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Prostate cancer antigen 3 (PCA3) is the most specific prostate can-
cer biomarker but its function remains unknown. Here we identify
PRUNE2, a target protein-coding gene variant, which harbors the
PCA3 locus, thereby classifying PCA3 as an antisense intronic long
noncoding (lnc)RNA. We show that PCA3 controls PRUNE2 levels
via a unique regulatory mechanism involving formation of a
PRUNE2/PCA3 double-stranded RNA that undergoes adenosine de-
aminase acting on RNA (ADAR)-dependent adenosine-to-inosine RNA
editing. PRUNE2 expression or silencing in prostate cancer cells de-
creased and increased cell proliferation, respectively. Moreover,
PRUNE2 and PCA3 elicited opposite effects on tumor growth in immu-
nodeficient tumor-bearing mice. Coregulation and RNA editing of
PRUNE2 and PCA3 were confirmed in human prostate cancer speci-
mens, supporting the medical relevance of our findings. These results
establish PCA3 as a dominant-negative oncogene and PRUNE2 as an
unrecognized tumor suppressor gene in human prostate cancer, and
their regulatory axis represents a unique molecular target for diagnos-
tic and therapeutic intervention.

PRUNE2 | PCA3 | long noncoding RNA | ADAR | prostate cancer

Several lines of evidence demonstrate that long noncoding
RNAs (lncRNAs) are functional in carcinogenesis through

regulatory mechanisms such as promoter looping, alternative splic-
ing, antisense gene silencing, transcriptional regulation, and DNA
repair, thus potentially serving as tumor markers. A few lncRNA
species have emerged as potential prostate cancer biomarkers such
as prostate cancer gene expression marker-1 (PCGEM1) and prostate
cancer noncoding RNA1 (PRNCR1), which enhance androgen re-
ceptor (AR)-dependent gene activation, and prostate cancer-associ-
ated ncRNA transcript-1 (PCAT1), which silences BRCA2 via
posttranscriptional homologous recombination (1). Notably, the
most specific biomarker in human prostate cancer identified to date
is an lncRNA, prostate cancer antigen 3 (PCA3, also known as
PCA3DD3 or DD3PCA3), which is up-regulated in human prostate
cancer (2). Since its discovery more than 15 y ago, PCA3 has been
extensively investigated (3) and has been approved for clinical ap-
plications to aid the diagnosis of prostate cancer in both the Eu-
ropean Union and the United States. Paradoxically—despite its
striking clinical specificity—the inherent cellular role of the
lncRNA PCA3 in human prostate cancer, if any, remains com-
pletely unknown (1). Here we report a unique biological function

for PCA3. Within a single functional genetic unit, we show that
PCA3 is an antisense intronic lncRNA that down-regulates an as yet
unrecognized tumor suppressor gene, a human homolog of the
Drosophila prune gene, PRUNE2, through a process that involves
RNA editing mediated by a supramolecular complex containing
adenosine deaminase acting on RNA (ADAR) family members. We
propose a working model in which PCA3 acts as a dominant-negative
oncogene in prostate cancer and show consistent results in thera-
peutic preclinical models and in patient-derived human samples.
Therefore, the molecular interaction of PRUNE2 and PCA3 is a
candidate target for translational applications.

Results
PCA3 Is an Antisense Intronic lncRNA Within a Single PRUNE2
Transcriptional Unit. Certain mammalian lncRNAs are embedded
in the intronic-antisense regions of protein-coding genes (4–6).
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PCA3 is a spliced intronic antisense lncRNA embedded within
intron 6 of the corresponding sense gene PRUNE2 (2, 7–10) (Fig.
1A). We hypothesized the existence of a functional role between
PCA3 and PRUNE2, and their involvement in prostate cancer
progression. To study this possibility, we investigated PRUNE2 as
well as the PCA3 intronic antisense transcripts, which we cloned
from MDA-PCa-133, a patient-derived xenograft (PDX) of bone
metastasis from prostate cancer (11) (Fig. 1 A and B). We next
analyzed the expression of PRUNE2 in representative panels of
human tumors and nonmalignant cell lines by quantitative gene
expression profiling with primers located in the PRUNE2 exons
that flank PCA3 (Tables S1 and S2 and Fig. S1 A and B). PRUNE2
was detectable in prostate cancer cell lines, with the highest levels
in androgen-dependent (LNCaP) cells, as well as in several brain
and breast lines. We also analyzed PRUNE2 levels alongside
PCA3 lncRNA in prostate cancer cells and observed differential
expression of the two genes: LNCaP cells displayed the highest levels
of both PRUNE2 and PCA3 relative to androgen-independent
(DU145 and PC3) cells (Fig. S1C). We confirmed the expression of
native or recombinant V5-tagged PRUNE2 by immunoblot analysis,
and the predicted endogenous protein (∼337 kDa) was observed in
LNCaP but not in PC3 cells (Fig. S1 D and E).

