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Informing disaster-risk management
policies for education infrastructure using
scenario-based recovery analyses

Eyitayo A. Opabola 1 & Carmine Galasso 2

Recent natural-hazard events have shown that post-disaster education con-
tinuity is still a significant global challenge. Here, we propose a methodology
to support various stakeholders in quantifying the impact of disaster man-
agement policies on education continuity in low- and lower-middle-income
countries. We then apply the proposed methodology to a hypothetical
earthquake scenario impacting a testbed education infrastructure in Central
Sulawesi, Indonesia. This case study accounts for local practice influencing
recovery through interviews with stakeholders involved in post-disaster
management in the region. The analyses reveal that early response financing
mechanisms can help speed up education recovery by a factor of three. Also,
community-managed school reconstruction projects are likely to be com-
pleted up to three to five times faster than agency-managed projects. Fur-
thermore, wedemonstrate how the framework canbeused toprioritize school
reconstruction projects to ensure inclusive education continuity at the com-
munity level.

Despite advances in natural-hazard risk understanding, modeling and
quantification, and global initiatives to reduce disaster risk to the
education sector1, many countries remain highly exposed to school
infrastructure physical damage and severe education disruption from
natural hazards. This is especially valid for low- and lower-middle-
income countries (as defined by theWorld Bank2). For example, nearly
5000 schools were destroyed following the 2010 moment magnitude
7.0 (M7.0) Haiti earthquake3. Over 9000 school buildings and 35,000
classrooms were significantly affected by the 2015 M7.8 Gorkha
earthquake in Nepal, with another 7000 schools requiring
reconstruction4. Natural-hazard-induced physical damage to school
buildings, neighboring infrastructure systems, and communities can
significantly disrupt education. For example, school closures due to
damage and/or inaccessibility affected the education continuity of
about 184,000 and one million school pupils in Central Sulawesi,
Indonesia (following the 2018 M7.5 earthquake and tsunami) and
Nepal (following the 2015 M7.8 Gorkha earthquake), respectively5,6.

Schools can play a vital role in disaster preparedness, response,
and recovery7–9. For example, in a pre-disaster setting, school facilities

can be used as sites for disaster-preparedness learning activities. In
post-disaster scenarios, schools can serve as relief centers, supply,
storage, and communication hubs. Hence, community resilience relies
on the ability of schools to have efficient disaster preparedness,
response, and recovery management strategies. Such recovery man-
agement strategies must also ensure post-disaster school continuity.

Several studies have highlighted the importance of post-disaster
school continuity. There are various unintended social and economic
consequences of education disruption to schools, students, teachers,
their families, and the community at large. For example, evidence6,10

shows that out-of-school children are susceptible to various forms of
exploitation (including child labor) and violence (especially in tem-
porary camps), with severe effects on children’s long-term develop-
ment. In addition, it has been reported that education disruption in
school children may lead to long-term reduced physical and mental
health, leading to a loss of productivity and earnings in adulthood11,12.
The socioeconomic conditions of staff of closed schools may also be
negatively impacted if they need to find alternative jobs (in an already
chaotic post-disaster situation) to make ends meet. Also, parents (and
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carers) may have to spend time off work to take care of their children,
resulting in a significant productivity loss for the economy13 as well as
well-being losses for them14. For nations, the combined influence of
education disruption on school children, staff, and their families
results in up to a 6% loss in future gross domestic product15–17. Hence,
post-disaster education continuity must be a priority for any nation.

There are two distinct domains of post-disaster school recovery
necessary for education continuity—physical and non-physical. The
former is related to the conditions of the physical infrastructure (e.g.,
classrooms, laboratories, water, sanitation and hygiene (WASH) facil-
ities, power, and water utilities). The non-physical domain, for
instance, is associated with the post-disaster management structure
and psychosocial recovery of school children and staff18–20. Poorly
managed disaster-induced psychological disorders can influence
changes in behavior, memory, and development of school children21;
thereby impacting education continuity. There are linkages between
the physical and non-physical (especially psychosocial) domains of
school recovery. As emphasized by past events, prolonged stay in
temporary housing settlements and delayed recovery in school phy-
sical infrastructure can impact the long-term psychosocial well-being
of school children19. We note that our study focuses on the analytical
modeling of the physical infrastructure domain of school recovery.
Additional studies are needed to explore the efficient integration of
physical and non-physical domains of school recovery in analytical
recovery modeling frameworks.

The 2015–2030 Sendai Framework for Disaster Risk Reduction22

calls for enhanced disaster risk governance for effective response and
theneed to “BuildBackBetter” in sustainable recovery, reconstruction,
and rehabilitation. Furthermore, Goal #4 of the 2030 Agenda for
Sustainable Development advocates for inclusive education continuity
for all23. Due to the high physical vulnerability of school infrastructure
and the social vulnerability of school children, it is crucial to ensure
that sensible policies enhancing post-disaster education continuity are
in place. However, various studies have highlighted that governments
do not generally prioritize post-disaster education continuity, leading
to severe education disruption or even termination. For example,
many school children dropped out due to unavailable school infra-
structure following the 2018 Central Sulawesi earthquake24.

In comparison with recovery modeling studies on other infra-
structure systems (e.g., residential and business building stock25,
hospitals26, utility networks27), fewer research studies have been car-
ried out onpost-disaster recovery of physical education infrastructure.
We also note that post-disaster recoverymodeling frameworks cannot
be generic because building functionality strongly depends on the
specific occupancy type. For example, a moderately damaged resi-
dential building may be suitable as a shelter-in-place (meaning occu-
pants are not entirely displaced). However, a similarly damaged
building might be unsuitable for learning purposes.

On the qualitative side, various resilience-enhancing policies for
school infrastructures have been proposed by different studies in
recent years28,29. Quantitative studies on the resilience of physical
education infrastructure started gaining widespread attention in
recent years. Available quantitative studies are either field-data-based
or simulation-based. Field-based studies30–33 have emphasized the
prolonged post-disaster school reconstruction process and its nega-
tive influence on education continuity. The former has been attributed
to funding delays, contract issues, the use of schools as temporary
shelters by local communities, political setting, land acquisition issues
(in cases where school relocation is needed), inaccessible roads for
transporting materials to remote locations, management type (i.e.,
community-managed or agency-managed projects), lack of skilled
labor, and flawed planning processes.

