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ABSTRACT OF THE DISSERTATION

The Fukaya Category of the Elliptic Curve as an Algebra over the
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Professor Mark Gross, Chair

In [4] Barannikov proves the equivalence between the existence of a morphism

of twisted modular operads FDS[t] Ð→ EV (F and EV as defined in [17]), and certain

tensors of EV satisfying the quantum master equation of Batalin-Vilkovisky geometry of

an affine S[t]-manifold. He then suggests the possibility of generalizing this morphism

to the categorical case by replacing EV with a twisted modular operad, referred to here

has EL, constructed from the Lagrangian submanifolds of a fixed symplectic manifold.

The main result of this thesis is the construction of an explicit example of such

a morphism in the case that the symplectic manifold is an elliptic curve.

Given a symplectic manifold X, one constructs a precategory closely related to

the Fukaya Category, denoted Fuk(X), whose objects are the Lagrangian submanifolds

L ⊂ X, and whose morphism spaces Hom(Li, Lj) are finite dimensional modules over

the Novikov ring, generated by the points of Li ∩Lj . There is a nondegenerate bilinear

pairing

B ∶ Hom(Li, Lj)⊗Hom(Lj , Li)Ð→ C,

which is degree −1 in the elliptic curve case.

Given a finite sequence of cyclic chains of Lagrangian submanifolds

{Li0, . . . , Lidi}
b−2g+1
i=1

in the elliptic curve, we construct elements

md,b(σ1⋯σb−2g+1) ∈
b−2g+1

⊗
i=1

di

⊗
j=1

Hom(Lij , Li(j−1))⊗Hom(Li0, Lidi) (0.1)
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of degree (d + 1) − (2 − 2b), defined by summing over zero-dimensional tropical Morse

graphs G with dim H1(G) = b, where d + 1 =
b+1

∑
i=1

(di + 1) and b − 2g + 1 is the number of

cycles.

The tensors (0.1) define the twisted modular operad

EL((d + 1, b)) ∶=
b−2g+1

⊗
i=1

di

⊗
j=1

Hom(Lij , Li(j−1))⊗Hom(Li0, Lidi),

whose contraction maps µELG are given by contraction via the bilinear form B.

We construct a morphism of twisted modular operads from the Feynman trans-

form of a twist of S̃[t] to EL, where S̃[t] is an untwisted version of S[t], by mapping

the generators {σ1⋯σb−2g+1} of S̃[t] to the elements {md,b(σ1⋯σb−2g+1)}. This algebra

structure is equivalent to the set {md,b(σ1⋯σb−2g+1)} being a solution to the quantum

master equation of [4], or, equivalently, to {md,b(σ1⋯σb−2g+1)} satisfying what will be

referred to here as the quantum A∞-relations. The usual A∞-relations on Fuk(X) are

recovered by setting b = 0.

xiii



Chapter 1

Introduction

1.1 Mirror Symmetry

1.1.1 String Theory

String theory is a proposal which seeks to unify the standard model of particle

physics with Einstein’s theory of general relativity. By replacing point particles with

1-dimensional strings, string theory tempers the quantum fluctuations of space time,

which on extremely small scales, render general relativity meaningless. The large fami-

lies of particles, and the virtual particles which control their interaction are replaced by

vibrating strings, where the vibrational pattern determines the species of particle or vir-

tual particle. Just as point particles are replaced by 1-dimensional strings, the curves in

spacetime traced out by the motion of the point particles are replaced by 2-dimensional

worldsheets as the strings travel through spacetime. The motion of a string in terms of

the vibrational pattern is restricted by the necessity of satisfying the Einstein field equa-

tion, and the supersymmetry (holonomy) requirement of string theory. More precisely,

the manifold to which the string vibrations are restricted must have a Ricci-flat met-

ric with SU(3)-holonomy. These requirements lead the team of Strominger, Candelas,

Horowitz and Witten to Calabi-Yau manifolds in 1984 in [11].

A Calabi-Yau n-fold X is a compact n-dimensional Kähler manifold such that

any one of the following equivalent conditions holds.

1. The canonical bundle of X is trivial, that is, KX ≃ OX .

2. X has a holomorphic volume form that is nowhere vanishing.

1
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3. The structure group of X can be reduced from U(n) to SU(n).

4. The first integral Chern class c1(X) vanishes.

5. X has a Kähler metric with global holonomy contained in SU(n).

Examples include elliptic curves, K3 surfaces, and the non-singular quintic 3-fold Xψ

given by the solution set in P4 of the equation

x5
0 +⋯ + x5

4 + ψx0x1x2x3x4 = 0 ψ ∈ C (1.1)

It is easy to see that the first and third examples are Calabi-Yau. Indeed, any compact

hypersurface of Pn is Kähler, as the metric is inherited from Pn, and the canonical bundle

of a hypersurface in Pn is given by O(d−n−1), where d is the degree of the hypersurface.

Elliptic curves are cubic by definition, and the quintic is obviously degree 5, so in either

case one has K ≃ O(n + 1 − n − 1) = O. This in fact gives an easy recipe for producing

Calabi-Yau’s; one need only take a projective hypersurface of degree n + 1, where n is

the dimension of the ambient space.

One can now describe string theory in a more mathematically precise fashion.

The worldsheet obtained by the vibration of a string as time passes is replaced by a

holomorphic map from a Riemann surface to the target Calabi-Yau.

At present the five distinct types of string theory are open type I, closed type I,

closed type IIA, closed type IIB, and the SO(32) and E8 ×E8 flavors of heterotic string

theory.

1.1.2 The Mathematics of Mirror Symmetry

Mirror Symmetry was discovered as a duality between pairs of Calabi-Yau 3-

folds in 1989 by Greene and Plesser in [18], with a large number of examples calculated in

four-dimensional weighted projective space by Candelas, Lynker, and Schimmrigk in [10].

In string theoretic terms, type IIA string theory on a Calabi-Yau X is mirror dual to type

IIB on X∨, the mirror dual of X. This duality was expressed as the reversal of the Hodge

numbers h1,1 and h2,1, that is, h1,1(X) = h2,1(X∨) and h2,1(X) = h1,1(X∨), for X and

X∨ a mirror pair. A more tangible consequence of this is that χ(X) = −χ(X∨), a result

that dramatically increased the list of such 3-folds with positive Euler characteristic.

There have been several programs, with various points of view, to construct and

study mirror pairs, and families of mirror pairs of Calabi-Yau manifolds. Strominger,
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Yau, and Zaslow study mirror symmetry geometrically in [37] by viewing a pair of mirror

Calabi-Yau’s as torus fibrations with dual fibers. However, the notable shortcoming of

this approach is the lack of understanding of how the mirror correspondence behaves with

respect to the singular fibers. Papers by Gross [19, 20, 21] show the program works at

a topological level, and the analytic aspects are being tackled to this day by Kontsevich

and Soibelman in [33, 34], using rigid analytic geometry, and by Gross and Siebert in

[22, 27, 24, 25], using tropical and log geometry.

In [5], [6], and [7], Batyrev and Borisov construct families of mirror Calabi-

Yau hypersurfaces by examining dual lattice polyhedra in Rn. The construction is also

studied by Gross in [23] using a toric degeneration, in which a family of toric varieties is

studied as a fibration over an affine base, degenerating to the singular central fiber.

Finally, Kontsevich introduced a program in [32] called Homological Mirror

Symmetry, which interprets mirror symmetry as the equivalence of two “categories”,

the bounded derived category of coherent sheaves on a Calabi-Yau X, denoted Db
∞(X̌)

(B-side), and the Fukaya category, denoted Fuk(X)(A-side). The objects of the former

are bounded complexes E● of coherent sheaves on the variety X̌, and the Hom-spaces

are given by

Homn
Db∞(X̌)(E

●,F●) = ⊕
p+q=n

Čp(U ,Homq
OX̌

(E●,F●)),

where

Homq
OX̌

(E●,F●) =⊕
m
HomOX̌ (Em,Fm+q)

Using a projector, this category can be transformed from a dg-category to an actual

A∞-category. By this I mean there are multiplication maps on tensor products of the

Hom-spaces that satisfy a generalization of associativity. The objects of the Fukaya

category are the Lagrangian submanifolds L ⊂ X, and the Hom-spaces Hom(Li, Lj) are

given by modules generated by the points of Li ∩Lj over the Novikov ring. Homological

mirror symmetry is then expressed by comparing the A∞ structures of both.

The version of the Fukaya category considered in this project is, loosely speak-

ing, mirror dual as an A∞-category to the derived category of a degeneration of elliptic

curves, which has as its central fiber, a cyclic chain of copies of the projective line over

C.
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1.2 Counting Curves

One of the most striking aspects of mirror symmetry is its application to enu-

merative geometry. In [9] the authors construct a one-dimensional family of mirror

quintic Calabi-Yau 3-folds, and a map between the moduli space of these Calabi-Yau’s,

and the Kahler moduli space of a quintic threefold. By examining the relationship be-

tween the two coordinates on these respective spaces, one can write down a geometric

series 5 +∑nke2πitk, where nk is the number of degree k rational (genus 0) curves on a

generic quintic 3-fold in P4.

In 1993 a genus 1 version of the above result was obtained by Bershadsky,

Cecotti, Ooguri, and Vafa in [8]. Specifically, they used the mirror correspondence to

derive a formula for the number of degree k elliptic curves on a quintic Calabi-Yau 3-fold.

As of 2006, similar formulas have been found for curves up to and including genus 51.

See [28], for example.

Counting the number of curves of arbitrary genus on a Calabi-Yau n-fold is an

area of current research and connects such topics as higher-genus Gromov-Witten the-

ory, operad theory, topological conformal field theory (TCFT), and homological mirror

symmetry, the latter providing the motivation for the constructions given in chapters 4,

5, and 6 of the proceeding work. In the most ambitious homological approach to higher-

genus curve counting, described in [12] and [13], Costello constructs the B-model mirror

to a TCFT constructed from the Gromov-Witten invariants of a compact symplectic

manifold. Taking the very different approach described in [4], Barannikov uses the Feyn-

man transform of Getzler and Kapranov [17] to claim the existence of a combinatorial

description of Gromov-Witten invariants, in terms of the periodic cyclic homology of the

given twisted modular operads via the characteristic class map. He further suggests the

possibility of constructing a Feynman transform-algebra structure on the Lagrangians of

a symplectic manifold.

The main result of this project is the construction of an explicit example of

such a structure, that is, the construction of a morphism Ω from the Feynman transform

of a twisted modular operad, generated by the elements of the symmetric group Sn, to

a modular operad generated by the Lagrangian submanifolds of an elliptic curve. The

morphism of modular operads constructed here can be used to calculate a partition
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function along the lines of [31], which defines the characteristic class with value in

⊕
i

Hi(M
′
γ,ν),

where M
′
γ,ν is a quotient of Mγ,ν , the compactified Deligne-Mumford moduli space of

genus γ curves with ν marked points.

1.3 The Project

1.3.1 Stable Graphs

In order to define Ω, one must first understand the category of stable graphs,

the objects of which are the inputs to the modular operads described in Chapter 3.

The category is described as follows. The objects are connected, one-dimensional CW

complexes formed by finite sets of vertices, edges, and legs. The morphisms are given

by contractions of internal edges, that is, by continuous maps G Ð→ G/S, where S ⊆
Edge(G). Stability is a notion related to the labeling of the vertices v ∈ Vert(G) by

integers b(v), which controls the valencies of the vertices. The category of graphs G

with n legs, and b = dim H1(G) + ∑Vert(G) b(v) is denoted by Γ((n, b)). Chapter 2 is

devoted to describing this category in full detail, and noting various formulae relating

the number of vertices, edges, and cycles of such graphs, which play a crucial role in the

dimension of moduli spaces of tropical Morse graphs, defined in Chapter 6.

1.3.2 Modular Operads

Chain complexes called stable S-modules form the foundation of operads and

modular operads defined in Chapter 3. A modular operad is best viewed as a collection

of functors from the categories of stable graphs to chain complexes, along with a contrac-

tion map on the chain complexes given by the contraction of edges of the input graph.

Modular operads may also come with an Sn-action. More precisely, given a modular

operad P , and a morphism of graphs GÐ→ G/S, there is a degree 0 morphism of chain

complexes µPGÐ→G/S ∶ P ((G)) Ð→ P ((G/S)). It is often necessary to shift the degree of

the output chain complex, and change the Sn action of the modular operad itself, usually

for the sake of the compatibility of a given morphism of modular operads. Cocycles and

coboundaries are defined to serve this purpose. These are maps which take graphs as
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inputs, and output a chain complex isomorphic to C[d] for d ∈ Z. Tensoring with such an

object gives the desired twist of the output chain complex of the given modular operad.

Chapter 3 builds to the definition and characterization of a twisted free modular

operad called the Feynman transform. It is defined by taking the dual of a given modular

operad P and twisting by a coboundary that depends on the given twist of P . This is

the algebraic structure which encodes the A∞ and quantum A∞-relations on a chain

complex V , and later, on the Hom-spaces of the Fukaya category of the elliptic curve.

1.3.3 The Elliptic Curve

An elliptic curve E is a smooth, projective, algebraic curve of genus 1. One

may use the double-periodicity of the Weierstrass ℘-function to give a homeomorphism

between the given curve and a 2-torus, whose complex structure is defined by factoring

C by a lattice, determined by the original equation of E in P2. Because of the low

dimension, any 1-dimensional submanifold is Lagrangian. The elliptic curve used in this

project will be viewed an an S1-bundle over B ∶= R/dZ. We call B the base of the

fibration.

1.3.4 The Fukaya Category of the Elliptic Curve

Chapter 5 defines the categorical structures involved in defining the sought after

morphism Ω. The first two sections are devoted to A∞-categories and tropical Morse

trees, which are the primary ingredients needed to define the Fukaya category of the

elliptic curve. This is the subject of the third section. As stated above, this precategory

carries the structure of an A∞-precategory. The multiplication maps

md,0 ∶
d

⊗
i=1

Hom(Li−1, Li)Ð→ Hom(L0, Ld)

are defined by summing over a zero-dimensional moduli space of holomorphic polygons,

with boundary contained in the Lagrangians L0, L1, . . . , Ld.

1.3.5 Tropical Morse Graphs

A tropical Morse tree T is a combinatorial tool used to replace the holomorphic

polygons mentioned above. These are continuous maps from a given metric ribbon tree

to the base of the fibration B, along with a given vector field which allows one to build

an actual polygon from T . Chapter 6 can be thought of as the heart of the thesis, as
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the crucial generalization of the moduli spaces of tropical Morse trees to the moduli

spaces of tropical Morse graphs is made. The idea is simply that we consider domains

with nontrivial first homology, i.e., graphs with cycles, along with the contractible trees

considered above. Just as tropical Morse trees correspond to holomorphic disks, tropical

Morse graphs correspond to holomorphic maps of positive genus. For example, if G is

a tropical Morse graph such that dim H1(G) = 1, then G corresponds to a holomorphic

annulus.

The A∞-relations of the Fukaya category are obtained by examining compacti-

fied 1-dimensional moduli spaces of tropical Morse trees and carefully assigning signs to

the pairs of degenerate trees bounding these spaces. Beyond the definition of tropical

Morse graphs, a dimension formula for the moduli spaces is derived and proved.

1.3.6 The Fukaya Category as an Algebra over the Feynman Transform

In the final chapter we construct the morphism Ω in detail. The basis vectors

of the Feynman transform are given by twisted cycles, and can be represented by graphs

whose vertices are decorated with a fixed number of cycles. The morphism, when re-

stricted to the genus zero (b = 0) case, is given by mapping single vertex graphs with no

edges, each decorated with a single cycle, to the maps md,0 defined in 1.3.4, which are re-

ferred to as the genus zero operations. The relations among compositions of these genus

zero operations are obtained by considering the restriction of Ω to genus zero graphs with

a single non-intersecting edge, with each of the two vertices decorated with a single cycle.

These relations give Fuk(E) the structure of an A∞-precategory. Although Fuk(X) was

already known to possess an A∞-structure, its expression here as an algebra over the

Feynman transform is a first.

The morphism Ω, when restricted to the genus one (b = 1) case, is given by map-

ping single vertex graphs with no edges, each decorated with two cycles, to the genus

one operations, which are defined as follows. Rather than summing over a cyclic chain

of Lagrangians that bound a holomorphic polygon, these new operations are defined by

taking the sums over disjoint pairs of cyclic chains of Lagrangians that bound holomor-

phic annuli. The quantum A∞ relations are defined by examining degenerations of genus

one tropical Morse graphs, and are given over the Feynman transform by restricting Ω

to stable graphs with b = 1, whose vertices are decorated by either one or two cycles

each. This generalizes the Fukaya category from being an A∞-precategory, to being a
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quantum A∞-precategory.



Chapter 2

Graphs and S-modules

In this chapter we review basic concepts necessary for the discussion of modular

operads, all of which can be found in [17].

2.1 Graphs

A graph G is a triple (Flag(G), λ, σ), where Flag(G) is a finite set, whose

elements are called flags, λ is a partition of Flag(G), and σ is an involution acting

on Flag(G). The vertices of G are the unordered blocks(subsets) of the partition and

the set of all such is denoted by Vert(G). We write Leg(v) for the subset of Flag(G)
corresponding to the vertex v. Let Edge(G) denote the set of two-cycles of σ and let

Leg(G) denote the subset of Flag(G) fixed by σ. We say that two legs meet if they

either belong to the same vertex, or comprise an edge.

A 1 dimensional CW-complex ∣G∣ is associated to each graph G by taking a

copy of [0,1] for each flag, and imposing the following equivalence relation: the points

0 ∈ [0,1] are identified for all flags in a block of the partition λ, and the points 1 ∈ [0,1]
are identified for pairs of flags exchanged by the involution σ. So two flags touch in ∣G∣
if and only if they belong to the same vertex, or comprise an edge.

To each vertex we associate a point, out of which emanates line segments, one

for each element of Leg(v). Two line segments are glued at their non-vertex ends if σ

maps one to the other.

Example 2.1.1. Flag(G) = {1, . . . ,9}, λ = {1,2,3} ∪ {4,5,6} ∪ {7,8,9},

σ = (12)(34)(57)(68)

9
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● ● ●
(34) 9

(57)

(68)
(12)

If G is contractible, then G will be called a tree. We can break symmetry and

call one of the legs the output, and the rest will be called the inputs. A tree of this type

is a rooted tree.

Definition 2.1.2. A stable graph G is a connected labeled graph with a non-negative

integer b(v) assigned to each vertex v ∈ Vert(G), such that 2b(v) + n(v) − 2 > 0. For a

stable graph G, set

b(G) =
⎛
⎝ ∑
v∈Vert(G)

b(v)
⎞
⎠
+ b1(G),

where b1(G) = dimH1(G). Let ∗l(v)
n(v),b(v) be the unique graph with one vertex v, n(v)

legs, l(v) loops, and integer b(v).

Proposition 2.1.3. If G is a stable graph, then

∣Edge(G)∣ = b(G) − 1 + ∑
Vert(G)

(1 − b(v)),

and if b(G) = 0, then ∣Edge(G)∣ + 1 = ∣Vert(G)∣.

Let S and S′ be subsets of Leg(G) and Leg(G′) respectively, and let ϕ ∶ S → S′

be a bijection. We can form a new graph G ⊗ϕ G′ by gluing the elements of S to the

elements of S′ using ϕ. Then

Edge(G⊗ϕ G
′) = Edge(G) ∪Edge(G′) ∪ {(iϕ(i))}

for i ∈ S and

Leg(G⊗ϕ G′) ⊆ Leg(G) ⊔ Leg(G′).

We can then decompose any graph G as

G = ⊗
v∈Vert(G)

Gv,

where v is the unique vertex ofGv and ϕ is given implicitly byG. Note thatGv = ∗l(v)n(v),b(v)
for all v ∈ Vert(G).
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Morphisms of Stable Graphs

Definition 2.1.4. Let G0 and G1 be two graphs. A morphism of graphs f ∶ G0 → G1 is

an injection

f∗ ∶ Flag(G1)→ Flag(G0)

such that:

1. σ0 ○ f∗ = f∗ ○ σ1, where σi, i = 0,1 are the involutions of Flag(Gi).

2. σ0 acts freely on Flag(G0) ∖ f∗(Flag(G1)).

3. Two flags a and b in G1 meet if and only if there is a chain (x0, . . . , xk) of flags in

G0 such that f∗a = x0, σ0xi−1 and xi meet for all 1 ≤ i ≤ k, and f∗b = σ0xk.

The motivation behind each of the axioms is not so clear. The first ensures

edges are mapped either to edges or points, and legs are mapped to legs. Indeed, since

f∗ is an injection, σ1 moves l ∈ Flag(G1) if and only if σ0 moves f∗l ∈ Flag(G0). Two

is another way of saying that G1 is obtained from G0 by doing nothing more than con-

tracting a subset of Edge(G). The third ensures that no morphism is allowed to tear a

leg from a vertex and re-attach it to another, i.e. that f is continuous. I illustrate this

last point with an example.

Example 2.1.5.

Consider the graphs

G0 = (Flag(G0) = {1,2} ⊔ {3}, σ0 = (23))

G1 = (Flag(G1) = {4,5} ⊔ {6}, σ1 = (56))

and consider the function

f∗ ∶ Flag(G1)→ Flag(G0)

4,5,6↦ 1,3,2

The induced map is

1

●

●

Ð→
4

●

●

2 5

3 6
?????? ������ ?????? ������
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Intuitively this map removes the edge (23) and re-attaches it by its opposite

end. The map f∗ satisfies axioms 1 and 2, but not 3. Indeed, 4 and 6 do not meet,

but the chain (x0 = 1, x1 = 2, x2 = 3) is such that f∗a = f∗4 = 1 = x0, σ0x0 = 1 meets

x1 = 2, σ0x1 = 3 meets x2 = 3, and f∗b = f∗6 = 2 = σ03 = σ0x2.

It is important to note that these three axioms force Aut(G) to act nontrivially

only on the set of edges. In particular, if G is a tree, then Aut(G) is trivial.

Definition 2.1.6. Let f ∶ G0 → G1 be a morphism and let v ∈ Vert(G1). Define the

graph f−1(v) to be the subgraph of G0 consisting of all flags of G0 which either comprise

edges collapsed to v, or are the flags attached to the vertices which bound the collapsed

edges. This is uniquely defined by the arrangement of these flags in G0.

Definition 2.1.7. A morphism of stable graphs f ∶ G0 Ð→ G1 is a morphism of graphs

such that b(v) = b(f−1(v)) for every v ∈ Vert(G1).

Denote by Γ((n, b)) the category of pairs (G,ρG), where G is a stable graph,

ρG ∶ Leg(G) → {1, . . . , n} is a bijection, b(G) = b, and whose morphisms are morphisms

of stable graphs, which preserve the labeling ρG of the legs. We write ∗ln,b for the graph

with a unique vertex, n legs, integer b, and l loops attached. Write ∗n,b for ∗0
n,b. Let

[Γ(n, b)] denote the set of isomorphism classes of this category.

2.1.1 Topological Definition for Γ((n, b))

Replace each object G of Γ((n, b)) with ∣G∣, and each morphism f ∶ G0 Ð→ G1

with a continuous map ϕf ∶ ∣G0∣Ð→ ∣G1∣ which is constant with value a vertex of G1 on

edges which collapse, and is the identity everywhere else.

2.2 Stable S-modules

Definition 2.2.1. An S-module is a sequence of chain complexes P = {P (n)∣n ≥ 0}
together with an action of Sn on P (n) for each n ≥ 0. The S-module P is called cyclic

if there is also an action of Zn+1 =< (0 1⋯n) > on P (n) for each n.

Denote by V ∗ the linear dual of the chain complex (graded vector space) V ,

where (V ∗)i = (V−i)∗. The differential is given by δ∗ ∶ V ∗
i → V ∗

i−1, the adjoint of δ ∶
V−i+1 → V−i. Tensor products of these chain complexes are permuted according to the

rule

V ⊗W Ð→W ⊗ V
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v ⊗w ↦ (−1)∣v∣∣w∣w ⊗ v, (2.1)

where ∣v∣ = deg v and is always viewed modulo 2. For a module U over a finite group G we

denote via UG the k-vector space of coinvariants, i.e. the quotient of U by the submodule

generated by {gu − u∣u ∈ U, g ∈ G}. The set of invariants {u ∈ U ∣gu = u,∀g ∈ G} will be

denoted by UG.

Let I be a finite set. Then

⊗
i∈I
Vi ∶=

⎛
⎜⎜
⎝

⊕
bijections,

γ∶{1,...,n}→I

Vγ(1) ⊗⋯⊗ Vγ(n)
⎞
⎟⎟
⎠
Sn

,

where

σ ⋅ (vγ(1) ⊗⋯⊗ vγ(n)) = (−1)ε(σ)vγ(σ(1)) ⊗⋯⊗ vγ(σ(n))

for vγ(i) ∈ Vγ(i), and ε(σ) is calculated by writing it as a sequence of transpositions of

adjacent factors, and then using (2.1). This space will also be written as V ⊗I or V I .

Let σ = (ij) be a transposition with i < j −1. Up to sign, the effect of action by

σ is certainly the interchanging of vγ(i) and vγ(j), but the signs produced by commuting

vγ(i) and vγ(j) through the factors within the string bounded by these two factors must

not be ignored. The procedure is illustrated as follows: Commuting vγ(j) to the left

through vγ(i+1) ⊗⋯⊗ vγ(j−1) yields the sign (−1)∣vγ(j)∣(∣vγ(i+1)∣+⋯+∣vγ(j−1)∣), and then com-

muting vγ(i) and vγ(j) yields (−1)∣vγ(i)∣∣vγ(j)∣. Finally, vγ(i) is commuted through vγ(i+1)⊗
⋯⊗vγ(j−1) to the place originally held by vγ(j), yielding (−1)∣vγ(i)∣(∣vγ(i+1)∣+⋯+∣vγ(j−1)∣). The

end result is

σ ∶ vγ(1) ⊗⋯⊗ vγ(i) ⊗⋯⊗ vγ(j) ⊗⋯⊗ vγ(n) (2.2)

↦ (−1)∣vγ(i)∣∣vγ(j)∣+(∣vγ(i)∣+∣vγ(j)∣)(∣vγ(i+1)∣+⋯+∣vγ(j−1)∣)vγ(1) ⊗⋯⊗ vγ(j) ⊗⋯

⋯⊗ vγ(i) ⊗⋯⊗ vγ(n)

One can check that the sign produced here is independent of the order in which vγ(i)

and vγ(j) were moved.

In other words, we choose an arbitrary linear ordering on I and set

⊗
i∈I
Vi = Vi1 ⊗ Vi2 ⊗⋯⊗ Vin ,

so that each vector vi1 ⊗ ⋅ ⋅ ⋅ ⊗ vin represents a unique equivalence class in the module of

co-invariants.
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Example 2.2.2. Let A be a chain complex which is finitely generated over C by ho-

mogeneous elements {a, b}, and set I = {f, g, h}. Then A⊗{f,g,h} is the eight-dimensional

vector space generated by the tensors af ⊗ ag ⊗ ah, af ⊗ ag ⊗ bh, af ⊗ bg ⊗ ah, and so on.

The action of S3 on A{f,g,h} is induced by the bijection f ↦ 1, g ↦ 2, h↦ 3. If, for exam-

ple, σ = (12) = (fg), then σ ⋅ af ⊗ bg ⊗ ah = (−1)∣af ∣∣bg ∣bg ⊗ af ⊗ ah = (−1)∣ag ∣∣bf ∣bf ⊗ ag ⊗ ah.

This last equality follows from the fact that A⊗I is defined by taking a quotient, and any

two labelings of the same element lie in the same equivalence class.

