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Purpose: Predict central 10° global and local visual field (VF) measurements from
macular optical coherence tomography (OCT) volume scans with deep learning (DL).

Methods: This study included 1121 OCT volume scans and 10-2 VFs from 289 eyes (257
patients). Macular scans were used to estimate 10-2 VF mean deviation (MD), threshold
sensitivities (TS), and total deviation (TD) values at 68 locations. A three-dimensional
(3D) convolutional neural network based on the 3DDenseNet121 architecturewas used
for prediction. We compared DL predictions to those from baseline linear models. We
carried out 10-fold stratified cross-validation to optimize generalizability. The perfor-
mance of the DL and baseline models was compared based on correlations between
ground truth and predicted VFmeasures andmean absolute error (MAE; ground truth –
predicted values).

Results: Average (SD) MD was −9.3 (7.7) dB. Average (SD) correlations between
predicted and ground truth MD and MD MAE were 0.74 (0.09) and 3.5 (0.4) dB, respec-
tively. EstimationaccuracydeterioratedwithworseningMD.Average (SD) Pearson corre-
lations between predicted and ground truth TS and MAEs for DL and baseline model
were 0.71 (0.05) and 0.52 (0.05) (P < 0.001) and 6.5 (0.6) and 7.5 (0.5) dB (P < 0.001),
respectively. For TD, correlation (SD) andMAE (SD) for DL and baselinemodels were 0.69
(0.02) and 0.48 (0.05) (P < 0.001) and 6.1 (0.5) and 7.8 (0.5) dB (P < 0.001), respectively.

Conclusions:MacularOCTvolumescans canbeused topredict global central VFparam-
eters with clinically relevant accuracy.

Translational Relevance: Macular OCT imaging may be used to confirm and supple-
ment central VF findings using deep learning.

Introduction

Glaucoma is a major cause of visual disability
and diminished quality of life and is the second
leading cause of irreversible blindness worldwide.1
The hallmark of glaucoma is progressive loss of

retinal ganglion cells (RGCs) and their axons and
supporting cells that project visual information to
the central nervous system, resulting in progressive
loss of visual function.2–4 Up to 50% of RGC
complement in humans is located in the macula.5,6
Macular imaging with optical coherence tomogra-
phy (OCT) has become the standard modality to
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assess macular ganglion cell health in glaucoma
patients.7–9

Moderately strong cross-sectional relationships
between central macular thickness measurements
and central functional measurements have been
found in glaucoma eyes.10–19 We have previously
reported a weak to fair longitudinal structure–function
(SF) relationship between macular OCT thickness
changes and changes in central 10° visual field (VF)
measurements.12,13,16 One reason for this might be
high variability of perimetric measurements in eyes
with moderate to advanced glaucoma.20–22 On the
other hand, macular OCT thickness measurements
have lower variability and high reproducibility.19,23
Central 10-2 VF testing is a more demanding test
compared to standard 24-2 VFs, as more locations (68
vs. 54) are examined; hence, patient performance may
be suboptimal, especially in the elderly.24,25

Artificial intelligence is being increasingly explored
in the field of ophthalmology, most frequently for
detection of diabetic retinopathy and in glaucoma
diagnostics.26–31 Convolutional neural networks
(CNNs) are frequently utilized as an efficient image
analysis approach capable of analyzing big image
databases.32,33 Recent studies using CNNs have
demonstrated potentially superior performance
compared to traditional statistical methods for the
detection of glaucoma.28,30 Deep learning (DL) has
also been implemented for the prediction of VF
measures using structural modalities in glaucoma.34–36
Prior SF models utilized topographical matching of
structural and functional data and considered anatom-
ical retinal ganglion cell displacement to further
enhance the SF relationship.16,18,37 However, given
the ability of CNNs to learn patterns within the input
data, providing this additional information to the DL
network may not be necessary. One study used circular
optic nerve head B-scans, without additional informa-
tion, for predicting 24-2 VF threshold sensitivities with
good predictive performance.38

The purpose of this study was to design and validate
a DL model to predict central 10° VF mean deviation
(MD), threshold sensitivity (TS), and total deviation
(TD) measurements at individual locations based on
macular OCT volume scans in a cohort of eyes with
a wide range of glaucoma severity.