Studies have proposed simulation-based probabilistic frame-
works to simulate the post-disaster recovery of education systems.
Some of these studies34,35 have developed probabilistic frameworks to

simulate the post-disaster recovery trajectory of school infrastructure.
However, these studies do not consider the influence of the previously
mentioned sociocultural, technical, economic, environmental, and
political factors that significantly influence the recovery trajectory of
schools in marginalized communities, particularly in low- and lower-
middle-income countries. This may be attributed to the fact that such
studies are primarily designed to target developed communities (e.g.,
the USA). Hence, the applicability of such frameworks to tackle a wide
range of multi-dimensional issues within a marginalized community
maybe limited. Herein, we definemarginalized communities as groups
that experiencediscrimination andexclusion, especially inpre-disaster
mitigation and post-disaster recovery management policies, because
of unequal power relationships across social, economic, political, and
cultural dimensions.

Fewer studies have sought to contribute to post-disaster recovery
modeling in lower-middle-income countries. For example, Alisjahbana
et al.36 developed an optimization approach for school reconstruction
scheduling by minimizing the sum of the distance all students in the
region have to travel until all schools in the region are reconstructed.
However, it is noted that this approach’s applicability is limited when
critical issues suchas landavailability, construction site accessibility, and
school level can influence reconstructionprojects. Hence, amulticriteria
decision-making (MCDM) approach that accounts for the influence of
various factors on school reconstruction prioritization is needed.

We aim to contribute to the field of critical infrastructure resi-
lience by (1) proposing a post-disaster recoverymodeling approach for
education systems; (2) demonstrating how theproposed approachcan
support stakeholders in quantifying the impact of policies (such as
early response financingmechanisms and recoverymanagement type)
on education continuity. Our proposed framework explicitly incor-
porates an approach to account for sociocultural, technical, economic,
environmental, and political factors influencing the sustainable
recovery of school physical infrastructure in low and lower-middle-
income countries. First, the recovery time estimationmodule accounts
for various recovery enhancing and impeding factors through a sto-
chastic Program Evaluation and Review Technique (PERT), which
enables users to simulate desired levels of pessimism/optimism on
each task in the recovery process. Furthermore, the proposed
approach embeds a novel MCDM module for intervention prioritiza-
tion, which accounts for factors such as available intervention budget,
land availability, reliance on temporary learning centers (TLCs), age
group of students, enabling decision-makers to better account for
many factors/criteria that impact recovery in marginalized commu-
nities and for their preferences towards those criteria. We first sum-
marize the modeling approach. Then, we adopt a case-study
application to demonstrate how end users can use the proposed fra-
mework to identify policies for enhanced educational resilience to
disasters. For this purpose, a testbed school infrastructure system is
developed from a database of schools in Central Sulawesi, Indonesia37,
and is subjected to a hypothetical M7.0 earthquake event. The case
study in this paper benefits from insights into the recovery process
following the 2018Central Sulawesi earthquake fromengagementwith
multiple stakeholders under the auspices of the UK Research and
Innovation (UKRI)-funded ‘Resilient School Hubs’ project. The project
was approved by the University College London research ethics com-
mittee (UCL Ethics Project ID Number: ID280898). The case-study
application clearly shows the benefit of early response financing
mechanisms on education recovery. Furthermore, the case study
highlights the need for NGOs to rethink their approach to collabora-
tion with host communities during the post-disaster recovery process.

Results
Post-disaster recovery modeling framework
The proposed methodology combines five distinct modules to evalu-
ate the probabilistic post-disaster recovery trajectory of school
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infrastructure. The interdependence of education and utility lifelines
(e.g., water and power networks) is not discussed here because (1) past
events have shown that utility networks are quickly fixed following
disasters38; (2) due to climate conditions and architecture (i.e., large
windows), most schools in tropical countries are not significantly
dependent on the power supply; and (3) some of these schools in
tropical countries rely mainly on local wells, not municipal water
networks39. Interested readers are referred to other studies40 for more
information on simulating the interdependenceof buildings andutility
lifelines.

The first module of the proposed framework entails a hazard
analysis to simulate the local hazard intensity measures (e.g.,
earthquake-induced ground shaking, flood-induced water depth,
typhoon-induced wind speeds) at each school-building location for a
particular hazard scenario (i.e., a given event). The hazard analysis
adequately accounts for the spatial distribution of the intensities
throughout the region of interest. The secondmodule of the proposed
framework is a post-disaster functionality assessment, which entails
simulating the damage state of each school building conditioned on
the site-specific hazard intensity measure. Then, each school’s result-
ing post-disaster functionality level canbe estimateddependingon the
damaged state of each building. The primary functionality indicator
considered in this study is education continuity. According to the
Comprehensive School Safety (CSS) Targets and Indicators developed
by the Global Alliance for Disaster Risk Reduction and Resilience in the
Education Sector (GADRRRES)41, the main post-disaster education
continuity indicators include: (1) duration of disaster-induced school
closure; (2) the number of students displaced from schools; and
(3) number of students in TLCs. In line with the CSS indicators, we
define functionality level as the proportion of students with continued
access to education (either in a permanent or temporary learning
center). For each school, this is estimated as the ratio of students with
safe and occupiable classrooms to the total number of students in the
school. The third module is a decision-making analysis used to assess
the feasibility of education continuity in schools using rapid response
strategies such as class scheduling, construction/availability of TLCs,
and transfer of displaced students to neighboring schools. These rapid
mechanisms’ feasibility depends on government policies, available
finance mechanisms, and other socioeconomic and political factors.
The fourth module accounts for the fact that, in many cases, decision-
makers want to achieve competing goals under rigid constraints on
time, budget, and workforce to decide on school intervention prior-
itization. Also, other factors, such as the availability and residual life-
spanof temporary school structures, the proximity of displaced pupils
to neighboring schools with full functionality, and the number of dis-
placed pupils, are essential. Hence, the fourth module is a MCDM
analysis (accounting for the factors above) for intervention prior-
itization in schools with reduced functionality levels. Lastly, the fifth
module is a recovery model used for simulating the recovery time of
each damaged school building, accounting for the influence of socio-
cultural, technical, economic, environmental, and political conditions
on post-disaster recovery.

