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Using nested discretization for 
a detailed yet computationally 
efficient simulation of local 
hydrology in a distributed 
hydrologic model
Dongdong Wang, Yanlan Liu   & Mukesh Kumar  

Fully distributed hydrologic models are often used to simulate hydrologic states at fine spatio-
temporal resolutions. However, simulations based on these models may become computationally 
expensive, constraining their applications to smaller domains. This study demonstrates that a nested-
discretization based modeling strategy can be used to improve the efficiency of distributed hydrologic 
simulations, especially for applications where fine resolution estimates of hydrologic states are of the 
focus only within a part of a watershed. To this end, we consider two applications where the goal is to 
capture the groundwater dynamics within a defined target area. Our results show that at the target 
locations, a nested simulation is able to competently replicate the estimates of groundwater table 
as obtained from the fine simulation, while yielding significant computational savings. The results 
highlight the potential of using nested discretization for a detailed yet computationally efficient 
estimation of hydrologic states in part of the model domain.

Physically-based, fully distributed hydrologic models simulate multiple states and fluxes in space and time1–8. 
These models account for the heterogeneities in hydrogeologic parameters and meteorological forcings, and have 
been demonstrated to enhance understanding and prediction of hydrologic processes9–16. However, simulations 
based on these models are often computationally expensive. The computation time may become prohibitively 
large for fine spatio-temporal resolution simulations in large domains, rendering them intractable or at least 
not suitable for near real-time predictions on a serial computer. To alleviate this problem, several solutions have 
been proposed. For example, Bhatt et al.17 tightly coupled a Geographic Information System (GIS) with a hydro-
logic model using a shared data model paradigm18 to reduce model setup time. Parallelization of distributed 
hydrological models3,5,19–23 have been performed to reduce simulation time for basin scale simulations. Many 
other studies have used preconditioning to accelerate serial distributed hydrologic model codes. For example, 
Maxwell24 formulated an analytical Jacobian as a preconditioner to speed up model simulation time. Similarly, 
HydroGeoSphere model employed an incomplete-LU preconditioner with bi-conjugate accelerator to reduce the 
time of convergence22.

This study implements a nested-discretization based modeling strategy that can be used for efficient distrib-
uted hydrologic model simulations, especially for applications where in addition to streamflow estimates at the 
watershed outlet fine resolution estimates of hydrologic states are desired only within a small part of the model 
domain. Examples of such problem include validation of groundwater dynamics at isolated well locations, map-
ping of groundwater distribution within wetlands, and characterization of interactions between a hydrographic 
feature (e.g. a wetland or a river reach) and its neighboring aquifer. An underlying commonality in these prob-
lems is the need for fine scale delineation of hydrologic states or fluxes at least in part of the model domain (here-
after referred as the target area). Notably, these problems often also require simultaneous simulation of the rest of 
the watershed so as to: (a) capture the flux contributions from rest of the model domain into the target area. For 
example, in order to capture groundwater dynamics in a wetland that is adjacent to a stream, one has to estimate 
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the stage in the neighboring stream as well. This stage is in turn dependent on runoff and groundwater contribu-
tions to streamflow in the upstream region of the target area; and (b) provide estimates of additional states and 
fluxes. For example, the modeling goal may also include simulating streamflow at the watershed outlet.

The working hypothesis of the study was that although a watershed-wide or globally fine mesh provides a spa-
tially resolved simulation result everywhere in the watershed, a locally refined grid could ensure similar estimates 
of streamflow at the watershed outlet and hydrologic states within the target region while ensuring significant sav-
ings in computation time. To evaluate this hypothesis, we considered two test applications. The first application 
dealt with the need to model groundwater water table (GWT) dynamics at the well location. The second appli-
cation’s goal was to map the wet-regions (or areas with GWT within a certain threshold distance from the land 
surface) in a wetland as well as to evaluate the flux exchange between the wetland and adjacent stream and aquifer. 
Four hydrologic simulations with markedly different mesh configurations viz. a globally fine discretization, a 
nested discretization around groundwater well (called nested-gw from this point onwards), a nested discreti-
zation around wetland (called nested-wl from this point onwards), and a coarse discretization, were performed 
(Fig. 1). Accuracies and computation time of these four simulations were compared to evaluate the efficacy and 
efficiency of nested-discretization for simulating local hydrology within a given target area.