Methods

Eyes from the Stein Eye Institute’s clinical and
research databases meeting the inclusion criteria were
enrolled. The current study was carried out in accor-

Figure 1. The macular volume scan from the SPECTRALIS OCT
consisting of 61 raw macular B-scans was used as the input for the
convolutional neural network. The 61 B-scans were concatenated
into a 3D image volume. The 3D image volumes were resized and
interpolated to 192 × 224 × 224 pixels (corresponding to depth,
height, and weight, respectively).

dance with the tenets of the Declaration of Helsinki
and the Health Insurance Portability and Account-
ability Act, and the protocols were approved by the
Human Research Protection Program at the Univer-
sity of California Los Angeles (NCT01742819) and the
Institutional Review Board (19-000953). The findings
were reported in accordance with the Strengthening the
Reporting of Observational Studies in Epidemiology
(STROBE) statement checklist. Patients had a diagno-
sis of glaucoma and were required to have had at least
one visit with good-quality macular OCT and reliable
central 10° VF performed within 6 months.

OCT Imaging

SPECTRALIS OCT (Heidelberg Engineering,
Heidelberg, Germany) acquires a 30° × 25° macular
volume scan aligned to the fovea–Bruch’s membrane
opening. The volume scans were required to have a
quality factor> 15 and nomajor artifacts or confound-
ing macular pathologies. The 61 B-scans from each
volume scan were used as input for the CNN (Fig. 1).
The macular volume scans were then assembled by
concatenating along the B-scan axis (Fig. 1). Left eyes
were flipped along vertical axis to match the right
eye format, removing directional variability. Three-
dimensional (3D) image volumes were resized and
interpolated to 192 × 224 × 224 pixels (correspond-
ing to number of scans, scan depth, and scan width,
respectively). We used the area method for interpola-
tion for both downsampling and upsampling during
the resizing process. We found on initial exploratory
analyses that there was an increase in validation
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performance when we interpolated the first dimension
(corresponding to number of scans) to 192.

Visual Field Measurements

The 10-2 testing pattern of the Humphrey Field
Analyzer (Carl Zeiss Meditec, Dublin, CA) evaluates
the central 10° of the VF. Threshold sensitivity is
measured at 68 locations within a 10° radius from
the fixation point. There is 2° spacing between the 68
locations in vertical and horizontal directions. The TD
represents the difference between measured sensitivity
at a given test location in an individual eye and the
sensitivity in the age-matched normative database. The
standard Swedish interactive thresholding algorithm
(SITA) was used for all of the VF tests. Tests with false-
positive rates > 15% were excluded. Main outcomes of
interest were the predicted VFMD and the TS and TD
values at 68 locations. We also considered flooring all
TD values below −10 dB to −10 dB and carried out a
repeat round of TD predictions and generated metrics
based on the floored data.12

Network Architecture

We implemented a novel CNN that utilizes 3D
OCT volume scans as data input to predict the VF
measurements. We processed input data with a 3D
CNN based on a 3D DenseNet121 with an encoder–
decoder architecture. In the encoder, salient 3D visual
features were generated from volume scans using 3D
convolutional blocks with dimensions of 1024 × 6 ×
7 × 7. In the decoder, VF measurements were gener-
ated from the visual features with fully connected
neural networks. For the decoder, unlike the standard
3D DenseNet121, rather than utilizing dimensionality
reduction of convolutional features based on channel
dimension using adaptive pooling to generate 1024 × 1
× 1 × 1 volumes, we performed dimensionality reduc-
tion using 1 × 1 convolutional layers to generate 5 ×
6 × 7 × 6 volumes; this was done to increase spatial
information from the downsampled input volume and
capture spatial relations in the VF measurements. A
fully connected layer was then applied to the features
to generate predicted VF measures (Supplementary
Fig. S1). We trained separate independent models for
estimating MD, TS, and unfloored and floored TD.

Model Training and Evaluation

The model was trained utilizing the mean squared
error (MSE) between predicted and ground truth
mean and total deviations as the main metric. Adam
Optimizer was used with a learning rate of 1e-4, batch

size of 4, and a drop-out rate of 0.25 on the final fully
connected layer. While training the CNN, random 90°
rotations were applied with a 20% probability with an
axis of rotation passing through the origin with direc-
tion (1, 0, 0) or, equivalently, a vector running length-
wise to the macular surface. Models were trained for
70 epochs, and the best checkpoint on the validation
set was saved. Five percent of the training set was used
for validation during training.

