. In particular, the cor-

responding weighted Voronoi diagrams appear in a diverse

range of disciplines including crystallography [6], urban plan-

ning [7], logistics districting [8], or mesh generation [9].

Minimization of the average distortion in (1) for arbitrary

index-dependent distortion measures have been considered in

[10] for multi-robot deployment, and a gradient-descent based

numerical solution has been provided. The same problem

has been studied in [11] for the purpose of locational opti-

mization of facilities having different service capabilities. The

Lagrangian formulation of the entropy constrained quantizer

design problem [12], [13] also induces an index-dependent

distortion measure provided that the codeword lengths are

considered fixed. In this case, one typically works with the

distortion measure h̃i(q, x) = ‖q − x‖r + λ�i, where λ is

a Lagrange multiplier, and �i is the length of the binary

codeword that is assigned to quantizer index i ∈ I. Note that

the distortion measure h̃i(q, x) weighs different quantization

indices with different additive weights. This is in contrast to

the multiplicatively-weighted distortion measure hi(q, x) =
ωi‖q − x‖r that we consider.

Minimizing the average distortion in (2) has been the subject

of several works [14]–[18] on heterogeneous sensor networks.

The setup consists of n sensors with locations given by X . If

the sensors are physically identical, one can then quantify the

inaccuracy/distortion of sensing an event at point q by Sensor

i located at point xi as ‖q − xi‖r. The overall performance

of the sensor network can be modeled via the average dis-

tortion of the optimal quantizer given X . The aforementioned

works [14]–[18] have modeled heterogeneous sensor networks

through assigning different multiplicative weights to the rth

power quality functions of different sensors. In other words,

one models the inaccuracy of sensing an event at point q by

Sensor i located at point xi as ωi‖q − xi‖r, where ωi > 0
depends on the sensor index. In such a formulation, the indices

corresponding to the more capable sensors are assigned a

lower weight. For example, we can interpret Fig. 1 as a

network of 8 sensors located on the sensing field [0, 1]2. There

are 3 types of sensors with the black disks corresponding to

the most capable sensors. The Voronoi cell Vi(X) is the region

where Sensor i can provide the minimum sensing distortion

among all other sensors. Note that the optimal sensing regions

(Voronoi cells) for each sensor may be disconnected.

To gain practical insight on the possibly-disconnected nature

of the optimal sensing regions, we may imagine that the 2 large

black disks in Fig. 1 correspond to aerial sensors, which have

a much longer range of accurate event detection compared to

the 6 ground-based sensors represented by crosses and small

squares. Clearly, in terms of sensing accuracy, a ground sensor

will outperform the aerial sensors in its immediate vicinity.

However, as the event location moves further away from a

ground sensor, the aerial sensor will begin to outperform, even

though the event location remains closer to the ground sensor

than the aerial sensor. This results in possibly-disconnected

cells for the aerial sensors.

Independent of the particular geometry of the optimal

sensing regions, given any set of weights {ωi : i ∈ In}, the

goal of the above heterogeneous sensor network formulation

is to find the optimal sensor locations such that the overall

sensing distortion D(X,W (X)) is minimized. In this context,

we note that for practical sensor network applications, the

heterogeneity parameters (ωis) for each sensor can be de-

termined empirically through measurements, as done in [19],

[20]. Experimental results concerning the weighted rth power

sensing quality model are also available [15], [17]–[20]. It is

also worth mentioning that, by utilizing an appropriate distor-

tion measure, many other practical sensor network deployment

problems (e.g. to achieve high network energy efficiency [21]

or network connectivity [22]) can be formulated and solved

by using quantization theory.

The cost function in (2) also appears in the context of

cellular networks. In this case, the formulation is as follows:

We consider n base stations whose locations are given by X ,

and suppose that a mobile terminal at location q transmits

with signal-to-noise ratio (SNR) Υ. Under the well-known log-
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distance wireless path loss model [23, Ch. 1.3], the received

SNR at Base Station i is given by ‖q − xi‖−rΥ, where r is

called the path loss exponent. In general, Base Station i can

successfully decode the message(s) of the mobile terminal if its

received SNR is greater than a certain threshold ωi. The thresh-

old ωi depends on the specific capabilities of Base Station i.
For example, when the base station has multiple antennas, its

threshold will be lower. Regardless, for successful data recep-

tion at Base Station i, the transmit SNR of the mobile terminal

should thus satisfy Υ ≥ ωi‖q − xi‖r. Hence, the minimum

transmit SNR that will guarantee successful reception at at

least one of the base stations is mini∈In
ωi‖q − xi‖r. The

cost function in (2) then corresponds to the average minimum

transmit SNR that will ensure successful data transmission at

every possible location of the mobile terminal.

For a concrete choice of weights for the cellular network

scenario, suppose that the mobile terminal is equipped with

only one antenna, and Base Station i is equipped with Ni ≥ 1
antennas. The capacity of the channel between the mobile

terminal and Base Station i is then log2(1+NiΥ‖xi − q‖−r)
bits/sec/Hz [24]. To support a fixed target rate ξ > 0 of

data transmission from the mobile terminal, we need log2(1+
NiΥ‖xi − q‖−r) ≥ ξ, or equivalently, Υ ≥ (2ξ − 1)/Ni‖xi −
q‖r. For this scenario, we shall thus set ωi = (2ξ − 1)/Ni.

The design and analysis of quantizers for index-dependent

distortion measures is thus a fundamental problem with poten-

tially many applications, especially to heterogeneous sensor

networks [14]–[18] and cellular networks as discussed above.

On the other hand, to the best of our knowledge, all previous

work in this context rely on methods such as the Lloyd algo-

rithm [25] or its appropriate generalizations. One of the main

goals of the present work is to obtain analytical expressions

that characterize the performance of optimal quantizers.

In the case of the rth power distortion measure, there is a

vast literature on the asymptotic performance of optimal quan-

tizers [26]. In particular, under certain technical conditions on

f , it is known that in the high-resolution regime n → ∞, the

best possible average distortion is [27]–[29]

κrdn
− r

d ‖f‖ d
d+r

+ o(n− r
d ), (6)

where

‖f‖γ �
(∫

Rd

fγ(q)dq

) 1
γ

, γ ∈ R, (7)

and κrd > 0 is a positive real number that depends only on

the power r and the dimension d. Regarding κrd, the widely-

accepted Gersho’s conjecture [30] states that at high resolution,

the cells of an optimal quantizer should be congruent to each

other, in which case κrd becomes the normalized rth moment

of the best tessellating polytope in R
d (In fact, it is further

believed [31] that the best tessellation is generated by a lattice,

which means that the best quantizer should locally look like a

lattice quantizer). This is so far known to hold for dimensions

1 and 2, in which case the optimal cell shapes are intervals

and regular hexagons, respectively. For the example case of

squared-error distortion measure (r = 2), we can thus calculate

κ21 = 1
12 , and κ22 = 5

18
√
3

. For d ≥ 3, a useful lower bound

is the ball-packing bound κrd ≥ mrd, where

mrd �
∫
|q|≤1

|q|rdq
(
∫
|q|≤1

dq)
d+r
d

=
d

π
r
2 (d+ r)

[
Γ

(
1 +

d

2

)] r
d

(8)

is the normalized rth moment of the ball in R
d, and Γ(·) is

the Gamma function.

D. Main Contributions

We generalize the existing formula (6) for the rth power

distortion measure to the rth power distortion measure with

index-dependent weights. To introduce this result, let T =
{1, . . . , |T |} be a non-empty finite index set and suppose that

all the weights ωi, i ∈ In are chosen among the finite set

{Ωt : t ∈ T } of positive real numbers. Also suppose that for

each t ∈ T , the fraction of indices with weight Ωt converges

to some frequency pt as n → ∞. Let Ω = [Ω1 · · ·Ω|T |] and

p = [p1 · · · p|T |] denote the vector of weights and frequencies,

respectively. We show that the minimum average distortion in

this case is given by

�rd(p,Ω)n− r
d

(∑
t∈T

ptΩ
− d

r
t

)− r
d

‖f‖ d
d+r

+ o(n− r
d ), (9)

where �rd(p,Ω) is a constant that satisfies mrd ≤ �rd(p,Ω) ≤
κrd and is independent of f . In particular, we have �rd(1, 1) =
κrd for any (r, d) for the special case of an index-independent

rth power distortion measure p = Ω = 1.

