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A modified Cell Transmission Model with realistic queue discharge

features at signalized intersections
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Abstract

Modeling realistic discharge flow-rate and headway features at signalized intersections is
critical to the design of traffic signals, since they play a critical role in determining the
startup lost times and intersection capacity. Traditional queue discharge models are either
microscopic or stochastic, and macroscopic traffic flow models for signalized intersections are
based on overly simplistic assumptions. They are incapable of modeling traffic dynamics at
signalized intersections as well as capturing realistic queue discharge features.

In this study we propose a modified Cell Transmission Model (CTM) by substituting
the traditional demand function, which is constant under over-saturated conditions, with a
linearly decreasing function. The new demand function is defined through a combination
of conventional macroscopic parameters, including critical density, free-flow speed, jam
density, and an additional parameter, jam demand. Analytically we show that the new model
reproduces observed features in the discharge flow-rate and headway. We further present a
new definition of lost times at the macroscopic level based on the modified CTM. Calibration
with observations in existing studies, as well as new observations, further suggest that the
model can reasonably capture all traffic queue discharge features. We also discuss solutions
to the new model under various Riemann problem scenarios and show that they produce
realistic results while offering observable improvements in the modeling of traffic dynamics
under certain scenarios.
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1. Introduction

On a road connecting two signalized intersections, a traffic queue grows when vehicles
join it at the upstream queue tail, and dissipates when vehicles leave it from the downstream
queue head. The two processes are usually referred to as the queue build-up and discharge
processes, respectively. In particular, the queue build-up process occurs when traffic lights
at the upstream intersection are green or yellow for some vehicles entering the road, and
the queue discharge process occurs when traffic lights at the downstream intersection are
green or yellow for vehicles on the road. Therefore the interplay between the two processes
determines the formation and dissipation of the traffic queue.

Any complete arterial model of traffic thus needs to model both the queue build-up and
discharge processes as well as incorporate network node models, merge-diverge models, and
models for any traffic control systems. Queue build-up models typically study the arrival
pattern of traffic through the modeling of upstream controls causing vehicles to platoon, and
the dispersion of such platoons as they approach the tail of the queue. Platoon dispersion
modeling was first studied and modeled in (Pacey, 1956; Robertson, 1969), and has stayed an
actively studied field. More recently, various studies such as (Geroliminis and Skabardonis,
2005) have tried to improve on the modeling of the dispersion and thus of travel time of
vehicles on links.

Queue discharge features such as the discharge headways and the discharge flow-rate are
other critical components to design and analysis of traffic signals at signalized intersections,
as they are used to calculate lost times, effective green times, and capacities of different
movements. There have been many empirical studies on headway distribution, which can be
influenced by the number of lanes, vehicle types, measurement location, and stochasticity
(Gerlough and Wagner, 1967; King and Wilkinson, 1977; Kunzman, 1978; Lee and Chen,
1986; Moussavi and Tarawneh, 1990; Niittymäki and Pursula, 1997; Al-Ghamdi, 1999;
Hung et al., 2002; Li and Wang, 2006). The earliest queue discharge model developed for
traffic at signalized intersections was perhaps in (Webster, 1958), which used existing queue
analysis techniques coupled with traffic observations to estimate queue lengths and delays at
intersections. Phenomenological models such as (Akçelik and Besley, 2002), and simulation
models such as (Tong and Hung, 2002), have been able to correctly predict various queue
discharge features. However these models are not easily applied to study traffic dynamics.

Microscopic car-following models have been applied to study the queueing process on a
signalized road network and the resulting discharge features (Tian et al., 2002; Bloomberg
and Dale, 2000). At the macroscopic level, the Lighthill-Whitham-Richards (LWR) model
(Lighthill and Whitham, 1955; Richards, 1956) has been widely applied to calculate the
queue length at a signalized intersection and analyze traffic dynamics in a signalized road
network, usually without considering lane channelization. For example, the signal control
problem is solved based on the LWR model (Michalopoulos et al., 1981); and periodic traffic
patterns and corresponding macroscopic fundamental diagram were studied with the network
kinematic wave model for a double-ring network in (Jin et al., 2013).

Since (Lighthill and Whitham, 1955), it has been shown with the characteristics method
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that, when the downstream traffic light turns green, the discharge flow-rate at the stop-line
is always at capacity until the queue disappears. This suggests that the discharge headways
at the stop-line are also constant. However, observed headways decrease with the number
of vehicles and approach a saturation value with the 5th or 6th vehicle (Greenshields et al.,
1946). Further in (Akçelik and Besley, 2002), models for the distributions of both discharge
headways and flow-rates were proposed based on observations. In literature, when applying
the LWR model to analyze the queueing process at a signalized intersection, one usually
assumes that the discharge process only occurs during an ‘‘effective’’ green time, not the
actual green time (Stephanopoulos et al., 1979). Here the yellow signal and the impact of
the dilemma zone are also approximately included in the effective green time. Note that the
effective green time is defined at the microscopic level, and is equal to the phase time minus
the start-up and clearance lost times (Roess et al., 2010). But it is not clear whether such
an approximation is reasonable or not. In summary, the LWR model cannot capture the
realistic queue discharge features.

