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Abstract: Highly dimensional data generated from bacterial whole-genome sequencing is providing
an unprecedented scale of information that requires an appropriate statistical analysis framework to
infer biological function from populations of genomes. The application of genome-wide association
study (GWAS) methods is an appropriate framework for bacterial population genome analysis that
yields a list of candidate genes associated with a phenotype, but it provides an unranked measure
of importance. Here, we validated a novel framework to define infection mechanism using the
combination of GWAS, machine learning, and bacterial population genomics that ranked allelic
variants that accurately identified disease. This approach parsed a dataset of 1.2 million single
nucleotide polymorphisms (SNPs) and indels that resulted in an importance ranked list of associated
alleles of porA in Campylobacter jejuni using spatiotemporal analysis over 30 years. We validated this
approach using previously proven laboratory experimental alleles from an in vivo guinea pig abortion
model. This framework, termed µPathML, defined intestinal and extraintestinal groups that have
differential allelic porA variants that cause abortion. Divergent variants containing indels that defeated
automated annotation were rescued using biological context and knowledge that resulted in defining
rare, divergent variants that were maintained in the population over two continents and 30 years.
This study defines the capability of machine learning coupled with GWAS and population genomics
to simultaneously identify and rank alleles to define their role in infectious disease mechanisms.

Keywords: porA; infectious disease; XGBoost; Campylobacter; abortion; protein modeling; artificial
intelligence; allelic variation; bacterial metastasis

1. Introduction

Comparative microbial genomics has relied on pangenome comparisons to characterize changes
in the core and flexible genome, which provided genes lists associated with gene changes but had
little association with determine the causal genes for a disease [1]. An alternative approach to this
perspective is the use of genome-wide association (GWAS) analyses, which are commonly used in
mammalian genomics, in an effort to refine the estimates of specific genes of interest for microbial gene
association with phenotype, such as pathogenicity. However, a limitation of GWAS is the sequential
examination of single loci, which prevents simultaneous analysis of multiple genes or allelic variants
that may interact to cause a phenotype. This is a severe limitation in comparative bacterial genomics,
especially as the population of bacterial genomes continues to grow reaching nearly 1 million in
With this large number of genomes that often represent multiple genomes for a single species or
serotype, it is appropriate to treat each genome as a member of a population of individuals that are
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spatiotemporally distributed. A spatiotemporal analysis framework makes it possible to examine the
non-linear evolutionary rates of each genome in combination with specific selective conditions for
all of the alleles of specific genes found in very large populations that are maintained or diluted in
populations that are consistently associated with microbial phenotypes—especially disease and tissue
tropism. However, this approach adds to an ever-growing big data problem for microbial genomics
requiring new approaches for microbial comparative genomics and statistical methods. To address
these limitations with highly dimensional bacterial genome analyses, we can use the integration of
multidimensional metadata alongside the strain differences to create a robust analysis framework that
can be used with GWAS [2].

A compounding limitation of this framework is the lack of appropriate statistical models that
underpin this approach in bacteria since it is unknown when the populations are normally distributed
or evolving non-linearly. As with all big data problem sets, the multiple comparisons problem requires
a correction, such as the Bonferroni correction, to adjust the p-value, which moves this correction
to problems that are beyond what was contemplated when this approach was invented for gene
expression (Table 1) [3]. Further, the assumption that each gene or allele behaves independently within
the genome is conceptually flawed in bacteria considering the operon configuration, horizontal gene
transfer (e.g., plasmids), and the evolution rate of bacteria are on the order of minutes rather than years
in mammals. Hence, alternative analyses that are biological and statistically compatible need to be
defined for bacterial population genomics.

Table 1. Exemplar comparison of statistical metrics of genome-wide association study (GWAS) versus
machine learning metrics. Allelic variant association with phenotype using XGBoost. An allele can
be very large, ~8000 for porA for a pairwise comparison. Using a population of this gene from 200
genomes created a population variation of 1.2 million variants that can be ranked with an estimation of
importance to association with the disease phenotype, abortion in this case.