PCA3 lncRNA Binds PRUNE2 Pre-mRNA and Regulates Its Levels.
Given that PCA3 is embedded within intron 6 of PRUNE2,
and is transcribed in the antisense direction, we hypothesized
that a double-stranded (ds)RNA forms between PCA3 lncRNA
and PRUNE2 pre-mRNA to regulate PRUNE2 levels in prostate

cancer. To evaluate this possibility, we first generated prostate
cancer cell lines (LNCaP and PC3) stably transduced with ec-
topic PCA3, PCA3-shRNA, ectopic PRUNE2, PRUNE2-shRNA,
or the corresponding controls. Levels of endogenous PRUNE2
protein, pre-mRNA and mRNA increased with PCA3 silencing
and decreased with ectopic PCA3 expression (Fig. 1 C and D and
Fig. S1 F–H). We confirmed these findings in prostate- and
prostate cancer-derived cells, where ectopic PCA3 expression
induced down-regulation of endogenous PRUNE2 expression
(Fig. S2A). To determine whether PRUNE2 and PCA3 form a
dsRNA, we used co-RNA-FISH assays. PCA3 and PRUNE2
hybridized in the same nuclear foci (Fig. 1E and Fig. S2A). These
foci were completely depleted on treatment with RNase III,
which degrades only dsRNA, but not with RNase A, which de-
grades only single-stranded (ss)RNA (Fig. 1E and Fig. S2B),
indicating the formation of dsRNA from the physical association
of PCA3 and PRUNE2 pre-mRNA. Next, to evaluate whether
binding of PRUNE2 mRNA to PCA3 was required for the reg-
ulation of PRUNE2 levels, we assessed the effect of PCA3 on
exogenous mature PRUNE2 cDNA, which has no sequence
complementarity to PCA3 and therefore would be unable to
form a dsRNA. Indeed, ectopic PCA3 did not affect the exoge-
nous expression of PRUNE2 mRNA and protein (Fig. S3A). To
complement this finding, we also designed and expressed a
PRUNE2 construct that contains no protein-coding sequence but
is still fully complementary to PCA3 (termed intron6-PRUNE2)
and should therefore be able to bind PCA3 and possibly se-
quester it from PRUNE2. Consistent with this, overexpression of
intron6-PRUNE2 caused an increase in endogenous PRUNE2
mRNA in the cytoplasm and a concomitant reduction in the
nucleus (Fig. 1F). We confirmed a direct interaction between PCA3
and its corresponding antisense sequence (intron6-PRUNE2) by
using RNase-resistant assays and co-RNA-FISH in tumor cells
expressing both sequences (Fig. S3 B–E). These data suggest that
PCA3 binding to PRUNE2 pre-mRNA controls PRUNE2 levels.

ADARs Bind PRUNE2/PCA3 dsRNA and Regulate PRUNE2 Levels.
ADAR proteins are key regulatory enzymes for RNA editing
and sequestering of noncoding RNA sequences, such as introns
and untranslated mRNAs (5, 11–13), derived from the hybrid-
ization of retroinverted Alu elements (5, 13), with conversion of
adenosine-to-inosine (A-to-I) RNA editing after nuclear dsRNA
formation. Thus, we hypothesized that PCA3-PRUNE2 dsRNA
may be regulated by ADAR-mediated RNA editing. To test this
possibility, we used quantitative RT-PCR (qRT-PCR), co-RNA-
FISH, and RNA-ChIP. We found that endogenous PCA3 and
PRUNE2 pre-mRNAs colocalize to nuclear foci associated with

