
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return

Permalink

https://escholarship.org/uc/item/7wp9q0xs

Authors

Hsuan Tsai, Chia
Peng, Ren
Elyasi, Fatemeh
et al.

Publication Date

2023-12-13

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7wp9q0xs
https://escholarship.org/uc/item/7wp9q0xs#author
https://escholarship.org
http://www.cdlib.org/

Finding Your Way Back: Comparing Path Odometry

Algorithms for Assisted Return

Chia Hsuan Tsai

Dept. of Computer Science &

Engineering

University of California

Santa Cruz

ctsai24@ucsc.edu

Peng Ren

Dept. of Computer Science &

Engineering

University of California

Santa Cruz

pren1@ucsc.edu

Fatemeh Elyasi

Dept. of Computer Science &

Engineering

University of California

Santa Cruz

felyasi@ucsc.edu

Roberto Manduchi

Dept. of Computer Science &

Engineering

University of California

Santa Cruz

manduchi@soe.ucsc.edu

Abstract— We present a comparative analysis of inertial-based

odometry algorithms for the purpose of assisted return. An

assisted return system facilitates backtracking of a path previously

taken, and can be particularly useful for blind pedestrians. We

present a new algorithm for path matching, and test it in simulated

assisted return tasks with data from WeAllWalk, the only existing

data set with inertial data recorded from blind walkers. We

consider two odometry systems, one based on deep learning

(RoNIN), and the second based on robust turn detection and step

counting. Our results show that the best path matching results are

obtained using the turns/steps odometry system.

Keywords - Wayfinding, Spatial accessibility, Turn detection,

Step counting, RoNIN, Dynamic programming

I. INTRODUCTION

Wayfinding in unfamiliar places can be very challenging for

people who are blind, and a number of technical solutions for

supported wayfinding have been proposed in the literature over

the past few years. In this contribution, we are concerned with

assisted return, which can be seen as a particular form of

wayfinding. Assisted return means providing support to a blind

user who, after walking along a certain path, is trying to trace

their way back to the starting point. Backtracking is a critical

task that is required in multiple situations. For example, a blind

person may be led by a sighted guide to a certain location for a

meeting (e.g., an office in a building), only to realize that

assistance is not available when needing to return to the starting

point (e.g. the entrance door to the building). In other situations,

a blind traveler may attempt to reach a certain location by

following verbal directions. If unsuccessful, this individual

would need to walk back to the starting point – potentially at the

risk of getting lost in the building until sighted assistance is

available. A system that could provide direction as needed to

facilitate returning to the starting point may increase safety and

confidence of blind pedestrians visiting new places.

It is important to note that, unlike standard wayfinding

systems, assisted return does not require access to a map of the

building being visited. This is an important advantage, given the

current scarcity of open access indoor maps. In fact, mechanisms

similar to assisted return have been proposed for other

applications, e.g. to let users make available specific paths in a

building for others to follow [1] [2]. Of course, if a map is

available, the system could certainly leverage this information.

As discussed in [3], an assisted return mechanism (typically

embedded in the user’s smartphone) must support three tasks:

(1) tracking the traveler during their “way–in” (walking from a

starting point to a destination), while building a representation

of the path traversed; (2) tracking the traveler during return, by

matching the current sub-path with the recorded way–in path

(where the way-in path is time-reversed); (3) providing

directions to the user during return by means of an appropriate

user interface (including providing an overall description of the

path). In this work we concentrate on task (2). We consider two

different path reconstruction algorithms (turns/steps

representation vs. full odometry via machine learning) for

tracking, and propose a new mechanism for ascertaining, at each

time during return, where the user is in reference to path

traversed during way-in. Due to the restrictions imposed by the

ongoing COVID-19 pandemic, we could not test our system

“live” with blind walkers. Instead, we devised a strategy for

simulated assisted return using real data from WeAllWalk [4],

the only existing set of inertial data collected from blind walkers.

Specifically, we consider the data sequences for two different

blind participants walking along the same route. We then

progressively match the path from the first walker with the path

from the second walker, pretending that the former were a time-

reversed path during way-in. This simulates a situation with the

same participant traversing the way-in path then returning to the

starting point. We propose a metric for assessing the quality of

path matching, and compare our proposed path reconstruction

algorithms against this metric.

