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A combination of accelerated population growth and severe droughts has created 

pressure on food security and driven the development of irrigation schemes across sub-

Saharan Africa. Irrigation has been associated with an increase in malaria risk but the 

underlying mechanism is not well understood. While useful in investigating transmission 

dynamics, malaria models are limited in irrigated areas as they typically infer mosquito 

abundance from rainfall. Fundamentally, this assumes rainfall as a proxy for larval habitats 

and can lead to contradictory transmission results. The availability of water for breeding is 

governed by hydrological processes which are highly non-linear and spatially variable. The 

incorporation of hydrologic modeling is therefore essential to understand the effect of 

irrigation on malaria. 

The overarching goal of this dissertation is to study the impact of irrigation on the 

spatiotemporal distribution of malaria larval habitats and transmission using a hydrology-

based malaria model. First, a three-dimensional, distributed hydrologic model was applied 

to simulate malaria larval habitats at a sugarcane plantation site in Arjo, Ethiopia. The 
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scarcity of field data was overcome by integrating remotely sensed data with the model. 

Results suggest that at least half of the irrigated farms had a high probability of larval habitat 

occurrence. Irrigation dampened and prolonged the seasonality of the larval habitats, with a 

significant shift from semi-permanent to permanent habitats.  

Land surface depressions highly influence the transformation of rainfall to ponding 

for aquatic larval habitat formation. Hence, I sought to improve the representation of 

physically meaningful surface depressions in the digital elevation model (DEM) used in the 

hydrologic model. A new topographic conditioning workflow, Depression-Preserved DEM 

Processing (D2P), was developed and evaluated through a case study in a pond-dominated 

watershed in the United States. D2P successfully resolved 86% of the ponds at 10 m DEM 

resolution. A hydrologic simulation was performed using the D2P processed DEM and 

demonstrated a more robust characterization of surface water dynamics.  

Lastly, I extended the Arjo hydrologic modeling framework with D2P to enhance the 

larval habitat estimation in an agent-based malaria model and examine transmission 

dynamics. The inclusion of hydrologic processes increased the variability of larval habitats 

which resulted in significantly lower transmission. The application of irrigation enabled the 

development of mosquitoes in dry seasons while stabilizing growth in rainy seasons. The 

model also revealed that malaria transmission was sustained all-year round and intensified 

during the main transmission season, with the peak shifted forward by around one month. 

Finally, I showed how habitat heterogeneity could affect the spatiotemporal dynamics of 

malaria transmission.  
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Understanding changes to malaria transmission dynamics by irrigation is important 

for the development of mitigation strategies. The framework presented in this dissertation 

particularly helps larval source management as a supplementary vector control by 

identifying malaria hotspots and prioritizing resources for operational planning. 
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Chapter 1 

 

Introduction  

1.1 Background 

1.1.1 Malaria and irrigation in Ethiopia 

Malaria is a deadly disease induced by parasites that are transmitted to humans 

through the bites of infected female Anopheles mosquitoes. In 2020, there were a total of 241 

million cases of malaria and 627,000 cases of malaria-related deaths worldwide. It is 

particularly acute in sub-Saharan Africa and remains one of the most pressing public health 

challenges in the region. 95% of all malaria cases and 96% of deaths were recorded in sub-

Saharan Africa alone (World Health Organization, 2021). Human-induced environmental 

modifications in the form of water resources development projects such as the construction 

of dams and irrigation projects are known to exacerbate malaria transmission by creating 

more breeding sites (Keiser et al., 2005).  

In Ethiopia, more than 75% of its area is infected by malaria, making it the leading 

public health challenge in the country (Ayele et al., 2012). Over the years, a combination of 

severe droughts and the need for socio-economic growth has driven Ethiopia to undergo 

significant land use change through the implementation of irrigation schemes for agriculture 

(Hagos et al., 2009; Haile & Kassa, 2015). It has witnessed the fastest growth in irrigation in 

Africa, with the total irrigated area increasing by more than 50% between 2002 and 2014 

(Malabo Montpellier Panel, 2018). While irrigation has helped to alleviate poverty in 

Ethiopia, it has the potential to increase the abundance and diversity of breeding sites for 

mosquito (Demissew et al., 2020). Specifically, sites that do not have enough water to sustain 

breeding in the dry season are converted to habitats that support the continuous production 

of adult mosquitoes (Fillinger et al., 2004). The higher number and variety of habitats can 

support the growth of multiple species of mosquitoes, thereby exacerbating the transmission 

of malaria in the country (Hawaria et al., 2020). The mechanisms underlying this 

phenomenon remain poorly understood given the complexity of vector ecology, parasite 
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transmission and environmental interactions. Given the increasing reliance on irrigation in 

the country, further investigation is necessary to evaluate the impact of irrigation on malaria.  

1.1.2 Life cycle of malaria parasite and vector 

Malaria parasites belong to the genus Plasmodium. The most predominant species in 

Ethiopia are  Plasmodium falciparum and Plasmodium vivax (Adugna Kendie et al., 2021). The 

parasite requires two blood meals by the female Anopheles adult mosquito to be transmitted 

from one infected human to another. The infection cycle begins when a mosquito bites an 

infectious human for egg production (Figure 1.1). During the process, it ingests the parasite 

in the form of gametocytes from the human bloodstream. The gametocytes within the 

mosquito develop into sporozoites that subsequently migrate to its salivary glands. At this 

stage, the mosquito becomes infectious and it injects sporozoites into the new host when 

taking the next blood meal from another human. The sporozoites infect the liver cells and 

develop into merozoites in the liver stage. The merozoites subsequently invade the red blood 

cells and multiply in the blood stage. Whenever the merozoites invade more red blood cells, 

the human host will experience symptoms. Some of the merozoites will also develop into 

gametocytes during the same stage. The human host is now infectious and perpetuates the 

cycle when bitten again by a mosquito (Centers for Disease Control and Prevention, 2020; 

Vaughan, 2007). 

 

Figure 1.1: Malaria Transmission cycle. Figure modified from Epidemiological MODeling 
software (EMOD) online manual (Bill & Melinda Gates Foundation, 2022a). 
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Of the over forty species of Anopheles mosquitoes in Ethiopia, the four species that 

are vectors of the Plasmodium parasite are Anopheles arabiensis, Anopheles funestus, 

Anopheles pharoensis, and Anopheles nili. Anopheles arabiensis is the main vector, while 

Anopheles funestus and Anopheles pharoensis are the next most important vectors (Adugna 

Kendie et al., 2021). Typically, the life cycle of an Anopheles mosquito comprises four stages, 

namely egg, larva, pupa and adult. The first three stages are aquatic and the duration from 

egg to adult varies among species. Mosquitoes can develop from egg to adult in as little as 7 

days but usually take 10-14 days in tropical conditions (Centers for Disease Control and 

Prevention, 2020).  

1.1.3 Climate as a driver of malaria 

The survival and growth throughout the aquatic stages of the dominant vector species 

in Ethiopia, the Anopheles arabiensis, depend heavily on the water availability and ambient 

temperature. Anopheles arabiensis prefers to breed in temporary, small, sunlit, clear, and 

shallow fresh-water pools (Sinka et al., 2010). The mosquito is not resistant to drying in the 

immature stages so the frequency of rainfall is important to ensure that the pool does not 

desiccate before the adult mosquito emerges. On the other hand, high discharges induced by 

heavy rainfall can decimate breeding sites by flushing out its larvae so sites characterized by 

stationary water or very slow flow conditions are preferred (M. W. Smith et al., 2013). 

Besides water availability, larval growth is also governed by temperature. During the aquatic 

stages, Anopheles arabiensis develops faster with increasing water temperature. The growth 

rate has previously been studied to be linear up to 32 °C and no survival occurred beyond 

the lower limit temperature of 15 °C and upper limit temperature of 35 °C (Davies et al., 

2016; Lyons et al., 2013). 

In the adult mosquito stage, temperature and humidity affect biting frequency, 

fecundity and longevity. Like most insects, Anopheles arabiensis is poikilothermic and can 

only function normally within a limited temperature range. At higher temperatures, the 

digestion of blood meals is accelerated which increases the biting frequency (Afrane et al., 

2012). There are also more egg batches laid and a higher egg hatchability rate in the summer 

compared to winter when temperatures are cooler (Maharaj, 2003). On the other hand, 
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elevated temperatures from 25 °C to 35 °C have been shown to shorten the lifespan of the 

Anopheles arabiensis adult mosquito (Oliver & Brooke, 2017). Like most other insects, 

mosquitoes are able to survive only for short periods at low humidity, presumably due to 

susceptibility to water loss through evaporation (Bayoh, 2001). Within the infected 

mosquito, the parasite development is generally accelerated by higher temperatures. At 

30°C, the incubation period for the Plasmodium vivax and Plasmodium falciparum is around 

7 to 9 days. On the other hand, malaria cannot be transmitted when temperatures are too 

cool to support the development of the sporozoites. The minimum temperature for parasite 

development of Plasmodium vivax and Plasmodium falciparum approximates 15°C to 18°C, 

at which the incubation period stretches to more than 30 days (Patz & Olson, 2006).  

Evidently, climate is a key determinant of both the geographic distribution and the 

seasonality of malaria. Without sufficient rainfall, mosquitoes cannot survive, and if not 

sufficiently warm, parasites cannot survive in the mosquito. As such, malaria is extremely 

common in tropical and subtropical climates with hot and humid weather conditions where 

the parasites can live and are generally active. 

1.2 Motivation 

1.2.1 Reassessing larval source management  

Significant gains have been made in malaria control in the 21st century. In Africa 

alone, the prevalence of Plasmodium falciparum infection reduced by half from 2000 to 2015 

(Bhatt et al., 2015). The backbone of the malaria elimination effort comprises long-lasting 

insecticidal nets (LLINs) and indoor residual spraying (IRS), accounting for more than 70% 

of the reduction (McCann et al., 2017). However, progress has stalled since 2015. The first 

intermediate milestone of achieving 40% global reduction in malaria by 2020 was already 

missed, with a higher number of malaria cases in 2020 than in 2015 (The Lancet, 2022). 

While effective in reducing malaria to a certain extent, LLINs and IRS are inadequate in 

eliminating malaria due to mosquitoes developing insecticide resistance and behavioral 

adaptations (Kahamba et al., 2022; Killeen et al., 2017). Hence, there is a need to rethink the 

current approach to vector control to meet future malaria reduction goals. 
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One possibility is to reconsider larval source management (LSM) as a supplementary 

tool (Kahamba et al., 2022).  In the early twentieth century, LSM was one of the most effective 

malaria control methods (Fillinger & Lindsay, 2011; Kahamba et al., 2022). Unlike LLINs and 

IRS which target the adult vector, LSM focuses on the management or elimination of aquatic 

larval habitats to prevent the mosquito from developing from the immature stage (i.e., larvae 

and pupae) into adult vectors. Examples of LSM include habitat modification (e.g., surface 

water drainage, landscaping), habitat manipulation (e.g., shading or exposing habitats to the 

sun), biological control (e.g., introduction of predators) and larviciding. LSM has the 

potential to eliminate residual cases of malaria transmission as it is more effective than 

LLINs and IRS in cases where vectors have developed resistance to insecticides or where 

outdoor biting is dominant (Fillinger & Lindsay, 2011). In cases where larval habitats are 

abundant and difficult to locate, LSM can be difficult to implement and requires significant 

resources and labor. Hence, a detailed understanding of larval ecology and accurate mapping 

of larval habitat hotspots are crucial in prioritizing resources and ensuring the successful 

implementation of LSM. 

1.2.2 Hydrology oversimplified in malaria modeling 

Rainfall has long been known to affect malaria transmission through the formation of 

aquatic larval habitats (Patz et al., 1998) but the relationship between the two is not so 

straightforward. The availability of water for breeding is not only related to rainfall but also 

dictated by hydrological processes which are complex in nature and spatially variable. In a 

hydrologic cycle, rainfall is partitioned into infiltration and surface runoff based on the soil 

type (Yamana & Eltahir, 2010). The resulting surface runoff will accumulate or drain 

depending on the topography and surrounding vegetation (Atieli et al., 2011). The 

persistence of the ponded water can also be influenced by evapotranspiration from the 

vegetation which changes with the land use type. Besides rainfall, breeding sites can develop 

from groundwater, irrigation and around dams and reservoirs. The heterogenous ecological 

settings result in habitats of different persistence and productivity. This diversity 

complicates the pattern of adult mosquito density and malaria transmission intensity (A. J. 

Hardy et al., 2013; Munga et al., 2006). Relying only on rainfall as a proxy to estimate habitat 
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availability can lead to contradictory or biased transmission results (M. W. Smith et al., 2020; 

Yé et al., 2009).  

Despite the importance of hydrology, it is often neglected or oversimplified in malaria 

models where the only driver of mosquito abundance is climate (Ermert et al., 2011; Hoshen 

& Morse, 2004; Yé et al., 2009). More recently, studies have attempted to incorporate 

hydrology into malaria transmission modeling to varying levels of complexity and success 

[35]. Most resort to a simple conceptual water balance model to determine the availability 

of water for larval habitats (Asare et al., 2016; P. A. Eckhoff, 2011; Montosi et al., 2012; 

Parham et al., 2012; Patz et al., 1998) while only a few have proposed more sophisticated 

hydrologic models that further consider canopy processes and subsurface flows (Bomblies 

et al., 2008; Le et al., 2018). 

1.2.3 Complex link between irrigation and malaria dynamics 

Discussion on the association between irrigation and malaria transmission is not new 

(Ijumba & Lindsay, 2001). While past observations tell us that irrigation can increase the 

adult vector population (Demissew et al., 2020), it remains a challenge to predict where and 

when breeding will occur (Frake et al., 2020).  

Crop production and distribution change seasonally so irrigation varies accordingly. 

Within a season, the application of irrigation also depends on soil saturation and crop water 

use. The spatiotemporal heterogeneity in irrigation results in habitats of different 

persistence and productivity. This diversity complicates the pattern of adult mosquito 

density and malaria transmission intensity (Frake et al., 2020), which warrants the 

incorporation of hydrology into malaria modeling. However, a hydrology-based malaria 

model that can simulate the impact of irrigation is currently lacking. The ability to predict 

changes to malaria transmission dynamics by irrigation will be important to the 

development of mitigation strategies. 

1.2.4 Small-scale surface depressions overlooked in distributed hydrologic modeling 

Larval habitats are associated with land surface depressions which play a central role 

in the transformation of rainfall to ponding, infiltration and runoff. However, digital 
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elevation models (DEMs) used by spatially distributed hydrologic models rarely capture land 

surface depressions at spatial scales relevant to this transformation. This is because DEMs 

are typically hydro-conditioned (i.e., filling or breaching topographic cells) before use in 

hydrologic models. The justification is that the precision of the altitude measuring sensors 

and post-processing techniques can lead to systematic and random errors in the DEMs (Zhu 

et al., 2013). Hydro-conditioning is therefore implemented to limit variability or noise in land 

surface slopes for smoother flow routing (i.e., lower chance of computational instability) 

(Chow & Ben-Zvi, 1973; Rieger, 1998; Zhang & Cundy, 1989). However, this ends up 

removing physically meaningful land surface depressions.  

To improve larval habitat simulation using a hydrologic model, a formalized and 

reproducible DEM hydro-conditioning tool that resolves fine-scale surface depressions of 

interest is required. 

1.3 Research objectives and dissertation organization 

The overarching goal of the dissertation is to incorporate surface depression-

integrated hydrologic modeling to study the impact of irrigation on malaria transmission. 

Specifically, the first aim is to examine the utility of a hydrologic model in simulating the 

spatiotemporal distribution of larval habitats with the goal of providing guidance for larval 

source management. The second aim is to resolve surface depressions relevant to larval 

habitats and smooth small scale, non-physical variability in DEM for depression-integrated 

and efficient hydrologic modeling. Consequently, the third aim is to integrate the hydrologic 

model with a malaria model to improve the larval habitat representation of the latter and 

compare the difference. Finally, the last aim is to apply the proposed framework to study the 

underlying mechanism of how irrigation affects malaria habitats and transmission dynamics. 

Chapter 2 presents an application of the three-dimensional, distributed hydrologic 

model to predict the location of larval habitats at a sugarcane plantation site in Arjo, Ethiopia. 

The scarcity of field data was overcome by integrating remotely sensed data with the model. 

The impact of irrigation on larval habitats was investigated based on the probability of 

occurrence, stability and temporal patterns of simulated habitats in the study area. 
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Chapter 3 proposes a new topographic conditioning workflow, Depression-Preserved 

DEM Processing (D2P), to improve the representation of physically meaningful surface 

depressions in the DEM for distributed hydrologic modeling. The ability of D2P to identify 

surface depressions of interest was investigated through a case study in Goodwin Creek 

Experimental Watershed (GCEW). The hydrologic simulation using D2P-processed DEM was 

also compared against that of a traditional DEM conditioning (depression filling) method. 

In Chapter 4, the hydrologic modeling framework from Chapter 2 was coupled with 

an agent-based malaria model to enhance the larval habitat estimation and investigate 

transmission dynamics. The coupled framework utilized D2P proposed in Chapter 3 to 

process the DEM for hydrologic modeling. The effect of incorporating hydrologic processes 

to estimate larval habitats on malaria transmission intensity and seasonality was 

demonstrated. Using the coupled model, the impact of an existing irrigation scheme on the 

spatiotemporal dynamics of malaria transmission was examined. 

Chapter 5 summarizes the key findings of the dissertation and discusses limitations 

and future work.  



 

9 
 

Chapter 2 

 

Predicting Distribution of Malaria Vector Larval Habitats in Ethiopia by 

Integrating Distributed Hydrologic Modeling with Remotely Sensed Data 

2.1 Introduction 

LLINs and IRS are the key malaria vector control tools (Degefa et al., 2017; Yakob et 

al., 2011). Scale-up of LLINs and IRS in the past decade has reduced malaria burden in Africa 

by half (Bhatt et al., 2015), however the progress of malaria control has been stalled in many 

African countries due to limited efficacy of LLINs and IRS as a result of insecticide resistance 

and increased outdoor biting behavior (Olalubi, 2016). Thus, there is a recent renewed 

interest in LSM as an supplementary vector control tool (World Health Organization, 2013). 

LSM involves larviciding and biological control of malaria vectors, and also modification and 

manipulation of aquatic habitats (World Health Organization, 2013). LSM has not been 

widely used in malaria vector control in Africa, partly due to the challenge of widespread and 

unstable larval sites in many ecosystems. LSM may not be suited to all ecosystems, however 

LSM would be greatly facilitated if larval habitat distribution under natural climatic 

conditions can be predicted a priori, so that regions best suited to LSM can be identified. 

Further, prediction of how environmental modification such as irrigation, canal construction 

and landscape alteration through engineering approach may change the distribution of 

transient, semi-permanent and permanent aquatic habitats would greatly help LSM-based 

malaria vector control program which is much needed in Africa. 

The LSM program requires identification of aquatic habitats for malaria vectors. Past 

studies have attempted to use field-based surveys or harness remotely sensed data for larval 

habitat identification (A. Hardy et al., 2019; Zou et al., 2006). Field-based surveys involve the 

use of manual labor or unmanned aerial vehicles with geographic information system to map 

larval habitats, which can be time consuming (Olalubi, 2016), limited in geographic coverage 

and weather dependent (Carrasco-Escobar et al., 2019; A. Hardy et al., 2017). Alternatively, 

researchers have relied on satellite imagery and supervised classification into land use and 
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land cover maps to delineate potential larval aquatic habitats (Bøgh et al., 2007; 

Mushinzimana et al., 2006; Mutuku et al., 2009). The type of satellite imagery used is usually 

optical, which tends to be limited by cloud cover and is unable to identify water bodies 

hidden by vegetation cover (Catry et al., 2018; Ozesmi & Bauer, 2002). 

An alternative approach is required as the aforementioned inadequacies in the 

existing methods often result in larval habitat mapping of limited coverage or discontinuous 

frequencies that are unable to support effective LSM. We proposed a novel approach using a 

physics-based integrated hydrological model that draws on fundamental principles to 

realistically model potential larval aquatic habitats. Complex hydrologic processes built into 

the model such as infiltration, evapotranspiration and runoff help to provide a mechanistic 

understanding of aquatic habitat behavior. The primary inputs of a hydrological model, 

namely meteorological and topographic datasets, can be acquired globally and are available 

at high temporal and spatial resolutions respectively through remote sensing (Rabus et al., 

2003; Sun et al., 2018). Notably, the larvae of the major malaria vector in Ethiopia, Anopheles 

arabiensis (Nyanjom et al., 2003), have been associated with transient pools (Gimmg et al., 

2001) and our approach allows the larval habitats to be resolved down to sub-daily 

frequencies and tens of meters resolutions necessary to capture the dynamic nature of the 

habitats. It can also be scaled up in coverage if required. 

