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Abstract— We present a comparative analysis of inertial-based 

odometry algorithms for the purpose of assisted return. An 

assisted return system facilitates backtracking of a path previously 

taken, and can be particularly useful for blind pedestrians. We 

present a new algorithm for path matching, and test it in simulated 

assisted return tasks with data from WeAllWalk, the only existing 

data set with inertial data recorded from blind walkers. We 

consider two odometry systems, one based on deep learning 

(RoNIN), and the second based on robust turn detection and step 

counting. Our results show that the best path matching results are 

obtained using the turns/steps odometry system. 

Keywords  - Wayfinding, Spatial accessibility, Turn detection, 

Step counting, RoNIN, Dynamic programming 

I. INTRODUCTION  

Wayfinding in unfamiliar places can be very challenging for 

people who are blind, and a number of technical solutions for 

supported wayfinding have been proposed in the literature over 

the past few years. In this contribution, we are concerned with 

assisted return, which can be seen as a particular form of 

wayfinding. Assisted return means providing support to a blind 

user who, after walking along a certain path, is trying to trace 

their way back to the starting point. Backtracking is a critical 

task that is required in multiple situations. For example, a blind 

person may be led by a sighted guide to a certain location for a 

meeting (e.g., an office in a building), only to realize that 

assistance is not available when needing to return to the starting 

point (e.g. the entrance door to the building). In other situations, 

a blind traveler may attempt to reach a certain location by 

following verbal directions. If unsuccessful, this individual 

would need to walk back to the starting point – potentially at the 

risk of getting lost in the building until sighted assistance is 

available. A system that could provide direction as needed to 

facilitate returning to the starting point may increase safety and 

confidence of blind pedestrians visiting new places. 

It is important to note that, unlike standard wayfinding 

systems, assisted return does not require access to a map of the 

building being visited. This is an important advantage, given the 

current scarcity of open access indoor maps. In fact, mechanisms 

similar to assisted return have been proposed for other 

applications, e.g. to let users make available specific paths in a 

building for others to follow [1] [2]. Of course, if a map is 

available, the system could certainly leverage this information. 

As discussed in [3], an assisted return mechanism (typically 

embedded in the user’s smartphone) must support three tasks: 

(1) tracking the traveler during their “way–in” (walking from a 

starting point to a destination), while building a representation 

of the path traversed; (2) tracking the traveler during return, by 

matching the current sub-path with the recorded way–in path 

(where the way-in path is time-reversed); (3) providing 

directions to the user during return by means of an appropriate 

user interface (including providing an overall description of the 

path). In this work we concentrate on task (2). We consider two 

different path reconstruction algorithms (turns/steps 

representation vs. full odometry via machine learning) for 

tracking, and propose a new mechanism for ascertaining, at each 

time during return, where the user is in reference to path 

traversed during way-in. Due to the restrictions imposed by the 

ongoing COVID-19 pandemic, we could not test our system 

“live” with blind walkers. Instead, we devised a strategy for 

simulated assisted return using real data from WeAllWalk [4], 

the only existing set of inertial data collected from blind walkers. 

Specifically, we consider the data sequences for two different 

blind participants walking along the same route. We then 

progressively match the path from the first walker with the path 

from the second walker, pretending that the former were a time-

reversed path during way-in. This simulates a situation with the 

same participant traversing the way-in path then returning to the 

starting point. We propose a metric for assessing the quality of 

path matching, and compare our proposed path reconstruction 

algorithms against this metric. 

This article is organized as follows. Basic concepts and 

related work are presented in Sec. II. Our mechanism for path 

matching, is described in Sec. III. Experiments on WeAllWalk 

data are presented in Sec. IV. Sec. V has the conclusions. 