For scalar quantization (d = 1), since κr1 = mr1, ∀r,

we have �r1(p,Ω) = mr1 for any (Ω,p, r), and thus (9)

provides a precise characterization of the minimum achievable

average distortion. On the other hand, as mrd < κrd for vector

quantization, there is a multiplicative uncertainty regarding the

best average distortion for d > 1. In this context, we note that

for the ordinary index-independent scenario with p = 1 and

Ω = ω for some constant ω > 0, we have �rd(1, c) = κrd.

In general, for certain values of p and Ω, we show that

the strict inequality �rd(p,Ω) < κrd holds. In particular,

�rd(p,Ω) can be arbitrarily close to mrd when one allows a

sufficiently large number of distinct weights |T |. An intuitive

explanation as to why this happens is the following: Cells

corresponding to larger weights should be smaller than cells

with smaller weights so that each cell still contributes the same

amount to the average distortion. This gives the opportunity

of “squeezing in” quantization cells of large-weighted indices

in between those of smaller-weighted indices. As a result, the

shape of each quantization cell can approach to that of a ball,

and this allows one to approach the ball packing bound mrd.

The focus of this paper will be only on fixed-rate quan-

tization as a fixed-rate formulation is sufficient to address

the practical deployment problems in heterogeneous networks.

Extensions of our results to variable-rate quantization will

remain as an interesting future research direction.

We note that part of this work has been presented in [32].

Compared to [32], the current paper in addition proves the

existence of optimal quantizers for index-dependent distortion

measures. It also provides a formal proof of the high-resolution

formula in (9), which was proved heuristically in [32]. Also,
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the results of [32] were for the special case of squared-error

distortion r = 2. In this work, we consider any r ≥ 1.

E. Comparison to Perceptual Distortion Measures

Before proceeding any further, it is instructive to compare

our formulation and results with those with perceptual dis-

tortion measures [33]–[37], which can similarly weigh the

squared distance between the source sample and the reproduc-

tion point by different factors. These distortion measures can

be defined as h(q, y) = (q−y)TB(q, y)(q−y), where B(q, y)
is a positive-definite weighting matrix that may depend only on

the source sample q and the reproduction point y. For the spe-

cial case B(q, y) = b(q, y)Id×d for some function b : R2 → R,

we have h(q, y) = b(q, y)‖q−y‖2. This resembles, for r = 2,

the distortion measure ωi‖q − xi‖2 for the ith quantization

index with our index-dependent formulation. On the other

hand, with a perceptual distortion measure, the multiplicative

weight involved in reproducing the source sample q via a

reproduction point y is the fixed number b(q, y). With an

index-dependent distortion measure, the multiplicative weight

of reproducing q via y may be any weight among the set

of weights {ω1, . . . , ωn}. In other words, when designing an

optimal quantizer for an index-dependent distortion measure,

one has the extra degree of freedom of choosing among many

different weights for a (q, y)-pair instead of being limited to

one pre-determined weight.

F. Organization of the Paper

The rest of the paper is organized as follows. In Section

II, we study the design and performance of optimal scalar

quantizers for our multiplicatively-weighted index-dependent

distortion measures and a uniform distribution. We analyze

the general case of vector quantizers with non-uniform dis-

tributions in Section III. In Section IV, we present several

numerical design examples for our index-dependent distortion

measure. Finally, in Section V, we draw our main conclusions.

Some of the technical proofs are provided in the appendices.

II. SCALAR QUANTIZATION OF A UNIFORM SOURCE

We begin with the design and analysis of optimal scalar

quantizers with an index-dependent distortion measure. For

simplicity, we first consider the case of a uniform distribution

f(x) = 1(x ∈ [0, 1)), where 1(·) is the indicator function.

We need the following standard definitions and results that

will be useful in estimating the average distortion of optimal

quantizers: Let μ(A) denote the d-dimensional Lebesgue mea-

sure (volume) of a measurable set A ⊂ R
d. The quantity

Mrd(A) �
∫
A
‖q‖rdq

(μ(A))
d+r
d

(10)

is usually referred to as the normalized rth moment of A.

In particular, for the unit ball in R
d at the origin, we have

mrd = Mrd({q ∈ R
d : ‖q‖ ≤ 1}).

Consider now the quantizer (X,U). Throughout the paper,

we will assume μ(Si) > 0, ∀i ∈ In (Quantization cells

with measure zero have no contribution towards the average

distortion and thus can be ignored.). The following theorem

then provides a lower bound on the average distortion of any

quantizer with our index-dependent distortion measure. The

proof of the theorem can be found in Appendix A.

Theorem 1. Let f(q) = 1(q ∈ [0, 1)d). Then, for any
quantizer (X,U), we have

D(X,U) ≥ mrd

(∑
i∈In

ω
− d

r
i

)− r
d

(11)

with equality if and only if for every i ∈ In, the quantization
region Si is a ball centered at xi with

μ(Si) =
ω
− d

r
i∑

j∈In
ω
− d

r
j

. (12)

For the special case of d = 1, the theorem immediately

leads to the following corollary.

Corollary 1. Let d = 1 with the uniform distribution f(q) =
1(q ∈ [0, 1)). Then, the minimum possible average distortion
given weights ωi, i ∈ In is provided by

mr1

(∑
i∈In

ω
− 1

r
i

)−r

, (13)

where mr1 = 1
(r+1)2r . Such a performance is achieved by any

quantizer (X,U) of the form

Sci =
1∑

j∈In
ω
− 1

r
j

[
i−1∑
k=1

ω
− 1

r
ck ,

i∑
k=1

ω
− 1

r
ck

)
(14)

with

xci =
1∑

j∈In
ω
− 1

r
j

(
i−1∑
k=1

ω
− 1

r
ck +

1

2
ω
− 1

r
ci

)
, (15)

where ck, k ∈ In are arbitrary indices with {ck : k ∈ In} =
In.

In particular, for the equally-weighted case ωi = 1, ∀i ∈ In
and the squared-error distortion measure r = 2, we obtain the

well-known minimum average distortion formula 1
12n2 . This

performance is achieved by the unique n-level uniform quan-

tizer on [0, 1). In general, the corollary shows that the length of

the quantizer cell corresponding to a weight-ω index is propor-

tional to ω− 1
r . Hence, optimal quantizer cells are intervals of

different lengths in general, and thus there are many optimal

quantizers corresponding to the different orderings of these

cells. As an example, for r = 2, I8 = {1, . . . , 8} with weights

ω1 = ω2 = 16, ω3 = ω4 = 64 and ω5 = · · · = ω8 = 256, the

minimum possible average distortion can be calculated to be
1
12 by Corollary 1. According to Corollary 1, both quantizers

in Fig. 2 achieve this performance.
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0 1
0 1
Fig. 2. Two optimal quantizers for the unit interval [0, 1) when r = 2. Each
quantization cell is a half-open interval. Length- 1

4
light gray intervals, length-

1
8

dark gray intervals and length- 1
16

black intervals are the quantization cells
for reproduction points whose indices have weights 4, 16, and 64, respectively.
The reproduction point for any given interval is located at its center.

III. QUANTIZATION OF NON-UNIFORM VECTOR SOURCES

We now study the performance of optimal quantizers for

the general case of a non-uniform vector source. We begin

by deriving some of the elementary properties of optimal

quantizers for index-dependent distortion measures (such as

existence) that hold at every resolution n. Some of these results

will be useful in our subsequent analysis of the high-resolution

(n → ∞) analysis of the quantizers.

A. Elementary Properties

Let us first show that, as claimed in Section I-B, the average

distortion D(X,U) in (2) is indeed minimized by choosing the

encoding cells U to be the Voronoi cells W (X) given X .

Proposition 1. For any X and U , we have D(X,U) ≥
D(X,W (X)).

The proof of the proposition can be found in Appendix B.

As a result of the optimality of utilizing the collection of cells

W (X) given the codebook X , we may define

Dn(X) � D(X,W (X)) = E
[
min
i∈In

ωi‖Q− xi‖r
]

(16)

to be the minimum possible average distortion given X . The

expectation is over the source random variable Q. We also let

D�
n = inf

X∈Rdn
Dn(X). (17)

denote the infimum of all achievable average distortions. We

write P (A) as a shorthand notation for
∫
A
f(q)dq.

The following proposition shows that if Dn(X) = D�
n and

thus if X is an optimal collection of reproduction points, then

the corresponding Voronoi regions should all have non-zero

probability, and in particular, xi, i ∈ In should all be distinct.

The proof is omitted as it is a straightforward extension of

the proof of the same result for index-independent distortion

measures [39, Theorem 4.1].

Proposition 2. Suppose Dn(X) = D�
n for some X ∈ R

dn.
For any i ∈ In, we have P (Vi(X)) > 0. Consequently, for
any i, j ∈ In with i 
= j, we have xi 
= xj .