This article is organized as follows. Basic concepts and

related work are presented in Sec. II. Our mechanism for path

matching, is described in Sec. III. Experiments on WeAllWalk

data are presented in Sec. IV. Sec. V has the conclusions.

II. PRELIMINARIES AND RELATED WORK

Inertial-based odometry. In this work we only use data from

the inertial sensors in a smartphone (iPhone 6). Inertial-based

odometry [5] [6] requires no external infrastructure (such as

Bluetooth Low Energy beacons [7]), and no prior calibration

(e.g., Wi-Fi fingerprinting). Compared to visual-based odometry

[8], inertial systems do not assume use of a camera with

unoccluded visibility of the environment. The user may simply

keep their smartphone in their pocket, and receive information

via Bluetooth earphones or bonephones.

Pedestrian Dead Reckoning (PDR). One of the simplest

odometry techniques is based on step counting while

determining the user’s orientation using data from the

accelerometers and the gyros in the phone [9]. Note that all

modern smartphone APIs produce the attitude (3-D rotation) of

the phone with respect to an arbitrary but fixed reference system

(as computed by sensor fusion from accelerometer and gyro data

[10]). Since this data involves integration of possibly noisy and

biased data, drift typically accumulates over time.

In buildings whose structure is well represented by a network

of corridors, a path can normally be represented as a sequence

of straight segments and turns, with discrete turning angles

(typically, multiples of 90º or 45º). We will call this a turns/steps

representation. The length of a straight segment can be

expressed using units such as meters or feet, or as an

approximate number of steps (where this latter unit can be

preferable for some blind users.) This representation is

particularly useful when describing a path verbally, which is an

important functionality of a safe return system. For example, a

path could be expressed as: “Walk for 50 steps, turn left, walk

for 25 more steps, turn right, then your destination is 40 steps

away.” Other types of contextual information in terms of

perceivable landmarks (e.g., “take the second corridor to the

left”, or “the destination is the fifth door to the right) could also

be useful, but cannot be detected using inertial sensors, and

would normally require access to a map. Representing paths as

sequences of discrete angle turns and segment lengths

simplifies, to some extent, the job of odometry computation. In

practice, though, robust turn detection can be challenging. False

positives could be generated, for example, when the walker

stops and turns around to get their bearings. In addition, the

assumption of a smartphone in a fixed orientation with respect

to the walker’s body fails as soon as one repositions the phone

(e.g. after picking up a call). Thus, robust turn detection and path

length measurements are called for even in simplified topologies

such as networks of corridors at discrete angles.

We describe our algorithms for PDR elsewhere [11]. In brief,

we robustly detect 45o or 90o turns using a two-stage system with

a “straight-walking” detector and a Mixture Kalman Filter

(MKF) for tracking orientation drift. Steps are detected using an

LSTM recurrent network, similar to [12].

Learning-Based Odometry. Several odometry algorithms

based on deep neural networks have been proposed in recent

years. In particular, RoNIN [13] was shown to outperform

comparable systems in challenging data sets. RoNIN processes

inertial data using one of several possible deep network

architectures, and produces motion vectors defined in reference

to a fixed world frame. By integrating these motion vectors, one

can easily reconstruct the path taken by the walker. A

1 https://github.com/Sachini/ronin

remarkable feature of RoNIN is that, by decoupling the phone’s

orientation from the estimated user velocity, it works seamlessly

even if the phone is repositioned on the user’s body while

walking. We used the open source implementation of RoNIN1.

Assisted Return. The concept of assisted return for blind

walkers was introduced by Flores and Manduchi [3], who

experimented with a turn/segment representation of indoor

environments in a study with six blind participants. The same

technology used in an assisted return system could be used to

help a person follow a path previously taken by another

individual. An example is given by Clew, an augmented reality

app designed for visually impaired users [1]. Clew allows one to

record a route, then load it and receive directions in accessible

format when the same person (or someone else) wants to

traverse the same route. Localization information is obtained via

visual odometry using Apple’s ARKit. A similar concept is

implemented by the Path Guide Android app by Microsoft,

which uses magnetic signatures and inertial data for localization

[2].

WeAllWalk. WeAllWalk [4] is an annotated data set with

inertial and magnetic data collected from blind walkers. Ten

participants walked on a number of indoor routes. Seven

participants used a long cane as a mobility tool; one used a dog

guide; and two alternated use of a long cane and a dog guide.

