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Methodology for Evaluating a Partially Controlled
Longitudinal Treatment Using Principal Strati� cation,

With Application to a Needle Exchange Program
Constantine E. FRANGAKIS, Ronald S. BROOKMEYER, Ravi VARADHAN, Mahboobeh SAFAEIAN,
David VLAHOV, and Steffanie A. STRATHDEE

We consider studies for evaluating the short-term effect of a treatment of interest on a time-to-event outcome. The studies we consider
are partially controlled in the following sense: (1) Subjects’ exposure to the treatment of interest can vary over time, but this exposure is
not directly controlled by the study; (2) subjects’ follow-up time is not directly controlled by the study; and (3) the study directly controls
another factor that can affect subjects’ exposure to the treatment of interest as well as subjects’ follow-up time. When factors (1) and (2) are
both present in the study, evaluating the treatment of interest using standard methods, including instrumental variables, does not generally
estimate treatment effects. We develop the methodology for estimating the effect of treatment in this setting of partially controlled studies
under explicit assumptions using the framework for principal strati� cation for causal inference. We illustrate our methods by a study to
evaluate the ef� cacy of the Baltimore Needle Exchange Program to reduce the risk of human immunode� ciency virus (HIV) transmission,
using data on distance of the program’s sites from the subjects.

KEY WORDS: Causal inference; HIV; Needle exchange; Partially controlled studies; Potential outcomes; Principal strati� cation.

1. INTRODUCTION

We consider studies for evaluating the short-term effect of a
treatment of interest on a time-to-event outcome. For practical
or ethical reasons, assume that the study design has the follow-
ing features: (1) Subjects’ exposure to the treatment of interest
can be longitudinal,that is, can vary over time, but this exposure
is not directly controlled by the study; (2) subjects’ follow-up
time is not directly controlled by the study; and (3) the study di-
rectly controls another factor that can affect subjects’ exposure
to the treatment of interest as well as subjects’ follow-up time.

A motivatingexample is the needle exchangeprogram (NEP)
in Baltimore (ALIVE and NEP studies; Vlahov et al. 1997;
Strathdee et al. 1999). In particular, a cohort of injection drug
users has been enrolled and is being followed, with regular
6-month visits in which the subjects are offered clinic ser-
vices, including blood tests for human immunode� ciency virus
(HIV; Vlahov et al. 1991). Independentlyof the clinic, the NEP
also operates sites in Baltimore where drug users can visit and
exchange a used needle for a clean one (and receive other
services such as counseling), with the hope of reducing HIV
transmission. Studies for other NEPs have generally been pos-
itive, but some have shown mixed results (Bruneau, Lamothe,
and Franco 1997; Hagan et al. 2000). However, such studies
controlledneither who exchangesat the NEP nor how long sub-
jects continue the clinic visits, so comparisons of available HIV
seroconversion measures between observed exchangers and
nonexchangersdo not generally estimate the effect of exchange.
Importantly, though, the NEP staff does control placement of
the NEP sites and, hence, distance of the sites from the subjects.
Moreover, there have been earlier indications (e.g., Rockwell,
Des Jarlais, Friedman, Rerlis, and Paone 1999) that proximity
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of drug users to the sites increases needle exchange. Therefore,
we wish to formulate explicitly the distance as a controlled fac-
tor to provide an alternative evaluation of the NEP’s effect on
HIV transmission.

When there is a single partially controlled factor, the struc-
ture of studies with features (1) and (3) in general share some
aspects with the more standard method of instrumental vari-
ables (IV’s) in some earlier studies for other evaluations. For
example, Card (1986) used families’ proximity to colleges to
evaluate the impact that attending college can have on later
income, and McClellan, McNeil, and Newhouse (1994) used
elders’ proximity to hospitals to assess whether intensive treat-
ment after myocardial infarction reduces mortality. More re-
cently, there has also been increasing interest in using IVs to
estimate the effects of treatment received in trials where some
subjects do not comply with their assigned treatment (e.g.,
Sommer and Zeger 1991; Robins and Greenland 1994; Baker
and Lindeman 1994, 2001; Imbens and Rubin 1994, 1997;
Angrist and Imbens 1995; Angrist, Imbens, and Rubin 1996;
Baker, Lindeman, and Kramer 2001).

Evaluationof the effect of a treatment on an outcome is more
demanding in studies where that treatment as well as other fac-
tors, such as observation of the outcome, are only partially con-
trolled. Existing frameworks for time-dependentfactors such as
those discussed in Robins, Greenland, and Hu (1999), Hernan,
Brumback, and Robins (2000), and Murphy et al. (2001) are
appropriate for their assumptions and goals. Our framework
is fundamentally different from such existing frameworks in
terms of the partial control for the factors we consider and in
terms of the goals we have (for a comparison of frameworks,
see Frangakis and Rubin 2002). In particular, in studies where
such partially controlled factors as (1) and (2) given previously
can interact, standard methods, including standard IV’s, are not
adequate to evaluate the treatment of interest (Frangakis and
Rubin 1999). Moreover, in such studies, more � exible methods
under more plausible assumptions have been limited to single-
time treatments and all-or-none levels of the controlled factor
(Frangakis and Rubin 1997, 1999; Baker 1998, 2000).
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We propose a framework that evaluates transient (short-term)
effects in studies with features (1)–(3) and that better addresses
the limitations of existing methods under certain assumptions.
The next section formulates the general framework, the as-
sumptions, the data, and the causal effects that are the esti-
mation goal. Under the general assumptions, Section 3 shows
identi� ability of the causal effects without parametric assump-
tions in large samples, and Section 4 discusses a class of para-
metric models and estimation that is appropriate for smaller
samples. In Section 5 we demonstrate our methods in the NEP
study introducedpreviously.In Section 6 we discuss limitations
of our method and extensions.

2. FORMULATING THE GENERAL STUDY

2.1 Principal Strata of Exposure and Principal
Effects on Outcome

Consider a study that begins follow-up of a cohort of sub-
jects, at discrete time periods t D 1; : : : ; tmax , to investigate a
discrete time-to-event outcome. At a certain period t for sub-
ject i, de� ne Xi;t to be the indicator such that fi : Xi;t D 1g de-
notes the subgroupof subjects who are still in the study but have
not had the outcome by the end of period t¡1. At the beginning
of the next period t, we distinguish between the controlled and
uncontrolledfactors. At that period, assume each subject i in the
risk set fi : Xi;t D 1g can be potentially assigned different levels
of a controlled factor D (e.g., distance of clinic from subject),
and consider outcomes that can be potentially observed as the
controlled factor would take on different levels (Neyman 1923;
Rubin 1974, 1977, 1978). In particular, if subject i at time t is
assigned level d of the controlled factor, then let Ei;t.d/ be the
potential exposure (e.g., to the needle exchange program) that
subject i will have during that period, let Yi;t.d/ be the indicator
for whether the event (e.g., HIV positive) will occur during pe-
riod t or not, and let Ci;t.d/ be the indicator for whether t will be
the � rst period the subject will not provide the outcome Yi;t.d/

(in which case we say the person will be censored at t). Also,
here we focus on studies with suf� ciently many time periods so
that the potential values for exposure E at each time t can have
one of two levels .0; 1/, but where the levels can vary across
time. Moreover, we allow the controlled factor D to have one of
possibly multiple levels d D 1; : : : ;dmax at each time t. Finally,
we let Hi;t denote the observed history variables of the subject
up to the beginningof period t, including the past indicators for
observed outcomes, censoring, and exposure, past levels of the
controlled factor, as well as covariates.