On the other hand, the existence of an optimal collection

of reproduction points is guaranteed by the following theorem.

Meanwhile, the theorem shows that an additional reproduction

point will provide a strictly lower average distortion regardless

of its weight. The proof of the theorem can be found in

Appendix C.

Theorem 2. The following holds.
(a) There exists X ∈ R

dn such that Dn(X) = D�
n.

(b) For any n ≥ 2, we have D�
n < D�

n−1.

Note that the conclusions of Proposition 2 and Theorem 2

already follow from Corollary 1 for the special case of scalar

quantization of a uniform source.

B. High-Resolution Average Distortion of Optimal Quantizers

We now analyze the average distortion of optimal quantizers

for index-dependent distortion measures. The existence of such

quantizers is guaranteed by Theorem 2.

Even if one considers an ordinary index-independent quanti-

zation scenario, determining the best n-level quantizer for ev-

ery n is a very difficult task. Hence, most of the existing work

have focused on the n → ∞ regime, which is also known as

the high-resolution regime or the asymptotic regime; see [31,

Ch. 5.6] for an introduction to high-resolution quantization

theory. In this case, the minimum asymptotic average distor-

tion for the rth power index-independent distortion measure

is given by the following theorem. For sequences of positive

real numbers g(n), h(n), we write g(n) ∼ h(n) whenever

limn→∞(g(n)/h(n)) exists and is equal to 1.

Theorem 3. Suppose E[‖Q‖r+ε] < ∞ for some ε > 0, and
ωi = 1, ∀i ∈ In. Then,

D�
n ∼ κrdn

− r
d ‖f‖ d

d+r
, (18)

for some constant κrd > 0 that is independent of f .

A proof can be found in [39, Theorem 6.2]. Under different

technical conditions, the theorem is originally due to Bennett

[27] for the special case of d = 1 and Zador [28] for a general

d. The condition E[‖Q‖r+ε]<∞ ensures that ‖f‖ d
d+r

is finite.

We consider a similar high-resolution analysis for rth power

distortion measure with index-dependent weights. Let T be a

finite index set, and {Ωt : t ∈ T } be a set of positive real

numbers. Suppose that for every i ∈ In, we have

ωi ∈ {Ωt : t ∈ T }. (19)

Moreover, suppose that for every t ∈ T , there exists a non-

negative frequency pt ≥ 0 such that

|{i ∈ In : ωi = Ωt}| ∼ ptn, (20)

In other words, according to (19), we assume that the weight

ωi of the quantization index i ∈ In is to be chosen among

the finite set {Ωt : t ∈ T } of weights for every i ∈ In. Also,

according to (20), we assume that the weight for some pt-
fraction of the indices is Ωt for every t ∈ T , asymptotically

as n → ∞. For example, for T = {1, 2}, Ω1 = 2, Ω2 =
3, p1 = 3

4 , p2 = 1
4 , we would consider a scenario where,

asymptotically as n → ∞, three-quarters of the indices have

weight 2, and one quarter of the indices have weight 3. In

practice, the example may also correspond to a sensor network

with two types of sensors: The sensing distortion for three-

quarters of the sensors is weighted by 2, and the sensing

distortion for a quarter of the sensors is weighted by 3.

Note that in (19) and (20), we do not need to explicitly

specify the exact weight that is associated to a given index.

This is because, by definition, for any given sequence of
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weights ω′
i, i ∈ In, the optimal quantizer performance for

ωi = ω′
i, i ∈ In is the same as the optimal quantizer

performance for ωi = ω′
ji
, i ∈ In, where (j1, . . . , jn) is an

arbitrary permutation of (1, . . . , n). For example, for n = 3,

the minimum average distortion for ω1 = 3, ω2 = 4, ω3 = 2 is

the same as the minimum average distortion for ω1 = 4, ω2 =
2, ω3 = 3.

We can now state and prove our main result on the mini-

mum asymptotic distortion of optimal vector quantizers with

weighted rth power distortion measures. Let Ω = [Ω1 · · ·Ω|T |]
and p = [p1 · · · p|T |].

Theorem 4. Suppose E[‖Q‖r+ε] < ∞ for some ε > 0, and
ωi, i ∈ In are such that (19) and (20) hold. Then,

D�
n ∼ �rd(p,Ω)n− r

d

(∑
t∈T

ptΩ
− d

r
t

)− r
d

‖f‖ d
d+r

, (21)

for some constant �rd(p,Ω) that satisfies

mrd ≤ �rd(p,Ω) ≤ κrd = �rd(1, 1) (22)

and is independent of f .

Proof. The proof is provided in Appendix D.

Let us now discuss the implications of the theorem, and in

particular the dependence of the constant �rd(p,Ω) on (p,Ω).
For scalar quantization (d = 1), we have

mr1 = κr1 =
1

(1 + r)2r
, (23)

and thus �r1(p,Ω) = 1
(1+r)2r is independent of (p,Ω). On the

other hand, for vector quantization (d > 1), we have mrd <
κrd, and it is no more trivial to determine the exact value

of �rd(p,Ω). In this context, the equality �rd(p,Ω) = krd
would always have hold if the optimal cell shapes for index-

dependent distortion measures had matched those of index-

independent distortion measures.2 Unfortunately, this is not

the case and �rd(p,Ω) varies with (p,Ω) and may be strictly

less than κrd.

A first hint towards proving this phenomenon is the obser-

vation that one can cover the unit cube [0, 1)d (up to sets of

measure zero) using infinitely many open balls B � {Bi :
i ∈ N} with radii ρi, i ∈ N, centers y � {yi : i ∈ N},

and Bi ⊂ [0, 1)d (via, e.g., an Apollonian ball packing [38]).

Then, given weights ωi = ρ−r
i , i ∈ N, the quantizer (y,B)

achieves the ball packing bound in Theorem 1, i.e. D(y,B) =
mrd(

∑
i∈In

ωi
− d

r )−
r
d . Of course, such a quantizer is not very

relevant for practical applications as it has infinitely many

quantization indices with infinitely many different weights. On

2To see this, first note that the normalized rth moment of the cells of an
optimal quantizer would then all be equal to κrd. As a result, for the case of
a uniform distribution, the minimum average distortion would be

D�
n = κrd

∑
i∈In

ωi(μ(Si))
d+r
d ≥ κrd

⎛
⎝ ∑

i∈In

ω
− d

r
i

⎞
⎠

− r
d

, (24)

where the lower bound follows from Lemma 2-(ii) and is achievable by

choosing μ(Si) = c ω
−d/r
i for an appropriate constant c. This would imply

�rd(p,Ω) ≥ krd. On the other hand, by Theorem 4, we have �rd(p,Ω) ≤
krd. Combining the two bounds, we would obtain �rd(p,Ω) = krd.

the other hand, it provides the following valuable intuition:

Given weights Ω with frequencies p, dense packings of balls

with radii Ω
−1/r
t , t ∈ T and frequencies p should correspond

to good quantizers for index-dependent distortion measures.

We verify this intuition via the following example scenario in

a two-dimensional space.

Example 1. Let r = 2. Consider weights Ω1 = 1 and
Ω2 = (3+2

√
3)2 appearing according to frequencies p1 = 1

3
and p2 = 2

3 , respectively. Correspondingly, we seek dense
packings of disks of radius ρ1 = Ω1

− 1
2 = 1 and ρ2 = Ω2

− 1
2 =

1/(3 + 2
√
3) with frequencies 1

3 and 2
3 , respectively. One

packing is illustrated in Fig. 3(a) and has density π/
√
12. The

corresponding quantizer structure is as shown in Fig. 3(b). For
the uniform distribution on [0, 1)2, it achieves an average dis-
tortion of κ22

n ( p1

Ω1
+ p2

Ω2
)−1+o(n−1). This is also the minimum

average distortion if one assumes the quantization cells are
all congruent to hexagons. On the other hand, one of the best
packings is illustrated in Fig. 3(c) and achieves the density
π

2
√
3
(1+ 1

(3+2
√
3)2

) (The smaller circles fit exactly in between
the larger circles.). The induced quantizer is as shown in Fig.
3(d). The corresponding average distortion can be calculated
to be 	

n (
p1

Ω1
+ p2

Ω2
)−1 + o( 1n ), where � = 0.159496 · · · with

m22 = 0.159154 · · · < � < κ22 = 0.160375 · · · . We omit
the details of the tedious but straightforward calculation of �.
Note that there are two different Voronoi cell shapes in Fig.
3(d). The cell shape for indices with weight Ω2 is a truncated
hexagon and is shown in Fig. 3(e). On the other hand, the
cell shape for indices with weight Ω1 resembles a Reuleaux
triangle and is shown in Fig. 3(f). The relative size of the cells
in Figs. 3(e) and 3(f) are not to scale.