Each walker carried two iPhone 6s, and was equipped with

inertial sensors tied at each ankle, which were used to produce

ground truth measurements of each heel strike. The paths

traversed by the walkers were divided into “segments”. The time

at which each walker traversed the boundary between two

segments was recorded, which provides a discrete set of

localization data points.

III. PATH MATCHING

An assisted return system is designed for situations in which

a blind walker has traversed a certain way-in route (possibly with

the aid of a sighted companion), then attempts to traverse the

same route in reverse (return). The system can provide

directions such as the distance to the next turn and whether to

turn left or right, and can inform the user when they are off-path.

We assume that the system does not have access to a map of the

place, which means that it can only operate by matching any

spatial information acquired during way-in with that being

acquired during return. A similar mechanism can be used to help

a blind person follow a route that was traversed previously by

someone else (in which case the way-in path needs not be

reversed).

In theory, if odometry can be accurately recovered, one

could simply match the current position estimated during return

with the closest position in the way-in path. Unfortunately, large

errors can be expected when relying only on inertial sensors,

which calls for a more sophisticated strategy. Similarly to [14],

we cast the problem as one of sub-sequence alignment, which

seeks the best matching of the time sequence of measurements

up to the current time during return, with an initial sequence of

measurements during way-in. This matching can be performed

based on any available spatial (or non-spatial, e.g. magnetic

signatures as in [14]) information, and can contain deletions.

This problem can be expressed as a minimum cost route task

over a properly defined graph, which also easily allows for

enforcement of a spatial continuity prior (i.e., solutions with the

user location in subsequent times jumping between two distant

locations are unlikely). We formalize this concept in the

following.

Let {𝑡𝑖
𝑖𝑛} and {𝑡𝑗

𝑟𝑒𝑡} be the sets of time instants associated

with (reversed) way-in and return, respectively. (Note that the

time instants {𝑡𝑖
𝑖𝑛} are actually ordered backwards with respect

to the way they were collected, to account for the fact that we

are matching the return path against the reversed way-in path.)

For example, these sequences could correspond to the time

points at which inertial data was sampled, or they could be other

discrete events such as measured heel strike times. Our goal is

to find an ordered, typically incomplete matching of {𝑡𝑗
𝑟𝑒𝑡} with

{𝑡𝑖
𝑖𝑛}, such that the location of the walker at a certain return time

instant is similar to the location of the walker in the associated

way-in time instant. We build a graph with nodes {𝑛𝑖,𝑗}, where

each node indicates the hypothesis that the walker at time 𝑡𝑖
𝑖𝑛

during way-in found themselves in the same position as the

walker at time 𝑡𝑗
𝑟𝑒𝑡 during return. Nodes are connected by

directed edges such that node 𝑛𝑖,𝑗 is connected to nodes 𝑛𝑖+1,𝑗,

𝑛𝑖,𝑗+1, and 𝑛𝑖+1,𝑗+1. A path in the graph is thus made of nodes

with monotonically non-decreasing time index in both way-in

and return. Consecutive nodes in a path with a repeated index

(e.g., 𝑛𝑖,𝑗 → 𝑛𝑖+1,𝑗) indicate that two time instants (in this

example, during way-in) are matched to the same time instant in

the other path. “Conflating” multiple time instants in one

sequence allows for matching sequences with different

velocities (in the example, the walker may have walked slower

during way-in). We associate a cost 𝐶𝑐𝑜𝑛 to edges connecting

𝑛𝑖,𝑗 with 𝑛𝑖,𝑗+1 or 𝑛𝑖+1,𝑗. The cost of a path in this graph is the

sum of node and edge costs. The cost of each node should

represent the likelihood that, given the measured data, the

walker was in the same location (at way-in and return) at the

time instants associated with that node.

We will consider two odometry algorithms, the output of

which is used in properly defined node and edge costs. The first

algorithm is RoNIN [13], briefly described earlier in the

learning-based category. RoNIN produces (𝑋(𝑡), 𝑌(𝑡))

locations, which can be used directly to define node costs as the

Euclidean difference between the locations measured at 𝑡𝑖
𝑖𝑛 and

at 𝑡𝑗
𝑟𝑒𝑡. Note that this assumes that the reference systems used

to define the way-in and return path have been properly aligned.

The second odometry algorithm considered is based on

turns/steps representation (i.e., the path traversed is represented

as a sequence of straight segments separated by turns that are

multiple of 45o or 90o turns, along with the number of steps

between turns.) We discuss our definition of node and edge costs

for this representation in the following.