GWAS Statistical Metrics Machine Learning Coupled to GWAS Metrics

Allele GWAS p-Value Bonferroni Corrected p-Value Candidate Ranking Feature Importance

X1 0.001 8.3 × 10−10 1 80

X2 0.001 8.3 × 10−10 2 75

X3 0.001 8.3 × 10−10 3 70

Xn 0.001 8.3 × 10−10 Rankn Importancen

Coupling GWAS, population microbial genomics, and machine learning is poised to be a robust
alternative to classical GWAS or pangenome comparisons alone; however, the combination of these
methods will likely simultaneously discover changes in microbial genomes and gene variation that
span the spatiotemporal scale, genome plasticity, and large numbers of selection conditions that result
in gene variation that maybe causal in disease but with only a subset of gene variants or specific alleles
with cause variation in the disease symptoms. Moreover, this combination (coined here as µPathML)
produces a statistically valid method that results in biologically informative rankings for each genome,
gene, and allele that are not determined from any of the individual analyses alone. These advantages,
combined with downstream inspection of the prioritized rankings, further power biological discovery
to bring insightful observations about the genome and the phenotype, especially when large genome
populations are used in the analysis, from very divergent populations of alleles. To extend this
concept, highly divergent sequences with similar function that are missed with automated gene calling
approaches can be brought back into biological relevance, especially if gene mutations are tracked as
new genes as was done by Weimer et al. [4] and Kaufman et al. [5–7].

An analytical strength of machine learning for use in microbiology is the ability to define functional
relationships from population-scale genome comparisons or genes without a priori definition of the
underlying mechanism of change or specific phenotype limitations [8]. This distinctive advantage
makes machine learning superior to classical statistical tests for microbial applications because the
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individual genomes are so highly variable in gene content and phenotypes that lead to varying displays
of the disease and tissue location [9,10]. This is particularly useful in bacteria when causal genes act in
combination or do not evolve linearly, gene variants interact, varying evolutionary rates between genes
within the same genome, or assumptions of normal distribution are violated in part due to the selection
conditions [2,11]. These biological conditions and parameters are incompatible with the assumptions
of linear or correlative statistics, which is compounded with data reduction methods, which provide a
very small snapshot of the genome variation that yield associations with low predictive value that is
compounded by highly variable genomes of the same species [12–15], such as with microorganisms.

2. Materials and Methods

2.1. Biological Feature Engineering

Biological feature engineering entails selection of pertinent controls and cases for µPathML
analysis. The genomes between gastrointestinal and extraintestinal abortive isolates. Campylobacter
jejuni controls were downloaded from Patric 3.5.28 (https://www.patricbrc.org/), 1 June 2019 (Table S2).
Abortive extraintestinal genomes of C. jejuni were obtained from the Sequence Read Archive (SRA; Table
S3) [16]. Fastq files were assembled using Shovill (version 1.0.4; https://github.com/tseemann/shovill).
Assembled files were annotated with Prokka (version 1.13.3) [17]. Variant calling was done with the
reference sequence C. jejuni NTC11168 with Snippy (version 4.3.5; https://github.com/tseemann/snippy)
as previously described [18].

2.2. Gradient Tree Boosting as GWAS Framework

GWAS variants generated from the biological feature engineering step were used as input
for XGBoost. The original source code for implementing gradient tree boosting is available at
https://xgboost.readthedocs.io/. A confusion matrix was generated and used to assess the performance
of the model (Table S4). The relative importance of the predictive model was used as the GWAS hits.

2.3. Tetris Plot

Classical GWAS hits are displayed as the negative logarithm of the p-value in Manhattan plots,
hence we formulated a novel visualization of the ranked alleles generated by the machine learning
model to highlight the difference between approaches—we call this GWAS hit visualization a Tetris
plot and used when color coding the relative importance values of the associated alleles derived from
the XGBoost (green being associated and red being non-associated). The source genome is plotted on
the y-axis and genomic coordinates on the x-axis overlaid with a GWAS hits presence or absence matrix.