We are interested in de� ning and estimating the transient ef-
fect of the controlled factor D on outcome Y that is attribut-
able to exposure E. We de� ne this effect here as the effect of
the factor D on outcome Y for subjects and at times for which
the controlled factor D also affects the exposure E; a techni-
cal de� nition is given in Section 2.2. However, the explicitly
controlled factor in the study is D, not exposure E, which is
possibly also affected by the factor D. Therefore, and adopting
Rubin’s (1978) convention that potential outcomes in the study
are written as functions only of factors that are explicitly con-
trolled by the researcher, the potential outcome Y , as a function
of the controlled factors, is formally a functiononly of factor D,
not of exposure E. For this reason, before we de� ne the causal

effects of interest, we de� ne the vector Si;t of all possible expo-
sures, Si;t D .Ei;t.1/; : : : ; Ei;t.dmax// that subject i at time t can
have at different levels of D. The vector Si;t is called a principal
stratum of exposure, and comparisons of potential outcomes at
different levels of the controlled factor D within principal strata
Si;t are called principal effects (Frangakis and Rubin 2002).

Principal strata Si;t and principal effects have two general
properties. First, because the stratum Si;t is equivalent to the
function that describes how exposure is affected by the con-
trolled factor D for subject i at time t, the stratum Si;t itself
is not affected by the controlled factor D for that subject at that
time. Second, principaleffects are well-de� ned causal effects of
the factor D on outcome Y (Frangakis and Rubin 2002). Prin-
cipal strata and effects are important because, as we show in
Sections 2.2 and 3, they can de� ne the causal effect of the con-
trolled factor D on outcome Y that is attributable to exposure E.
We also show that this causal effect is estimable under certain
assumptions that can be different from and often more plausible
than those of more standard approaches.

By limiting focus on the preceding outcomes for each sub-
ject i as functions of the factor D separately at each time t, as
opposed to jointly across all times, we treat the observed actual
levels of that factor, of exposure, outcome, and censoring up
to and just before period t, as components of the history vari-
ables Hi;t speci� c to subject i at semester t. We do this because
we wish to study the transient effect of D on outcome Y that is
attributable to exposure E.

An important example for evaluating transient effects is the
NEP study introduced in Section 1, and for which a prelimi-
nary formulation using principal strati� cation is given in Fran-
gakis,Rubin, and Zhou (2002). In this project, the factor that the
NEP’s staff controlled was the NEP sites’ locations and, there-
fore, the distance Di;t of the closest NEP site at semester t from
subject i’s residence. (Note: Subjects’ residence was recorded
at enrollment but because, subsequently, different NEP sites
were placed at different semesters, the distances Di;t can change
over time.) If the closest NEP site is placed at distance d from
subject i at semester t, then let Ei;t.d/ be the indicator for
whether the person will visit and exchange at the NEP during
that semester, and which we label for brevity as “exchange”; let
Yi;t.d/ be the indicatorfor whether the subject will become HIV
positive during semester t; and let Ci;t.d/ D 0 if the subject will
stay in the study and have the HIV test so that Yi;t.d/ will be
observed. The principal stratum Si;t D .Ei;t.1/; : : : ; Ei;t.dmax//,
then, is the vector of all potential exchange behaviors of sub-
ject i at time t as a function of the distance of the NEP from the
subject at that time. In the NEP distance can affect exchange
.Ei;t.d//, outcome .Yi;t.d//, and censoring .Ci;t.d//. Moreover,
the time from HIV infection, for example, because of exposure
to an HIV-contaminatedneedle, until being positive on the HIV
antibody test is, for all practical purposes, less than 6 months,
which is the unit of time between different measurements of
data. For this reason we are interested in the transient effect
that distance can have on HIV status and that is attributable to
exchange within a semester.

More generally, one can set up the framework to study long-
term cumulative effects, although,with partially controlled fac-
tors, that would require increasing the notation and structure in
the assumptions of the next section. For simplicity, we focus
here on transient effects.
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2.2 Data, Assumptions, and Goal

Let Di;t be the actual level of the factor D of subject i
during period t, and let Ei;t D Ei;t.Di;t/, Yi;t D Yi;t.Di;t/, and
Ci;t D Ci;t.Di;t/ be the actual exposure, outcome, and indicator
for whether that outcome is censored, respectively, in the study.
For the actual outcomes for time to event and censoring in the
study, the values Yi;t D 1 and Ci;t D 1 are absorbing states for
the risk set in the sense that if either occurs during period t, then
the subject will not be in the risk set fi0 : Xi0;t0 D 1g for t0 > t.
Assume, then, that for each subject i we observe the indica-
tor Xi;t for whether the subject is in the risk set, that is, has not
had the outcome and has not been censored by the beginningof
period t, and, if the subject is in that risk set, then the observed
data during period t also include the following: the levels of
the factors Di;t and Ei;t; the censoring indicator Ci;t for the out-
come Yi;t; the outcome Yi;t if the subject is not censored during
period t; and history variables Hi;t , which can include the lev-
els of the factors Di;t0 and Ei;t0 , as well as covariates, for times
t0 < t. (Note: The assumption that Di;t and Ei;t are observed
even at the time of possible censoring of the person’s Yi;t can
be relaxed; it is made here because it is true in the NEP exam-
ple, owing to the different sources supplyinginformation in that
study; see Vlahov et al. 1997.)

We consider the subjects i as a random sample from a large
population to which we wish to generalize, and assume that the
following conditions hold.

1. Sequential Ignorability of Assignment to the Controlled
Factor.
¡
Si;t;

©
Yi;t.d/; Ci;t.d/; d D 1; : : : ;dmax

ª¢

jD Di;t j Hi;t; Xi;t D 1

for times t ¸ 1;

where Dawid’s (1979) symbol jD denotes independence. The
assumption expresses that, among subjects still in the risk set
by time t, the study assigns levels Di;t of the controlled factor at
random with probabilities that can depend on the observed his-
tory variables Hi;t. Sequential ignorability for a controlled fac-
tor has been considered earlier, for example, by Rubin (1978),
Robins (1986),Robins et al. (1999), Scharfstein, Rotnitzky,and
Robins (1999), and Murphy et al. (2001) but in settings with
fundamentally different structure from ours in the degree of
control for exposure and censoring behavior.