A. Steps Cost

Foot step (heel strike) information can be conveniently

leveraged for path matching. For example, one could try to

match paths step-by-step, allowing for a few steps to be skipped

in either path to account for different stride lengths. This can be

implemented by assigning appropriate node costs. Specifically,

any node 𝑛𝑖,𝑗 in the graph associated with a step detected in one

path (i.e., a heel strike was detected during way-in at 𝑡𝑖
𝑖𝑛 or

during return at 𝑡𝑗
𝑟𝑒𝑡) but not in the other path, is assigned a

“unmatched step” cost 𝐶𝑢𝑠. This mechanism assigns low cost to

paths in the graph that match way-in steps with return steps.

Clearly, steps alone cannot be used for reliably path matching,

as the system would simply match steps to steps in an orderly

fashion, with no means to control whether matching steps were

detected at similar locations. However, it can be a powerful cue

complementing other measurements. Note that walkers may use

different strides during way-in and return. This situation, which

was observed in [3], may occur when, for example, the walker

is led by a sighted guide during way-in, and needs to find their

way by themselves during return. Hence, the number of steps

when traversing a segment may change during way-in and

return.

B. Turns Cost

Orientation information can be very useful for path

matching. Specifically, we assume that the walker was facing a

similar direction at the same location during (reversed) way-in

and return. In order to measure the walker’s orientation at each

point, we use the two-stage turn-segment mechanism described

earlier, which is well suited to corridor networks. A simple

approach to enforcing consistent orientation would be to assign

node costs that encourage matching equal angle turns during

way-in and return. For example, similarly to the mechanism

employed for step matching, any node 𝑛𝑖,𝑗 associated with a turn

detected in one path but not in the other, or with turns detected

in both paths but by different turning angles, could be assigned

a certain “unmatched turn” cost. This simple approach, though,

is liable to fail in common situations with short sequences of

incorrectly detected turns. For example, suppose that during

way-in the walker stopped for a moment and turned their body

to the left for a short time (for example to return the greetings of

a passer-by) then starts to walk again. In this case, the system

may incorrectly detect a left turn, followed after a short time by

a right turn. During return, the walker proceeds without

interruptions along the same path. Correctly matching the way-

in and return paths comes at the cost of two unmatched turns.

The risk is that one of the two spurious way-in turns may get

(incorrectly) matched to some other distant (correct) turn during

return (thus resulting in a lower unmatched turn cost),

potentially creating a gross path mismatch.

This example suggests that an unmatched turn should be

given a lower penalty when preceded shortly by a turn in the

opposite direction, as in the example above. However, this

cannot be implemented by simply assigning costs to edges or

nodes in our original graph. Instead, we propose a mechanism

that achieves the desired result, at the cost of increasing the

number of nodes and edges in the graph. The idea is to consider

the orientation of the walker at each time, something that can be

obtained by accumulating detected turns. We describe an

algorithm that embodies this notion in the following.

Let 𝐼𝑖𝑛 = {𝑖̂} be the set of indices such that a turn by angle

𝜃𝑖̂
𝑖𝑛 was detected at time 𝑡𝑖̂

𝑖𝑛 during (reversed) way-in. (Similar

concepts are defined for the return path, with obvious symbol

modifications.) Assuming that the walker had orientation of 0°

at start time, and that all turns were correctly detected, the

orientation of the walker at time 𝑡𝑖
𝑖𝑛 will be:

𝑂𝑖𝑛(𝑡𝑖
𝑖𝑛) = (∑ 𝜃𝑖̂

𝑖𝑛
𝑖̂∈𝐼𝑖𝑛,𝑖̂≤𝑖) mod 2𝜋 (1)

Note that, since we assumed that turn angles only take

discrete values 𝑘 ⋅ 2𝜋/𝑁 (e.g., 𝑁 = 4 or 8), the walker’s

orientation 𝑂 takes values in the same discrete set (due to 2𝜋

periodicity). One could assign a cost to each node 𝑛𝑖,𝑗 that is a

function of the orientation discrepancy 𝑂𝑖𝑛(𝑡𝑖
𝑖𝑛) − 𝑂𝑟𝑒𝑡(𝑡𝑗

𝑟𝑒𝑡).