A

B C

D E F

Fig. 1. PRUNE2/PCA3 cloning, genomic structure, and colocalization. (A) Genomic context of intron/exon boundaries of PCA3 and PRUNE2 (GenBank ac-
cession no. FJ808772). Stars indicate missing or new exons; arrowheads indicate initiation (green) or stop (red) codons. Arrows indicate transcript orientation
(black, PCA3; red, PRUNE2). (B) RT-PCR with RNA from the PDX MDA-PCa-133 used to clone/sequence PRUNE2. (C) Analysis of PRUNE2 in LNCaP cells stably
expressing ectopic PCA3, PCA3-silenced, PRUNE2-silenced, or control. (D) qRT-PCR assays with primers (Table S1) amplifying PCA3 or different regions of
PRUNE2 in LNCaP cells with silenced or ectopic PRUNE2 and PCA3. (E) Combined RNase resistance and RNA-FISH analysis. Before hybridization, LNCaP cells
were treated with RNase A or RNase III. Hybridization was performed with specific probes against PCA3 and PRUNE2 transcripts. Nuclei are stained with DAPI.
Arrows indicate foci. Confocal images are shown (bar, 10 μm). Fig. 1E represents 100×magnifications (from Fig. S3A). (F) Expression effects of intron6-PRUNE2
on nuclear and cytoplasmic PCA3 and PRUNE2 levels in LNCaP cells. Shown data are mean ± SD.

Significance

Prostate cancer has an unpredictable natural history: While most
tumors are clinically indolent, some patients display lethal phe-
notypes. Serum prostate-specific antigen is the most often used
test in prostate cancer but screening is controversial. Treatment
options are limited for metastatic disease, hence the need for
early diagnosis. Prostate cancer antigen 3 (PCA3), a long non-
coding RNA, is the most specific biomarker identified and ap-
proved as a diagnostic test. However, its inherent biological
function (if any) has remained elusive. We uncovered a negative
transdominant oncogenic role for PCA3 that down-regulates an
unrecognized tumor suppressor gene, PRUNE2 (a human homolog
of the Drosophila prune gene) thereby promoting malignant cell
growth. This work defines a unique biological function for PCA3
in prostate cancer.
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ADAR proteins, which were sensitive to RNase III treatment
(Fig. 2 A–C and Fig. S4). PRUNE2/PCA3 dsRNA and ADAR1
formed a complex only when both RNA species were coex-
pressed; the corresponding signals for PRUNE2/PCA3 dsRNA
decreased after PCA3 or PRUNE2 silencing and increased with
ectopic expression of PCA3 in a UV-induced RNA-protein
cross-linking assay (Fig. 2D). To determine whether ADAR
proteins regulate PRUNE2 and PCA3 levels, we silenced ADAR1
in human tumor cells and found increased PRUNE2 mRNA and
protein levels (Fig. 2 E–G). We also found that ADAR-depleted
prostate cancer cells have increased cytosolic PRUNE2 and
PCA3 levels (Fig. 2 F and G and Fig. S5 A and B), revealing the
importance of ADAR members in the regulation of both genes,
consistent with functions of A-to-I editing in the regulation of non-
coding RNA species (14). To gain functional insight into the regu-
lation of PRUNE2 and PCA3, we established sensor/reporter assays
in which either PCA3 or the PCA3 antisense sequence (i.e., intron6-
PRUNE2) was fused to reporters to generate PCA3-luciferase or
intron6-PRUNE2-GFP. Reporter expression (by FACS and lumi-
nescence assays) showed that the coexpression of intron6-PRUNE2-
GFP plus PCA3 or intron6-PRUNE2 plus PCA3-luciferase results
in reduction of the corresponding reporter signals compared to
controls (Fig. S5 A–F). Thus, in addition to PCA3 regulating
PRUNE2 levels, and consistent with our earlier results, intron6-
PRUNE2 could also down-regulate PCA3 (Fig. 1F). Silencing of
ADAR1 or ADAR2 increased the reporter signals, confirming that
these enzymes are required for a coregulatory effect on both RNAs
(Fig. S5 E–H).