By nature, the unrealistic queue discharge property of the LWR model, in which the
discharge flow-rate immediately increases to the capacity when the green period starts, stems
from the implicit assumption of an infinite acceleration rate for vehicles leaving an initial
standing queue. In literature, some efforts have been made to introduce bounded acceleration
to the LWR model on a homogeneous road or at a bottleneck (Lebacque, 1997, 2003; Leclercq,
2002). But these models turn out to be of higher orders and are challenging to analyze,
calibrate, and validate.

In this paper, we propose to modify the Cell Transmission Model (CTM) (Daganzo, 1995),
which is the Godunov discrete version of the LWR model, to capture queue discharge features
after traffic light turns green. We further focus specifically on the through movements and
ignore impacts of all turning movements. CTM has been used towards a variety of tasks such
as network modeling (Jin et al., 2013), dynamic traffic assignment (Lo, 1999), and urban
intersections (Chen et al., 2008). However, the traditional CTM cannot capture the queue
discharge features. Here we apply a new demand function, which linearly decreases in density
under over-saturated conditions. Since such a modified demand function was first introduced
in (Lebacque, 2003), where the bounded nature of acceleration in discharging vehicles was
studied within the framework of higher-order kinematic wave models, it is not surprising the
modified CTM can replicate realistic discharge headway and flow-rates. One advantage of
the presented model is that only one new jam demand parameter is added, and the model
can be analyzed and calibrated with minimal efforts.

The rest of the paper is organized as follows. We first review existing models for
intersection queue discharge in Section 2. We then present the new demand function and
corresponding modified CTM in Section 3. In Section 3.2, we present numerical solutions
to the model under the Riemann initial conditions and highlight the difference between the
modified CTM and the original CTM in traffic dynamics after the traffic light turns green.
In Section 4 we analytically solve the queue discharge headways and flow-rates and present
a macroscopic definition of the start-up lost time. In Section 5 we present the calibration
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results of the model with field data obtained through various sources and show that the model
captures realistic features after being calibrated. We conclude with some closing remarks in
Section 6.

2. Review of Cell Transmission Model and its queue discharge features

2.1. Review of CTM

Denoting traffic density k, speed v, and flow-rate q as functions of space and time, we
can derive the following LWR model from the flow conservation equation together with the
fundamental relationship between density and flow-rate as q = Q(k):

∂k

∂t
+

∂Q(k)

∂x
= 0, (1)

which is a hyperbolic conservation law in k. The LWR model can be solved analytically with
the characteristics method and numerically with the Godunov method.

In (Daganzo, 1995), a new discrete version of the LWR model, the Cell Transmission Model,
was develop by first defining demand (sending flow) and supply (receiving flow) of a cell as
a function of traffic density and then calculating boundary fluxes from upstream demands
and downstream supplies. Earlier attempts along this line were reported in (Lebacque, 1984,
1993). The conceptual framework of CTM is illustrated in Figure 1: Figure 1a shows the
demand and supply curves most commonly used in macroscopic models, corresponding to
the triangular fundamental diagram

Q(k) = min{vfk, w(kj − k)}, (2)

where vf is the free-flow speed, −w the shock wave speed in congested traffic, and kj the
jam density; Figure 1b shows the discretization of a link into cells and the computation of
boundary fluxes. That is, in the first step, if we denote traffic density in cell i at a time step
by ki, then the demand and supply are given by

Di = D(ki) = min{vfki, qc}, (3)

Si = S(ki) = min{qc, w(kj − ki)}, (4)

where qc = vfkc is the capacity or the saturation flow-rate, and kc =
vfw

vf+w
kj is the critical

density; then in the second step, the boundary flux from cell i− 1 to cell i is calculated as1

Φi = min{Di−1, Si}; (5)

1Boundary conditions at the upstream and downstream boundaries of a road segment can be prescribed
in demand and supply respectively.
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finally in the third step, we obtain the traffic density at the next time-step based on the
conservation of traffic flow as

k′i = ki +
∆t

∆x
(Φi − Φi+1), (6)

where ∆t is the time-step size and ∆x the cell length. Cell length ∆x and time-step size ∆t
need to be chosen so as to respect the Courant Friedrich Lewy condition (Courant et al., 1967
[orig.: 1928]) such that ∆x/∆t > vf . Choosing an appropriate ∆x thus depends indirectly
on choosing a reasonable value for ∆t and vice-versa.