Definition 2.2.3. If P is a cyclic S-module, and I is an (n + 1)−element set, define

P ((I)) ∶=
⎛
⎜⎜
⎝

⊕
bij.

{0,1,...,n}→I

P (n)
⎞
⎟⎟
⎠
S(n+1).

Once we have the notion of an operad, and have developed a few examples, we

will be able to shed more light on the above definitions, namely the nature of the Sn+1

action.

Definition 2.2.4. If there is a decomposition

P ((n)) = ⊕
b∈Z≥0

P ((n, b))

such that Sn acts on P ((n, b)) for each n, and P ((n, b)) = 0 if 2b + n − 2 ≤ 0, then P is

called stable.



Chapter 3

The Feynmann Transform

We now introduce the notion of a modular operad and Feynman transform,

as defined by Getzler and Kapranov in [17]. In addition, we introduce Barannikov’s

modular operads S[t] and S̃[t], and explain his calculations showing what the structure

of an algebra over the Feynman transform of twists of these modular operads means.

This material is from [4].

3.1 Operads

Definition 3.1.1. An operad (P, ○i) consists of an S-module P , and maps ○i ∶ P (m) ×
P (n)→ P (m + n − 1) for m,n ≥ 1 and 1 ≤ i ≤m satisfying the following two relations:

i) For a ∈ P (k), b ∈ P (l) and c ∈ P (m), and 1 ≤ i < j ≤ k,

(a ○i b) ○j+l−1 c = (a ○j c) ○i b

ii) For a ∈ P (k), b ∈ P (l) and c ∈ P (m) and 1 ≤ i ≤ k, 1 ≤ j ≤ l,

(a ○i b) ○i+j−1 c = a ○i (b ○j c)

We also have an Sn-action on each P (n), compatible with the compositions. If

σ ∈ Sm, γ ∈ Sn, a ∈ P (m), and b ∈ P (n), then

σa ○σ(i) γb = (σ ○i γ)(a ○i b),

where σ ○i γ acts as follows: The permutation γ acts on {i, . . . , i + n − 1} and σ acts on

{{1}, . . . ,{i − 1},{i, . . . , i + n − 1},{i + n}, . . . ,{m + n − 1}}.

15
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Example 3.1.2.

Let X be a topological space. The endomorphism operad EndX ∶= {P (n) =
Map(Xn,X)}n≥1 is defined as follows: The operations

○i ∶ P (n) × P (m)→ P (n +m − 1)

are given by

(f ○i g)(x1, . . . , xm+n−1) = f(x1, . . . , xi−1, g(xi, . . . , xi+m−1), xi+m, . . . , xm+n−1)

for 1 ≤ i ≤ n. The Sn action is given by (σf)(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). The

equivariance condition is best illustrated with a simple example. Let f, g ∈ Map(X2,X),
and σ = ρ = (12) ∈ S2. Then

((σ ○2 ρ)(f ○2 g))(a, b, c) = (f ○2 g)(c, b, a)

= f(c, g(b, a))

= σf(ρg(a, b), c)

= (σf ○1 ρg)(a, b, c)

= (σf ○σ(2) ρg)(a, b, c)

Remark 3.1.3. It is important to note the difference between an entry of f and an

entry place. σf is defined by pre-composing f with σ ∶ Xn → Xn, so that, for example,

σ = (12) moves f(x, y) = x + y2 to (σf)(x, y) = f(y, x) = y + x2, not g(x, y) = x + y2.

The functions f ∈ EndX(n) have n inputs and one output, so it makes sense

to represent a function as a tree T with one vertex, n “incoming” legs and 1 “outgoing”

leg. Let FlagT (= LegT ) = {0,1, . . . , n}. Fix {0} as the outgoing leg. This structure can

be exploited to further understand the subtlety mentioned above in the following way.

Label the ith incoming leg with xi for all i, 1 ≤ i ≤ n.

Let f ∈ EndX(3). It is unclear as to whether S3 acts on the external labels

{xi}, or the intrinsic labels {i} i.e., on the legs themselves. This ambiguity is resolved

by requiring, for each object EndX(n), that xi stays attached to the ith leg. See figure

2.1.

The entries are again inserted into f from left to right.

Example 3.1.4.



17

x1 x2 x3

●

0

f ∼ T =
1 2 3

xσ(1) xσ(2) xσ(3)

●

0

σf ∼ σT =
σ(1) σ(2) σ(3)

DDDDDD

zzzzzz
DDDDDD

zzzzzz

Figure 3.1: Both f and T are taken as above, with σ ∈ S3.

The operad Ass is defined by

Ass(n) = {σ ⋅ fn∣σ ∈ Sn, fn(x1, . . . , xn) = x1⋯xn},

where fn is the order-preserving operation which transforms a list of n elements into a

string of the same n elements. Also impose the condition f2 ○1 f2 = f2 ○2 f2. This is the

associativity condition, which only becomes important when we discuss algebras over

operads. Let τi be the map which replaces j with j − i+ 1 for i ≤ j ≤ i+m− 1, and let τm

be the map which replaces j with j −m + 1 for i +m ≤ j ≤ n +m − 1. Then composition

is done the same way as for EndX , i.e.

○i ∶ Ass(n)⊗Ass(m)Ð→ Ass(n +m − 1)

is given by

σfn ○i γfm(x1, . . . , xm+n−1)

= σfn(x1, . . . , xi−1, γfm(xi, . . . , xi+m−1), xi+m, . . . , xn+m−1)

= fn(xσ(1), . . . , xσ(i−1), fm(xτ−1
i γτi(i), . . . , xτ−1

i γτi(i+m−1)), xτ−1
m στm(i+m), . . .

. . . , xτ−1
m στm(n+m−1))

= xσ(1)⋯xσ(i−1)(xτ−1
i γτi(i), . . . , xτ−1

i γτi(i+m−1))xτ−1
m στm(i+m)⋯xτ−1

m στm(n+m−1)

where

xτ−1
i γτi(i)⋯xτ−1

i γτi(i+m−1)

is in the σ(i)th spot of the outer product. I include the permutations τi and τm because

I am thinking of σ and γ as acting strictly on the sets {1, . . . , n} and {1, . . . ,m} respec-

tively. This operad simply inserts a string of variables into another string of variables.
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3.1.1 Cyclic Operads

The idea of cyclic operads is to include the idea of cyclic symmetry into the

definition of an operad. Instead of the input of an operad being simply a natural number,

we can give a new definition which replaces the natural number with a tree. Let Tn be

a rooted tree with n incoming legs and one outgoing leg. One should think of the

composition P (n) ○i P (m)→ P (m + n − 1) as being induced by inserting the root of Tm

into the ith branch of Tn, much in the same way f ○ig was defined in EndX . For a general

operad P , P (n) can contain more than one element, but thinking of each element as a

rooted tree helps to illuminate the associativity relations and the Sn equivariance. The

notion of the cyclic operad is such that it allows us to view these trees as being symmetric,

not labeling certain branches as being inputs and the last as being the output. One then

views composition as being induced by inserting any leg of the first tree into any leg of

the second. Alternatively, one can think of these two trees as being glued along legs l1

and l2, and then composition is induced by collapsing the edge (l1l2).
Let τn = (0 1 2⋯n).

Definition 3.1.5. An operad is cyclic if the underlying S-module P is cyclic, and

τm+n−1(a ○m b) = τnb ○1 τma.

The Operad EV

Let V be a chain complex such that its homogeneous subspaces Vi are finite-

dimensional for all i, and let ∣x∣ = deg x. An inner product on V is a non-degenerate

bilinear form B such that B(dx, y) + (−1)∣x∣B(x, dy) = 0, where d is the differential of

V . Such a bilinear form is symmetric (resp. antisymmetric) if B(y, x) = (−1)∣x∣∣y∣B(x, y)
(resp. B(y, x) = −(−1)∣x∣∣y∣B(x, y)), and has degree k if B(x, y) = 0 unless ∣x∣ + ∣y∣ = k.

Let V be a chain complex with symmetric inner product B(x, y) of degree 0.

Kapranov defines a cyclic S−module EV by putting EV ((n + 1)) = EV (n) = V ⊗(n+1) with

the action of Sn+1 being

σ ⋅ (v1 ⊗ v2 ⊗⋯vn+1) = vσ(1) ⊗ vσ(2) ⊗⋯⊗ vσ(n+1)

This cyclic S−module can be given the structure of a cyclic operad in the following way:

if a ∈ V ⊗(m+1) and b ∈ V ⊗(n+1), the product a ○i b ∈ V ⊗(m+n) is defined by contracting

a⊗ b with the bilinear form B, applied to the ith factor of a and the 1st factor of b.
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3.2 Modular Operads

Definition 3.2.1. Let P be a stable S-module and let G be a stable graph and set

P ((G)) =⊗Vert(G) P ((Leg(v), b(v))). Note that this implies

P ((G⊗ϕ G
′)) = P ((G))⊗ P ((G′)) (3.1)

for any G,G
′
, ϕ.

Definition 3.2.2. A modular pre-operad is a stable S-module P together with a chain

map

µ ∶MP ((n, b)) ∶= ⊕
G∈[Γ((n,b))]

P ((G))Aut(G) Ð→ P ((n, b)) (3.2)

called the structure map.

If P is a modular pre-operad and G ∈ ObΓ((n, b)), denote by

µG ∶ P ((G))Ð→ P ((n, b)) (3.3)

the Sn-equivariant map obtained by composing the universal map

P ((G))Ð→MP ((n, b)) = ⊕
G∈[Γ((n,b))]

P ((G))Aut(G)

with the structure map µ ∶ MP ((n, b)) Ð→ P ((n, b)). This map is called composition

along the graph G.

Given a morphism f ∶ G0 Ð→ G1 of stable graphs, define a morphism P ((f)) ∶
P ((G0))Ð→ P ((G1)) to be the composition

P ((G0)) = ⊗
u∈Vert(G0)

P ((Leg(u), b(u))) ≃ ⊗
v∈Vert(G1)

P ((f−1(v))) (3.4)

⊗
v∈Vert(G1)

P ((Leg(v), b(v))) = P ((G1))-
⊗vµf−1(v)

Example 3.2.3. Consider the following graphs:

G0 =

1

2

● ● ●

9

10

G1 =

1

2

● ●

9

10

====

����

78
����

====

====

����
34 78

����

====

56
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G0 = (u1 ∶= u{1,2,3}, u2 ∶= u{4,5,6,7}, u3 ∶= u{8,9,10}, σ0 = (34)(56)(78))

G1 = (v1 ∶= v{1,2,7}, v2 ∶= v{8,9,10}, σ1 = (78))

and let f ∶ G0 → G1 be given by

f∗ ∶ {1,2,7,8,9,10}↦ {1,2,7,8,9,10}

respectively. Then f−1(v1) = (Gu1 ⊗3→4 Gu2), f−1(v2) = Gu3 , and P ((f)) is given by

P ((G0)) = P ((Gu1 ⊗3→4 Gu2 ⊗7→8 Gu3))

= P (((Gu1 ⊗3→4 Gu2)⊗7→8 Gu3))

= P ((f−1(v1)⊗7→8 f
−1(v2)))

= P ((f−1(v1)))⊗ P ((f−1(v2)))
µ⊗2

Ð→ P ((Gv1))⊗ P ((Gv2))

= P ((Gv1 ⊗7→8 Gv2))

= P ((G1))

Definition 3.2.4. A modular operad is a modular pre-operad P such that

i) for any G ∈ Γ((n, b)) and f ∈ Mor(Γ((n, b))), the associations

G ↦ P ((G))
f ↦ P ((f))

define a functor from the category of stable graphs to the category of chain com-

plexes over some field k. In other words, P ((f ○ g)) = P ((f)) ○ P ((g)) for any

composition

G0 G1 G2
-g -f

of morphisms of stable graphs.

ii) ⊗vµf−1(v) ○ dP ((G)) = dP ((G/J)) ○ ⊗vµf−1(v), where dP ((G)) is the differential on

P ((G)), J ⊆ Edge(G), and v runs through Vert(G/J).
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The equality µG ○ P ((ρ)) = µG holds for any ρ ∈ Aut(G), as MP ((n, b)) is

defined by taking coinvariants with respect to action by Aut(H) for any H ∈ Γ((n, b)).
The morphism of chain complexes P ((G)) Ð→ P ((n, b)) therefore depends only on the

labeling of the legs, and not on any automorphic relabeling of the edges.

Example 3.2.5. Let G ∈ Γ((4,1)) be given by

● ●

a
????

b����

c ����

d
????

e1

e2

and let ρ ∈ Aut(G) be the automorphism

ρ ∶ ● ● ↦ ● ●

a
????

b����

c ����

d
????

a
????

b����

c ����

d
????

e1

e1e2

e2

Then µG = µρ(G) ○ P ((ρ)).

Let G ∈ Γ((n, b)) be some graph. For any subset J ⊆ Edge(G), there is a

map π ∶ G Ð→ G/J defined by the inclusion Flag(G/J) ↪ Flag(G). Writing the map

⊗vµπ−1(v) for v ∈ Vert(G/J) from (3.4) as µGÐ→G/J , the functoriality of P yields

µG/J ○ µGÐ→G/J = µG (3.5)

Indeed, simply apply P to the diagram

G ∗n,b

G/J

-

?�
�
���

where G/(Edge(G)) = ∗n,b = (G/J)/(Edge(G/J)). Equation 3.5 will be referred to as

the associativity condition for composition. Condition ii) of 3.2.4 can now be written

as µG→G/H ○ dP ((G)) = dP ((G/H)) ○ µG→G/H .

The group Aut(G) acts only on the edges of G, and since some of those edges

are formed by gluing the free legs of the f−1(v), we have the inclusion

∏
v∈Vert(G/J)

Aut(f−1(v))↪ Aut(G)
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In particular, µG factors through not only P ((G))Aut(G) = P ((⊗v∈Vert(G/J) f
−1(v)))

Aut(G),

but through

P
⎛
⎝
⎛
⎝ ⊗
v∈Vert(G/J)

f−1(v)
⎞
⎠
⎞
⎠

∏
v∈Vert(G/J)

Aut(f−1(v))

as well. In other words, any automorphism ρ ∈ Aut(f−1(v)) can be extended to G, and

by both axiom 3 of the definition of a stable graph, and the definition of f−1(v), any

automorphism of G restricts to a subgraph of the form ⊗Sf−1(v), where S is some subset

of Vert(f(G)).
Any morphism GÐ→ G/J can be factored into a sequence of morphisms

GÐ→ G1/J1 Ð→ G2/J2 Ð→ ⋯Ð→ Gn/Jn = G/J,

where Ji ⊆ Edge(Gi) and Gi ∶= Gi−1/Ji−1, and the composition µG can therefore be

factored via associativity as µG = µGn−1/Jn−1Ð→Gn−1/Jn−1
○ ⋯ ○ µGÐ→G1/J1

.

Remark 3.2.6. This property means that for any operad P , any composition map µPG

can be built from the compositions along graphs with either two vertices and one edge,

or one vertex and one loop.

Example 3.2.7. Consider the morphisms

r

s

t

v

w

u

●

●

●

●

●
●

G G/J ∗4,3

a
OOOOO

b
ooooo

αβ

l
���� m6666

a /////

b�����

l

 m
11111

a 6666

b����

l
���� m

3333
f // g //dfce

dfce

hjgi

Pulling back the vertices v and w via f yields the graphs

f−1(v) = r

s

t

● , f−1(w) =
●

●
hjgia

KKKK

b
ssss

c ����
d

2222

e ,,,,,

f�����

k

�����
l

/////

αβ
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The map µG ∶ P ((G))Ð→ P ((∗4,3)) coincides with

µG/J ○ µG→G/J ∶ P ((f−1(v)))⊗ P ((f−1(w))) µ⊗2

Ð→ P ((∗4,1))⊗ P ((∗4,1)) =

= P ((∗4,1 ⊗{c,d}→{e,f} ∗4,1))
µG/JÐ→ P ((∗4,3))

Furthermore, if we take

(η1, η2) ∈ Aut(f−1(v))⊕Aut(f−1(w)) to be η1 = (α↔ β) η2 = ((gi)↔ (hj))

then the diagram

P ((f−1(v)))⊗ P ((f−1(w)))

P ((∗4,1 ⊗{c,d}→{e,f} ∗4,1)) P ((∗4,3))

P ((f−1(v)))⊗ P ((f−1(w)))

H
HHH

HHH
HHHj

?

P (η1)⊗P (η2) -

��
�
��

�
��

��*

commutes.

3.2.1 Composition for The Free Modular Operad

Let P be any stable S-module. We are now going to define the free modular

operad whose underlying stable S-module is

MP ((n, b)) = ⊕
G∈[Γ((n,b))]

P ((G))Aut(G)

Let us try to understand the structure of the composition map

µG ∶MP ((G))→MP ((n, b))
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First, take G ∈ [Γ((n, b))] and let SG = {⊕ηj ∣ηj ∶ {vj}→ [Γ((Leg(vj), b(vj)))]}, where

ηj is a choice function, and vj runs over the set of vertices of G. Then

MP ((G)) = ⊗
v∈Vert(G)

MP ((Leg(v), b(v)))

= ⊗
v∈Vert(G)

⎛
⎝ ⊕
H∈[Γ((Leg(v),b(v)))]

P ((H))Aut(H)
⎞
⎠

= ⊕
SG

⎛
⎝ ⊗

Vert(G)
P ((ηj(vj)))Aut(ηj(vj))

⎞
⎠

= ⊕
SG

⎛
⎝ ⊗

Vert(G)
P ((Gvj))Aut(Gvj )

⎞
⎠

= ⊕
SG

P (( ⊗
Vert(G)

Gvj))∏Aut(Gvj ), (3.6)

where for fixed η = ⊕ηj , each Gvj replaces vj in G, and a new graph, Gη, is defined as

follows:

Let G ∈ Γ((n, b)) be such that Vert(G) = {1, . . . , n} with involution σ and let

Gvi ∈ [Γ((Leg(vi), b(vi)))] for i = 1, . . . , n. For any category Γ((n, b)) there is a fixed

labeling of the legs of any graph G ∈ Γ((n, b)), so every graph Gvi ∈ [Γ((Leg(vi), b(vi)))]
comes with a bijection fi ∶ Leg(Gvi)Ð→ Leg(vi). It is important to recall that by a vertex

we mean not only the associated point in the geometric realization, but the set of flags

emanating from that point as well. Now, replace vi with Gvi and glue lα, lβ ∈ ⊔i Leg(Gvi)
together if and only if σfi(lα) = fj(lβ) with lα ∈ Leg(Gvi) and lβ ∈ Leg(Gvj). Since

Leg(Gη) = Leg(G) and b(vi) = b(Gvi), it must be the case that Gη belongs to Γ((n, b)).

Remark 3.2.8. It should be noted that P is in not in general “injective” in the sense

that P ((G)) = P ((H)) does not imply that G and H are even in the same category. In

particular, it need not be the case that ⊗Gvj ∈ Γ((n, b)) above. See Example 2.2.5 for

more details.

The composition µG is therefore obtained by canonically projecting the sum-

mands of

MP ((G)) =⊕
SG

P (( ⊗
Vert(G)

Gvj))∏Aut(Gvj )

onto the summands of ⊕SG P ((Gη))Aut(Gη) ⊆MP ((n, b)).
For any graph G we have G = ⊗Gvj , and if ⊕ηj is such that ηj(vj) = Gvj ,

then Gη = G. Furthermore, whenever Gvj = ∗n(vj),b(vj) for all j, then Aut(Gvj) = id
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and µMPG ∣P ((Gη))⊗Aut(Gvj )
is the projection P ((Gη)) = P ((G)) Ð→ P ((G))Aut(G). For

example, if G is the graph v1 = {1,2,3}, v2 = {4,5,6}, σ = (24)(35), then Aut(Gvi) = id,

but Aut(G) = Z/2Z.

Example 3.2.9. Let

G = ●v1 ●v2 ∈ [Γ((5,2))]
FFFF

xxxx
(ij)

xxxx

FFFF

with b(v1) = b(v2) = 1, and take Gv1 ∈ [Γ((3,1))], Gv2 ∈ [Γ((4,1))] to be

Gv1
= ●u , Gv2

= ●w
KKK

sss l

k
sss

KKK

where b(u) = 0, b(w) = 1, and the fi’s are the obvious bijections. Then (ij)f1(l) =
(ij)(i) = j = f2(k), and so

Gη = ●u ●w
CCCC

{{{{
(lk)

uuuuu

IIIII

Furthermore,

b(Gv1) = b(u)+ dimH1(Gv1) = 0 + 1 = 1

b(Gv2) = b(w)+ dimH1(Gv2) = 1 + 0 = 1

and b(Gη) = b(Gv1) + b(Gv2) = 2.

As in this example, if H1(G) = 0, then the identification

MP (G) =⊕P ((Gη))Aut(Gη),

and therefore the map µMPG , is quite intuitive. If H1(G) ≠ 0, or more specifically, if G

contains a self-intersecting loop, then the map µMPG is more subtle:

Example 3.2.10. For any modular operad P , P ((G)) = ⊗Vert(G) P ((Leg(v), b(v))).
Let

● b(v)=0G =

1
2

3

7777
����

(kk′)
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and let

● b(w)=0H =

1
2

3

`′`

7777
����

7777
����

As G has only one vertex v, each ⊕ηj from above is replaced by a single map η ∶ {v}Ð→
[Γ((Leg(v), b(v)))], and SG can be replaced by [Γ((Leg(v), b(v)))]. Let Gη0 correspond

to the η such that η(v) = Gv =H. The bijection f in this case is

f ∶ Leg(Gv)Ð→ Leg(v)

1,2,3, `, `′ ↦ 1,2,3, k, k′,

and f(`) = (kk′)f(`′) = σf(`′), so Gη0 = G. Examine the composition map µMPG :

µMPG ∶MP ((G)) = ⊗
VertG

MP ((Leg(v), b(v))) =MP ((Leg(v),0)) =

= ⊕
K∈[Γ((Leg(v),0))]

P ((K))Aut(K) Ð→ ⊕
L∈[Γ((3,1))]

P ((L))Aut(L) =

=MP ((3,1))

The map µMPG ∣P ((H))Aut(H) ∶ P ((H))Aut(H) Ð→ P ((G))Aut(G) is the canonical

projection P ((G)) Ð→ P ((G))Aut(G), since P ((G)) = P ((H)), and Aut(H) = id. The

critical step here is replacing the vertex of H ∈ Γ((Leg(v),0)) with the graph Gη0 = G,

and gluing the legs ` and `′ via f to obtain G itself.

3.2.2 Morphisms of Modular Operads

Definition 3.2.11. A morphism P Ð→ Q of modular operads consists, for each graph

G, of a morphism of chain complexes P ((G))Ð→ Q((G)) subject to the commutativity

of

P ((G)) Q((G))

P ((H)) Q((H))

-

?

µPG→H

?

µQG→H

-

where H = G/I for some set I ⊆ Edge(G).
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Proposition 3.2.12. Let P be a cyclic S−module, Q a modular operad, and let

F ∶ ModularOperadsÐ→ S−modules

be the forgetful functor. There is a bijection Hom
ModOp

(MP,Q) ≃ HomS−mod
(P,FQ),

that is, M is the left adjoint to the forgetful functor F .

Proof. For a fixed category Γ((n, b)), a morphism ϕ ∶MP Ð→ Q is a collection of chain

complex morphisms ϕ(G) ∶MP ((G))Ð→ Q((G)), indexed by the objects G of Γ((n, b)).
Since MP and Q are modular operads, ϕ(G) can be decomposed as

⊗
v∈Vert(G)

MP ((n(v), b(v)))Ð→ ⊗
v∈Vert(G)

Q((n(v), b(v))),

and is therefore determined by the collection of morphisms

MP ((n(v), b(v)))Ð→ Q((n(v), b(v)))

By the definition of MP , any morphism MP ((n, b))Ð→ Q((n, b)) is given by a collection

of morphisms P ((G))Aut(G) Ð→ Q((n, b)), each of which factors as

P ((G))Aut(G) P ((n, b))

Q((n, b))

-
µPG

Q
Q
Q
Q
Q
QQs ?

Any morphism ϕ ∶ MP Ð→ Q of modular operads is therefore uniquely defined by a

collection of chain complex morphisms P ((n, b)) Ð→ Q((n, b)), indexed by pairs n, b

such that n − 2 + 2b > 0; that is, a morphism P Ð→ Q of stable S-modules.

Conversely, given a morphism of modular operads MP Ð→ Q, restricting the

morphism MP ((n, b))Ð→ Q((n, b)) to P ((∗n,b)) gives a morphism P ((n, b)) = P ((∗n,b))Ð→
Q((n, b)).

3.2.3 Cocycles and Coboundaries

Definition 3.2.13. A cocycle D is a functor (not necessarily monoidal) Γ((n, b)) Ð→
Graded Vector Spaces satisfying the following conditions:

i) dimD(G) = 1 for all G ∈ Γ((n, b))

ii) D(∗n,b) = C
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iii) For any morphism of stable graphs f ∶ GÐ→ G/I, there is an isomorphism

νf ∶D(G/I)⊗ ⊗
v∈Vert(G/I)

D(f−1(v))Ð→D(G)

iv) Given a composition of morphisms G0
f1Ð→ G1

f2Ð→ G2, the following diagram com-
mutes:

D(G2)⊗ ⊗
v∈Vert(G2)

D(f−1
2 (v))⊗ ⊗

v∈Vert(G1)
D(f−1

1 (v)) D(G1)⊗ ⊗
v∈Vert(G1)

D(f−1
1 (v))

D(G2)⊗ ⊗
v∈Vert(G2)

(D(f−1
2 (v))⊗ ⊗

w∈f−1
2

(v)
D(f−1

1 (w)))

D(G2)⊗ ⊗
v∈Vert(G2)

D((f2 ○ f1)−1(v)) D(G0)

?

≃

-
νf2

?

νf1

?

D(G2)⊗⊗v∈Vert(G2) νf1 ∣
f−1
2
(v)

-
νf2○f1

v) If f ∶ G0 Ð→ G1 is an isomorphism, the following diagram commutes:

D(G1)⊗ ⊗
v∈Vert(G1)

D(f−1(v)) D(G0)

D(G1)

-
νf

HH
HHH

HHHj
id⊗g

?

D(f)

where the map g is given as follows. Let πv be the projection πv ∶ f−1(v) Ð→
∗n(v),b(v). Then D(πv) is the map D(πv) ∶ D(f−1(v)) Ð→ D(∗n(v),b(v)) = C, and

we set g =⊗Vert(G1)D(πv).

Let D be a cocycle. Define Dn(G) ∶= D(G)⊗n and D−1(G) ∶= D(G)∗. By

definition, for any stable graph G, we have D(G) = V [m] where V ≃ C and m ∈ Z.

Therefore Dn(G) = V ⊗n[nm], and D−1(G) = V ∗[−m] are again one-dimensional and

concentrated in a single degree.
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Recall the determinant of a vector space V is the one-dimensional vector space

⋀top(V )[dimV ], which is concentrated in degree (−dimV ). If S is a finite set, write

CS for ⊕S C and set Det(S) ∶= Det(CS) = ⋀∣S∣(CS)[∣S∣]. The familiar isomorphism

⋀top(V ⊕W ) ≃ ⋀top(V )⊗⋀top(W ) tells us that Det(∐I Si) ≃⊗I Det(Si) for any finite

sequence of disjoint sets {Si}. If V∗ =⊕I Vi is a graded finite dimensional C-vector space,

then set

Det(V∗) =⊗
Z
Det(−1)i(Vi)

The two cocycles which will be important for the purposes of this project are

K(G) = Det(Edge(G))

L(G) = Det(Flag(G))Det−1(Leg(G))

For example, if G is the graph

● ●

then K(G) = ⋀2(C2)[2], and L(G) = ⋀2 C{f,f ′}[2]⊗⋀2 C{g,g′}[2], where (ff ′) and (gg′)
are the edges of G.