In the NEP example, where the controlled factor was the dis-
tance Di;t of the closest NEP site from each drug user, within
areas of past high risk for HIV transmission, the NEP sites were
placed in a nonsystematic way. This makes sequential ignora-
bility more plausible when we include in Hi;t main variables,
such as sexual and drug use behavior, that can be confounders
with Di;t in the sense that they cluster in some of Baltimore’s ar-
eas. More generally,sequential ignorabilityis an explicit way to
express conditional comparabilityof subjects at different levels
of the controlled factor D.

2. Multilevel Monotonicityof Exposure. We assume that in-
creasing levels of the factor D provide decreasing encourage-
ment for exposure, or, formally, that Ei;t.d0/ · Ei;t.d/ if d0 > d.
Multilevelmonotonicity is a generalizationof the monotonicity
assumption of Imbens and Rubin (1994) for a binary controlled
factor. For a single partially controlled factor, in particular,with

no outcome censoring, the previous assumption was considered
by Angrist and Imbens (1995) for estimation of linear models
in instrumental variables and by Baker et al. (2001).

Under multilevel monotonicity in our framework, subject i’s
principal stratum Si;t is one of dmax C 1 levels, say, 0; 1; : : : ;

dmax, and is equivalent to the subject-speci� c threshold (maxi-
mum) level that the controlled factor can be, above which sub-
ject i at time t would not become exposed to treatment E. This
ordered structure is represented in Figure 1(a).

In the NEP example monotonicity formally re� ects that if
a subject at time t is one who would not visit the NEP to ex-
change needles if the NEP were at a distance d, then the subject
would also not visit the NEP to exchange if the NEP were at a
longer distance, which is a generally plausible condition (e.g.,
Rockwell et al. 1999). Moreover, under monotonicity, a state-
ment about the principal stratum Si;t D .Ei;t.1/; : : : ; Ei;t.dmax//

of subject i—that is, about all dmax exposure behaviors of the
subject as a function of distance—is equivalent to a statement
about the closest distance we can place the NEP beyond which
that subject will not exchange needles at it during period t. For
this reason we will henceforth be using the notation Si;t D d,
d D 0; : : : ; dmax, for that closest distance to indicate the princi-
pal stratum of that subject at that time.

Note that, even undermonotonicity,a subject’s principalstra-
tum Si;t generally is not fully observed and is different from the
observed strata de� ned by .Di;t;Ei;t/. For example, as Figure 1,
(a) and (c), shows, subjects who exchange when being at the
closest distance from the NEP .Di;t D 1; Ei;t D 1/ are a mixture
of all subjects with principal stratum Si;t ¸ 1.

3. Compound Exclusion Restriction. A subject with Ei;t.d/

D Ei;t.d0/ at time t is, by de� nition, someone whose exposure
behavior E would be the same if the controlled factor D were
set at level d or d0. For this reason we assume that assigning
such a subject to either level d or d0 of D would not change the
subject’s outcome, Y , or the behavior, C, of censoring of the
outcome. That is,

if Ei;t.d/ D Ei;t.d
0/

then Yi;t.d/ D Yi;t.d0/ and Ci;t.d/ D Ci;t.d0/:

For a particular time Figure 1(b) displays the pattern that
compound exclusion implies for the average, say, Ny.S;D/, of
the potential outcomes when principal stratum S is at level D of
the controlled factor (the time index is omitted); average cen-
soring rates follow an analogous pattern.

Special cases of the preceding compound exclusion restric-
tion have been explored for no censoring, for example, by Im-
bens and Rubin (1994) and Baker et al. (2001), and with cen-
soring but binary controlled factor, for example, by Frangakis
and Rubin (1997, 1999), Baker (1998), and Barnard, Frangakis,
Hill, and Rubin (2003).

More generally, the principal strata and compound exclusion
restriction help de� ne causal effects of interest. In particular,
at time t, for subjects in the two principal strata, Si;t D 0 and
Si;t D dmax, whose exposure is the same for all levels of the
controlled factor D [Fig. 1(a)], there is no causal effect of D
on Y [Fig. 1(b)]. For subjects in any one of the remaining prin-
cipal strata, Si;t D d, 1 · d · dmax ¡ 1, consider the comparison
between two proportions:the proportionof subjects who get the
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event if assigned D D 1 versus the proportion of subjects who
get the event if assigned D D dmax, that is,

pr
¡
Yi;t.1/ D 1 j Hi;t; Xi;t D 1; Si;t D d

¢

versus

pr
¡
Yi;t.dmax/ D 1 j Hi;t;Xi;t D 1;Si;t D d

¢
:

(2.1)

Such comparisons of potential outcomes within principal strata,
called principal effects, date back at least to Imbens and Rubin
(1994) for randomized studies with noncompliance, and were
formulated by Frangakis and Rubin (2002) to principal strata
for general partially controlled variables. Before the general
de� nition of such estimands, standard de� nitions of treatment
effects in settings with both a controlled and a partially con-
trolled factor were comparisons between populations of differ-
ent groups of subjects (“net-treatment effects,” e.g., Cochran
1957; Rosenbaum 1984), and so were not generally causal ef-
fects (see, e.g., Rosenbaum 1984; Frangakis and Rubin 2002).
The importance of principal effects in (2.1) is that both propor-
tions in (2.1) are conditional on the same group of subjects, so
that their comparison is a well-de� ned causal effect (Frangakis
and Rubin 2002). Moreover, every subject in the top expression
of (2.1) gets exposure to treatment E, whereas no subject in the
bottom expression of (2.1) gets exposure to treatment E [Fig. 1,
(a) and (b), for Si;t D 1; : : : ; dmax ¡ 1]. Therefore, a principal
effect of the form (2.1) better quanti� es an effect of the con-
trolled factor D on outcome Y that is attributable to exposure E.
For this reason we set (2.1) to be our main goal of estimation.

In the NEP, compound exclusion means that two different
distances of the NEP location from a speci� c subject might re-
sult in different HIV status Y or censoring of that status (e.g.,
by discontinuationof follow-up), but only if those two distances
would result in different needle exchange (and visiting) behav-
ior at the NEP, an assumption that is expected to be approx-
imately true. In this case a principal effect of the form (2.1)
quanti� es an effect that distance from the NEP can have on HIV
transmission and that is attributable to visiting and exchanging
of needles at the NEP. This effect is of main interest in the ap-
plication.

4. Latent Ignorability of the Censoring Mechanism. Be-
cause the principal stratum Si;t is a characteristic of the subject,
effectively representing the willingness to become exposed to
treatment, Si;t can be associated with both the potential out-
come and the censoring of the outcome. In the NEP example,
this would mean that subjects willing to exchange at different
distances can have different risk for HIV and/or different will-
ingness to stay in the study. More generally, then, if we knew
the principal stratum Si;t for all subjects, we should � rst stratify
subjects by it, before connectingoutcomes of censored subjects
(i.e., without measured outcomes) to uncensored subjects (i.e.,
with measured outcomes). An assumption that formalizes this
is

Yi;t.d/ jD Ci;t.d/ j Di;t;Hi;t;Xi;t D 1; and Si;t

for times t ¸ 1 and each level d of the controlled factor. (Note:
By de� nition, observed exposure Ei;t is a function of Di;t

and Si;t, so the right side of the previous expression also in-
cludes Ei;t.) The preceding assumption extends the latent ig-
norability for single time points introduced by Frangakis and
Rubin (1999) for randomized trials with noncompliance.

