UCLA

Posters

Title

SDRCADE: Software Defined Radio for Efficient Channel Access, Flexible Sensor Network Gateways, and a Rapid Development Enviornment (SYS 16)

Permalink

https://escholarship.org/uc/item/7wq6q87h

Authors

Tad Dreier Sadaf Zahedi Thomas Schmid et al.

Publication Date

2006

Center for Embedded Networked Sensing

SDRCADE

SOFTWARE DEFINED RADIO FOR EFFICIENT CHANNEL ACCESS, FLEXIBLE SENSOR NETWORK GATEWAYS, AND A RAPID DEVELOPMENT ENVIRONMENT

Tad Dreier, Sadaf Zahedi, Thomas Schmid, Mani Srivastava NESL -UCLA

Introduction: Software Defined Radios

Software Defined Radios

- Software defined radios (SDRs) present an opportunity for unprecedented flexibility and adaptability
- Trade performance of hardware for flexibility of software
 By performing communication processing in software applications, we can
 quickly design systems, easily modify them, and support a vast range of
 communication modes with a single device.

Cognitive Radios

- · Bringing intelligence down to the physical layer
 - Physical layer *learns* from and *adapts* to its current environment to optimize performance
 - Software radio makes the high degree of complexity manageable
 - Nodes can opportunistically share spectrum with licensed users, while avoiding harmful interference

Efficient Channel Access: Exploiting physical layer information to increase efficiency

- · Spatiotemporal channel information map
- Initial and ideal idea is creating a Database of <src_id, dst_id, src_xyz, dst_xyz, channel_information> pairs and make this centralized global map available to all nodes at zero cost. A more practical approach is keeping a local imperfect copy of the map at the nodes.
- Best candidates for Link layer knobs
 - Antenna direction
 - Frequency band selection
 - Channel equalizer coefficients
 - Transmit power

Optimal choices are a function of obstacles, primary users, co-channel interferers, location, frequency, and antenna orientation of the peer node.

Sensor Network Gateways: Flexible, multi-mode, multi-channel gateways

Decode multiple channels at once

The wideband nature of the USRP makes it feasible for a single SDR base station to simultaneously communicate on *multiple independent channels*, and provide network bridging across incompatible radio standards

- Possibilities for GNU Radio as a gateway:
 - Multiplex between incompatible radio standards (FSK → OQPSK)
 - Radio channel debugger which allows inspection of the radio channel in a sensor network

Rapid Development Environment: Graphical system design and simulation

Hierarchical graphical modeling in Ptolemy

Allow systems engineer to design configurable block diagrams, with efficient target system *synthesis*, which hides low-level implementation details and accelerates design time.

- Rapid design flow
 - Construct systems from a *rich library* of processing blocks
 - Simulate with Ptolemy and automatically generate efficient target implementations using GNU Radio and the Click modular router

Proposed Solution: Implementations for channel access, gateways, and design environment

Figure 1: Mica2 FSK signal as seen from the GNU Radio Oscilloscope

Figure 2: Click and GNU Radio emulate Mica2/Z base-stations

Figure 4: SNR map when omni-directional antenna is placed in the center an SNR ranging from 0 to 30 db $\,$

Figure 3: Mica2 FSK decoding block.

Figure 5: Hierarchical SDR model in Ptolemy-based design environment