Lemma 3.2.14. Let l be an integer. Then Kl−2L(G) = Kl(G)⊗⊗Edge(G)⋀2 C{f,f ′}.

Proof. Let G be a stable graph. Calculating yields

Kl−2L(G)

= Kl(G)⊗K−2(G)⊗L(G)

= Kl(G)⊗C[−2∣Edge(G)∣]⊗Det(Flag(G))⊗Det−1(Leg(G))

= Kl(G)⊗C[−2∣Edge(G)∣]⊗
top

⋀ CFlag(G)[∣Flag(G)∣]

⊗(
top

⋀ CLeg(G)[∣Leg(G)∣])∗

= Kl(G)⊗C[−2∣Edge(G)∣]⊗
top

⋀ CLeg(G)⊔⊔Edge(G){se,te}[∣Leg(G)∣ + 2∣Edge(G)∣]

⊗(
top

⋀ CLeg(G)[∣Leg(G)∣])∗

= Kl(G)⊗C[−2∣Edge(G)∣]⊗
top

⋀ CLeg(G)[∣Leg(G)∣]⊗
top

⋀ C⊔Edge(G){se,te}[2∣Edge(G)∣]⊗ (
top

⋀ CLeg(G)[∣Leg(G)∣])∗

= Kl(G)⊗
top

⋀ C⊔Edge(G){se,te}

= Kl(G)⊗ ⊗
Edge(G)

2

⋀C{se,te} (3.7)
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Definition 3.2.15. Let D∨ denote the dualizing cocycle K ⊗D−1.

Let s be a stable S-module such that dimC s((n, b)) = 1 for all b, n.

Definition 3.2.16. The coboundary of s is the cocycle

Ds(G) ∶= s((n, b))⊗ ⊗
v∈Vert(G)

s−1((n(v), b(v)))

Later on when we examine algebras over certain operads, it will be important

to shift degrees and alter the Sn-action for the sake of compatibility. This will be done

using the coboundaries induced by the stable S-modules

Σ((n, b)) = C[−1]

α((n, b)) = C[n]

β((n, b)) = C[b − 1]

s̃ = sgnn[n]

χl = s̃Σβ2(1−l) l ∈ Z

Let σ ∈ Sn. If s is among the first three, then Sn × Ds(G) Ð→ Ds(G) is given by

(σ, v)↦ v, and if s = s̃, then (σ, v)↦ sgnn(σ) ⋅ v. The same holds for χl.

The upshot here is that if s is a stable S-module of the type mentioned above,

and if P is a modular D-operad, then sP is a modular Ds ⊗D-operad.

Remark 3.2.17. It is easy to see that Dβ2 = K2 and Ds̃ = L−1.

Definition 3.2.18. Twisted modular operads are defined by simply replacing P ((G))
in Definitions (3.2.2) and (3.2.4) with D(G)⊗ P ((G)). More specifically, the map (3.2)

becomes

µ ∶MDP ((n, b)) ∶= ⊕
G∈[Γ((n,b))]

(D(G)⊗ P ((G)))Aut(G) Ð→ P ((n, b)) (3.8)

and (3.3) becomes

µG ∶D(G)⊗ P ((G))Ð→D(∗n,b)⊗ P ((∗n,b)) = P ((n, b)) (3.9)

A twisted modular operad should be thought of as a modular operad whose composition

maps µG are twisted by a factor of D(G).
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3.2.4 The Twisted Modular D-operad MDP

The free modular D-operad MDP is defined by

MDP ((n, b)) = ⊕
G∈[Γ((n,b))]

(D(G)⊗ P ((G)))Aut(G),

with composition map

D(G)⊗MDP ((G))Ð→MDP ((n, b)),

and is said to be generated by the stable S-module P . As is the case with any operad,

MDP is generated by the simple tensors in MDP ((G)) =⊗Vert(G)MDP ((Gvi)). For each

graph G, there exists a choice function η = ⊕ηj as in section 2.2.1, such that Gη = G.

Since Gvj = ∗n(vj),b(vj) for all vj ∈ Vert(G), the groups Aut(Gvj) are trivial, and because

D(∗n,b) = C for any n, b, the restriction

µMDP
G ∣(⊗Vert(G)(D(Gvj )⊗P ((Gvj ))))∏Aut(Gvj )

is just the projection

D(G)⊗ ⊗
Vert(G)

P ((Gvj)) =D(G)⊗ P ((G))Ð→ (D(G)⊗ P ((G)))Aut(G)

3.2.5 The Twisted Modular Operad EV

Set EV ((G)) ∶= V ⊗FlagG, and define

µEVG ∶ K−1L(G)⊗ EV ((G))Ð→ EV ((∗n,b))

by

(
εG

⋀ ei)[εG]⊗ ⊗
Edge(G)

(f ∧ f ′)⊗ ⊗
f∈Flag(G)

vf ↦ (−1)ε ∏
Edges
(f,f ′)

B(vf , vf ′) ⊗
f∈Leg(G)

vf ,

where B is an anti-symmetric pairing V ⊗ V Ð→ C of degree 1, εG = ∣Edge(G)∣, and

the sign (−1)ε is defined below. The first factor (⋀εG ei)[εG] accounts for the degree of

B, and the second factor ⊗Edge(G)(f ∧ f ′) accounts for the anti-symmetry of B. For

example, if G is the graph
f1

f2

f5

f6

f3 f4
;;;;

����

����

;;;;
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then µG is the map

K−1L(G)⊗ EV ((G)) = V ⊗{f1,f2,f3,f4,f5,f6} Ð→ V ⊗{f1,f2,f5,f6} = EV ((∗4,0))

e[1]⊗ (f3 ∧ f4)⊗ vf1 ⊗⋯⊗ vf6 ↦ (−1)εB(vf3 , vf4)vf1 ⊗ vf2 ⊗ vf5 ⊗ vf6

The Sign (−1)ε

Let G be a graph with two vertices labeled by b1 and b2, and one edge given

by (ff ′). One then has EV ((G)) = EV ((∗n1,b1))⊗ EV ((∗n2,b2)). The simple tensors have

the form

(v1 ⊗⋯⊗ vf ⊗⋯⊗ vn1)⊗ (w1 ⊗⋯⊗wf ′ ⊗⋯⊗wn2)

Composition is done in several steps, each involving a permutation of the factors with

the goal being to insert, in the operadic sense, v into w. Assume vf sits in the αth spot

of v1 ⊗⋯⊗ vn1 and wf ′ sits in the βth spot of w1 ⊗⋯⊗wn2 .

First, move vf through vf+1⊗⋯⊗ vn1 . This produces the sign (−1)
∣vf ∣(

n1
∑

i=α+1
∣vi∣)

.

Then move wi 1 ≤ i ≤ β − 1 successively all the way to the right. Moving wi gives the

sign (−1)∣wi∣(∣w∣−∣wi∣). The product now has the form

(−1)
∣vf ∣(

n1
∑

i=α+1
∣vi∣)(−1)

β−1

∑
j=1

∣wj ∣(∣w∣−∣wj ∣)
v1 ⊗⋯⊗ vn1 ⊗ vf ⊗wf ′ ⊗wf ′+1 ⊗⋯

⋯⊗wn2 ⊗w1 ⊗⋯⊗wf ′−1

Contracting this product via id⊗⋯⊗B ⊗⋯⊗ id gives the sign (−1)∣B∣(∣v∣−∣vf ∣).

Finally, move w1, . . . ,wβ−1 all the way to the left. Moving each wl for 1 ≤ l ≤ β − 1 gives

the sign (−1)∣w`∣(∣v∣+∣w∣−∣vf ∣−∣wf ′ ∣−∣w`∣). The end result is

(−1)
∣vf ∣(

n1
∑

i=α+1
∣vi∣)+

β−1

∑
j=1

∣wj ∣(∣w∣−∣wj ∣)+∣B∣(∣v∣−∣vf ∣)+
β−1

∑
`=1

∣w`∣(∣v∣+∣w∣−∣vf ∣−∣wf ′ ∣−∣w`∣)
(3.10)

B(vf ,wf ′)w1 ⊗⋯⊗wβ−1 ⊗ v1 ⊗⋯⊗ vn1 ⊗wβ+1 ⊗⋯⊗wn2

Now let G = ∗1
n,b. Then µEVG ∶ EV ((G))Ð→ EV ((n, b + 1)) is given by

v1 ⊗⋯⊗ vf ⊗⋯⊗ vf ′ ⊗⋯⊗ vn

↦ (−1)
∣vf ∣(

β−1

∑
i=α+1

∣vi∣)+∣B∣((
β−1

∑
j=1

∣vj ∣)−∣vf ∣)
B(vf , vf ′)v1 ⊗⋯⊗ vf−1 ⊗ vf+1 ⊗⋯

⋯⊗ vf ′−1 ⊗ vf ′+1 ⊗⋯⊗ vn (3.11)
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3.2.6 The Twisted Modular Operad S[t]

Let C[Sn]
′

denote the N-graded C-vector space with basis indexed by elements

(σ, aσ) with deg(σ, aσ) ∶= deg aσ = −iσ, where σ ∈ Sn is a permutation with iσ cycles and

aσ = σ1 ∧ ⋅ ⋅ ⋅ ∧ σiσ ∈ Det(cycle σ). We also impose the relation (σ,−aσ) = −(σ, aσ). Let

C[t] denote the space of polynomials in the variable t and let deg t = −2. Note that deg

tg = −2g.

The underlying S-module of the modular operad S[t] is

S((n)) ∶= C[Sn]
′[−1]⊗C C[t],

and S((n)) = ⊕
b≥0

S[t]((n, b)) with

S[t]((n, b)) = ⊕
σ,g

b=2g+iσ−1

C ⋅ (σ, aσ)tg[−1],

where deg(σ, aσ)tg = deg tg+deg aσ = −2g−iσ. This gives a shift of 2g+iσ, and as a vector

space, C ⋅ (σ, aσ)tg[−1] ≃ C[2g + iσ − 1]. In particular, S[t]((n, b)) is a one-dimensional

C-vector space sitting in degree (−b). Note that if b ≤ 1, then g = 0. If n ≤ 2, set

S[t]((n,0)) = 0.

Definition 3.2.19. A stable ribbon graph is a connected graph G together with

i) partitions of the set of flags adjacent to every vertex into i(v) subsets Leg(v)j ⊆
Leg(v) with Leg(v)j ∩ Leg(v)k = ∅ if j ≠ k, 1 ≤ j, k ≤ i(v).

ii) a fixed cyclic order on every subset Leg(v)j .

iii) a map g ∶ Vert(G)Ð→ Z≥0 such that for any vertex v, 2(2g(v)+ i(v)−2)+n(v) > 0,

so that putting b(v) = 2g(v) + i(v) − 1 defines a stable graph.

The basis vectors (σ, aσ)tg can be represented by single-vertex stable ribbon

graphs with associated orientations in the following way: Let C[Sn] be the vector space

SpanC{σ ∈ Sn} concentrated in degree 0, where C[Sn]∗ is identified with C[Sn] via

σ∗(τ) = δστ . Let σ = σ1⋯σiσ act on the flags of ∗n,b and identify σj , 1 ≤ j ≤ iσ, with

the corresponding orbit in Flag(∗n,b) ∶= {1, . . . , n}. Then (σ, aσ)tg can be represented by

∗n,b, thought of as the stable ribbon graph, and is best written as

∗n,b[−1]⊗ (σ1 ∧⋯ ∧ σiσ)[iσ]⊗ tg ∈ S[t]((n,2g + iσ − 1))

= S[t]((n, b))

⊂ C[Sn]′[−1]⊗C[t]
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where the shift by −1 coincides with [−1] in C[Sn]′[−1]⊗C[t], and ∗n,b contributes no

shift. The idea is to write the vectors (σ, aσ)tg in such way that the composition maps

µ
S[t]
G can be defined as explicitly as possible.

Tensoring with tg is nothing but a shift, so we can rewrite the latter expression

as

∗n,b ⊗ (σ1 ∧⋯ ∧ σiσ)[2g + iσ − 1] = ∗n,b ⊗ (σ1 ∧⋯ ∧ σiσ)[b] (3.12)

By definition, S[t]((n, b)) is finite dimensional, so we can put a finite order on

the basis elements. If we write S[t]((n, b)) = SpanC{ei}, then the canonical basis, {fi},

for S[t]((n, b))∗ is defined by fi(ej) = δij . If

∗n,b ⊗ (σ1 ∧⋯ ∧ σiσ)[b]

corresponds to ei, then fi will be represented by

∗n,b ⊗ (σ1 ∧⋯ ∧ σiσ)[−b].

Composition for S[t]

S[t] is a modular Det operad, so the compositions all have the form

µ
S[t]
G→G/e ∶ Det(H1(G))⊗ S[t]((G))Ð→ Det(H1(G/e))⊗ S[t]((G/e)),

where this map has degree 0.

As was mentioned in Remark 3.2.6, all compositions in S[t] can be built from

the compositions along graphs with either two vertices and one edge, or one vertex and

one loop. The former is defined as follows.

Composition along ∗n1,b ⊗ ∗n2,b′

Let G be the graph with vertices v1 = {I⊔{f}}, v2 = {J⊔{f ′}}, involution (ff ′),
and b(v1) = b, b(v2) = b

′
. Choose an arbitrary ordering on v1 and identify S[t]((I⊔{f}, b))

with S[t]((∣I ⊔ {f}∣, b)). Since Det(H1(G)) = Det(H1(G/e)) ≃ C, µ
S[t]
G→∗n,b = µ

S[t]
G is a

map

S[t]((I ⊔ {f}, b))⊗ S[t]((J ⊔ {f ′}, b′))Ð→ S[t]((∣I ⊔ J ∣, b + b′))

Let (σ, aσ)tg, (ρ, aρ)tg
′

be basis vectors of S[t]((I ⊔ {f}, b)) and S[t]((J ⊔
{f ′}, b′)) respectively, with aσ = σ1 ∧ ⋯ ∧ σiσ[iσ], aρ = ρ1 ∧ ⋯ ∧ ρiρ[iρ] and f ∈ σk,
f ′ ∈ ρl.
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Define

πff ′ ∶ Aut({1, . . . , n} ⊔ {f, f ′})Ð→ Sn

σ ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f ′ σ(f ′))(f σ(f))σ if σ(f) ≠ f ′ and σ(f ′) ≠ f

(f ′ σ(f ′))(f σ(f))σ if σ(f) = f ′

(f σ(f))(f ′ σ(f ′))σ if σ(f ′) = f

and let µ = πff ′(σρ(ff ′)). Intuitively, πff ′ is the operation which erases f and f ′

from the permutation σ. For example, if n = 5 and σρ = (12f3)(f ′45), then σρ(ff ′) =
(12f3)(f ′45)(ff ′) = (12f45f ′3) and πff ′((12f45f ′3)) = (12453), so πff ′(σρ(ff ′)) =
(12453). This can be seen graphically as follows:

&%
'$r f

r3
r

2

r1 &%
'$rf ′

r5
r
4

- &%
'$r1

r3
r

2

r5
r
4

πff ′

Figure 3.2: Right multiplication by the transposition (ff ′), followed by application of
the map πff ′ has the effect of gluing the cycles at the points f and f ′. One could also
think of this as inserting (45) into (123).

We then have µ
S[t]
G ((σ, aσ)tg ⊗ (ρ, aρ)tg

′) = (µ, aµ)tg+g
′
, where

aµ = (−1)k+lπff ′σkρl(ff ′) ∧ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σiσ ∧ ρ1 ∧⋯ ∧ ρ̂l ∧⋯ ∧ ρiρ[iµ]

and f ∈ σk, f ′ ∈ ρl.
I claim this is the natural choice for aµ. As before, write (σ, aσ)tg as ∗∣I ∣,b⊗σ1∧

⋯∧σiσ[b] using the identification in the previous section. The element (σ, aσ)tg⊗(ρ, aρ)tg
′

then becomes

∗∣I ∣+1,b ⊗ (σ1 ∧⋯ ∧ σiσ)[b]⊗ ∗∣J ∣+1,b′ ⊗ (ρ1 ∧⋯ ∧ ρiρ)[b′]

and this is rewritten as

(∗∣I ∣+1,b ⊗f,f ′ ∗∣J ∣+1,b′)(σ1 ∧⋯ ∧ σiσ ∧ ρ1 ∧⋯ ∧ ρiρ)[b + b′].

There should be a natural contraction

Det(cycle σ)⊗Det(cycle ρ)→ Det(cycleµ)
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mapping aσ ⊗ aρ to aµ, compatible with the contraction

∗∣I ∣+1,b ⊗f,f ′ ∗∣J ∣+1,b′ ↦ ∗∣I ∣+∣J ∣,b+b′ = ∗n,b+b′ ,

which records the sewing of σk with ρl along (ff ′), and the deletion of σk and ρl. The

isomorphism Det(S ⊔ T ) ≃ Det(S) ⊗Det(T ), when applied to the sets {cycle σ ∖ {σk}}
and {σk}, gives

Det(cycle σ ∖ {σk})Ð̃→Det({σk})⊗Det(cycle σ ∖ {σk})Ð̃→Det(cycle σ)

σ1∧⋯∧σ̂k∧⋯∧σiσ[iσ−1]↦ σk[1]⊗σ1∧⋯∧σ̂k∧⋯∧σiσ[iσ−1]↦ (−1)k−1σ1∧⋯∧σk∧⋯∧σiσ[iσ]

The factor (−1)k−1 comes from moving σk from the first spot to the kth spot by applying

the permutation (k k-1)(k-1 k-2)⋯(k 1) to σk ∧ σ1 ∧ ⋯ ∧ σ̂k ∧ ⋯ ∧ σiσ . Inverting this

isomorphism gives rise to the sequence

Det(cycle σ)⊗Det(cycle ρ)Ð→ Det(cycle σ ∖ {σk})⊗Det(cycle ρ ∖ {ρl})Ð→

Ð→ Det(πff ′σkρl(ff ′))⊗Det(cycle σ ∖ {σk})⊗Det(cycle ρ ∖ {ρl})Ð→

Ð→ Det(πff ′(σρ(ff ′))) = Det(cycleµ)

On elements,

aσ ⊗ aρ = σ1 ∧⋯ ∧ σiσ[iσ]⊗ ρ1 ∧⋯ ∧ ρiρ[iρ]↦

(−1)k+l−2σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σiσ[iσ − 1]⊗ ρ1 ∧⋯ ∧ ρ̂l ∧⋯ ∧ ρiρ[iρ − 1]↦

πff ′σkρl(ff ′)[1]⊗ (−1)k+lσ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σiσ[iσ − 1]⊗ ρ1 ∧⋯ ∧ ρ̂l ∧⋯ ∧ ρiρ[iρ − 1]↦

(−1)k+lπff ′σkρl(ff ′) ∧ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σiσ ∧ ρ1 ∧⋯ ∧ ρ̂l ∧⋯ ∧ ρiρ[(iσ + iρ − 1) = iµ],

which is aµ.

It is important to note that if we want to think of the elements (σ, aσ)tg as

∗n,b[−1]⊗σ1∧⋯∧σiσ[iσ]⊗ tg, when the map µ
S[t]
G is applied, the contraction ∗∣I ∣,b⊗{f,f ′}

∗∣J ∣,b′ → ∗n,b+b′ is done in degree zero, and the result is then shifted by −1.
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Composition along ∗1
n,b−1

Let G be the graph ∗1
n,b−1 with a single vertex v = {1, . . . , n}⊔{f, f ′} and single

loop defined by the edge e = (ff ′). Then G/e = ∗0
n,b and µ

S[t]
G has the form

Det(H1(G))⊗ S[t]((G))Ð→ C⊗ S[t]((n, b))

Assume first that f, f ′ ∈ σk, σl respectively, with k < l. Let µ = πff ′σ(ff ′). Then

µ
S[t]
G (eff ′[1]⊗ (σ, aσ)tg) = 1⊗ (µ, aµ)tg+1, where eff ′[1]↦ 1 is a map of degree −1, and

aµ = (−1)k+l−1πff ′σkσl(ff ′) ∧ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σ̂l ∧⋯ ∧ σiσ[iµ].

As before, there should be a natural contraction Det(cycle σ)→ Det(cycleµ) compatible

with sewing the cycles σk, σl, and the contraction ∗1
n,b−1 → ∗0

n,b. Also as before, there is

a sequence of natural isomorphisms which yield aµ. The first of which is as follows:

Det(cycle σ ∖ {σk, σl})Ð→ Det(σk)⊗Det(σl)⊗Det(cycle σ ∖ {σk, σl})Ð→

Ð→ Det(σk)⊗Det(cycle σ ∖ σk)Ð→ Det(cycle σ)

On elements,

σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σ̂l ∧⋯ ∧ σiσ[iσ − 2]↦

σk[1]⊗ σl[1]⊗ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σ̂l ∧⋯ ∧ σiσ[iσ − 2]↦

σk[1]⊗ (−1)l−1−1σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σl ∧⋯ ∧ σiσ[iσ − 1]↦

(−1)k−1+l−1−1σ1 ∧⋯ ∧ σk ∧⋯ ∧ σl ∧⋯ ∧ σiσ[iσ]

Inverting this map gives rise to the sequence

Det(cycle σ)→ Det(cycle σ ∖ {σk, σl})→ Det(πff ′σkσl(ff ′))⊗Det(cycle σ ∖ {σk, σl})→

→ Det(cycleµ)

On the element σ1 ∧⋯ ∧ σiσ[iσ], this takes the form

σ1 ∧⋯ ∧ σiσ[iσ]↦

(−1)k+l−1σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σ̂l ∧⋯ ∧ σiσ[iσ − 2]↦

(−1)k+l−1πff ′σkσl(ff ′)[1]⊗ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σ̂l ∧⋯ ∧ σiσ[iσ − 2]↦

(−1)k+l−1πff ′σkσl(ff ′) ∧ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σ̂l ∧⋯ ∧ σiσ[iσ − 1]
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Remark 3.2.20. The number b(G) is defined as

⎛
⎝ ∑
v∈Vert(G)

b(v)
⎞
⎠
+ dimH1(G),

so in this case, b − 1 = b(v) = 2g + iσ − 1, where v is the vertex of ∗1
n,b−1. Therefore

b = 2g + iσ = 2(g + 1) + (iσ − 1) − 1 should be the total shift of µ
S[t]
G (eff ′[1]⊗ (σ, aσ)tg) =

∗0
n,b[−1] ⊗ aµ[iµ = iσ − 1] ⊗ tg+1. By considering this shift, one sees that the element

eff ′[1] does not act as an orientation correction, or as a shift of (µ, aµ)tg+1. It simply

maps to 1 ∈ Det(∗0
n,b) ≃ C, so as to ensure degµ

S[t]
G = 0.

Now assume f, f ′ ∈ σk. Then µ
S[t]
G dissects the cycle σk into two cycles, whose

relative order in the basis vector of Det(cycle πff ′σ(ff ′)) is determined by the order in

which f and f ′ appear in σk. In this case, σ(ff ′) is the product of two cycles, σfk and σf
′

k ,

where σfk contains f and σf
′

k containsf ′. We have µ
S[t]
G (eff ′[1]⊗(σ, aσ)tg) = 1⊗(µ, aµ)tg,

and

aµ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−1)k−1(πfσfk) ∧ (πf ′σf
′

k ) ∧ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σiσ if f appears before f ′ in σ

(−1)k−1(πf ′σf
′

k ) ∧ (πfσfk) ∧ σ1 ∧⋯ ∧ σ̂k ∧⋯ ∧ σiσ if f ′ appears before f in σ

This is well-defined as long as all of the cycles of a given length begin with the same letter.

The factor of (−1)k−1 comes from the following two sequences of natural isomorphisms.

The first is

Det(cycle σ ∖ σk)Ð→ Det(cycle σ),

which was defined above. The second is

Det(cycle σ)Ð→ Det(cycle σ ∖ σk)Ð→ Det(cycle πff ′σk(ff ′))⊗Det(cycle σ ∖ σk)Ð→

Ð→ Det(πfσfk)⊗Det(πf ′σf
′

k )⊗Det(cycle σ ∖ σk)Ð→ Det(cycle πff ′σ(ff ′))

If f and f ′ are neighbors in σk, then either σfk = (f), or σf
′

k = (f ′). In either case,

µ
S[t]
G (eff ′[1]⊗ (σ, aσ)tg) = 0.

3.2.7 The Modular Operad S̃[t]

The underlying S-module is S̃[t]((n)) = k[Sn]⊗ k[t] and

S̃[t]((n, b)) = ⊕
σ

b=2g+iσ−1

k ⋅ σtg
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where degσtg = −2g. The compositions µ
S̃[t]
G ∶ S̃[t]((G)) Ð→ S̃[t]((n, b)) are given by

σtg⊗τtg′ ↦ πff ′(στ(ff ′))tg+g
′
, where σ and τ act nontrivially on f and f ′, respectively.

In the elliptic curve case, we always take g = 0. This is indeed an untwisted modular

operad, with a twisted version playing a key role in the main result of this project.

3.3 The Feynman Transform

As a stable S-module, but ignoring differentials, FDP equals MD∨P ∗, the un-

derlying stable S-module of the free modular D∨-operad generated by the linear dual P ∗

of P .

The Feynman Differential

The differential of the Feynman Transform, dFDP , is the sum dFDP ∶= ∂P ∗ + δ,
where ∂P ∗ and δ are defined as follows: For any G, D∨(G) is a graded vector space

concentrated in degree −(∣Edge(G)∣ + degD(G)). So thinking of D∨(G) ⊗ P ((G))∗ as

the total complex of a double complex, only one column of D∨(G)⊗P ((G))∗ is nonzero.

Define ∂P ∗ by ∂P ∗(x⊗ y) = x⊗ dP ∗(y), where dP ∗ is the differential on P ∗.

The map δ is induced by the composition maps µPG→G/e of the modular D-

operad P . Let G be a stable graph in [Γ((n, b))], and let e be an edge of G. The

morphism G→ G/e gives rise to a map

D(G)⊗ P ((G))Ð→D(G/e)⊗ P ((G/e)).

Dualizing, and taking the adjoint map, gives

D−1(G/e)⊗P ((G/e))∗ =D(G/e)∗⊗P ((G))∗ Ð→D(G)∗⊗P ((G))∗ =D−1(G)⊗P ((G))∗.

The subtle point here is that the map (µPG→G/e)
∗ descends to a map

(D−1(G/e)⊗ P ((G/e))∗)Aut(G/e) → (D−1(G)⊗ P ((G))∗)Aut(G).

Both maps will be written (µPG→G/e)
∗ as this will cause no confusion.

The cocycle K takes G to K(G) ∶= Λ∣Edge(G)∣CEdge(G)[Edge(G)], and setting

ek = e, the natural isomorphism Det({e})⊗Det(Edge(G)∖{e})Ð→ Det(Edge(G)) gives

the map

ηGe ∶ K(G/e)Ð→ K(G)
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(⋀
i≠k
ei)[εG − 1]↦ (−1)k−1⋀

i

ei[εG]

Our grading is homological, so deg(ηGe ) = −1. Then deg(ηGe ⊗ (µPG→G/e)
∗) =

deg(ηGe ) + deg(µPG→G/e)
∗ = −1 + 0 = −1.

Let G,H ∈ [Γ((n, b))] be such that H/e ≃ G for a fixed edge e. Choose an

isomorphism ϕ ∶H/eÐ→ G and define

δ∣(D∨(G)⊗P ((G))∗)Aut(G) = ⊕
H∈[Γ((n,b))]
H/e≃G

ηHe ⊗ (µPH→G)∗,

where the map H → G is the composition H
π→ H/e ϕ→ G. I claim ηHe ⊗ (µPH→G)∗, and

therefore δ, is well-defined.