Model performance was assessed based on themean
absolute error (MAE) and Pearson correlation coeffi-
cient (r). These metrics were estimated between the
ground truth, measured MD, TS, and TD, and the
predicted values. We performed 10-fold stratified cross-
validation to ensure that each fold had a similar distri-
bution of ground truth VF values.39 The training and
validation splits did not share patients.

To generate model predictions, we performed
test-time augmentation with 90° rotations randomly
applied to the height andwidth dimensions of 3D input
volume scans.40 Additionally, we generated occlusion
maps for each VF location. To create occlusion maps,
we generated model predictions by sliding a mean-
occlusion volume (with full input depth) along the
height and width of the input volume and calculated
differences from model predictions without occlusion
to obtain prediction sensitivity at each location in
the two-dimensional (2D) plane. We also explored the
correlation of TS/TD at each location with the TS/TD
at the remaining 68 locations for both ground truth and
predicted TSs/TDs.

Two-Dimensional CNN Using Macular
Thickness Maps

Finally, we investigated how 2D thickness maps
would predict central VF measurements compared
to macular B-scans. For this purpose, we designed
a 2D CNN with a DenseNet backbone that used
the ganglion cell layer (GCL) thickness maps as the
input. We used the same 10-fold cross-validation with a
similar train/test split as the 3D CNN model using the
macular volume scans. This model was used to predict
the central VFMD and the TS and TD values for all 68
VF locations. We compared Pearson correlation coeffi-
cients and MAEs from the DL model using the GCL
thickness maps to the model using the macular volume
scans with a paired t-test.

Baseline Model

Wefit a linearmodel in log–log units (basemodel) in
order to predict the MD and the TD and TS values for
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each central VF location from ganglion cell/inner plexi-
form layer (GCIPL) thickness measurements. GCIPL
thickness measurements from the central 24° × 24°
region of macular volume scans (8 × 8 superpixel
matrices) were exported and summed to calculate
GCIPL thickness measurements in 64 superpixels.
The GCIPL thickness measurements at superpixels
were matched with VF locations after adjusting for
perifoveal RGC displacements, as proposed by Drasdo
et al.37

Y = a + b ∗ log (GCIPL) + error

where Y = TS or TD at each VF location, a = inter-
cept, and b = rates of sensitivity change per 1 log10
unit decrease or increase in the GCIPL.

For estimating the correlation between the GCIPL
and MD, we averaged the GCIPL thickness measure-
ments to a global value and applied the same formula
for estimating the correlation between GCIPL global
measurements and the central VF MD. A paired t-test
was used to compare the Pearson correlation coefficient
and MAE between the base model and the DL model.

Results

The dataset included 1121 pairs of macular OCT
and central 10° VF from 289 eyes (257 patients). Table 1
provides the clinical and demographic characteristics
of study eyes. The mean (SD) age of the study patients
was 68.3 (12.1) years. The average (SD)MDfor the 10-2
and 24-2VFswere−9.3 (7.7) and−9.5 (8.4) dB, respec-
tively. The median (interquartile range [IQR]) number
of testing sessions was 1 (1–8). The proportions of eyes
with mild (24-2 MD > –6 dB), moderate (MD between
−12 and −6 dB) and severe (MD < –12dB) glaucoma
were 44%, 17%, and 39%, respectively.

Table 2 compares performance of the final DL and
the base models (BMs). The mean (SD) correlations

Table 1. Demographic and Clinical Characteristics of
the Study Eyes (257 Patients, 289 Eyes)

Characteristic

Age (y), mean ± SD 68.3 ± 12.1
Gender, female/male, n (%) 173/116 (60/40)
Race, n (%)

Caucasian 144 (50)
African American 47 (16)
Asian 42 (15)
Hispanic 14 (5)
Unknown 47 (14)

Glaucoma severity, n (%)
Mild 127 (44)
Moderate 49 (17)
Severe 113 (39)