Because neither exposure nor censoring is controlled, of
course, any set of assumptions, including the previous four, is
not guaranteed to be absolutely correct. Therefore, the set of
assumptions is best judged not by whether it is certain to be ab-
solutelycorrect, but in comparison to other existingapproaches,
on the inferences and the sensitivity analyses it can produce for
estimating the effects (2.1). Speci� cally, a framework that al-
lows the more general condition,“A” D “the mechanism of cen-
soring C can depend on the latent principal stratum S,” is richer
and so can produce (a) inferences for (2.1) that are better than
inferences that do not allow “A” and (b) sensitivity analyses
around inferences that explicitly allow “A” and, thus, are more
informative than sensitivity analyses around inferences that do
not explicitly allow “A” (for a related discussion, see Frangakis
and Rubin 1999, sec. 4.2). To our knowledge, the framework
using latent ignorability is the � rst in this longitudinal setting
that both allows “A” and also allows identi� ability of the causal
effects (2.1), as discussed in the next section. In Section 4 we
discuss parametric models for our set of assumptions, although
study of sensitivity to models around those assumptions and al-
ternative assumptions that would allow explicitly “A” is also of
interest.

3. IDENTIFIABILITY OF PRINCIPAL
CAUSAL EFFECTS

We show that, under the assumptions of the previous sec-
tion, the probabilities in (2.1), and, hence, comparisons among
them, are identi� able with no parametric assumptions. With-
out loss of generality, for this section, suppose we are already
within an observed stratum of the subjects at risk at the begin-
ning of a speci� c period t and already within an observed stra-
tum de� ned by history Hi;t . The � rst three of the following six
expressions de� ne the notation for the proportions of principal
strata, of no censoring, and of positiveoutcome within principal
strata and when the subjects get assigned D D d. The last three
expressions de� ne the notation for the directly estimable pro-
portions of observed exposure within strata D D d, of no cen-
soring within strata D D d and exposure E D e, and of positive
outcome within strata .D D d;E D e/ and among uncensored
subjects .C D 0/,

Ns.d/ :D pr.Si D d/;

Nc.d0;d/ :D pr
¡
Ci.d/ D 0 j Si D d0¢;

Ny.d0;d/ :D pr
¡
Yi.d/ D 1 j Si D d0¢;

Neobs.d/ :D pr.Ei D 1 j Di D d/;

Ncobs.e; d/ :D pr.Ci D 0 j Di D d; Ei D e/;

Nyobs.e; d/ :D pr.Yi D 1 j Di D d;Ei D e;Ci D 0/;

where the indexing for time t is omitted. Assuming the proba-
bilities in the � rst and fourth lines above are in .0;1/, we derive
the probabilities in the � rst three lines as a function of those in
last three lines.

Proportions of Principal Strata. Note that the observed
stratum .D D dmax;E D 1/ contains only the principal stra-
tum S D dmax. By multilevel monotonicity an observed stratum
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.D D d; E D 1/ of exposed subjects at level D D d is the mix-
ture [Fig. 1, (a) and (c)] of the principal strata, S D d; : : : ;dmax,
so

Neobs.dmax/ D Ns.dmax/; Neobs.d/ D Ns.dmax/ C ¢ ¢ ¢ C Ns.d/;

and so

Ns.d/ D Neobs.d/ ¡ Neobs.d C 1/:

Proportions of Uncensored Subjects Within Principal Strata.
Because the observed stratum .D D dmax;E D 1/ contains
only subjects with S D dmax, we have that Ncobs.1;dmax/ D
Nc.dmax;dmax/, which equals Nc.dmax;1/ by compoundexclusion.
The noncensoring proportions in the remaining observed strata
.D D d; E D 1/, for 1 · d · dmax ¡ 1, are mixtures across prin-
cipal strata. Let Ns.C/.d/ D Ns.d/ C ¢ ¢ ¢ C Ns.dmax/. Then

Ncobs.1; d/ D
Ns.dmax/Nc.dmax;d/ C ¢ ¢ ¢ C Ns.d/Nc.d; d/

Ns.C/.d/

D
Ns.dmax/Nc.dmax;1/ C ¢ ¢ ¢ C Ns.d/Nc.d; 1/

Ns.C/.d/
;

where the last equality follows by compound exclusion. Con-
sidering the last equality for d C 1 and using induction in the
numerators, we get

Nc.d;1/ D
Ns.C/.d/Ncobs.1; d/ ¡ Ns.C/.d C 1/Ncobs.1;d C 1/

Ns.d/
:

Working similarly with induction for strata (D D d, E D 0), we
obtain that Nc.0;dmax/ D Ncobs.0;1/, and, for the remaining prin-
cipal strata S D d, for 1 · d · dmax ¡ 1, that

Nc.d; dmax/

D
f1 ¡ Ns.C/.d C 1/gNcobs.0;d C 1/ ¡ f1 ¡ Ns.C/.d/gNcobs.0; d/

Ns.d/
:

Proportions of Potential Outcomes Within Principal Strata.
As with censoring rates, because the observed stratum .D D
dmax; E D 1/ contains only the principal stratum S D dmax, we
have Nyobs.1; dmax/ D Ny.dmax;dmax/ D Ny.dmax;1/, where the � rst
equality follows by latent ignorability, and the second by com-
pound exclusion. For the remaining observed strata (D D d,
E D 1), 1 · d · dmax ¡ 1, the proportion for the outcome that
is observable, Nyobs.1; d/, is a mixture over principal strata S:

Nyobs.1;d/ D E
©
E.Y D 1 j D D d;E D 1;S/ j

D D d;E D 1; C D 0
ª
;

where, in the inner expectation, C D 0 is canceled by latent ig-
norability. After some algebra the previous expression can be
written as

Nyobs.1;d/

D
Ns.d/Nc.d; 1/Ny.d;1/ C ¢ ¢ ¢ C Ns.dmax/Nc.dmax;1/Ny.dmax;1/

NcC.d/
;

where NcC.d/ D Ns.d/Nc.d;1/ C ¢ ¢ ¢ C Ns.dmax/Nc.dmax;1/. By con-
sidering the preceding expression also for d C 1 and using
induction, we obtain the outcome proportion within principal
strata as a function of quantities that we have already shown are
estimable:

Ny.d; 1/ D
NcC.d/Nyobs.1; d/ ¡ NcC.d C 1/Nyobs.1;d C 1/

Ns.d/Nc.d; 1/
: (3.1)

With an analogous argument, with induction for the outcome
probability on the strata (D D d, E D 0), we obtain that
Ny.0; dmax/ D Nyobs.0; 1/, and, for the remaining principal strata
S D d, for 1 · d · dmax ¡ 1, that

Ny.d; dmax/ D
Nc.¡/.d C 1/Nyobs.0; d C 1/ ¡ Nc.¡/.d/Nyobs.0; d/

Ns.d/Nc.d;dmax/
;

(3.2)
where Nc.¡/.d/ D Ns.0/Nc.0; dmax/ C ¢ ¢ ¢ C Ns.d ¡ 1/Nc.d ¡ 1;dmax/.
Expressions (3.1) and (3.2) establish identi� ability, using ob-
served data, of the outcome probabilities within principal
strata and, therefore, identi� ability of the principal causal ef-
fects (2.1).