The probabilistic post-disaster recovery analysis generates reali-
zations of recovery trajectories (Q(t)), quantifying how quickly the
functionality is restored (rapidity) from the initial post-disaster func-
tionality level Qo, and the functionality recovery time tR (Fig. 1). The
model details are provided in the “Methods”.

Post-disaster functionality in the testbed community
Although the proposed framework is general and canbe applied to any
natural hazard of interest, we specifically consider the post-disaster
recovery of a community of 80 schools subjected to a significant
earthquake event (Fig. 2). The attributes of the schools (including
population, location, andbuilding characteristics) are heavily based on
the extensive database of 2500 schools collected by the authors in

Central Sulawesi42. The selected 80 schools represent the number of
schools within two districts. The decision to select a relatively small
testbed is based on the concept that disaster management decisions
are generally made at the local government level43. Furthermore, the
small testbed enables the visualization of the impact of each con-
sidered policy at the building level rather than considering low-
resolution information over a large grid area. We note that the Central
Sulawesi region is prone to cascading hazards. Given the focus of the
case study on earthquake-induced ground shaking, the main testbed
selection criteria are the low potential for earthquake-induced cas-
cading hazards (e.g., liquefaction, landslides, and tsunami) and the
reliability of available information on the schools. An inter-rater ana-
lysis was used to assess the reliability of the available information42.

A total of 280 school buildings are in the selected 80 schools. The
280 school buildings serve 17,055 pupils from the considered com-
munity.Of the 80 schools, 51 areprimary, and29 are secondary (Fig. 2).
In addition, 89% and 11% are one- and two-story buildings, respectively.
The one-story and two-story buildings are confined masonry and
infilled reinforced concrete frame buildings, respectively. In addition,
75% and 25% of buildings are assumed to be designed/built pre- and
post- the updated Indonesian seismic code (SNI 1726:2012)44, respec-
tively. The number of buildings in the 80 schools ranges from one to
nine, with a median of three and a standard deviation of 1.4. The
average pupil population in each school building is 61, with a standard
deviation of 16.5. For this study, we assume that all schools are state-
owned and the same policies apply to all. We note that the boundary
around the 80 schools in Fig. 2 is hypothetical (to guarantee the
anonymity of each specific school).

The case study is carried out for an M7.0 earthquake scenario
assumed to occur on a hypothetical North-Northwest-South-Southeast
(NNW-SSE) trending strike-slip fault (Fig. 2). A Vs30 of 300m/s is
assumed for the entire community. One thousand realizations of
spatially cross-correlated intensity measures (IMs) (i.e., spectral
accelerations) at the building locations (and for the building funda-
mental periods of vibration) are generated, as described in the “Hazard
Analysis” section of “Methods”. The post-earthquake functionality
assessment follows the modeling approach presented above and
described in detail in the “Methods”. Building-level fragilitymodels are
used for the post-earthquake functionality assessment. Due to the
absence of fragility models for schools in Palu, we selected fragility
models based on a review of published studies from similar archetypes
in South Asia and globally45–47. Based on expert judgment, we con-
cluded that the fragilitymodels from these countries could be adopted
in Palu. In addition, we note that the study aims to showcase the
proposed framework using realistic input data and discuss the relative
effect of various disaster-risk management policies rather than per-
form a detailed/realistic risk assessment. Additional studies are, how-
ever, recommended to develop fragilitymodels for school buildings in
Central Sulawesi.

Development of case-study scenarios
We now demonstrate how the proposed framework can support sta-
keholders with disaster management planning by quantifying the
influenceof various policies on the disaster recovery of their education
infrastructure. To ensurewe address realistic problems, the case-study
scenarios were highlighted from focus group discussions and inter-
views with school principals, NGO officials, government officials,
engineers, and contractors involved in the 2018 Central Sulawesi
earthquake recovery projects48. Information related to the stakeholder
engagement exercises (including details of the area of inquiry, stake-
holder engagement type, guiding questions, and the number of sta-
keholders) is available online48.

First, school stakeholders noted that insufficient anticipatory
funding was a critical factor in the lack of classrooms for school pupils
after the 2018 event. Furthermore, several schools had to rely on local

Article https://doi.org/10.1038/s41467-023-42407-y

Nature Communications |          (2024) 15:325 3



and foreign aid to build TLCs. Stakeholders noted that school com-
munities might respond better to disasters if there were tools to
forecast the amount of anticipatory funding required.

Another issue highlighted was the delay in reconstructing per-
manent school buildings in projects handled by NGOs. Due to this
delay, almost four years since the earthquake, several schools still use
TLCs (typically with a lifespan of 4–5 years). As a result, several schools

may be susceptible to increased education discontinuity if TLCs start
experiencing damage and loss of functionality.

Lastly, NGO officials discussed that they do not have a systematic
method of selecting schools to focus on for their reconstruction pro-
jects. The primary criterion considered was the availability of well-
cleared land for their projects. Due to delays in NGO projects, this
approach may be unfavorable to schools with significant reliance on
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Fig. 2 | Testbed school community adopted in the study. a The map of Central
Sulawesi showing Palu City, Sigi, Donggala, and Parigi Mountong regencies. The
hypothetical fault is shown with a dashed line. b The relative location of all
80 schools in the testbed. cThe distribution of the number of stories, age level, and

design era of school buildings is shown at the bottom left. Pre-code and post-code
buildings were constructed before and after the SNI 1726:201244 building code.
Credit: Imagery ©2023 TerraMetrics, Map data: Google ©2023.

Qpre

Q0

Q(t)

t0 t0 + tR

Functionality 
Loss

Robustness
Recovery 
time (tR)

Rapidity

Time

F
un

ct
io

na
lit

y 
le

ve
l o

f e
du

ca
tio

n 
sy

st
em

Median recovery 
trajectory

Realizations of 
recovery trajectories

Fig. 1 | Graphical representation of a community-level recovery trajectory.
Qpre is the pre-disaster functionality level;Qo is the initial post-disaster functionality
level immediately after the event (i.e., at time t0). The recovery time tR is the time to

restore full functionality to the system. Given that the analysis is probabilistic, the
generated recovery trajectory is also probabilistic in nature (i.e., multiple realiza-
tions of the recovery trajectory are simulated).