Number of visits, median (IQR) 1 (1–8)
10-2 VF MD

Mean ± SD (dB) −9.3 ± 7.7
Range −31.4 to 1.2

24-2 VF MD
Mean ± SD (dB) −9.5 ± 8.4
Range −31.6 to 2.15

Baseline GCIPL thickness (μm),
mean ± SD

47.6 ± 6.7

and MAEs between the predicted and ground truth
MD for the DL and base models were 0.74 (0.09)
and 0.42 (0.17) and 3.5 (0.4) and 4.6 (0.6) dB, respec-
tively. The mean (SD) correlations and MAEs between
the predicted and ground truth TS were 0.71 (0.05)
and 6.5 (0.6) dB for the DL algorithm, respectively,
and were significantly better than those of the BM
(r = 0.52 [0.05], P < 0.001; MAE = 7.5 [0.5] dB,
P < 0.001). The mean (SD) correlations and MAEs
between the predicted and ground truth unfloored TD
values for the DL and BS models were 0.69 (0.02) and
0.48 (0.05) (P < 0.001) and 6.1 (0.5) and 7.8 (0.5) dB

Table 2. Performance of the DL and Baseline Models for Prediction of Central VF MD and Unfloored and Floored
TD and Threshold Sensitivity Measurements FromMacular OCT Volume Scans

Correlation Coefficient (SD) Mean Absolute Error (SD), dB

Deep
Learning
Model

Baseline
Model P

Deep
Learning
Model

Baseline
Model P

Mean deviation 0.74 (0.09) 0.42 (0.17) <0.001 3.59 (0.41) 4.68 (0.69) <0.001
Threshold sensitivitiesa 0.71 (0.05) 0.52 (0.05) <0.001 6.53 (0.62) 7.57 (0.50) <0.001
Unfloored TD 0.69 (0.02) 0.48 (0.05) <0.001 6.18 (0.52) 7.82 (0.51) <0.001
Floored TD 0.68 (0.03) 0.54 (0.06) <0.001 2.29 (0.18) 2.77 (0.19) 0.001

For floored measurements, TD values below −10 dB were converted to −10 dB.
aOnly unfloored values.
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Figure 2. Correlation between the predicted and observed central
VFMDbasedon thedeep learning algorithmdeveloped in the study.

(P < 0.001), respectively. Figure 2 displays the scatter-
plot of predicted against ground truth MD. The preci-

sion of the prediction varied as a function of glaucoma
severity with less accurate predictions as the MD value
diminished. Figure 3 provides boxplots for the ground
truth and predicted TD and TS values at individual test
locations for the DL and baseline models. For the DL
model, the median ground truth and predicted values
for the TD and TS values followed the same trend
for the range of TD values. For very low (negative)
actual TD values and low TS values, the IQRs for the
predicted TD and TS tended to be low. In contrast,
for the baseline model, the predictions were flat (floor
values) for lower values of TD and TS.

Although there was no significant change in corre-
lation coefficients when TD values were floored, the
MAEs of VF predictions improved compared to
unfloored results (Table 2). The correlations (SD)
between predicted and ground truth TDs for the DL
and base models were 0.68 (0.03) and 0.54 (0.06),
respectively (P< 0.001), and theMAEs for the DL and
base models were 2.2 (0.1) dB and 2.7 (0.1) dB, respec-
tively (P = 0.001).

Figure 4 provides the occlusion maps highlighting
regions on the macular OCT map where the model is
applying the most attention for prediction of TS. The

Figure 3. Boxplots demonstrate the distribution of predicted total deviation (TD) and threshold sensitivity (TS) values against ground truth
for the deep learning and the baseline models. When the deep learning model was used, for most of the range of the ground truth values,
the variability of predicted TS was relatively constant. On the other hand, the predicted TD variance (the IQR) tended to be lower on both
ends of the TD range. For the baseline model, the predictions tend to have a floor distribution for lower TD and TS values.
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Figure 4. The occlusion maps generated for individual VF test locations. To create the occlusion maps, we generated model predictions
by sliding an occlusion volume (with full input depth) along the height and width of the input volume and calculated the differences from
the model predictions without occlusion. We then overlaid this on the infrared image of the OCT volume scan area. On the heatmap, the
green color corresponds to zero contribution to the prediction, the blue color corresponds to a negative contribution to the prediction, and
the red color corresponds to a positive contribution. Both blue and red regions are important for the prediction, but the green regions are
not relevant. The regions with high prediction contribution respected the horizontal meridian and demonstrate correct SFmapping. The VF
maps are in right-eye format.

regions with high prediction performance respected
the horizontal meridian and demonstrated correct SF
mapping in the two representative cases provided.