Figure 1. Second Creek watershed (a) and the four considered discretization configurations i.e., fine (b), 
nested-gw (c), nested-wl (d), and coarse (e). Nested-gw and nested-wl has nested discretizations around 
groundwater well and wetland, respectively. Coarse, nested, and fine discretizations in and around groundwater 
station (target area 1) and wetland (target area 2) are illustrated in (f). The watershed map and discretizations 
were generated using the PIHMgis v 3.0 (http://www.pihm.psu.edu/pihmgis_downloads.html).

http://www.pihm.psu.edu/pihmgis_downloads.html
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Results and Analysis
Computation Cost. The four simulations were performed on a dedicated Intel Xeon E5-2680 V3 2.5 GHz 
processor with 256 G RAM. The simulation time was clocked after each 1 minute advance of the simulation 
(Fig. 2). Expectedly, the result indicated that the time it took to advance a minute of simulation varied over the 
simulation period. The computation time was longer after precipitation occurrences as these events triggered fast 
surface overland flow, infiltration, and recharge, and sharp changes in interactions between surface and subsur-
face flow. To accurately capture the rapid changes in states and fluxes, the solver adaptively refines the modeling 
time steps resulting in an increase of computation time.

The five-year simulations cost 435.28 h, 6.50 h, 9.46 h, and 3.24 h for fine, nested-gw, nested-wl, and coarse 
simulations, respectively (Fig. 2). This reveals that nested-gw and coarse simulation took only 1.4% and 0.7% of 
the computation time as fine simulation for the five year simulation period. Even the nested-wl simulation took 
just 2.2% of the time. In the wet year (2010) and the dry year (2007), the coarse simulation yielded computational 
savings of 99.7% and 98.9% respectively. For, nested-gw and nested-wl, the corresponding savings were 98.7% and 
98.6%, and 98.7% and 97.2% respectively. These results show that grid coarsening leads to significant reduction 
in computation time. Higher gains were obtained in wet years because the increase in simulation cost for the wet 
year w.r.t. the average year was much higher for the fine discretization.

Intercomparison of hydrologic states and fluxes. Given that nested simulations were found to yield 
significant computational savings, our next goal was to evaluate its effectiveness in capturing states and fluxes at 
defined locations. In this regard, we first performed comparisons of streamflow estimates at the watershed outlet. 
This was followed by comparison of relevant groundwater states and fluxes at the two selected target areas.

Streamflow at the gauging location. Figure 3 shows the hydrographs of simulated and observed streamflow at the 
gauging station. Modeled streamflows from the four mesh configurations show very similar performance to each 
other, although there were some differences. For example, coarse and nested simulations generally over-predicted 

Figure 2. Computation time per one minute simulation step (above) and cumulative computation time (below) 
for fine, nested-wl, nested-gw, and coarse simulations. Prcp denotes the precipitation time series. Log scale on 
the y-axis has e (=2.718) as its base.

Figure 3. Modeled streamflow and groundwater at the gauging location from fine, nested-wl, nested-gw, and 
coarse simulations. Semi-log version of the hydrograph plot (top) is shown in Supplementary Fig. S1.
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high flows w.r.t. the fine simulation. Over five years, with respect to the fine simulation, the Nash-Sutcliffe effi-
ciencies (NSEs) of daily streamflow for nested-gw, nested-wl, and coarse simulations were 0.823, 0.837, and 0.823 
respectively. With respect to the observed data, NSEs of modeled daily streamflow were 0.677. 0.630, 0.645, and 
0.630 for fine, nested-gw, nested-wl, and coarse simulations, respectively. These results indicate that almost iden-
tical performance in streamflow simulations can be achieved from meshes of significantly different resolution. 
This is because streamflow is an integrated hydrologic response of a watershed. As long as a model resolution is 
fine enough to capture the overall spatial extent and distribution of primary controls on runoff and recharge such 
as the topography, hydrogeology, and land cover, similar streamflow series is expected25,26.

Groundwater table at the well location (target area 1). In contrast to the high NSE of 0.832 for streamflow in 
the coarse simulation w.r.t. the fine simulation, the NSE of GWT depth time series was only −3.698. After local 
refinement i.e., using nested-gw discretization, the NSE improved to 0.891. For the bias corrected GWT series 
i.e., after removal of the respective mean value from each GWT time series, NSEs for the coarse and nested sim-
ulations were −0.040 and 0.959, respectively. Notably, NSE for nested simulation was again significantly better. 
The result implies that mesh resolution near the groundwater well location plays a significant role on the accuracy 
with which groundwater table dynamics can be simulated. Even when the errors due to process representation 
and forcing data are negligible, a user interested in validating a distributed hydrologic model at the groundwater 
well is likely to obtain an incorrect estimate if a coarse discretization is used. This may force the user to consider 
incorrect or alternate parameter configurations to compensate for errors in groundwater estimate at the valida-
tion site. In contrast, nested simulation is able to capture the estimates of groundwater table and streamflow at the 
gauging locations, while yielding significant computational savings.