Let ϕ,ϕ′ be isomorphisms H/eÐ→ G. These induce maps

δ, δ′ ∶ (D∨(G)⊗ P ((G))∗)Aut(G) Ð→ (D∨(H)⊗ P ((H))∗)Aut(G).

We have a commutative diagram

H

H/e

G G

�
�
�
�
�
�
�
��

ϕ○π
?

A
A
A
A
A
A
A
AU

ϕ′○π

�
�
�	

ϕ

@
@
@Rϕ′

-
ϕ′○ϕ−1=γ

Applying F ∶=D∨ ⊗ P ∗ gives the commutative diagram

F (G) F (G)

F (H/e)

F (H)

A
A
A
A
A
A
A
A
AAU

F (ϕ○π)

@
@
@
@R

-
F (γ)

�
�
�
�	

�
�
�
�
�
�
�
�
���

F (ϕ′○π)

?

Let x ∈ F (G), and let x ∈ F (G)Aut(G). Recall the action of Aut(G) on F (G) is given by

γ ⋅ x = F (γ)(x). Commutativity, and the fact that F (ϕ ○ π) and F (ϕ′ ○ π) descend to

δ, δ′ ∶ F (G)Aut(G) Ð→ F (H)Aut(H),

respectively, gives δ(x) = δ′(F (γ)(x)) = δ′(γ ⋅ x) = δ′(x), so δ is well-defined.
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Theorem 3.3.1. d2
FDP

= 0.

Proof. I first claim δ2 = 0. Let G be a stable graph. Let K be such that G =K/{e1, e2}
and set Hi =K/{ei} for i = 1,2. As above, set F =D∨ ⊗ P ∗. Then δ2 is the map

δ2 ∶ F (G)Aut(G) Ð→ F (H1)Aut(H1) ⊕ F (H2)Aut(H2) Ð→ F (K)Aut(K),

and

δ2 = ((ηKe1 ⊗ µ
∗
K→H1

)⊕ (ηKe2 ⊗ µ
∗
K→H2

)) ○ ((ηH1
e2 ⊗ µ∗H1→G)⊕ (ηH2

e1 ⊗ µ∗H2→G))

Recall D∨(G) = K(G)⊗D(G)∗ and let x ∈D(G)∗ ⊗ P (G)∗. On elements one has

δ2( ⋀
i≠1,2

ei[εK − 2]⊗ x)

= e1 ∧ e2 ∧ ( ⋀
i≠1,2

ei[εK])⊗ (µ∗K→H1
○ µ∗H1→G)(x)

+ e2 ∧ e1 ∧ ( ⋀
i≠1,2

ei[εK])⊗ (µ∗K→H2
○ µ∗H2→G)(x)

= e1 ∧ e2 ∧ ( ⋀
i≠1,2

ei[εK])⊗ (µ∗K→G)(x) − e1 ∧ e2 ∧ ( ⋀
i≠1,2

ei[εK])⊗ (µ∗K→G)(x)

= 0

Since the map δ2∣F (G)Aut(G) is a sum over all pairs of edges e1, e2, and graphs

K such that K/{e1, e2} = G, one sees δ2∣F (G)Aut(G) = 0.

By definition of P , µ ○ dP + dP ○ µ = 0. Noting the definition of d∗P , taking the

adjoint yields dP ∗ ○ µ∗ + µ∗ ○ dP ∗ = 0. Then

δ ○ dP ∗ + dP ∗ ○ δ = (ηe ⊗ µ∗) ○ (1⊗ dP ∗) + (1⊗ dP ∗) ○ (ηe ⊗ µ∗)

= ηe ⊗ (µ∗ ○ dP ∗) + ηe ⊗ (dP ∗ ○ µ∗)

= ηe ⊗ (µ∗ ○ dP ∗) + ηe ⊗ (−µ∗ ○ dP ∗)

= 0

and d2
FDP

= (δ + dP ∗)2 = δ2 + δ ○ dP ∗ + dP ∗ ○ δ + d2
P ∗ = 0.

Example 3.3.2.

Consider the category Γ((3,1)) of stable graphs G with b(G) = 1 and the

elements of Leg(G) labeled by {1,2,3}. Recall that a stable graph G is one such that

2b(v) + n(v) − 2 > 0 for all vertices v of G, where n(v) is the valence of v and b(v) is a

nonnegative integer assigned to v.
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Let P = S[t], D = Det, and let

G =

1

●

2

3

b(v)=1

55555

					

Let K ∈ Γ((3,1)) be such that K/e ≃ G for some e ∈ Edge(K). Then K has

one internal edge and at most two vertices. If K has only one vertex v, then K contains

a loop, and b(v) = 1 − b1(K) = 1 − 1 = 0. If K has two vertices v1 and v2, then K is a

tree, and b(v1) + b(v2) = 1 − b1(K) = 1 − 0 = 1. Assume b(v) = 0 for some vertex in either

case. Then iσv = 1 − 2g(v), which forces n(v) ≥ 3, g(v) = 0, and iσv = 1. If b(v) = 1, then

iσv = 2 − 2g(v) and in this case iσv = 2 with n(v) ≥ 1. The graph K must therefore be

one of

K1 =

1

●

● b=0

b=1

3

2

K2 =

1

● b=0

2

●b=1

3

K3 =

1 2

●b=1

●b=0

3

K4 = ● b=0

1
2

3
??

???
������

���

??????

�� ��??

7777
����

or

K =

1 2 3

●b=0

●b=1

????
����

(ff ′)

Note that S[t]((K)) = S[t]((4,0)) ⊗ S[t]((1,1)), where S[t]((1,1)) = 0 by stability, so

the graph K need not be considered.

The map δ will be constructed explicitly for H1 and H4, the cases H2 and H3

being similar to that of H1. The vector spaces corresponding to the three relevant graphs

are

Det(H1(G))⊗ S[t]((G)) = C⊗ SpanC

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u1 = ((1)(23), (1) ∧ (23))t0

u2 = ((2)(13), (2) ∧ (13))t0

u3 = ((3)(12), (3) ∧ (12))t0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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Det(H1(K1))⊗ S[t]((K1))

= C⊗ SpanC

⎧⎪⎪⎪⎨⎪⎪⎪⎩

v11 = ((1)(f), (1) ∧ (f))t0 ⊗ ((f ′23), (f ′23))t0

v12 = ((1)(f), (1) ∧ (f))t0 ⊗ ((f ′32), (f ′32))t0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Det(H1(K4))⊗ S[t]((K4)) = C[1]⊗ SpanC{wi = (σ, aσ)t0∣σ ∈ Cycle{1,2,3, f, f ′}}

Write σ for (σ, aσ)t0 and define the order of the basis elements of S[t]((K4)) as follows:

{(12f3f ′), (1f2f ′3), (12f ′3f), (13f2f ′), (13f ′2f), (1f23f ′), (1f3f ′2), (1f32f ′),
(1f ′3f2), (1f ′32f), (1f ′23f), (1f ′2f3),{σ∣f, f ′ neighbors in σ}}.

The first of the three vector spaces above sits in degree −1, the second in degree

0 + (−1) = −1, and the third in degree −1 + 0 = −1.

Let µi ∶= µS[t]Ki
∣1⊗S[t]((Ki)). For i = 1, Det(H1(Ki)) is just C, so the composition

is

µ
S[t]
Ki

∶ S[t]((K1))Ð→ S[t]((G))

v11, v12 ↦ ((1)(23), (−1)2+1(23) ∧ (1)) = u1

We have [µi]uv1
=
⎛
⎜⎜⎜⎜
⎝

1 1

0 0

0 0

⎞
⎟⎟⎟⎟
⎠

. This implies [µ∗i ]
v∗1
u∗ =

⎛
⎜
⎝

1 0 0

1 0 0

⎞
⎟
⎠

, and

ηeK1
⊗ (µS[t]K1

)∗ ∶ 1⊗ (1⊗ u∗i )↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e[1]⊗ 1⊗ (v∗11 + v∗12) if i = 1

0 if i = 2

0 if i = 3

The element 1⊗ (1⊗ u∗i ) sits in degree 1, and e[1]⊗ 1⊗ (v∗11 + v∗12) sits in degree 0. For

i = 4, Det(Ki) = C[1], and so the composition is

µ
S[t]
K4

∶ C[1]⊗ S[t]((K4))Ð→ C⊗ S[t]((G))

l[1]⊗wi ↦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1⊗ u1 if i = 6,8,10,11

1⊗ −u2 if i = 2,4,5,12

1⊗ −u3 if i = 1,3,7,9

0 if 13 ≤ i ≤ 24
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Applying the transpose [µ∗i ]w
∗

u∗ gives us

ηeK4
⊗ (µS[t]K4

)∗ ∶ 1⊗ (1⊗ u∗j )↦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

e[1]⊗ l[−1] ⊗ (w∗
6 +w∗

8 +w∗
10 +w∗

11) if j = 1

e[1]⊗ l[−1] ⊗ (−w∗
2 −w∗

4 −w∗
5 −w∗

12) if j = 2

e[1]⊗ l[−1] ⊗ (−w∗
1 −w∗

3 −w∗
7 −w∗

9) if j = 3

The elements 1 ⊗ (1 ⊗ u∗j ), e[1] ⊗ l[−1] ⊗ (w∗
a + w∗

b + w∗
c + w∗

d) sit in degrees 1 and 0

respectively.

The operad S[t] takes, as an input, a stable graph and outputs a stable ribbon

graph decorated with cycles. Using this point of view, the Feynman differential on

FDetS[t] can be written purely in terms of stable ribbon graphs. The degree in which

the vector, represented by a stable ribbon graph, sits can be read directly from the graph

using the equation b(v) = 2g(v) + iσ − 1.

The Basis of FDetS[t]

Given n, b satisfying the stability condition, the space FDetS[t]((n, b)) is given

by

FDetS[t]((n, b)) = ⊕
G∈[Γ((n,b))]

Det∨(G)⊗ S[t]((G))∗ (3.13)

= ⊕
G∈[Γ((n,b))]

KDet−1(G)⊗ S[t]((G))∗

= ⊕
G∈[Γ((n,b))]

Det(Edge(G))⊗Det−1(H1(G))⊗ S[t]((G))∗

Given σ ∈ Sn, one can, as in (3.12), write the basis vector [(σ, aσ)tg]∗ of S[t]((n, b))∗ as

∗n,b⊗σ1∧⋯∧σiσ[−b], the canonical basis element of the space ∗n,b⊗⋀top(Ccycleσ)∗[−b],
where σ = σ1⋯σiσ . Since S[t]((G))∗ = ⊗Vert(G)S[t]((n(v), b(v)))∗ for any G ∈ Γ((n, b)),
the basis vectors of S[t]((G))∗ are best represented as elements of the spaces

G(σv1 , . . . , σv∣Vert(G)∣) ∶= ⊗
Vert(G)

(∗n(v),b(v) ⊗⋀
top(Ccycleσv)∗[−b(v)])

= ( ⊗
Vert(G)

∗n(v),b(v))⊗ ⊗
Vert(G)

(⋀top(Ccycleσv)∗[−b(v)])

= ( ⊗
Vert(G)

∗n(v),b(v))⊗ ( ⊗
Vert(G)

⋀top(Ccycleσv)∗)[−∑ b(v)],

indexed by the set ∏
v∈Vert(G)

Sn(v).
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Letting εG = ∣Edge(G)∣, and let λG = dim H1(G), the basis elements of

FDetS[t]((n, b)) can then be realized as elements of the spaces

KDet−1(G)⊗G(σv1 , . . . , σv∣Vert(G)∣)

= Det(Edge(G))⊗Det−1(H1(G))⊗G(σv1 , . . . , σv∣Vert(G)∣)

= ⋀top(CεG)⊗⋀top(H1(G,C))∗[εG − λG]⊗G(σv1 , . . . , σv∣Vert(G)∣)

= ( ⊗
Vert(G)

∗n(v),b(v))⊗⋀
top(CεG)⊗⋀top(H1(G,C))∗

⊗( ⊗
Vert(G)

⋀top(Ccycleσv)∗)[εG − λG −∑ b(v)] (3.14)

and take the form

( ⊗
Vert(G)

∗n(v),b(v))⊗ αG,

where

αG ∶= e1 ∧⋯ ∧ eεG ⊗ `1 ∧⋯ ∧ `λG ⊗ ⊗
Vert(G)

σv1
∧⋯ ∧ σviσv [εG − b] (3.15)

We have proved the following:

Proposition 3.3.3. The basis vectors of FDetS[t]((n, b)) can be labeled by pairs (G,αG)
for G a stable ribbon graph, and αG as defined by (3.15).

As the basis of FDetS[t] can be represented by stable ribbon graphs, the action

of dF can also be represented by such graphs. Let G be a stable ribbon graph with one

vertex and d + 1 legs, and for the sake of intuition, mark the leg labeled by d + 1 as the

output and the rest as inputs. Modulo degrees, dF can then be represented by

dF (G ) =
d−1

∑
i=2

d−i+1

∑
j=1

Gij , (3.16)

where Gij is a stable ribbon graph with a single edge corresponding to inserting the

output of a single-vertex stable ribbon tree with i inputs into the jth input of a second

single-vertex stable ribbon tree with d − i + 1 inputs.

Example 3.3.4. Consider the stable ribbon graph G

1234

5

●↺������

����
))))

??????
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Applying dF to G gives a sum of five vectors indexed by the following stable ribbon

graphs Gij .

12

34

●

●

↺

↺

5

1

23

●↺4

●↺

5

12

34 ●

●

↺

↺

5

1

234

●

●

↺

↺

5

123

4 ●

●

↺

↺

5

������

������
??????

??????
������

??????

??????

������

������
??????

������
??????

������

������
??????

??????

������
??????

������
??????

Visualizing the Feynman differential in this way, the connection between the Feynman

transform and the A∞ relations is realized as the correspondence between the graphs Gij

and the compositions md−i+1 ○j mi for 2 ≤ i ≤ d − 1.



Chapter 4

Algebras over The Feynman

Transform

The first part of this chapter is devoted to giving a detailed discussion of what it

means for a chain complex to be an algebra over the Feynman transform. This material

can be found in [4]. In the second half of the chapter, we construct a morphism from the

Feynman transform of a twisted version of S̃[t], to EV , where V is specifically chosen to

mimic the chain complexes encountered in the categorical version of such a construction.

In the last part we define what is meant by a quantum A∞-algebra and give an explicit

example of these relations in the genus 1 case. The notion of a quantum A∞-algebra can

be found in [4], with a slightly different formulation. Specifically, a set of operations on

a chain complex satisfies the quantum A∞-relations if and only if they are a solution to

the quantum master equation, as described in [4].

4.1 The Basic Structure

A FDP -algebra structure on the chain complex V is a morphism of D∨-modular

operads

m̂ ∶ FDP Ð→ EV ,

given, for each stable graph G, by a morphism of chain complexes

FDP ((G))Ð→ EV ((G)) = V ⊗Flag(G)

In other words, there are commutative diagrams

47
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FDP ((G)) EV ((G))

FDP ((G)) EV ((G))
?

dF

-m̂

?

dEV

-
m̂

(4.1)

and

D∨(H)⊗FDP ((H)) D∨(H)⊗ EV ((H))

D∨(G)⊗FDP ((G)) D∨(G)⊗ EV ((G))
?

µF
H→G

-m̂

?

µ
EV
H→G

-
m̂

(4.2)

for every G,H ∈ Γ((n, b)) such that G =H/J for some J ⊆ Edge(H).
When G = ∗n,b, the former takes the form

FDP ((n, b)) V ⊗n

FDP ((n, b)) V ⊗n
?

dF

-m̂

?

dEV

-
m̂

By definition,

FDP ((n, b)) = ⊕
G∈[Γ((n,b))]

(D∨(G)⊗ P ((G))∗)Aut(G),

so maps (D∨(G)⊗ P ((G))∗)Aut(G) Ð→ V ⊗n must be defined for all G ∈ [Γ((n, b))].
The difficulty in defining these maps is that if ∣Edge(G)∣ > 0, then ∣Flag(G)∣ >

∣Leg(G)∣ = n and the map

P ((G))∗ = ⊗
Vert(G)

P ((Leg(v), b(v)))∗ Ð→ EV ((n, b))

must involve the contraction µPG, because ∑
v∈Vert(G)

∣Leg(v)∣ = ∣Flag(G)∣ > n.

The maps (D∨(G)⊗ P ((G))∗)Aut(G) Ð→ V ⊗n are defined by replacing

m̂∣(D∨(G)⊗P ((G))∗)Aut(G)

in the first diagram with (µEVG→∗n,b ○ m̂)∣(D∨(G)⊗P ((G))∗)Aut(G) from the second. Recalling

the definition of the composition map for a free modular twisted D-operad, any element

of (D∨(G)⊗P ((G))∗)Aut(G) is the result of applying µFDP
G to an element of the summand

D∨(G)⊗ P ((G))∗ = D∨(G)⊗ ⊗
Vert(G)

P ((Leg(vi), b(vi)))∗ ⊆D∨(G)⊗FDP ((G))

By the commutativity of the diagram
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D∨(G)⊗ ⊗
Vert(G)

P ((Leg(vi), b(vi)))∗ D∨(G)⊗ V ⊗Flag(G)

FDP ((n, b)) ⊇ (D∨(G)⊗ P ((G))∗)Aut(G) EV ((n, b)) = V ⊗n
?

µ
FDP

G

-m̂

?

µEG

-m̂

the map m̂, when restricted to the subspace (D∨(G) ⊗ P ((G))∗)Aut(G), is given by

µEVG ○ (id⊗⊗Vert(G) m̂Leg(v),b(v)), where

m̂Leg(v),b(v) ∈ Hom(P ((Leg(v), b(v)))∗, V ⊗Leg(v)) ≃ P ((Leg(v), b(v)))⊗ V ⊗Leg(v)

Any map between these two twisted modular D∨-operads therefore corresponds

to a set {m̂Leg(v),b(v)∣v ∈ G}, where G runs through all elements of [Γ((n, b))], and must

satisfy

dE ○ m̂ = m̂ ○ dF (4.3)

It is important to note the maps m̂Leg(v),b(v) do not depend on G, but are indexed by

the vertices of G.

The Feynman differential is given by

dF ∣(D∨(G)⊗P ((G))∗)Aut(G) = dP ∗ + ∑
H∈[Γ((n,b))]
H/e≃G

ηHe ⊗ (µPH→G)∗

where ηHe is multiplication by e[1], the canonical element of degree (−1) from Det({e}).
By taking G = ∗n,b, (D∨(G) ⊗ P ((G))∗)Aut(G) becomes P ((∗n,b)) and the equation

(dE ○ m̂ = m̂ ○ dF )∣(D∨(G)⊗P ((G))∗)Aut(G) can be expressed in full detail. If H/e ≃ G = ∗n,b,
then H is one of

i) Gn,b ∶= ∗1

n,b−1, the unique graph with one vertex, one self-intersecting edge e = (ff ′),
and n external legs.

ii) G(I1,I2,b1,b2) ∶= ∗I1⊔{f},b1 ⊗{f,f ′} ∗I2⊔{f ′},b2 with e = (ff ′), b1 + b2 = b, and I1 ⊔
I2 = Leg(G). If b = 0 there are 1

2 ∑2≤i≤n−2 (ni) of these, and if b > 0, there are

1
2 ∑1≤i≤n−1 (ni).

The differential can then be written more specifically as

dF = dP ∗ + e[1]⊗ (µPGn,b)
∗ + 1

2
∑
S

e[1]⊗ (µPG(I1,I2,b1,b2)
)∗,
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where S = {(I1, I2)∣I1 ⊔ I2 = {1,2, . . . , n}, ∣Ii∣ + 2b(vi) ≥ 2}.

Recall that EV is a modular D∨ = K−1L - operad, so the contraction map

µEG(I1,I2,b1,b2)
is given by

K−1L(G(I1,I2,b1,b2))⊗ V
⊗I1⊔{f} ⊗ V ⊗I2⊔{f ′} Ð→ V ⊗n.

Note 4.1.1. Even powers of K contribute nothing but a degree shift, because any per-

mutation of edges ei ↔ ej produces the sign −1 an even number of times.

Because EV is a modular D∨ = KD−1 = K−1L-operad, P must be a modular

D = K(D∨)−1 = K2L−1-operad, so the contraction map µPG(I1,I2,b1,b2)
is given by

K2L−1(G(I1,I2,b1,b2))⊗ P ((I1 ⊔ {f}, b1))⊗ P ((I2 ⊔ {f ′}, b2))Ð→ P ((n, b1 + b2)),

where K2L−1(G) =⊗Edge(G)⋀2 C{f,f ′}. Indeed, we have the relation

K3−lL−1(G) = D(G)

= K(D∨)−1(G)

= K(G)⊗D∨(G)∗

= K(G)⊗ (Kl(G)⊗ ⊗
Edge(G)

2

⋀C{f,f ′})∗

= K(G)⊗K−l(G)⊗ ⊗
Edge(G)

2

⋀C{f,f ′}

= K1−l(G)⊗ ⊗
Edge(G)

2

⋀C{f,f ′}, (4.4)

and setting l = 1 yields the result. Diagram (4.1) reduces to

P ((n, b))∗ EV ((n, b)) = V ⊗n

⊕
H/e≃∗n,b

(Kl(H)⊗
2

⋀C{f,f ′} ⊗ P ((H))∗)Aut(H) V ⊗n

-m̂

?

dF

?

dE

-m̂

(4.5)
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For each such graph H, diagram (4.2) reduces to

Kl(H)⊗
2

⋀C{f,f ′} ⊗ P ((H))∗ Kl(G)⊗
2

⋀C{f,f ′} ⊗ V ⊗{f,f ′} ⊗ V ⊗n

(Kl(H)⊗
2

⋀C{f,f ′} ⊗ P ((H))∗)Aut(H) V ⊗n

-m̂

?

proj

?

µEH

-m̂

(4.6)

If H = Gn,b, then write m̂∣P ((H))∗ as m̂{1,...,n}⊔{f,f ′},b−1, and if H = G(I1,I2,b1,b2),

then write m̂∣P ((H))∗ as m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2 .

Certainly imdP ∗ ⊆ P ((Leg(v), b(v)))∗, so

m̂∣imdP∗ = µ
E
∗n,b ○ m̂Leg(v),b(v) = id ○ m̂Leg(v),b(v) = m̂Leg(v),b(v)

We also have

m̂∣
im(e[1]⊗(µPGn,b)

∗)
= µEGn,b ○ m̂{1,...,n}⊔{f,f ′},b−1

and

m̂∣
im(e[1]⊗(µPG(I1,I2,b1,b2)

)∗)
= µEG(I1,I2,b1,b2)

○ m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2

The map m̂ is degree 0, so commutes with tensoring by e[1] and

m̂ ○ dF = m̂ ○ dP ∗ + m̂ ○ (e[1]⊗ (µPGn,b)
∗) + 1

2
m̂ ○∑

S

e[1]⊗ (µPG(I1,I2,b1,b2)
)∗

= m̂Leg(v),b(v) ○ dP ∗ + (µEGn,b ○ m̂{1,...,n}⊔{f,f ′},b−1) ○ (e[1]⊗ (µPGn,b)
∗)

+1

2
∑
S

(µEG(I1,I2,b1,b2)
○ (m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2)) ○ (e[1]⊗ (µPG(I1,I2,b1,b2)

)∗)

= m̂Leg(v),b(v) ○ dP ∗ + µEGn,b ○ (e[1]⊗ (m̂{1,...,n}⊔{f,f ′},b−1 ○ (µPGn,b)
∗))

+1

2
∑
S

µEG(I1,I2,b1,b2)
○ (e[1]⊗ (m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2) ○ (µ

P
G(I1,I2,b1,b2)

)∗)

Equation 4.3 then becomes

dV ⊗n ○ m̂Leg(v),b(v) (4.7)

= m̂Leg(v),b(v) ○ dP ∗ + µEGn,b ○ (e[1]⊗ (m̂{1,...,n}⊔{f,f ′},b−1 ○ (µPGn,b)
∗))

+ 1

2
∑
S

µEG(I1,I2,b1,b2)
○ (e[1]⊗ (m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2) ○ (µ

P
G(I1,I2,b1,b2)

)∗)

Equation (4.7) gives V the structure of an A∞-algebra for b = 0, and the structure of

what will be referred to as a quantum A∞-algebra for general b.
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4.2 A Genus Zero Example

Definition 4.2.1. An (non-unital) A∞-algebra A is a cohomologically Z-graded k-vector

space

A =⊕
p∈Z

Ap

with graded k-linear maps, for d ≥ 1,

md ∶ A⊗d Ð→ A

of degree 2 − d satisfying for each d ≥ 1 the relation

∑
1≤p≤d

0≤q≤d−p

(−1)deg a1+⋯+deg aq−qmd−p+1(ad, . . . , ap+q+1,mp(ap+q, . . . , aq+1), aq, . . . , a1) = 0.

(4.8)

The sign (−1)deg a1+⋯+deg aq−q is given by Seidel in [36].

The map m1 is degree 1 and(4.8) takes the form m1(m1(a1)) = 0, making A

into a complex with differential m1.

The map m2 is degree 0, that is, degm2(a2, a1) = deg a2 +deg a1 and should be

viewed as a multiplication map. Equation (4.8) is

m2(a2,m1(a1)) + (−1)deg a1−1m2(m1(a2), a1) +m1(m2(a2, a1)) = 0

Up to sign, this says m1 is a graded derivation with respect to the multiplication opera-

tion. More precisely, setting

∂(a) = (−1)deg am1(a), a2 ⋅ a1 = (−1)deg a1m2(a2, a1), (4.9)

(4.8) can be rewritten as

∂(a2 ⋅ a1) = (∂a2) ⋅ a1 + (−1)deg a2a2 ⋅ (∂a1).

If multiplication were associative, this would yield what is known as a differential

graded algebra.

Setting d = 3, (4.8) becomes

m3(a3, a2,m1(a1)) + (−1)dega1−1m3(a3,m1(a2), a1)

+ (−1)deg a1+deg a2−2m3(m1(a3), a2, a1)

+ m2(m2(a3, a2), a1) + (−1)dega1−1m2(m2(a3, a2), a1))

+ m1(m3(a3, a2, a1)) = 0
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Using (4.9) m2(m2(a3, a2), a1) + (−1)dega1−1m2(m2(a3, a2), a1)) can be rewritten as

(−1)deg a2a3 ⋅ (a2 ⋅ a1) − (−1)deg a2(a3 ⋅ a2) ⋅ a1,

so this expression tells us by how much multiplication fails to be associative.

If d = 4 (4.8) is

m4(a4, a3, a2,m1(a1)) + (−1)deg a1−1m4(a4, a3,m1(a2), a1)

+ (−1)deg a1+deg a2−2m4(a4,m1(a3), a2, a1)

+ (−1)deg a1+deg a2+deg a3−3m4(m1(a4), a3, a2, a1)

+ m3(a4, a3,m2(a2, a1)) + (−1)deg a1−1m3(a4,m2(a3, a2), a1)

+ (−1)deg a1+deg a2−2m3(m2(a4, a3), a2, a1)

+ m2(a4,m3(a3, a2, a1)) + (−1)deg a1−1m2(m3(a4, a3, a2), a1)

+ m1(m4(a4, a3, a2, a1)) = 0

In Chapter 5 we introduce chain complexes, built from certain Lagrangians in

the elliptic curve, that form the building blocks of the categorical generalization, EL, of

the twisted modular operad EV , as defined in Section 3.2.5. These complexes are related

via a degree 1 bilinear form B to their dual complexes by a 1-shift. In order to gain

intuition into the structures described in the final three chapters, we now construct a

morphism from the Feynman transform of a twist of S̃[t] to EV , where V is defined

to mimic the relationship the complexes employed in later chapters have to their dual

complexes.