Article https://doi.org/10.1038/s41467-023-42407-y

Nature Communications |          (2024) 15:325 4



TLCs, especially if such schools could have otherwise benefitted from
other management types (e.g., community-led management).

The subsequent subsections in this paper adopt the three high-
lighted discussions in demonstrating the applicability of our proposed
framework to capture multi-dimensional issues affecting recovery.

Influence of available early response financing mechanisms on
education continuity
The most appropriate way to achieve a desirable post-disaster edu-
cation continuity level is through the effective retrofit/reconstruction
of school buildings in a pre-disaster scenario. However, several school
buildingswill remain vulnerable due to a lackoffinancial resources and
sufficient technical know-how to identify disaster-prone structures. A
helpful way for local authorities to plan for post-disaster education
continuity is through early response financing mechanisms49. Such
funding canbe used for interventions suchas repairing and retrofitting
damaged school buildings, constructing TLCs, and buying relevant
learning materials.

Using the proposed framework, we demonstrate how local
authorities can estimate a given school’s education continuity recov-
ery trajectory (through the construction of TLCs), accounting for the
uncertainties involved in the process. We assumed that because they
are ‘makeshift’ structures (i.e., tents), TLCs are typically non-
engineered and do not require skilled labor or heavy equipment for
their construction. Hence, the technical factors that affect the con-
struction of permanent structures (wherebuildingpermits areneeded,
the tender process may be necessary, and lack of building materials
and technical know-how are more influential) are not significant for
TLCs. Although not considered in this analysis, we note that the pro-
posed methodology can capture the influence of other recovery-
impeding factors on the construction of TLCs.

Engagement with the school principals48 showed that some
schools could carry out immediate post-disaster intervention using
anticipatory funding set aside from the school operational assistance
funding (locally referred to as Bantuan Operasional Sekolah (BOS))
provided by the government. More information on BOS can be found
online50. We observed that not all schools had this anticipatory fund-
ing, which impacted their recovery.

Figure 3 illustrates two cases of available anticipatory funding for
the schools subjected to the considered M7.0 scenario for the med-
ian IM realization. The first is a case where 45% of the 80 schools have
anticipatory funding. Without any model to simulate the capability of
principals to set aside anticipatory funding, we randomly assigned
anticipatory funding to 36 schools in the testbed. In reality, such data

can be collected by surveying school principals in a region of interest.
Based on field data from the 2018 Palu earthquake, we assume that the
average time to construct a TLC with early finance mechanisms is
40 days after the disaster. Using a timemitigation factor of 0.5 (i.e., for
community participaton - described in “Methods”), the optimistic time
a is taken as 20 days. The pessimistic time b is taken as 80 days by
assuming a time amplification factor, associated with delay in material
procurement, of 2.0. The most likely timem is taken as the average of
the sum of a and b (see discussions in “Methods”). For schools without
access to early response financing mechanisms, we assume that a, m,
and b are further amplifiedby a factor of 2.0 (i.e., due to delays in funds
disbursement) – i.e., a = 40 days, m = 100 days, and b = 160 days. As
shown in Fig. 3a, in a case where only 45% of the 80 schools have early
response financing mechanisms, only a small fraction of the schools
canensureeducation continuitywithin twomonths, and the remaining
schools may need to rely on foreign aid to construct TLCs, resulting in
an undesirable recovery rapidity level. On the other hand, sufficient
anticipatory funding (i.e., all 80 schools have anticipatory funding)
allows all the damaged school buildings to be immediately replaced by
TLCs. For the case-study community, we show that sufficient antici-
patory funding can reduce the recovery time for education continuity
(through rapid construction of TLCs) by a factor of up to three.

One of the advantages of this scenario analysis is that local
authorities can easily use a target hazard scenario, given the vulner-
abilities of schools in their communities, to plan for sufficient early
response financing for TLC constructionwhile stillmaking pre-disaster
efforts to mitigate the vulnerabilities of the schools (e.g., retrofitting).

Influence of management type on the reconstruction time for
permanent school buildings
The government, NGOs (both local and international), or the host
communities typically provide/contribute to post-disaster school
reconstruction project funding. Post-disaster recovery reports33 in
major global disasters show that most permanent school-building
reconstruction projects are either community- or agency-managed.
The community-managed approach is a locally implemented approach
where the construction management (e.g., material acquisition,
selection of building contractors) is led by local authorities, school
management committees, or host community leaders. The agency-
managed approach is a case where a government or non-government
entity leads the construction management.

Several field-based comparative studies33,48,51–54 have highlighted
the successes and weaknesses of community-managed and agency-
managed reconstruction projects (residential and school buildings) in

(a) (b)

Fig. 3 | Recovery trajectories for the considered budget availability scenar-
ios for the median ground-motion intensity field. a The effect of minimal
anticipatory funding (i.e., only 45% of all schools have funding); b the effect of

sufficient anticipatory funding (i.e., all schools have funding). The dashed boxes
show the influence range of the funding mechanisms.
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lower-middle-income countries. For example, the abundance of local
knowledge and experience positively influences the recovery process
of community-managed projects and achieves higher beneficiary
satisfaction. Also, the fact that the drivers of community-managed
projects (i.e., local authorities, school management committees, or
host community leaders) typically reside in the communities is a
strong motivation to ensure higher quality and rapidity in recon-
struction projects. On the other hand, the agency-managed approach
has been described as a ‘one-size-fits-all’ approach intended to suit
donors and implementing agencies and rarely involves the target
beneficiaries51,52. Typically, agency-managed projects are subjected to
delays resulting from internal bureaucracy, agreements with the local
authorities, community, and school authorities, and the lengthy bid-
ding process for engineers and contractors. Nevertheless, regardless
of themanagement type, a given time is spent on damage assessment,
clearing the site of rubbles (or identifying a relocation site), getting the
relevant building permits, and so on.We note that principal interviews
and focus group discussions with key stakeholders (engineers, con-
tractors, government, and NGO officials)48 actively involved in the
recovery process of the post-2018 Palu earthquake highlighted sig-
nificant delays of agency-managed projects in Palu.