There are two more general notes regarding the principal ef-
fects. First, note that their expressions (3.1) and (3.2) involve
the censoring mechanism Nc.d0;d/ (estimable as shown earlier),
which, therefore, is not ignorable in the sense of Rubin (1976).
Second, we can write (3.1) and (3.2) as

Ny.d;1/ D
±

±.d/
Nc.C/.d/Nyobs.1;d/

¿³
±

±.d/
Nc.C/.d/

´
;

Ny.d; dmax/ D
±

±.d/
Nc.¡/.d/Nyobs.0;d/

¿³
±

±.d/
Nc.¡/.d/

´
;

(3.3)

where ±=±.d/ denotes the � nite-difference derivative with re-
spect to d. The last two expressions, although ratios of differ-
ences, are not those used in standard IV models with additive
error terms (e.g., Wald 1940; Bowden and Turkington 1984).
Therefore, the causal effects (2.1) are identi� able as before, but
not using IV’s.

4. ESTIMATION USING PARAMETRIC MODELS

Expressions (3.3) are useful for establishing identi� ability of
the causal effects without parametric assumptions in large sam-
ples at any time period and given past history, but are not di-
rectly useful for practical estimation of the effects with many
time periods and with continuouscovariates. In such cases para-
metric models can smooth the relation between the variables
across the many strata.

A useful class of parametric models is obtained when we
place models on the distributions in � rst three lines of the ex-
pression at the beginning of Section 3, which are of direct in-
terest. Allowing now, explicitly, dependence on time and past
covariates, we can model the distribution of the ordinal princi-
pal strata by the proportional odds model, where

logitpr
¡
Si;t ¸ d j Hi;t D h;Xi;t D 1; ¯.S/

¢

D ¯
.S/
.d/ C link.S/.h; t/¯ .S/

.h/ ; (4.1)

where link.S/.h; t/ is a link function, ¯
.S/
.d/ ¸ ¯

.S/
.d0/ for 1 · d <

d0 · dmax, logit.¢/ D log.¢=.1 ¡ ¢//, and where the probability
for Si;t D 0 is determined by the previous ones.

We can model the target probability of the event Y D 1 in
(2.1) and the analogous probability of censoring C D 1 of that
event as functions of the factor D and given principal strata,
respectively, by the logistic models:

logitpr
¡
Yi;t.d/ D 1 j Hi;t D h;Xi;t D 1;Si;t D d0;¯.Y/

¢

D link.Y/.d;d0;h; t/¯ .Y/; (4.2)
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logitpr
¡
Ci;t.d/ D 1 j Hi;t D h; Xi;t D 1; Si;t D d0;¯ .C/

¢

D link.C/.d; d0;h; t/¯ .C/; (4.3)

where we require that link.Y/.d;d0;h; t/ and link.C/.d;d0;h; t/
be functions that satisfy the implications of the compound
exclusion restriction in the population. An example is the
function link.Y/.d; d0;h; t/ D link.C/.d;d0;h; t/ D [1;h; t;d0;
E.S;D/.d0;d/], where E.S;D/.d0;d/ is the matrix of Figure 1(a),
with .d0; d/ entry equal to the exposure that principal stratum
d0 has when assigned level d of the factor D. Moreover, the
parameters ¯.S/;¯ .Y/, and ¯ .C/ can be tied together by addi-
tional plausible conditions, if warranted, to increase precision
of estimation.

Using models (4.1)–(4.3), and noting that the actual exposure
data Ei;t are functions of the person’s principal stratum Si;t and
the factor level Di;t, we can obtain the likelihood of observing
the data of person i at period t as if these data also included the
current principal stratum Si;t D d0, and conditionallyon the risk
set Xi;t D 1, history Hi;t D h, and level Di;t D d, as

l.d0; d;y;c;h; tI ¯/

:D pr
¡
Si;t D d0 j Hi;t D h; Xi;t D 1;¯ .S/

¢

£
©
pr

¡
Yi;t.d/ D y j Hi;t D h;Xi;t D 1;Si;t D d0;¯ .Y/

¢ª.1¡c/

£ pr
¡
Ci;t.d/ D c j Hi;t D h;Xi;t D 1;Si;t D d0;¯ .C/

¢
;

where the last product follows by latent ignorability and where
¯ :D .¯.S/;¯ .Y/;¯.C//. Now let S.Di;t;Ei;t/ be the set of pos-
sible principal strata that subject i can belong to at time t, as
a function of the observed factor level Di;t and observed expo-
sure Ei;t; that is, S.Di;t;Ei;t/ D fd : d ¸ Di;tg if Ei;t D 1, and
S.Di;t;Ei;t/ D fd : d < Di;tg if Ei;t D 0 [Fig. 1(c)]. Then, using
the previous likelihood function, we can obtain a partial likeli-
hood function L.¯/ as the product of the likelihoodof observed
data over all subjects in the risk set at period t, and over all
periods t, as

L.¯/ D
Y

t

Y

i:Xi;tD1

X

s2S.Di;t;Ei;t/

l.s; Di;t; Yi;t;Ci;t;Xi;t; tI ¯/:

The function L.¯/ is a partial likelihood, not in the usual sense
of Cox’s (Cox and Oakes 1984) partial likelihood, but in the
sense that L.¯/ omits the distributions of the variables in Hi;t
that are not past observed outcome, censoring, or exposure indi-
cators. Nevertheless, as with partial likelihood in other settings
(e.g., Cox and Oakes 1984; Robins et al. 1999), the estimator
that maximizes L.¯/ enjoys properties analogous to those of
the usual maximum likelihoodestimators (MLE’s), in the sense
that, in large samples, its distribution is approximately normal,
centered around the true parameter vector, and with variance es-
timated consistentlyby the inverse of the negativesecond deriv-
ative of logL.¯/, evaluated at the MLE. Then a comparison
between the probabilities in (2.1) can be estimated by express-
ing them in terms of the models (4.2) and estimating them by
the MLE.

We have developed a program for maximizing L.¯/ for gen-
eral levels of principal strata S and periods t, using an EM
algorithm(Dempster, Laird, and Rubin 1977) that treats the par-
tially observed principal strata as incomplete data. The Hessian
matrix is obtained numerically at the MLE. The program was
checked using limited preliminary simulations and is available
from the authors.