II. PRELIMINARIES AND RELATED WORK 

Inertial-based odometry. In this work we only use data from 

the inertial sensors in a smartphone (iPhone 6). Inertial-based 

odometry [5] [6] requires no external infrastructure (such as 

Bluetooth Low Energy beacons [7]), and no prior calibration 

(e.g., Wi-Fi fingerprinting). Compared to visual-based odometry 

[8], inertial systems do not assume use of a camera with 

unoccluded visibility of the environment. The user may simply 



keep their smartphone in their pocket, and receive information 

via Bluetooth earphones or bonephones.  

Pedestrian Dead Reckoning (PDR). One of the simplest 

odometry techniques is based on step counting while 

determining the user’s orientation using data from the 

accelerometers and the gyros in the phone [9].  Note that all 

modern smartphone APIs produce the attitude (3-D rotation) of 

the phone with respect to an arbitrary but fixed reference system 

(as computed by sensor fusion from accelerometer and gyro data 

[10]). Since this data involves integration of possibly noisy and 

biased data, drift typically accumulates over time.  

In buildings whose structure is well represented by a network 

of corridors, a path can normally be represented as a sequence 

of straight segments and turns, with discrete turning angles 

(typically, multiples of 90º or 45º). We will call this a turns/steps 

representation. The length of a straight segment can be 

expressed using units such as meters or feet, or as an 

approximate number of steps (where this latter unit can be 

preferable for some blind users.) This representation is 

particularly useful when describing a path verbally, which is an 

important functionality of a safe return system. For example, a 

path could be expressed as: “Walk for 50 steps, turn left, walk 

for 25 more steps, turn right, then your destination is 40 steps 

away.” Other types of contextual information in terms of 

perceivable landmarks (e.g., “take the second corridor to the 

left”, or “the destination is the fifth door to the right) could also 

be useful, but cannot be detected using inertial sensors, and 

would normally require access to a map. Representing paths as 

sequences of discrete angle turns and segment lengths 

simplifies, to some extent, the job of odometry computation. In 

practice, though, robust turn detection can be challenging. False 

positives could be generated, for example, when the walker 

stops and turns around to get their bearings. In addition, the 

assumption of a smartphone in a fixed orientation with respect 

to the walker’s body fails as soon as one repositions the phone 

(e.g. after picking up a call). Thus, robust turn detection and path 

length measurements are called for even in simplified topologies 

such as networks of corridors at discrete angles.  

We describe our algorithms for PDR elsewhere [11]. In brief, 

we robustly detect 45o or 90o turns using a two-stage system with 

a “straight-walking” detector and a Mixture Kalman Filter 

(MKF) for tracking orientation drift. Steps are detected using an 

LSTM recurrent network, similar to [12]. 

Learning-Based Odometry. Several odometry algorithms 

based on deep neural networks have been proposed in recent 

years. In particular, RoNIN [13] was shown to outperform 

comparable systems in challenging data sets. RoNIN processes 

inertial data using one of several possible deep network 

architectures, and produces motion vectors defined in reference 

to a fixed world frame. By integrating these motion vectors, one 

can easily reconstruct the path taken by the walker. A 

 
1 https://github.com/Sachini/ronin 

remarkable feature of RoNIN is that, by decoupling the phone’s 

orientation from the estimated user velocity, it works seamlessly 

even if the phone is repositioned on the user’s body while 

walking. We used the open source implementation of RoNIN1. 

Assisted Return. The concept of assisted return for blind 

walkers was introduced by Flores and Manduchi [3], who 

experimented with a turn/segment representation of indoor 

environments in a study with six blind participants. The same 

technology used in an assisted return system could be used to 

help a person follow a path previously taken by another 

individual. An example is given by Clew, an augmented reality 

app designed for visually impaired users [1]. Clew allows one to 

record a route, then load it and receive directions in accessible 

format when the same person (or someone else) wants to 

traverse the same route. Localization information is obtained via 

visual odometry using Apple’s ARKit. A similar concept is 

implemented by the Path Guide Android app by Microsoft, 

which uses magnetic signatures and inertial data for localization 

[2]. 