Groundwater dynamics within the wetland (target area 2). Given that groundwater table height and its spatial 
distribution impact many functions of wetland, such as methane release, nitrification, or carbon storage, here we 
intercompared three variables viz. average GWT (GWTavg), groundwater table distribution, and wet area fraction 
(WAF) across the different discretizations.
Average groundwater table:Temporal dynamics of GWTavg in nested-wl and fine simulations closely resembled 
each other (Fig. 4(a)). In contrast, GWTavg in coarse grid simulation was lower. The mean of GWTavg over five 
years was −1.15 m, −1.16 m, and −2.01 m for fine, nested-wl, and coarse simulations, respectively. Nested-wl 
and coarse simulations yielded NSEs of 0.94 and −3.34 w.r.t. the fine case. After removal of respective means, 
the NSE for coarse simulation improved to 0.88. These results highlight that with respect to the fine simulation, 
there was a significant bias in GWTavg obtained from the coarse simulation. However, the coarse simulation 

Figure 4. Model intercomparison of GWT estimates within the target wetland: (a) spatially averaged GWT 
variability, and (b) Surface topography and GWT profiles along a profile section within the wetland. The profiles 
were generated at the 17th hour on the 520th day. The profile line starts at s on the left and ends at e on the right.
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reasonably captured the temporal variation of GWTavg within the wetland. Notably, satisfactory performance of 
the coarse simulation for bias-removed GWT, as observed in this case, is not expected everywhere in the water-
shed (Fig. 5(b)). In fact, NSE of bias-removed GWT at the groundwater observation gauge (in Fig. 3) was only 
−0.040.
Groundwater table distribution:Considering GWT estimated from the fine simulation as a reference, 64% of the 
discretization elements within the target wetland in the nested-wl case showed NSE greater than 0.5. The fraction 
decreased to 36% for NSE greater than 0.8 (Fig. 5). Corresponding fractions for the rest of the watershed were 
17% and 8% respectively. Notably the performance within the wetland for nested discretization was much better 
than outside of it. For the coarse discretization, none of elements had NSE greater than 0 within the wetland. The 
difference in GWT within the wetland between coarse simulation and the other two cases (nested-wl and fine) 
is largely due to the disparities in topographic representation. For example, in the considered case, coarsening 
increased the topographic elevation of the wetland and altered its heterogeneity thus influencing flow interactions 
with its neighbors and consequently the GWT distribution (Fig. 4(b)).

As was the case for target area 1, after removal of respective groundwater means, the NSE improved. For 
nested-wl case, fraction of elements with NSE larger than 0.5 and 0.8 increased to 91% and 73%, respectively. 
Corresponding numbers for the coarse simulation were 100% and 25%. Modest performance of the coarse sim-
ulation points to its suitability for capturing the groundwater table variations within a wetland, even though the 
GWT magnitude is biased.
Wet Area Fraction:Over the five years, mean WAF for groundwater table depth threshold value of −0.3 m, 
−0.5 m and −1.0 m were 15.8%, 23.7%, and 52.8% for the fine simulation, 21.3%, 27.3%, and 53.9% for nested-wl 

Figure 5. Comparison of model fit with respect to fine simulation over the 5 years simulation period. 
Comparison was performed using the simulated groundwater table time series (a) and mean removed 
groundwater time series. Here, ew denotes “entire watershed”, iw denotes “inside of wetland”, and ow denotes 
“outside of wetland”.
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simulation, and 4.2%, 7.1%, and 33.1% for coarse simulation (Fig. 6). The NSEs for the three thresholds were 0.72, 
0.87, and 0.74 for nested-wl simulation and 0.01, −0.23, and −0.15 for coarse simulation. Spatial distribution of 
wet locations i.e., areas with GWT higher than a prescribed threshold, also showed higher degree of similarity 
between nested-wl and fine grids (Fig. 6b). These results highlight that nested-wl and fine simulations show sim-
ilar wet period dynamics in wetlands, both spatially and temporally. As wet period dynamics play an important 
role on ecosystem services provided by wetlands27, choice of gridding strategy is likely to influence the ability of 
models for simulating these services.