However, this node cost by itself would not account for potential

false detections. Suppose, for example, that we want to test the

hypothesis that a turn detected at time 𝑡𝑖̂
𝑖𝑛 was in fact a false

positive. Testing this hypothesis would require evaluating how

the orientation discrepancy cost would change if this detected

turn were suppressed. However, suppressing a turn affects all

orientations computed for times 𝑡𝑖
𝑖𝑛 > 𝑡𝑖̂

𝑖𝑛 . Testing the same

hypothesis for all detected turns would appear to result in an

exponential growth of possible user orientations at each time.

Thankfully, this is not the case, due to the fact that orientations

belong to a finite discrete set. We implement this concept by

means of a graph augmentation strategy as discussed next.

Each node 𝑛𝑖,𝑗 in our original graph is replaced with a set of

𝑁 nodes 𝑛𝑖,𝑗
𝑤 , where the superscript 𝑤 (taking values between 0

and 𝑁 − 1) indicates the hypothesis that the orientation

discrepancy between way-in time 𝑡𝑖
𝑖𝑛 and return time 𝑡𝑗

𝑟𝑒𝑡 (that

is, 𝑂𝑖𝑛(𝑡𝑖
𝑖𝑛) − 𝑂𝑟𝑒𝑡(𝑡𝑗

𝑟𝑒𝑡)) is equal to 𝑤 ⋅ 2𝜋/𝑁 . Nodes 𝑛𝑖,𝑗
𝑤

with 𝑤 ≠ 0 are assigned a mis-orientation cost 𝐶𝑚𝑜 . Nodes

𝑛𝑖,𝑗
𝑤 that are not associated with detected turns (i.e., 𝑖 ∉ 𝐼𝑖𝑛, 𝑗 ∉

𝐼𝑟𝑒𝑡) are linked with zero-cost directed edges to nodes 𝑛𝑖+1,𝑗
𝑤 ,

𝑛𝑖,𝑗+1
𝑤 , and 𝑛𝑖+1,𝑗+1

𝑤 . If a turn by angle 𝜃𝑖
𝑖𝑛 = 𝑘 ⋅ 2𝜋/𝑁 was

detected at time 𝑡𝑖
𝑖𝑛 , node 𝑛𝑖,𝑗

𝑤 is connected to three sets of

nodes:

• 𝑛𝑖+1,𝑗
(𝑤+𝑘)𝑚𝑜𝑑 𝑁

, 𝑛𝑖+1,𝑗+1
(𝑤+𝑘)𝑚𝑜𝑑 𝑁

• 𝑛𝑖+1,𝑗
𝑤 , 𝑛𝑖+1,𝑗+1

𝑤

• 𝑛𝑖,𝑗+1
𝑤

The first two connections are made under the assumption that

the turn was correctly detected, which triggers an update of the

way-in walker orientation (from 𝑤 ⋅ 2𝜋/𝑁 to (𝑤 + 𝑘) ⋅ 2 𝜋/
𝑁 𝑚𝑜𝑑 2𝜋). The second set of connections represent the

possibility that the turn was incorrectly detected, meaning that

the way-in orientation should not be changed. The directed

edges for these connections are assigned a “turn suppression”

cost 𝐶𝑡𝑠 . The third connection (from 𝑛𝑖,𝑗
𝑤 to 𝑛𝑖,𝑗+1

𝑤) indicates

that both time instant 𝑡𝑗
𝑟𝑒𝑡 and 𝑡𝑗+1

𝑟𝑒𝑡 are matched to 𝑡𝑖
𝑖𝑛 . The

decision of whether to accept this turn is postponed till node to

𝑛𝑖+1,𝑗
𝑤 or 𝑛𝑖+1,𝑗+1

𝑤 , and therefore the turn suppression cost 𝐶𝑡𝑠 is

not applied here. Note that 𝑛𝑖,𝑗
𝑤 is not connected to 𝑛𝑖,𝑗+1

(𝑤+𝑘)𝑚𝑜𝑑 𝑁

as this could cause an incorrect extra detected turn (e.g. in the

case of a path from 𝑛𝑖,𝑗
𝑤 to 𝑛𝑖,𝑗+1

(𝑤+𝑘)𝑚𝑜𝑑 𝑁 to 𝑛𝑖+1,𝑗+1
(𝑤+𝑘+𝑘)𝑚𝑜𝑑 𝑁

).