The fact that �<κ22 in Example 1 suggests that a natural

extension of Gersho’s conjecture [30] does not hold for our

index-dependent distortion measure. For the rth power dis-

tortion measure and a uniform distribution on [0, 1]d, Gersho

conjectures the existence of a tessellation T with congruent

cells such that T provides an asymptotically optimal quantizer

with appropriate normalization. As detailed in [32], for the

setup in Example 1, forcing a similar quantizer cell congruency

results in � = κ22, contradicting � < κ2. Hence, for certain

weights/frequencies, a tessellation of non-congruent quantiza-

tion cells can outperform tessellations of congruent cells.

Despite the fact that the quantizer in Fig. 3(d) is a non-

lattice quantizer with non-congruent cells, it is nevertheless

highly-structured. In fact, it can be viewed as a two-level

tree-structured lattice vector quantizer (TSLVQ) [40]: The first

level is the hexagonal lattice quantizer induced by the indices

with weight Ω1, and the second level consists of one index

with weight Ω1, and six “surrounding” indices with weight

Ω2. Investigating the optimality of multi-level TSLVQs for

index-dependent distortion measures in general will remain as

an interesting direction for future research.

We now discuss whether the lower bound �rd > mrd on

�rd is tight. In this context, Example 1 shows one particular

instance where �rd < κrd. In fact, �rd can be arbitrarily close

to mrd. This can be proved by considering ball packings with

high enough density.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Packings of non-identical disks and the corresponding quantizers for index-dependent distortion measures.
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Proposition 3. For a given set of weights ω1, . . . , ωN , where
N ≥ 1, let vi = ω

− d
r

i /
∑N

j=1 ω
− d

r
j , i ∈ {1, . . . , N}. Suppose

that there is a set of reproduction points x1, . . . , xN ∈ [0, 1)d

such that the following holds for some δ ∈ (0, 1) and A > 1.
(i) The open balls centered at xi with volume (1− δ)vi are

mutually disjoint and members of [0, 1)d.
(ii) For every q ∈ [0, 1)d, there is an index i ∈ {1, . . . , N}

such that ‖q − xi‖ ≤ Av
1
d
i .

Then, for the optimal quantizer given x1, . . . , xN with weights
ω1, . . . , ωN , we have

D(X,W (X))≤
(
mrd(1− δ)

d+r
d +δAr

)( N∑
k=1

ω
− d

r

k

)− r
d

. (25)

In particular, for T = {1, . . . , N} with Ωi = ωi, pi =
1
N , i =

1, . . . , N and f(q) = 1(q ∈ [0, 1)d),

�rd(p,Ω) ≤ mrd(1− δ)
d+r
d + δAr. (26)

The proof of the proposition can be found in Appendix E.

The proposition shows that a ball packing with density 1− δ
translates to a certain set of weights and frequencies where

(26) holds. As δ → 0, the upper bound in (26) approaches

mrd, proving that �rd(p,Ω) can be arbitrarily close to mrd.

IV. NUMERICAL DESIGN EXAMPLES

We now study how the results of this paper can be applied

to the design of heterogeneous networks through numerical

examples. As a case study, we consider the heterogeneous

sensor network application as described in Section I-C. We

recall that, in such a scenario, one is given the task of

optimally deploying n heterogeneous sensors to some field

of interest S ⊂ R
d. Given an event distribution f over

the sensing field S, the inaccuracy of sensing an event that

occurs at location x ∈ S via Sensor i is modeled by the

distortion measure ωi‖q − xi‖r, where ωi is the weight that

indicates the sensing quality of Sensor i. The goal is to find an

optimal deployment of sensors X = [x1 · · ·xn] such that the

overall sensing inaccuracy of the network D(X,W (X)) =
E[min1≤i≤n ωi‖q − xi‖r] is minimized. As before, we use

the notation D�
n = minX D(X,W (X)) to represent the

corresponding minimum possible sensing inaccuracy.

We have used the Lloyd algorithm [25] to find a locally-

optimal deployment of sensors. The performance of the

locally-optimal deployment provides an estimate for the op-

timal performance D�
n. We have compared our numerical

estimate on D�
n with the analytical results in Corollary 1 and

Theorem 4. In general, we consider T ≥ 1 types of sensors for

a total of n sensors, where ptn of the sensors have weight Ωt

for t ∈ {1, . . . , T}. For Ω = [Ω1 · · ·ΩT ] and p = [p1 · · · pT ],
we have considered the following scenarios:

(S1) f(q) = 1(q ∈ [0, 1]), Ω = [ 14 1], p = [ 12
1
2 ].

(S2) f(q) = 1(q ∈ [0, 2]) 1
2
√
2q

, Ω = [ 14 1], p = [ 12
1
2 ].

(S3) f(q) = 1(q ∈ [0, 1]), Ω = [1 2 2 5], p = [ 18
2
8

2
8

3
8 ].

(S4) f(q) = 1(q ∈ [0, 2]) 1
2
√
2q

, Ω = [1 2 2 5], p = [ 18
2
8

2
8

3
8 ].

(S5) f(q) = 1(q ∈ [0, 1]2), Ω = [ 1
10

1
4 1], p = [ 18

1
8

3
4 ].

(S6) f(q) = 1
2π e

− ‖q‖2
2 , Ω = [ 1

10
1
4 1], p = [ 18

1
8

3
4 ].

(S7) f(q)=1(q∈ [0, 1]2), Ω= 1
4 [1 2 · · · 16], p = [ 1

16 · · · 1
16 ].

(S8) f(q) = 1
2π e

− ‖q‖2
2 , Ω = 1

4 [1 2 · · · 16], p = [ 1
16 · · · 1

16 ].

Scenarios (S1)-(S4) correspond to one-dimensional sensor

networks with two different sensor weight distributions for

both uniform and non-uniform event densities. The corre-

sponding numerical results are illustrated in Fig. 4. The

horizontal axis represents n and the vertical axis represents

the best possible sensing inaccuracy D�
n. “Simulation” refers

to the performance of the deployments that are designed using

the Lloyd algorithm. For the uniform event distribution sce-

narios (S1) and (S3), “analysis” refers to the exact minimum

distortion formula (13) of Corollary 1. We can observe that for

scenarios (S1) and (S3), the performance of the quantizers that

is obtained using the Lloyd algorithm is an almost exact match

to the analytical results. The very minor difference (which are

almost unnoticeable to the naked eye) is a result of the finite

number of source samples that are used in the Lloyd algorithm

and Monte Carlo simulations.

2 4 8 16 32 64
10−5

10−4

10−3

10−2

10−1

�

�

�

�

�

�









+

+

+

+

∫
∫

∫
∫

n

D
� n

� (S2), simulation

(S2), analysis

(S1), simulation

(S1), analysis

∫
(S4), simulation

(S4), analysis

 (S3), simulation

+ (S3), analysis

Fig. 4. Optimal sensing performance for one-dimensional sensor networks.

For the non-uniform scenarios (S2) and (S4), “analysis”

refers to the formula (21) of Theorem 4. For our current

purposes of numerically approximating D�
n, we thus consider

(21) as an equality that holds for every n. Since (21) is an

asymptotic equality as n → ∞, we expect it to provide a very

close approximation to D�
n when n is large. The results in Fig.

4 demonstrate that (21) is, in fact, a very good approximation

to D�
n even for values of n that are as small as 2 or 4.

We present numerical results for the two-dimensional sensor

network design scenarios (S5)-(S8) in Fig. 5. Similarly, “sim-

ulation” refers to the performance of the deployments that are

designed using the Lloyd algorithm. “Analysis” refers to the

superposition of the curves defined by (21) for every possible
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value of �rd(p,Ω). In other words, it refers to the set of points⎧⎨⎩
(
n,

�

n
r
d

(∑
t∈T

ptΩ
− d

r
t

)− r
d

‖f‖ d
d+r

)
: � ∈ [m22, κ22]

⎫⎬⎭ , (27)

which is as a “thickened curve.” On the other hand, since
m22

κ22
� 0.99239 · · · is very close to 1, the thickened curves

appear as regular non-thickened curves in Fig. 5.

Regarding the results of Fig. 5, by Theorem 4, we expect

the analysis to coincide with the simulation as n → ∞. In fact,

especially for the uniform density scenarios (S5) and (S7), the

analysis is almost an exact match to the simulation even for

values of n that are as small as 8 or 16. For scenarios (S6) and

(S8) with a Gaussian density of events, the simulation results

somewhat deviate from the analysis for small values of n.