WeAllWalk. WeAllWalk [4] is an annotated data set with 

inertial and magnetic data collected from blind walkers. Ten 

participants walked on a number of indoor routes. Seven 

participants used a long cane as a mobility tool; one used a dog 

guide; and two alternated use of a long cane and a dog guide. 

Each walker carried two iPhone 6s, and was equipped with 

inertial sensors tied at each ankle, which were used to produce 

ground truth measurements of each heel strike. The paths 

traversed by the walkers were divided into “segments”. The time 

at which each walker traversed the boundary between two 

segments was recorded, which provides a discrete set of 

localization data points.  

III. PATH MATCHING 

An assisted return system is designed for situations in which 

a blind walker has traversed a certain way-in route (possibly with 

the aid of a sighted companion), then attempts to traverse the 

same route in reverse (return). The system can provide 

directions such as the distance to the next turn and whether to 

turn left or right, and can inform the user when they are off-path. 

We assume that the system does not have access to a map of the 

place, which means that it can only operate by matching any 

spatial information acquired during way-in with that being 

acquired during return. A similar mechanism can be used to help 

a blind person follow a route that was traversed previously by 

someone else (in which case the way-in path needs not be 

reversed). 

In theory, if odometry can be accurately recovered, one 

could simply match the current position estimated during return 

with the closest position in the way-in path. Unfortunately, large 

errors can be expected when relying only on inertial sensors, 

which calls for a more sophisticated strategy. Similarly to [14], 

we cast the problem as one of sub-sequence alignment, which 



seeks the best matching of the time sequence of measurements 

up to the current time during return, with an initial sequence of 

measurements during way-in. This matching can be performed 

based on any available spatial (or non-spatial, e.g. magnetic 

signatures as in [14]) information, and can contain deletions. 

This problem can be expressed as a minimum cost route task 

over a properly defined graph, which also easily allows for 

enforcement of a spatial continuity prior (i.e., solutions with the 

user location in subsequent times jumping between two distant 

locations are unlikely). We formalize this concept in the 

following. 

Let {𝑡𝑖
𝑖𝑛} and {𝑡𝑗

𝑟𝑒𝑡} be the sets of time instants associated 

with (reversed) way-in and return, respectively. (Note that the 

time instants {𝑡𝑖
𝑖𝑛} are actually ordered backwards with respect 

to the way they were collected, to account for the fact that we 

are matching the return path against the reversed way-in path.)  

For example, these sequences could correspond to the time 

points at which inertial data was sampled, or they could be other 

discrete events such as measured heel strike times. Our goal is 

to find an ordered, typically incomplete matching of {𝑡𝑗
𝑟𝑒𝑡} with 

{𝑡𝑖
𝑖𝑛}, such that the location of the walker at a certain return time 

instant is similar to the location of the walker in the associated 

way-in time instant. We build a graph with nodes {𝑛𝑖,𝑗}, where 

each node indicates the hypothesis that the walker at time 𝑡𝑖
𝑖𝑛 

during way-in found themselves in the same position as the 

walker at time 𝑡𝑗
𝑟𝑒𝑡  during return. Nodes are connected by 

directed edges such that node 𝑛𝑖,𝑗 is connected to nodes 𝑛𝑖+1,𝑗, 

𝑛𝑖,𝑗+1, and 𝑛𝑖+1,𝑗+1. A path in the graph is thus made of nodes 

with monotonically non-decreasing time index in both way-in 

and return. Consecutive nodes in a path with a repeated index 

(e.g., 𝑛𝑖,𝑗 → 𝑛𝑖+1,𝑗 ) indicate that two time instants (in this 

example, during way-in) are matched to the same time instant in 

the other path. “Conflating” multiple time instants in one 

sequence allows for matching sequences with different 

velocities (in the example, the walker may have walked slower 

during way-in). We associate a cost 𝐶𝑐𝑜𝑛 to edges connecting 

𝑛𝑖,𝑗 with 𝑛𝑖,𝑗+1 or 𝑛𝑖+1,𝑗. The cost of a path in this graph is the 

sum of node and edge costs. The cost of each node should 

represent the likelihood that, given the measured data, the 

walker was in the same location (at way-in and return) at the 

time instants associated with that node. 