Several studies in malaria transmission have incorporated hydrologic modeling. Soti 

et al. combined a simple water balance model with a mosquito population model to predict 

the abundance of mosquitoes contributing to the transmission of Rift Valley fever in West 

Africa (Soti et al., 2012). Asare et al. applied another simplified water balance model and 

parameterized the processes to simulate the fractional water coverage in central Ghana 

(Asare et al., 2016). The empirical nature of the model and unrealistic assumptions made 

about infiltration and runoff result in heavy reliance on calibration and can increase model 

uncertainty substantially. Bomblies et al. used a mechanistic hydrologic model to simulate 

the surface water area for two villages in Niger (Bomblies et al., 2009). However, the 

subsurface and surface water components are only coupled one-way such that surface water 

can only flow to the subsurface but not the other way round. The lack of exfiltration and re-

infiltration components precludes the representation of spring-fed pools from groundwater 
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recharge. Additionally, the model did not account for lateral subsurface flow, which can 

influence evapotranspiration and redistribute groundwater to low-lying areas, especially at 

higher spatial resolutions (Ji et al., 2017; Kollet & Maxwell, 2006). To simulate the dynamics 

of the aquatic larval habitats, the hydrologic model chosen must be able to detail the surface-

subsurface interactions and plant processes associated with ponding given the complex 

interdependence between larval habitats and the environment. In addition, none of the 

existing hydrology-based malaria models have been used to investigate the impact of 

irrigation on larval habitats. 

In the present study, we aim to examine the potential of integrated hydrological 

models in predicting the location of mosquito larval habitats by capturing the shallow 

subsurface dynamics and improve our understanding of the hydrologic processes and 

environmental modifications that render larval habitats. Specifically, we seek to answer the 

following: (1) Where are the potential larval habitats located and what is the probability of 

occurrence? (2) How long can the larval habitats be sustained? (3) Is there a cyclical pattern 

in the extent of the larval habitats? (4) What is the impact of irrigation on each of the above? 

The uniqueness of our approach lies in its consideration of irrigation practices and its ability 

to resolve complex ponding processes that contribute to potential larval habitats such as 

groundwater-surface water interactions (Jaros et al., 2019). We chose ParFlow (PARallel 

FLOW) (Ashby & Falgout, 1996a; J. E. Jones & Woodward, 2001; Kollet & Maxwell, 2006, 

2008; Maxwell, 2013) for its open-source nature, robust numerical solver (Maxwell, 2013), 

and compatibility with high-performance computing (Kollet et al., 2010). To take into 

account irrigation and land cover characteristics, ParFlow was coupled with the Community 

Land Model (CLM) (Maxwell & Miller, 2005) to simulate soil moisture for the identification 

of malaria larval habitats in a sugarcane plantation and its vicinity in Arjo, Ethiopia. 

2.2 Methods 

2.2.1 Model description 

ParFlow has been applied in many studies to simulate complex surface-subsurface 

interactions in heterogeneous environments (Condon & Maxwell, 2014; Ferguson & 
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Maxwell, 2012). Richards’ equation (Richards, 1931), which governs water movement 

through the unsaturated zone, is used to simulate subsurface flow in three dimensions. The 

diffusive wave and Manning's equations, which calculate the depth and velocity of the routed 

water, are used to represent the overland flow in two dimensions (Kollet & Maxwell, 2006). 

To connect the overland flow and subsurface, the former is imposed as a boundary condition 

on the latter for natural feedbacks between the two components (Kollet & Maxwell, 2006). 

Considering the non-linear nature of the governing equations, ParFlow solves the 

coupled system implicitly using the Newton–Krylov method for robust convergence to the 

solution and multigrid preconditioning for parallel scalability. This allows the system to be 

solved efficiently through parallel computing (Kollet et al., 2010). For details, see Ashby and 

Falgout (Ashby & Falgout, 1996a), Jones and Woodward (J. E. Jones & Woodward, 2001), and 

Kollet and Maxwell (Kollet & Maxwell, 2006). Additionally, CLM simulates the land surface 

water and energy balance which includes evaporation, transpiration, snow processes, heat 

fluxes, and radiation partitioning (Dai et al., 2003; Maxwell & Miller, 2005). The water fluxes 

calculated by CLM are incorporated in ParFlow through the source or sink terms in Richards’ 

equation for subsurface flow (Maxwell & Miller, 2005). The two models are coupled over a 

user-defined number of subsurface layers and this allows ParFlow to take into account the 

characteristics of the vegetation cover as CLM simulates plant function types corresponding 

to different vegetation parameters (Kollet & Maxwell, 2008; Maxwell & Miller, 2005). 

2.2.2 Study area 

The study area is 208 km2 and comprises Arjo-Didessa sugarcane plantation and its 

vicinity in the Oromia Region State, western Ethiopia (Figure 2.1). The altitude of the study 

area is 1,350 meters above sea level and the annual rainfall received is 1,477 mm (Hawaria 

et al., 2020), with a rainy season between May and October. The area covers most of the Arjo-

Didessa sugarcane plantation site, which is characterized by clay and clay loam with low 

permeability (Ethiopian Corporation, 2020). Due to the slow rate of infiltration, rainwater 

can accumulate easily and form ponds in the area, which is exacerbated by irrigation of the 

sugarcane plantation. The widespread and persistent nature of this ponding contributes to 

the breeding of malaria vector mosquitoes.  
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Figure 2.1: Study Area at Arjo-Didessa sugarcane plantation and its vicinity. This area is 
found in the Oromia Region of western Ethiopia and located 395 km west of the capital, Addis 
Ababa, at the intersection of the three woredas (districts), Jimma Arjo (East Wollega Zone), 
Bedele (Buno Badale Zone), and Dabo Hana (Illubabor Zone) at the Didessa River valley. The 
model area is enclosed by the gray box. The sugarcane plantations in the study area were 
demarcated by the green lines. To simplify model simulation, the irrigation parcels in the 
plantation area were further grouped and generalized into four farms, which will be 
explained in greater detail in the later subsection. 

A recent study indicated that malaria is seasonal in this area; transmission mainly 

followed the rainy season, with the highest cases recorded between September and 

November (Hawaria et al., 2019). However, some localities experienced persistent malaria 

due to environmental modifications such as irrigation that support the continuous 

availability of breeding sites. Anopheles arabiensis is the predominant malaria vector species 

in the area. The major mosquito breeding habitat types included rain pools, stream shoreline, 

animal foot prints, irrigation canal, hippo trenches, drainage ditches, and  puddles in rice 

cultivation (Hawaria et al., 2020) (Figure A.1). 
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In the ParFlow-CLM model, the study area was discretized with a resolution of 50 m, 

resulting in a grid configuration of 332 by 248 cells. The subsurface component was divided 

into 10 layers and the thickness of each layer varies, depending on the granularity of the data 

available. In general, the resolution of the subsurface layer increased nearer to the surface 

to capture the shallow surface processes in greater detail. The layer thicknesses ranged from 

0.25 m to 20 m, over a total vertical depth of 100 m. 

2.2.3 Input data 

As the model domain is a rural area where field data for model construction was 

scarce, remotely sensed data and global synthetic datasets from published works were used. 

For example, 1 arc-second DEM from Shuttle Radar Topography Mission (SRTM) (JPL, 2013) 

was resampled to the 50 m model grid and converted to ground surface slopes as an input 

to ParFlow. The land cover for each grid cell in CLM was determined by the classification of 

30 m resolution Landsat-8 imagery (United States Geological Survey Earth Resources 

Observation and Science Center, 2013) taken on a cloud-free day in January 2018 into 

International Geosphere-Biosphere Programme (IGBP) types. To characterize the 

subsurface, the soil taxonomy distribution (Figure A.2) for the top 2 m from the surface was 

referenced from the SoilGrids250m TAXOUSDA dataset (Hengl et al., 2017). The saturated 

hydraulic conductivity of the deeper zone beyond the top 2 m was based on GLHYMPS 2.0 

(Gleeson et al., 2014). The depth to bedrock data from SoilGrids250m BDRICM dataset 

(Hengl et al., 2017) was used to delineate the bedrock zone, which was assigned a very low 

hydraulic conductivity. For the meteorological forcing, 0.04 degree by 0.04-degree 

precipitation data from Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) (Hong et al., 2004; 

Nguyen et al., 2019) was resampled to the model grid using bilinear interpolation. In 

addition, wind speed from the second version of Modern-Era Retrospective analysis for 

Research and Applications (MERRA-2) (Gelaro et al., 2017) of 0.5 degrees by  0.625 degrees 

resolution and air temperature, pressure, specific humidity and radiation data from Global 

Land Data Assimilation System (GLDAS) (Rodell, 2004) of 0.25 degree by 0.25 degree 

resolution were averaged for the entire domain.  All the forcing data were obtained from 
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2018 and input to the model hourly. The list of model input data and the relevant details can 

be found in Table A.1 and Section A.1. 

2.2.4 Model scenarios 

A 1-year baseline period in 2018 from January 1 to December 31 was simulated with 

an hourly time step to produce daily soil saturation and groundwater pressure head. 

Sugarcane is a plant with high water consumption so irrigation during the dry season is 

essential. Hence, a separate scenario was run for the same period with the implementation 

of a synthesized irrigation scheme corresponding to the dry season from January to April 

and November to December. This synthesis was based on the sugarcane plantation irrigation 

schedule and detailed plans acquired from Arjo-Didessa Sugar Factory in Figure A.3 

(Ethiopian Corporation, 2020). Specifically, the sugarcane plantation in the study area was 

grouped into four irrigation sub-zones as a simplified representation (Figure 2.1). In each 

irrigation cycle, Farms 1 and 3 are sprinkler-irrigated for 10 days, followed by Farms 2 and 

4. Each farm receives a total of 10 mm of irrigation over 22 hours each day during its turn 

for irrigation.  

As an illustration of the hydrological process for the baseline scenario, Figure 2.2 

shows a time series of the simulated spatially averaged surface layer soil saturation, along 

with snapshots of the resulting surface layer soil saturation at five particular time instances 

in May 2018 when a 7-day rainfall event occurred. The instantaneous snapshots of the soil 

saturation reflect the spatial distribution of the rainfall. The details of the baseline simulation 

for the entire year and the irrigation scenario results can be found in Figure A.4, Figure A.5, 

and Section A.1.2,  
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Figure 2.2: The simulated Surface layer (25cm depth) Soil Saturation at Five Time Instances 
during a Rain Event in May 2018. The snapshots illustrate the close-up views of the soil 
saturation for the rainfall event between May 5, 2018, and May 11, 2018, along with the time 
series of the spatially averaged precipitation, temperature, and simulated surface layer. On 
May 3 (t1), the surface was generally dry before the onset of the rainfall, except for the 
mountainous areas on the left. On May 5 (t2), the rain started to spread from the mountainous 
areas. By May 7 (t3), the rain had spread to the entire area. The snapshot at t4 shows the post-
rainfall distribution on May 10, and the snapshot at t5 shows the area drying up again after 
the rainfall event on May 13. The soil saturation increased to more than 85% at the peak of 
the storm across most of the study area and decreased quickly after about 5 days but the 
streams and the vicinities remain wet. There were no large depressions (e.g., lakes, pools) 
observed in the simulation. 

2.2.5 Wetness index calculation 

As mosquito reproduction is successful only if larval habitats remain stable for a 

period sufficient to complete the aquatic stage (Gianotti et al., 2009; Rejmánková et al., 

2013), the viability of the habitat was determined by the persistence of ponding. Hence, we 

developed a Wetness Index (𝑊𝐼) metric to quantify the persistence of ponding as a basis for 

potential habitat representation after rain and irrigation. This will be used later to answer 

our research questions. 

As the aquatic habitats at site were typically shallow and the lateral scale was of the 

order 10m or smaller, it was not feasible to explicitly simulate the surface water depth of the 

individual habitat. Hence, the simulated soil saturation of the top surface layer as described 
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in the previous section, coupled with a threshold, was used to assess the availability of the 

surface water that could contribute to ponding. Since soil saturation measures the extent to 

which the water content has filled up the voids within the soil, a higher soil saturation means 

there is a larger volume of water stored in the soil within the 50m grid cell. Hence, a potential 

occurrence of ponding was assumed if the surface layer soil saturation exceeds the threshold. 

Otherwise, no ponding occurs. To evaluate the duration of ponding, 𝑊𝐼 was used and defined 

as the cumulative number of days of ponding from the start of the simulation year at any grid 

cell (𝑥, 𝑦)  and day (𝑡) , based on the simulated soil saturation of the top surface layer 

𝑆(𝑥, 𝑦, 𝑡) and a soil saturation threshold 𝜃. The computation of the index is as shown below 

in Equation (2.1): 

𝑊𝐼(𝑥, 𝑦, 𝑡) = {
𝑊𝐼(𝑥, 𝑦, 𝑡 − 1) + 1, 𝑖𝑓 𝑆(𝑥, 𝑦, 𝑡) ≥ 𝜃

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                (2.1) 

The initial 𝑊𝐼 for every grid cell was set to 0. The index increases each day if the soil 

saturation exceeds the threshold. Otherwise, it will reset to zero, implying that the habitats 

in the grid cell are no longer able to sustain the development of the larvae population.  

The soil saturation threshold θ in Equation (2.1) was calibrated based on a field 

survey of aquatic larval habitats. 134 ponding locations were surveyed for larval growth 

during the dry (December 2017–February 2018) and rainy (June 2018–September 2018) 

seasons (Hawaria et al., 2020). For each surveyed location, information regarding whether 

larval growth was detected, the type of species identified, larval density, habitat dimension, 

habitat type and land use type were recorded. Regardless of whether larval growth was 

detected, each survey location served as an indication of ponding for calibration and 

validation. Some of the surveyed locations such as man-made ponds, tire track puddles, and 

animal footprints which could not be simulated by the hydrologic model were omitted. In 

addition, to minimize the influence of dry season irrigation on the parameterization 

considering that the irrigation in the model was approximated by a simplified scheme, the 

calibration was only conducted for the rainy season from May to October. In total, 102 of the 

surveyed locations were used for calibration and validation as shown in Figure 2.3. 
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Figure 2.3: Location of the surveyed aquatic habitats. All accessible potential mosquito 
breeding habitats were surveyed and identified the presence of mosquito larvae during the 
dry (December 2017–February 2018) and rainy (June 2018–August 2018) seasons. 

The objective of the calibration was to maximize the probability of detection (𝑃𝑂𝐷), 

which determines if the model can predict an aquatic habitat successfully. Other measures 

which can capture overprediction were not chosen as the field data only covered locations 

with ponding and it was challenging to rule out small puddles within the grid cell using other 

types of data. To ensure the relevance of the calibrated 𝜃 , a bootstrapping method was 

applied and it was found that the optimal 𝜃  was 0.48. In other words, the model would 

predict the occurrence of ponding for soil saturation above 0.48 at locations in line with the 

survey. Details of the survey data and calibration method can be found in Section A.1.3. 

In summary, the overall schematic of our methodology is shown in Figure 2.4. Using 

the Wetness Index, we analyzed the potential larval habitats in terms of their spatial 

distribution, stability and temporal pattern and the results are presented in the next section. 



 

19 
 

 

Figure 2.4: Overall schematic of methodology. 

2.3 Results 

2.3.1 Location of potential larval habitats and probability of occurrence 

Generally, Anopheles arabiensis mosquito takes around 15 days to develop from egg 

to adult, but the duration can be as short as 10 days due to selection pressures from the 

stressed environment such as drought, temperature anomaly, or limited food resources 

(Afrane et al., 2007, 2012). In this regard, we considered areas with 𝑊𝐼 exceeding 10 and 15 

days to be potential larval habitats under critical and normal conditions, respectively. 

To determine the probability of potential larval habitat occurrence, we computed the 

probability of ponding occurring longer than 10 and 15 days, 𝑃(𝑊𝐼 > 𝑇) , as shown in 

Equation (2.2). 𝑃(𝑊𝐼 > 𝑇)  is defined as the ratio of 𝐷(𝑊𝐼(𝑥, 𝑦, 𝑡) > 𝑇) , the number of 

cumulated days for which the 𝑊𝐼 (i.e. persistence of ponding) of a grid cell (𝑥, 𝑦) at time 

𝑡 that exceeded 𝑇 days, to 𝐷𝑝𝑒𝑟𝑖𝑜𝑑, the number of days within a defined period of simulation. 

𝑃(𝑊𝐼 > 𝑇) =
𝐷(𝑊𝐼(𝑥,𝑦,𝑡)>𝑇)

𝐷𝑝𝑒𝑟𝑖𝑜𝑑
, 𝑇 ∈ {10,15}                                 (2.2) 

Figure 2.5 shows the results for the spatial distribution of 𝑃(𝑊𝐼 > 𝑇) over the three 

periods of simulation, namely the entire year of 2018, the dry season (i.e., January to April 

and November to December) and the rainy season (i.e., May to October). It can be observed 

that ponding was persistent throughout the year around the stream edges and the vicinity. 

𝑃(𝑊𝐼 > 10) and 𝑃(𝑊𝐼 > 15) were consistently close to 1, reflecting a high potential of these 

areas as larval habitats.  
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Figure 2.5: Spatial distribution for the probability of potential larval habitat occurrence. 
The sub-figures 5a-5d represent the probability of the 𝑊𝐼 exceeding 10 days and 15 days for 
the baseline scenario and the irrigation scenario for the entire year. The sub-figures 5e-5h 
represent the probability of the 𝑊𝐼 exceeding 10 days and 15 days during the dry season, 
and the sub-figures 5i-5l represent the 𝑊𝐼 exceeding 10 days and 15 days during the rainy 
season. Areas where the simulated surface water flowrate exceeded 0.01 m3/s for 90% of 
the time in the simulated year were masked out for all the sub-figures since Anopheles larvae 
have a lower chance of surviving in fast-moving water (A. J. Hardy et al., 2013). 

For the baseline scenario shown in Figure 2.5a-Figure 2.5b, the 𝑃(𝑊𝐼 > 𝑇) for the 

areas outside of the streams was predominantly determined by soil type. The areas 

characterized by Usterts (see Figure A.2) with the lowest hydraulic conductivity in the model 

domain were the next most at risk, with a 𝑃(𝑊𝐼 > 𝑇) of about 0.4-0.5. In the remaining 

areas, 𝑃(𝑊𝐼 > 𝑇)  was generally 0.2 or less. Comparing Figure 2.5a and Figure 2.5b, the 

differences were minimal except for the steep areas at the watershed upstream boundary 

where 𝑃(𝑊𝐼 > 15) was predominantly zero. The surface water ponding was unable to last 

more than 15 days due to the terrain gradient. 

Figure 2.5c and Figure 2.5d show the results for the irrigation scenario. Compared to 

the baseline scenario, the year-round persistent ponding around the streams and the vicinity 

was wider in coverage and more noticeable. Irrigation also increased 𝑃(𝑊𝐼 > 10) in Figure 

2.5c and 𝑃(𝑊𝐼 > 15) in Figure 2.5d from 0.4-0.5 to about 0.7 and 0.6 respectively for Farm 

#1, Farm #2, and a significant portion of Farm #3 and Farm #4. The 𝑃(𝑊𝐼 > 𝑇) for the 



 

21 
 

remaining area within the farms remained relatively unchanged at 0.2 and this could be 

attributed to the Ustoll soil type which drains easily. The increase in the probability of 

potential larval habitat occurrence from the baseline was more pronounced for 𝑃(𝑊𝐼 > 10) 

than 𝑃(𝑊𝐼 > 15) since the interval of irrigation was set at 10 days, after which the farm 

drained without replenishment until the next irrigation cycle. 

For the dry season, it can be observed in Figure 2.5e and Figure 2.5f that the stream 

edges were the only areas with high potential of larval habitat occurrence. In Figure 2.5g and 

Figure 2.5h, 𝑃(𝑊𝐼 > 𝑇)  increased visibly in the farms after irrigation, with a distinct 

similarity between Farms #1/#3 and Farms #2/#4 that points to the irrigation schedule. 