(a) Demand and Supply (b) Boundary flux

Figure 1: An illustration of the Cell Transmission Model

2.2. Queue discharge features in CTM

For a through movement, we assume that the traffic light turns green at t = 0 and the
stop-line is at x = 0. In a queue discharge scenario, the initial traffic density is:

k(x, 0) =

{
kj, x < 0
0, x > 0

(7)

If in CTM we let the queue discharge process immediately start at t = 0, then the upstream
demand and the downstream supply at x = 0 are always qc, and the discharge flow-rate equals
the saturation flow-rate; i.e., q(0, t) = qc for t > 0 till the queue disappears or the traffic
light turns red. Correspondingly the queue discharge headway is the saturation headway
h = hs = 1/qc. The solutions are shown in Figure 2a and Figure 2b. Such a model would
clearly over-estimate the intersection capacity as the product of green time and capacity
flow-rate (Dion et al., 2004) and may lead to suboptimal intersection design.

To accommodate the capacity lost due to start-up acceleration of vehicles, we can introduce
a start-up lost time (Webster, 1958) in CTM. Traditionally, the start-up lost time is measured
as total time difference between actual observed headways of vehicles and the saturation
headway. We denote it by L1. Thus the discharge flow-rate in CTM becomes

q(0, t) =

{
0, t < L1

qc, t ≥ L1
(8)
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(a) Discharge flow-rate (b) Headway Profile

(c) Discharge flow-rate (d) Headway Profile

Figure 2: Discharge flow-rate and headway profiles in the traditional CTM: (2a, 2b) without lost time; (2c,
2d) with start-up lost time.

Correspondingly the first vehicle’s lost time is increased by L1. These solutions are shown in
Figure 2c and Figure 2d. This model is more realistic, but even if the start-up lost time is
accurate, it is not clear whether the cumulative flow is accurate. In addition, the discharge
headways still do not match the observed pattern, and the corresponding dynamics are not
correct.

3. A modified Cell Transmission Model

3.1. A new demand function and the modified CTM

In (Lebacque, 1984), where a network traffic simulation model was developed based on a
Godunov discretization of the LWR model, it was argued that the queue discharge flow-rate
should gradually increase from 0 to the saturation flow-rate after the traffic light turns green.
But the implementation of this discharge feature was not discussed.

In this study, we modify CTM by applying a new demand function, which was introduced
in (Lebacque, 2003) for a bounded acceleration extension of the LWR model. In the demand
function, traffic demand in congested traffic is less than capacity and decreases with density.
Note that the congested part of the demand function can be convex or concave in (Lebacque,
2003). (Monamy et al., 2012) applied the idea of a modified demand function at a node
to capture the recovery flow under congested conditions. The demand used in the study is
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dependent on the number of vehicles currently ’stored’ in the node. The resultant was an
overall reduced recovery demand that was able to model features similar to observed capacity
drop at test locations. Here we simply use a demand function that is linearly decreasing in
density for congested traffic. That is,

D′(k) = min{vfk, qj + c∗(kj − k)} = min{vfk, c∗(k∗j − k)}. (9)

Figure 3 shows the new demand function along with definitions of parameters. In addition
to the free-flow speed, jam density, and critical density, which are used in the definition of
the traditional demand function, a new variable, called jam demand, qj, is introduced as the
demand at the jam density.

From the definitions of the variables, the following relations follow immediately:

qc = c∗(k∗j − kc) = w(kj − kc), (10)

qj = c∗(k∗j − kj). (11)

The slope of the demand curve c∗ (not to be confused with shock wave speed), and the
extrapolated jam density for demand k∗j can be derived from the four basic parameters and
are also shown in the figure.

Therefore, the modified CTM is only different from the traditional CTM in the definition
of the demand in congested traffic and has an additional parameter, the jam demand, but
the definition of supply, the flux function, and the density updating equation are still the
same as those in (4)-(6).

(a) Demand-Supply (b) Variables

Figure 3: The modified demand function along with list of variable definitions

3.2. Solutions to the Riemann problem

The new demand function and, therefore, the modified CTM are primarily proposed to
obtain more realistic solutions under the queue discharge initial condition in (7). In this
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subsection, however, we demonstrate that the new model is also well defined under more
general Riemann initial conditions:

k(x, 0) =

{
ku, x < 0
kd, x > 0

(12)

where ku is the upstream density and kd the downstream density. The corresponding initial
flow-rates are denoted by qu = Q(ku) and qd = Q(kd).