2.4. Population-Wide Whole-Genome Phylogeny

The genome distance metric was calculated using genome-wide k-mer signatures to generate the
population-wide phylogeny with a k-mer size of 31 scaled to 1000 with Sourmash [19]. The resulting
genome-wide k-mer distance was visualized as an all-against-all heatmap [19].

2.5. Protein Modeling

Assembled genomes were annotated using Prokka (Version 1.13.3) and PorA protein sequences
were extracted for protein modeling using Swiss Model [20,21]. The most homologous protein was
used as template for protein modeling. Illustrate (https://ccsb.scripps.edu/illustrate/) was used to
generate the protein visualization of the alleles. Ranked BioML alleles identified by visual inspection
of the Tetris plot, via the ranked variable importance were used to inspect the protein structures.

3. Results

In this study, we coupled GWAS with machine learning and population bacterial genomics
(Figure 1) creating a broadly applicable framework that was validated using previously published

https://www.patricbrc.org/
https://github.com/tseemann/shovill
https://github.com/tseemann/snippy
https://xgboost.readthedocs.io/
https://ccsb.scripps.edu/illustrate/
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verified alleles of a virulence gene that causes abortion in livestock [16,22,23]. We hypothesized
that specific alleles of a single gene (i.e., porA) define the ability of Campylobacter for extraintestinal
invasion and further are causative of abortion with specific alleles. This was done using a wet-lab
validated data set containing 100 genomes [16,22,23] combined with machine learning using extreme
gradient boosting (XGBoost) [24,25]. The ability to interrogate the predictive features emerged as
a tool to determine mechanistic function in complex biological systems [26]. XGBoost implements
adaptive optimization within the functional space by iteration of the weak learners into strong learners
represented by decision trees, where each new decision tree is generated by factoring the residuals
generated from the difference from the observed to the predicted feature (Figure 2; Table S1).
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Figure 1. Biological feature engineering of genomic data for machine learning analysis. A critical step in
feature engineering is selection of the appropriate comparison groups to enable classification of alleles
that are related to the specific phenotype of interest (i.e., intestinal (controls; diarrheal; n = 108) and
extraintestinal (cases; abortive; n = 85) (Step 1). Population-wide allelic variants (red dot = intestinal,
green dot = extraintestinal) that result from variant calling (Step 2) and are used as the input features for
machine learning analysis (Step 3). The predicted model generated from the machine learning analysis
is inspected for the most predictive features using biological context, input, and protein modeling
(Step 4) that represents a non-synonymous mutation from the genomic population of allelic variants
(n = 193).

We used previously validated wet-lab data with a tetracycline-resistant strain of C. jejuni causing
abortion in sheep [16,22,23] as the validation training set for µPathML analysis. Previously, these robust
studies used a pairwise comparison to identify 8000 single nucleotide differences (SNP) differences
between a reference genome and an abortive strain that subsequently utilized genetically transformed
genomes to identify specific allelic variants that cause abortion in a model system. We validated
µPathML using 85 genomes that span 30 years and multiple locations as a reference set of cases and
108 control genomes of intestinal and diarrheal isolates. This approach permitted exploration of the
bacterial population genomic space of this organism by linking different phenotypes to validated
genome variation (Figure 1). Biological feature engineering of this collection identified 1.2 million
SNPs, which is not tractable using in vivo infection studies, to determine the role of all SNPs in
this gene across the bacterial population to cause this disease. To use this approach at a big-data
scale, we hypothesized that genomic changes evolved in gastrointestinal C. jejuni resulting in an
abortive phenotype; hence, invading the intestine and progressing to other tissues—in this case the
placenta resulting in abortion. Applying µPathML analysis to the population of gastrointestinal,
diarrheal C. jejuni versus extraintestinal, abortive phenotypes produced a ranked set of alleles in a
ranked order of importance to the phenotype (i.e., abortion) (Table S1).
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µPathML analysis identified 14 porA loci as the most important alleles ranging from 1.0 to 0.65
scaled importance out of the 1.2 million SNPs (Table S1). These ranked loci were compared by body
location (Figure 3), which further clarified the location of these SNPs and indels that simultaneously
presented the ranked associated allelic variants within the phenotype of interest as detected with
µPathML as well as the non-associated alleles. This analysis method enabled modeling of various
protein structures for PorA between abundant versions to hybrid variation and rare variants that
were not captured by automated gene calling, machine learning alone, or classical statistical testing.
Regions within porA from the cases expressing different allelic versions were further explored for each
genome and ranked porA allele to determine the implication for biological function important in the
disease. Protein structures were modeled to examine the changes in protein configuration, initially
yielding four distinct groups (Figure 3) that ranged from non-abortive to variations of proteins all of
which caused abortion. These alleles were directly compared to those validated in vivo and found to
be linked to specific protein loops within alleles verified previously [16,22,23]—in all cases µPathML
found each of those to be biologically important for abortion and found new hybrid versions of the
protein that were previously unrecognized.
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Figure 2. The conceptual framework diagram depicting machine learning in bacterial genome-wide
association using extreme gradient boosting (XGBoost). Boosting is a technique of combining a set of
weak classifiers or decision trees to increase prediction accuracy. Red dots represent an allelic variant,
each grey bar represents a unique allele. Individual decision trees (1, 2, 3) fail to fully capture the allelic
variants associated with the phenotype (e.g., extraintestinal abortion), but combining the trees together
results in a process called boosting as it increases the discriminative power.