5. EXAMPLE ON NEEDLE EXCHANGE

We return to the NEP study, introduced in Section 1, and the
goal is to evaluate the NEP’s impact on HIV seroconversion.
In Section 5.2 we present an evaluation based on a standard
method, and in Section 5.3, an evaluation based on the new
method. First, we discuss some additional background.

5.1 Background

The cohort in this evaluation consists of the 1,170 subjects
who were HIV negative in 1994 and for whom residence in-
formation was available at that time. Since then, the average
follow-up was 9 semesters, during which time 54 subjects tested
HIV positive (5 per 1,000 person-semesters), and the overall
rate of subjects’ needle exchange visits was 14 per 100 person-
semesters. In addition, before starting to place NEP sites in
1994, the NEP staff requested a set of 25 baseline covariates
for each subject in the study, measuring various aspects of sex-
ual and drug use behaviors. Directly � tting all these covariates
in a model (4.1)–(4.3) is not possible, because many covariate
values were missing across subjects, and also because of the
proportionallysmall number of HIV cases.

To address the missing values for the covariates only, but to
limit further complexity, we used multiple imputation (Rubin
1987, 1996). Speci� cally, we � tted a standard Bayesian general
location model on the contingency table of the discrete covari-
ates and on the continuouscovariates conditionallyon that con-
tingency table, assuming missing covariate values are missing
at random and � tting all the second-order interactions, using
software by Schafer (1998). We ran � ve independent dataaug-
mentation chains, and, after they mixed, as judged by the po-
tential scale reduction criterion (Gelman and Rubin 1992), the
covariate missing valueswere imputed from their joint posterior
predictive distribution conditionally on the observed covariate
values, giving � ve complete-data covariate matrices. Each such
matrix was then matched to the data matrix for the longitudinal
distance D, exchange E, HIV status Y , and censoring C of Y ,
creating � ve sets of data, each of whose structure is as described
in the � rst paragraph of Section 2.2. Each of the � ve datasets
was analyzed as described in Sections 4 and 5, and the analyses
were combined at the end by the general multiple imputation
rules (Rubin 1987).

To handle the small number of HIV cases up to the calen-
dar time of this analysis, we had to limit distance levels to two,
d D dmax for more than 3 miles (far) and d D 1 for 3 miles or
less (close) of the NEP from each subject. To address the mul-
titude of covariates, after the imputations described previously,
we transformed them into their principal components.The � rst
component, as expected, gave positive weights to those levels
of the covariates that were positive on risky sexual and drug
use behaviors. For this reason, we used the � rst principal com-
ponent of subject i, denoted by Bi, as a summary index of an
observed baseline risk behavior for HIV transmission in our
models. The uncertainty in the � nal results was almost entirely
from within imputations, which suggests that results are robust
to the preceding preparatory computations.
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Table 1. Percentage (%) of Subjects Exchanging at the NEP as a Function of Distance From the NEP,
at Each Semester, and Strati�ed by Above (high) and Below (low) the Median Baseline Risk Score

Semester (t)
Distance (D) 1 2 3 4 5 6 7 8 9 10 11 12 Average

(a) For subjects with low baseline risk score:
Far 4 5 6 6 6 5 6 4 6 5 7 2 5
Close 8 7 7 8 7 12 12 11 13 13 12 9 10

(b) For subjects with high baseline risk score:
Far 16 18 21 19 18 16 14 14 12 14 7 5 14
Close 24 24 24 19 18 19 19 20 21 21 20 16 20

5.2 Evaluation With Observed Strati� cation

Table 1 gives direct estimates of the percentage of at-risk of
subjects who exchange at the NEP, that is, who visit a NEP at
least once in the semester, strati� ed by whether the NEP is far or
close to them, and strati� ed by whether their baseline risk score
B is above or below its median, mB. These descriptive measures
show that subjects with high observed baseline risk exchange
considerablymore than the others. Moreover, subjects closer to
the NEP also exchange more frequently than subjects farther
from the NEP, a result that con� rms an earlier � nding by Rock-
well et al. (1999).

To quantify these relations while also modeling past ex-
change, for subjects concurrentlyat the risk set, we � t the model

logitpr.Ei;t D 1 j Di;t;Hi;t;Xi;t D 1/

D ®
.E/
t C [Di;t ¢ 1.Bi < mB/; Di;t ¢ 1.Bi ¸ mB/;

Bi;Ei;t¡1;Di;t¡1]0®.E/

by conditional logistic regression using its partial likelihood. In
this and later models, the baseline risk score and � rst past lags
of exchange and distance are included in the model as history
variables to make the strata more comparable in past behaviors.
With this model we obtain that, for subjects with low baseline
risk, there is a 2.2 odds ratio for exchanging at close compared
to far distance from the NEP (95% CI: 1.64, 2.96), and for sub-
jects with high baseline risk, these odds are 1.70 (95% CI: 1.29,
2.41). Moreover, within a given distance Di;t, there is a 9% in-
crease (95% CI: 5%, 13%) in the odds of exchanging needles
associated with an increase of 1 standard deviation in the base-
line risk B. In addition, the odds of exchanging were 26-fold
higher (95% CI: 22, 29) for subjects who exchanged during the
previous period compared to those who did not, given distance
and baseline risk score.

Table 2. Results From the Standard Strati�cation Model of Section 5.2
on Exchanging Needles at the NEP and HIV Seroconversion

Estimand Estimate 95% CI

(a) Odds ratio of HIV seroconversion for
1 standard deviation increase in base-
line risk score B: exp(® (Y )

(b) )

1.17 (1.05, 1.30)

(b) Odds ratio of HIV seroconversion for
comparing exchangers versus nonex-
changers, given � xed baseline risk
score B: exp(® (Y )

(e) )

.68 (.26, 1.77)

For a standard approach to HIV seroconversion,we � tted the
discrete survival model

logitpr.Yi;t D 1 j Ei;t; Di;t;Hi;t; Xi;t D 1/

D ®
.Y/
t C ®

.Y/

.e/ Ei;t C ®
.Y/
.d/ Di;t

C ®
.Y/
.b/ Bi C ®

.Y/

.e¡/Ei;t¡1 C ®
.Y/
.d¡/Di;t¡1:

The two main results of interest from this approach are shown
in Table 2. In particular, as would be expected, a higher base-
line risk score B predictsmore HIV seroconversion[Table 2(a)].
Moreover, conditionally on the other variables in that model,
observed exchangers have 32% lower odds of HIV seroconver-
sion than observed nonexchangers, although this result is not
statistically signi� cant (OR D :68; 95% CI: .26, 1.77).