Following (Lebacque, 1996), we will consider the numerical solutions to the modified
CTM in the seven scenarios, where traffic is (strictly) under-critical if density is (strictly)
lower than the critical density, and (strictly) over-critical if density is (strictly) higher than
the critical density.

Note that the new demand function is different from the traditional function only when
k > kc. Thus the solutions to the Riemann problem are the same for most of the cases, and
here we only focus on the scenarios when the modified CTM has different solutions with
possible additional sub-scenarios. The seven resulting scenarios are:

• Case I, II: Both upstream and downstream under-critical: ku > kd or ku ≤ kd. Since
the new demand function is the same as the traditional one in these cases, the solutions
to the Riemann problem remain the same with the modified CTM: there arises a
rarefaction wave in Case I and a shock wave in Case II.

• Case III, IV: Upstream under-critical, downstream over-critical, qu < qd or qu ≥ qd.
Similar to cases I and II, these cases lead to the same solutions between the modified
and traditional CTM: there arises a shock wave with a positive speed in Case III and a
shock wave with a negative speed in Case IV.

• Case V: Upstream over-critical, downstream over-critical, ku > kd. When the upstream
density is higher, in the traditional model, a rarefaction wave arises along with acceler-
ating vehicles, and the discharging flow-rate q(0, t) = S(kd) since D(ku) = qc > S(kd).
But in the modified CTM, since D′(ku) can be smaller than S(kd), we further separate
this case into two sub-cases.

– Case V-a: D′(ku) ≥ S(kd). In this case the solutions are the same for the modified
and traditional CTM.

– Case V-b: D′(ku) < S(kd). This condition is same as

kc < kd < kc +
w∗

w
(ku − kc). (13)

As an example, the solutions to the traditional and modified CTM are shown in
Figure 4, where vf = 35.19, qc = 1900, w = 12.18, qj = 750, ku = 80 vpm, and
kd = 60 vpm. Clearly (13) is satisfied. We can see that, in the modified CTM,
the solutions show a discharge like behavior: The initial speed of a discharging
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vehicle is lower than the speed of downstream block of vehicles. This creates a
‘vacuum’ condition (zero density) between the first discharged vehicle and the
downstream platoon. This region increases in length as the discharged vehicle
accelerates up to the downstream platoon’s speed. The discharged vehicle is able
to accelerate beyond the speed of the downstream platoon due to this ‘vacuum’
area and eventually catches up with the downstream block creating a shockwave.

• Case VI: Upstream over-critical, downstream over-critical, ku ≤ kd. In this case, the
upstream demand is always higher than the downstream supply, and the discharging
flow-rate is controlled by the downstream supply. Thus in this case the solution is once
again unchanged from the traditional model.

• Case VII: Upstream strictly over-critical, downstream strictly under-critical. This case
is a more generalized form of the queue discharge scenario in (7), and vehicles discharge
from congested platoons to an unrestrictive downstream link. The qualitative results of
such a case are discussed in Section 4 (see Figure 6) and further from data validation
results in Figure 10. The upstream demand stays in the modified over-critical region,
while the downstream supply stays at capacity. The scenario results in formation of
rarefaction waves as shown in Figure 5.
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(d) Parameter values
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(e) Trad. CTM flow-rate
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(f) Mod. CTM flow-rate

Figure 4: Comparison of density contour plots between the traditional and modified CTM in Case V-b.

4. Queue discharge features of the modified CTM

In this section, we analytically solve the modified CTM for the queue discharge scenario
under the initial condition given in (7). From the solutions we will reveal queue discharge
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(e) Trad. CTM flow-rate
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Figure 5: Comparison of density contour plots between the traditional and modified CTM in case VII.

features of the new model.

4.1. Discharge flow-rate and headway

We denote the density of the cell upstream to the stop-line by k(t), and the cell length by
L. For the queue discharge scenario, cells upstream to the stop-line are always over-critical,
and those downstream always under-critical. Thus the in-flux of the studied cell is determined
by its supply, w(kj − k), and its out-flux by its demand, c∗(k∗j − k). For the purpose of
simple analysis, we approximate the discrete CTM, (6), by the following ordinary differential
equation:

L
dk

dt
= w(kj − k)− c∗(k∗j − k), (14)

where the initial condition is k(0) = kj. In addition, the queue discharge flow-rate is given
by the out-flux

q(0, t) = c∗(k∗j − k). (15)

From (10), we can simplify the right-hand side of (14) as (w − c∗)(kc − k). Thus solving
(14), we obtain the time-dependent density in the cell upstream to the stop-line as:

k(t) = (kj − kc)e
c∗−w

L
t + kc, (16)

which decreases in time since c∗ < w and converges to kc asymptotically. Correspondingly
the discharge flow-rate is given by:

q(0, t) = qc − c∗(kj − kc)e
c∗−w

L
t, (17)
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which increases from qj = c∗(k∗j − kj) at t = 0 to qc asymptotically. Thus the jam demand,
qj, is also the initial discharge flow-rate. The resulting discharge flow-rate has the same
exponential form as that estimated from observations in (Akçelik et al., 1999; Akçelik and
Besley, 2002).