We will consider two odometry algorithms, the output of 

which is used in properly defined node and edge costs. The first 

algorithm is RoNIN [13], briefly described earlier in the 

learning-based category. RoNIN produces (𝑋(𝑡), 𝑌(𝑡)) 

locations, which can be used directly to define node costs as the 

Euclidean difference between the locations measured at 𝑡𝑖
𝑖𝑛 and 

at  𝑡𝑗
𝑟𝑒𝑡. Note that this assumes that the reference systems used 

to define the way-in and return path have been properly aligned. 

The second odometry algorithm considered is based on 

turns/steps representation (i.e., the path traversed is represented 

as a sequence of straight segments separated by turns that are 

multiple of 45o or 90o turns, along with the number of steps 

between turns.) We discuss our definition of node and edge costs 

for this representation in the following. 

A. Steps Cost 

Foot step (heel strike) information can be conveniently 

leveraged for path matching. For example, one could try to 

match paths step-by-step, allowing for a few steps to be skipped 

in either path to account for different stride lengths. This can be 

implemented by assigning appropriate node costs. Specifically, 

any node 𝑛𝑖,𝑗 in the graph associated with a step detected in one 

path (i.e., a heel strike was detected during way-in at 𝑡𝑖
𝑖𝑛  or 

during return at 𝑡𝑗
𝑟𝑒𝑡 ) but not in the other path, is assigned a 

“unmatched step” cost 𝐶𝑢𝑠. This mechanism assigns low cost to 

paths in the graph that match way-in steps with return steps. 

Clearly, steps alone cannot be used for reliably path matching, 

as the system would simply match steps to steps in an orderly 

fashion, with no means to control whether matching steps were 

detected at similar locations. However, it can be a powerful cue 

complementing other measurements. Note that walkers may use 

different strides during way-in and return. This situation, which 

was observed in [3], may occur when, for example, the walker 

is led by a sighted guide during way-in, and needs to find their 

way by themselves during return. Hence, the number of steps 

when traversing a segment may change during way-in and 

return.  

B. Turns Cost 

Orientation information can be very useful for path 

matching. Specifically, we assume that the walker was facing a 

similar direction at the same location during (reversed) way-in 

and return. In order to measure the walker’s orientation at each 

point, we use the two-stage turn-segment mechanism described 

earlier, which is well suited to corridor networks. A simple 

approach to enforcing consistent orientation would be to assign 

node costs that encourage matching equal angle turns during 

way-in and return. For example, similarly to the mechanism 

employed for step matching, any node 𝑛𝑖,𝑗 associated with a turn 

detected in one path but not in the other, or with turns detected 

in both paths but by different turning angles, could be assigned 

a certain “unmatched turn” cost. This simple approach, though, 

is liable to fail in common situations with short sequences of 

incorrectly detected turns. For example, suppose that during 

way-in the walker stopped for a moment and turned their body 

to the left for a short time (for example to return the greetings of 

a passer-by) then starts to walk again. In this case, the system 

may incorrectly detect a left turn, followed after a short time by 

a right turn. During return, the walker proceeds without 

interruptions along the same path. Correctly matching the way-

in and return paths comes at the cost of two unmatched turns. 

The risk is that one of the two spurious way-in turns may get 

(incorrectly) matched to some other distant (correct) turn during 

return (thus resulting in a lower unmatched turn cost), 

potentially creating a gross path mismatch.  

This example suggests that an unmatched turn should be 

given a lower penalty when preceded shortly by a turn in the 



opposite direction, as in the example above. However, this 

cannot be implemented by simply assigning costs to edges or 

nodes in our original graph. Instead, we propose a mechanism 

that achieves the desired result, at the cost of increasing the 

number of nodes and edges in the graph. The idea is to consider 

the orientation of the walker at each time, something that can be 

obtained by accumulating detected turns. We describe an 

algorithm that embodies this notion in the following. 