Flux dynamics at the wetland boundary. Groundwater dynamics within the wetland is strongly influenced by its 
interactions with neighbors. Here we evaluated the ability of coarse and nested discretizations to capture the flux 
interaction between the wetland and its neighbors.
Wetland-aquifer interactions:Subsurface lateral flux was calculated along the wetland-aquifer boundary identi-
fied in Fig. 7(a). The result shows a close agreement between nested-wl and fine simulation with NSE of 0.97 at 
annual resolution and NSE of 0.80 at hourly resolution (Fig. 7(b)). Corresponding NSEs between coarse and fine 
simulation were −4.82 and −0.69, respectively. Over the five simulation years, nested-wl simulation yielded only 
0.2% more outflow than the fine simulation, while the bias for the coarse simulation was around 30%. Larger net 
input flux to the wetland in coarse simulation can be attributed to larger groundwater contributing area, which 
in turn is due to the difference in topographic representation outside the wetland. For coarse discretization, 
the time-averaged groundwater contributing area was 3.79 km2 whereas it was only 2.62 km2 and 2.54 km2 for 
nested-wl and fine discretizations. This led to larger groundwater recharge in the contributing area of the coarse 
discretization resulting in larger lateral groundwater flux to the wetland.
Wetland-stream interactions:Wetland-stream interaction flux was evaluated along the wetland-stream boundary 
identified in Fig. 7(a). Since upstream contributing area of the stream-reach neighboring the wetland is very simi-
lar in the nested-wl and coarse discretizations, it is expected that the streamflow magnitude (and the stream stage) 
in the stream reach just upstream of the wetland are almost identical for the two discretizations (Supplementary 
Fig. S2). However, differences in discretization of the stream reach adjacent to the wetland in coarse and nested-wl 
simulations is likely to introduce some differences in stage elevation (S) as well. Figure 8(c) shows that during 

Figure 6. Comparison of modeled WAF under three groundwater depth thresholds (a) and spatial distribution of 
wet elements (b) for GWT > −0.3 m at the times identified by vertical hatched lines in the topmost panel of (a).
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high flow periods (i.e., during and immediately after precipitation events), the stage, S, in the stream for coarse 
and nested-wl simulations were very similar. However, during the dry periods, stage in nested-wl was higher than 
in coarse simulation as the stream bed elevation was higher in nested-wl discretization. Since the upstream con-
tributing area representation in fine discretization was very different than in coarse and nested-wl discretizations, 
stage for fine discretization was expectedly different than in other two cases (Fig. 8(c)). In regards to the average 
GWT in the wetland cells that are adjacent to the stream, GWT in fine and nested-wl simulations were similar, 
at least during the groundwater recharge periods (Fig. 8(d)). However, the GWT in coarse simulation showed 
large differences during both wet and dry periods. Because of these reasons, the interaction flux between wet-
land and the streamflow reach, as obtained by nested-wl and coarse simulations, did not show a good agreement 
with that obtained from the fine simulation. For example, over the five simulation years, annual estimates from 
nested-wl simulation yielded an NSE of −4.4 with respect to the fine simulation (Fig. 7(b)). The corresponding 
NSE for coarse simulation was also poor (NSE = −11.1). These results show that at annual scale, both nested-wl 
and coarse simulations yield less net water loss to stream. At an hourly scale (Fig. 7(b)), the interaction flux 
between wetland and stream were both positive (wetland gains water from stream) and negative (wetland loses 
water to the stream). In response to precipitation events, nested-wl sometimes over-predicted and at other times 

Figure 7. Comparison of wetland-stream and wetland-aquifer interaction fluxes between the three 
discretizations. Fine simulation is used as reference model. The interaction boundaries are illustrated in (a).