Further verification of the approach found that each of the top-ranked alleles were located in
loops 1, 3, 4, 7, which perfectly verifies the published observations using genetic manipulation and a
model infection [16,22,23]. By examining every genome from abortion cases, we found variants that
were between 90% identical with >75% protein homology that were designated as non-prototypical
variants because the sequence variation was high enough to change protein structures but within the
parameters used for automated gene calling. In a limited set of alleles, the porA gene was so divergent
that they were missed using automated gene calling but were recovered with manual curation of the
µPathML output. Recovery of these genes created a third group of rare variant alleles that also caused
abortion (Figure 4; protein homology <75%). This result provides a foundation for functional variation
of a core gene from all Campylobacter and further provides insight into the variability of porA as a
virulence factor, even in highly divergent alleles.
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Figure 3. Comparative plot of SNP loci along the porA gene in all genomes. We termed this a
Tetris plot as an alternative visualization of genome-wide association hits because they are ranked
and display only the loci that vary to produce a non-synonymous mutation. The y-axis contains
individual genomes from the cases and the controls, while the x-axis contains the GWAS SNP loci
(green), the non-disease-associated SNPs (red), open space (white) are loci that are identical in the gene
sequence. Temporal and geographic metadata on the right side of the Tetris plot provides context for
mutational enrichment over 30 years and multiple distant locations in North America and the UK. The
enriched SNP variation produced different protein structures (far right in blue) as the corresponding
protein model by location within the animal by SNP. Protein structural features corresponding to the
ranked GWAS variants are annotated on top, and below the plot are the nucleotide coordinates. Rare
variants (homology <75%) were not included by the variant caller in this visualization, but manual
inspection provided a method to find these variants.

All of the variants were mapped to the whole-genome phylogeny to determine whether the
alleles were co-evolving at the same rate with the genome population (Figure 4). While some of the
alleles were associated with similar genomes, most of the alleles were found in >2 strain genotypes.
Prototypical allelic variants clustered in the largest genomic group of abortive isolates, as did some
of the non-prototypical porA variants. However, there was significant genome variation among the
population where the porA alleles were distributed among the genome population. Rare porA variants
were distributed within different genomic groups and over a 15-year span between North America
and the UK. The extensive allelic variation of porA, as well as the different genotypes, indicates that a
genome surveillance system based on SNPs or a small number of genes would result in false negatives,
and attempts to link these genomes to an outbreak would be unsuccessful. In combination, these
observations indicate that µPathML produced a ranked list of biologically important alleles that were
validated with those that were previously shown to be causal in abortion for the exact SNP and the
protein loop location. Together, these observations verified that µPathML was capable of accurately
identifying the exact SNPs in porA that cause abortion.
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Figure 4. Whole-genome distance matrix using MinHash depicting an all-against-all comparison of genome diversity for all isolates used in this study overlaid with
the porA variant associated with body location and disease phenotype. Genotypes and porA alleles are connected in this depiction to examine the association between
intestinal/diarrheal location (yellow dot boxes), prototypical extraintestinal/abortive (red dot boxes), non-prototypical porA alleles in extraintestinal/abortive (maroon
lines), and rare porA variants in extraintestinal/abortive (grey dashed lines) were co-located to their respective genomes in the genotype map. For the non-prototypical
variants, the year and location of isolation was included to depict the variation over time and space in the maintenance of a minority population of porA alleles of
extraintestinal abortive C. jejuni. The diagram to the right depicts the process used for this analysis.
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4. Discussion