Nevertheless, they still converge to their respective analytical

approximations as n grows larger.

8 16 32 64 128 256
10−4

10−3

10−2

10−1

100

�
�

�
�

�
�
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+

+

+

+

∫ ∫ ∫ ∫ ∫

n

D
� n

(S8), analysis∫
(S8), simulation

(S6), analysis

� (S6), simulation

 (S7), simulation

+ (S7), analysis

(S5), simulation

(S5), analysis

Fig. 5. Optimal sensing performance for two-dimensional sensor networks.

To also gain an intuitive understanding on the structure

of optimal deployments, a locally-optimal deployment that

is designed using the Lloyd algorithm for scenario (S5) is

illustrated in Fig. 6 together with the corresponding optimal

sensing regions (Voronoi cells). We can observe that the

sensing regions for sensors of the same weight have similar

sizes. In fact, as also shown in the proof of Theorem 4, the area

of a given sensing region is roughly inversely proportional to

the associated sensor’s weight. We can also observe that bad

sensors with large weights usually surround good sensors with

small weights. In general, this allows each sensing region to

approach a more disk-like shape, resulting in a lesser overall

sensing distortion. Example 1 provides another manifestation

of the same phenomenon.
In the examples above, we have focused on the optimal

deployment of a fixed collection of sensors with specified

weights and frequencies. One may further consider the op-

timization of the sensor collection given cost constraints.

For example, the cost of deploying a given sensor may be

modeled as a decreasing function of the sensor weight. In

such a formulation, the goal would be to optimize the sensor

weights and the number of sensors to be utilized for each

weight subject to a constraint on the cost of deployment.

Precise formulations and solutions of such design problems

will remain as interesting directions for future research.

Fig. 6. Voronoi regions of a two-dimensional sensor network deployment that
is designed using Lloyd’s algorithm. Scenario (S5) is considered for n = 256.
Sensors of weights 0.1, 0.25 and 1 are represented by crosses, hollow disks,
and dots, respectively.

V. CONCLUSIONS

We have studied quantization problems whose distortion

measures exhibit dependency on the quantization index. Such

problems arise in a variety of applications that involve lo-

cational optimization of unidentical agents; examples include

sensor networks and cellular networks. We have studied the

design and analysis of quantizers where different quantization

indices induce squared-error distortions with different multi-

plicative weights. We have derived the exact minimum average

distortion for the special case of scalar quantization over a

uniform source, and performed a high-resolution analysis of

the minimum average distortion for the general case of vector

quantizers over non-uniform source distributions. Numerical

simulations have confirmed our analytical findings.
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APPENDIX A

PROOF OF THEOREM 1

We need the following two lemmas.

Lemma 1. For any A ⊂ R
d and x0 ∈ R

d, we have∫
A

‖q − x0‖rdq ≥ mrd (μ(A))
d+r
d (28)

with equality if and only if A is (up to measure zero sets) a
ball centered at x0.

Proof. A ball at the origin has the lowest normalized moment

among all other sets. In other words, for any A ⊂ R
d, we

have Mrd(A) ≥ mrd, and therefore∫
A

‖q − x0‖rdq =

∫
A−x0

‖q‖rdq (29)

= Mrd(A− x0) (μ(A− x0))
d+r
d (30)

≥ mrd (μ(A− x0))
d+r
d (31)

= mrd (μ(A))
d+r
d , (32)

with equality if and only if A − x0 is a ball centered at the

origin.

Lemma 2. Let γ > 1. The following holds:
(i) For any positive functions f, g, we have

‖fg‖1 ≥ ‖f‖ 1
γ
‖g‖− 1

γ−1
. (33)

If further ‖fg‖1 < ∞, equality occurs if and only if
∃c > 0 for which f = cg−

γ
γ−1 almost everywhere.

(ii) For any two sequences of positive real numbers ai, i ∈ N

and bi, i ∈ N, we have

∑
i∈N

aibi ≥
(∑

i∈N

a
1
γ

i

)γ (∑
i∈N

b
− 1

γ−1

i

)−(γ−1)

. (34)

If further
∑

i∈N
aibi < ∞, equality occurs if and only if

∃c > 0 for which ai = cb
− γ

γ−1

i , ∀i ∈ N.

Proof. The two claims are special cases of the reverse Hölder’s

inequality.

We are now ready to prove the theorem. For any quantizer

(X,U), we have

D(X,U) =
∑
i∈In

ωi

∫
Si

‖q − xi‖rdq (35)

≥ mrd

∑
i∈In

ωi (μ(Si))
d+r
d (36)

≥ mrd

(∑
i∈In

ω
− d

r
i

)− r
d
(∑

i∈In

μ(Si)

) d
d+r

(37)

= mrd

(∑
i∈In

ω
− d

r
i

)− r
d

, (38)

where the first inequality follows from Lemma 1, and the

second inequality follows from Lemma 2-(ii). According to

Lemma 1, the first inequality is an equality if and only

if Si is a ball centered at xi, while the second inequality

is an equality if and only if there exists τ > 0 such that

μ(Si) = τω
− d

r
i , ∀i ∈ In. Due to the obvious constraint∑

i∈In
μ(Si) = 1, we have τ = (

∑
i∈In

ω
− d

r
i )−1.

APPENDIX B

PROOF OF PROPOSITION 1

Our proof relies on the same argument that is used for

optimal entropy-constrained quantizers [12], [13]. For any X
and U , we have

D(X,U) =
∑
i∈In

∫
Si

ωi‖q − xi‖rf(q)dq (39)

≥
∑
i∈In

∫
Si

min
j∈In

ωj‖q − xj‖rf(q)dq (40)

=

∫
Rd

min
j∈In

ωj‖q − xj‖rf(q)dq (41)

=
∑
i∈In

∫
Vi(X)

min
j∈In

ωj‖q − xj‖rf(q)dq (42)

=
∑
i∈In

∫
Vi(X)

ωi‖q − xi‖rf(q)dq (43)

= D(X,W (X)), (44)

where (41) follows since the cells Si, i ∈ In is a partition

of R
d, and (42) likewise follows since Vi(X), i ∈ In is a

partition of R
d. Equality (43) is by the definition of Vi(X).

This concludes the proof.

APPENDIX C

PROOF OF THEOREM 2

We generalize the argument of Pollard [41] for index-

independent distortion measures to index-dependent distortion

measures; also see [39, Theorem 4.8].

For ω′ = [ω′
1 · · ·ω′

n], let

Dn(X,ω′) � E
[
min
i∈In

ω′
i‖Q− xi‖2

]
, (45)

D�
n(ω

′) � inf
X∈Rdn

Dn(X,ω′). (46)

In particular, if we vectorize the weight set as ω � [ω1 · · ·ωn],
we have Dn(X) = Dn(X,ω), and D�

n = D�
n(ω). For n > 1,

we also let

D′
n−1 � min

ω′′∈Wn−1

D�
n−1(ω

′′), (47)

where

Wn−1 = {[ω2 · · ·ωn], [ω1 ω3 · · ·ωn], . . . ,

[ω1 ω2 · · ·ωn−1]}. (48)

We need the following lemma.

Lemma 3. Suppose n > 1. If D�
n < D′

n−1, the set Z �
{X ∈ R

dn : Dn(X) ≤ z} is non-empty and compact for
every z ∈ (D�

n, D
′
n−1).

Proof. Clearly, Z is non-empty. By the continuity of X �→
mini∈In

ωi‖Q−xi‖2 and Lebesgue’s dominated convergence
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theorem, the function X �→ Dn(X) is continuous. By the

continuity of X �→ Dn(X), the set Z is closed. To show that

Z is also bounded, let ω = mini∈In ωi and ω = maxi∈In ωi.

Consider some X ∈ Z. Without loss of generality, suppose

‖x1‖ ≤ · · · ≤ ‖xn‖. Choose 0 < s < S such that

P (B(0, s)) > 0, (49)

ω(S − s)rP (B(0, s)) > z, (50)

ω

∫
[B(0,2S)]c

(2‖x‖)rf(x)dx < D′
n−1 − z. (51)

We shall prove that

‖xn‖ ≤ 5S(ω/ω)
1
r , (52)

which implies that Z is bounded and thus concludes the proof.