Let V be a homologically graded complex given by

⋯ 0 V1 V0 0 ⋯- - -dV - - (4.10)

and let {vi}ni=1, {wi}ni=1 be bases of V1 and V0 respectively. There is a degree 1 antisym-

metric pairing B defined by

B ∶ V ⊗ V Ð→ C

B(wi, vj) = δij ,B(vi,wj) = −δij

Degree 1 means B(v,w) ≠ 0 only if ∣v∣ + ∣w∣ = 1 for homogeneous elements v and w. The

pairing B can also be written as a morphism V ⊗ V Ð→ C[−1] of degree 0.

This pairing gives an isomorphism ϕ ∶ V Ð→ V ∗ of degree one defined by

ϕ(v)(w) = B(v,w), seen together as
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2 1 0 −1 −2

V1 V0

V ∗
0 V ∗

1

-

Q
Q
Qs

ϕ

-dV

Q
Q
Qs

ϕ

-

- -
dV ∗

-

(4.11)

The vectors spaces V and V ∗ can therefore be identified via ϕ, which gives rise to an

isomorphism

ξn ∶ V ⊗(n+1) Ð→ (V ∗)⊗n ⊗ V δÐ→ Hom(V ⊗n, V ) (4.12)

(
n

⊗
i=1

vi)⊗ vn+1 ↦
n

⊗
i=1

(ϕ(vi))⊗ vn+1 ↦ (
n

⊗
i=1

ui ↦ (−1)
n

∑
i=1

(n−i)∣vi∣
∏B(vi, ui)vn+1)

Note that up to sign

B(v,w) =< ϕ(v),w >, (4.13)

where < −,− >∶ V ⊗ V ∗ Ð→ C is the standard pairing v ⊗ f ↦< v, f >= f(v).
Let W be the cohomological complex such that W i = V1−i for V defined in

(4.10). The complexes W and W ∗ and the map ϕ between them then take the form

−2 −1 0 1 2

W 1 W 0

(W 0)∗ (W 1)∗

-
�

����

ϕ

-dW

�
����

ϕ

-

- -
dW∗

-

(4.14)

The isomorphism W⊗(n+1) Ð→ Hom(W⊗n,W ) is defined in precisely the same way as

ξn, so this isomorphism will also be called ξn.

Consider a map mn,b ∶W⊗n Ð→W of degree 2− 2b−n. If A and B are any two

finite-dimensional vector spaces, the degree of the isomorphism

Hom(A,B)Ð→ A∗ ⊗B

f ↦∑a∗ ⊗ f(a)

is zero, because deg(a∗ ⊗ f(a)) = deg a∗ + deg f(a) = −deg a + (deg a + deg f) = deg f .

Noting the shift in (4.11), one therefore has

deg ξ−1
n (mn,b) = n + deg δ−1(mn,b) = n + degmn,b = n + (2 − 2b − n) = 2 − 2b, (4.15)
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where the first equality is a result of the isomorphisms

W⊗n ⊗W ≃ (W ∗[−1])⊗n ⊗W ≃ (W ∗)⊗n ⊗W [−n]

Because the Feynman transform is a homological complex, the stable S-module

underlying the twisted modular operad EV should be given by a homological complex as

well. The elements mn,b should therefore be considered as elements of V ⊗(n+1). As an

element of V ⊗(n+1), mn,b ∶= ξ−1(mn,b) sits in degree (n + 1) − (2 − 2b).
Consider the stable S-modules β((n, b)) = C[b − 1] and s̃((n, b)) = sgnn[n].

As deg S̃[t] = 0, the twisted modular Dβ2Ds̃ = K2L−1-operad β2s̃S̃[t]((n + 1, b)) sits in

degree (2 − 2b) − (n + 1). The vector space (β2s̃S̃[t]((n + 1, b)))∗ therefore sits in degree

(n + 1) − (2 − 2b).

Theorem 4.2.2. Let P = β2s̃S̃[t] and EV ((n, b)) = V ⊗n, with V and B as above. The

element (−1)
n

∑
i=1

(n−i)∣vi∣
v1 ⊗⋯ ⊗ vn ⊗ vn+1 = mn,0(σ) ∈ V ⊗(n+1) corresponds via ξn to the

degree 2 − 2 ⋅ 0 − n map

mn,0(σ) ∶ V ⊗n Ð→ V

u1 ⊗⋯⊗ un ↦∏B(vi, ui)vn+1,

where σ = (12⋯n (n + 1)) and degmn,0(σ) = n − 1 by (4.15). The Feynman transform-

algebra structure on EV is given, for b = 0, by the map

m̂n+1,0 ∶ (β2s̃S̃[t]((n + 1,0)))∗ Ð→ EV ((n + 1,0))

((12⋯n (n + 1))[n − 1])∗ ↦mn,0(σ), (4.16)

and gives V the structure of an A∞-algebra.

Remark 4.2.3. By using (4.13), the map mn,0 is seen to be the same as the one obtained

from ϕ(v1)⊗⋯⊗ ϕ(vn)⊗ vn+1 via the usual isomorphism (V ∗)⊗n ⊗ V ≃ Hom(V ⊗n, V ).

Proof. The vector space β2s̃S̃[t]((n,0))∗ is concentrated in a single degree, so d∗
β2s̃S̃[t] = 0

and since the algebra structure FK2L−1β2s̃S̃[t]Ð→ EV is being considered only for b = 0,

the map e[1]⊗(µS̃[t]Gn,b
)∗ does not contribute to the Feynman differential, which takes the

following simplified form:

dF = ∑
H∈Γ((n,0))
H/e≃∗n,0

e[1]⊗ (µS̃[t]H )∗
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The sum dF ((12 ⋯ n)∗) may be visualized using (3.16) by noting that the graphs {Gij}
from above are obtained by decorating the vertices of the graphs {H ∈ Γ((n,0))∣H/e ≃
∗n,0} with cycles, which compose via µ

S̃[t]
H to (12 ⋯ n).

The equation (4.7) takes the form

dV ⊗n ○ m̂n,0

= ∑
H∈Γ((n,0))
H/e≃∗n,0

µEVH ○ (e[1]⊗ ( ⊗
v∈Vert(H)

m̂Leg(v),0) ○ (µ
S̃[t]
H )∗) (4.17)

The coefficient 1
2 has been dropped here since the sum is more carefully indexed

by the specific graphs obtained by inserting an edge into ∗n,b.
By Remark 3.2.17, the relevant β2s̃S̃[t]-composition maps µ

β2s̃S̃[t]
H (∣Edge(H)∣ =

1) are

µ
β2s̃S̃[t]
H ∶ K2L−1 ⊗ β2s̃S̃[t]((H))Ð→ β2s̃S̃[t]((n,0))

f ∧ f ′ ⊗ (σ ⊗ τ)[
2

∑
i=1

(n(vi) − 2)]↦ πff ′(ff ′)στ[n − 2]

These maps are indeed degree zero because
2

∑
i=1

(n(vi) − 2) = n − 2 for any stable graph

H ∈ Γ((n, b)).
If Hi has the form

i⋯i+l−1

1⋯●⋯k+l−1

●

k+l

������
??????

vvvvvvvv

HHHHHHH

then

(e[1]⊗ (µS̃[t]Hi
)∗)(12 ⋯ n)∗

= (f ∧ f ′)[1]⊗ (i ⋯ (i + l − 1) f)∗ ⊗ (1 2 ⋯ (i − 1) f ′ (i + l) ⋯ n)∗ (4.18)

Applying µEVH ○m̂ to this tensor will give, along with the appropriate sign, the tensor that

corresponds to the composition mk,0 ○iml,0 under the isomorphism (4.12), with k = n− l.
Write ml,0 for ml,0((i⋯ (i + l − 1) f)) and similarly for mk,0. The element ml,0

is given by (−1)∑
i+l−1
j=i (l−(j−i+1))∣vj ∣vi ⊗⋯⊗ vi+l−1 ⊗ vf , and mk,0 is given by

(−1)∑
i−1
j=1(k−j)∣vj ∣+(k−i)∣vf ′ ∣+∑l+k−1

j=i+l (k−(j−l+1))∣vj ∣v1 ⊗⋯⊗ vi−1 ⊗ vf ′ ⊗ vi+l ⊗⋯⊗ vk+l.
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For this same graph, µEVHi is given by

(−1)ε1vi ⊗⋯⊗ vi+l−1 ⊗ vf ⊗ v1 ⊗⋯⊗ vi−1 ⊗ vf ′ ⊗ vi+l ⊗⋯⊗ vk+l
↦ (−1)ε1+ε2v1 ⊗⋯⊗ vi ⊗⋯⊗ vi+l−1 ⊗ vi+l ⊗⋯⊗ vk+l, (4.19)

where

ε1 =
i+l−1

∑
j=i

(l − (j − i + 1))∣vj ∣ +
i−1

∑
j=1

(k − j)∣vj ∣ + (k − i)∣vf ′ ∣ +
l+k−1

∑
j=i+l

(k − (j − l + 1))∣vj ∣

and

ε2 =
i−1

∑
j=1

∣vj ∣(∣mk,0∣ − ∣vj ∣) + ∣B∣(∣ml,0∣ − ∣vf ∣) + ∣vf ∣ +
i−1

∑
j=1

∣vj ∣(∣ml,0∣ + ∣mk,0∣ − ∣vf ∣ − ∣vf ′ ∣ − ∣vj ∣)

The calculation of the sign (−1)ε2 is given in detail in Section 3.2.5, and the extra term

∣vf ∣ in ε2 is due to B(vf , vf ′) having the sign (−1)∣vf ∣. Noting that ∣B∣ = 1, ∣vf ∣+ ∣vf ′ ∣ = 1,

and ∣mn,0∣ = n − 1 for any n, ε2 can be simplified to

ε2 =
i−1

∑
j=1

k∣vj ∣ + l − 1 +
i−1

∑
j=1

(k + l)∣vj ∣

Write dV for dV ⊗n . Applying dV m̂n,0 to (12 ⋯ n)∗ ∈ S̃[t]((n,0))∗ gives

dV m̂n,0((12 ⋯ n)∗) = dV (u1 ⊗⋯⊗ un−1 ⊗ un)

=
n

∑
j=1

(−1)∑
j−1
k=1

∣uj−k ∣u1 ⊗⋯⊗ dV (uj)⊗⋯⊗ un

=
n

∑
j=1

(−1)∑
j−1
k=1

∣uj−k ∣u1 ⊗⋯⊗ dV (uj)⊗⋯⊗ un (4.20)

Applying the right-hand side of (4.17) to (12 ⋯ n)∗ gives

∑
H∈Γ((n,0))
H/e≃∗n,0

µEVH ○ (e[1]⊗ ( ⊗
v∈Vert(H)

m̂Leg(v),0) ○ (µ
S̃[t]
H )∗)((12 ⋯ n)∗)

= ∑
H∈Γ((n,0))
H/e≃∗n,0

µEVH ○ (e[1]⊗ m̂Leg(u1),0((i ⋯ (i + l − 1) f)∗)

⊗ m̂Leg(u2),0((12 ⋯ (i − 1) f (i + l) ⋯ n)∗))

= ∑
H∈Γ((n,0))
H/e≃∗n,0

µEVH ((f ∧ f ′)[1]⊗ vi ⊗⋯⊗ vi+l−1 ⊗ vf ⊗ v1 ⊗⋯⊗ vi−1 ⊗ vf ′ ⊗ vi+l ⊗⋯⊗ vk+l)

= ∑
H∈Γ((n,0))
H/e≃∗n,0

(−1)ε1+ε2v1 ⊗⋯⊗ vi ⊗⋯⊗ vi+l−1 ⊗ vi+l ⊗⋯⊗ vk+l

= ∑
i

(−1)ε1+ε2v1 ⊗⋯⊗ vi ⊗⋯⊗ vi+l−1 ⊗ vi+l ⊗⋯⊗ vk+l (4.21)
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One must also include the sign

(−1)ε3 = (−1)∑
k+l−1
j=1 (k+l−1−j)∣vj ∣

coming from applying ξk+l−1 to the contracted tensor v1⊗⋯⊗vi⊗⋯⊗vi+l−1⊗vi+l⊗⋯⊗vk+l.
Summing ε1, ε2, and ε3 and noting ∣vf ∣ = 1 − ∣vf ′ ∣ for vf and vf ′ such that

B(vf , vf ′) ≠ 0, gives

l − 1 +
i−1

∑
j=1

∣vj ∣ + (k + i)(l − 1) + (k − i) = ∣ml,0∣ +
i−1

∑
j=1

∣vj ∣ + (∣mk,0∣ + 1 + i)∣ml,0∣ + ∣mk,0∣ + 1 − i

Converting back to cohomological degrees gives

2 + (i − 1) +
i−1

∑
j=1

∣wj ∣ + (2 + 1 + i)2 + 2 + 1 − i =
i−1

∑
j=1

∣wj ∣ mod 2,

where wj corresponds to vj under the identification W i = V1−i.

When it is being applied to a tensor t1 ⊗⋯⊗ tk+l−1, (4.21) may be rewritten as

∑
i

(−1)
i−1

∑
j=1

∣tj ∣+i−1

w1 ⊗⋯⊗wi ⊗⋯⊗wi+l−1 ⊗wi+l ⊗⋯⊗wk+l, (4.22)

because B(wi, ti) ≠ 0 only if ∣wi∣+ ∣ti∣ = 1. Similarly for (4.20). Putting (4.20) and (4.22)

together and noting that the element u1⊗⋯⊗dV (uj)⊗⋯⊗un−1⊗vn corresponds to the

composition mn,0 ○j m1,0, yields the result.

4.3 The Quantum A∞-relations

Definition 4.3.1. A Quantum A∞-algebra is a Z-graded k-vector space

V =⊕
p∈Z

Vp

with k-linear maps

m̂d+1,b ∶ (β2s̃S̃[t]((d + 1, b)))∗ Ð→ EV ((d + 1, b))

((σ1⋯σb−2g+1)[(d + 1) − (2 − 2b)])∗ ↦md,b(σ1⋯σb−2g+1), (4.23)

of degree 0, satisfying for each product of cycles σ1⋯σb−2g+1, the relation

dV (m̂d+1,b(σ[n])∗) (4.24)

= µEVGd+1,b
((f ∧ f ′)[1]⊗ (m̂d+3,b−1 ○ (µS̃[t]∗1

d+1,b−1

)∗)((σ[n])∗)

+ ∑
H∈Γ((d+1,b))
H/e≃∗1

d+1,b

µEVH ((f ∧ f ′)[1]⊗ (m̂k,b1 ⊗ m̂(d+1)−k+2,b2) ○ (µ
S̃[t]
H )∗)((σ[n])∗),
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where σ[n] = σ1⋯σb−2g+1[(d+1)−(2−2b)], b1+b2 = b, and the sequence of disjoint cycles

σ1⋯σb−2g+1 is such that d + 1 = ∑b−2g+1
i=1 ∣σi∣. The elements md,b(σ1⋯σb−2g+1) are tensors

in V ⊗(d+1) sitting in degree (d + 1) − (2 − 2b). Note that we take g = 0 in the case of the

elliptic curve. By setting b = 0, one recovers the structure of an A∞-algebra by Lemma

4.2.2.

Notice the definition involves a homologically graded complex, while the usual

definition of an A∞-algebra involves cohomologically graded complexes. The degree of

the map md,b(σ1⋯σb−2g+1) ∶ V ⊗d Ð→ V corresponding to the tensor md,b(σ1⋯σb−2g+1),
when viewed using cohomological degrees, is 2−2b−d. Indeed, consider a degree 2−2b−d
map md,b ∶ W⊗d Ð→ W of cohomologically graded complexes. When viewed as an

element of W⊗(d+1), it has degree 2− 2b. Switching to the homological complex V given

by Vi =W 1−i, the degree becomes (d + 1) − (2 − 2b). Finally, viewing this same element

as a map V ⊗d Ð→ V , the degree is seen to be (d + 1) − (2 − 2b) − d = 2b − 1.

4.3.1 The b = 1 Case of The Quantum A∞-relations

As above, let mn,b(σ) = ξ−1
n (mn,b(σ)), where mn,b(σ) ∶ V ⊗n Ð→ V is a degree

2b−1 map of homological complexes. This element mn,b(σ) sits in degree (n+1)−(2−2b)
and depends on the permutation σ as in (4.23). The map (4.23) takes the form

m̂∣σ∣+∣τ ∣,1 ∶ (β2s̃S̃[t]((∣σ∣ + ∣τ ∣,1)))∗ Ð→ EV ((∣σ∣ + ∣τ ∣,1)) = V ⊗(∣σ∣+∣τ ∣)

((στ)[∣σ∣ + ∣τ ∣])∗ ↦ ξ−1
∣σ∣+∣τ ∣−1(m∣σ∣+∣τ ∣−1,1(στ))

= m∣σ∣+∣τ ∣−1,1(στ) (4.25)

Proposition 4.3.2. Let γ(στ) be the number of stable ribbon graphs which contract

to (στ)∗ under µS̃[t], where σ and τ are disjoint cycles, and let n = ∣σ∣ and m = ∣τ ∣. Then

γ(στ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 + 1
2(n

2 − n − 2) + 1
2(m

2 −m − 2) if n,m ≥ 3

1 + n + 1
2(m

2 −m − 2) if 1 ≤ n ≤ 2, m ≥ 3

m if n = 1,1 ≤m ≤ 2

Proof. Let G = ∗n+m,1 and let G be the corresponding stable ribbon graph whose single

vertex is decorated with two cycles σ, τ such that ∣σ∣ = n and ∣τ ∣ = m. Let Lσ ⊂ Leg(G)
be the subset corresponding to σ. Similarly for τ . The basis elements spanning dF (G)
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are indexed by stable ribbon graphs H such that µS̃[t](H) = G, ∣Edge(H)∣ = 1, and

b1(H) + ∑Vert(H) b(v) = 1. If b(vi) = 0 then n(vi) ≥ 3 and n(vi) = 2 only if b(vi) = 1.

Because b(v) = iσ(v)−1 for any vertex v, if ∣Vert(H)∣ = 2 then one vertex will be decorated

with two cycles and the other with a single cycle.

Assume first that n,m ≥ 3 and let k be an integer such that 2 ≤ k ≤ n−1. There

are n − k + 1 ways of isolating k adjacent legs from Lσ. Each gives rise to a graph H
in the following way. Let σ = (1⋯n) and let σk = (i⋯ j) be such that 1 ≤ i < j ≤ n
and j − i + 1 = k. Then the first vertex of H is decorated by (i⋯ j f) and the second

by (1⋯ (i − 1) f ′ (j + 1)⋯n)τ . If j = n, then the latter permutation is (1⋯ (i − 1) f ′).
Summing over all k between 2 and n − 1 gives

n−1

∑
k=2

(n − k + 1) = n(n − 2) − ((n − 1)n
2

− 1) + (n − 2)

= n2 − n − 2

2

The same argument holds for τ , so the subtotal is 1
2(n

2 − n − 2) + 1
2(m

2 −m − 2).
The remaining 3 graphs come from the two distinct ways of partitioning Leg(G)

while keeping both σ and τ intact, and from drawing a loop around either Lσ, or equiv-

alently, around Lτ . Specifically, if we let σ = (1⋯n) and τ = ((n + 1)⋯p), where

p − (n + 1) + 1 = m, then H can be defined either by decorating the first vertex with

(1⋯nf) and the second with (f ′) ⋅ τ , or the first with σ ⋅ (f) and the second with

(f ′ (n+1)⋯p). If H is obtained by inserting a loop, then the single cycle decorating the

unique vertex is (f 1⋯nf ′ (n + 1)⋯p).
By precisely the same reasoning, there are n + 1 + 1

2(m
2 −m − 2) possibilities

if 1 ≤ n ≤ 2 and m ≥ 3. Indeed, if n = 2 then there is no way to split σ into two

cycles because only one vertex of H can carry two cycles at a time, and stability requires

n(v) ≥ 3 if b(v) = 0. We are left with the 1
2(m

2 −m − 2) ways of splitting τ along with

the 3 mentioned in the previous paragraph. If n = 1 and m ≥ 3 there is only one way,

again by stability, to split σ and τ between two vertices while keeping them both intact,

and one way of inserting a loop.

If n = 1 and m = 2, then there are two possibilities. There is one way of splitting

σ and τ between two vertices and one way of inserting a loop.

If n = m = 1, then the only possibility is that given by drawing a loop around

either leg.
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Given a stable ribbon graph G with its unique vertex decorated by two cycles σ

and τ , I divide the possible graphs H such that µ
β2s̃S̃[t]
H (H) = G into five groups, denoted

by H(i) for 1 ≤ i ≤ 5. The first group is given by inserting a single edge in such a way

as to split σ into two cycles, each of which having a strictly smaller order than σ. The

second is given by doing precisely the same thing, but with τ . The third and fourth each

consist of a single graph, given by the two ways of decorating a single-edge, two-vertex

graph with cycles without splitting σ or τ into smaller cycles. The fifth is given by the

unique way of attaching a loop to G. The five types are illustrated in Figure 3.3.
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Figure 4.1: There are 1
2(n

2 − n − 2) of the first graph, 1
2(m

2 − m − 2) of the
second, and one each of the remaining three. These five graphs correspond to
ml,0(σ1) ⊗ mk+m,1(σ2σ3), mn,0(σ4) ⊗ mk+l+m−n,1(σ5σ6), mk+l−1,0(σ7) ⊗ mm+1,1(σ8σ9),
mm+1,0(σ10)⊗mk+l−1,1(σ11σ12), and mk+l+m+1,0(σ13), respectively, where {σi}13

i=1 can be
read directly from the above five figures.

The b = 1 case of the Quantum A∞ relation on V ⊗(k+l+m) is given by applying

dV ○ m̂Leg(v),1

= m̂Leg(v),1 ○ d(β2s̃S̃[t])∗ + µ
EV
Gk+l+m,1

○ (e[1]⊗ (m̂{1,⋯,k+l+m}⊔{f,f ′},1 ○ (µ
β2s̃S̃[t]
Gk+l+m,1

)∗))

+ 1

2
∑µEVG(I1,I2,b1,b2)

○ (e[1]⊗ (m̂I1⊔{f},b1 ⊗ m̂I2⊔{f ′},b2) ○ (µ
β2s̃S̃[t]
G(I1,I2,b1,b2)

)∗),

to (στ)∗, where b1 + b2 = 1 and I1 ⊔ I2 = Leg(G).
For the remainder of the section, I will write md,b for md,b(σ1⋯σb−2g+1) (g = 0

for the elliptic curve). Keep in mind that every element md,b depends on a specific

product of cycles σ1⋯σb−2g+1.
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The Composition (−1)ε(1)mk+m,1 ○iml,0

The tensor ml,0 ⊗mk+m,1 ∈ EV ((l + 1,0))⊗ EV ((k +m + 1,1)) is given by

(vi ⊗⋯⊗ vi+l−1 ⊗ vf)⊗ (v1 ⊗⋯⊗ vi−1 ⊗ vf ′ ⊗ vi+l ⊗⋯⊗ vk+l−1 ⊗ vk+l ⊗⋯⊗ vk+l+m),

where 1 ≤ i ≤ k − 1, and µEV
H(1)(ml,0 ⊗mk+m,1) = (−1)

ε1+ε2+l−1+l
i−1

∑
j=1

∣vj ∣
mk+m,1 ○iml,0, where

ε1 =
i+l−1

∑
j=i

(l − (j − i + 1))∣vj ∣

and

ε2 =
i−1

∑
j=1

(k +m − j)∣vj ∣ + (k +m − i)∣vf ′ ∣ +
k+l+m−1

∑
j=i+l

(k +m − (j − l + 1))∣vj ∣

give the signs associated to ml,0 and mk+m,1, respectively, by (4.12), and degml,0 = l − 1

and degmk+m,1 = k +m + 1. The sign (−1)
l−1+l

i−1

∑
j=1

∣vj ∣
is calculated as follows. For each j

such that 1 ≤ j ≤ i − 1, one has the three terms

∣vj ∣(∣mk+m,1∣ − ∣vj ∣) = ∣vj ∣(k +m + 1) − ∣vj ∣2

= (k +m)∣vj ∣, (4.26)

∣B∣(∣ml,0∣ − ∣vf ∣) + ∣vf ∣ = l − 1, (4.27)

and

∣vj ∣(∣ml,0∣ + ∣mk+m,1∣ − ∣vf ∣ − ∣vf ′ ∣ − ∣vj ∣) = ∣vj ∣(l − 1 + k +m + 1 − 1 − ∣vj ∣)

= (k + l +m)∣vj ∣ (4.28)

Summing over the j such that 1 ≤ j ≤ i−1 yields the result. In order to calculate the final

sign, one must include the sign (−1)
k+l+m−1

∑
j=1

(k+l+m−1−j)∣vj ∣
corresponding to the contracted

tensor v1 ⊗ ⋯ ⊗ vk+l+m−1 ⊗ vk+l+m. Summing this sign, ε1, ε2, and l − 1 + l
i−1

∑
j=1

∣vj ∣ gives

(−1)ε(1), where

ε(1) = ∣ml,0∣ +
i−1

∑
j=1

∣vj ∣ + (∣mk+m,1∣ − 1 + i)(1 + ∣ml,0∣) (4.29)

Converting to cohomological signs gives

(−1)
i−1

∑
j=1

∣wj ∣
,

the usual A∞-sign.
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The Composition (−1)ε(2)mk+l+m−n,1 ○imn,0

The tensor mn,0⊗mk+l+m−n,1 ∈ EV ((n+1,0))⊗EV ((k+ l+m−n+1,1)) is given

by

(vi ⊗⋯⊗ vi+n−1 ⊗ vf)⊗ (v1 ⊗⋯⊗ vk+l ⊗⋯⊗ vi−1 ⊗ vf ′ ⊗ vi+n ⊗⋯⊗ vk+l+m−1 ⊗ vk+l+m),

and µEV
H(2)(mn,0 ⊗mk+l+m−n,1) = (−1)

ε3+ε4+n−1+n
i−1

∑
j=1

∣vj ∣
mk+l+m−n,1 ○imn,0, where k + l ≤ i ≤

k + l +m − n + 1 and

ε3 =
i+n−1

∑
j=i

(n − (j − i + 1))∣vj ∣,

ε4 =
i−1

∑
j=1

(k + l +m−n− j)∣vj ∣+ (k + l +m−n− i)∣vf ′ ∣+
k+l+m−1

∑
i+n

(k + l +m−n− (j −n+ 1))∣vj ∣

As with the previous case, including the sign (−1)
k+l+m−1

∑
j=1

(k+l+m−1−j)∣vj ∣
gives the sign

(−1)ε(2), where

ε(2) = ∣mn,0∣ +
i−1

∑
j=1

∣vj ∣ + (∣mk+l+m−n,1∣ − 1 + i)(1 + ∣mn,0∣) (4.30)

The Composition (−1)ε(3)mm+1,1 ○mk+l−1,0

The tensor mk+l−1,0 ⊗mm+1,1 is given by

(v1 ⊗⋯⊗ vk+l−1 ⊗ vf)⊗ (vf ′ ⊗ vk+l ⊗⋯⊗ vk+l+m−1 ⊗ vk+l+m),

and µEV
H(3)(mk+l−1,0 ⊗mm+1,1) = (−1)ε5+ε6+k+lmm+1,1 ○mk+l−1,0 and the associated signs

are

ε5 =
k+l−1

∑
j=1

(k + l − 1 − j)∣vj ∣

and

ε6 = ((m + 1) − 1)∣vf ′ ∣ +
k+l+m−1

∑
j=k+l

(m + 1 − (j − (k + l − 2)))∣vj ∣

Including the sign (−1)
k+l+m−1

∑
j=1

(k+l+m−1−j)∣vj ∣
gives (−1)ε(3), where

ε(3) = ∣mk+l−1,0∣ + ∣mm+1,1∣(1 + ∣mk+l−1,0∣) (4.31)
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The Composition (−1)ε(4)mk+l−1,1 ○mm+1,0