We denote the cumulative number of vehicles passing the stop-line by A(t) and obtain
from (17)

A(t) =

∫ t

s=0

q(0, s)ds = qct +
L

c∗ − w
c∗(kj − kc)(1− e

c∗−w
L

t), (18)

which is an increasing function in time t. Then the passing time is the inverse function

T (a) = A−1(a), (19)

and the time for vehicle n to pass the stop-line is tn:

tn = T (n). (20)

We denote the continuous headway by h(t). Then

h(t) =
1

q(0, t)
=

1

qc − c∗(kj − kc)e
c∗−w

L
t
, (21)

which decreases from 1
qj

to the saturation headway hs = 1
qc

. If we denote the discrete headway

of vehicle n by hn, then after solving tn from (20) we have (n = 1, 2, · · · )

hn = tn − tn−1, (22)

where we let t0 = 0. From (20) and (22) we have

qchn +
c∗

c∗ − w
(kj − kc)Le

c∗−w
L

tn−1(ehn − 1) = 1. (23)

Since tn−1 → ∞, we can see that the discrete headway also converges to the saturation
headway; i.e., hn → hs = 1

qc
.

In Figure 6, we demonstrate the demand and supply functions in Figure 6a, the discharge
flow-rate in Figure 6b, the continuous headway in Figure 6c, and the discrete headways in
Figure 6d.

4.2. Lost Times

During the queue discharge process, the start-up lost time, L1, is defined as the sum of
the differences between all headways and the saturation headway (Roess et al., 2010):

L1 =
∞∑
n=1

(hn − hs). (24)
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Figure 6: Queue discharge flow-rate and headways: (a) demand and supply curves; (b) discharge flow-rate;
(c) continuous headways; and (d) discrete headways. The results shown are for qc = 1900, kc = 54, kj = 210,
and qj = 775, with upstream fully congested at jam density, and downstream density set to 0 as initial
conditions.

From (22) and (18), we can see that

L1 = lim
a→∞

T (a)− hsa = lim
t→∞

t− A(t)

qc
=

L

w − c∗
c∗

w
. (25)

Furthermore, from (18) we can see that limt→∞A(t) = qc(t− L1). That is, qc(t− L1) is
the asymptotic line of A(t). Compared with the ideal situation when the discharge flow-rate
is always qc, there is a lost capacity (as shown in Figure 7) of:

∆C = lim
t→∞

qct− A(t) = qcL1. (26)

This justifies the idea of the effective green time in (8); that is, if the start-up lost time L1 is
defined as in (25), then the total number of discharged vehicles will be equivalent if we use
the new CTM model or (8).

5. Calibration and validation

The presented model can be calibrated using minimal additional headway observations if
the macroscopic variables associated with traffic behavior at the intersection are known (note
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Figure 7: Relation between lost capacity and start-up lost time. The figure illustrates how the cumulative flow
from the modified model, A(t), is asymptotic to the line qc(t− L1). The figure also shows the corresponding
passing time of each queued vehicle ti.

that if an appropriate value for L is known, qj and c∗ can be calibrated directly knowing either
the headway of the first vehicle, or the total lost time (25)). However, for robust calibration,
detailed headway observations are recommended. Where vehicle headway observations are
available, statistical fitting techniques can be used to calibrate the parameters of the model.
This is in fact the approach we take in the current study.

5.1. Approach

In the traditional CTM, we need to calibrate the three parameters in the triangular
fundamental diagram (2), and the demand and supply functions in (3)-(4): the capacity
flow-rate (saturation flow-rate), qc, the critical density, kc, and the jam density of queued
vehicles, kj; then vf and w can be calculated as vf = qc/kc and w = qc/(kj − kc).