Considering all these impeding factors in the recovery modeling
framework, the cumulative distribution function (CDF) of the simu-
lated post-disaster reconstruction time for a school building from
community- and agency-managed projects can be assessed as pre-
sented in Fig. 4. We explicitly account for the influence of delayed
bidding process, internal bureaucracy on the bidding, and construc-
tion mobilization of agency-managed projects through recovery time
amplification factors described in “Methods”. In line with the earlier

discussions, these challenges are assumed to be less prominent
in community-managed projects and are not considered in the
recovery time modeling process (See Table 2). In a pre-disaster sce-
nario, the required time to construct a typical one-story school
building in Palu is 4–6months48 (see “Methods” formore information).
As shown in Fig. 4, community-managed projects, on average, would
be completed more than two times slower than in a pre-disaster
scenario.

We note that we interviewed 16 school principals with recon-
struction projects in their schools and discovered that the completion
time ranged from 180 to 400 days48. This range is effectively captured
in Fig. 4, providing some evidence of the validity of our proposed
framework. We can compare the observed recovery time of collapsed
buildings in Palu with the simulated recovery time because the
recovery timemodels are conditioned on the post-earthquake damage
state and not the earthquake scenario (i.e., ground-motion intensities).

On the other hand, as shown in Fig. 4, agency-managed projects
are likely to be completed 2–4 years after the disaster. We also asses-
sed ongoing agency-managed reconstruction projects in Palu by
interviewing NGO officials and contractors. For an unnamed NGOwith
a significant number of school reconstruction projects in the Palu
region,most reconstruction sites have not yet been reached four years
after the disaster. More details are provided in Opabola et al.48. Hence,
constructing permanent structures in those schools may take up to
five years or more.

A key recommendation from this case study is that the govern-
ment needs to understand that agency-managed projects may be
delayed. As such, local authoritiesmay only consider allowingNGOs to
manage the reconstruction of schools that a prolonged reconstruction
process would impact less. Further discussions on this are provided in
the subsequent case study scenario. Furthermore, the efficiency of
agency-managed projects can be improved through more trust and
collaboration with local communities. For example, NGOsmay choose
to disburse funds to support efficient community-managed recon-
struction projects rather than manage projects themselves.

Accounting for the influence of sociocultural, environmental,
and political on the recovery process
Apart from the typical technical and financial delays in the recovery
process, sociocultural, environmental, and political issuesmay impede
or speed up recovery. For example, following the 2004 Indian Ocean
tsunami, recovery projects in conflict zones in Sri Lanka were eight
times slower than in areaswithout conflicts55. Being able to account for
such sociocultural and political factors can enable local authorities to
understand how existing issues could further impede recovery in their
zones. The proposed methodology accounts for these conditions
through amplification factors calibrated using data from past events.
These factors are applied to the relevant intervention process, as
described in the “Methods” section.

Using the proposedmethodology, we explore how a combination
of sociocultural, environmental, and political issues can influence the
average reconstruction time for community-managed and agency-
managed projects. Five factors were considered—(1) hostile political
conditions; (2) pandemic; (3) land disputes (for relocation projects);
(4) poor management skills of contractors; (5) a combination of land
disputes and poor management skills of contractors. For this analysis,
the average mobilization and inspection time for the community- and
agency-managed projects are combined with time amplification fac-
tors using Eqs. (3)–(5) in a probabilistic manner (see description in
“Methods”).

Figure 5 presents the output of the probabilistic analysis and
shows how various sociocultural, environmental, and political condi-
tions can impede school reconstruction projects. For the considered
scenarios, hostile political conditions resulted in the longest recovery
time for permanent school buildings. As shown in Fig 5, the estimated
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reconstruction time for community-managed (median of 310 days) and agency-
managed (median of 860 days) projects. The reconstruction times in the testbed
community are estimated using the recovery time model presented in Eqs.
(3)–(5). The CDF accounts for recovery-impeding (i.e., time amplification) factors
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process in these types of projects. The range of completion times for community-
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contract termination date for one of the prominent NGOs handling reconstruc-
tion projects in over 20 schools in Palu48.
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median recovery time for reconstructing a damaged school building is
significantly influenced by the management type and the considered
recovery impeding factors. For the considered scenarios, hostile
political conditions resulted in the longest recovery time for perma-
nent school buildings. For example, local authorities may decide to
encourage only community-managed projects in regions with hostile
political conditions based on the information presented in Fig. 5.

Influence of decision-makers’ preferences on school
reconstruction prioritization
As mentioned earlier, during the interviews, NGO officials involved
in reconstruction projects discussed the lack of a systematic
methodology for developing a school reconstruction prioritization
list. The proposed framework includes a MCDM module that can
support the government or NGOs in creating such a school recon-
struction prioritization list. However, it is noted that the

prioritization list depends on the weights decision-makers append
to each criterion. Therefore, criteria weights for developing the
prioritization list are selected based on subjective judgment.
Nevertheless, decision-makers can use ourmethodology to perform
sensitivity analyses and see how the prioritization hierarchy fluc-
tuates for a given suite of criteria weights.

Figure 6 describes a case study where decision-makers are inter-
ested in four criteria (described in “Methods”) and three scenarios. The
first scenario is where the decision-makers consider the level of a
school’s reliance on TLCs as the primary criterion for identifying
schools that need to be prioritized for permanent structures’ (re)con-
struction. The second scenario examines a case where affordability is
considered themost important criterion, while the third scenario looks
at a case where all four criteria are equally weighted (i.e., zero bias).

Figure 7a looks at defined performance metrics for the 15
damaged schools with average post-disaster functionality lower than
0.33. Further discussions on how the criteria and performancemetrics
are defined are provided in “Methods”. Using the proposed approach,
Fig. 7b provides the reconstruction prioritization hierarchy for each
scenario. As shown in Fig. 7b, the selected weights significantly influ-
ence the list. As shown in Fig. 7a, School 15 is an elementary school that
relies heavily on temporary structures, but the reconstruction project
would take 27% of the available budget. For scenario 1 (preference for
schools relying on temporary structures), School 15 gets prioritized
(Fig. 7b).However, in scenario 2where the decision-makers choose not
to prioritize the most capital-intensive projects, School 15 drops in the
prioritization order. The MCDM can enable decision-makers to visua-
lize whether their bias (reflected in criteria weights) results in inclusive
recovery.