The tensor mm+1,0 ⊗mk+l−1,1 is given by

(vk+l ⊗⋯⊗ vk+l+m ⊗ vf)⊗ (v1 ⊗⋯⊗ vk+l−1 ⊗ vf ′),

and µEV
H(4)(mm+1,0⊗mk+l−1,1) = (−1)

ε7+ε8+m+(m+1)
k+l−1

∑
j=1

∣vj ∣
mk+l−1,1 ○mm+1,0 the associated

signs are

ε7 =
k+l+m
∑
j=k+l

(m + 1 − (j − (k + l − 1)))∣vj ∣

and

ε8 =
k+l−1

∑
j=1

(k + l − 1 − j)∣vj ∣

Including (−1)
k+l+m−1

∑
j=1

(k+l+m−1−j)∣vj ∣
gives (−1)ε(4), where

ε(4) = ∣mk+l−1,1∣ + 1 − ∣vk+l+m∣ (4.32)

The Element (−1)ε(5)mk+l+m−1,1

The tensor mk+l+m+1,0 is given by

v1 ⊗⋯⊗ vk+l−1 ⊗ vf ′ ⊗ vk+l ⊗⋯⊗ vk+l+m−1 ⊗ vk+l+m ⊗ vf ,

and µEV
H(5)(mk+l+m+1,0) = (−1)

ε9+∣vf ′ ∣
k+l+m
∑

j=k+l
∣vj ∣+∣mk+l+m+1,0∣−1

mk+l+m−1,1, where

ε9 =
k+l−1

∑
j=1

(k+ l+m+1− j)∣vj ∣+ (k+ l+m+1− (k+ l))∣vf ′ ∣+
k+l+m
∑
j=k+l

(k+ l+m+1− (j +1))∣vj ∣

Including (−1)
k+l+m−1

∑
j=1

(k+l+m−1−j)∣vj ∣
gives (−1)ε(5), where

ε(5) = ∣vf ′ ∣(m + 1 + ∣vk+l+m∣) + (∣vf ′ ∣ + 1)
k+l+m−1

∑
j=k+l

∣vj ∣ + ∣mk+l+m+1,0∣ − 1 (4.33)

We have proved
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Lemma 4.3.3. The b = 1 case of the Quantum A∞-relations is given by

k−1

∑
i=1

(−1)
∣ml,0∣+

i−1

∑
j=1

∣vj ∣+(∣mk+m,1∣−1+i)(1+∣ml,0∣)
mk+m,1 ○iml,0

+
k+l+m−n+1

∑
i=k+l

(−1)
∣mn,0∣+

i−1

∑
j=1

∣vj ∣+(∣mk+l+m−n,1∣−1+i)(1+∣mn,0∣)
mk+l+m−n,1 ○imn,0

+ (−1)∣mk+l−1,0∣+∣mm+1,1∣(1+∣mk+l−1,0∣)mm+1,1 ○mk+l−1,0

+ (−1)∣mk+l−1,1∣+1−∣vk+l+m∣mk+l−1,1 ○mm+1,0

+ (−1)
∣vf ′ ∣(m+1+∣vk+l+m∣)+(∣vf ′ ∣+1)

k+l+m−1

∑
j=k+l

∣vj ∣+∣mk+l+m+1,0∣−1

mk+l+m−1,1

= 0 (4.34)

Converting to cohomological signs gives

k−1

∑
i=1

(−1)
i−1

∑
j=1

∣wj ∣
mk+m,1 ○iml,0

+
k+l+m−n+1

∑
i=k+l

(−1)
i−1

∑
j=1

∣wj ∣
mk+l+m−n,1 ○imn,0

+ mm+1,1 ○mk+l−1,0

+ (−1)∣wk+l+m∣mk+l−1,1 ○mm+1,0

+ (−1)
m−1+∣wf ∣∣wk+l+m∣+∣wf ′ ∣

k+l+m−1

∑
j=k+l

∣wj ∣
mk+l+m−1,1

= 0 (4.35)



Chapter 5

The Fukaya Category of the

Elliptic Curve

The goal of the previous two chapters was to establish the definition and an

initial use of the Feynman transform, that is, the relationship between morphisms of

modular operads with the Feynman transform as their source, and quantum A∞-algebras.

In this chapter the relationship between the former and the latter is taken a step further,

i.e., by replacing the quantum A∞ algebra with a categorical analogue. Specifically, this

chapter will be devoted to the construction of the Fukaya category of the elliptic curve

given by C/(dZ ⊕ Z) for a natural number d. With the exception of the final section,

this material is entirely expository and can be found in [2] and [3].

5.1 A∞-precategories

The notion of an A∞-algebra V generalizes easily to the case of categories. One

simply substitutes the copies of V in md,0 ∶ V ⊗d Ð→ V with Hom-spaces between objects

of the given category. More precisely, we have

Definition 5.1.1. An (non-unital) A∞-category A consists of a collection of objects

ObA, a Z-graded k-vector space HomA(X0,X1) for any X0,X1 ∈ ObA, and for every

d ≥ 1, k-linear composition maps

md,0 ∶ HomA(Xd−1,Xd)⊗⋯⊗HomA(X0,X1)Ð→ HomA(X0,Xd)

of degree 2 − d, satisfying (4.8)

66
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It turns out that the category of interest, the Fukaya category of the elliptic

curve, is not quite an A∞-category, because Hom-spaces do not necessarily exist for any

choice of objects X0,X1 in the category. It is actually something called a precategory,

defined as follows.

Definition 5.1.2. A (non-unital) A∞-precategory A consists of:

1. A collection of objects Ob(A).

2. For each n ≥ 2, a collection of transversal sequences Obntr(A) ⊆ Ob(A)n, i.e., a set

of n-tuples of sequences.

3. For (X0,X1) ∈ Ob2
tr(A), a Z-graded chain complex HomA(X0,X1).

4. For (X0, . . . ,Xd) ∈ Obd+1
tr (A), a map

md ∶ HomA(X0,X1)⊗⋯⊗HomA(Xd−1,Xd)Ð→ HomA(X0,Xd)[2 − d]

We require in addition:

5. Every subsequence of a transversal sequence is transversal.

6. The A∞-relations are satisfied by the md’s.

The objects of the Fukaya category of the elliptic curve C/(dZ ⊕ Z) belong to

a certain class of Lagrangian submanifolds, and the maps md are defined by considering

polygons bounded by these Lagrangians, where the polygons are parameterized by what

are called tropical Morse trees.

5.2 Tropical Morse Trees

In this section, a class of decorated graphs and their moduli spaces will be

described. When these moduli spaces are zero dimensional, their graphs are used to

define the A∞-structure of the Fukaya category of the elliptic curve. The majority of the

material in section 5.2 can be found in [3].

Definition 5.2.1. Let B be the affine manifold R/dZ with coordinate y. Define the

local system Λ on B by Λp = Z ⋅ ∂/∂y∣p. Set X(B) ∶= TB/Λ and define a section

σn ∶ B Ð→ X(B) locally by σn(y) = (y,−ny∂/∂y). Set Ln = σn(B) and define its

orientation as being left to right.
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The quotient X(B) is precisely our elliptic curve C/(dZ⊕Z), and for each k ≥ 2,

the set of all tuples (Ln1 , . . . , Lnk) is exactly the set of transversal sequences mentioned

in part 2 of Definition 5.1.2.

Definition 5.2.2. Denote by B( 1
nZ) the set of points of B = R/dZ with coordinates in

1
nZ.

In general, this space is always finite whenever the affine manifold B is compact.

However, compactness is not needed to see this here. For example, if d = 2 and n = 3,

then B( 1
nZ) = {0, 1

3 ,
2
3 ,

3
3 ,

4
3 ,

5
3} The spaces B( 1

nZ) and B( 1
−nZ) are dual by the pairing

< p, q >=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if p = q

0 if p ≠ q

Definition 5.2.3. Let B be as in Definition 5.2.2. Denote by X(B) the elliptic curve

TB/Λ, where Λ is the integral lattice defined by Λp = Z for p ∈ B and TB is the tangent

bundle of B.

The significance of the space B( 1
nj−niZ) is that it parameterizes the equivalence

classes mod Λ of the set of intersection points of Lni ∩ Lnj , where Lni and Lnj are

lagrangian submanifolds of X(R/dZ). Indeed, if (x, y1) ∈ Lni and (x, y2) ∈ Lnj with

y1 = y2 mod Λ, then y1 = −nix + kd, y2 = −njx + k′d for integers k, k′ and (nj − ni)x +
(k − k′)d = y1 − y2 ∈ Z, which gives x ∈ B( 1

nj−niZ).

Definition 5.2.4. The Novikov ring, Λnov, is the ring of formal power series of the form

∑i∈Z aiqλi , where the coefficients ai ∈ Z vanish for all sufficiently negative i, and λi are a

sequence of real numbers satisfying limi→∞ λi =∞.

Definition 5.2.5. A (metric) ribbon tree is a connected tree with a finite number of

vertices and edges, with no bivalent vertices, with the additional data of a cyclic ordering

of edges at each vertex and a length assigned to each edge in (0,∞].

Definition 5.2.6. (Tropical Morse Trees)

Let B be the integral affine manifold R/dZ. Given a sequence of distinct integers

n0, . . . , nd ∈ Z and any metric ribbon tree S we can label the edges e of S with inte-

gers ne as follows. If e is an external incoming edge, attached to the ith external vertex,

then ne = ni − ni−1; otherwise, if e comes out of a vertex v, then ne is the sum of all
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numbers labeling the edges coming into v. Then given in addition points

pi,i+1 ∈ B ( 1

ni+1 − ni
Z)

and

p0,d ∈ B ( 1

nd − n0
Z)

we define Strop
d (p0,d;p0,1, . . . , pd−1,d) to be the moduli space of tropical Morse trees on

B, i.e., continuous maps φ ∶ S Ð→ B from a ribbon tree with a collection of affine

displacement vectors, i.e., for each edge e of S, a section ve ∈ Γ(e, (φ∣e)∗TB), satisfying

the following properties:

(1) If v is the ith external incoming vertex, then φ(v) = pi−1,i; if v is the external

outgoing vertex, then φ(v) = p0,d.

(2) If e is an edge S, then φ(e) is locally an affine line segment on B. (This line

segment can have irrational slope). If e is an external edge, we also allow φ(e) to

be a point.

(3) If v is an external vertex and e the unique edge of S containing v, then ve(v) = 0.

(4) For an edge e of S identified with [0,1] with coordinate s, with the edge e oriented

from 0 to 1, then ve(s) is tangent to φ(e) at φ(s), pointing in the same direction

as the orientation on φ(e) induced by that on e. Furthermore, using the affine

structure to identify (φ∣e)∗TB with the trivial bundle on e, we have

d

ds
ve(s) = neφ∗(∂/∂s).

If B = Rn/M for some lattice M ⊆ Zn, then this equation takes the form ve(s) =
ve(0) + ne(φ(s) − φ(0)).

(5) If v is an internal vertex of S with incoming edges e1, . . . , ep and outgoing edge

eout, then

veout(v) =
p

∑
i=1

vei(v).

(6) The length of an edge e in S (remember that each edge of a ribbon tree comes

along with a length, the external edges having infinite length) coincides with

1

ne
log(ve(1)

ve(0)
) .
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Since ve(0) and ve(1) are proportional vectors pointing in the same direction, their

quotient makes sense as a positive number. There is one special case: if e is an

external edge that is contracted by φ, then ve(0) = ve(1) = 0, but we still take the

length to be infinite.

Remark 5.2.7. Write Strop
d for Strop

d (p0,d;p0,1, . . . , pd−1,d). Because the metric ribbon

trees are simply connected, a tropical Morse tree φ factors through R, the universal cover

of B = R/dZ. Given points p0,1, . . . , pd−1,d, p0,d, the element φ ∈ Strop
d can be thought of

as a collection of lifts p̃0,1, . . . , p̃d−1,d, p̃0,d up to the action by dZ. If dimStrop
d = 0 the

fixing of a lift of one of p0,1, . . . , pd−1,d, p0,d gives a bijection between Strop
d and the set of

lifts of the remaining points.
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Example 5.2.8.
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Figure 5.1: Assume dimStrop
3 (p0,3;p0,1, p1,2, p2,3) = 0. By fixing a lift of p0,1, the elements

of Strop
3 (p0,3;p0,1, p1,2, p2,3) are indexed by the set of triples (k1, k2, k3) ∈ Z3. The given

tree is just one of the possible domains of the elements φ.

5.2.1 Holomorphic Polygons

A tropical Morse tree φ ∶ S Ð→ B defines a piecewise linear disk in the following

way. Any edge e of S is labeled by ne = nj − ni for some j > i.

Consider the map

Re ∶ e × [0,1]Ð→X(B) = T (B)/Λ

(s, t)↦ σni(φ(s)) − t ⋅ ve(s)

σni(φ(s)) − t ⋅ ve(s) = (φ(s),−niφ(s)) − t ⋅ ve(s)

= (φ(s),−niφ(s)∂/∂y) − (φ(s), t ⋅ ve(s))

= (φ(s), (−niφ(s) − t ⋅ ve(s)))

Write the vertices of e as vin and vout. We have Re(s,0) = σni(φ(s)) ∈ Lni and

this implies Re(e × {0}) ⊆ Lni . Assuming Re(vin × {1}) ⊆ Lnj , we have

σni(φ(vin)) − ve(vin) = (φ(vin),−niφ(vin)∂/∂y − ve(vin)) ∈ Lnj (5.1)

Since TB is a bundle, the only way we can have (y,α∂/∂y) ∈ σ(B) for some

σ, is if σ(y) = α∂/∂y. The section Lnj is in TB/Λ, so the inclusion (5.1) above implies
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Lni

Lnj

0⋅(−ve(s))

1
2
⋅(−ve(s))

1⋅(−ve(s))

●
φ(s)

R

TR

ooooooooooooooooooooooooo

��

��

Figure 5.2: If t = 0, then σni(φ(s)) − t ⋅ ve(s) = σni(φ(s)) ∈ Lni , and if t = 1, then
σni(φ(s)) − t ⋅ ve(s) = (φ(s),−njφ(s) + (nj − ni)φ(0) − ve(0)) = (φ(s),−njφ(s)) =
σnj(φ(s)) ∈ Lnj .

σni(φ(vin)) − ve(vin) = σnj(φ(vin)) mod Λ. Now, condition 4 of Definition 5.2.6 tells us

that d
dsve(s) = neφ∗(∂/∂s), so

− d
ds

ve(s) = −neφ∗(∂/∂s)

= −(nj − ni)φ∗(∂/∂s)

= −(nj − ni)
d

ds
φ(s)∂/∂y

= d

ds
(niφ(s)∂/∂y − njφ(s)∂/∂y)

= d

ds
((φ(s), ni∂/∂y) − (φ(s), njφ(s)∂/∂y))

= d

ds
(σnj(φ(s)) − σni(φ(s)))

Solving this differential equation with the initial condition

−ve(vin) = σnj(φ(vin)) − σni(φ(vin)) mod Λ

gives

−ve(s) = σnj(φ(s)) − σni(φ(s)) mod Λ

Then Re(e × {1}) = {σni(φ(s)) − ve(s)∣s ∈ e} = {σnj(φ(s))∣s ∈ e} ⊆ Lnj . Thus Re(vin ×
{1}) ⊆ Lnj ⇒ Re(e × {1}) ⊂ Lnj .

Let v be a vertex of the tree S. If v is an external incoming vertex vi, then

φ(vi) ∈ B( 1
ni−ni−1

Z) by definition of φ, and so φ(vi) = n
ni−ni−1

+ kd for some n, k ∈ Z. We
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then have

σni(φ(vi)) − σni−1(φ(vi)) = −niφ(vi)∂/∂y + ni−1φ(vi)∂/∂y

= (−ni + ni−1)φ(vi)∂/∂y

= (−ni + ni−1) (
n

ni − ni−1
+ kd)∂/∂y

∈ Z ⋅ ∂/∂y = Λ∣φ(vi) ⊆ TB∣φ(vi)

and this implies σni(φ(vi)) = σni−1(φ(vi)) ∈ Lni ∩ Lni , since the Lagrangians are being

viewed modulo Λ. But then

Re(vi × {1}) = σni−1(φ(vi)) − ve(vi)

= σni−1(φ(vi)) − 0

= σni(φ(vi)) ∈ Lni

The conclusion here is that if the edge e of e× [0,1] is mapped to the Lagrangian Lni−1 ,

then the opposite edge is mapped to the next Lagrangian Lni .

We want to use induction to prove that if v is any interior vertex with incoming

edges e1, . . . , ep, outgoing edge eout, with ej weighted by nij − nij−1 for i0 < ⋯ < ip, then

the inclusions

Reout(eout × {0}) ⊆ Lni0 ,Reout(v × {1}) ⊆ Lnip

imply Reout(eout × {1}) ⊆ Lnip . Inductively assume

Rej(ej × {0}) ⊆ Lnij−1
,Rej(ej × {1}) ⊆ Lnij
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The second inclusion implies σnij (φ(s)) = σnij−1
(φ(s))−ve(s) mod Λ. Keeping in mind

the edge eout is labeled by nip − ni0 , part 5 of Definition 5.2.6 tells us that

Reout(v × {1}) = σni0 (φ(v)) − veout(v)

= σni0 (φ(v)) −∑
j

vej(v)

= σni0 (φ(v)) −∑
j

(σnij−1
(φ(v)) − σnij (φ(v)))

= σni0 (φ(v)) −∑
j

((φ(v),−nij−1φ(v)∂/∂y) − (φ(v),−nijφ(v)∂/∂y))

= σni0 (φ(v)) −∑
j

(φ(v), (nij − nij−1)φ(v)∂/∂y)

= (φ(v),−ni0φ(v)∂/∂y) − (φ(v),∑
j

(nij − nij−1)φ(v)∂/∂y)

= (φ(v),−ni0φ(v)∂/∂y −∑
j

(nij − nij−1)φ(v)∂/∂y)

= (φ(v),−ni0φ(v)∂/∂y − (nip − ni0)φ(v)∂/∂y)

= (φ(v),−nipφ(v)∂/∂y)

= σnip (φ(v)) ∈ Lnip

We now have Reout(eout × {0}) ⊆ Lni0 by definition, and Reout(v × {1}) ⊆ Lnip , so

Reout(eout × {1}) ⊆ Lnip . For examples of such polygons see [3] page 608.

Definition 5.2.9. Let (Lni , Lnj) be an ordered pair of Lagrangians and let pi,j ∈ Lni ∩
Lnj . Then set

deg pi,j ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if nj < ni

0 if nj > ni
(5.2)

Example 5.2.10. Graphically, the degree of an intersection is given by Figure 5.2.10.

Lni

Lnj

Lnj

Lnikkkkkkkkkkkkkkkkkkkkkkkk
55kkkkk

//
SSSSSSSSSSSSSSSSSSSSSSSS

))SSSSS

//

Figure 5.3: The first intersection is degree 1 and the second is degree 0, where the arrows
indicate orientation. It is important to keep in mind that the slope of Lnk is −nk for any
nk ∈ Z.
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Attached to each tropical Morse tree T is a sign (−1)s(u) defined by Abouzaid

in [2]. Each degree one point pi,j with i < j contributes a sign (−1)s(pi,j), which is positive

if the natural orientation on C induces an orientation on the corresponding polygon, and

the sign is positive if the induced boundary orientation on Lnj agrees with the fixed

orientation on Lnj , and is negative otherwise. Then

(−1)s(u) = ∏
{pi,j ∣deg pi,j=1}

(−1)s(pi,j) (5.3)

See Figure 4.4 for the defining examples of how to calculate (−1)s(u).
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Ln0p0,1 p0,2

p1,2

● ●p0,1
p1,2

p0,2●

−ve1 −ve3
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p0,2

e3

e1e2 +−

−

↺
−ve3 −ve1

● ●●p0,2
p1,2

p0,1

Ln2 Ln1

Ln0

p1,2

p0,2 p0,1

����������������������� ???????????????????????
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���������������

��
???????
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???????????????????????

��
??????????????? �����������������������

��
???????????????

??
�������
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??????

������

�� ��

// //

Ln1Ln0

Ln2p0,2 p1,2

p0,1

● ●p0,2
p0,1

p1,2●

−ve3 −ve2
↺●

p0,1p1,2

p0,2

e3

e1e2 −+

−

↺
−ve2 −ve3

● ●●p1,2
p0,1

p0,2

Ln1 Ln0

Ln2

p0,1

p1,2 p0,2

����������������������� ???????????????????????

??
���������������

��
???????

//�� ��

// //

???????????????????????

��
??????????????? �����������������������

��
???????????????
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�������

//

??????

������
OO OO
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Figure 5.4: The contributions, counterclockwise from upper left, are: +1, +1, −1, and
−1. Note that even if the outgoing edge e of a vertex v is such that ne > 0, the signs
(−1)s(u) remain the same. The only difference is the polygon may not close once e
terminates. The arrow in the segment below each triangle indicates the direction of
motion of φ(s) ∈ R.

A tropical Morse tree φ ∈ Strop
d (p0,d;p0,1, . . . , pd−1,d) can then be identified with

a holomorphic map from the abstract disk, obtained by gluing the sets Re(e×[0,1] along

the edges 1 × [0,1], where e terminates when s = 1, to X(B).
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5.3 Fuk(X(R/dZ))

Definition 5.3.1. The objects of the precategory Fuk(X(R/dZ)) are the Lagrangian

submanifolds of X(R/dZ) defined by σn(R/dZ). Note that since X(R/dZ) is an elliptic

curve, any 1-dimensional submanifold is Lagrangian. The Hom-spaces of this category,

Hom(Lni , Lnj), are given by

Hom(Lni , Lnj) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⊕p∈B( 1
nj−ni

Z)[p]Λnov Ð→ 0 if ni < nj

0Ð→⊕p∈B( 1
nj−ni

Z)[p]Λnov if ni > nj

The first column is degree 0 and the second is degree 1. A typical element of Hom(Lni , Lnj)
for B( 1

nj−niZ) = {p1, . . . , pn} has the form

∑
i∈Z

(ap1)iq(λp1)i[p1] +⋯ +∑
i∈Z

(apn)iq(λpn)i[pn],

but notice it makes perfect sense to write p ∈ Hom(Li, Lj) for p ∈ Li ∩Lj .

5.3.1 Fuk(X(R/dZ)) is an A∞-precategory

Define morphisms

md,0 ∶
d

⊗
i=1

Hom(Li−1, Li)Ð→ Hom(L0, Ld)

by

md,0(p0,1, . . . , pd−1,d) = ∑
B( 1

nd−n0
Z)

∑
Strop
d

(p0,d;p0,1,...,pd−1,d)
(−1)s(φ)qdegφp0,d (5.4)

where degφ is the area of the polygon defined by φ, s(φ) is the sign defined in (5.3), and

dimStrop
d (p0,d;p0,1, . . . , pd−1,d) = 0 for all sequences {p0,1, . . . , pd−1,d, p0,d}. Recall from

5.2.7 that if a single lift p̃i,j is fixed, one can think of Strop
d (p0,d;p0,1, . . . , pd−1,d) as the

set of all lifts to T (R/dZ) of the remaining points p0,1, . . . , p̂i,j , . . . , p0,d ∈ R/dZ, making

the inner sum of (5.4) countably infinite with the outer sum finite.

Example 5.3.2. Let B = R/dZ and consider the sum

m2,0(p0,1 ⊗ p1,2) = ∑
B( 1

n2−n0
Z)

∑
Strop

2 (p0,2;p0,1,p1,2)
(−1)s(φ)qdegφ ∈ Hom(L0, L2)

In this example π(p̃i,j) = π(p̃i,j+dk) mod dZ, but the triangles give distinct contributions

to the sum.
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L′0

L′1 L′2

̃p0,1+kd

̃p1,2+k′d

̃p0,2+k′′d

L0

L1 L2

p̃0,1

p̃1,2

p̃0,2

● ● ● ● ● ●
p0,1

p1,2

p0,2 p0,1+kd
p1,2+k′d

p0,2+k′′d

TR

R

π
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������������������
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Figure 5.5: Two of the countably infinite number of triangles contributing to the coeffi-
cient ∑Strop

2 (p0,2;p0,1,p1,2)(−1)s(φ)qdegφ of p0,2. The lines L and L′ are distinct in TR, but

are equivalent modulo Λ.

The maps md can be composed as follows. Let l+k−1 = d and write Strop
k , Strop

l

for

Strop
k (pi−1,k+i−1;pi−1,i, . . . , pk+i−1,k+i−1)

and

Strop
l (p0,d;p0,1, . . . , pi−2,i−1, pi−1,k+i−1, pk+i−1,k+i, . . . , pd−1,d),

respectively, where each space is defined by fixing the same lift of pi−1,k+i−1.

The map ml,0○imk,0 ∶ Hom(L0, L1)⊗⋯⊗Hom(Ld−1, Ld)Ð→ Hom(L0, Ld) takes

the form

ml,0 ○imk,0(p0,1, . . . , pd−1,d)

= ml,0(p0,1, . . . , pi−2,i−1,mk,0(pi−1,i, . . . , pk+i−2,k+i−1), pk+i−1,k+i, . . . , pd−1,d)

= ∑
B( 1

nk+i−1−ni−1
Z)
∑
Strop
k

(−1)s(φ)qdegφml,0(p0,1, . . . , pi−2,i−1, pi−1,k+i−1, pk+i−1,k+i, . . . , pd−1,d)

= ∑
B( 1

nk+i−1−ni−1
Z)
∑
Strop
k

(−1)s(φ)qdegφ ∑
B( 1

nd−n0
Z)
∑
Strop
l

(−1)s(ϕ)qdegϕp0,d

= ∑
B( 1

nd−n0
Z)

∑
B( 1

nk+i−1−ni−1
Z)

∑
(φ,ϕ)∈Strop

k
×Strop

l

(−1)s(φ)+s(ϕ)qdegφ+degϕp0,d

Compositions are defined by summing over pairs of zero-dimensional tropical Morse trees,

which are fitted together by matching the output of the first with the correct input of

the second. This is why the same lift is chosen to define both moduli spaces.
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Each of these pairs corresponds to a boundary point of a 1-dimensional moduli

space of tropical Morse trees with, in this case, k + l − 1 inputs. Since the moduli spaces

in question are 1-dimensional, their boundary points come in pairs. The A∞-relations

among the md,0’s are then obtained by assigning signs to trees in such a way that the

two boundary points of a fixed 1-dimensional moduli space have opposite signs. Pairwise

cancelation yields the result.

The proof that the mn,0’s satisfy the A∞-relations is done by considering the

identification made at the conclusion of section 5.2.1, and then using lemma 3.6 of [2].