Similar considerations apply for nodes associated with a turn

detected during return. For nodes associated with turns detected

both during way-in and return, we need to consider two

additional sets of edges, representing the possibility that any

such detection may or may not be correct. The cost of a path in

this graph is thus a function of both the discrepancy in

orientation between way-in and return, and of the number of

turns that need to be suppressed to minimize this discrepancy. In

the example given earlier of a sequence of two spurious turns in

opposite orientations, a possible low-cost path would accept

both turns, while paying a total penalty for orientation

discrepancy equal to 𝑛 ⋅ 𝐶𝑚𝑜, where 𝑛 is the number of nodes in

the path between the two spurious turns. Another possible path

would suppress both turns, thus paying a penalty equal to 2 ⋅ 𝐶𝑡𝑠.

Both solutions are acceptable. Note that the risk of incorrectly

matching one of these two spurious turns to a distant (correct)

turn during return, while suppressing the other spurious turn, is

small, due to the associated accumulated mis-orientation cost.

IV. EXPERIMENTS

In order to test our path matching algorithm in realistic

assisted return situations, we considered the inertial data

collected in the WeAllWalk trials. We simulated an assisted

return situation where the first walker traversed the whole path

first, then the second walker traverses the same path while their

path is incrementally matched with the path of the first walker.

Note that each blind participant in WeAllWalk carried two

iPhone 6 (although one of the phones did not work in the trial

with one of the participants). Two WeAllWalk participants

traversed the routes first using a long cane, then using a dog

guide. We considered all pairs of traversals of each path by

either two different walkers, or by the same walker using

different mobility tools (cane or dog guide). In total, there were

162 such traversal pairs, on which our path matching algorithm

was tested. For each of them, the optimal alignment mathing was

computed incrementally for each time instant during return

using the incremental Dynamic Time Warping algorithm of

[14]. A windowed search space (with window size of 800) was

used to reduce memory and computational cost [14].

 In order to evaluate the correctness of path matching, it

would be necessary to access the “ground truth” matches – i.e.,

the correct sequence of matching time instant pairs of

{(𝑡𝑖
𝑖𝑛, 𝑡𝑗

𝑟𝑒𝑡)}. WeAllWalk only records the time at which each

walker transitioned between different segments (“straight” or

“turn” segments). We interpolated the time matches between

these discrete time/location data points by assuming that

participants walked at constant speed within each segment. This

gives us an approximate location of each walker at all times.

Based on this information, we can compute the set of nodes

{𝑛̂𝑖,𝑗} that represent the correct matching of 𝑡𝑖
𝑖𝑛 with 𝑡𝑗

𝑟𝑒𝑡

(meaning that the first walker was at the same location at time

𝑡𝑖
𝑖𝑛 as the second walker at time 𝑡𝑗

𝑟𝑒𝑡). When evaluating the

correctness of a given node 𝑛𝑙,𝑗 in the graph path chosen by the

path matching algorithm, we find the node 𝑛̂𝑖,𝑗, then record the

absolute difference between 𝑡𝑖
𝑖𝑛 and 𝑡𝑙

𝑖𝑛. This measures the error

(in time instants) for node 𝑛𝑙,𝑗; the overall error is the average

error over the whole graph path.

TABLE 1.

PATH MATCHING ERRORS (IN SECONDS) MEASURED WITH
DIFFERENT ALGORITHMS FOR OUR WEALLWALK EXPERIMENTS.

Tab. 1 shows the recorded average errors using RoNIN vs.

turns/steps representation for odometry, with turns computed

either at multiple of 45o or 90o. (Note that 13% of all turns in

WeAllWalk are ±45° turns.) For the turns/steps representation,

we considered both the case with only turns cost activated in the

graph, and with both turns and steps costs activated. It is seen

from Tab. 1 that the lowest average error was obtained using the

turns/steps representation, with turns at multiple of 90o and use

of both steps and turns in the definition of graph costs.

Figure 1. Top: A representation of the best matching sequence for two walkers,
one using a dog guide and the other using a long cane. The colored rectangles

represent the entry and exit time of each “segment” as marked in WeAllWalk.

The ‘+’ signs represent 90o turns. Blue line: RoNIN (mean error:14.9 s); Red

line: 𝑘 ⋅ 90𝑜+steps (mean error: 0.8 s); Gray line: Baseline (mean error: 27.1 s).
Bottom: the reconstructed paths overimposed on the building map. Solid line:

Way-in path; Dotted line: return path. Blue line RoNIN. Red line: 𝑘 ⋅ 90𝑜+

steps.