While irrigation was alternated evenly between the two groups, Farms#1 and #3 showed a 

higher 𝑃(𝑊𝐼 > 𝑇) than Farms #2 and #4, possibly due to the timing of the irrigation relative 

to the rainfall. Irrigation could either coincide with rainfall or function as a supplement when 

there was no rainfall to augment soil moisture. Noticeably, there was an area to the northeast 

straddling both Farm #3 and Farm #4 where 𝑃(𝑊𝐼 > 10) was around 0.1 but 𝑃(𝑊𝐼 > 15) 

was almost zero, indicating that irrigation only allowed for larval habitats under critical 

conditions in that area during the dry season. 

For the rainy season, it can be observed in the baseline scenario (Figure 2.5i-Figure 

2.5j) that the areas characterized by Ustert exhibited a high potential of larval habitat 

occurrence, apart from the stream edges. Particularly, there was an area to the north where 

𝑃(𝑊𝐼 > 𝑇) was lower than the other parts which could be due to the relatively steeper 

terrain. In the irrigation scenario (Figure 2.5k-Figure 2.5l), there was no visible difference in 

𝑃(𝑊𝐼 > 𝑇) as compared to the baseline scenario, apart from a minor increase around the 

western part of Farm #4. 

As a summary, we present the results in boxplots as shown in Figure 2.6 to illustrate 

the effect of irrigation in different seasons for the areas inside and outside farms. The 

relevant statistics can be found in Table 2.1. The 𝑃(𝑊𝐼 > 𝑇)  had a highly asymmetrical 

distribution because it was very low in most of the model domain but could be very high in 

the remaining areas due to the streams. For the following comparison, we will use the 

median as it was more representative of the distribution. 
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Figure 2.6: Box plots for the probability of potential larval habitat occurrence for the entire 
year, dry, and rainy season. Probability of the 𝑊𝐼 exceeding (a) 10 days and 15 days (b) for 
the area inside farms and the area outside farms. The line within each box is the sample 
median and the top and bottom of each box are the 25th and 75th percentiles. The whiskers 
were drawn from the two ends of the box and demarcate the observations which were within 
1.5 times the interquartile range from the top and bottom of the box. 

Table 2.1: Summary statistics of the probability of wetness index for the entire year, dry 
season, and rainy season. Mean, 25th percentile (P25), median and 75th percentile (P75) of 
the probability of the 𝑊𝐼 exceeding 10 days and 15 days for the areas (a) inside farms and 
(b) outside farms. The p-value was derived from the Wilcoxon Rank-Sum test under the null 
hypothesis that irrigation did not increase the median probability of exceedance. 

 

 
(a) Area inside Farms 

Baseline Irrigation p-
value Mean P25 Median P75 Mean P25 Median P75 

Wetness Index Exceeding 10 Days 

Dry  0.173 0.000 0.000 0.111 0.424 0.039 0.442 0.680 < 0.01 

Rainy  0.607 0.185 0.848 0.924 0.643 0.201 0.864 1.000 < 0.01 

Entire 
Year 

0.392 0.093 0.427 0.515 0.534 0.123 0.674 0.836 < 0.01 

Wetness Index Exceeding 15 Days 

Dry  0.168 0.000 0.000 0.111 0.347 0.000 0.282 0.553 < 0.01 

Rainy  0.553 0.076 0.794 0.897 0.597 0.076 0.810 1.000 < 0.01 

Entire 
Year 

0.362 0.038 0.400 0.501 0.473 0.038 0.559 0.778 < 0.01 
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In the baseline scenario, there was a higher potential for larval habitats to form inside 

the farms, with a median 𝑃(𝑊𝐼 > 10) of 0.427 and a median 𝑃(𝑊𝐼 > 15) of 0.400, than 

outside the farms, with a median 𝑃(𝑊𝐼 > 10) of 0.06 and a median 𝑃(𝑊𝐼 > 15) of 0.019. 

This is expected because the farms are in an area with relatively flat terrain and a higher 

concentration of streams. The difference in the median 𝑃(𝑊𝐼 > 𝑇) inside and outside the 

farms was bigger in the rainy season compared to the dry season, as the higher rainfall 

received intensified ponding.  

Irrigation increased the median 𝑃(𝑊𝐼 > 𝑇) inside the farms drastically in the dry 

season, with the median 𝑃(𝑊𝐼 > 10) increasing from 0 to 0.442 and the median 𝑃(𝑊𝐼 > 15) 

increasing from 0 to 0.282. Although irrigation was only applied over the dry season, there 

was also a statistically significant increase in the median 𝑃(𝑊𝐼 > 𝑇) during the rainy season 

(p<0.01). The median 𝑃(𝑊𝐼 > 10) increased from 0.848 to 0.864 while the median 𝑃(𝑊𝐼 >

15) increased from 0.794 to 0.810. This was due to irrigation contributing to the antecedent 

soil moisture before the onset of the rainy season, which shortened the time for the soil to 

become saturated and ponding to occur. On the other hand, there was no strong evidence 

outside the farms of an increase in the median 𝑃(𝑊𝐼 > 𝑇) due to irrigation (𝑝 > 0.01). This 

applied to both rainy and dry seasons. 

 
(b) Area outside Farms 

Baseline Irrigation p-
value Mean P25 Median P75 Mean P25 Median P75 

Wetness Index Exceeding 10 Days 

Dry  0.053 0.000 0.000 0.000 0.053 0.000 0.000 0.000 0.254 

Rainy  0.202 0.082 0.120 0.201 0.202 0.082 0.120 0.201 0.437 

Entire 
Year 

0.128 0.041 0.060 0.101 0.128 0.041 0.060 0.101 0.430 

Wetness Index Exceeding 15 Days 

Dry 0.051 0.000 0.000 0.000 0.051 0.000 0.000 0.000 0.385 

Rainy 0.125 0.005 0.038 0.098 0.125 0.005 0.038 0.098 0.440 

Entire 
Year 

0.089 0.003 0.019 0.049 0.088 0.003 0.019 0.049 0.443 



 

24 
 

2.3.2 Stability of larval habitats 

In the previous section, we showed that irrigation did not have a significant impact 

on areas outside the farms. Here, we evaluated the stability of the potential larval habitats 

specifically for the areas inside farms based on the distribution of the maximum duration of 

ponding for each grid cell within the year as shown in the histogram (Figure 2.7a). The total 

number of cells corresponding to each bin interval of 15 days was expressed as a fraction of 

the total number of cells in the area inside farms. 

 

Figure 2.7: The fraction of area inside the irrigated farms for each potential larval habitat 
types under the baseline and irrigation scenarios. (a) shows the histogram of the maximum 
duration of ponding within the year for the grid cells in each type of habitats expressed as a 
fraction of the total area of the farms. The bin size was 15 days. Temporary, semi-permanent, 
and permanent larval habitats were typically characterized by ponding duration of 15-90 
days, 90-180 days, and 180 days and above, respectively. The baseline scenario is 
represented in blue and the irrigation scenario is represented in orange. The darker orange 
bin is a result of the two overlapping. (b) shows the comparison of the fractional area 
occupied by non-habitats (less than 15 days) as well as potential temporary, semi-
permanent, and permanent larval habitats inside the farms. Each grid cell within the farm 
was categorized based on its maximum ponding duration. 

From the baseline scenario, 13.2% of the area was not favorable for larval habitats 

because the maximum duration of ponding in those areas was less than 15 days. The most 

common maximum ponding duration was between 150-165 days, which accounted for more 

than 20% of the area. This was followed by 15-30 days and 360 days and above which made 

up 17.6% and 13.8% of the area respectively. With irrigation, there was a general increase 

in the maximum ponding durations. The most common maximum ponding duration was 360 
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days and above, accounting for 18% of the area. Noticeably, the area with maximum ponding 

duration between 210-225 days increased fourfold to 10%. The remaining increase was for 

285 days and above. Counter-intuitively, the area that was not conducive as larval habitats 

(i.e., maximum ponding duration less than 15 days) also increased slightly by 0.6%. This was 

because irrigation raised the overland flowrate in these areas, mostly near streams, and 

made them unfavorable for breeding.  

In Figure 2.7b, we grouped the maximum ponding durations into stability periods 

corresponding to temporary (2 weeks to 3 months), semi-permanent (3-6 months), and 

permanent (6 months and above) habitats based on field observations from a study at the 

site (Hawaria et al., 2020). Temporary habitats such as puddles retain water for a short 

period while permanent habitats such as stream edges and swamps hold water much longer 

and are more stable. For the baseline scenario, semi-permanent habitats were the most 

common, occupying 33.1% of the area, while permanent and temporary habitats also 

accounted for 29.6% and 24.1% of the area, respectively. After irrigation, there was a 

significant shift from semi-permanent habitats, which reduced to 22.9% of the area, to 

permanent habitats which increased to 41% of the area. There was also a slight reduction in 

the extent of temporary habitats to 22.4% of the area. 

2.3.3 Temporal pattern of potential larval habitats 

To shed light on the temporal patterns, we evaluated 𝐹(𝑊𝐼 > 𝑇) , the fractional 

coverage of potential larval habitats inside farm, for each day throughout the year. We only 

focused on the area inside farms since irrigation does not have a significant impact on the 

area outside farms. As shown in Equation (2.3), 𝐹(𝑊𝐼 > 𝑇) is defined as the ratio of 𝐶(𝑊𝐼 >

𝑇), the number of cells for which the 𝑊𝐼 (i.e. persistence of ponding) exceeded 𝑇 days, to 

𝐶𝑓𝑎𝑟𝑚 , the number of cells within the farm area. 𝑇  is set as 10 days and 15 days, 

corresponding to critical and normal conditions, respectively. 

𝐹(𝑊𝐼 > 𝑇) =
𝐶( 𝑊𝐼(𝑥,𝑦,𝑡)≥𝑇)

𝐶𝑓𝑎𝑟𝑚
, 𝑇 ∈ {10,15}                                       (2.3) 

In Figure 2.8a, 𝐹(𝑊𝐼 > 10)  increased steeply on January 10th as 𝑊𝐼  started 

increasing from 0 at the beginning of the year. For the baseline scenario, the fractional 
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coverage decreased minimally from 0.18 throughout the dry season despite the sporadic 

spike in precipitation. At the onset of the rainy season, the peak rainfall event of the year 

from May 5th to May 11th caused a sharp increase in 𝐹(𝑊𝐼 > 10) from 0.15 to 0.61 and 

thereafter, the relentless rainfall maintained the fractional coverage at about 0.6. 

Throughout the rainy season, there were four recurring peaks at a frequency of about 2 

months. Post-rainy season, 𝐹(𝑊𝐼 > 10) dropped gradually to below 0.2 after the last peak 

at the end of October. 

 

Figure 2.8: Daily variations in the extent of the potential larval habitats for the year. Time 
series of the fractional coverage of areas with 𝑊𝐼 exceeding (a) 10 days and (b) 15 days. 

For the irrigation scenario, 𝐹(𝑊𝐼 > 10)  increased during the dry season from 

January to March with visible cyclical variations between 0.2 and 0.4 due to the rotation of 

irrigation among the four farms. Subsequently, the spike in rainfall at the end of March 

combined with the higher antecedent soil moisture from irrigation brought forward the step 

increase in the fractional coverage to April from May in the baseline scenario. As irrigation 

stopped at the end of April, 𝐹(𝑊𝐼 > 10) gradually dropped back to the same level as the 

baseline scenario at the end of June. In the dry season from November to December, the 

fractional coverage started to deviate from the baseline scenario again with cyclical 

fluctuations, gradually decreasing towards the end of the year.  
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In Figure 2.8b, 𝐹(𝑊𝐼 > 15) remained largely the same for the dry season but the 

peaks were moderated in the rainy season, compared to 𝐹(𝑊𝐼 > 10). There was one less 

peak at the end of May in the early rainy season because the watershed did not accumulate 

enough rainfall for the persistence of the ponded areas to exceed 15 days. Specifically, for 

the irrigation scenario, the increase in fractional coverage during the dry season was 

moderated and less sensitive to the spikes in rainfall. Similarly, irrigation resulted in the 

early onset of the steep increase in 𝐹(𝑊𝐼 > 15) in April following the spike in rainfall at the 

end of March. Also, it took two months after the end of irrigation in April for the fractional 

coverage to return to the same level as the baseline. 

From 𝐹(𝑊𝐼 > 10) and 𝐹(𝑊𝐼 > 15), we calculated the corresponding monthly mean, 

𝑀𝐹(𝑊𝐼 > 10), and 𝑀𝐹(𝑊𝐼 > 15) as well as the 95th confidence interval as shown in Figure 

2.9. In Figure 2.9a, 𝑀𝐹(𝑊𝐼 > 10) in the baseline was the highest for the months between 

June and September, constituting a four-month window in which at least 50% of the area 

was conducive for larval habitat formation. Of the four months, the highest monthly mean 

fractional coverage was in July at 79.9%. Irrigation extended the window to include the 

months of April and May. The monthly mean fractional coverage increased 4.5 times to 

64.3% in April and 1.4 times to 63.7% in May. The 𝑀𝐹(𝑊𝐼 > 10) for the rest of the months 

in the window (i.e., June to September) remained one of the highest but the increase due to 

irrigation was not statistically significant (𝑝 > 0.01). July remained as the month with the 

highest monthly mean fractional coverage at 80.0%. In Figure 2.9b, 𝑀𝐹(𝑊𝐼 > 15)  was 

generally slightly lower than 𝑀𝐹(𝑊𝐼 > 10) for both the baseline and irrigation scenarios 

but the general trends were the same. 
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Figure 2.9: Monthly variation in the extent of the potential larval habitats for the year. 
Monthly mean fractional coverage of areas with a probability of 𝑊𝐼 exceeding 10 days (a) 
and 15 days (b). The 95% confidence interval is indicated at the top of each bar chart. The 
asterisks (*) next to the month on the x-axis indicate that irrigation increased the fractional 
coverage of the potential larval habitats for the month based on a 2-sample t-test (p<0.01). 

2.4 Discussion 

2.4.1 Impact of irrigation on spatiotemporal distribution of potential larval habitats 

This study, for the first time, employed an integrated hydrological model to predict 

the proliferation of potential larval habitats around an irrigated field during the dry and 

rainy seasons. Irrigation resulted in a much higher probability to find potential larval 

habitats in the dry season. Although irrigation was not applied during the rainy season, a 

slight increase in the probability of potential larval habitat occurrence was also observed 

due to the higher antecedent soil moisture from the dry season promoting the formation of 

larval habitats further. Considering that larval habitat availability is one of the direct 

predictors for vector abundance, our findings tie in with local studies (Demissew et al., 2020; 

Hawaria et al., 2019, 2020) in the Arjo-Didessa sugarcane plantation which showed a higher 

occurrence of Anopheline mosquito larval habitats, larval productivity and abundance in the 

irrigated areas than non-irrigated areas in both dry and wet seasons.  
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Separately, previous studies have identified irrigation schemes as the cause for 

prolonging mosquito season and extending the period of malaria transmission (Ijumba & 

Lindsay, 2001; Kibret et al., 2010). In our study, it was found that the stability of potential 

larval habitats was similarly prolonged, with a significant shift from semi-permanent (3-6 

months) to permanent habitats (6 months and above) in the irrigated farm areas. Originally, 

the semi-permanent habitats were the most common, occupying a third of the area inside 

farm without irrigation. In the irrigation scenario, the area of the permanent habitats became 

the most common, increasing to more than 40% of the area inside farm.  

The temporal variations in the extent of the potential larval habitats indicate that 

rainfall exerts a strong influence. It is common that peak mosquito breeding seasons follow 

rainfall in the tropics (Kibret et al., 2019). In our study, the occurrence of potential larval 

habitats was highest for the period from June to September, during which at least 50% of the 

area inside farms were potential larval habitats. This overlaps with a significant portion of 

the rainy season. From the irrigation scenario, we observed that irrigation dampened the 

seasonality of the potential larval habitats by increasing the wetness index in the dry season 

and extending the peak larval habitat occurrence window to include the months of April and 

May. Elsewhere in Africa, irrigation is also known to reduce the dependence of larval habitat 

patterns on rainfall, changing them from seasonal to perennial (Mabaso et al., 2007). 

This calls for the need to modify current irrigation strategies and develop tailor-made 

interventions to mitigate mosquito breeding around irrigated fields in order to combat 

malaria. Ideally, the aim is to optimize irrigation to minimize larval habitat availability while 

meeting crop water requirement. To this end, our model has the flexibility to simulate 

diverse types of irrigation such as flood irrigation, groundwater irrigation, sprinkler 

irrigation and drip irrigation as well as water allocation strategies. Hence, beyond predicting 

potential larval habitats, the model can help configure the outline of the irrigation design and 

sieve out some of the more pertinent and effective strategies. For example, the main method 

of irrigation in Ethiopia is surface irrigation which has low implementation cost but is known 

to be inefficient in water use (Eshete et al., 2020) and can aggravate malaria transmission by 

providing an ideal larval habitat (Bett et al., 2017). For regions where resources are limited, 

our model can be used to identify irrigated farms with the most serious ponding to prioritize 
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the installation of higher water efficiency but also costlier irrigation systems such as drip or 

sprinkler irrigation. It can also be coupled with a water allocation algorithm (Condon & 

Maxwell, 2013) to investigate the larval habitat distribution under more complex water 

management operations. 

2.4.2 The implication of model assumptions and simplifications on results 

In this study, we chose to simulate the surface layer soil saturation at 50 m resolution, 

coupled with a threshold, to quantify ponding instead of explicitly simulating the surface 

water depth. Without high resolution and accurate topographic information, it was not 

feasible to achieve the latter at the scale of the larval habitats surveyed in the study area, 

most of which measure less than 100 m2 each. It has been shown that a minimum of 3 model 

grid cells is required across the width of the land depression for a good balance between 

accuracy and computational effort when simulating a flood extent (Gallegos et al., 2009). This 

requires accurate data with a minimum resolution of 3 m that can only be obtained using 

Lidar, RTK (Real-Time Kinematics), or PPK (Post Processed Kinematics) with aircraft or 

drone, which is time consuming and expensive. Regardless, the computational efficiency of 

the model with high-resolution DEM will pose another challenge even if they were available. 

As such, the model is not intended to pinpoint the exact location of each larval habitat in the 

study area. Instead, it provides information on the overall likelihood of ponding for each grid 

cell based on the interactions between system properties and forcing variables at various 

temporal and spatial scales. The strength of this approach is that the model can afford to run 

on a regional scale at a fairly high spatial resolution while keeping computational 

requirements manageable. Furthermore, all the primary data used are freely available for all 

regions of the world and hence, this framework provides a great opportunity to extend 

potential larval habitat simulation into other locations without incurring high data 

acquisition cost.  

In terms of performance, the model was able to predict ponding at all the validation 

points after calibration. As shown in Figure A.6, the 𝑃𝑂𝐷 for both calibration and validation 

reached 1 (i.e. all the points are detected) at the optimal soil saturation threshold 𝜃 of 0.48. 

However, this does not mean the model is perfect as the calibration and validation did not 



 

31 
 

account for overprediction at locations without ponding since the survey was only for 

locations with ponding. This will be resolved in future by ongoing field survey efforts toward 

compiling a more spatiotemporally comprehensive dataset including locations without 

ponding. Another limitation was that calibration was only performed on the soil saturation 

threshold but not the ParFlow model per se although the simulated soil saturation was 

realistic from its general behavior. This was due to the lack of data to verify surface and 

subsurface flow rates at a relevant spatial scale. With the collection of more data in future, 

the key parameters can be fine-tuned to improve model predictions. A more detailed 

irrigation schedule would also provide insight into the water usage, irrigation management, 

and surface land cover during sugarcane growth. Such data could serve as a better guide in 

modeling pond formation that incorporates the effect of irrigation. Unfortunately, records 

for canal water flow, water usage, and field operations were not available at the time of visit 

to the Arjo-Didessa Sugar Factory, and only the summary data and annual plan could be 

obtained.  

2.5 Conclusion and future prospects 

Using high resolution distributed hydrologic modeling with remotely sensed data, we 

demonstrated a quantitative assessment of potential malaria vector larval habitats in terms 

of the spatial distribution and temporal variation. We also evaluated the relative influence of 

key environmental processes such as rainfall and irrigation on the habitats. Results indicated 

a higher probability to find potential larval habitats inside the farms, at around 40% of the 

year, than outside the farms, at less than 10% of the year. Our model also showed that rainfall 

exerted a strong influence on larval habitat availability based on predictions that at least 

50% of the area inside farms were potential larval habitats from June to September during 

the rainy season. Further, modeling revealed that irrigation increased the probability of 

finding potential larval habitats inside the farms to 67%. Irrigation also dampened the 

seasonality of the potential larval habitats such that the peak larval habitat occurrence 

window during the rainy season was extended. Lastly, the stability of larval habitats was 

prolonged, with a significant shift from semi-permanent habitats to permanent habitats 
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lasting beyond 6 months, pointing to the impact of irrigation in creating conducive mosquito 

habitats throughout most of the year. 