Example 5.3.3. Consider the compositions

m3,0 ○3 m2,0,m2,0 ○1 m3,0 ∶
4

⊗
i=1

Hom(Li−1, Li)Ð→ Hom(L0, L4),

and the elementsm3,0(p0,1, p1,2,m2,0(p2,3, p3,4)),m2,0(m3,0(p0,1, p1,2, p2,3), p3,4), illustrated

by the first and last graphs of Figure 4.6, and by the two graphs of Figure 4.7.

p2,3

φ1

●
p2,4

p3,4

●p1,2

●p0,4

p0,1

ϕ1 ● ●
Strop
d

p2,3 ●
p1,2

φ2

p0,3

● p0,1

● ϕ2

p3,4

p0,4

// oo

��

��
OO

// // oo

��
OO

Figure 5.7: These degenerate trees contribute to m3,0(p0,1, p1,2,m2,0(p2,3, p3,4)) and
m2,0(m3,0(p0,1, p1,2, p2,3), p3,4), respectively. If (φ1, ϕ1) corresponds to the first tree and
(φ2, ϕ2) corresponds to the second, then s(φ1) + s(ϕ1) + deg p0,1 + deg p1,2 − 2 + s(φ2) +
s(ϕ2) = 1 mod 2, and degφ1 + degϕ1 = degφ2 + degϕ2.

5.4 Quantum A∞ Categories

Definition 5.4.1. A Quantum A∞-Category A is a collection of objects ObA, a Z-

graded k-vector space HomA(X0,X1) for any X0,X1 ∈ ObA, and for every pair of

integers d, b such that d ≥ 1 and b ≥ 0, a finite sequence of cyclic chains of objects
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Figure 5.6: The first and last graphs represent the endpoints of the one-dimensional
space Strop

4 (p0,4;p0,1, p1,2, p2,3, p3,4), as ve(1) + vf(1) = 0 = ve′(1) + vf ′(1). The legs
labeled by p1,2 and p0,4 are contracted, fixing their respective internal vertices. Notice
the change in topology of the domain of φ as φ(v) moves left to right in B.

{Xi0, . . . ,Xidi}
b−2g+1
i=1 giving rise to a tensor

md,b(σ1⋯σb−2g+1) ∈
b−2g+1

⊗
i=1

di

⊗
j=1

Hom(Xij ,Xi(j−1))⊗Hom(Xi0,Xidi)

of degree (d + 1) − (2 − 2b), satisfying the relation (4.24), where, as in Definition 4.3.1,

b − 2g + 1 = iσ is the number of disjoint cycles comprising σ = σ1⋯σb−2g+1, b1 + b2 = b,
d + 1 = ∑b−2g+1

i=1 ∣σi∣, and m̂d+1,b((σ1⋯σb+1)[d + 1 − (2 − 2b)]∗) =md,b(σ1⋯σb+1).

In section 4 the notion of a quantum A∞ algebra was generalized from that

of an A∞ algebra by replacing stable trees with stable graphs. Analogously, in order

to generalize A∞-precategories to quantum A∞-precategories, one must replace tropical

Morse trees with tropical Morse graphs.



Chapter 6

Tropical Morse Graphs

In this chapter we define a generalization of tropical Morse trees, called tropical

Morse graphs, and formulate and prove a formula for the dimension of moduli spaces of

such graphs.

6.1 Definition and Basic Properties

Definition 6.1.1. Let Gtrop
d,b (p1, p2, . . . , pd+1) be the set of continuous maps φ ∶ GÐ→ B

from metric ribbon graphs G of genus b, each with a collection of affine displacement

vectors satisfying properties 1,2,3,4, and 6 in the definition of tropical Morse trees.

Replace property 5 with

(5∗) Fix an orientation on G. If v is an internal vertex of G with incoming edges

e1, . . . , ep, and outgoing edges f1, . . . , fq, then

p

∑
i=1

vei(v) =
q

∑
j=1

vfj(v)

The notation Gtrop
d,b (p1, p2, . . . , pd+1) differs from that of Strop

d (p0,1, p1,2, . . . ;p0,d) to reflect

the fact that the points labeling the external legs of a given tropical Morse graph are

organized into b + 1 disjoint cycles, as opposed to a single cycle as in the tropical Morse

tree case. We have Gtrop
d,0 = Strop

d .

Remark 6.1.2. Internal edges are not allowed to collapse. More specifically, if φ ∶ GÐ→
B is such that the balancing condition at a certain vertex forces φ∣e to be constant, then

the domain G is redefined by contracting e.

80
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Definition 6.1.3. The fatgraph of a graph G is a thickening of the edges and legs of

G. One replaces the edges with rectangles and glues them according to the given cyclic

order at each vertex.

Let G be a stable graph. Orient the boundary of the fatgraph so that as the

boundary is traversed, the interior lies on the left. The vertices bounding the external

legs correspond to points of intersection between the chosen set of Lagrangians. The

legs therefore partition the boundary into segments, each labeled with Lnj for some j.

If an external vertex v, labeled with pi,j , is a transition point from Lni to Lnj , and the

relevant edge is oriented away from v, then label that leg with nj − ni. If the edge is

oriented toward v, then label the edge with ni − nj .
Similarly, label the internal edges according to which boundary segments bound

the edge. Let e be such an edge bounded by segments labeled Lni and Lnj . If the

orientation of the segment of the boundary of the fatgraph labeled Lnj agrees with the

orientation of the internal edge, then label the internal edge with nj − ni. Otherwise,

label it ni − nj . The corresponding holomorphic maps (holomorphic annuli in the b = 1

case) are constructed in essentially the same way as holomorphic disks are constructed

from tropical Morse trees. The signs are defined in precisely the same way as well.

6.1.1 The Lagrangian Condition

For any external edge labeled by e, −ve(s) = σnj(φ(s))−σni(φ(s)) = −njφ(s)−
(−niφ(s)) = (−nj + ni)φ(s) mod Λ, so ve(s) = (nj − ni)φ(s) = neφ(s) mod Λ. Call this

last equality the Lagrangian condition for the edge e. In the tree case, the balancing

conditions force ve(s) = neφ(s) mod Λ for the internal edges.

Example 6.1.4. Consider the general tree contributing to m2○1m2. Label the incoming

edges ei for 1 ≤ i ≤ 3, and label the single internal edge e. Let pi−1,i be the input on ei.

The balancing condition at the first internal vertex v is

ve(v) = ve1(1) + ve2(1)

= ne1(φ(v) − p0,1) + ne2(φ(v) − p1,2) (6.1)

= (ne1 + ne2)φ(v) − ne1p0,1 − ne2p1,2

= neφ(v) mod Λ,
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where neipi−1,i ∈ Z, since pi−1,i ∈ B( 1
ni−ni−1

Z). Furthermore, the balancing condition at

the second internal vertex w yields

veout(w) = ve(w) + ve3(w)

= ve(v) + ne(φ(w) − φ(v)) + ne3(φ(w) − p2,3) (6.2)

= neφ(v) − ne1p0,1 − ne2p1,2 + neφ(w) − neφ(v) + ne3(φ(w) − p2,3)

= (ne + ne3)φ(w) − ne1p0,1 − ne2p1,2 − ne3p2,3

= neoutφ(w) mod Λ

Not only is this the Lagrangian condition on the outgoing edge, but line 4 reveals it is

in fact independent of the location of φ(v).

Let e be an edge labeled by nj − ni. The reasoning as to why the Lagrangian

condition holds for an arbitrary edge in any TMT is given in detail on pages 631 and

632 of [3]. In short, the statement that the vector ve(s) is bound at its tail by Lni and

at its head by Lnj for all s ∈ e, is equivalent to the statement that Re(e× {0}) ⊆ Lni and

Re(e × {1}) ∈ Lnj .
In the graph case, one must impose the Lagrangian condition on an arbitrary

edge within each generator of H1(G). The balancing conditions then force the condition

on each edge comprising each generator.

Proposition 6.1.5. Let G be trivalent. Imposing the Lagrangian condition on a single

edge of each generator of H1(G) is enough to guarantee the condition holds throughout

G, as long the condition is imposed once and only once per generator.

Lemma 6.1.6. Given an arbitrary vertex v in G, if all but one of the attached edges

have the Lagrangian condition, then so does the remaining edge.

Proof. Orient the attached edges with the Lagrangian condition toward v, and the re-

maining edge, labeled e, away from v. Let {li} be the subset of the attached edges which

are external legs, and let {ej} = Leg(v) − {li} − {e} be the remaining edges. Note that

by the definition of a tropical Morse graph, ∑nli +∑nej = ne. The balancing condition
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at v yields

ve(0) = ∑vli(1) +∑vej(1) (6.3)

= ∑(vli(0) + nli(φ(v) − pi−1,i)) +∑(vej(0) + nej(φ(v) − φ(wj)))

= (∑nli)φ(v) −∑nlipi−1,i +∑vej(0) + (∑nej)φ(v) −∑nejφ(wj)

= (∑nli +∑nej)φ(v) +∑(vej(0) − nejφ(wj)) −∑nlipi−1,i

= neφ(v) mod Λ,

where ej is bound by v and wj .

Proof. (of Proposition 6.1.5)

Let S = {ci} be the set of minimal generators of H1(G), and give each the

counterclockwise orientation. Say that an edge or external leg of G is marked if it has

the Lagrangian condition. Say that a generator is marked if at least one of its edges is

marked. I claim there exists a vertex with no less than n(v) − 1 marked edges.

Suppose the claim does not hold for a graph G. Let n′(v) be the number of

marked edges emanating from the vertex v. Let n be the number of external legs of

G. Each marked internal edge is bounded by two vertices, and all external edges are

marked, so

∑
Vert(G)

n′(v) = n + 2b1(G)

For the sake of contradiction, suppose n′(v) ≤ n(v) − 2 for all v ∈ Vert(G). Letting

E = ∣Edges(G)∣ and V = ∣Vert(G)∣, one has

E − V + 1 = b1(G)

= 1

2
(∑n′(v) − n)

≤ 1

2
(∑(n(v) − 2) − n) (6.4)

= 1

2
(∑n(v) − 2V − n)

= 1

2
(2E + n − 2V − n)

= E − V,

a contradiction.

So there exists a vertex v1 such that n′(v1) ≥ n(v1) − 1. If v1 comprises part

of a cycle, then it comprises part of a minimal generator. If n′(v1) = n(v1), then this
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minimal generator is marked more than once, which is impossible. If v1 does not comprise

part of a cycle, then G is the unique graph with one vertex and n legs, as internal

edges not comprising cycles are initially unmarked. It therefore must be the case that

n′(v1) = n(v1) − 1 = 2.

I claim that upon finding and subsequently marking the remaining unmarked

edges of k vertices with n′(v) = 2, there always exists another vertex v with n′(v) = 2.

Suppose not. Then there are k vertices such that n′(v) = n(v) = 3 and V − k vertices

such that n′(v) is either 0 or 1. Then

2k + 2b1 + n = ∑
Vert(G)

n′(v)

≤ 3k + V − k

= V + 2k,

giving 2b1+n ≤ V . But 2b1−2+n = V by equation (2.10) of [17], so this is a contradiction.

The entire graph can therefore be inductively marked by finding vertices v with n′(v) = 2

and using Lemma 6.1.6.

6.1.2 The Output is Determined

Let G be a tropical morse graph with n external legs. The image of each

external vertex is determined by the images of the remaining external vertices.

Example 6.1.7.

Let G be

p0,1 ● ● p
v we1 // e3oo

e4
gg

e2 ''

The balancing conditions are

i) ne1(φ(v) − p0,1) + ve4(0) + ne4(φ(v) − φ(w)) = ve2(0)

ii) ve2(0) + ne2(φ(w) − φ(v)) + ne3(φ(w) − p) = ve4(0)

When b1(G) > 0, φ∣G cannot be lifted to the universal cover, so φ is lifted edge by edge.

In particular, the difference φ(p) − φ(q), for p, q points on G, is viewed on the universal

cover. So if e is a segment bounded by p and q, and φ∣e wraps around R/dZ k times,
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then φ(p)−φ(q) will have the form α+kd, where α is the length of the directed segment

between φ(p) and φ(q) in R/dZ.

Certainly these equations alone do not imply the Lagrangian condition on either

edge, since ve2(0) and ve4(0) could be simultaneously replaced by ve2(0)+ε and ve4(0)+ε.
Solving the Lagrangian condition on e2, ve2(s) = ne2φ(s) mod Λ, with the first balancing

condition, gives

(ne1 + ne4 − ne2)φ(v) − ne1p0,1 + ve4(0) = −ne1p0,1 + ve4(0) = ne4φ(w) mod Λ

As ne1 + ne4 = ne2 , this is ve4(0) = ne4φ(w) mod Λ.

Substituting the left hand side of the first equation for ve2(0) in the second

gives

ne1φ(v)−ne1p0,1+ve4(0)+ne4φ(v)−ne4φ(w)+ne2φ(w)−ne2φ(v)+ne3φ(w)−ne3φ(p) = ve4(0)

Because ne1 + ne4 = ne2 and ne2 + ne3 = ne4 one has

ne3φ(p) = −ne1p0,1 + (ne1 + ne4 − ne2)φ(v) + (−ne4 + ne2 + ne3)φ(w)

= −ne1p0,1 (6.5)

so φ(p) = −ne1p0,1

ne3
mod dZ.

Theorem 6.1.8. Let e be the leg attached to the exceptional vertex p, and let e be

oriented outward if b1(G) = 0, and inward if b1(G) > 0. If pi−1,i bounds ei, then φ(p) =
∑neipi−1,i

ne
if b1(G) = 0, and φ(p) = ∑−neipi−1,i

ne
if b1(G) > 0.

Proof. Let e be an arbitrary edge of a contractible tropical morse graph T , bounded at its

incoming end by v, and by w at its outgoing end. Then ve(1) = ve(0)+ne(φ(w)−φ(v))
and ve(0) = ∑vei(0) + nei(φ(v) − φ(ui)) where each ei feeds directly into v from ui. So

ve(1) = neφ(w) +∑vei(0) + (∑nei − ne)φ(v) −∑neiφ(ui) (6.6)

= neφ(w) +∑vei(0) −∑neiφ(ui)

If ui is external, then vei(0) = 0 and neiφ(ui) = nekpk−1,k where pk−1,k is the kth input.

If ui is internal, then there is a set of edges {ej} that feed into ui, and

vei(0) = ∑vej(1) (6.7)

= ∑vej(0) + nej(φ(ui) − φ(uj))
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Substituting gives

−vei(0) + neiφ(ui) = −∑vej(0) + (−∑nej + nei)φ(ui) +∑nejφ(uj) (6.8)

= −∑vej(0) +∑nejφ(uj)

This process can be repeated inductively until each uj is external. Let eout be the

outgoing edge bounded by v and p. Then

0 = veout(1) (6.9)

= veout(0) + neout(φ(p) − φ(v))

and therefore

neoutφ(p) = neoutφ(v) − veout(0)

= neoutφ(v) −∑vei(1)

= neoutφ(v) −∑(vei(0) + nei(φ(v) − φ(ui))) (6.10)

= (neout −∑nei)φ(v) −∑vei(0) +∑neiφ(ui)

= −∑vei(0) +∑neiφ(ui)

= ∑nekφ(uk)

= ∑nekpk−1,k

In the b1(G) > 0 case, all of the external legs are oriented inward. Let e be the edge

connected to the exceptional vertex p, bounded on the other end by v. Let {uk} be the

set of internal vertices. Let vkei denote the vector vei at uk. The balancing condition at

k can be written as

∑
i

vkei =∑
j

vkej mod dZ (6.11)

Although redundant, I will write 6.11 as ∑i vkei(0) = ∑j vkej(1) for clarity. Summing the

balancing conditions yields

ne(φ(v) − φ(p)) +∑
k

∑
i

vkei(1) =∑
k

∑
j

vkej(0) mod dZ, (6.12)

where ve(0) = 0, so is not included. If vkej(0) ≠ 0, then uk is internal, and there exists

a summand vlei(1) on the left such that ei = ej is bounded by uk and ul. As vlei(1) =
vlei(0)+nei(φ(ul)−φ(uk)), the terms vkei(0) can be canceled from (6.12) and this equation

becomes −neφ(p) + neφ(v) +∑k∑i nkei(φ(vk) − φ(uki)) = 0, where for each k, ei begins
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at uki and terminates at vk. If uki is external, then φ(uki) = pj−1,j for some j. Since

∑nein = ∑neout for all internal vertices uk,

neφ(v) +∑
k

∑
i

nkei(φ(vk) − φ(uki)) = ∑
internal uk

(∑
i

nkei)φ(uk) − ∑
internal uk

(∑
j

nkej)φ(uk)

− ∑
external uk

nekpk−1,k mod dZ

= − ∑
external uk

nekpk−1,k mod dZ (6.13)

Equation (6.12) becomes −neφ(p) = ∑external uk nekpk−1,k. Notice the minus sign is a

simply a result of writing φ(v) − φ(p) instead of φ(p) − φ(v) in (6.12).

6.2 The Dimension of Gtrop
d,b (p1, . . . , pd+1)

The dimension of Gtrop
d,b is equal to dim{φ ∶ GÐ→ B} for G a sufficiently general

tropical morse graph with d+ 1 legs and b = b1. This means n(v) = 3 and b(v) = 0 for all

v ∈ Vert(G). Let G be such a graph. Heuristically, the dimension should be the number

of free variables minus the number of constraints.

Letting Vert(G) denote the set of internal vertices, the free variables consist

of the elements {φ(v)} for v ∈ Vert(G), the element φ(p) for p the exceptional vertex,

and the vectors {ve(0)} for e ∈ Edge(G), as each of these vectors is free to vary in a

1-dimensional subspace of the corresponding fiber of TB. The constraints consist of the

set of balancing conditions, the requirement that ve(0) = neφ(0) mod Z for each edge e,

and the set of degree one external legs. Assuming all external legs are oriented inward,

this translates here to

∣{φ(v)∣v ∈ Vert(G)}∣ + ∣{φ(p)}∣ + ∣{ve(0)}∣ − ∣{balancing conditions}∣ −
∣{Lagrangian conditions}∣ − ∣{degree 1 external vertices}∣ =

∣Vert(G)∣ + 1 + ∣Edge(G)∣ − ∣Vert(G)∣ − b1(G) − (degpd,0 +∑degpi−1,i).

Definition 6.2.1. Two legs of a graph G are said to be adjacent if they emanate from

the same internal vertex.

Theorem 6.2.2. If ne ≠ 0 for all legs e, then dimGtrop
d,b = d−1+2b1−(degpd,0−∑degpi−1,i)

Proof. Let S be the set of marked edges of G. The balancing conditions and the la-

grangian conditions give rise to a

(b1 + ∣Vert(G)∣) × (∣Vert(G)∣ + 1 + ∣Edge(G)∣)
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matrix AG, whose columns are indexed by the elements

{φ(v)∣v ∈ Vert(G)} ∪ {φ(p)} ∪ {ve(0)∣e ∈ Edge(G)},

and whose rows are indexed by Vert(G)∪{le∣e ∈ S}. Since b1 + ∣Vert(G)∣ = ∣Edge(G)∣+1,

AG will have maximal rank if the square submatrix given by the rightmost ∣Edge(G)∣+1

columns is invertible. Denote this square matrix by BG.

The first row of BG corresponds to the balancing condition at the unique inter-

nal vertex u which is connected to p. Order the remaining rows and all of the columns

as follows. From u, choose one of the edges e connected to u, and traverse that edge

until reaching the vertex which bounds it on its opposite end. The balancing condition

at this second vertex gives the second row, and the second column is indexed by ve(0).
If e comprises part of a loop in H1(G), then continue in this way around the minimal

loop containing e. If not, then continue along an arbitrary path until it terminates with

a vertex which is connected to an external leg. For the next vertex, backtrack from the

current vertex until reaching the most recent junction, and move along the untraced edge

to the next vertex. This new edge marks the next column, and the new vertex marks

the new row. Continue in this way until all internal edges of G have been traversed. The

marked edges will be those traversed last within their respective minimal loops.
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Example 6.2.3.
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φ(p) ve1(0) ve2(0) ve3(0) ve4(0) ve5(0) ve6(0) ve7(0) ve8(0) ve9(0)
v1 −ne10 1 0 0 0 0 0 0 0 1
v2 0 -1 1 0 0 0 0 1 0 0
v3 0 0 -1 1 0 1 0 0 0 0
v4 0 0 0 -1 -1 0 1 0 0 0
v5 0 0 0 0 1 -1 0 0 0 0
v6 0 0 0 0 0 0 -1 0 0 0
v7 0 0 0 0 0 0 0 -1 1 0
v8 0 0 0 0 0 0 0 0 -1 0
v9 0 0 0 0 0 0 0 0 0 -1
l 0 0 0 0 0 -1 0 0 0 0

Figure 6.1: BG for the given G. The vertices and edges are listed in the order in which
they are traversed, starting from v1.

If AG has maximal rank, i.e. if rank(AG) = ∣Vert(G)∣ + b1, then the solution

space of this system will have dimension

∣Vert(G)∣ + 1 + ∣Edge(G)∣ − (∣Vert(G)∣ + b1) = ∣Edge(G)∣ + 1 − b1 (6.14)

= 3(b1 − 1) + d + 1 + 1 − b1

= d − 1 + 2b1

Let Aij be the entry of A that lies in the ith row and the jth column, and let
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Ãij be the submatrix of A given by eliminating the ith row and the jth column. Then

detA =
n

∑
j=1

(−1)i+jAij ⋅ det(Ãij) =
n

∑
i=1

(−1)i+jAij ⋅ det(Ãij).

Let G be a trivalent graph with b1 > 0, and let e be the marked edge of an

arbitrary cycle. As the lagrangian condition le is neφ(v) = ve(0), the corresponding

row of AG is le = (0⋯ne⋯0⋯ − 1e⋯0), and considered as a row of BG, takes the

form le = (0⋯ − 1e⋯0), where 1e sits in the column corresponding to ve(0). Then

det(BG) = (−1)ie+je(−1e)(det(B̃G)ieje), where −1e sits in the ieth row and jeth column

of BG. The final b1 rows of the matrix BG all have this form, so

det(BG) = ±detCG,

where CG is the matrix resulting from eliminating the ieth row and jeth column of each

of the last b1 rows of BG. The sign depends on the location of each 1e.

Claim 6.2.4. The matrix CG is upper triangular and is such that

(CG)ii =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−nl if i = 1

±1 if i ≠ 1

where l is the external leg to which the exceptional vertex p is attached.

Proof. (of claim 6.2.4) Each edge e is bounded by two vertices, so a column vector

marked by ve(0) will consist of at most 3 nonzero entries, the third coming from the

edge e possibly being marked.

The structure of these column vectors depends on when the edge is traversed

in the sequence. There are three possibilities:

i) e is not the first edge traversed after having backtracked and is not the final edge

traversed in a loop

ii) e is the first edge traversed after having backtracked

iii) e is the final edge traversed in a minimal loop
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These vectors take the forms

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
±1

∓1

∗
∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
±1

∗
∓1

∗
∗
∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∗
±1

∗
∓1

∗
−1

∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

respectively, where ∗ represents some number of 0 entries. Indeed, if e is of the first

type, then the vertices bounding this edge give rise to successive rows in BG. If e is the

first traversed after having backtracked, then there will be several rows, depending on

how many edges were retraced, in between the rows indexed by the vertices bounding e.

If e is the final edge traversed in a loop consisting of n edges, then there will be a gap of

n − 1 rows between the nonzero entries. The −1 entry near the end comes from the fact

that edges of the final type are exactly the marked edges.

Let vi be a vertex of G. The nonzero entries of the row indexed by vi correspond

to the edges which are connected to vi. The first nonzero entry corresponds either to

the edge traversed just before vi, or just after. Because the first column is indexed by

φ(p), the first nonzero entry of the row vi will lie at or after the ith spot. The matrix

CG is therefore upper triangular. Since (BG)11 = (CG)11 = −nl ≠ 0, it remains only to

show (CG)ii ≠ 0 for 2 ≤ i ≤ ∣Vert(G)∣.
Let en be an edge of the first type listed above, bounded by vn and vn+1.

Depending on the orientations of the edges connected to vn+1, either the vector ven(0)
or ven(1) contributes to the balancing condition at vn+1, so (BG)(n+1)(n+1) = ±1.

Now let en be the first edge traversed after having backtracked, bounded by vi

and vj . Assume vj is the one vertex of the two that has not yet been traversed. The

sequence of vertices and edges has the form

⋯Ð→ en−1 Ð→ vj−1 Ð→ vi Ð→ en Ð→ vj Ð→ ⋯,

where vi was traversed before vj−1, so does not index a new row. Therefore, (BG)(j−1)(n)

and (BG)(j)(n+1) are both nonzero. In other words, if i and j are such that (BG)ij is

the second nonzero entry of the jth column, and the (j + 1)st column is indexed by an

edge which is the first to be traversed after having backtracked, then (BG)(i+1)(j+1) is

nonzero as well.
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Let en be of the third type, and let en−1 be the second to last edge traversed in

the given minimal loop. The final entry of ven−1(0) and the second entry of ven(0) will

lie in the same row, as en−1 and en flow, in terms of the order in which they are traversed,

through the same vertex. This means that the second entry of ven(0) has coordinates

(i, i + k), where k is the number of minimal loops traversed, up to and including the

one containing en. Now, since (BG)ij = (CG)(i)(j−k) for 1 ≤ i ≤ ∣Vert(G)∣, where k is

the number of minimal loops traversed before column j, the second entries of all of the

column vectors of BG will slide into the diagonal upon taking cofactors at the nonzero

entries of BG corresponding to the marked edges.

Then det(BG) = ±nl and since nl ≠ 0 for all external legs l, the matrix BG is

invertible, and rank(AG) = d − 1 + 2b1.

Let l be a leg of G and recall that vl(s) = vl(0) + nl(φ(s) − pi,j) must point in

the same direction as φ′(s), where pi,j labels l in G. If nl < 0, then nl(φ(s) − pi,j) and

vl(s) point in opposite directions, so ∣vl(0)∣ ≥ ∣nl(φ(s) − pi,j)∣ for all s ∈ [0,1]. Since l is

a leg of G, vl(0) = 0 by definition, so φ necessarily contracts l to pi,j . The image under φ

of the vertex bounding l on its opposite end is therefore determined. If nl > 0 the image

under φ of the vertex bounding l on its opposite end is unrestricted. Because deg pi,j = 1

if and only if nl < 0, and deg pi,j = 0 if and only if nl > 0, the dimension of dimGtrop
d,b is

given by

dimGtrop
d,b = ∣Vert(G)∣ + 1 + ∣Edge(G)∣ − ∣Vert(G)∣ − b1 − (degpd,0 +∑degpi−1,i)

= ∣Edge(G)∣ + 1 − b1 − (degpd,0 +∑degpi−1,i)

= 3(b1 − 1) + d + 1 + 1 − b1 − (degpd,0 +∑degpi−1,i)

= d − 1 + 2b1 − (degpd,0 +∑degpi−1,i)

Notice that when b(v) = 0 for all v ∈ Vert(G), we have b = b1 = −∣Vert(G)∣ +
∣Edge(G)∣ + 1, so the dimension formula can be written

dimGtrop
d,b = ∣Vert(G)∣ − (degpd,0 +∑degpi−1,i),

and the dimension is seen to be a function of the number of elements φ(v) for v ∈ Vert(G),
which can vary in 1-dimensional subspaces of B = S1.
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There are two other versions of this same formula. Letting n be the total

number of external legs, the dimension becomes

n − 2 + 2b1 − (degpd,0 +∑degpi−1,i)

If, in the original formula, the nd −n0 leg is oriented outward, then the formula changes

as

n − 2 + 2b1 − (degpd,0 +∑degpi−1,i) = (d + 1) − 2 + 2b1 − (degpd,0 +∑degpi−1,i)

= d − 1 + 2b1 − (degpd,0 +∑degpi−1,i)

= d − 1 + 2b1 − (1 − degp0,d +∑degpi−1,i)

= d − 2 + 2b1 + degp0,d −∑degpi−1,i

where

degp0,d =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if nd − n0 > 0

1 if nd − n0 < 0

Remark 6.2.5. One actually has pd,0 = p0,d. The labeling simply reflects the orientation

of the relevant edge of S, where φ ∶ S Ð→ B is the TMT in question.