In order to provide some insight into the results, we show

examples of path matches for pairs of walkers over the same

path in Figs. 1 and 2 (top), while the reconstructed paths are

shown against a map of the building (bottom). (For the 𝑘 ⋅
90𝑜/45𝑜 + step cases, we plotted the reconstructed path

assuming a stride length of 0.567 m.) In the path matching plots,

the vertical and horizontal axes indicate time instants during

way-in and return, respectively. The colored rectangles

represent contiguous segments in the path. Specifically, the

vertical coordinates of the top and bottom edge of each rectangle

correspond to the times when the walker entered and exited the

rectangle during way-in (as recorded in WeAllWalk), and

similarly for the return path. The diagonal line joining the top

left and the bottom right corners of each rectangle (not shown in

the figures) represents the set of correct nodes {𝑛̂𝑖,𝑗} using the

interpolation approximation described above. The ‘+’ and ‘*’

signs in the plots represent time instants (for both way-in and

return) in which a 90o or 45o turn was marked in WeAllWalk.

For each path matching algorithm displayed in the figures, a line

is shown representing the set of nodes selected by the algorithm.

Lines that are close to the diagonals of each rectangle denote

satisfactory path matches. We additionally show a “baseline”

match of all time instants in way-in with corresponding time

instants in return {(𝑡𝑖
𝑖𝑛, 𝑡𝑖

𝑟𝑒𝑡)}, which basically assumes that the

two participants walked at exactly the same speed.

Figure 2. Top: A representation of the best matching sequence for two walkers,

both using a long cane. The colored rectangles represent the entry and exit time
of each “segment” as marked in WeAllWalk. The ‘+’ signs represent 90o turns,

while the ‘*’ sign represents a 45o turn. Purple line: 𝑘 ⋅ 45𝑜+steps (mean error:

2.72 s). The horizontal and vertical lines show the 45o (dotted) and 90o (dashed)

turns detected during way-in and return, respectively. Bottom: the
reconstructed paths overimposed on the building map. Solid line: Way-in path;

Dotted line: return path.

RoNIN 𝑘 ⋅ 90𝑜turns 𝑘 ⋅ 45𝑜 turns
𝑘 ⋅ 90𝑜 turns
+ steps

𝑘 ⋅ 45𝑜 turns
+ steps

8.63 5.28 6.43 4.17 4.50

Fig. 1 compares the path matching using RoNIN (blue line)

and 𝑘 ⋅ 90𝑜+ steps (red line) odometry. It is seen that the 𝑘 ⋅
90𝑜+ steps algorithm produces a much better result than RoNIN,

while both are substantially better than the baseline. Analysis of

the reconstructed path (bottom plot) reveals that the paths

reconstructed by RoNIN were of poor quality, due to both

orientation drift and incorrect length (due to error in velocity

measurement). 𝑘 ⋅ 90𝑜+ steps was unaffected by drift, although

errors in the length of the reconstructed segments are clearly

visible.

Fig. 2 shows an example using the 𝑘 ⋅ 45𝑜+ steps algorithm.

In this case, the path had one 45o turn at the beginning, followed

by two 90o turns. The graph shows horizontal and vertical lines,

corresponding to the times when a 45o (dotted) or 90o (dashed)

turn was detected during way-in or return, respectively. The

algorithm correctly detected the 45o turn, but the second 90o turn

was mistakenly detected as a sequence of two 45o turns during

return. The path matching algorithm was able to manage this

situation correctly, although some “jitter” is noticeable (see

segment marked in green), which is a consequence of the fact

that dynamic programming was implemented incrementally

(rather than just at the end of the return path).

V. CONCLUSIONS

We presented a new algorithm for matching the paths taken

by a walker during way-in and return in the context of an assisted

return system. We considered two odometry mechanisms

(RoNIN and turns/segments path representations). Special

provisions were taken to ensure that false turn detections were

ruled out in the matching process. Our analysis showed that the

𝑘 ⋅ 90𝑜+ steps odometry algorithm afforded the most accurate

matching results.