Since the effectiveness of major malaria vector control measures is decreasing due to 

mosquito insecticide resistance and outdoor transmission, the role of LSM as a 

supplementary vector control tool to reduce malaria transmission becomes more significant. 

As such, hydrologic modeling with publicly available data, presented herein, constitutes a 

promising direction in terms of providing a dynamic and systematic approach for the 

identification and elimination of larval habitats by environmental modification and 

manipulation. For hydrologic modeling to fulfil its promise in the area, enhanced 

observational efforts are required in future. Thorough calibration and validation will be 

critical in evaluating the robustness and quantifying the uncertainty of the model. 

Food security will bring economic growth and remains one of the priorities in Africa. 

To this end, investment in dams and irrigation systems is increasing rapidly in Africa over 

the past decade. Unfortunately, this might increase the risk of malaria due to environmental 

modifications and microclimate changes. The broader goal of our research is to harness the 

hydrological results, along with other epidemiological, entomological and social-economic 

factors, to translate the knowledge of potential larval habitats to useful information on the 

spatiotemporal distribution of malaria transmission risks. Remotely sensed data can enable 

this type of modeling in data-scarce regions where malaria presents a grave threat. This 

framework has great potential to integrate with malaria epidemiologic modeling such as 

EMOD (P. A. Eckhoff & Wenger, 2016) to predict malaria risk under different environmental 

modifications to guide decision-making in water resource management, changes to 

agricultural practice, and disease prevention. 
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Chapter 3 

 

Topographic Hydro-conditioning to Resolve Surface Depression Storage 

and Ponding in a Fully Distributed hydrologic model 

3.1 Introduction 

Surface depressions have a direct impact on surface and subsurface flows through 

hydrologic, biochemical and biological exchanges (Cohen et al., 2016). Primarily, runoff can 

be modulated and delayed  by surface depressions through fill-spill dynamics and storage 

effect (Ameli & Creed, 2017; Brooks et al., 2018). This has been shown to improve 

downstream water quality and support habitat functions because of longer residence times 

(Biggs et al., 2017; Cheng & Basu, 2017; Charles Nathan Jones et al., 2018). In addition, large 

scale surface depressions in the form of wetlands and lakes can be critical for water supply 

as they replenish aquifers through seepage during dry conditions (Liu et al., 2016).  

With a growing emphasis on the impact of surface depressions on hydrologic 

processes, semi-distributed hydrologic models have been widely used to provide new 

insights (Evenson et al., 2016; N. Wang et al., 2021). One approach is to aggregate surface 

depressions within each subbasin into a lumped depression that functions conceptually as a 

bucket. Water is stored in the bucket and spills as runoff when it exceeds a parameterized 

threshold volume (Hay et al., 2018; Liu & Schwartz, 2011; Rajib et al., 2020). This type of 

approach is simple to implement but fails to account for the spatial distribution of the 

depressions. In reality, some surface depressions may fill and contribute runoff water earlier 

than the others but in the lumped approach, water is only released to the streams when all 

the surface depressions (i.e., the aggregated depression) are fully filled. The other approach 

is to model surface depressions as individual units which better represents wetlands and 

their hydrologic connectivity. For example, Chu et al. (2013) developed a puddle-to-puddle 

(P2P) model where the study domains were divided into multiple puddle-based units (PBU). 

Each PBU contains the highest-level puddle and its contributing area. The PBU can drain to 

a downstream PBU based on an overflow threshold and the same applies for its embedded 
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lower-level puddles based on a puddle delineation (PD) algorithm (Chu et al., 2010). Building 

on the PD algorithm and PBU concept, subsequent improvements were made to account for 

infiltration and unsaturated flow (Yang & Chu, 2015),  improve the channel-puddle cascading 

mechanism (Nasab et al., 2017) and enhance computational efficiency (N. Wang & Chu, 

2020).  

Fully distributed hydrologic models have different needs for topographic data 

compared to semi-distributed models, given that the former is designed to resolve flow paths 

along and into the land surface (Golden et al., 2014), which in turn supports numerous 

geophysical applications such as material transport and reactive flows (Golden et al., 2014, 

2017; C. Nathan Jones et al., 2019). In particular, fully distributed models require careful 

attention to spatial distribution of land surface heights as this drives the spatiotemporal 

variability of land surface storage, infiltration, runoff and soil moisture (Amado et al., 2018; 

Liu et al., 2016). Hence, fully distributed hydrologic modeling at fine resolution calls for 

careful attention to the source of topographic data, which is generally supplied by a DEM 

(Gardner et al., 2018; Jan et al., 2018; Tavares da Costa et al., 2019). 

DEMs are developed in many different ways, but fine-resolution DEMs used in 

hydrologic modeling are typically derived from aerial lidar data or optical data with 

photogrammetric methods (Lidberg et al., 2017). Raw point cloud data is filtered to 

differentiate ground surface points from vegetation canopy, and then gridded to produce a 

preliminary DEM. Subsequently, DEMs are hydro-conditioned (i.e., filling or breaching 

topographic cells) to  limit variability or noise in land surface slopes for smoother flow 

routing (i.e., lower chance of computational instability)  (Chow & Ben-Zvi, 1973; Rieger, 

1998; Zhang & Cundy, 1989), yet this process often removes physical land surface 

depressions that are highly relevant to hydrologic processes at the land surface. Previous 

studies have worked to identify land surface depressions for the purpose of characterizing 

the location and size of land surface features such as wetland and karsts (Bertassello et al., 

2020; Li et al., 2011; Moreno-Gómez et al., 2019; Wu et al., 2016), but these work did not 

focus specifically on creating a DEM suited to resolving fine-scale land surface processes with 

spatially distributed hydrologic models. Hence, the objective of this study is to present  a 

novel topographic processing workflow, referred to as the Depression-Preserved DEM 
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Processing (D2P) algorithm, with the aim of resolving surface depressions based on the scale 

of interest and smoothing small scale, non-physical variability in DEMs (e.g., Sanders, 2007) 

for depression-integrated and efficient modeling of land surface hydrology.  

Our approach is designed for hydrologic models that calculate flow across 4 cell faces 

(i.e., D4) but can be modified easily to handle more flow directions (e.g., D8). Alongside a 

processed DEM, the algorithm also generates slopes across the cell faces. This adds to the 

limited number of DEM processing algorithms that can generate slope inputs for D4 routing 

models using finite difference methods (Condon & Maxwell, 2019). In this study, we detail 

the workflow of D2P and examine its utility in processing the DEM as an input for the 

integrated hydrologic model ParFlow (Ashby & Falgout, 1996b; J. E. Jones & Woodward, 

2001; Kollet & Maxwell, 2006; Maxwell, 2013). We compare the processed DEM and evaluate 

the hydrologic simulation against the traditional filling method by Condon and Maxwell 

(2019) using a case study on GCEW. 

3.2 Materials and methods 

3.2.1 Study area 

GCEW is located in northern Mississippi, US and the area of the watershed is 21.7 km2, 

with an elevation ranging from 64.8 m to 129.1 m above mean sea level (Figure 3.1). The 

land use is mainly idle pasture, followed by forest and cultivated land and there is a high 

density of small water bodies such as farm ponds (Yasarer et al., 2018). Based on the satellite 

imagery from the US Fish and Wildlife Service (FWS) National Wetlands Inventory (NWI) 

(https://www.fws.gov/wetlands/), there are a total of 93 fresh water ponds ranging in size 

from 500 m2 to 11,000 m2. 

The DEM used in this study was downloaded from a derived-LiDAR product by the 

Mississippi Automated Resource Information System. The DEM represents bare earth 

surface that was created from LiDAR points collected from 2009 to 2010 by the U.S. Army 

Corps of Engineers (USACE) for the Mississippi Delta Phase 1 project 

(https://www.maris.state.ms.us/HTML/DATA/Elevation.html#gsc.tab=0) and hydro-

flattened. The spatial resolution is 1 m and the vertical accuracy is 0.09 m (Root Mean Square 

https://www.fws.gov/wetlands/
https://www.maris.state.ms.us/HTML/DATA/Elevation.html#gsc.tab=0
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Error). The DEM was first smoothed by a median filter to remove roughness and aggregated 

to 10 m resolution to keep the hydrologic simulation computationally manageable.  

 

Figure 3.1: GCEW study area. 

3.2.2 Overview of Depression-preserved DEM Processing (D2P) algorithm 

The D2P algorithm comprises six steps as shown in the flowchart in Figure 3.2. Using 

DEM and NWI wetland as input data, it identifies surface depressions that are likely to be 

physically meaningful and generates a processed DEM that is smoothened to reduce fine 

scale variability while preserving those depressions. Slope data is then derived from the 

processed DEM. Details of steps 1 to 6 of the flowchart are explained from Sections 3.2.2.1 to 

3.2.2.6. 
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Figure 3.2: Schematic flowchart for the proposed Depression-preserved DEM Processing 
(D2P) algorithm.  

3.2.2.1 Topographic sink extraction 

A depression-less DEM was first obtained by filling the sinks using Priority-Flood, a 

depression-filling tool (R. Barnes et al., 2014). All the topographic depressions comprising 

real depressions and artifacts were then extracted by subtracting the input DEM from the 

depression-less DEM. The artifacts are caused by systematic and random errors from the 

precision of data acquisition instrument and processing techniques (Zhu et al., 2013). 

3.2.2.2 Removal of small-scale depressions in DEM 

From the extracted topographic depressions (Section 3.2.2.1), an improved 

adaptation of the level set method (Wu et al., 2019) was applied to characterize the 

depressions in terms of their geometric properties and hierarchy. A depression hierarchy 

describes the relationship between each depression whereby depressions can themselves 
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contain smaller ones. The most-nested depression is referred to as a Level 1 depression and 

the level increases as the depressions combine to form bigger depressions (Figure B.1).  

The level-set method by Wu et al. (2019) establishes the hierarchy by screening each 

depression from the lowest elevation and moving upwards to determine the spill point at 

which depressions combine. One disadvantage of this method is that the screening was 

performed at fixed intervals and could overlook certain depressions (R. Barnes et al., 2019). 

To avoid this, the screening interval must be reduced but the computation can become 

inefficient. Therefore. we modified the method to screen at each unique DEM cell elevation 

within the depression instead of at fixed intervals. This ensures that each depression is 

assigned the correct level in the hierarchy. The level of each depression will be used in 

Section 3.2.2.4. 

After establishing the hierarchy, the area of each depression was determined and the 

average depth of each depression, 𝐷,  was calculated using Equation (3.1). 

𝐷 =  ∑ (𝑧𝑠 − 𝑧𝑖)/𝑛𝑛
𝑖=1  (3.1) 

where 𝑛 is the number of DEM cells within the depression, 𝑧𝑠 is the spill elevation and 

𝑧𝑖 is the elevation of the 𝑖𝑡ℎ cell in the depression. Finally, depressions with an average depth 

and area smaller than their respective predetermined thresholds of 0.0036 m and 900 m2 

respectively were assumed to be inconsequential to the overall hydrologic process. These 

small-scale depressions were removed from the DEM by filling to generate a modified DEM. 

This is also an effective and computationally simple way to remove artifacts from the DEM 

(Li et al., 2011). The thresholds were derived from a sensitivity assessment of the final 

delineated depressions using different threshold values to achieve a balance between 

matching the wetland data from NWI and excessive false matches (Section B.1.2). The 

considerations for the setting of the threshold are also discussed in Section 3.4.1. 

3.2.2.3 Watershed analysis 

The watershed analysis was implemented using the GRASS module, r.watershed 

(GRASS Development Team, 2020). An A* least-cost search algorithm (Hart et al., 1968; Metz 

et al., 2011) was applied on the modified DEM from Section 3.2.2.2 to generate flow direction 
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and river network. This algorithm does not require the DEM to be further altered to 

determine flow direction and extracts the path of rivers through depressions more 

accurately compared to traditional methods (Planchon & Darboux, 2001; L. Wang & Liu, 

2006) with sink filling (Metz et al., 2011).  

3.2.2.4 Classify riverine depressions for targeted preservation 

In this section, we focus on riverine depressions after having removed small-scale 

depressions from the DEM (Section 3.2.2.2). DEMs are especially prone to errors along rivers 

due to the difficulty of sensors in penetrating thick riparian vegetation and water bodies as 

well as the resolution limits in resolving the channel bottom elevation (Lindsay, 2016b; 

Schwanghart & Scherler, 2017). This creates spurious topographic variability along rivers 

leading to depressions inside the channel width with discontinuous bottom slopes that can 

cause model instability (Hengl, 2006; Iserles, 2009; Yu et al., 2020). In addition, high 

resolution LiDAR-derived DEMs can contain false hydrologic barriers such as bridges or 

roads (Carlson & Danner, 2010) that will form false depressions during the depression 

extraction process in Section 3.2.2.1. Such false depressions are rarely addressed in previous 

depression-integrated studies. 

Hence, our goal is to filter out the aforementioned spurious depressions within the 

channel width (Figure 3.3a) and depressions arising from false hydrologic barriers (Figure 

3.3b) to finally keep the remaining water bodies that partially coincide with rivers (Figure 

3.3c). To achieve this, we developed a new metric that takes advantage of the hierarchy of 

depression levels. The metric, referred herein as the river to depression ratio ( 𝑅𝑡𝐷 ), 

provides a measure of the contribution of the river to the makeup of the depression. The 𝑅𝑡𝐷 

was calculated for each highest-level depression using the formula in Equation (3.2). 

𝑅𝑡𝐷 = (
𝑛𝑟

𝑛
) (

𝑛𝐿1,𝑟

𝑛𝐿1

) (3.2) 

In Equation (3.2), 𝑛 is the number of DEM cells within the highest-level depression 

and 𝑛𝑟 is a subset number of cells from 𝑛 that are within the river channel width; while 𝑛𝐿1
 

is the number of DEM cells in all Level 1 depressions (i.e., the most nested depressions) 

within the highest-level depression and 𝑛𝐿1,𝑟 is a subset number of cells from 𝑛𝐿1
 that are 
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within the river channel width. The equation is a product of two ratios. The first ratio is a 

measure of the extent of the depression that coincides with the river. The higher the first 

ratio, the higher the chance the depression falls within the river channel width (Figure 3.3a). 

The second ratio was introduced to specifically distinguish between false depressions 

arising from roads or bridges and actual water bodies that partially coincide with the river. 

It does so by drawing on the depression hierarchy from Section 3.2.2.2 to gage the geometry 

of the depression. Ponds and wetlands generally have a bowl-like structure with a flat 

bottom which manifests itself by the Level 1 cells spreading beyond the river, resulting in a 

lower 𝑛𝐿1,𝑟/𝑛𝐿1
 (Figure 3.3c). On the other hand, in false depressions arising from road or 

bridge crossings, Level 1 cells are mostly concentrated within the river channel width, 

resulting in a higher 𝑛𝐿1,𝑟/𝑛𝐿1
 (Figure 3.3b).  

Using Equation (3.2), depressions with 𝑅𝑡𝐷 lower than a certain threshold would be 

selected for preservation in the next section. To calibrate the threshold, the 𝑅𝑡𝐷  of the 

depression associated with each wetland from NWI data was calculated. The threshold was 

set based on the maximum calculated 𝑅𝑡𝐷.  
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Figure 3.3: Examples of (a) depression within channel width, (b) false depression at 
road/bridge overpass (c) water bodies partially coinciding with river within GCEW. 

By this point, we had identified physically meaningful depressions that we wanted to 

preserve in the DEM. The preserved depressions compared well against the wetlands in the 

NWI data (Figure 3.4). The excluded depressions, namely small-scale depressions, 

depressions within the channel width and depressions associated with false hydrologic 

barriers were all assumed to be artifacts. 

 

Figure 3.4: Illustration of gradual exclusion of select depressions in GCEW study area. (a) 
Delineated sinks from Section 3.2.2.1. (b) Post-removal of small-scale depressions from 
Section 3.2.2.2. (c) Remaining depressions after the removal of depressions within the 
channel width and depressions associated with false hydrologic barriers from Section 3.2.2.4. 

3.2.2.5 River network smoothening 

We applied a quantile regression algorithm to smoothen the river while preserving 

the depressions partially coinciding with the river identified in Section 3.2.2.4. The 

smoothening aims to maintain the general profile while reducing fine scale variability and 

adverse slopes. Previous studies smoothen the river profile by modifying the elevation 

universally based on the average slope of the reach (M. L. Barnes et al., 2016; Condon & 

Maxwell, 2019). The approach we adopt here offers the flexibility to process the river 

segment intersecting with depression differently from other segments. 

Generally, the algorithm works by minimizing the sum of absolute values of the 

residuals given by the difference between the smoothened elevation and the raw elevation 

as well as the roughness. The underlying optimization function of the algorithm, known as 
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the constrained regularized smoothing (CRS) algorithm, is shown in Equation (3.3) 

(Schwanghart & Scherler, 2017).  

𝐚𝐫𝐠 𝐦𝐢𝐧 ∑ (𝜌𝜏(𝑧(𝑥𝑖) − 𝐈𝑧𝜏(𝑥𝑖)))𝑛
𝑖=1 + 𝑠 ∫[𝑧𝜏

′′(𝑥)]2  dx, (3.3) 

where 𝑧(𝑥𝑖)  is the unsmoothed elevation along river profiles 𝑥  distance upstream of the 

watershed outlet, 𝑛  is the number of elevations, 𝐈  is the identity matrix,  𝜏 ∈ [0,1]  is the 

constant chosen according to which quantile needs to be estimated. In this case, 𝜏 was set at 

0.5. 𝑧𝜏 is the estimated elevation. 𝜌𝜏(∙) is a loss function dependent on the residuals 𝑟𝑖 given 

by 

𝜌𝜏(𝑟𝑖) =  (𝜏 −∥𝑟𝑖<0)𝑟𝑖, (3.4) 

where 𝑟𝑖 is defined as 𝑧(𝑥𝑖) − 𝐈𝑧𝜏(𝑥𝑖) and ∥ is an indicator function that has a value of 1 if the 

residual 𝑟𝑖 is less than 0 and a value of 0 otherwise. 𝑠 dictates the degree of smoothening and 

is defined by 

𝑠 = (∆𝑥)2𝐾√
𝑛

𝑝
, (3.5) 

where ∆𝑥  is the resolution of the DEM, 𝑝  is the number of second derivative terms in 

Equation (3.3), 𝐾 is the parameter that scales the degree of smoothing. 

In Schwanghart & Scherler (2017), the river profile was forced to decrease in the 

downstream direction and the degree of smoothening 𝑠 was set to be uniform throughout 

the entire river network. To avoid distorting the actual depressions that intersect the river 

path (e.g. Figure 3.3c), we introduced separate conditions to process river segments within 

depressions and river segments outside of depressions. For river segments outside 

depressions, the downstream elevation was forced to be lower than the upstream by a 

minimum difference 휀 as shown in Equation (3.6) 

𝑧𝜏(𝑥) ≥ 𝑧𝜏(𝑥 − 𝛿𝑥) + 휀, (3.6) 

This was not applied for river segments inside depressions to avoid removing the 

depressions. In addition, 𝑠 was set to be higher for river segments outside of depressions but 
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lower in river segments within depressions to preserve any high curvature structures (e.g., 

dams) downstream of the depressions. 

Lastly, to prevent the river cell being raised inadvertently creating depressions 

outside the river, we introduced a new condition whereby the elevation of the river segment 

was globally set not to exceed that of the riverbanks by 휀.  

𝑧𝜏(𝑥) ≤ min (𝑧𝜏,𝑦+𝛿𝑦(𝑥), 𝑧𝜏,𝑦−𝛿𝑦(𝑥)) − 휀 (3.7) 

Figure 3.5 illustrates the different constraints that were imposed on the river 

segments within the depressions and outside the depressions. The modified algorithm will 

be referred to as the adapted CRS algorithm. Following the implementation of the adapted 

CRS algorithm, we temporarily masked out the stream segments and preserved depressions 

and applied filling on any sinks created as a by-product in the DEM (R. Barnes et al., 2014). 

A final processed DEM was obtained. 

 

Figure 3.5: Illustration of adapted CRS for smoothening of an example river segment in 
GCEW study area. (a) Plan view of river segment in red coinciding with a depression 
delineated in dark blue. (b) Corresponding elevation profile of river segment from (a) before 
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and after the implementation of the adapted CRS for river smoothening. A downstream slope 
was enforced on the river except the segment within the depression. The elevation of the 
rivers segment was globally set not to exceed that of the riverbanks and a lower degree of 
smoothening was applied on the river segment within the depression. 