www.nature.com/scientificreports/

8Scientific RepoRTS |  (2018) 8:5785  | DOI:10.1038/s41598-018-24122-7

under-predicted wetland-stream interactions. In contrast, coarse simulation mostly under-predicted w.r.t. the 
fine simulations in response to events. The over- and under-prediction can be explained based on the difference 
between river stage (S) and GWT elevation adjacent to the river (Fig. 8). During high flow events when nested-wl 
over-predicted wetland-stream flux, it was generally because of higher S minus GWT (S-GWT) than fine simu-
lation which in turn was due to a higher S in nested-wl than in fine simulation. S-GWT for the coarse simulation 
was almost always smaller than the fine case as GWT in coarse simulation was higher. During low flow periods, 
nested-wl and coarse simulations yielded smaller difference (Fig. 8(a)). Although the disparity in S-GWT during 
dry period was large (Fig. 8(b)), since the water depth in the stream was close to zero, the interaction flux was 
very small as well. The results show that the nested simulation may not accurately capture the boundary fluxes 
as simulated by the fine simulation, if these fluxes are heavily influenced by discretization outside the target 
region. Notably, in this case the wetland-stream flux was two orders of magnitude smaller than wetland-aquifer 
flux. Hence, the differences in wetland-stream flux between the three simulations did not affect the groundwater 
dynamics in the wetland as much.

Discussion
Fully distributed integrated hydrologic models have the advantage of simulating multiple states and fluxes at 
fine spatio-temporal resolution. However, fine model resolution significantly increases the computation cost. 
This study demonstrates that a nested discretization strategy can potentially alleviate this problem, especially for 
applications where fine resolution estimates of hydrologic states are desired only within a small part of a water-
shed. Our results show that nested simulations can yield similar estimates of groundwater in the target region and 
streamflow at the watershed outlet as that provided by the fine simulation, but at a fraction of computation cost. 
For example, nested-wl simulation saved 97.8% computation time compared to the fine simulation over a five year 
simulation period. We also find that the attained computation savings are dependent on the meteorological forc-
ing regime. For instance, in the wet year, nested-wl simulation saved 98.7% time cost of fine simulation while the 
percentage reduced to 97.2% for the dry year. This indicates that nested modeling is expected to provide higher 
performance yields in wetter settings.

The study’s demonstration of the ability of nested simulations to simultaneously capture streamflow at the 
watershed outlet and groundwater table at the gauging station has wide-ranging ramifications, especially for val-
idation and evaluation of distributed hydrologic models. Nested discretization allows model evaluation against 
both surface water (/streamflow at the outlet) and groundwater states, which is important for reducing uncer-
tainty in estimates of water budget partitioning28, without the need for fine discretization everywhere in the 
watershed. In contrast, a user interested in evaluating a distributed hydrologic model at the groundwater well is 
likely to obtain an incorrect estimate if a coarse discretization is used. This in turn may force the user to consider 
incorrect or alternate parameter configurations to compensate for errors in groundwater estimate at the vali-
dation site. This is likely to be the case for land surface models (e.g., Noah-MP29,30, VIC31,32, etc.) that are often 
applied at scales coarser than 1 km × 1 km. The study highlights that nested discretization can be an effective 
way of addressing this challenge. Success of the nested model in capturing groundwater dynamics in wetlands 
and wetland-aquifer interactions further highlights its potential for simulating a range of wetland processes and 
functions such as methane emissions33, evapotranspirative feedback34 to the atmosphere, and nitrate removal35, 
that are closely related to wetland groundwater and inundation dynamics.

Figure 8. Plots of wetland-stream interaction flux (a), difference between river stage and GWT (b), river 
stage (c), and GWT time series (d). Negative Stage-GWT implies that stage is lower than GWT and wetland 
discharges into the stream. A positive Stage-GWT implies wetland recharges from stream.
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In addition to capturing more accurate spatio-temporal distribution of groundwater table, our ancillary analy-
sis confimed that nested discretizations may lead to better estimate of soil moisture and evapotranspiration as well 
(Figs S3 and S4). The nested discretization strategy may potentially be used in many other hydrologic applications 
where fine scale delineation of hydrologic states or fluxes are desired in part of the model domain. These include: 
(a) mapping of flood inundation areas, contaminant plume extent etc.; (b) quantification of localized impact of 
melt recharge (/transpiration) from a snow drift (/tree stand) on groundwater table (GWT); and (c) delineation 
of the temporal evolution of cone of depression due to groundwater pumping in a large watershed. Notably, as 
the physical controls on hydrologic states and fluxes to be estimated through nested modeling may vary within 
a watershed and from one region to next, the improvement achieved through nested discretization may vary as 
well. The extent of gain in computation efficiency through nested discretization is also expected to be influenced 
by grid resolution.