Our experiments were conducted on the WeAllWalk data

set. We simulated a situation with a blind walker walking along

a path, then back-tracking the same path, by considering two sets

of recorded inertial data from different WeAllWalk participants,

who traversed the same path. This allowed us to generate a large

number of simulated way-in/return pairs on which to test our

algorithm. It could be argued that, by comparing different

walkers, this method introduces a new level of difficulty, since

the gait characteristics of the two walkers on the same path may

be quite different (especially when they used different mobility

tools, such as one walker using a long cane and the other using

a dog guide.) On the other hand, these simulations do not take

into account more complex situations in which a walker may

take a wrong turn during return, which needs to be detected by

the system. While experiments with a real-time assisted return

system (similar to [3]) will be needed, we believe that the

analysis presented in this paper on WeAllWalk data is very

valuable for a preliminary assessment of the proposed algorithm.

ACKNOWLEDGMENTS

Research reported in this report was supported by the
National Eye Institute of the National Institutes of Health under
award number R01EY029260-01. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the National Institutes of Health.

REFERENCES

[1] C. Yoon, R. Louie, J. Ryan, M. Vu, H. Bang, W. Derksen and P. Ruvolo,

"Leveraging Augmented Reality to Create Apps for People with Visual

Disabilities: A Case Study in Indoor Navigation," in 21st International

ACM SIGACCESS Conference on Computers and Accessibility , 2019.

[2] Microsoft, "Path Guide: Plug-and-play Indoor Navigation, " [Online].

Available: https://www.microsoft.com/en-us/research/project/path-

guide-plug-play-indoor-navigation/.

[Accessed 7 December 2020].

[3] G. Flores and R. Manduchi, "Easy return: an app for indoor backtracking
assistance," in Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, 2018.

[4] G. H. Flores and R. Manduchi, "WeAllWalk: An Annotated Data Set of

Inertial Sensor Time Series from Blind Walkers," in Proceedings of the

18th International ACM SIGACCESS Conference on Computers and
Accessibility (ASSETS), 2016.

[5] N. Fallah, I. Apostolopoulos, K. Bekris and E. Folmer, "The user as a

sensor: Navigating users with visual impairments in indoor spaces using

tactile landmarks," in Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems, 2012.

[6] T. H. Riehle, S. M. Andersen, P. A. Lichter, W. E. Whalen and N. A.

Giudice, "Indoor inertial waypoint navigation for the blind," in 35th

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC), 2013.

[7] D. Ahmetovic, C. Gleason, C. Ruan, K. M. Kitani, H. Takagi and C.
Asakawa, "NavCog: a navigational cognitive assistant for the blind," in

Proc. MobileHCI, 2016.

[8] G. Fusco and J. M. Coughlan, "Indoor localization for visually impaired

travelers using computer vision on a smartphone," in Proceedings of the

17th International Web for All Conference, 2020.

[9] Y. Jin, H. S. Toh, W. S. Soh and W. C. Wong, "A robust dead-reckoning

pedestrian tracking system with low cost sensors," in 2011 IEEE

International Conference on Pervasive Computing and Communications

(PerCom) , 2011.

[10] M. Kok, J. D. Hol and T. B. Schön, "Using Inertial Sensors for Position
and Orientation Estimation," Foundations and Trends in Signal

Processing, vol. 11, no. 1-21-153, 2017.

[11] R. Peng, F. Elyasi and R. Manduchi, "Smartphone-Based Inertial

Odometry for Blind Walkers," Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies, Submitted.

[12] M. Edel and E. Köppe, "An advanced method for pedestrian dead

reckoning using BLSTM-RNNs," in 2015 International Conference on

Indoor Positioning and Indoor Navigation (IPIN), 2015.

[13] H. Yan, S. Herath and Y. Furukawa, "RoNIN: Robust Neural Inertial

Navigation in the Wild: Benchmark, Evaluations, and New Methods,"
arXiv preprint arXiv:1905.12853., 2019.

[14] T. H. Riehle, S. M. Anderson, P. A. Lichter, N. A. Giudice, S. I. Sheikh,

R. J. Knuesel, D. T. Kollmann and D. S. Hedin, "Indoor magnetic

navigation for the blind," in Annual International Conference of the

IEEE Engineering in Medicine and Biology Society (EMBC), 2012.

	I. Introduction
	II. Preliminaries and Related Work
	III. Path Matching
	A. Steps Cost
	B. Turns Cost

	IV. Experiments
	V. Conclusions
	Acknowledgments
	References