For the modified CTM, we need to calibrate an additional parameter for the modified
demand function in (9): the jam demand, qj . From observations of discharge headways at an
intersection, the corresponding passing times for vehicles as they cross the stop-line, ti, can be
obtained. From the modified CTM, we also know the cumulative number of vehicles passing
the stop-line as a function of time and the parameters w, c∗, kc, qc, kj and L (18). However,
the relation can be re-written using the unique parameter set: kc, qc, kj, qj, and L, using

(10)-(11). We use the notation Â(t) here to highlight that this is the modeled prediction in
the optimization setup:

Â(t) = qct− L

(
qc − qj

qj

)
(kj − kc)

(
1− e

−
qj

L(kj−kc)
t
)
. (27)

We can then obtain the predicted cumulative count of vehicles corresponding to actual
observed passing times of each vehicle. Thus, an optimization problem can be set up on the
cumulative vehicle counts (with passing time as the independent variable) (Figure 8). We
use minimization of the Sum of Squared Errors as the optimization criterion here.
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minimize
X

n∑
i=1

(
Â(X, ti)− i

)2
,

where, X = {kc, qc, kj, qj, L},
subject to: XL ≤ X ≤ XH .

(28)

Discharge headway data is only applicable for those vehicles that are part of the standing
queue before the discharge process starts. This means that the number of data points in the
optimization is restricted by the length of the standing queue observed at the location of
interest (typically 5-10 vehicles). Since the model requires the calibration of five parameters,
thus having a high degree of freedom, there is an inherent risk of over-fitting unless constraints
are imposed on the parameters. It is thus imperative to ensure that certain ranges are imposed
on the values of the calibration parameters, or that some of the parameters are held constant
based on knowledge of traffic behavior at the location (forming the constraints in the
optimization setup).

Figure 8: The figure illustrates the setup of the calibration process. Â(t) is the predicted cumulative flow at
time t from the model, while the observed passing times for vehicle i are shown as ti. Since Â(ti) represents
the modeled cumulative flow corresponding to the observed passing time of the ith vehicle, the objective of
the optimization is to minimize

∑
(Â(ti)− i)2

5.2. Calibration

As part of the present study, the linear demand model was calibrated for three data sets:
data from various headway studies in past literature, NGSIM (FHWA, 2007) data from
Lankershim Blvd., and video recordings from a local study site. Calibration of the model
was done for each location individually and employed knowledge of certain features such as
free-flow speed and jam density where available.

The first data set used for the calibration process, was obtained from headway studies
from past literature. (Gerlough and Wagner, 1967), (Hung et al., 2002), and Tong and
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Hung’s simulation results (Tong and Hung, 2002) have presented various study results on
headway data. The model was calibrated for each of the three sets of headway observations.

NGSIM data of through moving traffic from Lankershim Blvd SB, at its intersection with
Universal Hollywood Dr (Figure 9b) was used as the second data set. The study site offers
clear camera visibility and supports a steady demand for through movements. The location
has 3 through lanes (1 shared right turn lane). Only vehicles in a standing queue at start
of green phase were recorded. Observations suggested a critical density of 54 veh/mi, jam
density of 210 veh/mi, and a saturated headway of roughly 1.8 sec at the location.

(a) E. Peltason Dr (Recording)

(b) Lankershim Blvd (NGSIM)

Figure 9: Schematic Diagrams and aerial maps of the two study sites: 9a. E. Peltason Dr. in Irvine, CA;
and 9b. Lankershim Blvd. and Universal Hollywood Dr. in Los Angeles, CA (Maps coutesy Bing)

Finally, a video recording study site was chosen for additional data collection near the
University of California, Irvine campus, at a push button pedestrian crossing signal on
E. Peltason (between Los Trancos Drive, and Anteater Drive; shown in Figure 9a). The
location offered observations of single-lane traffic at an intersection that allowed only through
movements. Using a video recording device, the headways of vehicles (by queue positions)
were observed over multiple cycles and averaged to obtain the headways vs. queue position
curve. Still photographs of queued vehicles at the location suggested the jam density to be
in the range of 210 veh/mi. The free-flow speed at the location was observed to be 35 mi/hr
(30 mi/hr posted speed limit).

The observation of the critical density from the data was used to fix the kc value for
all 5 experiments as a value of 54veh/mi. Similarly, L was held constant at 0.01 mi. The
jam density kj was also set to 210 veh/mi for 4 out of 5 experiments (the exception being
data from Gerlough and Wagner’s study where kj was also an optimization variable). The
calibration technique used was the minimization problem in (28). MATLAB’s implementation

15



of the Nelder-Mead heuristic search (Nelder and Mead, 1965) was used to find the solution
to the non-linear optimization, and the results were verified against Generalized Reduced
Gradient technique.

The final form of the optimization problem for the datasets used was:

minimize
{kc,qc,kj ,qj ,L}

n∑
i=1

(
qct− L

(
qc − qj

qj

)
(kj − kc)

(
1− e

−
qj

L(kj−kc)
t
)
− i

)2

,

subject to: kc = 54,

1200 ≤ qc ≤ 2400,

80 ≤ kj ≤ 280,

kj = 210, (for all cases excluding Gerlough and Wagner),

0 ≤ qj ≤ 1500,

L = 0.01.