Local authorities can use the reconstruction prioritization list to
designate school interventionprojects to differentmanagement types.
For example, schools ranking low in the prioritization list may be
designated as agency-managed projects. It is also noted that the
ranking list can always be updated by repeating the analyses whenever
local authorities update the performance metrics and/or criteria
weights.

Discussion
We recognize that one of the best ways to enhance the resilience of
education systems is through appropriate retrofit of existing school
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buildings before any significant hazard hits. Yet, it is also essential to
acknowledge that financial and technical constraints may make redu-
cing the physical vulnerabilities of all existing buildings unrealistic.
Moreover, disaster risk reduction ismore challenging in lowand lower-

middle-income countries due to various sociocultural, technical, eco-
nomic, environmental, and political motivations. Therefore, another
approach for enhancing the post-disaster resilience of education sys-
tems in low and lower-middle-income countries is through policies
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Fig. 7 | School reconstruction prioritization analysis. a Performance metrics for
the 15 damaged schools used in the multicriteria decision-making analysis.
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in Fig. 6.
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that ensure education continuity, accounting for the vulnerabilities of
existing building portfolios.

This study presented a novel framework for simulating the
probabilistic recovery trajectory of education systems. The proposed
framework accounts for the influence of sociocultural, technical,
economic, environmental, and political factors on the post-disaster
recovery process of education systems. Local authorities can use the
proposed framework to quantify the potential efficacy of several
policies, given their limited resources and other local issues in their
communities.

We demonstrated the application of the proposedmethodology
to a hypothetical earthquake scenario impacting a testbed of 80
schools developed from a database of schools in Central Sulawesi,
Indonesia. The analyses reveal that early response financing
mechanisms can help speed up education recovery by a factor of
three. Also, community-managed school reconstruction projects are
likely to be completed up to three to five times faster than agency-
managed projects.

While the considered case studies focus on financing mechan-
isms, (re)construction management type, and the influence of socio-
political, environmental, and cultural factors on the recovery process,
the framework can also be used to simulate the influence of modular
construction, retrofit programs, and increased constructionworkforce
on the community-level resilience of education systems. We note that
the results presented in this paper reflect observed patterns from the
post-2018 Sulawesi earthquake recovery process in schools in Palu,
Sigi, andDonggala (Indonesia). Hence, the proposedmethodology can
support policy-making exercises by adequately considering disaster-
vulnerable communities’ sociocultural, technical, economic, environ-
mental, and political issues.

Methods
The proposed methodology and presented results integrate several
probabilistic and MCDM analyses to simulate the post-disaster
education continuity level and recovery time for education
systems at the building- and community levels. The framework
flowchart is presented in Fig. 8. The figure shows that the first three
steps are building-level analysis modules, while the remaining are
community-level analysis modules. The analytical steps are sum-
marized below.

Hazard analysis
We derived earthquake-induced ground-motion intensity measures
(IMs, herein peak ground accelerations (PGA) and spectral accelera-
tions at 0.2 sec (Sa (0.2 sec)) for the one- and two-story buildings,
respectively) at each school building site using the Campbell and
Bozorgnia ground-motion model56. Furthermore, we used the Princi-
ple Component Analysis approach57 to generate 1000 realizations of
spatially cross-correlated spectral intensities at the building locations.

Post-disaster functionality assessment
For each of the thousand realizations of spatially correlated spectral
accelerations, the post-disaster functionality level of each building is
simulated. In this process, the post-earthquake damage state of each
school building is simulated using fragility models quantifying the
probability of an asset exceeding a given level of damage (i.e., none,
slight, moderate, extensive, and complete) at different hazard inten-
sity values. Buildings with no and slight damage are classified into
functionality level zero (FL0) and one (FL1), respectively, and were
assumed to be safe for immediate occupancy. Buildingswithmoderate
damage are classified into FL2 and assumed to be uncollapsed but
unsafe for occupancy. Lastly, buildings with extensive and complete
damage are classified as FL3. The assumed median fragility estimates
(PGA) for the pre-code one-story buildings are 0.2g, 0.55g, and 0.60g
for FL1, FL2, and FL3, respectively. The assumed median fragility esti-
mates (PGA) for the post-code one-story buildings are 0.50g, 0.90g,
and 1.1g for FL1, FL2, and FL3, respectively. The assumed median fra-
gility estimates (Sa(0.2 sec)) for the pre-code two-story buildings are
0.50g, 0.90g, and 1.2g for FL1, FL2, and FL3, respectively. The assumed
median fragility estimates (Sa(0.2 sec)) for the post-code two-story
buildings are 1.0g, 1.85g, and 2.30g for FL1, FL2, and FL3, respectively. A
lognormal standard deviation of 0.4 was assumed for all fragility
models.

The post-disaster functionality of a school s (i.e., the proportion of
students with access to a classroom in the school) given a jth simulated
ground-motion IM level resulting from an earthquake scenario EQ is
then assessed as:

qs
0,j IM

s
j ,EQ

��� =
ns
st FL0,1 IM

s
j ,EQ

���
ns
st tot

ð1Þ
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Fig. 8 | Flowchart for the proposed framework. The first three steps are building-
level modules that define the hazard intensity measure, post-disaster functionality
level of impacted buildings, and required post-disaster intervention on damaged

buildings. The community-level modules define intervention prioritization and
recovery trajectory for damaged schools, accounting for technical, environmental,
socioeconomic, political, and cultural factors influencing recovery.
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where ns
st FL0,1 is the population of students with access to FL0 and FL1

buildings in school s (s = 1, 2, ..., 80 for the case study), and ns
st tot is the

total population of students in school s.
The community-level functionality (i.e., the proportion of stu-

dents with access to a classroom in the community) given a simulated
ground motion IM level resulting from an earthquake scenario EQ
(Q0,j EQj ) can also be expressed as:

Q0, j EQj =
Xns

s = 1

qs
0,j IM

s
j ,EQ

��� ð2Þ

where ns is the number of schools in the community.
The community-level functionality can also be expressed in terms

of population as the product of Qo,j, and the total number of students
in the community.