3.2.2.6 Slope calculation 

The outcome of the above steps was a processed DEM with smoothened rivers and 

retained depressions. In this step, slopes in the north-south and east-west directions were 

calculated for each cell. The north-south slope is defined at the upper cell face between a cell 

and the adjacent cell to the north while the east-west slope is defined at the right cell face 

between a call and the adjacent cell to the east. The calculated slope direction for cells outside 

of depressions was adjusted to match the flow direction by reversing the sign whenever 

there was a discrepancy. The slope magnitude remained unchanged but subject to a 

maximum slope threshold and a minimum slope threshold.  

3.2.3 Comparative analysis 

To assess the performance of D2P, we evaluated the extent and magnitude of its 

modification on the raw DEM and the subsequent impact on overland flow. Since ParFlow is 

used in this study, we chose PriorityFlow (Condon & Maxwell, 2019) , a recent DEM 

conditioning algorithm developed for ParFlow, to be compared against D2P. The algorithm 

followed the traditional way of removing all the sinks and the approach is justified when a 

kinematic wave approximation is used for the overland flow simulation. 

DEM processing algorithms are known to introduce errors since it is difficult to 

ascertain the origin of each depression so the algorithm should ideally achieve a reasonable 

flow path with minimal modification to the DEM (Lindsay & Creed, 2005). Hence, we 

quantified the change in elevation of the processed DEM relative to the source DEM as a 

measure of the change to the landscape. In addition, we performed a rainfall recession 

simulation in ParFlow using the processed DEMs and the raw DEM by applying a rainfall rate 

of 5 mm/hour for 10 hours followed by 20 hours of recession, similar to the test used by 

Barnes et al.  (2016) and Condon and Maxwell (2019) The simulation was performed on an 

impervious surface to focus on surface water processes. Diffusive wave approximation was 

used for overland flow. 
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Table 3.1 summarizes the five DEMs that were used in the comparative study. The 

raw DEM, the processed DEM from the conventional algorithm and the processed DEM from 

D2P are represented by Case 0, Case 1 and Case 4 respectively. Case 1 fills the depressions 

first and smoothens the river by enforcing a constant average slope between two ends of 

each reach. Due to the fundamental differences between the conventional algorithm and D2P 

in terms of the treatment of the depression and river smoothening, two cases were added to 

isolate the effect of each change on the DEM from Case 1 to Case 4. Case 2 changes the river 

smoothening in Case 1 to the use of the adapted CRS with the uniform constraint of elevation 

decreasing downstream (Equation (3.6)). Case 3 uses the adapted CRS with uniform 

constraint of elevation decreasing downstream before filling.  Case 3 is the closest to Case 4 

in terms of the processed DEM except that select depressions are preserved during the 

adapted CRS step and the filling step in Case 4. 

In summary, Cases 1 to 3 condition DEMs using different combination of depression 

treatment and stream smoothening methods without preserving any depression, while Case 

4 incorporates select depressions. An example of a processed river segment from Case 0 to 

Case 4 is illustrated in Figure B.6. 

Table 3.1:  Summary of DEM Processing Methods used for the comparison. 

  Description 
Depression 
Treatment 

River Smoothening 
Depression 
Preserved 

Case 0 Raw DEM None No Yes 

Case 1 

Conventional 
algorithm  

(Condon et al., 
2019) 

Filling 
Yes  

(Constant Slope) 
No 

Case 2 
Case 1 + improved 
stream smoothing 

Filling 

Yes  
(Adapted CRS – 

uniform decreasing 
elevation 

downstream) 

No 

Case 3 
Case 2 + reduced 
modification to 

DEM 

Breaching/filling 
during river 

smoothening + 
post-filling 

Yes  
(Adapted CRS - 

uniform decreasing 
elevation 

downstream) 

No 
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Case 4 
Proposed 
algorithm 

(D2P) 

Selective filling of 
small-scale 

depressions + 
Breaching/filling 

of depressions 
within channel 
width and false 

depressions 
during river 

smoothening  

Yes  
(Adapted CRS – 

uniform decreasing 
elevation 

downstream except 
at preserved 
depressions) 

Yes  
 (Select 

Depressions) 

3.3 Results 

3.3.1 Evaluation of identified depressions 

To evaluate the accuracy of the delineated depressions by D2P algorithm, 1-m 

resolution aerial imagery from the National Agriculture Imagery Program (NAIP) 

(https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-

programs/naip-imagery/) was used to manually delineate the ponds as a benchmark for 

comparison. The imagery was chosen from July 2009 to match the date of the LiDAR DEM 

used in this study. Alongside the DEM resampled to 10-m resolution, the comparison was 

also done at the original LiDAR DEM resolution of 1 m and two other resampled resolutions 

of 5 m and 20 m. The area and depth thresholds are set the same for all the resolutions to 

solely investigate the impact of DEM resolution on depression identification. 

From Figure 3.6a-Figure 3.6d, the D2P algorithm was able to identify at least 85%  of 

the delineated ponds from the NAIP imagery (56 out of 66) at the DEM resolution of 1 m, 5 

m and 10 m but the performance dropped to 35% (23 out of 66) at the coarsest resolution 

of 20 m. This indicates the inability of the 20-m resolution DEM to resolve the scale and 

geometry of the depressions in the study area. Most of the NAIP ponds had an area of the 

same order of magnitude (~400 m2 to 4,000 m2) as the 20 m by 20 m grid cell so the 

depressions in the DEM could easily be lost during the resampling of the DEM. We compared 

the area of the depressions identified by D2P against the NAIP ponds and found a close 

agreement, with a coefficient of determination (𝑅2) of at least 0.75 across all the resolutions. 

In general, there is an overestimation in the area of the depressions delineated by D2P as 

shown in Figure 3.6e. This is because the D2P depression area is determined by filling the 

https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
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depressions in the raw DEM up to the spill point elevation, which makes it the maximum 

possible area. The manually delineated areas from NAIP reflect the state of the pond at a 

specific time but may not be the maximum given the tendency to fluctuate depending on the 

climate. Moreover, vegetation and shadows in the NAIP imagery may mask the true 

boundary of the ponds during manual delineation and result in underestimation of the pond 

extent (Yasarer et al., 2018). Notably, the positive bias tends to increase with the DEM 

resolution because the DEM at higher resolution is better able to represent the boundary of 

the maximum depression area more closely. On the other hand, a coarser resolution DEM 

may fail to capture the irregular boundary of the depression and underestimate the area, as 

is the case for the 20 m DEM especially for the smaller ponds. 

 

Figure 3.6: Scatter plot of area of depressions identified by D2P against that of the manually 
delineated ponds from NAIP imagery at DEM resolutions of (a) 1 m, (b) 5 m, (c) 10 m and (d) 
20 m. (e) Comparison of spatial distribution of NAIP ponds and D2P depressions using DEM 
resolution of 10 m. N is the number of D2P depressions coinciding with NAIP ponds (out of 
a total of 66 ponds). 

Another statistical analysis in the form of the binary pattern measures shown in Table 

3.2 was conducted to further examine the degree to which the D2P depressions agree with 

the NAIP ponds in terms of location and extent. The results affirmed the performance of D2P 

as the 𝑃𝑂𝐷 indicated that more than 85% of the depressions matched the ponds for DEM 

resolutions 10m and lower. D2P produced false alarms across all four DEM resolutions, with 
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the false alarm rate (𝐹𝐴𝑅) ranging from 44% to 53%. This is to be expected due to the 

tendency to overestimate the depression area as explained previously and the fact that not 

all depressions may result in the formation of a pond. In general, as the DEM resolution 

increases, the 𝑃𝑂𝐷 increases but this is offset by an increase in the 𝐹𝐴𝑅, so the resulting 

critical success index (𝐶𝑆𝐼) is similar for the DEM resolutions of 1 m, 5 m and 10 m at about 

50%. However, at the DEM resolution of 20 m, we observe that the 𝑃𝑂𝐷 drops drastically 

but the 𝐹𝐴𝑅 does not decrease in tandem and this causes the 𝐶𝑆𝐼 to decrease significantly to 

32%.  

Table 3.2: Statistical binary comparison of D2P depressions against rasterized NAIP ponds 
across the different DEM resolutions. The definition of 𝑃𝑂𝐷, 𝐹𝐴𝑅 and 𝐶𝑆𝐼 can be found in 
Section B.1.3. 

Resolution 𝑃𝑂𝐷 𝐹𝐴𝑅 𝐶𝑆𝐼 
1 m 0.92 0.47 0.50 
5 m 0.89 0.46 0.50 

10 m 0.86 0.44 0.52 
20 m 0.49 0.53 0.32 

From the above comparisons, we have shown that D2P is able to reasonably identify 

depressions provided that the DEM resolution is able to resolve the scale of the depressions 

of interest. While D2P will perform better in capturing both the location and geometry of the 

known depressions from existing datasets (e.g., NWI, NAIP) with a higher resolution DEM, it 

also generates a higher number of unknown depressions, which can be hard to validate 

without ground truth data. 

3.3.2 Effect of processing methods on DEM 

The extent and magnitude of the impact to the raw DEM by the different methods 

decreased gradually from Case 1 to Case 4, as shown by the percentage of modified cells and 

mean absolute elevation offset in Table 3.3. This agrees with previous research (Lindsay, 

2016a) which showed filling (Case 1 and Case 2) to have a bigger impact on the DEM than a 

hybrid of breaching and filling (Case 3 and Case 4). Between Case 4 and Case 1, D2P reduced 

the percentage of modified cells for the entire watershed from 11.3% to 5.58% and the mean 

absolute elevation offset by 5-fold from 0.0745 m to 0.0145 m compared to the conventional 

algorithm.  
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Focusing on the river network which was more likely to have changed due to the 

additional smoothing step, the elevation of practically all the cells in Case 1 were modified 

compared to only 30.6% of the cells in Case 4. In addition, the magnitude of modification was 

also smaller in Case 4, with a mean absolute elevation offset of 0.223 m compared to 0.648 

m in Case 1. From the boxplot in Figure 3.7, there was a predominant increase in elevation 

in Case 1 and Case 2 but not Case 3 and 4 due to the nature of the filling algorithm. At the 

same time, the elevation offsets were highly variable in Case 1 (-1.5 m to +2 m) and Case 2 (-

0.6 m to +1 m) compared to Case 3 (-0.4 m to +0.4 m) and Case 4 (-0.4 m to +0.4 m). Overall, 

the differences between the river profile from the processed DEM and the raw DEM were the 

highest in Case 1 followed by Case 2 and finally Cases and 3 and 4 which were similar. 

Table 3.3: Statistics of modified cells and absolute elevation offset compared to the raw 
DEM based on all grid cells in the watershed for the four cases. The values in the bracket are 
the statistics for only the grid cells in the river network. 

DEM 
Conditioning 

Method 

Elevation 
% Of Modified 

Cells 
Mean Absolute 

Elevation Offset (m) 
Case 1 11.3 (97.1) 0.0745 (0.648) 
Case 2 8.40 (34.0) 0.0394 (0.328) 
Case 3 6.35 (33.3) 0.0160 (0.240) 
Case 4 5.58 (30.6) 0.0145 (0.223) 
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Figure 3.7: Boxplot of elevation offset from raw DEM of the grid cells in the river network 
for the four cases. The median is represented by the red line in the box. Outliers have been 
removed. 

3.3.3 Effect of processing methods on hydrologic simulation 

To understand the impact of the processing methods on hydrologic simulation, we 

compared the distribution of the simulated surface water depth and the time series of the 

surface water storage and streamflow. Figure 3.8 shows the instantaneous surface water 

depth distribution for two selected locations in the watershed with a high density of ponds. 

10 hours into the simulation at the end of the heavy rainfall, the location and extent of the 

ponds in both Case 0 and Case 4 generally matched that of the ponds extracted from NAIP. 

However, artifactual depressions could be observed in Case 0 such as the one in the black 

circle in Location 2 as a result of using the raw DEM. This is a classic example of a false 

depression arising when a road crosses over the river. In Cases 1, 2 and 3, the depression 

removal process created flat terrain in the NAIP pond areas, resulting in minimal 

accumulation of water less than 0.1m in depth. Notably, Case 1 resulted in a larger flooded 

area compared to Cases 2 and 3 as the elevation of the river profile was raised gradually 

upstream to maintain a constant slope, thereby reducing the capacity of the channels. 30 

hours into the simulation at the end of the recession, the residual water in flat areas in Cases 

1 to 3 had already dried out. On the other hand, the depressions in Case 4 functioned as 

storage by trapping the water and formed isolated ponds. The result was not available for 

Case 0 as the model stopped running at the 11th hour due to the numerical instability from 

using the raw DEM. Overall, the DEM in Case 4 allowed ponding to be modeled realistically 

and the choice of DEM processing resulted in significant difference in the spatial distribution 

of ponding. 
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Figure 3.8: Example surface water depth maps for two-time instants at 2 locations for the 
simulations using the raw DEM (Case 0) and four DEM processing approaches (Case 1-4). (a) 
Rainfall hyetograph in ParFlow simulation (b) Distribution of benchmark depressions 
extracted from NAIP and Locations 1 and 2 (c) Surface water depth map 10 hours into the 
simulation (d) Surface water depth map 30 hours into the simulation. 

Next, we analyzed the surface water storage time series for all cases. The total surface 

water storage (Figure 3.9a) was broken down into a river storage component (Figure 3.9b) 

and a non-river storage component (Figure 3.9c). 

In Figure 3.9a, the total surface water storage was highest in Case 0 and Case 4 at the 

10th hour. Subsequently, the total surface water storage in Case 0 remained the highest until 

the model terminated prematurely. This is because the drainage was poorest in Case 0 due 

to the lack of a smoothened river network that could direct water to flow between cell faces. 

The water from the rainfall became trapped in sinks found mostly along rivers and could 

barely reach the outlet of the watershed. Of the other cases, the total surface water storage 

was highest in Case 4 due to retention of water by the preserved depressions. Although the 

total surface water storage was similar across all depression-less simulations (i.e., Cases 1, 2 

and 3), the choice of river smoothening mechanism and depression treatment resulted in a 

large difference in the distribution of storage between the river and non-river components. 

In Figure 3.9b, the river storage was lower in Cases 1 and 2 than Case 3. This can be attributed 
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to the shallower channel depth (See Table 3.4) from the use of filling to remove depressions 

in Cases 1 and 2. Conversely, the shallower channel depth makes the river more prone to 

overflowing and results in a higher non-river surface water storage in Case 1 and 2 compared 

to Case 3 (Figure 3.9c). 

To examine the effect of preserving depressions on the hydrologic simulation, Case 4 

was compared to Case 3. The river storage in Case 4 was lower (Figure 3.9b) because surface 

runoff was intercepted as non-river storage in surface depressions. After the rain had 

stopped, the non-river storage in Case 4 decreased much slower due to the retention effect 

of the depressions. 

 

Figure 3.9: Time series of the surface water storage for the simulations using raw DEM 
(Case 0) and four DEM processing approaches (Case 1-4). (a) Total surface water storage (b) 
Surface water storage in river cells (c) Surface water storage in non-river cells. 

Table 3.4: Statistics of channel slope and channel depth of GCEW calculated from the raw 
DEM (Case 0) and conditioned DEMs (Case 1 to 4). 

DEM 
Conditioning 

Method 

Channel Slope (-) Channel Depth (m) 

Mean Std. Mean Std. 

Case 0 -0.016 0.051 0.50 0.72 
Case 1 -0.014 0.010 0.39 0.71 
Case 2 -0.014 0.015 0.38 0.49 
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Case 3 -0.015 0.016 0.50 0.63 
Case 4 -0.015 0.019 0.49 0.63 

Figure 3.10 shows the hydrographs at the outlet of the watershed. Without any DEM 

processing, the peak flow was substantially lower in Case 0 as it was difficult for the water 

to flow past the rugged terrain to the outlet of the watershed. The streamflow took about the 

same time to peak for Cases 1, 2 and 3. However, the peak streamflow in Case 3 was visibly 

higher than Case 1 and Case 2 because of the higher flow depth at the outlet. Comparing Case 

4 and Case 3, an attenuation of the peak streamflow was observed in the former due to the 

preserved depressions. The peak stream flow in Case 4 was reduced by 10% compared to 

Case 3 and the hydrograph for Case 4 lagged that of Case 3 by 0.4 hour.  

 

Figure 3.10: Hydrograph at the outlet of GCEW for the simulations using the raw DEM (Case 
0) and four DEM processing approaches (Case 1-4). 

3.4 Discussion 

3.4.1 Threshold for removal of artifacts 

For this study, to distinguish farm ponds from depressions too small to be significant 

to the hydrologic simulation, we set a minimum threshold depression depth of 0.0036 m and 

area of 900 m2 based on NWI data. There is not a universal value that can be applied to all 

cases and the threshold should ideally be determined based on the scale of interest, 
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knowledge of the existing site, DEM resolution and computational efficiency of the 

hydrologic simulation. 

For example, to investigate malaria vector habitat dynamics in Africa, the hydrologic 

model needs to consider smaller (~100 m2) and shallower depressions (< 0.5 m) as the 

dominant malaria vectors prefer transient pools for breeding (Minakawa et al., 1999). On the 

other hand, the threshold will be very different for a reservoir simulation considering that 

the scale of the water body of interest is much bigger. Any existing site information will also 

be helpful in refining the thresholds. Guided by the Minnesota Karst Feature Database 

(KFDB), Wu et al., 2016 used a minimum depression area of 100 m2 and minimum 

depression depth of 0.5 m to identify natural sinkholes. In a separate experiment conducted 

on the Prairie Pothole Region of North Dakota, a different threshold of a minimum 

depression size of 2,000 m2 and minimum depression depth of 0.3 m was chosen based on 

spatial data from US Geological Survey (Wu et al., 2019).  

Area and depth thresholds can also vary with DEM resolution. From the sensitivity 

analysis in Section B.1.2, the performance of the tested thresholds in the successful 

identification of wetlands from NWI data by D2P generally increased with DEM resolution. 

Higher resolution DEMs typically require larger area threshold as there is a higher 

probability of small artifactual depressions that need to be removed (Li et al., 2011). 

However, the same trend was not observed in our study. Instead, the optimal area threshold 

across the resolutions of 1 m, 5 m, 10 m were all around 800 m2 to 900 m2. This could be due 

to the quality and nature of the NWI data which is a record of wetlands and not all 

depressions in the study area. On the other hand, a lower depth threshold may be needed for 

lower resolution DEMs obtained by aggregating a higher resolution DEM. Aggregating a 

higher resolution DEM has the effect of averaging out the topographic variability, resulting 

in shallower depressions.  

Another factor to consider is the trade-off between the realism of the topographic 

representation and computational efficiency. While setting a low threshold would allow the 

DEM to capture most of the depressions, it will also increase the variability in the topography 

which could inadvertently introduce slope discontinuities and develop oscillation and 
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instability issues for some models. For instance, setting the threshold area too low increases 

the chances of including deep yet small depressions that are anomalous and can greatly hurt 

the numerical performance. 

Surface depressions within the channel width and depressions associated with false 

hydrologic barriers were removed based on the calculated 𝑅𝑡𝐷 . The depressions were 

removed if their 𝑅𝑡𝐷  exceeded the threshold that was calculated for known wetland 

locations from NWI. In general, the 𝑅𝑡𝐷 threshold decreases as the resolution increases. The 

calculated 𝑅𝑡𝐷 thresholds were 0.8, 0.54, 0.33 and 0.076 for DEM resolutions of 20 m, 10 m, 

5 m and 1 m respectively. This is due to the overestimation of the areal representation of the 

river at lower resolutions. The performance of the 𝑅𝑡𝐷  threshold in distinguishing false 

depressions associated with roads or bridges from water bodies that coincide with the river 

drops as the resolution decreases. This is due to the inability of the DEM to fully resolve the 

depression hierarchy at lower resolutions. At 20-m DEM resolution, the 𝐹𝐴𝑅 (Table 3.2) was 

particularly high which can be attributed to the inclusion of false depressions. 