To prove (52), first note that ‖x1‖ ≤ S, as otherwise

z ≥ Dn(X) =

∫
B(0,s)

min
i∈In

ωi‖q − xi‖rf(q)dq (53)

≥ ω

∫
B(0,s)

min
i∈In

‖q − xi‖rf(q)dq (54)

≥ ω(S − s)rP (B(0, s)), (55)

a contradiction. Now, suppose (52) does not hold. Let ‖q‖ ≤
2S. Since ‖x1‖ ≤ S, we have

ω1‖q − x1‖r

≤ ω1(‖q‖+ ‖x1‖)r (56)

≤ ω1(3S)
r (57)

≤ ω1(‖xn‖(ω/ω)−
1
r − ‖q‖)r (58)

≤ ω1(‖xn − q‖(ω/ω)− 1
r + ‖q‖(ω/ω)− 1

r − ‖q‖)r (59)

≤ ω1(ω/ω)‖xn − q‖r (60)

≤ ω‖xn − q‖r (61)

≤ ωn‖xn − q‖r. (62)

On the other hand, for ‖q‖ > 2S, we have ‖q‖ > 2S ≥ 2‖x1‖,

and thus

ω1‖q − x1‖r ≤ ω1(‖q‖+ ‖x1‖)r (63)

≤ ω1(‖q‖+ 1
2‖q‖)

r (64)

≤ ω1(2‖q‖)r (65)

≤ ω(2‖q‖)r. (66)

Therefore,

D′
n−1 ≤ D�

n−1([ω1 · · ·ωn−1]) (67)

≤
∑
i∈In

∫
Vi(X)

min
i∈In−{n}

ωi‖q − xi‖rf(q)dq (68)

≤
∑

i∈In−{n}

∫
Vi(X)

ωi‖q − xi‖rf(q)dq+∫
Vn(X)

ω1‖q − x1‖rf(q)dq (69)

≤
∑

i∈In−{n}

∫
Vi(X)

ωi‖q − xi‖rf(q)dq+∫
Vn(X)∩B(0,2S)

ωn‖q − xn‖rf(q)dq+

∫
Vn(X)−B(0,2S)

ω(2‖q‖)rf(q)dq (70)

≤
∑
i∈In

∫
Vi(X)

ωi‖q − xi‖rf(q)dq

+

∫
[B(0,2S)]c

ω(2‖q‖)rf(q)dq (71)

< Dn(X) +D′
n−1 − z (72)

≤ D′
n−1, (73)

a contradiction.

We are now ready to prove the theorem. The claim (a) for

n = 1 follows from the already-known existence result [41]

of an optimal homogeneous quantizer. We thus prove (b). We

have D�
2 < D′

1, as otherwise, according to the case n = 1 of

(a), there exists X ∈ R
d and ω ∈ W1 such that D1(X,ω) =

D�
1(ω) = D�

2 , which contradicts the case n = 2 of Proposition

2. This proves the case n = 2 of (b) as D′
1 ≤ D�

1 obviously

holds. Moreover, since D�
2 < D′

1, the set {X : D2(X) ≤ z}
is non-empty and compact for any z ∈ (D�

2 , D
′
1) by Lemma

3. Therefore,

{X : D2(X) = D�
2}=

⋂
D�

2<z<D′
1

{X : D2(X) ≤ z} 
= ∅, (74)

proving the case n = 2 of (a). Hence, for any i ≥ 2, we

have D�
i < D′

i−1 ≤ D�
i−1 by the case n = i − 1 of (a) and

Proposition 2, which, in turn, proves the case n = i of (b) and

(a) via Lemma 3.

APPENDIX D

PROOF OF THEOREM 4

We first provide a short heuristic proof of a slightly weaker

claim using the method of point density functions. A formal

proof will be presented subsequently.

A. A Heuristic Proof of a Weaker Claim

Here, we assume that

D�
n ∼ �n− r

d

(∑
t∈T

ptΩ
− d

r
t

)− r
d

‖f‖ d
d+r

, (75)

for some constant �. We will then provide a heuristic proof

of the inequality mrd ≤ � ≤ κrd. On the other hand, our

argument will not be strong enough to prove that the constant

� exists and is independent of f unless d = 1.

We first prove � ≥ mrd. When n is large, approximately

ptn of the indices have weight Ωt for every t ∈ T . Assume

the existence of |T | point density functions λt(q), t ∈ T
such that for any t ∈ T , the cube centered at q with volume

dq contains nλt(q)dq quantization points whose indices have

weight Ωt, and
∫
Rd λt(q)dq = pt, ∀t ∈ T . By Theorem 1, the

best possible conditional average distortion on the cube at q
with volume dq is lower bounded by

mrdn
− r

d

(∑
t∈T

λt(q)Ω
− d

r
t

)− r
d

. (76)
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Averaging out the source, the minimum average distortion thus

satisfies

D�
n ≥ mrdn

− r
d

∫
Rd

(∑
t∈T

λt(q)Ω
− d

r
t

)− r
d

f(q)dq. (77)

Using Lemma 2-(i), we have

D�
n ≥ mrdn

− r
d

(∫
Rd

∑
t∈T

λt(q)Ω
− d

r
t dq

)− r
d

‖f‖ d
d+r

(78)

= mrdn
− r

d

(∑
t∈T

ptΩ
− d

r
t

)− r
d

‖f‖ d
d+r

, (79)

which implies � ≥ mrd. To prove � ≤ κrd, dissect [0, 1)d to

|T | disjoint regions Rt, t ∈ T (e.g. to rectangles of the form

[a, b)× [0, 1)d−1) in such a way that∫
Rt

f
d

d+r (q)dq∫
Rd f

d
d+r (q)dq

=
ptΩ

− d
r

t∑
u∈T puΩ

− d
r

u

, ∀t ∈ T . (80)

Given t ∈ T , we put all npt reproduction points whose indices

have weight Ωt optimally in Rt. The average distortion with

this strategy is

∑
t∈T

Ωtκrd(npt)
− r

d

(∫
Rt

f
d

d+r (q)dq

) d+r
d

+ |T |o(n− r
d )

= κrdn
− r

d

(∑
t∈T

ptΩ
− d

r
t

)− r
d

‖f‖ d
d+r

+ o(n− r
d ), (81)

from which the bound � ≤ κrd follows. This concludes the

heuristic proof.

B. The Formal Proof of Theorem 4

Formally, first, note that, according to (19) and (20), we

have pt > 0 for some t ∈ T . Hence, given n ∈ N, n ≥
1/maxt∈T pt, we may define Δn to be the minimum average

distortion given �ptn� indices with weight Ωt for every t ∈ T .

The condition n ≥ 1/maxt∈T pt ensures that the quantizer

has at least one reproduction point so that Δn is well-defined.

We will be working with the quantity Δn instead of D�
n.

For notational convenience, we define

L �
(∑

t∈T
ptΩ

− d
r

t

)− r
d

. (82)

We have the following analogue to Theorem 4.

Theorem 5. We have Δn ∼ �Ln− r
d ‖f‖ d

d+r
, where � > 0

satisfies mrd ≤ � ≤ κrd and is independent of f .

The proof of Theorem 5 will be provided later on. First,

we note that Δn and D�
n have the same asymptotic behavior,

as shown by the following lemma. For a sequence g(n), we

use the notations lim g(n) � limn→∞ g(n), lim inf g(n) �
lim infn→∞ g(n), lim sup g(n) � lim supn→∞ g(n).

Lemma 4. We have Δn ∼ D�
n.

Proof. Regarding D�
n, for every ε > 0, there exists n0 ∈ N

such that for all n ≥ n0, we have at least �(1− ε)ptn� points

of weight Ωt for every t ∈ T . Thus,

lim supn
r
dD�

n ≤ lim supn
r
dΔ(1−ε)n (83)

= (1− ε)−
r
d limn

r
dΔn, (84)

where the equality follows from Theorem 5. Since ε > 0 can

be chosen arbitrarily, we obtain lim supn
r
dD�

n ≤ limn
r
dΔn.

On the other hand, since (for large n) we have less than �(1+
ε)ptn� indices of weight Ωt for every t ∈ T , we can obtain

lim inf n
r
dD�

n ≥ limn
r
dΔn (85)

using a similar argument. Therefore, limn
r
dD�

n exists and

equals limn
r
dΔn, implying D�

n ∼ Δn by Theorem 5.

Note that Lemma 4 and Theorem 5 together imply Theorem

4. Therefore, we now present a proof of Theorem 5. We begin

with the case of a uniform distribution over a cube and then

gradually proceed to a general f .

Given a > 0, let ua(q) � a−d1(q ∈ [0, a]d) denote the

uniform distribution on [0, a]d. We sometimes write Δn(f)
or Δn(p,Ω, f) instead of Δn to signify the dependence of

Δn to one or all of p, Ω, and f . We need the following two

lemmas.