To achieve maximum computational efficiency for a given accuracy, optimal nested mesh configurations, both 
in terms of its resolution and spatial extent, should be derived. One of the primary reasons why nested modeling 
provides similar estimate of hydrologic states as the fine simulation is because of better representation of water-
shed properties in the target area. However, similar estimates within the target area are possible only if the net 
lateral fluxes from the rest of the domain into the target area are not much affected by the use of a coarse discre-
tization outside the nested region. This may be facilitated by: (a) using a large nested region (much larger than 
the target area). However, this will likely lead to increase in computation load; (b) using nested discretization in a 
flatter terrain where lateral flow interactions between the target area and rest of the watershed is negligible; and (c) 
forcing the nested region boundary to align with surface water and/or groundwater divide. For example, one can 
use a nested discretization that extends to a topographic sub-watershed boundary. Since topographic boundaries 
also act as surface water divide, nested discretizations whose boundary align with topographic divide will produce 
overland flow estimates that are identical to one obtained using the fine scale simulation. Notably, defining such a 
boundary for other hydrologic states is challenging. For example, groundwater flow divide is oftentimes dynamic 
and may not coincide with surface water divide. To reduce the uncertainty, it is still a good option to perform 
nested discretization by following ridges. In circumstances where a priori knowledge needed to delineate the 
extent of nested region is unclear, an agglomerative scheme may be used. This may first entail delineating a nested 
domain that is just a little larger than the target area, and performing simulations. Additional simulations with 
larger and larger extent of the nested region should then be performed. Once the simulation results within the 
target area stops changing, users can select that nested discretization. Another option is to compare the results of 
a nested simulation to results of a short (in time domain) fine scale simulation. Comparisons may help evaluate 
the sufficiency of the nested discretization for capturing the dynamics of a hydrologic state. These two approaches 
may also be used for identifying the optimal resolution of the mesh, both inside and outside of the target region. 
A user can balance the needs of computational saving and accuracy to arrive at the decision. Derivation of the 
optimal mesh is expected to be especially useful in applications where the nested model has to be used repeti-
tively. For these applications, the effort needed for optimizing the mesh configuration could be compensated by 
computational savings obtained through recurrent simulations.

The nested discretization strategy used here can be easily employed in other unstructured grid based fully 
distributed models such as InHM1, HydroGeoSphere36, and FEFLOW37. Modifications in the solver and use of 
advanced structured grid discretization softwares may also extend its applicability to structured grid based mod-
els, such as MODFLOW38, ParFlow3, and PAWS39. Future studies may focus on identifying regions where ground-
water divide is likely to coincide with surface water divide. This could make it much easier to define the extent 
of nested regions, especially for modeling groundwater dynamics within a target area. Identifying watershed 
properties and meteorological conditions where nested discretization is expected to yield large savings will fur-
ther facilitate its usage and effectiveness. Further confidence in the strategy can be gained by applying it in diverse 
hydroclimatic settings, and within different modeling schemes.

Methods
Study site. The study was conducted in the Second Creek watershed (part of South Yadkin river basin), 
located in southwest North Carolina (Fig. 1). The watershed (area = 325 km2) drains into Second Creek, in which 
streamflow has been measured (USGS streamflow gauge # 02120780; 35.6°N, 80.7°W) for more than thirty years. 
It also has a USGS groundwater gauging station (#354057080362601) where daily groundwater level has been 
measured since 1989. The watershed was selected because it contains multiple forested freshwater wetlands within 
its boundary. Physiography of the watershed is characterized by valleys and ridges oriented along the south-
west-northeast direction. Watershed elevation ranges from 197 to 331 m (Fig. 1). Land cover in the watershed 
mainly consists of hay/pasture (37.6%), deciduous forest (32.9%), developed area (6.8%), and evergreen forest 
(5.4%). The most common soil types in the watershed are loam in the riverbed and riparian regions and sandy 
clay loam in uplands. The watershed falls in warm temperate climate with humid and warm summer based on 
the Koppen-Geiger climate classification40 Thirty year average temperature in the watershed is 15.5 °C and annual 
precipitation ranges from 703 to 1,473 mm.