3.4.2 Impact of filling vs hybrid algorithms on hydrologic simulation 

Many studies have compared the influence of different DEM processing algorithms on 

the DEM in terms of elevation, slope and hydrological attributes (Callow et al., 2007; Lindsay, 

2016a; Lindsay & Creed, 2005; Woodrow et al., 2016). In line with those studies, our 

comparison across the four cases shows that the filling based algorithms in Case 1 and Case 

2 produced a greater impact on the DEM quantified by the number of modified cells and 

elevation offset in Table 3.3 and Figure 3.7. However, the impact of the DEM processing 

algorithms on the hydrological simulation is rarely discussed. From the rainfall recession 

simulation, we observed local differences in the pattern of the ponding between filling and 

hybrid algorithms, especially around false depressions arising from the crossing of a road 

over a river. In Case 1 and Case 2, filling raised the elevation of the upstream river valley to 

at least match the level of the road crossing, and this resulted in inundation over a large area 

upstream of the road crossing with relatively similar elevation. In extreme cases, the flat 

inundated area could create an obstruction to the incoming river and cause the flow to back 

up, increasing the computational demands. On the other hand, the hybrid algorithm in Case 
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3 breached the road crossing and allowed water to flow through the river channel relatively 

easily. In addition, both the filling and hybrid algorithms resulted in roughly similar mean 

channel slopes, but the former reduced the channel depth by 22% to 25% compared to the 

latter. This could cause overestimation of fluvial flooding as alluded to by the higher non-

river storage in Figure 3.9c and potentially result in overly conservative flood management 

policies. 

3.4.3 Impact of depression integration on hydrologic simulation 

We showed in our rainfall recession simulation that the inclusion of depression 

modified the hydrologic response of the watershed. We observed an attenuation in 

streamflow at the watershed outlet and increase in lag time of the hydrograph as the 

depressions stored some of the rainfall and delayed the arrival of runoff to the rivers. This 

mechanism is widely acknowledged by other similar studies (Nasab & Chu, 2020; Yasarer et 

al., 2018; Zeng et al., 2020). At the same time, by explicitly representing the depressions in 

the DEM, we presented a viable means to capture the hydrologic connectivity between the 

depressions which is rarely achieved in the existing depression-integrated hydrologic 

models. The connectivity between ponds, headwater streams and downstream waters was 

evident in Case 4 at the end of the rainfall event in Figure 3.8c. Long after the rainfall event 

when the supply of water had stopped, the connecting streams that were ephemeral in 

nature gradually dried up, resulting in geographically isolated ponds in Figure 3.8d. This 

process was absent in Case 3 as there was no storage function with a depression-less DEM. 

By accounting for depression storage in model simulations, it is possible to improve the 

accuracy of flood hazard studies and allow surface depressions to be leveraged as part of a 

holistic approach in mitigating flood risk and preventing overpredictions. Beyond flood 

hazard studies, depression integrated hydrologic modeling has the potential to augment 

water resources management by enhancing the spatial delineation of water across the 

watershed and providing a more effective guide for local irrigation and crop rotation 

strategies (Rajib et al., 2020). Lastly, it is feasible to explicitly represent the connectivity 

between depressions and streams in studies to understand the effects of the transport of 

materials and biological fluxes within aquatic ecosystems (Leibowitz et al., 2019). 
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3.4.4 Limitation of the algorithm 

There are three main limitations to D2P. Firstly, the artifactual riverine depressions 

were removed if the 𝑅𝑡𝐷 was below the threshold, which requires knowledge of locations of 

wetlands in the study area especially those that intersect with the river. In our case, we 

derived the 𝑅𝑡𝐷 threshold from NWI data, which is only available within the US. For future 

applications outside of the US, there is a need to check the local database for similar 

information or resort to other means to determine the 𝑅𝑡𝐷 threshold such as through field 

survey. If the above is still not feasible, the threshold can be estimated iteratively by a 

sensitivity analysis.  

Secondly, a D2P-processed DEM can result in higher computational demands in 

distributed hydrological modeling than depression-free DEMs. By comparing the number of 

solver iterations among the five cases in Figure 3.11, Case 4 generally had a higher 

computational demand than Cases 1 to 3. The number of iterations increased sharply near 

the 5th time step where the water was just starting to fill the depression. This process was 

harder to solve in ParFlow at the point when the overland flow component was activated. 

From the 7th to 10th timestep, Case 1 required the highest number of iterations than Cases 

2 to 4. One possible reason was that the flat areas created by the filling process in Case 1 

obstructed the incoming flow from the river and caused it to back up, increasing the 

computational demands. After the rain stopped, the surface water flow in Cases 1 to 3 

decreased and became gradually easier to solve compared to Case 4 where water was 

retained by the depressions. Notably, the number of iterations required in Case 0 was 

substantially higher than the other cases, indicating that some degree of DEM processing was 

necessary for modeling purpose. 
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Figure 3.11: Comparison of number of solver iterations in ParFlow for each time step across 
the cases. 

Finally, we note that hydro-conditioned DEMs produced by the D2P workflow are 

optimized for hydrologic routing methodologies that rely on topographic slopes, such as 

ParFlow. Consequently, D2P DEMs may not necessarily be optimal for hydrologic models 

that rely directly on topographic heights or in flood hazard simulation where the extent and 

depth of ponded areas are sensitive to certain topographic features along the river (Hodges, 

2015; Sanders & Schubert, 2019). In Section 3.2.2.4 and 3.2.2.5, we removed all depressions 

within the river channel width as shown in Figure 3.3a as we could not distinguish artificial 

depressions from real features such as riffles and pools. However, the D2P workflow could 

be adapted to meet slightly different needs with respect to removing some features in the 

DEM and retaining others. For example, the 𝑅𝑡𝐷 threshold can be adjusted higher to retain 

more stream depressions and exempt them from the enforcement of the downslope 

condition in the adapted CRS algorithm.  

3.5 Summary and conclusions 

Despite the growing emphasis on the impact of surface depressions on hydrologic 

processes, there is a lack of a formalized DEM processing tool that can resolve surface 
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depressions of interest for fully distributed hydrologic modeling. To address this gap, we 

present the Depression-Preserved DEM Processing (D2P) algorithm, a novel automated 

workflow that provides a representation of the land surface consistent with hydrologic 

processes being resolved while removing small-scale, non-physical variability in the DEM for 

computational efficiency. To achieve the above, the D2P algorithm includes several features, 

namely (1) improved delineation of surface depressions by screening depressions at 

variable instead of fixed intervals, (2) adoption of a new metric, 𝑅𝑡𝐷, leveraging depression 

hierarchy to filter out artifactual riverine depressions and (3) adaptation of a hybrid 

approach to smoothen the river in a way that enforces the general downslope profile while 

preserving surface depressions that intersect the river path. 

The application of the proposed algorithm in a case study in GCEW minimizes the 

modification to the original DEM and the identified depressions match well with the 

delineated ponds from NAIP imagery. The performance of D2P in identifying depressions 

was evaluated over four different resolutions of 1 m, 5 m, 10 m and 20 m. In addition, the use 

of the D2P-processed DEM in a distributed hydrologic model also highlights the difference 

that the incorporation of depressions makes to the simulated ponding, water storage and 

streamflow. Following are the conclusions drawn from the study: 

(1) For the selected study area in GCEW, the D2P algorithm was able to identify at least 

85% of the delineated ponds from NAIP satellite imagery at the DEM resolution of 1 

m, 5 m and 10 m but not at 20 m. The performance of D2P did not vary much as the 

DEM resolution decreased from 1 m to 10 m.  

(2) Compared to a conventional DEM processing algorithm which removes all the 

depressions, the D2P algorithm has a significantly lower impact on the raw DEM by 

reducing the percentage of modified cells for the entire watershed by 51% and the 

mean absolute elevation offset by 81%. 

(3) The hydrologic simulation for the rainfall recession test showcases the ability of D2P 

to capture the spatial distribution of physically meaningful depressions and their 

storage function. The depression-integrated simulation results in higher total 
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surface water storage as well as an attenuated and delayed peak streamflow due to 

retention of water by the preserved depressions. 

Although LiDAR DEMs are generally of high accuracy and can provide a good 

representation of the landscape, the direct use of the raw DEM in hydrologic models using 

topographic slopes to route flow results in significant computational demands. The proposed 

D2P algorithm provides a systematic means to balance the need to process DEM for ease of 

computation and the preservation of surface depressions of interest. While we have only 

demonstrated the application of D2P for small water bodies in GCEW, the algorithm can also 

be used to process DEMs in the context of larger water bodies such as Prairie Potholes. The 

choice of hydrologic model would have to be tailored to the nature and geometry of the water 

bodies of interest.  

Our case study of a test rainfall event clearly suggests that the treatment of surface 

depressions and the choice of method for smoothening topographic variability (e.g., filling 

and breaching) have a significant influence on the hydrologic simulation results. D2P adopts 

a minimum impact approach to avoid distorting terrain attributes unnecessarily while 

offering the user flexibility in altering depressions under different settings. Future work 

involves testing and evaluating the D2P algorithms across different landscapes. D2P 

facilitates depression-integrated studies using more fully distributed hydrologic models like 

ParFlow. This can provide new insights into complex hydrologic systems and help improve 

water resources management and environmental sustainability decisions. 
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Chapter 4 

 

Investigating the Impact of Irrigation on Malaria Larval Habitats and 

Transmission using a Hydrology-based Model 

4.1 Introduction 

Malaria is a deadly disease induced by parasites that are transmitted to humans 

through the bites of infected female Anopheles mosquitoes. It is particularly acute in sub-

Saharan Africa and remains one of the most pressing public health challenges in the region. 

95% of malaria cases and 96% of deaths in 2020 were recorded in sub-Saharan Africa alone 

(World Health Organization, 2021). A combination of accelerated population growth and 

arid conditions worsened by climate change has inevitably created pressure on food security 

(Ward et al., 2016). This drives the development of several irrigation schemes across the 

region, which has been associated with increased malaria risk (Mangani et al., 2022). Most 

studies assess the relationship between irrigation and transmission based on field 

observations at a limited number of discrete points in space and time (Haileselassie et al., 

2021; Kibret et al., 2014; Ondeto et al., 2022). It remains a challenge to understand the 

underlying mechanism and develop counter measures to mitigate the impact of irrigation.    

Malaria modeling has been used over a century to understand transmission dynamics 

and guide intervention strategies (Ross, 1908). Originating from the basic Ross-Macdonald 

model, many compartmental models have inherited its simplifying assumptions such as 

homogeneous biting and well-mixing of hosts and vectors, which is a shortcoming of 

representing the vectors and hosts as a population group rather than individuals (Reiner et 

al., 2013). In cases where spatial heterogeneity and stochasticity are important such as in a 

low-transmission setting, agent-based models (ABMs) can provide explicit representation of 

individual actions and responses (N. R. Smith et al., 2018). Examples of advanced ABMs 

include EMOD (P. A. Eckhoff, 2011), OpenMalaria (T. Smith et al., 2006) and a model 

developed at Imperial College (Griffin et al., 2010). These models are widely used in malaria 

intervention studies (Galactionova et al., 2021) but they cannot be applied directly in regions 
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with irrigation as they typically rely only on rainfall as a source of water to quantify larval 

habitats (P. A. Eckhoff, 2011). 

Essentially, ABMs tend to oversimplify the link between vector ecology and 

hydrology. The availability of water for breeding is affected by hydrological processes which 

are highly non-linear and spatially variable. In a hydrologic cycle, rainfall is partitioned into 

infiltration and surface runoff based on the soil type. The resulting surface runoff will 

accumulate or drain depending on the topography and surrounding vegetation. The 

persistence of the ponded water can also be influenced by evapotranspiration which varies 

with land use type. Besides rainfall, breeding sites can develop from groundwater, irrigation 

and around dams and reservoirs. In irrigated settings, crop production and distribution 

change seasonally so irrigation varies accordingly. Within a season, the application of 

irrigation also depends on soil saturation and crop water use. The spatiotemporal 

heterogeneity in irrigation results in habitats of different persistence and productivity. This 

diversity complicates the pattern of adult mosquito density and malaria transmission 

intensity (Frake et al., 2020), which warrants the incorporation of hydrology into ABMs. 

In this study, we couple an integrated physical based hydrologic model, ParFlow-CLM  

(Ashby & Falgout, 1996a; J. E. Jones & Woodward, 2001; Kollet & Maxwell, 2006; Maxwell, 

2013; Maxwell & Kollet, 2008), with EMOD for a test site in Ethiopia. EMOD was chosen 

because it is open source and can be easily modified to assimilate inputs from an external 

hydrologic model. Our aim is to demonstrate how incorporating hydrologic processes to 

estimate larval habitats can affect malaria transmission intensity and seasonality. Using the 

coupled model, we then examine the impact of an existing irrigation scheme on the 

spatiotemporal dynamics of malaria transmission. 

4.2 Materials and methods 

4.2.1  Study site 

We conducted the study in the Arjo-Didessa sugarcane plantation and its surrounding 

area in the Oromia Region State, western Ethiopia (Figure 4.1). The study site includes a 

commercial sugarcane plantation of 5,000 hectares that rely on many migrant workers for 
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planting and harvesting. The plantation area will be expanded to 80,000 hectares when the 

irrigation channel construction is completed. The site elevation ranges from 1275 to 2105 m 

above sea level with a mean annual rainfall of 1,560 mm from 1994 to 2020 (Figure C.1). The 

rainy season is between May and October and the dry season occurs in the rest of the year. 

Monthly average relative humidity varies widely from around 40% to 80% and follows the 

rainfall pattern while monthly average temperature ranges from 19 °C to 24 °C and is lower 

in rainy season than dry season (Figure C.2). Malaria prevalence in this area is less than 3% 

and transmission is seasonal, with cases peaking between September to December (Hawaria 

et al., 2019). Anopheles arabiensis is the major vector in Arjo. The two main parasites are 

Plasmodium falciparum and Plasmodium vivax with the latter being the predominant 

species. 

 

Figure 4.1: Study site and model domain. The hydrologic model domain demarcated in 
black contains part of the Arjo-Didessa sugarcane plantation.  The EMOD model domain 
demarcated in purple only focuses on the irrigated farms. The surveyed larval habitats were 
used to estimate larval density and those within the hydrologic model boundary were used 
for hydrologic model calibration. The three health facilities are frequented by the plantation 
workers and provide clinical data for EMOD calibration. 
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4.2.2  Data collection 

ParFlow-CLM requires climate data including rainfall, short-wave radiation, long-

wave radiation, air temperature, surface pressure, specific humidity and wind speeds to 

drive the hydrologic processes. The data were obtained from Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System-

Climate Data Record (PERSIANN-CCS-CDR) (Sadeghi et al., 2021) and the Fifth Generation 

European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) (Hersbach et al., 

2018). Air temperature, humidity and long-wave radiation were adjusted to account for the 

mismatch in surface elevation between ERA5 and the study area, following the method by 

Cosgrove et al. (2003). For processes at the land surface, topography was obtained from a 

commercial global digital elevation model, ALOS World 3D (Takaku & Tadono, 2017), and 

land covers information was extracted from Global Land Cover Mapping Project which is 

based on Landsat and Chinese HJ-1 satellite images (Chen et al., 2015). The DEM was 

processed using the D2P algorithm from Chapter 2. To characterize the subsurface, soil 

properties were referenced from SoilGrids250m TAXOUSDA dataset (Hengl et al., 2017) for 

the top 2 m from the surface and the parameters for the deeper zone beyond the top 2 m 

were defined using GLHYMPS 2.0 (Gleeson et al., 2014). The bottom of the deeper zone was 

delineated based on the depth to bedrock data from SoilGrids250m BDRICM (Hengl et al., 

2017). In EMOD, the input air temperature, land temperature and humidity were also 

obtained from ERA5 while rainfall was from PERSIANN-CCS-CDR. The list of model input 

data can be found in Table C.1. 

Besides the above data, field survey was conducted. Larval habitat data were 

collected over several campaigns from 2017 to 2021, with a total of 769 sampled points. The 

survey mainly targeted villages and the surveyed larval habitat locations are shown in Figure 

4.1. Mosquito larvae were sampled following the WHO standard larval survey procedure 

using a standard dipper (350 ml). Larvae were identified morphologically and sorted by 

genus as Anopheles or Culex in the field.  Larval density, habitat type and habitat dimension 

were recorded. Habitat locations within the hydrologic modeling domain were used to 

validate the predicted aquatic habitats simulated in ParFlow-CLM. The measured larval 

density was used to determine the larval carrying capacity of the habitats in EMOD. To 
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validate EMOD, population data, malaria prevalence rates and clinical cases were obtained 

from local health facilities (Figure 4.1). 

4.2.3 Model approach 

4.2.3.1  Model background 

We used ParFlow-CLM, a process-based gridded model, to simulate the hydrologic 

processes in the Arjo study site in Ethiopia. ParFlow solves the variably saturated subsurface 

flow and overland flow while CLM calculates the canopy water balance and terrestrial energy 

balance influenced by land cover characteristics. Due to its ability to simulate complex 

surface-subsurface interactions, ParFlow-CLM can resolve a diverse range of water bodies 

driven by heterogenous hydrological and geomorphological processes which result in 

different breeding habitats such as rain-fed pools, flood basins and spring-fed ponds (M. W. 

Smith et al., 2013). 

EMOD was used to simulate malaria transmission in the study area. The modeled 

region in EMOD can be represented as a single node or divided into multiple nodes. As a 

stochastic ABM, it simulates the simultaneous interactions between humans and mosquitos 

within each node, using decision rules based on individual agent properties and with 

randomness (Bill & Melinda Gates Foundation, 2022b). The properties are defined by user 

inputs on demographic, climate, mosquito, parasite and intervention parameters. The model 

simulates vector population dynamics (e.g. vector life cycle, vector survival and feeding), 

human population dynamics, human immunity, within-host parasite dynamics as well as 

effects of interventions such as antimalarial drugs and vaccines (P. Eckhoff, 2013).  

4.2.3.2  Linking habitat representation in EMOD with ParFlow-CLM 

In EMOD, natural larval habitats commonly comprise temporary, semi-permanent, 

permanent (constant) habitats and each habitat type is calculated based on a different 

equation (P. A. Eckhoff, 2011). Temporary habitats are driven mainly by rainfall and decays 

at a rate proportional to the evaporation rate which is a function of temperature and 

humidity. The area of temporary habitats in each node at time 𝑡, 𝐻𝑡𝑒𝑚𝑝
𝑡 , is calculated by: 

𝐻𝑡𝑒𝑚𝑝
𝑡 =  𝐻𝑡𝑒𝑚𝑝

𝑡−1 + 𝜆𝑡𝑒𝑚𝑝𝑃𝑡𝐷𝑐𝑒𝑙𝑙
2 − 𝐻𝑡𝑒𝑚𝑝

𝑡−1 𝜏𝑡𝑒𝑚𝑝
𝑡 ∆𝑡                               (4.1) 
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and 

𝜏𝑡𝑒𝑚𝑝
𝑡 = 5.1 × 1011𝑒

−5628.1

𝑇𝑡 𝑘𝑡𝑒𝑚𝑝√
0.018

2𝜋𝑅𝑇𝑡
(1 − 𝑅𝐻𝑡),                             (4.2) 

where 𝜆𝑡𝑒𝑚𝑝 is a scaling factor, 𝑃𝑡  is rainfall at time 𝑡, 𝜏𝑡𝑒𝑚𝑝
𝑡  is a decay rate at time 𝑡, 𝐷𝑐𝑒𝑙𝑙 is 

the grid size in degree, ∆𝑡 is the time interval,  𝑇𝑡 is temperature in Kelvin at time 𝑡, 𝑘𝑡𝑒𝑚𝑝 is 

a decay factor, 𝑅 is the universal gas constant 8.314 J/mol/K and 𝑅𝐻𝑡 is the relative humidity 

at time 𝑡.  