Lemma 5. For any a > 0, we have Δn(ua) = arΔn(u1).

Proof. Trivial.

Lemma 6. We have lim inf n
r
dΔn(u1) ≥ mrdL, and

lim supn
r
dΔn(u1) ≤ κrdL.

Proof. According to Theorem 1, we have

Δn(u1) ≥ mrd

(∑
t∈T

�ptn�Ω− d
r

t

)− r
d

. (86)

Using the inequality �ptn� ≤ ptn, we obtain the lower bound

on lim inf n
r
dΔn(u1).

For the upper bound on lim supn
r
dΔn, dissect [0, 1]d to

T Borel measurable regions Rt, t ∈ T (e.g. to rectangles of

the form [a, b] × [0, 1]d−1) in such a way that t 
= u =⇒
P (Rt ∩Ru) = 0 and

P (Rt) =
ptΩ

− d
r

t∑
u∈T puΩ

− d
r

u

, ∀t ∈ T . (87)

Given t ∈ T , consider putting all the �npt� reproduction

points whose indices have weight Ωt optimally in Rt. Let

Δ′
tn denote the corresponding conditional average distortion

given X ∈ Rt and

Δ′
n �

∑
t∈T

P (RT )Δ
′
tn (88)

denote the (unconditional) average distortion.

By Theorem 3, and the fact that �npt� ∼ npt, we have

Δ′
tn ∼ κrdΩt(npt)

− r
d (P (Rt))

r
d . (89)

Therefore, according to (88),

Δ′
n ∼

∑
t∈T

κrdΩt(npt)
− r

d (P (Rt))
1+ r

d (90)
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∼ κrdLn
− r

d , (91)

where the last asymptotic equality follows once we

substitute the value of P (Rt) in (87). The inequality

lim supn
r
dΔn(u1) ≤ κrdL follows since Δn(u1) ≤

Δ′
n, ∀n.

We now prove Theorem 5 for the special case of a uniform

distribution over a cube.

Proposition 4. Let f = u1. We have Δn ∼ �1Ln
− r

d for some
constant �1 that satisfies mrd ≤ �1 ≤ κrd.

Proof. The proof follows from the self-similarity argument of

Zador: Let m,n ∈ N, m < n, and k � �(n/m)
1
d �. Consider a

tessellation of [0, 1]d to kd subcubes of side-length 1
k . At each

subcube, we use the optimal quantizer with �ptm� indices of

weight Ωt. By Lemma 5, the conditional average distortion at

each subcube is k−rΔm. Therefore, the resulting quantizer of

[0, 1]d achieves an average distortion of k−rΔm. Moreover,

since it has

�ptm�kd = �ptm��(n/m)
1
d �d ≤ �ptn� (92)

indices with weight Ωt, we have Δn ≤ k−rΔm. The definition

of k implies the bound k+1 ≥ (n/m)
1
d , using which we can

obtain

n
r
dΔn ≤

(
k + 1

k

)r

m
r
dΔm. (93)

Keeping m fixed and letting n → ∞, we have k → ∞ so

that lim supn
r
dΔn ≤ m

r
dΔm for every m ∈ N>0. Therefore,

limn
r
dΔn exists. According to Lemma 6, we have mrdL ≤

limn
r
dΔn ≤ κrdL.

From now on, let �1 be as defined in Proposition 4. We

will show that the constant � in Theorem 5 can be chosen to

be equal to �1 regardless of the density function f . We first

consider uniform densities over rectangular regions.

Proposition 5. Let a1, . . . , ad > 0, R =
∏d

i=1[0, ai], and
f(q) = 1(q ∈ R)/μ(R). We have

Δn ∼ �1Ln
− r

d (μ(R))
r
d = �1Ln

− r
d ‖f‖ d

d+r
. (94)

Proof. Let M be a large real number. Consider R =∏d
i=1�M/ai� disjoint (up to sets of probability zero) translates

R1, . . . ,RR of R that can cover the cube [0,M ]d. At each

translate, we use the optimal quantizer with �ptn� indices of

weight Ωt. With this strategy, given the density function uM ,

the conditional average distortion given X ∈ Rρ is at most

Δn for every ρ ∈ {1, . . . , R} with Rρ ⊂ M . Hence, for any

ρ, the contribution of all the source samples in Rρ to the

average distortion is at most P (R)Δn = μ(R)M−dΔn(f).
Since there are R rectangles, the average distortion is at most

Rμ(R)M−dΔn(f). On the other hand, since we have a total

of R�ptn� = �ptnR� indices with weight Ωt, we have

Rμ(R)M−dΔn ≥ Δn(Rp,Ω, uM ) (95)

∼ Mr(nR)−
r
d �1L, (96)

where the asymptotic equality follows from Lemma 5 and

Proposition 4. Thus,

lim inf n
r
dΔn ≥ Mr+dR−1− r

d (μ(R))
−1

�1L. (97)

Since Rμ(R) ∼ Md as M → ∞, we obtain

lim inf n
r
dΔn ≥ �1L(μ(R))

r
d . (98)

We now consider the “reverse scenario” where ε > 0 is

small and we have C =
∏

d
i=1�ai/ε� disjoint translates of

[0, ε]d that cover R. At each translate, we use the optimal

quantizer with �ptn/C� indices of weight Ωt. Using the same

arguments as above, we obtain

Cεd(μ(R))−1Δn

( p
C
,Ω, uε

)
≥ Δn, (99)

which leads to

lim supn
r
dΔn ≤ �1L(μ(R))

r
d . (100)

This concludes the proof.

Hence, Theorem 5 holds for uniform distributions over

rectangles or cubes. We now prove Theorem 5 for the more

general case of “piecewise-uniform” density functions. First,

we need the following lemma. We write �1(p,Ω) to signify

the dependence of �1 on p and Ω.

Lemma 7. Let M ≥ 1. Suppose ptm ≥ 0 be given such that∑M
m=1 ptm = pt and ∀m ∈ {1, . . . ,M}, ∃t ∈ T , ptm > 0.

Let pm � [p1m · · · pTm]. We have(
M∑

m=1

(�1(pm,Ω))
− d

r

(∑
t∈T

ptmΩ
− d

r
t

))− r
d

≥ �1L. (101)

Proof. Consider the rectangles

[0, 1]d−1 ×
[
m−1∑
i=1

ηi,

m∑
i=1

ηi

]
, m = 1, . . . ,M, (102)

where

ηm � am∑M
n=1 an

, (103)

and

am � (�1(pm,Ω))−
d
r

∑
t∈T

ptmΩ
− d

r
t . (104)

Note that the rectangles cover [0, 1]d. At the mth rectangle, we

use the optimal quantizer with �ptmn� indices of weight Ωt.

We can compare the asymptotic average distortion with this

strategy to that of the optimal quantizer on [0, 1]d by using

Propositions 4 and 5. This yields

M∑
m=1

ηm
r+d
d a

− r
d

m ≥ �1L. (105)

Substituting the value of ηm, we obtain the statement of the

lemma.

Note that the lemma can also be used to estimate �1(p,Ω)
given that �1(p

′,Ω), p′ ∈ P ′ are known, where P ′ is some

collection of probabilities. Here, we utilize the lemma to

prove the following proposition, which verifies Theorem 5 for

piecewise-uniform density functions.
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Proposition 6. Let C1, . . . , CM be a sequence of closed cubes
with side-length c and i 
= j =⇒ P (Ci ∩ Cj) = 0. Let

f(q) =

M∑
m=1

smc−d1(q ∈ Cm), (106)

where s1, . . . , sM ≥ 0 and
∑M

m=1 sm = 1. Then,

Δn ∼ �1Ln
− r

d ‖f‖ d
d+r

. (107)

Proof. Without loss of generality, assume s1, . . . , sM > 0. Let

qm =
s

d
d+r
m∑M

n=1 s
d

d+r
n

, m = 1, . . . ,M. (108)

We put �qmptn� points with weight Ωt optimally to Cm.

By Proposition 4, the average distortion with this strategy is

asymptotically equal to

M∑
m=1

smcrn− r
d �1(qmp,Ω)

(∑
t∈T

qmptΩ
− d

r
t

)− r
d

(109)

= n− r
d �1Lc

r
M∑

m=1

smq
− r

d
m (110)

= n− r
d �1Lc

r

(
M∑

m=1

s
d

d+r
m

) d+r
d

(111)

= n− r
d �1L‖f‖ d

d+r
, (112)

where the first equality follows since �1(qp,Ω) = �1, ∀q > 0,

and the second equality follows upon substitution of the value

of qm. Since we have a total of

M∑
m=1

�qmptn� ≤ �ptn� (113)

of weight Ωt, we obtain

lim supn
r
dΔn ≤ �1L‖f‖ d

d+r
. (114)

Given the optimal quantizer, let Xn,t denote the set of repro-

duction points whose indices have weight Ωt, and Xn,t,m �
Xn,t ∩ intCm, where intCm is the interior of Cm, i.e. the

open cube with the same mid-point and side-length as Cm.