Hydrologic model application. Model description. A physically-based, fully distributed hydrologic 
model, Penn State Integrated Hydrologic Model (PIHM)4,5 was used in this study to simulate coupled hydrologic 
states and fluxes. PIHM has previously been applied to simulate hydrologic process dynamics at multiple scales 
and in diverse hydro-climatological settings41–45. Processes simulated in PIHM include snowmelt, evapotranspi-
ration (Penman–Monteith equation), interception (Rutter model), overland flow (2D diffusion wave equation), 
unsaturated zone infiltration (1D approximation of the Richards equation), groundwater flow (Boussinesq equa-
tion), and streamflow (1D diffusion wave equation). The model couples surface (channel routing and overland 
flow) and subsurface (groundwater and unsaturated flow) processes using the principle of mass conservation. 
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Using a semi-discrete finite-volume approach, the model spatially discretizes the partial differential equations of 
hydrologic states into ordinary differential equations (ODEs). The system of ODEs defined on all mesh elements 
are assembled and solved simultaneously in time using a stiff solver based on Newton-Krylov iteration. An adap-
tive time-stepping scheme is used to capture the varied time scales of states.

Domain discretization. Triangular and linear-shaped elements in 2D, which represent land surface elements and 
rivers respectively, are used to discretize the model domain. Each land element is discretized into four layers: a top 
surface overland flow layer with variable thickness, a relatively thin unsaturated zone with a defined maximum 
thickness T (default value of T is 0.25 m), an intermediate unsaturated zone that extends from T to groundwater 
table, and a groundwater layer. The two lower layers have variable dimensions, as they depend on the evolving 
GWT depth. Each river unit is vertically discretized into two layers, with flowing river on the top and a ground-
water zone below it. Use of triangular cells allow efficient and accurate representation of physiographic, climatic 
and hydrographic features because of their spatial adaptivity and ability to conform to sinuous boundaries20,46,47. 
Here, four discretization configurations (Fig. 1) were considered for inter-comparison: a fine discretization with 
25,443 elements, a nested-gw discretization with 836 elements, a nested-wl discretization with 1,130 elements, 
and a coarse discretization with 752 elements. The fine discretization was generated by using a maximum area 
constraint of 20,000 m2 i.e. all Delaunay triangles in the domain were of size smaller than or equal to 20,000 m2. 
Nested discretization, which has found applications in climate48 and shallow flow49–51 modeling literature, was 
generated by using a maximum area constraints of 20,000 m2 within a polygon that subsumes the target loca-
tion and 6,000,000 m2 outside of it. The constraining polygon used around the wetland was around 2.89 km2 in 
area, while that around the groundwater gauging station had an area of 0.65 km2. The coarse discretization was 
generated by using a maximum area constraint of 6,000,000 m2 in the entire watershed. All four discretizations 
were generated in PIHMgis17. The PIHMgis uses TRIANGLE mesh generator by Shewchuk52 to generate the con-
strained Delaunay triangles of a given maximum size within a defined area of the model domain.

Model Parameterization. Model simulation was conducted for 6 water years ranging from Oct 1st 2004 to Sep 
30th 2010 for all four aforementioned discretizations of the domain. A water year is an annual period spanning 
from the start of October to September end of next year. Simulations using the four meshes were set up using 
PIHMgis, which facilitates automatic extraction and assignment of ecological and hydrogeological parameters, 
and meteorological forcings on each discretization grid. Input data to the model include descriptions of topog-
raphy, soil, land cover, vegetation, geology, and meteorology. We used the 30 m resolution elevation data from 
National Elevation Dataset (NED)53, USDA-NRCS Soil Survey Geographic (SSURGO) soil data54, and National 
Land Cover Dataset (NLCD) land cover data55. Meteorological forcings such as precipitation, air temperature, 
relative humidity, wind speed, and radiation were obtained from North America Land Data Assimilation System 
Phase 2 (NLDAS-2) data56, which has a spatial and temporal resolution of 1/8 degree and an hour, respectively. 
Initial conditions of hydrologic states on 10/01/2004 mid-night (first hour of the simulation) were extracted 
from the long term simulation conducted by Liu and Kumar27. To map the states from the mesh configuration 
used in Liu and Kumar27 to that used here, Inverse Distance Weighted (IDW) interpolation was employed. To 
minimize the effects of errors introduced by IDW interpolation scheme and mismatch of mesh configuration, 
first year simulation was only used to let the system equilibrate with the forcings. Only simulations for the next 
5 years (Oct 1st 2005 to Sep 30th 2010) were used for analyses. Terming years with annual precipitation in the top 
20 percentile as wet and in the bottom 20 percentile as dry based on 30 years (1983–2013) precipitation data, the 
five year simulation period consisted of one dry year (from Oct 1st 2007 to Sep 30th 2008) and one wet year (Oct 
1st 2009 to Sep 30th 2010).