Intuitively, taking the cofactor with respect to the single nonzero element of the

row marked by le, can be visualized as breaking the edge e and considering the matrix of

the resulting graph G′, where b1(G′) = b1(G)− 1. Note that since one is only comparing

the matrices BG′ and B̃G, the images of the endpoints of the newly formed external legs

are irrelevant.

Example 6.2.6. Let G, H, and K be the graphs
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respectively.

The balancing conditions on G are
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i) ne1(φ(u) − φ(p)) + ve6(0) + ne6(φ(u) − φ(w)) = ve2(0)

ii) ne3(φ(v) − p0,1) + ve2(0) + ne2(φ(v) − φ(u)) = ve4(0)

iii) ne5(φ(w) − p1,2) + ve4(0) + ne4(φ(w) − φ(v)) = ve6(0)

and the lagrangian condition is ne6φ(w) = ve6(0). The corresponding matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

(ne1 + ne6) 0 −ne6 −ne1 −1 0 1

−ne2 (ne2 + ne3) 0 0 1 −1 0

0 −ne4 (ne4 + ne5) 0 0 1 −1

0 0 ne6 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(6.15)

where the rows are labeled u, v, w, and l, and the columns are labeled φ(u), φ(v), φ(w),
φ(p), ve2(0), ve4(0), and ve6(0).
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φ(p) ve2(0) ve4(0) ve6(0)
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������ φ(p) ve4(0)
v −ne3 -1
w 0 1

Figure 6.2: Taking the cofactor with respect to the last row and the last column yields the
matrix corresponding to the graph obtained from G by breaking the edge e6. Similarly,
taking the cofactor with respect to the first row and the second column yields the matrix
corresponding to the graph obtained from H by breaking the edge e2.



Chapter 7

Fuk(X(R/dZ)) as an Algebra over

The Feynman Transform

This chapter is devoted to the main result of the thesis, i.e., the construction of

a morphism from the Feynman transform of a twist of S̃[t] to EL, an operad built from the

Lagrangian submanifolds of an elliptic curve. The final section describes a perturbation

of the relevant moduli spaces, which could be used to extend the non-triviality of the

above morphism to genus one.

7.1 The Operad EL

There is an anti-symmetric pairing B ∶ Hom(Li, Lj) ⊗ Hom(Lj , Li) Ð→ C[−1]
defined by composing

Hom(Li, Lj)⊗Hom(Lj , Li)
m2Ð→ Hom(Li, Li) ≃ H∗(Li,C)

with

H∗(Li,C) ≃ H∗(S1,C) projÐ→ Htop(S1,C) = C[−1]

The pairing B gives the degree 1 isomorphism

γ ∶ Hom(Li, Lj)Ð→ Hom(Lj , Li)∗ (7.1)

pi,j ↦ (qj,i ↦ B(pi,j , qj,i))

96
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This can be visualized as follows.

1 0 −1

Hom(Li, Lj) Hom(Lj , Li)

Hom(Lj , Li)∗ Hom(Li, Lj)∗

H
HHHHj

γ H
HHHHj

γ

(7.2)

As V was constructed to mimic the behavior of the chain complexes Hom(Li, Lj) and

their dual spaces, the diagram bares resemblance to (4.11), but note there is no map

between Hom(Li, Lj) and Hom(Lj , Li).
Because B is anti-symmetric, a convention must be chosen for the sign associ-

ated to B. The convention here will be B(deg 0,deg 1) = +1 and B(deg 1,deg 0) = −1,

and this gives (−1)∣pi,j ∣B(pi,j , pj,i) = +1 for pi,j ∈ Hom(Li, Lj).
As in Chapter 4, define the morphism

md,0 ∶
d

⊗
i=1

Hom(Li−1, Li)Ð→ Hom(L0, Ld)

by

p0,1 ⊗⋯⊗ pd−1,d ↦ ∑
B( 1

nd−n0
Z)
∑
Gtrop
d,0

(−1)s(φ)qdegφp0,d,

where s(φ) and degφ are the sign and area of the holomorphic disk φ, respectively.

Consider the isomorphism

ϕ ∶
d

⊗
i=1

Hom(Li, Li−1)⊗Hom(L0, Ld)Ð→

d

⊗
i=1

Hom(Li−1, Li)∗ ⊗Hom(L0, Ld)Ð→

Hom(
d

⊗
i=1

Hom(Li−1, Li),Hom(L0, Ld))

p1,0⊗⋯⊗pd,d−1⊗p0,d ↦ (q0,1⊗⋯⊗qd−1,d ↦ (−1)
d

∑
i=1

(d−i)∣pi,i−1∣ d

∏
i=1

B(pi,i−1, qi−1,i)p0,d), (7.3)

where the intermediate map is given by (⊗d
i=1 γ) ⊗ id. Let md,0 = ϕ−1(m̃d,0), where

m̃d,0 ∈ Hom(⊗d
i=1 Hom(Li−1, Li),Hom(L0, Ld)) is defined by m̃d,0 = (−1)∣p0,d∣md,0 for p0,d

an arbitrary element in Hom(L0, Ld). This makes sense as Hom(L0, Ld) is concentrated

in a single degree.
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The isomorphism (7.3) mimics the isomorphism

V ⊗(n+1) ≃ (V ∗)⊗n ⊗ V ≃ Hom(V ⊗n, V )

(
n

⊗
i=1

vi)⊗ vn+1 ↦
n

⊗
i=1

(ϕ(vi))⊗ vn+1 ↦ (
n

⊗
i=1

ui ↦ (−1)
n

∑
i=1

(n−i)∣vi∣
∏B(vi, ui)vn+1)

from section 2.2.9, so ϕ−1 is given by

f ↦ ∑
sequences

p0,1,...,pd−1,d

(−1)
d

∑
i=1

(d−i)∣pi,i−1∣(−1)∣p1,0∣p1,0 ⊗⋯⊗ (−1)∣pd,d−1∣pd,d−1 ⊗ f(p0,1 ⊗⋯⊗ pd−1,d)

= ∑
sequences

p0,1,...,pd−1,d

(−1)
d

∑
i=1

(d−i)∣pi,i−1∣(−1)∣p1,0∣p1,0 ⊗⋯⊗ (−1)∣pd,d−1∣pd,d−1 ⊗
⎛
⎜⎜
⎝

∑
B( 1

nd−n0
Z)
α0,d p0,d

⎞
⎟⎟
⎠

= ∑
sequences

p0,1,...,pd−1,d,p0,d

α0,d(−1)
d

∑
i=1

(d−i)∣pi,i−1∣ (−1)∣p1,0∣p1,0 ⊗⋯⊗ (−1)∣pd,d−1∣pd,d−1 ⊗ p0,d

and

md,0 = ϕ−1(m̃d,0) (7.4)

= ∑
sequences

p0,1,...,pd−1,d,p0,d

∑
Strop
d

(p0,d;p0,1,...,pd−1,d)
(−1)s(φ)qdegφ(−1)

d

∑
i=1

(d−i)∣pi,i−1∣(−1)∣p1,0∣p1,0 ⊗⋯

⋯⊗ (−1)∣pd,d−1∣pd,d−1 ⊗ (−1)∣p0,d∣p0,d

The extra signs (−1)∣p1,0∣, . . . , (−1)∣pd,d−1∣ account for the anti-symmetry ofB, and (−1)∣p0,d∣

is included by definition of m̃d,0. Indeed,

ϕ(md,0)(q0,1 ⊗⋯⊗ qd−1,d) = ∑
sequences
p0,1,...,p0,d

∑
Strop
d

(−1)s(φ)qdegφ(−1)∣p0,1∣p1,0 ⊗⋯

⋯⊗ (−1)∣pd,d−1∣pd,d−1 ⊗ (−1)∣p0,d∣p0,d(q0,1 ⊗⋯⊗ qd−1,d)

= ∑
B( 1

nd−n0
Z)
∑
Strop
d

(−1)s(φ)qdegφ(−1)∣q1,0∣B(q1,0, q0,1)⋯

⋯(−1)∣qd,d−1∣B(qd,d−1, qd−1,d)(−1)∣p0,d∣p0,d

= ∑
B( 1

nd−n0
Z)

∑
Strop
d

(p0,d;q0,1,...,qd−1,d)
(−1)s(φ)qdegφ(−1)∣p0,d∣p0,d

= (−1)∣p0,d∣md,0(q0,1 ⊗⋯⊗ qd−1,d)

= m̃d,0(q0,1 ⊗⋯⊗ qd−1,d), (7.5)
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where

(−1)∣pj,j−1∣B(pj,j−1, qj−1,j) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if qj−1,j ≠ pj−1,j

1 otherwise

for 1 ≤ j ≤ d.

Let b ∈ Z≥0 and let {Li0, . . . , Lid}b+1
i=1 be a finite sequence of cyclic chains of

Lagrangians. Define the element

md,b(σ) ∈ EL((d + 1, b)) =
b+1

⊗
i=1

di

⊗
j=1

Hom(Lij , Li(j−1))⊗Hom(Li0, Lidi) (7.6)

by

md,b(σ) = ∑
sequences
p1,...,pd+1

∑
Gtrop
d,b

(−1)s(φ)qdegφ(−1)
d

∑
i=1

(d−i)∣pi∣(−1)∣p1∣p1 ⊗⋯⊗ (−1)∣pd+1∣pd+1,

where p1, . . . , pd+1 can be partitioned into b+1 cycles σ1⋯σb+1 = σ according to the cyclic

chains {Li0, . . . , Lidi}b+1
i=1 .

The complexes Hom(Li, Lj) are usually considered as cohomological complexes,

and are related to the given homological complexes by W i = V1−i, where W represents

Hom(Li, Lj) as a cohomological complex and V as a homological complex.

One may break symmetry in EL and use ϕ to write the element md,b(σ) as a

map

b

⊗
i=1

di

⊗
j=1

Hom(Li(j−1), Lij)⊗Hom(Li0, Lidi)⊗
db+1

⊗
j=1

Hom(L(b+1)(j−1), L(b+1)j)

Ð→ Hom(L(b+1)0, L(b+1)db+1
) (7.7)

The appropriate form of the dimension formula to take when viewing this map cohomo-

logically is

dimGtrop
d,b = d − 2 + 2b + deg pd+1 −

d

∑
i=1

deg pi (7.8)

When dimGtrop
d,b = 0, Equation (7.6), and therefore the element md,b(σ), sits in

degree

deg pd+1 +
d

∑
i=1

deg p∨i = d + deg pd+1 −
d

∑
i=1

deg pi

= d + (2 − d − 2b)

= 2 − 2b, (7.9)
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where p∨ is the element in Hom(Lj , Li) dual to the element p in Hom(Li, Lj). Considered

as a homological tensor, (7.6) sits in degree (d + 1) − (2 − 2b).
For example, if b = 0, then (7.7) takes the form

Hom(L0, L1)⊗⋯⊗Hom(Ld−1, Ld)Ð→ Hom(L0, Ld),

with

dimGtrop
d,0 = d − 2 + deg p0,d −

d

∑
i=1

deg pi−1,i,

and

deg p0,d +
d

∑
i=1

deg pi,i−1 = d + deg p0,d −
d

∑
i=1

deg pi−1,i

= d + (2 − d)

= 2,

Letting H be the graph

i⋯i+l−1

1⋯●⋯k+l−1

●

k+l

������
??????

vvvvvvvv

HHHHHHH

one has

EL((H)) =
i+l−1

⊗
j=i

Hom(Lj , Lj−1)⊗Hom(Li−1, Li+l−1)⊗
i−1

⊗
m=1

Hom(Lm, Lm−1)⊗

k+l
⊗
m=i+l

Hom(Lm, Lm−1)⊗Hom(L0, Lk+l),

where Li−1, . . . , Li+l−1 and L0, . . . , Li−1, Li+l, . . . , Lk+l bound the fatgraphs of

i

⋯
●

i+l−1

f

and

1

⋯
●

k+l−1

k+l

������?????? ������??????

respectively, in TB.

Because µEVG is defined by contraction via the anti-symmetric degree 1 pairing

B, the appropriate twist for EV is

K−1L = K ⊗ ( ⊗
e∈Edge(G)

2

⋀(C{f,f ′})),
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and setting D∨ = K−1L, gives D = K2L−1. This is precisely the correct twist for the

modular operad β2s̃S̃[t], and allows for the construction of a morphism of modular

operads FK2L−1β2s̃S̃[t]Ð→ EL.

7.2 The Algebra Structure FK2L−1β2s̃S̃[t]Ð→ EL

Theorem 7.2.1. There is a nontrivial morphism of modular operads

Ω ∶ FK2L−1β2s̃S̃[t]Ð→ EL

(σ1⋯σb+1)[(d + 1) − (2 − 2b)])∗ ↦md,b(σ1⋯σb+1), (7.10)

where
b+1

∑
i=1

∣σi∣ = d + 1.

Proof. The b = 0 part of the proof follows the proof of Theorem 4.2.2, that is, it must be

shown that for b = 0, the morphism Ω gives an A∞-structure to EL. Because Hom(Li, Lj)
is concentrated in a single degree for any two Lagrangians Li and Lj , one has m1,0 ∶=
dEL = 0, and the relation (4.8) reduces to one involving compositions arising strictly

through the application of µEL to stable graphs with one non-intersecting edge. As in

the proof of Theorem 4.2.2, write mn,0 for mn,0(σ) for n = k, l, where the cycles on which

mk,0 and ml,0 depend can be read directly from the graph Hi below.

Let Hi be the graph

i⋯i+l−1

1⋯●⋯k+l−1

●

k+l

������
??????

vvvvvvvv

HHHHHHH

Consider the following tensors.

ml,0 = ∑
sequences

ri−1,i,...,ri−1,i+l−1

∑
Strop
l

(ri−1,i+l−1;ri−1,i,...,ri−1,i+l−1)
(−1)s(ϕ)qdegϕ(−1)ε1(−1)∣ri,i−1∣ri,i−1 ⊗⋯

⋯⊗ (−1)∣ri+l−1,i+l−2∣ri+l−1,i+l−2 ⊗ (−1)∣ri−1,i+l−1∣ri−1,i+l−1

mk,0 = ∑
sequences

p0,1,...,pk+l−1,k+l,p0,k+l

∑
Strop
k

(p0,k+l;p0,1,...,pk+l−1,k+l)
(−1)s(φ)qdegφ(−1)ε2(−1)∣p1,0∣p1,0 ⊗⋯

⋯⊗ (−1)∣pi−1,i−2∣pi−1,i−2 ⊗ (−1)∣pi+l,i+l−1∣pi+l,i+l−1 ⊗⋯⊗ (−1)∣p0,k+l∣p0,k+l
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The signs (−1)ε1 and (−1)ε2 are given by

ε1 =
i+l−1

∑
j=i

(l − (j − i + 1))∣pj,j−1∣

and

ε2 =
i−1

∑
j=1

(k − j)∣pj,j−1∣ + (k − i)∣pi+l−1,i−1∣ +
l+k−1

∑
j=i+l

(k − (j − l + 1))∣pj,j−1∣

The tensor ml ⊗ mk is an element of EL((Hi)). Recalling that K−1L(H) =
K(H) ⊗ ⋀2 C{f,f ′} = C[1] ⊗ ⋀2 C{f,f ′} = ⋀2 C{f,f ′}[1], the diagrams (7.11) and (7.12)

become

(β2s̃S̃[t]((Leg(v), b(v))))∗ EL((∗d+1,0))

⊕
H/e≃∗d+1,0

(K−1L(H)⊗ β2s̃S̃[t]((H))∗)Aut(H) EL((∗d+1,0))

-m̂

?

dF

?

dEL=0

-m̂

(7.11)

and

K−1L(H)⊗ β2s̃S̃[t]((H))∗ K−1L(H)⊗ EL((H))

(K−1L(H)⊗ β2s̃S̃[t]((H))∗)Aut(H) EL((∗d+1,0))

-m̂

?

proj

?

µ
EL
H

-m̂

(7.12)

respectively.
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Composing ml,0 ⊗mk,0 via µELHi yields

µELHi((f ∧ f
′)[1]⊗ml,0 ⊗mk,0)

= ∑
sequences

p0,1,...,pi−1,i+l−1,...,p0,k+l

∑
sequences

ri−1,i,...,ri−1,i+l−1

∑
Sl×Sk

(−1)s(φ)+s(ϕ)qdegφ+degϕ(−1)ε1+ε2

(−1)∣pi+l−1,i−1∣+∣ri−1,i+l−1∣(−1)εB(pi+l−1,i−1, ri−1,i+l−1)(−1)∣p1,0∣p1,0 ⊗⋯

⋯⊗ (−1)∣pi−1,i−2∣pi−1,i−2 ⊗ (−1)∣ri,i−1∣ri,i−1 ⊗⋯⊗ (−1)∣ri+l−1,i+l−2∣ri+l−1,i+l−2

⊗⋯⊗ (−1)∣p0,k+l∣p0,k+l

= (−1)∣pi+l−1,i−1∣+∣pi−1,i+l−1∣(−1)ε ∑
p0,1,...,pi−1,i+l−1,...,p0,k+l

ri−1,i,...,ri−1,i+l−1
s.t. pi−1,i+l−1=ri−1,i+l−1

∑
Sk×Sl

(−1)s(φ)+s(ϕ)qdegφ+degϕ

(−1)ε1+ε2(−1)∣p1,0∣p1,0 ⊗⋯⊗ (−1)∣pi−1,i−2∣pi−1,i−2 ⊗ (−1)∣ri,i−1∣ri,i−1 ⊗⋯

⋯⊗ (−1)∣ri+l−1,i+l−2∣ri+l−1,i+l−2 ⊗⋯⊗ (−1)∣p0,k+l∣p0,k+l

= (−1)(−1)ε(−1)ε1+ε2 ∑
p0,1,...,p̂i−1,i+l−1,...,p0,k+l

ri−1,i,...,ri+l−2,i+l−1,ri−1,i+l−1

∑
Sk×Sl

(−1)s(φ)+s(ϕ)qdegφ+degϕ

(−1)∣p1,0∣p1,0 ⊗⋯⊗ (−1)∣pi−1,i−2∣pi−1,i−2 ⊗ (−1)∣ri,i−1∣ri,i−1 ⊗⋯

⋯⊗ (−1)∣ri+l−1,i+l−2∣ri+l−1,i+l−2 ⊗⋯⊗ (−1)∣p0,k+l∣p0,k+l,

where

ε = ∣ml,0∣ +
i−1

∑
j=1

∣p1,0∣ + (∣mk,0∣ + 1 + i)∣ml,0∣ + ∣mk,0∣ + 1 − i (7.13)

This element corresponds to (−1)(−1)ε(−1)ε1+ε2 ̃mk,0 ○iml,0 under ϕ. Following (7.5),

one has

ϕ(µELHi((f ∧ f
′)[1]⊗ (ml,0 ⊗mk,0)))(q0,1 ⊗⋯⊗ qi−2,i−1 ⊗⋯

⋯⊗ qi+l−2,i+l−1 ⊗⋯⊗ qk+l−1,k+l)

= (−1)1+ε+ε1+ε2(−1)∣p0,k+l∣ ∑
B( 1

nd−n0
Z)

∑
B( 1

ni+l−1−ni−1
Z)
∑

Sl×Sk
(−1)s(φ)+s(ϕ)qdegφ+degϕp0,k+l

= (−1)1+ε+ε1+ε2(−1)∣p0,k+l∣mk,0 ○iml,0(q0,1 ⊗⋯⊗ qk+l−1,k+l)

= (−1)1+ε+ε1+ε2 ̃mk,0 ○iml,0(q0,1 ⊗⋯⊗ qk+l−1,k+l)

Including the sign (−1)ε3 corresponding to the contracted tensor

p1,0 ⊗⋯⊗ pi−1,i−2 ⊗ ri,i−1 ⊗⋯⊗ ri+l−1,i+l−2 ⊗⋯⊗ p0,k+l,

where ε3 =
k+l−1

∑
j=1

(k + l − 1 − j)∣pj,j−1∣, and converting back to cohomological signs gives

(−1)1+∣p0,k+l∣(−1)
i−1+

i−1

∑
j=1

∣qj−1,j ∣
mk,0 ○iml,0(q0,1 ⊗⋯⊗ qk+l−1,k+l)
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The contracted tensors (−1)1+ε+ε1+ε2+ε3mk,0○iml,0 cancel pairwise with the same

signs as for the usual compositionsmk,0○iml,0. Indeed, the extra signs (−1)∣pi+l−1,i−1∣+∣pi−1,i+l−1∣

and (−1)∣p0,k+l∣ always cancel as ∣p∣ + ∣q∣ = 1 for any pair p, q on which B is nonzero, and

the compositions all have the same target, so (−1)∣p0,k+l∣ shows up in every term. The

tensors mn,0 therefore satisfy the A∞-relations using the signs of Seidel as in [36].

Without perturbing the moduli spaces Gtrop
d,b , the map (7.10) is necessarily triv-

ial for b > 0. Consider the diagram

FK2L−1β2s̃S̃[t](n,1) EL(n,1)

FK2L−1β2s̃S̃[t](n,1) EL(n,1)
?

dF

-Ω

?

dEL=0

-
Ω

A basis element G = σ∗ ∈ (β2s̃S̃[t](n,1))∗ ⊆ FK2L−1β2s̃S̃[t](n,1) will be such

that iσ = b(v) + 1 = b + 1 = 2, and the map Ω is defined as

Ω ∶ FK2L−1β2s̃S̃[t]((n,1))Ð→ EL((n,1))

(στ)[n]∗ ↦ ∑
sequences
p1,...,pn

∑
Gtrop
n−1,1

(−1)s(φ)qdegφ(−1)∣p1∣p1 ⊗⋯

⋯⊗ (−1)∣p∣σ∣∣p∣σ∣ ⊗ (−1)∣p∣σ∣+1∣p∣σ∣+1 ⊗⋯⊗ (−1)∣p∣σ∣+∣τ ∣∣p∣σ∣+∣τ ∣ (7.14)

Among the stable ribbon graphs in FLS̃[t](n,1) which map to G are the ones with

b(v) = 0 and one self-intersecting edge with some legs in the loop and some outside of it.

More specifically, since iσ = 2, σ may be written as a product of two disjoint cycles, one

of which fixes the inner legs and acts transitively on the outer ones, or vice-versa.

The TMG’s defining the summands of Ω ○ dF (G ) are defined by labeling the

fatgraphs of the stable ribbon graphs corresponding to these summands with a set of

chosen Lagrangians in X(B). For this reason, the stable ribbon graphs in question must

have at least two legs in the loop and two out of it. This is because a single leg either

in or out would have to be labeled by ne = 0, as the relevant lagrangian would intersect

itself at the corner defined by the end of e. But because the sums of the inner labels and

outer labels are both zero, two of the legs must be labeled with positive integers. This
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implies deg pd,0 +∑deg pi−1,i ≤ n − 2, and we have

dimGtrop
d,1 = n − 2 + 2b1 − (deg pd,0 +∑deg pi−1,i)

= n − (deg pd,0 +∑deg pi−1,i)

≥ n − (d − 2)

= 2,

So there is no possibility of having a one-dimensional space of such TMG’s, which would

give rise to relations between pairs of TMG’s from a zero-dimensional space. The only

possibility of having a new operation is if we allow all external legs to be labeled by 0.

The new operation would be obtained by summing over TMG’s with b = 1 and all inward

and outward pointing external legs labeled by 0. If the inner and outer Lagrangians were

equal, the element mn−1,1 would be given by covering the torus with annuli.

7.3 A Perturbation

As the previous paragraph indicates, the moduli spaces Gtrop
d,b (p1, . . . , pd+1)

should be not only generalized to allow for graphs whose legs can be labeled by zero, but

perturbed to force the inputs into sufficiently general positions.

The objects of the new category are pairs (L,v), where L is a Lagrangian given

as before, v is a constant section of TB, and (L,v) is taken to mean the Lagrangian

L + εv in TB. The Hom-space Hom((Lni ,v), (Lnj ,w)) is generated over Λnov by the

points of B( 1
nj−niZ), and sits in degree 0 if nj > ni and degree 1 if ni > nj . If ni = nj

then Hom((Lni ,v), (Lnj ,w)) is given by the chain complex C[B] Ð→ C[p], where p is

an arbitrarily chosen point of B and the differential m1 is zero.

A sequence {(Ln1 ,v1), . . . , (Lnk ,vk)} is transversal if v1 < ⋯ < vk, and

max{∣vj − vi∣ ∶ 1 ≤ i < j ≤ k}

< 1

2
min{∣p − q∣ ∶ p ≠ q and p, q ∈⋃

i,j
i≠j

π((Lni + vi) ∩ (Lnj + vj))}

Every point of π((Lni +v)∩(Lnj +w)) can be written pi,j +(w−v) for pi,j ∈ B( 1
nj−niZ) =

π(Lni ∩ Lnj). The space Gtrop
k−1,b(p1 + (v2 − v1), . . . , pk + (vk+1 − vk)) is defined as usual

if ni ≠ nj for all adjacent Lagrangians Lni and Lnj in a given cycle. If v is an external

vertex of a graph bounding a leg labeled by ni+1 − ni = 0, then φ(v) is unrestricted if
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deg p + (vi+1 − vi) = 0, and φ(v) = p + (vi+1 − vi) if deg p + (vi+1 − vi) = 1. Any external

leg labeled by ne = 0 is contracted.

The transversality condition ensures that the points pi + (vi+1 − vi) defining

the moduli spaces Gtrop
k−1,b(p1 + (v2 − v1), . . . , pk + (vk+1 − vk)) are always distinct, which

ensures the actual and expected dimensions of Gtrop
k−1,b are equal. With these redefined

moduli spaces, the category Fuk(X(B)) is now a genuine A∞-precategory.

For example, if G is the graph

●

v

p B

●

p

p

− 0

+

−

?????? ������

?????? ������

then φ contracts G to the point p, but the dimension formula gives dim{φ ∶ G Ð→
B} = 3 − 1 − 1 = 1. By shifting slightly the inputs and output, the image of v becomes

unrestricted, and φ(G) becomes a line segment.

The map Ω can now be defined nontrivially for b = 1 by sending (στ[∣σ∣ +
∣τ ∣])∗ to m∣σ∣+∣τ ∣−1,1, defined by summing over the elements of the zero-dimensional space

Gtrop
∣σ∣+∣τ ∣−1,1

(p + (v2 − v1), . . . p + (vk+1 − vk)), where ∣σ∣ + ∣τ ∣ = k and the points p + (v2 −
v1), . . . p + (vk+1 − vk) are partitioned into two distinct cycles.

&%
'$

&%
'$rrr-r

r
p+(v1−v0)

p+(v2−v1)

p+(v1−v0)

p+(v2−v1)
p

φ

ne1=0

ne2=0

Figure 7.1: An example of a zero-dimensional tropical Morse graph G with b = 1, whose
corresponding fatgraph is an annulus with inner and outer boundaries each lying on a
single Lagrangian.



Bibliography

[1] Abouzaid, M. Morse Homology, Tropical geometry, and Homological Mirror Sym-
metry for Toric varieties. arXiv:math/0610004v3 [math.SG] 23 Oct 2007

[2] Abouzaid, M. On the Fukaya Categories of Higher Genus Surfaces.
arXiv:math/0606598v2 [math.SG] 30 Aug 2007

[3] Aspinwall, Paul S.; Bridgeland, Tom; Craw, Alastair; Douglas, Michael R.; Gross,
Mark; Kapustin, Anton; Moore, Gregory W.; Segal, Graeme; Szendrői, Balázs,
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