Since each µPathML allele was accurately validated for accuracy to empirical studies based on
animal models and genetic evidence, we broadened the examination of the protein changes from
the ranked alleles to determine whether the protein structure variation contained a specific feature
or amino acid substitution that was linked to abortion (Figure 5). The first six top-ranked alleles
contained various amino acid substitutions for each porA sequence and multiple PorA protein models.
However, Lys189 was conserved among the extraintestinal porA allele and Asn189 was found in the
intestinal alleles. Lys mutation changes are the most impactful in membrane pore structure and
are one of the tenets of membrane topology as the positive inside rule [27,28]. The positive inside
rule describes the observation across membrane pores that associate positively charged amino acids
within the cytoplasm and negatively charged amino acids in the extracellular domain. Membrane
topology can radically change from being oriented inside the membrane (exposed to the periplasm
in this case) to outside the membrane with a single Lys189 mutation, suggesting that this mutation
may flip the protein orientation in the membrane relative to AsnWithin the adjacent protein structure,
Lys snorkeling effectively minimized the non-polar chain component by burying it in the hydrophobic
domain and at the same time exposed the polar component to the aqueous domain, another single
amino acid change that alters the topology of the membrane domain [29]. Bacterial membrane pore
flipping could be a potential mechanism to avoid recognition by the immune system and enhance of
ion transport for bacterial metabolism. In atypical (i.e., hypervariable alleles) this position is buried in
a deeper position due to insertional mutation in rare variants, the inserted amino acids contain Lys197,
a new mutational position as compared to the prototypical protein model. Additionally, insertions in
the rare variants reduce the homology to <75% leading to more extensive protein structural changes,
as expected, that changed the PorA protein orientation in the membrane and retained the abortive
phenotype. This situation is troublesome for traditional homology approaches and would be missed
completely using comparative genomics alone. However, µPathML combined with biological tracing
effectively identified this situation to successfully link multiple genotypes, protein structural models,
and the disease to provide a validated basis that presents multiple underlying mechanisms for the
abortive phenotype. Importantly, this finding highlights the need to examine genes and their alleles to
determine causality. In this case, the role of porA has been controversial [30] in causing disease, and it
is likely linked to the specific allele that is present and not just to the gene.
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5. Conclusions

This study utilized a combination of GWAS, population bacterial genomics, and machine learning
to identify and rank allelic variants that correspond to biologically validated alleles of porA that cause
abortion. The µPathML analysis was further supported by the longitudinal and spatial conservation of
the porA gene coupled to protein substitutions that led to important and biologically relevant changes
in the structure to change activity that was linked to allelic variation conserved over 30 years and
multiple global locations. A Tetris-plot visualization provided an avenue to discover divergent and
rare variants that provided further insight with protein modeling that uncovered protein substitutions
resulting in localization changes that affect activity and isolation localization in the host. Together these
results demonstrate and validate a novel method, µPathML, to discover biological variation combined
with established mechanisms using population bacterial genomics. This approach provides an avenue
to leverage the massive amount of bacterial genomic sequences to uncover new mechanisms of disease
with potential to provide therapeutic approaches.
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Table SRanked allelic variants using BioML. Table SMetadata for extraintestinal Campylobacter jejuni. Table
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FN = false negative.
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