(29)

Table 1 presents results from the calibration process. The reported sum of squared errors
(SSE) and R2 values in the table were calculated for headways and not the inverse function
that the fitting was performed on. The SSE, thus, is the sum of squared differences between
the model-predicted headway and the actual observed headway for each queue position.
Similarly, R2 was calculated as 1− (SSE/SStot) where SStot is the sum of squared differences
of observed headway with mean headway (proportional to variance of observed data). Figure
10 shows the calibrated demand supply functions and the derived discharge headways as
compared against observations for each of the cases. The calibration results suggest that
the modified CTM indeed replicates realistic features of queue discharge to high accuracy.
Note that, compared with those in (Gerlough and Wagner, 1967) and (Hung et al., 2002),
the headway distributions show a higher variance in the tail due to the limited numbers of
cycles for the NGSIM and Peltason data.

Gerlough Hung et. al. Tong, Hung NGSIM Recordings
(1967) (2002) (2002)

Capacity (v/h/l) 1530 1760 1775 1950 1900
Critical Density (v/m/l) 54 54 54 54 54
Jam Density (v/m/l) 147 210 210 210 210
Jam Demand (v/h/l) 730 733 630 775 750
L (mi) 0.01 0.01 0.01 0.01 0.01
R2 0.99 0.99 0.98 0.96 0.91
SSE (sec2) 0.04 0.02 0.07 0.14 0.45

Table 1: Headway fitting - Calibrated parameters for the various data sources along with the SSE obtained
for each case.
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(a) Gerlough and Wagner (1967)
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(b) Hung et. al. (2002)
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(c) NGSIM
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(d) E. Peltason (Video Recording)

Figure 10: Headway calibration for the various data sources showing the fitted headway curves and the
corresponding demand-supply functions. The graphs depicting headways provides a comparison between
observed headways, headways predicted by traditional CTM with lost time, and headways predicted by a
calibrated modified CTM.

6. Conclusions

Signalized intersection capacity is typically estimated through calibration of lost times of
vehicles discharging from a queue at the intersection. This lost time in turn is calculated from
the differences between the headways observed by the leading vehicles and the saturation
headway. The increased headway for the first few vehicles in the queue is attributed to the
reaction times of drivers, as well as the bounded acceleration process involved. In order to
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adjust for the lost discharge capacity during the initial seconds of the green phase due to
higher headways, typically an assumption is made that puts the discharge capacity at zero
for an initial period, followed by saturated capacity discharge.

In this paper, we proposed the use of a modified Cell Transmission Model with a new
demand function, in order to capture realistic queue discharge features at an intersection
when vehicles are accelerating away from an initial standing queue. The new model suggests
that the demand immediately upstream of the discharge location is indeed not equal to
the capacity, due to the vehicles’ acceleration being bounded. Through the modeling of
the reduced demand, the model is able to also capture the dynamics of traffic behavior at
intersections. Further, the modification introduces a single additional parameter thus keeping
the calibration process simple. The possibility of obtaining analytical results, as well as the
computational tractability offers the model distinct advantages over more complex models.

We first show analytically that the resulting headway and discharge flow-rate profiles over
time obtained through this queue discharge model are good representations of the expected
shapes of those curves qualitatively. The model is then calibrated for data sets obtained from
past headway studies as well as newly obtained data, and is shown to model the headways
with good accuracy. A discussion on the similarities and comparisons of the existing ‘Lost
Time’ based model and the currently proposed model reveals strengths of both the models.
This discussion further leads to a more rigorous definition of the macroscopic ‘lost time’ and
a means of estimating it from the model itself.

An interesting property of the modified CTM lies in the importance of choosing a
reasonable time-step size ∆t (or cell length L which is also constrained by ∆t). The time-step
size in the model is loosely related to the reaction time and the acceleration rates of the
vehicles. A very small ∆t would imply near-instantaneous reactions from drivers and vehicles,
and thus result in a flattening of the headway curve with all discharging vehicles having
identical headways. Conversely, a large ∆t would imply that the initial vehicle would have a
very large headway. Studying the model under various scenarios suggests that ∆t should be
chosen to be in the order of 1-2 seconds.

Queue discharge dynamics and the effects of bounded acceleration can also be captured
through higher-order models and hybrid models. Bounded acceleration extensions to the
CTM framework (Lebacque, 1997, 2003; Leclercq, 2002) can also be used to catch the behavior
of vehicles accelerating from a queue at intersections to produce similar results. However,
such models do not lend themselves easily to mathematical analysis, and typically require
higher degrees of calibration efforts. To the best of our knowledge, there have not been
any calibration and validation studies that compare performances of such models against
observed data at arterial intersections, which highlights their complex structure. It would be
an interesting extension to compare the performance of such higher order models against the
currently proposed model calibrated from observed data. Similarly, though the piecewise
linear demand function is a reasonable approximation of the effect of acceleration of vehicles,
exploration of other shapes of the demand function could be an interesting study.