RNA Editing of PRUNE2 and PCA3 RNA Species. Our results thus far
have indicated that ADAR proteins associate with PRUNE2/
PCA3 dsRNA and regulate PRUNE2 and PCA3 levels via A-to-I
RNA editing. To test this possibility directly, we evaluated the

presence of A-to-I editing throughout the genomic coordinates
of PCA3 and its corresponding antisense pre-mRNA intron6-
PRUNE2 by RNA capture followed by next-generation sequenc-
ing. Although RNA editing is found largely within Alu elements,
we carefully filtered out repetitive elements (such as Alu sequences)
to avoid erroneous alignments. We showed that A > G/T > C
changes, which reflect A-to-I editing, were the most frequent
substitutions. Editing sites were distributed in intronic and exonic
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Fig. 2. PRUNE2/PCA3 colocalization to ADAR1. (A) RNA-ChIP and PCA3 and
PRUNE2 binding by qRT-PCR in LNCaP cells. (B) Combined RNase resistance and
RNA-FISH analysis. Before hybridization, LNCaP cells were treated with RNase A.
Hybridization and immunostaining were performed with specific probes and an
anti-ADAR1 antibody. (C) PCA3 and PRUNE2 binding to ADAR1 by RNA-ChIP.
(D) Hybridizationwith biotin-labeled oligomers (Table S1) against PCA3 and PRUNE2
in LNCaP cells after UV-induced RNA-protein cross-linking. Immunoblot against
ADAR1 is shown. (E and F) Evaluation of PCA3 and PRUNE2 expression in LNCaP
cells stably expressing two independent lentiviral ADAR1-shRNAs: immunoblots
against PRUNE2, ADAR1, and control protein (YY1) (E) and qRT-PCR (F) are shown.
(G) Cytosolic (C) and nuclear (N) RNA fractionation followed by qRT-PCR; specific
oligonucleotides served for amplification of nuclear pre-mRNA and cytosolic
mRNA of PCA3 and PRUNE2. Shown data are mean ± SD. *P < 0.05; **P < 0.01.
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Fig. 3. Functional role of RNA editing and androgen receptor (AR) activation
in PRUNE2/PCA3 regulation. (A and B) Identification, quantification, and dis-
tribution of A > G/T > C changes (features pathognomonic of A-to-I editing in
both strands of the PRUNE2/PCA3 dsRNA) analyzed after RNA capture followed
by high-throughput sequencing. Reads were aligned against hg19 of the re-
gion. Only nondbSNP variations indicated by at least three reads, and out of
repetitive elements were considered. (A) Distribution and percentage of all
possible alterations for the PCA3 genomic coordinates in LNCaP cells are shown.
(B) RNA editing map for LNCaP cells showing the precise location of each A > G
(green) or T > C (red) sites over PCA3 and intron6-PRUNE2 pre-mRNA species.
Each square represents one individual base from the PCA3 locus (23,112 nt).
Black borders delimit the bases of the four annotated exons (3,923 nt). Repeats
(RepeatMasker) are shown in gray (B). (C–E) Evaluation of PCA3 and PRUNE2
levels in LNCaP cells stably expressing two independent P54NRB-shRNA clones (C1
and C2) or controls (NT). Detection of PCA3 and PRUNE2 mRNA cytosolic levels
by RNA-FISH (C) and by qRT-PCR (D) are shown. Analysis of PRUNE2 expression
in LNCaP P54NRB-silenced cells or negative control is shown (E). (F) Analysis of
PRUNE2, AR, and phosphorylated AR (P-AR) expression in after concentration-
dependent androgen stimulation with R1881. Representative PAGE 3–8%
shown. (G) Relative mRNA expression levels of PCA3 and PRUNE2 transcript
under R1881 stimulation. (H) Relative mRNA expression of PRUNE2, PCA3, and
PSA (positive control) measured by qRT-PCR in LNCaP cells after dose-dependent
R1881 stimulation. (I) RNA-FISH analysis for PCA3 and pre-mRNA of PRUNE2 in
LNCaP cells under steroid-depleted conditions or after androgen stimulation.
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regions (Fig. 3 A and B), suggesting that a dsRNA hybrid is
formed between pre-mRNA species of both genes, as observed
in the RNA colocalization experiments. Given that the Dro-
sophila behavior human splicing (DBHS) protein P54NRB pref-
erentially binds to inosine-containing RNA (RNA-I) and
regulates gene expression, we investigated a potential role for
P54NRB and other DBHS proteins in regulating PRUNE2/PCA3.
Both, PCA3 and PRUNE2 pre-mRNA species associated with
P54NRB and the other two known mammalian family members (PSF
and PSPC-1) compared with negative control RNA by RNA-ChIP
(Fig. 2A) or combined co-RNA-FISH and immunofluorescence as-
says (Fig. S6). In addition, P54NRB-silenced prostate cancer cells had
increased levels of PCA3 and PRUNE2 mature RNA (Fig. 3 C and
D) and a concomitant increase of PRUNE2 protein levels relative to
controls (Fig. 3E). These data confirm that PRUNE2 and PCA3
RNAs undergo A-to-I editing and reveal a functional role for
DBHS proteins in their regulation.