Decision-making analysis
Here, we decide on the appropriate intervention phase for school
buildings at each functionality level. We assumed that FL0 and FL1
buildings could be occupied during minor repairs to structural and
non-structural components. Hence, there is no need for any TLCs. On
theother hand, FL3buildings require themost significant intervention.
We assumed that all FL3 would initially be replaced by TLCs, followed
by the construction of permanent structures58. FL2 buildings are
assumed to require temporary closure pending heavy repair and/or
strengthening work on damaged components.

Intervention prioritization analysis
The intervention prioritization analysis is needed for developing an
intervention prioritization list for damaged schools at the community
level. However, in cases where each school makes its decision, this
analysis is unnecessary. For example, we did not use the intervention
prioritization analysis for the case study on the influence of available
finance mechanisms at each school for the construction of TLCs.

The intervention prioritization list is developed in this study using
the technique for order of preference by similarity to ideal solution
(TOPSIS)59—a MCDM method. MCDM has been adopted in this study
because of its popularity and simplicity. It can be easily implemented
by relevant decision-makers (e.g., local disaster risk management
authorities, education ministries, and international NGOs)60. For the
sake of brevity, the calculation steps are not shownhere. The inputs for
the TOPSIS method are the performance metrics and criteria weights.
Four criteria are considered based on stakeholder engagement pre-
sented in a separate study48 (See Table 1). Aside from the four con-
sidered criteria, decision-makers may consider others (e.g., proximity
to neighboring schools with available space for new students, school
management type—i.e., private- or government-owned). However, we
do not consider proximity to neighboring schools in this study
because other studies have highlighted the negative impact of school
mobility (e.g., lower academic achievement, reduced social interac-
tions, andhealth and developmental problems) on school children61–63.

The first criterion is intervention affordability. This criterion
accounts for the fact that decision-makers may be interested in
ensuring the available financial resources are spread over a wide range
of schools as much as possible. Therefore, the performance metric is
defined as the proportion of the reconstruction cost for each school

relative to the total available financial budget. In the considered case
study, we look at a scenario where the reconstruction cost for the
entire school community exceeds the available budget (i.e. sum of all
the affordability performance metrics is greater than 1.0).

The second criterion is land availability which accounts for the
fact that construction work can only occur if the required landmass is
available. For example, prioritizing a reconstruction/relocationproject
for a school with ongoing local land disputes may not be optimal. A
binary metric is adopted here. Values of 0 and 1 are adopted for cases
without and with land availability, respectively. For the case study, we
randomly assumed that three schools are located where post-disaster
school reconstruction projects are prohibited, and the government
has yet to sort out relocation logistics (i.e., land acquisition) for these
three schools.

The third criterion is the availability of temporary structures. The
urgency of permanent reconstruction to replace damaged school
structures is related to the availability and lifespan of temporary
structures constructed after the disaster. For example, quick (re)con-
struction of buildings for schools without temporary structures is
essential to ensure education continuity. Also, in the case of schools
with temporary structures, it may be necessary to ensure that newly
constructed permanent facilities are available by the end of the life-
span of the temporary structures. Supplementary Table 1 presents
performance metrics for ‘reliance on temporary structures’ as a func-
tion of the proportion of temporary structures (i.e., percentage of
school buildings in the considered school that are temporary struc-
tures) and the estimated age of temporary structures at the expected
completion of permanent structures. Supplementary Table 1 has been
developed with the assumption that the average lifespan of the tem-
porary structures is 4–5 years. In the case study, the estimated age of
TLCs at the expected completion date of permanent structures is
taken as the median reconstruction time of a permanent school
building (i.e., 310days– seeCDF in Fig. 4). It is noted that the estimated
median reconstruction time is associated with the considered
recovery-impeding factors in the case study. For schools requiring
more than one new permanent building, we assume that the age of
TLCs at the expected completion date of permanent structures is
greater than four years (i.e., based on the assumption that new build-
ings in each school are reconstructed in sequence). For example, for
school ID 2, the performance metric for reliance on temporary struc-
tures is 0.6 because 50% of the current school buildings are TLCs.

The fourth criterion is the age group of students in the school
requiring intervention. The decision-makers may desire to assign
priority levels to different age groups. In this study, we assumed that
elementary schools have the highest priority, junior high schools have
medium priority, and senior high schools have the lowest priority
(Supplementary Table 2).

As in Table 1, we treat three of the criteria as benefit criteria (i.e.,
an increase in the performancemetric would result in a school gaining
a higher priority on the intervention list). For example, a school with
only (100%) temporary structures on the premises with an average
expected age at the end of the reconstruction process greater than
four years has a metric of unity (See Supplementary Table 1). This
means that such a school would be prioritized over a school in which
less than 20% of the school buildings are temporary structures. The
intervention affordability is treated as a cost criterion (i.e., an increase
in the corresponding performance metric would result in a school
having a lower priority on the intervention list).

Recovery time modeling
Recovery models are used to simulate the recovery trajectory of a
given school building for each realization of ground-motion IMs. The
influence of sociocultural, technical, economic, environmental, and
political (STEEP) conditions/factors is incorporated in the recovery
models using recovery timemitigation (α) and amplification factors (β)

Table 1 | Criteria for school intervention prioritization

Criteria Category

C1 Available intervention budget (Affordability) Cost

C2 Land availability Benefit

C3 Reliance on temporary structures Benefit

C4 Age group of students Benefit
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through stochastic network analysis40. The average recovery time is
assumed to be the sum of the average time required to inspect
damaged buildings (Tinsp), for the bidding and construction mobili-
zation (Tmob), and to restore functionality through selected interven-
tion process (Tint)—the three considered phases. The optimistic time
(i.e., theminimum time required to complete each recovery phase) for
each of the three phases for a building z is:

ai,z tð Þ STEEPj ,FLz =
Yp

l = 1

αi,l tð Þ STEEPj ×Ti,z FLz
�� ð3Þ

where i is the recovery phase, i.e., inspection, mobilization, or inter-
vention; T is the average time to complete a process in a pre-disaster
scenario (i.e., without any direct or indirect influence of time-impeding
factors), l are the considered time mitigation factors (α) (l= 1, 2, ..., p)
influencing phase i; and t is the time since the earthquake occurrence.
Recoverymitigation andamplification factorsmaybe time-dependent40;
hence ai,z is time-dependent. STEEP refers to sociocultural, technical,
economic, environmental, andpolitical factors that caneither impedeor
speed up recovery, e.g., construction delays, funds availability, land
dispute issues, pandemics, conflicts, and community participation level
in the recovery process. Equation (3) assumes that the time mitigation
factors have sequential impacts. In a case where concurrent impact is
assumed, the minimum value of the mitigation factors (rather than the
product of the factors) is considered.