Similar to temporary habitats, semi-permanent habitats are also driven by rainfall but 

the decay rate is a constant independent of temperature and humidity. Semi-permanent 

habitats are configured to decay slower than temporary habitats. Using a scaling factor 𝜆𝑠𝑒𝑚𝑖 

and a decay rate 𝜏𝑠𝑒𝑚𝑖, the area of semi-permanent habitats 𝐻𝑠𝑒𝑚𝑖
𝑡  is calculated as: 

𝐻𝑠𝑒𝑚𝑖
𝑡 =  𝐻𝑠𝑒𝑚𝑖

𝑡−1 + 𝜆𝑠𝑒𝑚𝑖𝑃
𝑡𝐷𝑐𝑒𝑙𝑙

2 − 𝐻𝑠𝑒𝑚𝑖
𝑡−1 𝜏𝑠𝑒𝑚𝑖∆𝑡,                             (4.3) 

Lastly, permanent habitats are assumed to be independent of rainfall, temperature 

and humidity. The area, 𝐻𝑝𝑒𝑟𝑚
𝑡 , remains the same over time and is determined by a constant 

𝜆𝑝𝑒𝑟𝑚:  

𝐻𝑝𝑒𝑟𝑚
𝑡 =  𝜆𝑝𝑒𝑟𝑚𝐷𝑐𝑒𝑙𝑙

2,                                                    (4.4) 

We incorporated hydrology into EMOD by replacing the habitat calculation with the 

output from ParFlow-CLM. In ParFlow-CLM, we simulated the spatiotemporal distribution 

of surface soil saturation, which was used to determine the availability of surface water that 

could contribute to ponding. At each grid cell, ponding is assumed to occur if the soil 

saturation exceeds a threshold, 𝜃, calibrated based on field larval habitat observations. Each 

cell is classified into temporary (15-90 days), semi-permanent (90-180 days) or permanent 

habitat (more than 180 days) depending on the duration of ponding. Rivers with high 

flowrates were not considered since Anopheles larvae have a lower chance of surviving in 

fast-moving water (A. J. Hardy et al., 2013). Details of the concept of the hydrologic 

simulation and larval habitat identification can be referenced in Jiang et al. (2021). For each 

time step, the fraction of the study area covered by each habitat type (i.e., 𝐹𝑡𝑒𝑚𝑝
𝑡 , 𝐹𝑠𝑒𝑚𝑖

𝑡 , and  
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𝐹𝑝𝑒𝑟𝑚
𝑡 ) was calculated and input into EMOD. Finally, the area for each habitat type was 

obtained after multiplying the fractional area coverage by the nodal area as follows: 

𝐻𝑡𝑒𝑚𝑝
𝑡 =  𝐹𝑡𝑒𝑚𝑝

𝑡 𝐷𝑐𝑒𝑙𝑙
2,                                                     (4.5) 

𝐻𝑠𝑒𝑚𝑖
𝑡 =  𝐹𝑠𝑒𝑚𝑖

𝑡 𝐷𝑐𝑒𝑙𝑙
2,                                                     (4.6) 

and 

𝐻𝑝𝑒𝑟𝑚
𝑡 =  𝐹𝑝𝑒𝑟𝑚

𝑡 𝐷𝑐𝑒𝑙𝑙
2,                                                    (4.7) 

where 𝐹𝑡𝑒𝑚𝑝
𝑡 , 𝐹𝑠𝑒𝑚𝑖

𝑡 , 𝐹𝑝𝑒𝑟𝑚
𝑡  are the fractional area coverage of temporary, semi-permanent 

and permanent habitats, respectively. 

4.2.3.3  Habitat larval capacity 

EMOD requires the user to define a larval capacity per unit area (𝐿𝐶) for each habitat 

type, which represents the hypothetical number of larvae that can co-exist within a 1 degree 

by 1 degree habitat area. The habitat larval capacity per unit area is multiplied by the 

variation in habitat area derived from the previous section to determine the habitat larval 

capacity time series in the model domain. 

𝐿𝐶  was estimated using field survey data for each habitat type (Section C.1.1). In 

Table 4.1,  𝐿𝐷𝑑𝑖𝑝  represents the larval density in number of larvae per dip. We then 

converted 𝐿𝐷𝑑𝑖𝑝 to an equivalent number of larvae per unit degree squared (𝐿𝐷) based on 

the opening area of the standard dipper which is 13 cm in diameter. To obtain 𝐿𝐶 , we 

adjusted 𝐿𝐷  by a scaling factor ( 𝑠 ) during the calibration of EMOD. The adjustment is 

necessary because using 𝐿𝐷 directly will overestimate the larval capacity as surveyors tend 

to dip at locations with a higher density of larvae within a sampled habitat.  

Table 4.1: Laval density derived from field survey and calibrated larval capacity per unit 
area for each habitat type. 

Habitat Type 

Larval Density 
Larval Capacity  
per Unit Area 

𝐿𝐷𝑑𝑖𝑝 

(#/dip) 
𝐿𝐷 

(#/degree2) 
𝐿𝐶 = 𝑠 × 𝐿𝐷  
(#/degree2) 

Temporary  0.167 1.97×1011 2.28×107 
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Semi-Permanent 0.089 1.05×1011 1.21×107 

Permanent 0.440 5.18×1011 6.00×107 

In summary, we identified potential larval habitats in ParFlow-CLM and classified 

them into temporary, semi-permanent and permanent habitats as an input to the vector 

cycle simulation in EMOD. The overall schematic of our modeling approach is shown in 

Figure 4.2. 

 

Figure 4.2. Framework for integrating ParFlow-CLM with EMOD. 

4.2.4  Model configuration 

4.2.4.1  Model domain 

In a previous study, ParFlow-CLM was successfully applied in Arjo for larval habitat 

identification over a one-year period through 2018 (Jiang et al., 2021). Here, we expanded 

the hydrologic simulation to a 20-year period from 2000 to 2020. The model domain area 

was 208 km2 (Figure 4.1). To keep the computational time manageable, we decreased the 

spatial resolution from 50 m to 100 m and reduced the number of subsurface layers from 10 

layers to 5 layers. The layer thickness from ground surface to bedrock was 0.1 m, 0.3 m, 0.6 

m, 1 m and 78 m respectively, over a total vertical depth of 100 m. 

For malaria transmission modeling in EMOD, we focused on the farmland areas 

within the hydrologic modeling domain (Figure 4.1). The EMOD domain was 10 km by 10 

km and configured as a single node.  
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4.2.4.2  Model scenarios 

Three model scenarios were developed for this study. In the first scenario, herein 

referred to as “Default EMOD”, malaria transmission was simulated in EMOD based on the 

default larval habitat equations (Equations (4.1) to (4.4)) which are functions of rainfall, 

temperature and relative humidity. The second scenario, “Integrated EMOD-NonIrr”, 

replaced the default habitat equations in EMOD with the habitat simulation from ParFlow-

CLM using Equations (4.5) to (4.7). No irrigation was applied in this scenario. The third 

scenario, “Integrated EMOD-Irr”, is similar to “Integrated EMOD-NonIrr” but irrigation was 

applied.  

Irrigation started in 2012 and a 4-year sugarcane planting cycle was adopted in the 

model as shown in Figure 4.3. The cycle includes a 2-year cycle for virgin and two 1-year 

cycles for ratoons. The irrigation scheme was designed based on the planting cycle and the 

months with irrigation are shown in Figure C.4. During the irrigation season, irrigation was 

applied every 10 days for the first 3 days. Each day, 5.3 mm/hour of sprinkler water was 

applied for 22 hours. The derivation of the irrigation rate can be found in Section C.1.2. 

In the three scenarios, malaria intervention including indoor residual spraying and 

the use of bed nets was modeled per the schedule shown in Figure 4.3 based on 

communication with the local district health office. 

 

Figure 4.3: Configuration of intervention and irrigation in the coupled model. 

As we do not have information on the total area of the habitats in the study area and 

to allow a fair comparison, the scaling factors (𝜆𝑡𝑒𝑚𝑝, 𝜆𝑠𝑒𝑚𝑖 and 𝜆𝑝𝑒𝑟𝑚) in the “Default EMOD” 

scenario were set individually such that the average area of each habitat type over the 
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simulation period was aligned with that of the “Integrated EMOD-NonIrr” scenario. In 

addition, the decay parameters 𝑘𝑡𝑒𝑚𝑝  and 𝜏𝑠𝑒𝑚𝑖  in the “Default EMOD” scenario were also 

adjusted to match the variability of the “Integrated EMOD-NonIrr” scenario (Figure C.5). 

4.2.4.3  Model calibration 

We chose the “Integrated EMOD-Irr” scenario to calibrate ParFlow-CLM and EMOD 

and used the same calibrated parameters for the “Default EMOD” and “Integrated EMOD-

NonIrr” scenarios. This is because observed data was only available for the period after 

irrigation was implemented in the study area. This also prevented the effect of incorporating 

hydrology or irrigation from being obscured by using different parameters in each scenario. 

For ParFlow-CLM, as the spatial resolution was modified from the previous study, we 

recalibrated the saturation threshold, 𝜃. The calibration was to ensure that the model will 

predict the occurrence of ponding at locations in line with the field surveyed larval habitats 

for soil saturation above the selected threshold (Section C.1.3) (Jiang et al., 2021). In EMOD, 

we identified 10 key parameters (Table C.2) for calibration after a sensitivity analysis. The 

calibration was performed such that the simulated prevalence rate and pattern of clinical 

cases could match local data (Section C.1.3). The rest of the parameters were either set based 

on default values in EMOD or referenced from Gerardin et al. (2015) and Selvaraj et al. 

(2018). 

4.2.4.4  Spatial realization of transmission through heterogeneity of habitats 

To demonstrate how the heterogeneity of habitats can affect malaria transmission, 

we conducted an additional analysis by discretizing the EMOD domain into a 10 by 10 grid. 

Each grid cell was 1 km by 1 km and modeled as an individual node in EMOD. All the nodes 

were assigned the same calibrated parameters from the single node model but the input 

habitat was specific to the area covered by each grid cell. This was only applicable to the 

“Integrated EMOD-NonIrr” and “Integrated EMOD-Irr” scenarios. The habitat simulation in 

the “Default EMOD” was unable to reflect spatial heterogeneity due to the scale of the climate 

data used to derive the habitats. 
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4.3 Results 

4.3.1 Effect of hydrology on larval habitats and malaria transmission 

Figure 4.4 shows a comparison of the larval habitat area as a fraction of the study area 

between the “Default EMOD” scenario and the “Integrated EMOD-NonIrr” scenario. In both 

scenarios, the variation in the total larval habitat area was in tandem with rainfall and largely 

seasonal (Figure 4.4a). The mean total larval habitat area was 0.27 of the study area in both 

scenarios but the “Integrated EMOD-NonIrr” scenario exhibited a wider range. The use of the 

default habitat equations in EMOD caused high frequency fluctuations that are a direct result 

of rainfall. In contrast, the larval habitats derived from the hydrologic model do not exhibit 

such quick response to rainfall. Overall, the habitats in the “Integrated EMOD-NonIrr” 

scenario have a larger intra-annual variability (Figure 4.4b) and inter-annual variability 

(Figure 4.4c). This is due to the fundamental difference in the underlying equations leading 

to the derivation of habitats between the two scenarios, which will be discussed further in 

Section 4.4.1. 

Figure 4.4d, Figure 4.4e and Figure 4.4f show the breakdown for each habitat type. Of 

the total larval habitat area, permanent habitats were the most dominant, accounting for 

0.16 of the study area, followed by semi-permanent habitats (0.084) and temporary habitats 

(0.033). In the “Integrated EMOD-NonIrr” scenario, the fluctuation in habitat area gradually 

becomes smoother from temporary, to semi-permanent and finally permanent habitats 

which corresponds with the increasing stability of the habitats. In each year, the distribution 

between the habitat types can vary significantly depending on the magnitude and duration 

of rainfall in that year. For example, there were more temporary habitats relative to semi-

permanent habitats in 2012, and vice-versa in 2015, due to a difference in rainfall pattern. 

In contrast, the difference in stability and dynamic distribution between temporary and 

semi-permanent habitats was less apparent in the “Default EMOD” scenario. Notably, the 

area of permanent habitats remained constant throughout the years, a key difference from 

the “Integrated EMOD-NonIrr” scenario, in which permanent habitats were defined as 

habitats with more than 180 days of ponding and subject to temporal variations. 
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Figure 4.4: Comparison of daily simulated larval habitat area between “Default EMOD” 
scenario and “Integrated EMOD-NonIrr” scenario from 2010 to 2020. (a) Total habitat area 
is broken down into (d) temporary habitats (e) semi-permanent habitats and (f) permanent 
habitats. The total habitat area was used to plot (b) intra-annual variability and (c) inter-
annual variability. Intra-annual variability represents the distribution of 20-year average 
habitat area for each day of a year. Inter-annual variability represents the distribution of 
annual average habitat area for each year. The simulation was performed for a 20-year 
period from 2000 to 2020 but here we only show the results from 2010 to 2020 for simplicity. 

Figure 4.5 compares the annual average results of habitat larval capacity (Figure 

4.6a), total adult vectors (Figure 4.6b), fraction of vector infected (Figure 4.6c) and parasite 

prevalence rate (Figure 4.6d) between the “Default EMOD” scenario and the “Integrated 

EMOD-NonIrr” scenario. The average habitat larval capacity was identical in both scenarios 

since the average total larval habitat area was the same. However, the number of adult 

vectors was slightly higher (by 3%) in the “Default EMOD” scenario. The resulting difference 

was further amplified to 5.3 times for average fraction of vectors infected and 4.7 times for 

average prevalence rate. Given that all other input data and parameters in EMOD were the 

same, this can be traced back to the discrepancy in temporal pattern of the daily habitat 

larval capacity (Figure C.9c), with a visibly lower variability in the “Default EMOD” scenario 

providing a stable environment for the vector to thrive in throughout the year. The results 

suggest the temporal variation in larval habitat from incorporating hydrology can 

significantly alter malaria transmission dynamics. 
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Figure 4.5: Comparison of annual average malaria transmission indictors between “Default 
EMOD” scenario and “Integrated EMOD-NonIrr” scenario from 2000 to 2020. The indicators 
include (a) habitat larval capacity (b) adult vector abundance (c) adult vector infection rate 
and (d) parasite prevalence rate. 

4.3.2 Effect of irrigation on larval habitats and malaria transmission 

Figure 4.6 compares the dry season and rainy season larval habitat area for each 

habitat type between the “Integrated EMOD-NonIrr” scenario and the “Integrated EMOD-Irr” 

scenario over the irrigated period from 2012 to 2020. Overall, irrigation increased the 

habitat area in both seasons. In the dry season (Figure 4.6a), irrigation increased the larval 

habitat area across all the habitat types. Although irrigation was not applied in the rainy 

season, irrigation before and after the rainy season prolonged the stability of temporary and 

semi-permanent habitats and converted them to permanent habitats (Figure 4.6b). The 

results indicate that irrigation may enable the development of vectors in the dry season 

while stabilizing the growth in rainy seasons.  
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Figure 4.6: Comparison of larval habitat area during (a) dry season and (b) rainy season 
between the “Integrated EMOD-NonIrr” scenario and the “Integrated EMOD-Irr” scenario. 
Habitats are further classified into temporary, semi-permanent and permanent types. The 
simulation was performed for a 20-year period from 2000 to 2020 but here we only show 
the results from 2012 onwards when irrigation began. 

Figure 4.7 compares the daily times series of habitat area (Figure 4.7b), larval 

capacity (Figure 4.7c), adult vector population (Figure 4.7d), entomological inoculation rate 

(EIR) (Figure 4.7e) and parasite prevalence (Figure 4.7f) between the “Integrated EMOD-

NonIrr” scenario and the “Integrated EMOD-Irr” scenario over the irrigated period from 

2012 to 2020. The differences in the larval density for each habitat type introduce more 

variability to larval capacity as the relative abundance of each habitat type is dynamic. The 

pattern of the adult vector population generally follows that of habitat larval capacity. 

However, the EIR cycle lags adult vector population cycle by 2 months and the parasite 

prevalence cycle lags the EIR cycle by another 1 month. 

The increase in habitat area arising from the applied irrigation contributed to an 

increase in adult vector population beyond the irrigation periods as well as EIR and parasite 

prevalence. The simulated daily EIR hit a maximum of 0.0061 in September 2017, a 4.7-fold 

increase compared to the “Integrated EMOD-NonIrr” scenario. In the same year, the 

maximum prevalence occurred around October with a 3-fold increase to 0.033. It was also 

found that the EIR and prevalence peaks, which typically occurred around 
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October/November and November/December respectively, were both shifted forward by 

about one month after irrigation was applied.  

 

Figure 4.7: Time series of daily applied irrigation in the “Integrated EMOD-Irr” scenario and 
comparison of simulated daily malaria transmission results between “Integrated EMOD-
NonIrr” scenario and “Integrated EMOD-Irr” scenario. Malaria transmission results include 
(b) habitat area (c) habitat larval capacity (d) adult vector abundance (e) entomological 
inoculation rate and (f) parasite prevalence rate. The simulation was performed for a 20-
year period from 2000 to 2020 but here we only show the results from 2012 onwards when 
irrigation began. 

4.3.3  Spatial variation of malaria transmission 

Figure 4.8 compares the spatial distribution of larval habitats, adult vector abundance 

and parasite prevalence between the “Integrated EMOD-NonIrr” scenario and the 

“Integrated EMOD-Irr” scenario for the dry season from November 2016 to April 2017 and 

rainy season from May 2017 to October 2017. This period was selected because the effect of 

irrigation was the most pronounced (Figure 4.7). Overall, larval habitats formed more easily 
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in the southwestern region which is characterized by clay-rich soil with low permeability 

(Figure C.10). Besides soil type, the distribution of the habitat types within the study area 

varied substantially with hydrologic processes depending on the local topography, land use 

and irrigation. In both the dry and rainy seasons, irrigation expanded the area covered by 

habitats and increased the stability of existing habitats from the “Integrated EMOD-NonIrr” 

scenario.  

Like habitat area, the adult vector hotspots in both seasons were enlarged and 

intensified by irrigation. The increase in vector population was larger in the dry season, due 

to the creation of more habitats in the northern region by irrigation. The adult vector 

hotspots were mostly concentrated around permanent habitats, which were configured with 

the highest larval capacity based on field data.  

In general, irrigation increases the difference in prevalence rate between the rainy 

season and dry season. Without irrigation, the parasite prevalence cycle peaked in 

November and December of the dry season, lagging the peak adult vector population from 

the preceding rainy season by about three months. Hence, the average prevalence in the 

rainy season was not necessarily higher than the dry season. In 2017, irrigation was applied 

from November 2016 to April 2017, connecting two rainy seasons and creating favorable 

conditions for breeding over more than a year. As a result, the prevalence in the second rainy 

season was visibly higher than the preceding dry season (also see Table C.3). This reiterates 

that the effect of irrigation was not just limited to the dry season and attention should also 

be given to the rainy season. 
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Figure 4.8: Spatial distribution of daily average larval habitats, adult vectors and PCR 
parasite prevalence in the dry season (November 2016-April 2017) and rainy season (May 
2017-October 2017). The simulated larval habitats, adult vectors and PCR parasite 
prevalence from the “Integrated EMOD-NonIrr” scenario are presented in (a), (e) and (i) for 
the dry season and (c), (g) and (k) for the rainy season. Similarly, the simulated larval 
habitats, adult vectors and PCR parasite prevalence from the “Integrated EMOD-Irr” scenario 
are presented in (b), (f) and (j) for the dry season and (d), (h) and (l) for the rainy season. 

4.4 Discussion 

4.4.1 Role of hydrology in habitat seasonality and implications on transmission 

The average vector infection and prevalence rates in the “Default EMOD” scenario 

were significantly higher than the “Integrated EMOD-NonIrr” scenario, which was attributed 

to the larval habitat input. From Figure 4.4a, one of the most noticeable differences between 

the two scenarios was the degree of seasonality of the larval habitat. In this case, the mean 

habitat area was the same in both scenarios but the magnitude of the seasonal variation was 

larger when hydrology was incorporated. The first reason is the default habitat function in 

EMOD assumed that the permanent habitat area was at equilibrium and remained constant 
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throughout the simulation. In reality, permanent habitats such as those in river edges are 

likely to vary in area with climate conditions over a multi-year simulation. Secondly, there 

was no infiltration mechanism for the other two habitat types (Equation (4.1) and Equation 

(4.3)) so new ponds started forming immediately at the onset of the rainy season and 

continued forming towards the end of the rainy season whenever there was rainfall. The 

result was an earlier rising limb and a delayed falling limb in the time series compared to the 

“Integrated EMOD-NonIrr” scenario (see Figure C.11for an example). As the mean area in 

both scenarios were the same, the “Default EMOD” scenario time series naturally ended up 

with a wider but flatter crest. 

Due to high larval capacity per unit area for permanent habitats, the degree of 

seasonality in the habitat larval capacity time series is even more pronounced (Figure C.9c). 

To evaluate the effect of the degree of seasonality in the larval habitat on malaria 

transmission, we conducted a sensitivity analysis using a synthetic sinusoidal time series for 

larval habitat fractional area with the same mean but different amplitudes: 

𝐹𝛼
𝑡 = 𝛼 cos(365.25𝑡 + 125.2) + �̅�,                                          (4.6) 

where 𝛼  is amplitude of fractional area, 𝐹𝛼
𝑡  is fractional area at time 𝑡 , �̅�  is the mean 

fractional area specific to the study derived from the hydrologic model.  