The relatively wide uncertainty about the preceding differ-
ence is likely a result of the low overall seroconversion in the
cohort. Moreover, for exp.®

.Y/

.e/
/ in this approach to have in-

terpretation of causal effect as the odds ratio of HIV serocon-
version attributable to exchange, three assumptions must hold:
(1) Exchange can only affect HIV seroconversion in the same
period; (2) given Di;t, Hi;t, and Xi;t D 1, observed exchangers
and nonexchangers are comparable in their potential outcomes
of HIV seroconversion; and (3) given Di;t, Hi;t, and Xi;t D 1,
subjects at a time t who provide the outcome Y are compara-
ble with subjects who do not provide the outcome. The � rst
assumption is physiologically appropriate, and we assume it
also in the framework of principal strati� cation. However, the
second and third assumptions are not necessarily plausible be-
cause, given Di;t , Hi;t, and Xi;t D 1, exchangers and nonex-
changers are different mixtures of principal strata [Fig. 1(c)].
For these reasons we also evaluated the NEP using principal
strati� cation.

5.3 Evaluation With Principal Strati� cation

We now set our goal to estimate the causal effect of distance
on HIV seroconversion that is the odds ratio comparison (2.1),
that is, that is attributable to exchanging versus not exchang-
ing needles, using principal strati� cation. To do so, we � tted
the model described in Section 4. To have the structure of his-
tory variables comparable to that of the standard model, we
� tted the same history vector, that is, the baseline riskscore,
the past exchange status, and the past distance from the NEP,
Hi;t D .Bi;Ei;t¡1;Di;t¡1/. To have the models for outcome and
censoring satisfy the compound exclusion restriction, we � tted
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the link function introduced in Section 4. In particular, we pa-
rameterize links (4.1)–(4.3) as

link.S/.Hi;t; t/¯ .S/
.h/

:D ¯
.S/
.b/

Bi C ¯
.S/
.e¡/

Ei;t¡1 C ¯
.S/
.d¡/

Di;t¡1 C ¯
.S/
.t/ t; (5.1)

link.Y/.Di;t; Si;t;Hi;t; t/¯ .Y/

:D ¯
.Y/
.0/ C ¯

.Y/
.b/ Bi C ¯

.Y/
.e¡/Ei;t¡1 C ¯

.Y/
.d¡/Di;t¡1 C ¯

.Y/
.t/ t

C ¯
.Y/
.s/ Si;t C ¯

.Y/
.s;d/E.S;D/.Si;t;Di;t/; (5.2)

link.C/.Di;t;Si;t;Hi;t; t/¯.C/

:D ¯
.C/
.0/ C ¯

.C/
.b/ Bi C ¯

.C/
.e¡/Ei;t¡1 C ¯

.C/
.d¡/Di;t¡1 C ¯

.C/
.t/ t

C ¯
.C/
.s/ Si;t C ¯

.C/
.s;d/E.S;D/.Si;t;Di;t/: (5.3)

With the parameterization (4.2) and (5.2), the causal effect that
is the odds ratio between the top and bottom probabilities in
(2.1) for principal strata Si;t D d, 1 · d · dmax ¡ 1, is equal
to exp[¯ .Y/

.s;d/fE.S;D/.d; 1/ ¡ E.S;D/.d;dmax/g], which, by mul-

tilevel monotonicity [Fig. 1(a)], equals expf¯ .Y/
.s;d/.1 ¡ 0/g D

exp.¯
.Y/
.s;d//. Estimation, then, of this odds ratio causal effect can

follow from joint estimation of the principal strati� cation model
(5.1)–(5.3).

Fitting this model without further assumptions gives an es-
timated causal effect of 89% reduction in the odds of HIV at-
tributable to exchange, or OR D :11, with a wide CI of (.002,
7.99). This means that, although, as shown in Section 3, the
causal effect is theoretically estimable without further assump-
tions, and here is estimated substantially larger than in the stan-
dard method, some plausible additional structure is required to
increase precision.

Because the principal strati� cation model accounts for any
unmeasured risk for HIV between exchangers and nonexchang-
ers, the 89% estimated reduction with this method compared to
the 32% reduction with the standard method [Table 2(b)] sug-
gests the hypothesis Hmisjobs D “even after adjusting for the
observed baseline risk factors, exchangers were at higher,
thus unmeasured, risk for HIV than nonexchangers, indepen-
dently of the act of exchange and of their distance from the
NEP.” Moreover, Table 2(a) [and comparison between Table 1,
(a) and (b)] supports the hypothesisHobs D “exchangerswere at
higher risk for HIV in the observed baseline factors compared
to nonexchangers.” By recalling that the principal stratum is
the subject-speci� c unmeasured threshold distance for not ex-
changing, we see after some reasoning that we can formalize
the hypothesis that Hobs and Hmisjobs are either both true or
both false using our model, by

¯
.S/
.b/

¢ ¯
.Y/
.s/ ¸ 0: (5.4)

This conditionstill allows the standard assumption, that all con-
founders are measured, as a special case, but also allows for
the possibility of, arguably, the most plausible types of con-
founding.Substantively in the NEP, (5.4) allows that in the vari-
ables Hi;t we may not have measured the baseline sexual and
drug risk behaviors in suf� cient detail (e.g., due to underreport-
ing), and, as a result, observed exchangers and nonexchangers
may not be comparable in their risk for HIV seroconversion

Table 3. Results From the Principal Strati� cation Model of Section 5.3
on Exchanging Needles at the NEP and on HIV Seroconversion

Estimand Estimate 95% CRb

(a) Odds ratio of higher versus lower
principal stratuma S for 1 standard
deviation increase in baseline risk
score B: exp(¯(S)

(b) )

1.15 (1.11, 1.20)

(b) Odds of HIV seroconversion under
� xed exchange for higher versus
lower principal stratuma S, given � xed
baseline risk score B: exp(¯(Y )

(s) )

2.92 (.99, 96.36)

(c) Odds ratio of HIV seroconversion
for close versus far distance from
the NEP and attributable to needle
exchangec: exp(¯ (Y )

(s,d))

.11 (.0003, 2.23)

aA subject’s principal stratum is the closest distance to place the NEP beyond which that
subject would not exchange at it.

bJoint con� dence region.
cConditionally on baseline risk score B and principal stratum S.

given Hi;t and independently of exchange. Put another way,
(5.4) means that we allow unmeasured confounding,but that it
would be implausible if the unmeasured association in hypoth-
esis Hmisjobs, after measuring 25 relevant baseline covariates,
carries the opposite message from that of the measured associ-
ation in Hobs about exchangers being at higher (or lower) risk
than nonexchangers. Mathematically, (5.4) is not forced to be
true or false in our general assumptions in Section 2 and so,
by Section 3, (5.4) is testable in our framework. In the earlier
� t of the model without constraint (5.4), we obtained estimates
for ¯

.S/
.b/ and ¯

.Y/
.s/ equal to .14 and 1.07, respectively, and so the

estimate for ¯
.S/
.b/

¢ ¯
.Y/
.s/ equals :15 > 0. Therefore, our data can

provide no evidence against (5.4) and, so we take our model to
be (5.1)–(5.4).