Table 2 presents the considered recovery processes and corre-
sponding time for community-managed and agency-managed
(re)construction projects. The adopted times are based on outputs
from semi-structured interviews with NGOs, engineering firms, and
contractors actively involved in reconstruction projects in the Palu
region48.

Supplementary Table 3 presents a range of recovery time miti-
gation and amplification factors based on a survey40 of observations,
interviews, and focus group discussions from published studies that
have compared pre- and post-disaster reconstruction projects in
lower-middle income countries. For example, reports64 show that the
absence of local government resulted in several months of delays
before post-disaster emergency support could reach specific regions
affected by the 2015 Gorkha earthquake in Nepal. Furthermore,
resolving fundamental issues (e.g., tender process, building permits,
and land acquisition) took at least four times the required time. Data55

show that the recovery rate of buildings in Sri Lanka following the
2004 Indian Ocean tsunami was eight times larger in conflict zones
compared to zones outside the conflict region. Reports65,66 have
highlighted that poor management skills can lead to construction
delays, rejection by beneficiaries, rework, and demolition of newly
constructed buildings. Such delays can impede the recovery time by a
factor of up to three. Furthermore, the current authors48 interviewed
engineers, contractors andNGOofficials involved in thepost-2018Palu
earthquake recovery. The interviews provided information on the
increase in the time to complete various tasks relative to pre-disaster

scenario. All this information contributed to Supplementary Table 3 in
the supplementary notes. A key limitation of the proposed recovery
time mitigation and amplification factors (Supplementary Table 3) is
that they are based on limited data. Future studies can refine these
factors when more data become available. Also, we recognize that
recovery-impeding factors (and related data) vary for different events,
countries, and local contexts. This is a big challenge for data trans-
ferability. To address this, the factors presented in the table are pro-
vided as ranges based on values from different countries of similar
human development indices, rather than single average or median
values. It is intended that users can select a value within the range that
best replicates their own local context and adopt it in the PERTmodel.
The PERT model further allows users to simulate desired levels of
pessimism in recovery time analyses. It is expected that risk modeling
tools adopting this approach (including selecting relevant factors for
their own scenario) will provide useful insights into possible future
scenarios and their outcomes.

Equation (3) accounts for the fact that the time spent in each
recovery phase is dependent on the functionality level of the building.
Tint for constructing a new TLCwould be different from the permanent
construction of a new building to replace an FL3 building or repair an
FL2 building. As earlier mentioned, although not shown in Eq. (3), the
functionality level of eachbuilding is conditionedon the IM realization.

Similarly, the pessimistic time b (i.e., the maximum time to com-
plete each phase) is estimated as:

bi,z tð Þ STEEPj ,FLz =
Yq

n= 1

βi,n tð Þ STEEPj ×Ti,z FLz
�� ð4Þ

where n are the considered amplification factors (β) (n = 1, 2, ..., q)
influencing phase i. Similarly, bi,z is time-dependent. Equation (4)
assumes that the time amplification factors have sequential impacts. In
a casewhere concurrent impact is assumed, themaximum value of the
amplification factors (rather than the product of the factors) is used.

The most likely duration (m) captures the highest likelihood of
completing a recovery phase in a given timeframe. If there is a higher
likelihood that the mitigation factors would be more prevalent than
the amplification factors,m is defined to be closer to a. Otherwise,m is
defined closer to b. When uncertain, m can be defined as 0.5(a+b).

The defined time parameters (i.e., a, m, and b) are then used to
generate a PERT distribution for each recovery phase. The defined
probabilistic duration parameters for each task are then used to carry
out plainMonte Carlo sampling. Hence, for each realization j of IM, the
probable recovery time for a school building z to achieve its full
functionality Qz,f ull (either through a TLC or permanent building
construction) is estimated as:

tzr,j STEEP,FLz
�� =Tz

insp,j STEEP,FLz
�� +Tz

mob,j STEEP,FLz
�� +Tz

int,j STEEP,FLz
�� ð5Þ

The post-earthquake recovery trajectory for an entire school with
nbld buildings is defined as:

Q s
j ðtÞ=

Xnbld,s

z = 1

Qz,s
j ðtÞ ð6Þ

The recovery time for a school is defined as:

tsr,j = max t1r,j ,t
2
r,j, . . . ,t

nbld,s

r,j

� �
ð7Þ

The recovery trajectory for the entire community with ns schools
for each IM realization j is defined as:

Q c
j ðtÞ=

Xns

s = 1

Xnbld,s

z = 1

Qz,s
j ðtÞ ð8Þ

Table 2 | Average time for various stages of the recovery
process for one-story school buildings in Central Sulawesi

Recovery phase Average time T [days]

Agreement between agencies and local authorities* 90

Tender process* 180

Structural design 60

Building construction permit 90

Reconstruction time (includes substructure and
superstructure)

180

*Only considered for the agency-managed projects. These values are from semi-structured
interviews with NGOs, engineering firms, and contractors actively involved in reconstruction
projects in the Palu region
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The recovery time for the entire community is defined as:

tR,j = max t1r,j,t
2
r,j , . . . ,t

s
r,j

� �
ð9Þ

Data availability
The school database used in this study is described in Opabola et al.42

and is publicly available37. For confidentiality purposes and compliance
with the guiding ethics policy, any information that can be used to
identify the schools has been redacted in the uploaded database.
However, we are willing to share more information (under strict pro-
tocols)with other researchers. The stakeholder engagement, including
guiding questions, adopted in the study are reported in Opabola
et al.48.

Code availability
All code used to conduct this analysis is freely available at https://
github.com/TayoOpabola/Post-disaster-modelling-of-school-
infrastructure (https://doi.org/10.5281/zenodo.10070853).
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