Let 𝐼𝑖𝑛 = {𝑖̂} be the set of indices such that a turn by angle 

𝜃𝑖̂
𝑖𝑛 was detected at time 𝑡𝑖̂

𝑖𝑛 during (reversed) way-in. (Similar 

concepts are defined for the return path, with obvious symbol 

modifications.) Assuming that the walker had orientation of 0° 

at start time, and that all turns were correctly detected, the 

orientation of the walker at time 𝑡𝑖
𝑖𝑛 will be: 

𝑂𝑖𝑛(𝑡𝑖
𝑖𝑛) = (∑ 𝜃𝑖̂

𝑖𝑛
𝑖̂∈𝐼𝑖𝑛,𝑖̂≤𝑖 ) mod 2𝜋            (1) 

Note that, since we assumed that turn angles only take 

discrete values 𝑘 ⋅ 2𝜋/𝑁  (e.g., 𝑁 = 4  or 8 ), the walker’s 

orientation 𝑂 takes values in the same discrete set (due to 2𝜋 

periodicity). One could assign a cost to each node 𝑛𝑖,𝑗 that is a 

function of the orientation discrepancy 𝑂𝑖𝑛(𝑡𝑖
𝑖𝑛) − 𝑂𝑟𝑒𝑡(𝑡𝑗

𝑟𝑒𝑡). 

However, this node cost by itself would not account for potential 

false detections. Suppose, for example, that we want to test the 

hypothesis that a turn detected at time 𝑡𝑖̂
𝑖𝑛 was in fact a false 

positive. Testing this hypothesis would require evaluating how 

the orientation discrepancy cost would change if this detected 

turn were suppressed. However, suppressing a turn affects all 

orientations computed for times 𝑡𝑖
𝑖𝑛 > 𝑡𝑖̂

𝑖𝑛 . Testing the same 

hypothesis for all detected turns would appear to result in an 

exponential growth of possible user orientations at each time. 

Thankfully, this is not the case, due to the fact that orientations 

belong to a finite discrete set. We implement this concept by 

means of a graph augmentation strategy as discussed next. 

Each node 𝑛𝑖,𝑗 in our original graph is replaced with a set of 

𝑁 nodes 𝑛𝑖,𝑗
𝑤 , where the superscript 𝑤 (taking values between 0 

and 𝑁 − 1 ) indicates the hypothesis that the orientation 

discrepancy between way-in time 𝑡𝑖
𝑖𝑛 and return time 𝑡𝑗

𝑟𝑒𝑡 (that 

is, 𝑂𝑖𝑛(𝑡𝑖
𝑖𝑛) − 𝑂𝑟𝑒𝑡(𝑡𝑗

𝑟𝑒𝑡)) is equal to 𝑤 ⋅ 2𝜋/𝑁 . Nodes 𝑛𝑖,𝑗
𝑤  

with 𝑤 ≠ 0  are assigned a mis-orientation cost 𝐶𝑚𝑜 . Nodes 

𝑛𝑖,𝑗
𝑤  that are not associated with detected turns (i.e., 𝑖 ∉ 𝐼𝑖𝑛, 𝑗 ∉

𝐼𝑟𝑒𝑡) are linked with zero-cost directed edges to nodes 𝑛𝑖+1,𝑗
𝑤 , 

𝑛𝑖,𝑗+1
𝑤 , and 𝑛𝑖+1,𝑗+1

𝑤 . If a turn by angle 𝜃𝑖
𝑖𝑛 = 𝑘 ⋅ 2𝜋/𝑁  was 

detected at time 𝑡𝑖
𝑖𝑛 , node 𝑛𝑖,𝑗

𝑤  is connected to three sets of 

nodes: 

• 𝑛𝑖+1,𝑗
(𝑤+𝑘)𝑚𝑜𝑑 𝑁

, 𝑛𝑖+1,𝑗+1
(𝑤+𝑘)𝑚𝑜𝑑 𝑁

  