Function of the PRUNE2/PCA3 Regulatory Axis in Prostate Cancer.
Androgen dependence and resistance to androgen deprivation
therapy are central to the biological and clinical features of prostate
cancer. Thus, we investigated whether AR activation regulates
PCA3 and PRUNE2 expression in androgen-dependent LNCaP
cells, which had lower PCA3 and higher PRUNE2 levels than an-
drogen-independent PC3 cells, when grown in steroid-depleted
serum (Fig. 3 F and G and Fig. S1C). Androgen stimulation of
LNCaP cells with a synthetic testosterone homolog (R1881) in-
duced a concomitant increase of PCA3 and decrease of PRUNE2
levels (Fig. 3 F–H), consistent with a report that PCA3 modulates
prostate cancer through AR signaling (15). We also observed an
increase in nuclear localization of PRUNE2 and PCA3 along with
androgen-induced responses (Fig. 3I). Thus, PRUNE2/PCA3 regu-
lation appears to be sensitive to AR activation, a molecular hall-
mark of prostate cancer. To further assess the functional role(s) of
the PRUNE2/PCA3 regulatory axis in prostate cancer, we generated
LNCaP cells (PRUNE2-expressing) or PC3 cells (PRUNE2-de-
ficient) stably expressing lentiviral constructs to silence or ec-
topically express PRUNE2 and PCA3 (Figs. S1 D–F and S3A).
PCA3 silencing or ectopic PRUNE2 expression decreased cell