This study opens up a debate on macroscopic modeling of intersections that can capture
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the lost capacity phenomenon at signals due to bounded accelerations and reaction times.
Among the many possible extensions of this model, addition of an intersection model could
offer a framework for analyzing the effects of the lost capacity over more complex networks
of arterial roadways and intersections. Another possible extension could be exploring the
portability of the calibrated parameters between locations, as well as studying how factors
such as driver aggression and control measures affect the various parameters of the model.
The proposed model is able to offer insights into such aspects as the capacity of the network,
and prospectively through further extensions, observations such as capacity reductions in
network fundamental diagrams and impacts of autonomous vehicles.
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Akçelik, R., Besley, M., Roper, R., 1999. Funaamental relationships for traffic flows at
signalised intersections. Research Report ARR 340. ARRB Transport Research Ltd.,
Vermont South, Australia.

Al-Ghamdi, A. S., 1999. Entering headway for through movements at urban signalized
intersections. Transportation Research Record: Journal of the Transportation Research
Board 1678, 42--47.

Bloomberg, L., Dale, J., 2000. Comparison of vissim and corsim traffic simulation models
on a congested network. Transportation Research Record: Journal of the Transportation
Research Board 1727, 52--60.

Chen, L., Jin, W.-L., Hu, J., Zhang, Y., 2008. An urban intersection model based on multi-
commodity kinematic wave theories. In: Proceedings of the 11th International IEEE
Conference on Intelligent Transportation Systems. IEEE, pp. 269--274.

Courant, R., Friedrichs, K., Lewy, H., 1967 [orig.: 1928]. On the partial difference equations
of mathematical physics. IBM journal of Research and Development 11 (2), 215--234.

Daganzo, C. F., 1995. The cell transmission model, part ii: network traffic. Transportation
Research Part B 29 (2), 79--93.

Dion, F., Rakha, H., Kang, Y.-S., 2004. Comparison of delay estimates at under-saturated
and over-saturated pre-timed signalized intersections. Transportation Research Part B
38 (2), 99--122.

FHWA, 2007. Ngsim - next generation simulation. Tech. rep.
URL http://www.ngsim.fhwa.dot.gov

19



Gerlough, D. L., Wagner, F. A., 1967. Improved criteria for traffic signals at individual
intersections. Tech. rep., Transportation Research Board.

Geroliminis, N., Skabardonis, A., 2005. Prediction of arrival profiles and queue lengths along
signalized arterials by using a markov decision process. Transportation Research Record:
Journal of the Transportation Research Board 1934, 116--124.

Greenshields, B. D., Schapiro, D., Ericksen, E. L., 1946. Traffic performance at urban street
intersections. Tech. rep.

Hung, W., Tian, F., Tong, H., 2002. Departure headways at one signalized junction in hong
kong. In: Proceedings of Better Air Quality: Tales of Pacific Rim Megacities Workshop,
Hong Kong.

Jin, W.-L., Gan, Q.-J., Gayah, V. V., 2013. A kinematic wave approach to traffic statics and
dynamics in a double-ring network. Transportation Research Part B 57, 114--131.

King, G. F., Wilkinson, M., 1977. Relationship of signal design to discharge headway,
approach capacity, and delay. Transportation Research Record (615), 37--44.

Kunzman, W., 1978. Another look at signalized intersection capacity. ITE journal 48 (HS-024
726), 12--15.

Lebacque, J.-P., 1984. Semi-macroscopic simulation of urban traffic. Proceedings of the
International ASME Conference Modeling and Simulation 4, 273--292.

Lebacque, J.-P., 1993. Les modeles macroscopiques de trafic. In: Annales des Ponts et
chaussées. No. 67. Elsevier, pp. 24--45.

Lebacque, J.-P., 1996. The godunov scheme and what it means for first order traffic flow
models. In: Internaional symposium on transportation and traffic theory. pp. 647--677.

Lebacque, J.-P., 1997. A finite acceleration scheme for first order macroscopic traffic flow
models. The 8th IFAC Symposium.

Lebacque, J.-P., 2003. Two-phase bounded-acceleration traffic flow model: analytical solutions
and applications. Transportation Research Record: Journal of the Transportation Research
Board 1852, 220--230.

Leclercq, L., 2002. Modélisation dynamique du trafic et applications à l’estimation du bruit
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