• 𝑛𝑖+1,𝑗
𝑤 , 𝑛𝑖+1,𝑗+1

𝑤  

•  𝑛𝑖,𝑗+1
𝑤  

The first two connections are made under the assumption that 

the turn was correctly detected, which triggers an update of the 

way-in walker orientation (from 𝑤 ⋅ 2𝜋/𝑁 to ( 𝑤 + 𝑘) ⋅ 2 𝜋/
𝑁 𝑚𝑜𝑑 2𝜋 ). The second set of connections represent the 

possibility that the turn was incorrectly detected, meaning that 

the way-in orientation should not be changed. The directed 

edges for these connections are assigned a “turn suppression” 

cost 𝐶𝑡𝑠 . The third connection (from 𝑛𝑖,𝑗
𝑤  to 𝑛𝑖,𝑗+1

𝑤 ) indicates 

that both time instant 𝑡𝑗
𝑟𝑒𝑡   and 𝑡𝑗+1

𝑟𝑒𝑡   are matched to 𝑡𝑖
𝑖𝑛 . The 

decision of whether to accept this turn is postponed till node to 

𝑛𝑖+1,𝑗
𝑤  or 𝑛𝑖+1,𝑗+1

𝑤 , and therefore the turn suppression cost 𝐶𝑡𝑠 is 

not applied here. Note that 𝑛𝑖,𝑗
𝑤  is not connected to 𝑛𝑖,𝑗+1

(𝑤+𝑘)𝑚𝑜𝑑 𝑁
 

as this could cause an incorrect extra detected turn (e.g. in the 

case of a path from 𝑛𝑖,𝑗
𝑤  to 𝑛𝑖,𝑗+1

(𝑤+𝑘)𝑚𝑜𝑑 𝑁   to 𝑛𝑖+1,𝑗+1
(𝑤+𝑘+𝑘)𝑚𝑜𝑑 𝑁

).  

Similar considerations apply for nodes associated with a turn 

detected during return. For nodes associated with turns detected 

both during way-in and return, we need to consider two 

additional sets of edges, representing the possibility that any 

such detection may or may not be correct. The cost of a path in  

this graph is thus a function of both the discrepancy in 

orientation between way-in and return, and of the number of 

turns that need to be suppressed to minimize this discrepancy. In 

the example given earlier of a sequence of two spurious turns in 

opposite orientations, a possible low-cost path would accept 

both turns, while paying a total penalty for orientation 

discrepancy equal to 𝑛 ⋅ 𝐶𝑚𝑜, where 𝑛 is the number of nodes in 

the path between the two spurious turns. Another possible path 

would suppress both turns, thus paying a penalty equal to 2 ⋅ 𝐶𝑡𝑠. 

Both solutions are acceptable. Note that the risk of incorrectly 

matching one of these two spurious turns to a distant (correct) 

turn during return, while suppressing the other spurious turn, is 

small, due to the associated accumulated mis-orientation cost. 

IV. EXPERIMENTS  

In order to test our path matching algorithm in realistic 

assisted return situations, we considered the inertial data 

collected in the WeAllWalk trials. We simulated an assisted 

return situation where the first walker traversed the whole path 

first, then the second walker traverses the same path while their 

path is incrementally matched with the path of the first walker. 

Note that each blind participant in WeAllWalk carried two 

iPhone 6 (although one of the phones did not work in the trial 

with one of the participants). Two WeAllWalk participants 

traversed the routes first using a long cane, then using a dog 

guide. We considered all pairs of traversals of each path by 

either two different walkers, or by the same walker using 

different mobility tools (cane or dog guide). In total, there were 

162 such traversal pairs, on which our path matching algorithm 

was tested. For each of them, the optimal alignment mathing was 

computed incrementally for each time instant during return 

using the incremental Dynamic Time Warping algorithm of 

[14]. A windowed search space (with window size of 800) was 

used to reduce memory and computational cost [14]. 