proliferation and transformation in vitro; in contrast, PRUNE2 si-
lencing or ectopic PCA3 expression increased cell proliferation and
transformation (Figs. S7 and S8 A–C). Moreover, ectopic expres-
sion of PCA3 or antisense PCA3 (intron6-PRUNE2), which down-
regulates PCA3, respectively decreased and increased endogenous,
with no effect on exogenous mature PRUNE2 expression
lacking complementarity with PCA3 (Fig. 1C and Figs. S2A
and S8 D and E). Finally, we found that PRUNE2-deficient
PC3 cells stably expressing ectopic PRUNE2 had lower levels of
proliferation and transformation in vitro (Fig. S8 A and C).
These results are consistent with the negative regulation of
PRUNE2 by PCA3. We next investigated the downstream molec-
ular mechanism(s) through which PRUNE2 suppresses tumor
growth. PRUNE2 has three predicted functional domains (15):
BCH, DHHA2, and PPX1 (Fig. S9A). BCH inhibits RhoA, a
small GTPase that regulates the cytoskeleton, cell adhesion, and
migration (16), whereas DHHA2 interacts with Nm23-H1, a me-
tastasis suppressor (17). We found that endogenous PRUNE2
coimmunoprecipitates with RhoA and Nm23-H1 (Fig. S9 B–D).
Consistent with an inhibitory role for PRUNE2 in RhoA signaling,
PRUNE2 levels increased when LNCaP cells were grown in
nonadherent culture conditions (Fig. S9E), and the distribution of
PRUNE2 was inversely correlated with focal adhesion sites in
LNCaP-derived spheroids (Fig. S9 C and F). In addition, we ob-
served alterations in tumor cell adhesion and spreading, but no
effect on apoptosis (Fig. S10 A–D). We also noted decreased
adhesion, spreading, and migration of prostate cancer cells
upon PRUNE2 expression and the opposite effect on ectopic
expression of PCA3 or PRUNE2 silencing (Fig. S10 E–J).
These results, along with the established functions of interact-
ing proteins (16–18), suggest that PRUNE2 primarily decreases
tumor growth by inhibiting cell proliferation but also affects
adhesion, spreading, and migration. We subsequently extended
these results to human tumor xenograft models; LNCaP pros-
tate cancer cells stably expressing PRUNE2-shRNA, ectopic
PCA3, PCA3-shRNA, or controls were s.c. administered into
SCID mice. PRUNE2 silencing and ectopic PCA3 expres-
sion yielded markedly larger tumor xenografts than controls;
in contrast, tumor growth was greatly diminished relative to
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controls when PCA3 was silenced (Fig. 4 A–C). Consistently, we
observed increased serum prostate-specific antigen (PSA)
concentrations in SCID mice that received LNCaP cells with
ectopic PCA3 expression or PRUNE2 silencing compared to
controls (Fig. 4D). In vitro, and also in tumor xenograft models,
expression of antisense PCA3 (intron6-PRUNE2), which se-
questers PCA3, decreased tumor growth in LNCaP but not in
PC3 cells (Fig. 4 E and F and Fig. S8 A and B). Further, ex-
pression of ectopic PRUNE2 in LNCaP cells administered in
SCID mice led to smaller tumors relative to controls (Fig. 4 G
and H), illustrating the tumor suppressor activity of PRUNE2.
Finally, silencing ADAR1, which increases PRUNE2 levels in
LNCaP cells, reduced tumor cell proliferation in vitro and in vivo
(Fig. 4 I and J and Fig. S11 A–C). These data show a functional
role for the PRUNE2/PCA3 regulatory axis in prostate cancer.
To explore the potential of clinical application of these findings,
we specifically targeted the PCA3 sense strand with a modified
siRNA (stealth RNAi-PCA3) serially administered to tumor-
bearing mice with established prostate cancer xenografts. We
observed tumor growth inhibition and serum PSA concentration
reduction relative to scrambled siRNA control (Fig. 4 K–N). These
results support the hypothesis that PRUNE2 expression has a

functional tumor suppressive role in prostate cancer and suggest
that the regulatory mechanism of PRUNE2 by PCA3 is a molecular
target for intervention.

Levels of PCA3 and PRUNE2 Inversely Correlate in Human Prostate Cancer
Specimens. To determine the clinical relevance of our findings, we
examined the expression of PCA3 and PRUNE2 in human prostate
cancer. First, we performed qRT-PCR analysis on tumor RNA
samples from prostate cancer patients (n = 48) and nonmalignant
areas of the prostate (n = 9). PRUNE2 mRNA expression was
detected more often in non–tumor-containing compared with the
tumor-containing areas of the prostate (Fig. 5A). In contrast, PCA3
mRNA levels showed the opposite pattern, with high expression
levels more frequently detected in tumors relative to nontumors,
consistent with its role in the negative regulation of PRUNE2. To
independently validate these clinical findings in silico, PRUNE2 and
PCA3 expression levels were evaluated through Oncomine (19) in a
large sample subset (n = 144) of primary nontreated prostate ma-
lignant tumors (n = 115) and nonmalignant prostate tissue (n = 29)
(20). Although no statistically significant correlation with survival
could be readily identified in this online dataset (20), a larger on-
going study is planned to fully address this question. Notably, to
minimize variation, samples from prostate cancer-derived cell lines,
metastatic lesions, and patients that received neoadjuvant therapy
were excluded from the analysis. We next used The Cancer Ge-
nome Atlas (TCGA) as another unrelated large dataset (n = 50
nonmalignant control prostate samples; n = 333 prostate cancer
samples) to validate the opposed expression between PRUNE2 and
PCA3. We found that low PCA3 levels correlated with high
PRUNE2 levels in nonmalignant control prostate samples and vice
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versa in prostate cancer samples (Fig. 5 B and C). Finally, we also
analyzed the protein expression pattern of PRUNE2 in a large
series of clinically annotated primary prostate cancer specimens
(n = 145), matched to adjacent histologically normal prostate tissue
(n = 145). In each case, immunohistochemical (IHC) staining was
compared between the epithelial and stromal cells within tumors to
the nonmalignant epithelial and stromal cells from adjacent non-
malignant areas of the same specimen (Fig. 5 D–F). We found a
higher abundance of PRUNE2 in nonmalignant vs. malignant
areas. The inverse correlation between the native expression of
PRUNE2 and PCA3 mRNA in clinical samples again supports a
meaningful role for their coregulation and tumor suppression in
human prostate cancer.