All four simulations were performed using the calibration parameter set derived in Liu and Kumar27 (see 
Supplementary Table S1). Identical calibration parameters were used so as to study the isolated influence of mesh 
configurations on hydrologic responses, given a defined field property or spatial distribution of parameters. In 
Liu and Kumar27, the calibration was performed using two steps. The first step in the calibration process was 
initialization of the PIHM model with water table at the land surface. The model was then allowed to relax with 
no precipitation input until the stream flow recession rate matched the observed during the low flow period 
in summer. The modeled stream flow magnitude was then compared with the observed value. This was done 
because streamflow during low flow period is largely due to groundwater base flow, and hence a match between 
observed and modeled streamflow would indicate reasonable estimation of the groundwater distribution in sum-
mer. During this process, the hydraulic conductivity of the subsurface was calibrated uniformly across the entire 
model domain. Then starting from the derived groundwater table initial condition, the next step involved forc-
ing the model with real meteorological inputs. After a one-year warm-up period, the simulation results were 
compared against the observed streamflow and groundwater data at the gauging station. Manual calibration of 
hydrogeologic parameters such as soil hydraulic conductivity, macroporosity, and soil drainage parameters, was 
performed in this step. Readers are encouraged to refer to Liu and Kumar27 for more details about the data sets 
and performance metrics used for calibration and validation of the model. As this study’s aim is restricted to 
exploring the extent to which hydrologic states simulated by a fine grid can be captured by a nested grid in the 
refined region, as long as identical properties are used to parameterize the four simulations, any calibration set 
could have been used.

Target areas, metrics, and hydrologic variables used for intercomparison. Two target areas were 
considered, one for each application. The first target area was at the groundwater well location (USGS gauge 
#354057080362601) where daily groundwater level has been measured since 1989 (Fig. 1). The location was used 
to evaluate if groundwater table dynamics estimated by a fine discretization can be replicated by nested and coarse 
discretizations, assuming parameterization of all three discretizations was performed using identical land cover, 
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hydrogeological, and meteorological map. If the coarse simulation did not replicate the groundwater dynamics 
shown by the fine simulation, but the nested simulation did, that would indicate that coarse mesh resolutions 
introduce errors in estimates of groundwater table dynamics. In such cases, a model user may be forced to seek 
alternate parameterizations in order to compensate for errors due to the use of coarse mesh resolutions. The 
second target area was the largest wetland (~167,000 m2) within the watershed (Fig. 1). The location was used to 
evaluate if simulated groundwater table dynamics by the fine simulation could be accurately captured by coarse 
and nested simulations. Groundwater table dynamics in wetlands is of interest as it is known to influence several 
ecohydrological functions57 including greenhouse gas emissions58, carbon and nitrogen cycles, and biodiver-
sity59–61. Given that the selected wetland is small (<0.2 km2 in area), capturing groundwater dynamics within 
it requires modeling of the wetland region at fine spatio-temporal scales. As the wetland lies in the vicinity of a 
stream that can exchange water with it, rest of the watershed has to be modeled as well, as it is likely to influence 
the stage in the stream reach adjacent to the wetland. In addition, lateral flux interactions between wetland and 
the neighboring aquifer may also influence the groundwater dynamics within the wetland. For this application, 
we intercompared groundwater depth estimated by three simulations, viz., fine, nested-wl, and coarse simulation, 
within the wetland region. Comparisons were performed for three variables viz. average GWT, groundwater 
table distribution, and wet area fraction. Average groundwater table within the wetland was computed using the 
area-weighted method shown in equation (1).
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where N is the number of model elements lying within the National Wetland Inventory62 wetland boundary. 
Comparison of GWT table distribution was performed using exceedance probability plots that quantified the 
fraction of wetland elements with NSEs higher than a threshold value. NSE of the concerned variable (e.g., GWT) 
for coarse and nested-wl simulations was calculated w.r.t. the fine simulations. The wet area fraction (WAF) at any 
given time step was calculated using equation (2).
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where N is the number of elements within the wetland, and M is the number of wetland elements with GWT 
being above a prescribed threshold. Three water level thresholds viz. −0.3 m, −0.5 m, and −1.0 m were consid-
ered. The flow interactions between the wetland and its adjacent stream and aquifer were also compared given 
their influence on the hydrology and biochemistry of wetlands.

Data availability. The model code and datasets generated during and/or analyzed during the current study 
are available from the corresponding author on request.
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