Figure 5 displays a compound matrix for the corre-
lation of each of the 68 10-2 VF locations with
the other 67 locations for both ground truth TD
and TS (Figs. 5A, 5C) and predicted TD and TS
(Figs. 5B, 5D) from the DL model. Two findings are
notable: First, the correlation of each test location with
the remaining locations is a function of the distance
between the location of interest and other locations,
and, second, between-location correlations respect the
temporal horizontal meridian.

Supplementary Table S1 provides the prediction
results of central VF measurements from 2D GCL
thickness maps. For the MD, TS values, and unfloored
and floored TD values, Pearson correlation coefficients
were higher and the MAEs were lower for the DL
model using the macular volume scans as the input
compared to the DL model using the GCL thickness
maps.

Discussion

We designed a CNNwith 10-fold cross-validation to
investigate the ability of macular OCT volume scans to
predict global and pointwise central VF measures in a
cohort of eyes with a wide range of glaucoma severity.
We found strong correlations between the ground truth

and predicted VF parameters, ranging from 0.74 for
MD to 0.71 and 0.69 on average for TS and TD values,
respectively. Although estimatedMAEs between actual
and predicted pointwise TS and TD values were fairly
high (6.5 and 6.1 dB, respectively, on average), those
for the MD (3.5 dB) and floored TD (2.2 dB) were
lower and more clinically relevant. Performance of the
DL model for prediction of TS and TD values from
macular volume scans was significantly better than a
linear log–log model utilizing thickness measurements,
a frequently used model for linking structural and
functional measurements.

Our study is distinct from two points of view
compared to prior studies implementing DL for the
prediction of central VF measures from macular
structural measurements. The first point is that
we performed 10-fold cross-validation on the entire
dataset in contrast to the frequently used approach of
applying the algorithm to the testing subset only once;
this substantially increased the stability and validity
of the results and provided a more realistic perspec-
tive on how this algorithm will perform on other
datasets.39 Of the eyes in this study, 56% had moderate
to severe glaucoma. Because we trained the DL model
on the entire dataset with 10-fold cross-validation, the
information from all of the eyes with more advanced
glaucoma was used to make predictions. Therefore, the
performance of our model would potentially be gener-
alizable regardless of glaucoma severity. The second
point is that our approach does not require segmen-
tation of macular volume scans. This task can be
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Figure 5. The correlationmatrix visualizes the correlation of the ground truth (A) and predicted (B) total deviation (TD) values and ground
truth (C) and predicted (D) threshold sensitivity at each 10-2 VF location with the other 67 test locations across the VFs. The correlation
diminishes with increasing distance between the location of interest and the other VF locations across the VF. The correlations fall to be very
low levelswhen the location of interest belong to the opposite hemifield except in the nasal region. This is consistentwith the independence
of the retinal ganglion cell damage across the temporal raphe.

challenging in eyes with suboptimal image quality or
advanced glaucoma and often introduces significant
measurement noise.

The implications of the current study are manyfold.
Timely detection or confirmation of glaucoma progres-
sion is crucial to prevent further loss of vision;
conversely, if disease stability is established based
on structural measurements, functional testing may
be needed less frequently, especially in eyes with
moderate to advanced glaucoma. Structural measure-
ments may also be weighted more in eyes with
high long-term VF fluctuation.21,25 Our algorithms
will be helpful in establishing the functional signifi-
cance of macular thickness changes. Similarly, clini-
cians may have to rely solely on structural tests
for people unable to perform reliable VF testing.
Because OCT imaging is faster, more efficient, and less
costly than perimetry, reducing VF testing frequency

may lead to significant savings in clinic time and
resources.