RNA Editing of PCA3 and PRUNE2 in Human Prostate Cancer Patients.
We ultimately analyzed specimens obtained from index prostate
cancer patients through RNA capture followed by next-generation
sequencing and detected the presence of RNA editing (Fig. 6A),
which was subsequently confirmed by classic Sanger sequencing (Fig.
6B) of genomic and cDNA clones from the same index patients.
Bioinformatics demonstrated A > G/T > C alterations as the most
frequent substitutions and data indicative of A-to-I editing in both
PCA3 and PRUNE2 pre-mRNA strands, with no clear editing hot-
spots identified in human tumor samples (Fig. 6C). The editing maps
provided for all patients show a similar distribution of alterations for
both RNA strands, suggesting the interaction of the pre-mRNAs of
both PCA3 and PRUNE2 transcripts (Fig. 6D).

Discussion
lncRNAs have recently emerged as central regulators of gene ex-
pression in various biological settings, but only a few have known
functional roles in human prostate cancer (1, 4, 5, 21–24). Here we
present extensive data that are consistent with an antisense intronic
lncRNA (i.e., PCA3) that acts by an ADAR-mediated RNA editing
mechanism to down-regulate its target gene (i.e., PRUNE2). In this
study, we establish the functional attributes of PCA3 as a trans-
dominant negative oncogene that inactivates the unrecognized tu-
mor suppressor gene PRUNE2 at the RNA level through an
ADAR-mediated mechanism; such a remarkable regulatory unit
located in a single genetic locus appears unique to human mam-
malian cells. Notably, the genomic region encompassing PRUNE2

contains several alternatively spliced isoforms (25–28), one of which
is ∼3 kb shorter than the PRUNE2 full-length sequence identified
here (presumably the canonical gene) and is found in human adult
nerve cells (25), with a related mouse brain-specific isoform (26);
thus, other tissue-specific isoforms with different functions may
perhaps exist. Tumor suppressor genes have long been shown to
affect cancer growth in the classic two-hit hypothesis (29, 30). More
recently, it became clear that even partial inactivation of tumor
suppressors contribute critically to tumorigenesis (31), as illustrated
here. In sum, we show a striking function for the clinically well-
established PCA3 marker that will lead to translational applications
in human prostate cancer.

Materials and Methods
Details can be found in SI Materials and Methods. PCA3 and PRUNE2 sequence
analyses were evaluated from cDNA microarray with Oncomine (19) or RNA-seq
data from TCGA; expression was calculated by RNA-Seq by expectation maxi-
mization (RSEM) (32). Cell fractionation, nuclear RNA analysis, and immuno-
precipitation/immunoblot were performed as previously described (13). siRNA
and shRNA were custom-ordered against PCA3 or PRUNE2 (Table S1), re-
spectively, and transfected into tumor cells (Ambion). Custom-ordered siRNAs
against PCA3 (Tables S1 and S2) were transfected into tumor cells with the
NeoFX transfection reagent (Ambion). RNA FISH and confocal microscopy RNAs
were performed to detect PCA3 and PRUNE2. Cell culture and functional assays
(cell proliferation, viability, adhesion, migration, soft agar colony formation, and
tumor cell-derived spheroids) were performed. Tumor-bearing mouse models
are described elsewhere (11). All animal experimentation was reviewed and
approved by the Institutional Animal Care and Use Committee of the University
of Texas M.D. Anderson Cancer Center (MDACC). Experiments with human
samples were reviewed and approved by the Clinical Research Committee and
by the institutional review board (IRB) at MDACC. All human specimens were
obtained after the patients provided written informed consent under an IRB-
approved experimental protocol. Total RNA samples purified from tumors from
human prostate cancer patients were also obtained from the Tumor Bank at
A.C. Camargo Cancer Center after IRB approval.
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