 In order to evaluate the correctness of path matching, it 

would be necessary to access the “ground truth” matches – i.e., 

the correct sequence of matching time instant pairs of 

{(𝑡𝑖
𝑖𝑛, 𝑡𝑗

𝑟𝑒𝑡)}. WeAllWalk only records the time at which each 

walker transitioned between different segments (“straight” or 

“turn” segments). We interpolated the time matches between 

these discrete time/location data points by assuming that 



participants walked at constant speed within each segment. This 

gives us an approximate location of each walker at all times. 

Based on this information, we can compute the set of nodes 

{𝑛̂𝑖,𝑗}  that represent the correct matching of 𝑡𝑖
𝑖𝑛  with 𝑡𝑗

𝑟𝑒𝑡 

(meaning that the first walker was at the same location at time 

𝑡𝑖
𝑖𝑛  as the second walker at time 𝑡𝑗

𝑟𝑒𝑡 ). When evaluating the 

correctness of a given node 𝑛𝑙,𝑗 in the graph path chosen by the 

path matching algorithm, we find the node 𝑛̂𝑖,𝑗, then record the 

absolute difference between 𝑡𝑖
𝑖𝑛 and 𝑡𝑙

𝑖𝑛. This measures the error 

(in time instants) for node 𝑛𝑙,𝑗; the overall error is the average 

error over the whole graph path. 

TABLE 1. 

PATH MATCHING ERRORS (IN SECONDS) MEASURED WITH 
DIFFERENT ALGORITHMS FOR OUR WEALLWALK EXPERIMENTS. 

 

Tab. 1 shows the recorded average errors using RoNIN vs. 

turns/steps representation for odometry, with turns computed 

either at multiple of 45o or 90o. (Note that 13% of all turns in 

WeAllWalk are ±45° turns.) For the turns/steps representation, 

we considered both the case with only turns cost activated in the 

graph, and with both turns and steps costs activated. It is seen 

from Tab. 1 that the lowest average error was obtained using the 

turns/steps representation, with turns at multiple of 90o and use 

of both steps and turns in the definition of graph costs. 

 

 

Figure 1. Top: A representation of the best matching sequence for two walkers, 
one using a dog guide and the other using a long cane. The colored rectangles 

represent the entry and exit time of each “segment” as marked in WeAllWalk. 

The ‘+’ signs represent 90o turns. Blue line: RoNIN (mean error:14.9 s); Red 

line: 𝑘 ⋅ 90𝑜+steps (mean error: 0.8 s); Gray line: Baseline (mean error: 27.1 s). 
Bottom: the reconstructed paths overimposed on the building map. Solid line:  

Way-in path; Dotted line: return path. Blue line RoNIN. Red line: 𝑘 ⋅ 90𝑜+ 

steps. 

In order to provide some insight into the results, we show 

examples of path matches for pairs of walkers over the same 

path in Figs. 1 and 2 (top), while the reconstructed paths are 

shown against a map of the building (bottom). (For the 𝑘 ⋅
90𝑜/45𝑜 + step cases, we plotted the reconstructed path 

assuming a stride length of 0.567 m.) In the path matching plots, 

the vertical and horizontal axes indicate time instants during 

way-in and return, respectively. The colored rectangles 

represent contiguous segments in the path. Specifically, the 

vertical coordinates of the top and bottom edge of each rectangle 

correspond to the times when the walker entered and exited the 

rectangle during way-in (as recorded in WeAllWalk), and 

similarly for the return path. The diagonal line joining the top 

left and the bottom right corners of each rectangle (not shown in 

the figures) represents the set of correct nodes {𝑛̂𝑖,𝑗} using the 

interpolation approximation described above. The ‘+’ and ‘*’ 

signs in the plots represent time instants (for both way-in and 

return) in which a 90o or 45o turn was marked in WeAllWalk. 

For each path matching algorithm displayed in the figures, a line 

is shown representing the set of nodes selected by the algorithm. 