Our study utilized raw macular OCT volume scans
to predict global and pointwise central VF measures;
the performance of this model was significantly better
than a base model consisting of an exponential fit
between the GCIPL thickness measurements and VF
measurements. In order to further demonstrate the
effectiveness of the macular volume scans, we trained
a separate CNN with GCL thickness maps and
compared the results with those from the volume
scans. For all of the central VF measures, the corre-
lation coefficients were significantly higher and the
MAEs were significantly lower for the DL model using
the volume scans. We previously demonstrated that
macular B-scans can predict the future course of struc-
tural damage in the macula using generative adver-
sarial DL networks.41 Prior studies have reported that
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volumetric optic nerve head and macular OCT scans
performed well for predicting global 24-2 VF param-
eters.38,42,43 Kihara et al.38 used infrared images and
circular optic nerve B-scans for pointwise prediction of
24-2 VFs. They found that this multimodal approach
had higher performance than using either modality
individually. Yu and colleagues44 investigated macular
and optic nerve head volume scans for the prediction
of 24-2 MDs; they reported a correlation coefficient
of 0.87 between actual and predicted MD. Median
MD was −3.4 dB in their study compared to −9.5 dB
in our study. With advancing glaucoma, VF predic-
tion accuracy diminishes; expansion of the data cloud
around the line of best fit in eyes with lower MD
in Figure 2 is consistent with worse MD predictions.
The wider range of MD or TS and TD values to be
predicted in our study likely made overall prediction
more challenging.

Many studies evaluating SF relationships consid-
ered RGC displacement from the fovea as proposed by
Drasdo et al.16,18,19,37,45 Raza and coauthors16 found
improvements in SF correlations after applying this
displacement correction. Other anatomic variations
could affect SF relationships. Bedggood et al.46,47 and
others48,49 investigated variations in horizontal raphe
position. Variations in fovea–optic disc distance have
been proposed as a potentially important factor.50 We
hypothesized that the DL model would be able to
learn the influence of such anatomical variations from
macular volume scans; therefore, this information was
not separately included as prior information for train-
ing. The patterns observed on the occlusion maps
demonstrated that the model was utilizing informa-
tion from the expected regions of the macular volume
scans to predict pointwise VF measures (Fig. 4). These
findings suggest that a well-trained CNN has the
ability to learn anatomical features of the macula
from macular volume scans and, more importantly,
can comprehend the correspondence of central VF
locations with matching regions of the macula.

Although prediction results for floored TDs seemed
to indicate that the performance of the DL model
improved when TD values were fixed at −10 dB, this
might be a function of decreased dynamic range for
prediction, as the correlation between the predicted
and actual TD values did not increase. For MD
values below −10 dB, the model had lower predic-
tion accuracy (Fig. 2), likely because macular thick-
ness measurements do not show significant additional
thinning when the corresponding VF locations have
reached TD values of −8 to−10 dB.12,16,51–53 An inter-
esting finding of our study was that, based on Figure 3,
the IQR of the predicted TD was lower for more very
negative (severe) ground truth TD values. This suggests

the potential utility of the DL model in predicting TD
for locations demonstrating severe glaucoma damage.

To verify the prediction ability of the model,
we explored the correlation between the ground
truth and predicted TS and TDs at individual
central VF locations with all other 67 test locations
(Fig. 5). Figure 5 illustrates that actual and predicted
TS and TD values display very high correlations
with adjacent locations; correlations decreased as the
distance between test locations of interest increased.
The locations immediately below or above the tempo-
ral horizontal meridian tended to be independent,
consistent with the fact that glaucomatous damage
respects the temporal horizontal raphe.46,54 This
finding provides additional evidence that our DL
model properly learned anatomical correspondence
between VF locations and macular OCT volume scans.

External validation of our model on a different
dataset of glaucoma eyes is needed before it can be
implemented. Given the 10-fold cross-validation on the
entire dataset, we expect our algorithm to perform
well with other datasets. Also, as only raw macular
volume scans were used as input for the DL algorithm,
it will be easily adaptable to other OCT devices. As the
broken-stick model is most useful for exploring local-
ized SF relationships, we did not carry out this model
for predicting the 10-2 MDs. SF models using global
measures do not show ameasurement floor at all or not
until the very late stages of glaucoma. In the baseline
model, TS and TD were the independent variables; the
model was then inverted to provide predicted TS and
TD.

In conclusion, our proposed DL model with 10-
fold cross-validation of the entire dataset predicted the
central VF MD from macular OCT volume scans with
clinically relevant performance and potentially high
generalizability. Accurate prediction of local TS and
TD values is more challenging for a variety of reasons.
When the findings are validated in external datasets,
the resulting algorithms may be used for confirming or
predicting functional damage or its progression. The
proposed DL model provides global estimates of the
central field of vision based on raw, unaltered macular
OCT B-scans with clinically relevant accuracy. It can
potentially be used to confirm or predict VF progres-
sion in patients with glaucoma when the algorithm has
been validated.
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