To obtain inference for this model, the MLEs of L.¯/ re-
main unchanged because they satisfy (5.4). To incorporate the
implications of (5.4) on the uncertainty about the causal effect
exp.¯

.Y/
.s;d//, we take the ellipsoidal three-dimensional joint 95%

con� dence region R0 for the target estimand ¯
.Y/
.s;d/ and the two

estimands, ¯
.S/
.b/ and ¯

.Y/
.s/ , involved in (5.4), and � nd the sub-

set R of R0 that satis� es (5.4). The resulting region R, then, is
a 95% joint con� dence region for the three estimands.

These results are given in Table 3. The estimated effect of the
NEP that is attributable to exchanging versus not exchanging
needles is a reduction by 89% in HIV seroconversion, as in the
� t of this model without (5.4). The point estimate, thus, means
that the data point to a larger bene� t of the NEP, compared to the
standard method. The uncertainty about the effect (OR D :11,
95% joint CR: .00, 2.23) is larger than that of the standard ap-
proach [Table 2(b)]. This wider uncertainty fairly re� ects that
the new method accounts for possible confounding remaining
in the standard approach because exchangers and nonexchang-
ers are different mixtures of the partially unmeasured principal
strata.

6. DISCUSSION

We proposed a method based on principal strati� cation for
evaluating studies where (1) subjects take a longitudinal treat-
ment, whose transient effect on a time-to-event outcome is of
interest, but where this treatment is not directly controlled;
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(2) the subject’s follow-up time is not directly controlled; and
(3) the study directly controls another longitudinal factor that
can affect both exposure to the treatment of interest as well as
follow-up time. The new method based on principal strata has
three advantagesover existing methods. First, the method based
on principal strata can better address studies with coexistenceof
partially controlled factors such as exposure and censoring of
outcomes. Second, the method of instrumental variables is, in
principle, based on estimation of coef� cients in additive equa-
tions with error terms, and so can only estimate causal effects
that happen to be expressible in terms of such equations. In
contrast, the method based on principal strata estimates causal
effects whose de� nition and interpretation does not require
parametric models. Rather, the role of parametric models is
in assisting estimation. Finally, the method based on principal
strata can make the assumptions explicit. Making assumptions
such as those of Section 2.2 explicit can allow researchers to
evaluate their plausibility.

The notation we used for a subject’s potential outcomes, ex-
posure, and censoring behaviors as functions of that subject’s
level of the controlled factor D also embodies the implicit as-
sumption that those values are not a function of other subjects’
levels of the controlled factor, namely, the no-interference as-
sumption (Cox 1958, p. 19; Rubin 1978). Such an assumption
is typically made, and relaxing it leads to many more poten-
tial outcomes and principal strata, so that inferences without it
would require additional assumptions. For example, as pointed
out by a reviewer, interference in the NEP between a couple
of cohabiting drug users can exist if they are both recruited
in the study and their network for sharing needles is limited
to only the two of them. Then the exchanging behavior at the
NEP for one member of the couple is expected to be very in-
� uential on the potential outcome of the other member, even
when the latter member does not exchange at the NEP. On the
other hand, interference is not expected to be a serious concern
if any impact of the study on its subjects does not result in a
big change on the larger network of drug users with which the
study drug users interact. Inference using this assumption in this
study is relevant because (a) the study subjects are only a sub-
set of the larger network of drug users with whom they interact;
(b) within the study, and at any time, only a small fraction of
subjects exchange at the NEP; and (c) small deviations from
the assumption would mean that the effect of distance attribut-
able to exchange as estimated in Section 5 is a conservative
estimate of the target impact that can be realized if the larger
part of the community of drug users is to visit and exchange at
the NEP. Nevertheless, our framework can, in principle, allow
interference by allowing the subject-speci� c potential values of
outcomes, exchange, and censoring at a given time to be also a
function of the subjects’ collective behaviors at previous times.
Such models require additional assumptions to identify causal
effects and are of interest in further work.

The described method also assumes observations across
subjects are independent, which, if not true unconditionally,
becomes more realistic when conditioningon important covari-
ates. However, direct � tting of a large number of covariates to
address possible spatial clustering can be avoided by model-
ing instead a correlation structure unconditionally on the co-
variates. In data of simpler structure than that described here,

work related to this issue is discussed in Frangakis, Rubin, and
Zhou (1998, 2002) and Korhonen, Loeys, Goetghebeur, and
Palmgren (2000), and generalizations to the longitudinal data
structure of Section 2 can be useful.

Principal strati� cation can also be used in conjunction with
other methods, for example, propensity scores (Rosenbaum and
Rubin 1983). With settings such as those considered here, for
example, for the NEP, estimating propensity scores is con-
ceivable for the distribution of the controlled factor, or of
the partially controlled observed exposured or of censoring. It
is important to note, however, that the full advantage of us-
ing propensity scores comes mostly in simpler settings where
assignment of a binary factor is assumed ignorable, given
observed variables. Therefore, such full advantage of using
propensity scores is not likely achievable in our setting where
the controlled factor is generally multilevel and where expo-
sure and censoring are allowed to be nonignorable. Neverthe-
less, further study of the role of propensity scores, for example,
for dimension reduction without introducing bias, in settings
such as ours is also of interest.

With better methodsof analysis, there is also a need for better
retrospective and prospective designs. An example of the for-
mer in the NEP could be: Choose the known cases of HIV and,
from the controls of the study (at each time point), select only
the most informativeones, by means of appropriatemeasures of
covariates, of controlleddistance, and of partially controlledex-
posure. The motivationfor such approaches is that, althoughwe
would be using reduced data, we would have more accurate esti-
mates than if we were using the full data if model extrapolation
in the latter case can introduce large bias relative to gains in ef-
� ciency. In this case one can use the conditional likelihood that
is induced by the matching scheme on the unconditional likeli-
hood of models such as those of Section 4. An important issue,
however, in such a problem is to select informative matching
schemes, given the different role of the controlled and partially
controlled factors in the study. For prospective designs, meth-
ods are needed to develop guidelines for the controlled factor,
for example, in the NEP, about how many sites, and at what lo-
cations, should be used to achieve balance between, on the one
hand, current practical and ethical concerns and, on the other
hand, precision of estimation of effects of a program that can
be bene� cial in the future for the larger community. Work on
prospectivedesigns that anticipate noncompliancediscussed by
Jo (1999) and Frangakis and Baker (2001) provides some pre-
liminary directions that are relevant to the role of prospective
designs in such more general settings.

Regarding evaluation of the Baltimore NEP, the method that
uses principal strati� cation points to a substantially larger ben-
e� t of the NEP in reducing HIV transmission than the standard
method, although the results for both methods are associated
with considerable uncertainty. More important than the results
of each method alone is that the different methods give con-
sistent results and in relative magnitudes that are explainable
if the NEP does lower HIV transmission and also attracts sub-
jects who are at higher risk. Such consistency between the two
different perspectives provides more con� dence on the effec-
tiveness of the NEP, although continued follow-up can provide
more conclusive information.
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Documentation and software for the methods described
here are available online at http://biosun01.biostat.jhsph.edu/
»cfrangak/papers/ps.html.

[Received June 2002. Revised April 2003.]
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