Lines that are close to the diagonals of each rectangle denote 

satisfactory path matches. We additionally show a “baseline” 

match of all time instants in way-in with corresponding time 

instants in return {(𝑡𝑖
𝑖𝑛, 𝑡𝑖

𝑟𝑒𝑡)}, which basically assumes that the 

two participants walked at exactly the same speed.  

 

 

Figure 2. Top: A representation of the best matching sequence for two walkers, 

both using a long cane. The colored rectangles represent the entry and exit time 
of each “segment” as marked in WeAllWalk. The ‘+’ signs represent 90o turns, 

while the ‘*’ sign represents a 45o turn. Purple line: 𝑘 ⋅ 45𝑜+steps (mean error: 

2.72 s). The horizontal and vertical lines show the 45o (dotted) and 90o (dashed) 

turns detected during way-in and return, respectively.  Bottom: the 
reconstructed paths overimposed on the building map. Solid line: Way-in path; 

Dotted line: return path.  

RoNIN 𝑘 ⋅ 90𝑜turns 𝑘 ⋅ 45𝑜 turns 
𝑘 ⋅ 90𝑜 turns 
+ steps 

𝑘 ⋅ 45𝑜 turns 
+ steps 

8.63 5.28 6.43 4.17 4.50 



Fig. 1 compares the path matching using RoNIN (blue line) 

and 𝑘 ⋅ 90𝑜+ steps (red line) odometry. It is seen that the 𝑘 ⋅
90𝑜+ steps algorithm produces a much better result than RoNIN, 

while both are substantially better than the baseline. Analysis of 

the reconstructed path (bottom plot) reveals that the paths 

reconstructed by RoNIN were of poor quality, due to both 

orientation drift and incorrect length (due to error in velocity 

measurement). 𝑘 ⋅ 90𝑜+ steps was unaffected by drift, although 

errors in the length of the reconstructed segments are clearly 

visible.  

Fig. 2 shows an example using the 𝑘 ⋅ 45𝑜+ steps algorithm. 

In this case, the path had one 45o turn at the beginning, followed 

by two 90o turns. The graph shows horizontal and vertical lines, 

corresponding to the times when a 45o (dotted) or 90o (dashed) 

turn was detected during way-in or return, respectively. The 

algorithm correctly detected the 45o turn, but the second 90o turn 

was mistakenly detected as a sequence of two 45o turns during 

return. The path matching algorithm was able to manage this 

situation correctly, although some “jitter” is noticeable (see 

segment marked in green), which is a consequence of the fact 

that dynamic programming was implemented incrementally 

(rather than just at the end of the return path).  

V. CONCLUSIONS 

We presented a new algorithm for matching the paths taken 

by a walker during way-in and return in the context of an assisted 

return system. We considered two odometry mechanisms 

(RoNIN and turns/segments path representations). Special 

provisions were taken to ensure that false turn detections were 

ruled out in the matching process. Our analysis showed that the 

𝑘 ⋅ 90𝑜+ steps odometry algorithm afforded the most accurate 

matching results.  

Our experiments were conducted on the WeAllWalk data 

set. We simulated a situation with a blind walker walking along 

a path, then back-tracking the same path, by considering two sets 

of recorded inertial data from different WeAllWalk participants, 

who traversed the same path. This allowed us to generate a large 

number of simulated way-in/return pairs on which to test our 

algorithm. It could be argued that, by comparing different 

walkers, this method introduces a new level of difficulty, since 

the gait characteristics of the two walkers on the same path may 

be quite different (especially when they used different mobility 

tools, such as one walker using a long cane and the other using 

a dog guide.) On the other hand, these simulations do not take 

into account more complex situations in which a walker may 

take a wrong turn during return, which needs to be detected by 

the system. While experiments with a real-time assisted return 

system (similar to [3]) will be needed, we believe that the 

analysis presented in this paper on WeAllWalk data is very 

valuable for a preliminary assessment of the proposed algorithm. 
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