Given ε ∈ (0, c
2 ), let the closed cube Cm,ε have the same

midpoint as Cm but have side-lengths c− 2ε. Choose a finite

set Km,ε ⊂ Cm,ε that satisfies

min
d∈Km,ε

‖q − y‖ ≤ inf
y/∈Cm

‖q − y‖, ∀q ∈ Cm,ε (115)

and has cardinality kε,c � |Km,ε| that depends only on ε and

c. We have

Δn=

M∑
m=1

sm

∫
Cm

min{ωt‖q − y‖r : t∈T , y∈Xn,t}
dq

cd
(116)

≥
M∑

m=1

sm

∫
Cm,ε

min{ωt‖q − y‖r : t∈T , y∈Xn,t}
dq

cd
(117)

≥
M∑

m=1

sm

∫
Cm,ε

min{ωt‖q − y‖r : t ∈ T ,

y ∈ Xn,t ∪ Km,ε}
dq

cd
(118)

=
M∑

m=1

smIm,n, (119)

where

Im,n �
∫
Cm,ε

min{ωt‖q − y‖r : t ∈ T ,

y ∈ Xn,t,m ∪ Km,ε}
dq

cd
. (120)

Note that given any m ∈ {1, . . . ,M}, the quantity Im,n is

lower bounded by the average distortion of an optimal quan-

tizer for uc−2ε with |Xn,t,m|+|Km,ε| = |Xn,t,m|+kε,c indices

of weight Ωt. Hence, we choose a subsequence in, n ∈ N such

that

lim i
r
d
nΔin(f) = lim inf n

r
dΔn, (121)

and

lim i−1
n (|Xin,t,m|+ kε,c) � ptm. (122)

Let pm � [p1m · · · pTm]. Note that
∑M

m=1 ptm ≤ pt. We have

lim inf n
r
dΔn = lim i

r
d
nΔin(f) (123)

≥
M∑

m=1

sm lim inf i
r
d
n Im,in . (124)

On the other hand, by Proposition 4, we obtain

lim i
r
d
n Im,in = �1(pm,Ω)

(∑
t∈T

ptmΩ
− d

r
t

)− r
d

(c− 2ε)r (125)

provided that ∀m ∈ {1, . . . ,M}, ∃t ∈ T , ptm > 0. Assume

the contrary. By considering the scenario pt → 0, ∀t ∈ T
in Proposition 4, we obtain lim i

r
d
n Im,in = ∞ for some m ∈

{1, . . . ,M}. According to (123), we have limn
r
dΔn = ∞,

which contradicts the finiteness of lim supn
r
dΔn that we have

already proved. We can therefore substitute (125) to (123) and

let ε → 0 to obtain

lim inf n
r
dΔn≥

M∑
m=1

smcr�1(pm,Ω)

(∑
t∈T

ptmΩ
− d

r
t

)− r
d

(126)

≥ cr

(
M∑

m=1

s
d

d+r
m

) d+r
d

×

(
M∑

m=1

(�1(pm,Ω))−
d
r

(∑
t∈T

ptmΩ
− d

r
t

))− r
d

(127)

≥ cr

(
M∑

m=1

s
d

d+r
m

) d+r
d

�1L (128)

= �1L‖f‖ d
d+r

, (129)

where the second inequality follows from the reverse Hölder

inequality, and the last inequality follows from Lemma 7. This

concludes the proof.
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The rest of the proof of Theorem 5 relies on using a

sequence of piecewise-uniform densities with increasing res-

olution (the average distortion of which could be determined

through Proposition 6) for approximating an arbitrary density

and its average distortion. Theorem 5 then follows with � = �1.

The details are straightforward extensions of those for index-

independent rth power distortion measure; see e.g. Steps 3−6
as in the proof of [39, Theorem 6.2]. Omitting the details,

we consider the proof of Theorem 5 complete. As we have

mentioned before, Theorem 5, together with Lemma 4, implies

Theorem 4. This concludes the proof.

APPENDIX E

PROOF OF PROPOSITION 3

We consider the following (suboptimal) quantization cells.

Consider a source sample q that belongs to the open ball with

volume (1 − δ)vi centered at xi for some i ∈ {1, . . . , N}.

We quantize such a source sample to xi (with ties broken

arbitrarily), and thus the contribution of q-like points to the

average distortion of the quantizer is

N∑
i=1

mrdωi((1−δ)vi)
d+r
d =mrd(1−δ)

d+r
d

(
N∑

k=1

ω
− d

r

k

)− r
d

(130)

by our assumption in (i). For any other source sample q′, by

our assumption in (ii), there is an index j ∈ {1, . . . , N} such

that |q′ − xj | ≤ Av
1
d
j , and we quantize the source sample q′

to xj . The corresponding average distortion is

ωj‖q′ − xj‖r ≤ Arωjv
r
d
j = Ar

(
N∑

k=1

ω
− d

r

k

)− r
d

(131)

and thus admits an upper bound that is independent of q′ and j.

The contribution of q′-like source samples (which have volume

δ by our assumption in (i)) to the average distortion is therefore

at most

δAr

(
N∑

k=1

ω
− d

r

k

)− r
d

. (132)

Combining (130) and (132), we obtain the statement of the

proposition.
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[24] İ. E. Telatar, “Capacity of multi-antenna gaussian channels,” European
Trans. Tleecommun., vol. 10, pp. 585–595, Nov./Dec. 1999.

[25] P. S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982.

[26] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory,
vol. 44, no. 6, pp. 2325–2383, Oct. 1998.

[27] W. R. Bennett, “Spectra of quantized signals,” The Bell System Tech. J.,
vol. 27, no. 3, pp. 446–472, July 1948.

[28] P. L. Zador, “Asymptotic quantization error of continuous signals and
the quantization dimension,” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp.
139–148, Mar. 1982.

[29] J. Bucklew and G. Wise, “Multidimensional asymptotic quantization
theory with rth power distortion measures,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 239–247, Mar. 1982.

[30] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans.
Inf. Theory, vol. 25, no. 4, pp. 373–380, July 1979.

[31] A. Gersho and R. Gray, Vector quantization and signal compression.
Kluwer Academic Publishers, 1992.

[32] E. Koyuncu and H. Jafarkhani, “On the minimum distortion of quantizers
with heterogeneous reproduction points,” IEEE Data Comp. Conf., Mar.
2016.

[33] A. Buzo, A. H. Gray, Jr., R. M. Gray, and J. D. Markel, “Speech coding
based upon vector quantization,” IEEE Trans. Acoustics, Speech, and
Signal Process., vol. ASSP–28, no. 5, pp. 562–574, Oct. 1980.



16

[34] W. R. Gardner and B. D. Rao, “Theoretical analysis of the high-rate
vector quantization of LPC parameters,” IEEE Trans. Speech and Audio
Process., vol. 3, no. 5, pp. 367–381, Sept. 1995.

[35] J. Li, N. Chaddha, and R. M. Gray, “Asymptotic performance of vector
quantizers with a perceptual distortion measure,” IEEE Trans. Inf. Theory,
vol. 45, no. 4, pp. 1082–1091, May 1999.

[36] T. Linder, R. Zamir, and K. Zeger, “High-resolution source coding for
non-difference distortion measures: multidimensional companding,” IEEE
Trans. Inf. Theory, vol. 45, no. 2, pp. 548–561, Mar. 1999.

[37] T. Linder and R. Zamir, “High-resolution source coding for non-
difference distortion measures: The rate-distortion function,” IEEE Trans.
Inf. Theory, vol. 45, no. 2, pp. 533–547, Mar. 1999.

[38] M. Borkovec, W. de Paris, and R. Peikert, “The fractal dimension of the
Apollonian sphere packing,” Fractals, vol. 2, no. 4, pp. 521–526, Dec.
1994.

[39] S. Graf and H. Luschgy, Foundations of Quantization for Probability
Distributions, Springer-Verlag, 2000.

[40] V. Ricordel and C. Labit, “Tree-structured lattice vector quantization,”
European Signal Process. Conf., Sept. 1996.

[41] D. Pollard, “Quantization and the method of k-means,” IEEE Trans. Inf.
Theory, vol. 28, no. 2, pp. 199–205, Mar. 1982.