The results of the sensitivity analysis can be found in Figure C.12 and are summarized 

in Table 4.2. By reducing the seasonal amplitude from 0.2 to 0.1, adult vector population 

remained relatively unchanged but the vector infection and prevalence rates tripled. For the 

extreme case when 𝛼 was reduced to 0, the vector infection and prevalence rates increased 

further by 4.29 times and 4.80 times respectively. This finding agrees with the higher 

simulated malaria transmission in the “Default EMOD” scenario compared to the “Integrated 

EMOD-NonIrr” scenario (Figure C.9e-g). One possible explanation is that the consistent adult 

vector population in the case where 𝛼  was 0 resulted in a stable parasite transmission 

throughout the year. As 𝛼  increased, the disparity between the high and low vector 

abundance seasons increased. In the low vector abundance season, transmission was 

minimal. In the high vector abundance season, transmission increased but was still limited 

by the human population. This resulted in an overall lower average vector infection rate and 
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prevalence. Therefore, a nuanced approach considering not only the general trend but also 

the seasonality of larval habitats is required to accurately predict malaria transmission. 

Table 4.2: Average simulated adult vector abundance, adult vector infection rate and 
parasite prevalence rate for different amplitudes of larval habitat seasonality, 𝛼. 

𝛼 Adult Vectors 
Vectors Infection 

Rate 

Parasite Prevalence 

Rate 

0.2 1.00 1.00 1.00 

0.15 1.00 2.10 2.22 

0.1 1.01 2.96 3.23 

0.05 1.01 3.76 4.18 

0 1.01 4.29 4.80 

4.4.2 Insights provided by modeling on the effect of irrigation 

By coupling hydrologic modeling with EMOD, we were able to investigate the effect 

of irrigation on malaria by comparing two scenarios whereby irrigation was the only 

difference. This allows us to isolate the effect of other environmental and social variables 

such as temperature, rainfall, topography and demography from the relationship between 

irrigation and malaria transmission. The significance of our approach is that it supplements 

past field comparative studies whereby the effect of irrigation could have been obscured by 

different field settings (Ijumba & Lindsay, 2001). The approach also has the potential to 

explore hypothetical scenarios to better guide decision making in water resource 

management. 

Our modeling elucidates a few ways in which irrigation affected malaria transmission 

dynamics through larval habitats. First, all three habitat types increased in the dry season 

while temporary and semi-permanent habitats converted to permanent habitats in the rainy 

season. During the dry season, the increase was greater in the temporary and semi-

permanent habitats compared to permanent habitats which were the dominant habitat 

(Figure 4.6a). The result was an increase in diversity of the habitats and agrees with field 

observations (Hawaria et al., 2019). On the other hand, permanent habitats became even 

more dominant in the rainy season. The change in relative abundance and stability of the 

habitats may favor the growth and survival of one vector species over the other, shifting the 



 

80 
 

predominant vector species in the extreme case (Bamou et al., 2018; Chaves et al., 2021; 

Naranjo-Díaz et al., 2020).  

Next, irrigation not only creates transmission all-year round but also intensifies the 

main transmission period during the rainy season in terms of EIR and prevalence rate 

(Figure 4.7e-f). Studies have shown that irrigation can extend malaria transmission 

throughout the year due to the availability of water for breeding in the dry season (Kibret et 

al., 2014). Our results also show that irrigation during the dry season can also increase the 

stability of the habitats in the rainy season by creating high soil moisture conditions 

favorable for ponding prior to the onset of the rainy season. As habitat stability is linked to 

adult vector density (Ndenga et al., 2011), the dominance of permanent habitats during the 

rainy season resulted in a proliferation of adult vectors compared to the non-irrigation 

scenario which had a higher proportion of semi-permanent habitats. Besides a higher adult 

vector population in the main transmission season, there could also be carryover of parasites 

in the human population from the dry season (Midekisa et al., 2015), resulting in a higher 

vector infection rate. This ripple effect has been observed in past studies (Midekisa et al., 

2015; Pascual et al., 2008) investigating the link between malaria transmission season and 

preceding rainfall. Our results suggest that irrigation can also produce the same cascading 

effect. 

Thirdly, the modeling revealed that peak malaria transmission was shifted forward 

by around one month in the irrigation scenario (Figure 4.7e-f). Studies in East Africa have 

shown that rainfall is significantly correlated with malaria transmission with a lag time of 1 

to 2 months (Loevinsohn, 1994; Zhou et al., 2004). The lag can be attributed to the time for 

infiltration to occur and runoff to accumulate low-lying areas as well as the development 

time for parasite growth. Past observations have proven that irrigation plays the same 

function as rainfall in providing larval habitats to support vector growth (Herrel et al., 2001; 

Ohta & Kaga, 2014). Hence, irrigation in the dry season in our study created a pseudo early 

rainfall season, which causes earlier onset of mosquito breeding and peak in transmission. 

Lastly, we demonstrated the effect of irrigation on the spatiotemporal distribution of 

malaria transmission by considering the heterogeneity of larval habitats (Figure 4.8). 
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Discussion on the association between irrigation and malaria transmission is not new 

(Ijumba & Lindsay, 2001). While past observations tell us that irrigation can increase the 

adult vector population (Demissew et al., 2020), it remains a challenge to predict where and 

when breeding will occur (Frake et al., 2020). Integrating local irrigation practice and 

environmental characteristics such as land use, topography and soil properties, the model 

provided new insights into the breeding hotspots which were broken down into temporary, 

semi-permanent and permanent habitat types. This information can help LSM as a 

supplementary vector control by prioritizing resources for operational planning. LSM is 

known to be efficient where habitats are findable, few and fixed (Djamouko-Djonkam et al., 

2019; Stanton et al., 2021). Based on the results, we can identify the location of habitats, 

period with manageable habitat abundance and single out semi-permanent and permanent 

habitats for targeted larviciding. Comparing the non-irrigation to irrigation scenario also 

allows us to distinguish habitats hotspots induced by irrigation from those already present 

without irrigation. Other means such as water resource management can be considered to 

control the former. 

4.5 Conclusion 

Malaria transmission is intrinsically related to larval habitats, which cannot be 

characterized by climate alone. By coupling a hydrologic model with an agent-based malaria 

model, the variability of larval habitats increased and resulted in a significantly lower 

malaria transmission as opposed to modeling habitats based on a simplified function of 

climate factors. We also demonstrated how habitat heterogeneity based on hydrologic 

processes could affect the spatiotemporal dynamics of malaria transmission.  

The hydrology-integrated framework enabled us to investigate the effect of irrigation 

on malaria transmission through changes to larval habitats which were broken down into 

temporary, semi-permanent and permanent types. Results indicated that all three habitat 

types increased in the dry season while temporary and semi-permanent habitats converted 

to permanent habitats in the rainy season. This influenced the transmission dynamics 

significantly as transmission was sustained all-year round and intensified during the main 

season. Lastly, the malaria transmission peak was shifted forward by around one month. 
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These findings can help guide malaria intervention strategies to mitigate the effect of 

irrigation. 

This study presents a novel generalizable framework that simulates the 

spatiotemporal dynamics of malaria transmission under the influence of irrigation by 

integrating hydrologic modeling with an agent-based model. The model can be used to 

simulate different water resource management practices with the objective of developing 

tailor-made intervention strategies. 
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Chapter 5 

 

Conclusion 

5.1 Summary 

Irrigation has been associated with an increase in malaria risk but the underlying 

mechanism is not well understood. Irrigation can increase the availability of water for larval 

habitat formation but the governing hydrologic processes are complex and spatially variable. 

The incorporation of hydrologic modeling is therefore essential to understand the effect of 

irrigation on malaria. A framework to improve the larval habitat representation in an agent-

based model by coupling with a distributed hydrologic model was presented. A new 

topographic conditioning workflow was developed to resolve physically meaningful land 

surface depressions relevant to larval habitats in the hydrologic model. The framework was 

used to investigate the effect of irrigation on transmission dynamics. An irrigated sugarcane 

plantation in Arjo, Ethiopia was selected as the study area. 

In Chapter 2, using high resolution (50 m) distributed hydrologic modeling with 

remotely sensed data, I examined its ability to simulate potential malaria vector larval 

habitats and analyzed the influence of irrigation in the year of 2018. The model was 

calibrated using field observations of larval habitats to successfully predict ponding at all 

surveyed locations from the validation dataset. Results show that without irrigation, the area 

inside farms was inherently more prone to ponding than the area outside farms. With 

irrigation, the probability of finding potential larval habitats inside the farms in the year 

increased from 40% to 67%. Irrigation also dampened the seasonality of the potential larval 

habitats such that the peak larval habitat occurrence window during the rainy season was 

extended. Lastly, the stability of larval habitats was prolonged, with a significant shift from 

semi-permanent habitats to permanent habitats lasting beyond 6 months, pointing to the 

impact of irrigation in creating conducive mosquito habitats throughout most of the year. 

Despite a growing emphasis on the impact of surface depressions on hydrologic 

processes, there is a lack of a formalized DEM processing tool that can resolve surface 
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depressions of interest for fully distributed hydrologic modeling. In Chapter 3, a new 

topographic conditioning workflow, Depression-Preserved DEM Processing (D2P) 

algorithm, was presented with the following key features: (1) an adaptive screening interval 

for delineation of depressions, (2) the ability to filter out anthropogenic land surface features 

(e.g., bridges), (3) the ability to blend river smoothing (e.g., a general downslope profile) and 

depression resolving functionality. The proposed algorithm was applied in a case study in 

GCEW. 

For the selected study area, the D2P algorithm performed well in identifying 

delineated ponds with area of 900 m2 or larger from NAIP satellite imagery at the DEM 

resolution of 1 m, 5 m and 10 m but not at 20 m. By comparing D2P and a traditional DEM 

filling method, D2P had a significantly lower impact on the raw DEM as it avoids distorting 

terrain attributes unnecessarily by offering user flexibility in conditioning depressions. 

Furthermore, hydrologic simulation using the D2P processed DEM resulted in a more robust 

characterization on surface water dynamics based on higher surface water storage as well 

as an attenuated and delayed peak streamflow. The case study also suggests that the 

treatment of surface depressions and the choice of method for smoothening topographic 

variability (e.g., filling and breaching) have a significant influence on the hydrologic 

simulation results.  

Building on Chapter 2 and Chapter 3, Chapter 4 details the coupling of the hydrologic 

modeling framework with an agent-based malaria model (EMOD). The habitat function in 

EMOD was replaced by larval habitats simulated by the hydrologic model, which were 

classified into temporary, semi-permanent and permanent habitats. By including detailed 

hydrologic process, the inter- and intra-annual variabilities of larval habitats increased and 

resulted in a significantly lower malaria transmission. The study further revealed that the 

higher the amplitude of seasonality, the lower the transmission. This is due to the lack of a 

consistent adult vector population to sustain parasite transmission throughout the year. 

Using the coupled model to investigate the effect of irrigation on malaria 

transmission, it was found that all three habitat types increased in the dry season while 

temporary and semi-permanent habitats converted to permanent habitats in the rainy 
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season. This indicates that irrigation may enable the development of vectors in the dry 

season while stabilizing the growth in rainy seasons. As a result, transmission was sustained 

all-year round and intensified during the main season. The latter can also be attributed to 

the carryover of parasites in the human population from the dry season. Lastly, the malaria 

transmission peak was found to be shifted forward by around one month. Presumably, 

irrigation in the dry season in the study created a pseudo early rainfall season, which caused 

an earlier onset of mosquito breeding and peak in transmission. 

Through developing a hydrology-based malaria model and improving the 

representation of surface depressions in the DEM used by the model, insights were gained 

into the impact of irrigation on the spatiotemporal distribution of larval habitats and malaria 

transmission. The framework presented in this dissertation particularly helps larval source 

management as a supplementary vector control by identifying malaria hotspots and 

prioritizing resources for operational planning. 

5.2 Limitations and future work 

This dissertation presents a novel generalizable framework that seeks to explicitly 

simulate the spatiotemporal distribution of malaria larval habitats and study transmission 

dynamics under the influence of irrigation by integrating hydrologic modeling with an agent-

based model. Some limitations remain which require more future work. 

Firstly, I chose to simulate the surface layer soil saturation at 50 m resolution in 

Chapter 2 and 100 m in Chapter 4, coupled with a threshold, to quantify ponding instead of 

explicitly simulating the surface water depth. It is not feasible to simulate surface water 

depth at the scale of the larval habitats because this requires higher model resolution which 

will result in an unmanageable run time. An integrated hydrologic model like ParFlow details 

the nonlinear interactions and connections between groundwater levels, soil moisture and 

land energy. Even with parallel computing resources, running multi-year simulations at 

resolutions lower than 50 m will still be a challenge. With ongoing advances in accelerator 

architectures such as graphic processing units (GPUs), modifying ParFlow to adopt these 

architectures may alleviate this constraint (Hokkanen et al., 2021). In addition, developing a 
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scaling relationship from low to high resolution for soil saturation or water level can also be 

explored. Applying this relationship to the simulated results can allow the model to run at 

lower resolution with low computational cost while producing detailed spatial variability 

and patterns of ponding. 

Secondly, the artificial habitats (i.e., formation independent of topography) are not 

considered in this framework. Examples of artificial habitats include water containers, 

discarded tires and water tanks which are more related to human activities. Although these 

habitats are less likely to be observed in the rural setting like Arjo, it is not the case in the 

urban setting and hence limits the applicability of this framework. Future work should 

incorporate aerial imagery and socio-economic data on household, street and landmarks and 

explore other means to estimate artificial larval habitats. 
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Appendix A 

 

Supporting Information for Chapter 2 

A.1 Supplementary text 

A.1.1 Input data 

Using GRASS 7.6, the 1 arc-second DEM from SRTM was resampled to 50 m grid 

resolution. Subsequently, the resampled DEM data was hydro-conditioned to ensure that the 

drainage networks are connected using the global slope enforcement approach (M. L. Barnes 

et al., 2016) and converted to ground surface slopes as an input to ParFlow. The land cover 

type data used in CLM was determined by 30 m resolution Landsat-8 data, which was first 

filtered by cloud cover and processed with an unsupervised classification approach using k-

mean clustering into ten classes in ENVI. The ten classes were resampled to 50 m resolution 

and then grouped into the IGBP land cover types and checked against Google Earth images 

for consistency. The dominant IGBP types for the study area are cropland and grassland.  

To characterize the subsurface, the soil taxonomy distribution (Figure A.2) for the top 

2 m from the surface was referenced from the SoilGrids250m TAXOUSDA dataset (Hengl et 

al., 2017) and ranked by their relative permeability. Each soil type was then assigned a 

saturated hydraulic conductivity within the range of 0.0015-0.015 m/hour (United States 

Department of Agriculture. Soil Science Division Staff, 2017) characteristic of either clay or 

clay loam. The saturated hydraulic conductivity of the deeper zone beyond the top 2 m was 

assigned an averaged value of 0.11 m/h based on GLHYMPS 2.0. The depth to bedrock data 

from SoilGrids250m BDRICM dataset (Hengl et al., 2017) was used to delineate the bedrock 

zone and the hydraulic conductivity was set to 0.00001 m/h to render the corresponding 

grid cells impermeable. 

For the climate forcing, 0.04 degree by 0.04-degree precipitation data was resampled 

to the model grid using bilinear interpolation while the rest of the forcing data fields were 

relatively coarser at either 0.25 degree by 0.25 degree or 0.5 degrees by 0.625 degrees so an 
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average value was used for the entire domain.  All the forcing data were pre-processed in 

NCAR Command Language (NCL) and input to the model hourly. 

The list of model input data can be found in Table A.1. 

A.1.2 Model simulation 

In this study, a baseline was generated over the year of 2018 followed by a scenario 

with the implementation of a synthetic irrigation scheme during the dry season. The 

watershed model spans an area of 208 km2 and has a high resolution, both spatially and 

temporally. The model resolution is 50 m and there are 332 by 248 cells. The model was 

divided into 10 subsurface layers and the thickness of each layer varies, decreasing gradually 

towards the surface. For the irrigation scenario, the sugarcane plantation in the study area 

was grouped into four farms. The soil textural classes of the study area are clay and heavy 

clay soils and the peak admissible infiltration rate of these soils was 4mm/hour. The 

efficiency of sprinkler irrigation was estimated at 75%. Hence, a 10 mm/day irrigation 

operational module using the hose-moving sprinkler system was applied on alternate farms. 

The daily irrigation time was 22 hours per day and the irrigation interval of 10 days 

proposed by sugar factory agronomists was adopted.  

The model was initialized in two stages. In the first stage, the CLM component was 

not activated and the initial water table was set at the surface without meteorological 

forcing. The simulation was run until the average water table reached 2 m below the land 

surface. During this process, the water drains from the mountainous areas to valleys, forming 

rivers and streams naturally. Next, the CLM component was activated and the transient 

meteorological forcing from the year of 2017 was repeated three years for the model to reach 

a sufficient state of equilibrium. 

All model simulations were conducted on the High-Performance Computing Cluster 

at the University of California, Irvine. A 1-year simulation required 88 CPU cores and about 

12 days to complete. 



 

110 
 

Figure A.4 shows the time series of precipitation, temperature, and simulated surface 

layers soil saturation for the baseline simulation and streamflow at points A, B, and C (see 

Figure 2.1).   

Figure A.5 compares the time series of the simulated surface layers soil saturation for 

the baseline and irrigation simulations. In general, the surface layer soil saturation fluctuated 

in tandem with precipitation. Irrigation during the dry season increased the surface layer 

soil saturation and the pattern of fluctuation was influenced heavily by the alternating 

irrigation scheme. Also, the surface layer soil saturation varied depending on the location. 

For instance, Point B which is in Farm 2 had the highest soil saturation and was near 

saturation point most of the time from August to September because it is located close to a 

small stream. The baseline results show that the surface soil saturation of the four locations 

was relatively low in the dry months (January to April), ranging from 5% to 15% but could 

go up to as high as 100% in the rainy season (May to October). In the scenario with irrigation, 

the soil saturation increased two-fold to about 50 in the dry months. This contributes to 

surface water detention, which can potentially generate more breeding sites. As the 

irrigation ended in April with the onset of the rainy season, the increase in the saturation of 

the irrigation scenario over the baseline gradually reduced until they were both the same 

after more than a month. 

A.1.3 Soil saturation threshold 𝜽 parameterization 

A.1.1.1 Aquatic habitat survey 

The aquatic habitats were surveyed during the dry (December 2017–February 2018) 

and rainy (June 2018–August 2018) seasons (Hawaria et al., 2020).  Mosquito larvae were 

sampled following the WHO standard larval survey procedure using a standard dipper 

(350 ml). Larvae were identified morphologically and sorted by genus as Anopheles and 

Culex in the field.  Environmental variables such as habitat type, habitat dimension and land 

cover type were recorded using the Android-based tablet PC with ODK Collect application 

(Hartung et al., 2010) while the coordinates of each surveyed aquatic habitat were captured 

with the built-in Geographic Positioning System (GPS) sensor.  All the data were eventually 



 

111 
 

uploaded onto the ODK Aggregate Server (Hartung et al., 2010) on the cloud-based Amazon 

Web Services (AWS).  

Post survey, all the aquatic habitats and larvae survey metadata were pulled out from 

the ODK Aggregate (Hartung et al., 2010) MySQL database (version 5.7, Oracle Corporation, 

California, USA) and analyzed with JMP (version 14, SAS Institute, North Carolina, USA) and 

Microsoft Excel (Version 2019, Microsoft Corporation, Washington, USA). Spatial data 

aggregation, analysis, and visualization were produced with ArcGIS Pro 2.5 (ESRI, 2020) The 

locations of the surveyed aquatic habitats are shown in Figure 2.3. 

A.1.1.2 Calibration and validation 

The soil saturation threshold 𝜃  for the rainy season from May to October of the 

baseline scenario was calibrated using the survey data in the same period to minimize the 

influence of dry season irrigation on the parameterization. This is because irrigation was not 

accounted for in the baseline scenario and was only approximated by a simplified scheme in 

the irrigation scenario. Of the 134 samples for the year 2018, some of the surveyed aquatic 

habitats such as man-made ponds, tire track puddles, and animal footprints which could not 

be simulated by the hydrologic model were omitted, leaving 102 samples for calibration and 

validation as shown in Figure 2.3. 

The objective of the calibration was to maximize the 𝑃𝑂𝐷, which determines if the 

model can predict an aquatic habitat successfully. Other measures which can capture 

overprediction were not chosen here as the field data only cover locations with ponding and 

it is challenging to definitively rule out small puddles within the grid cell using satellite data. 

As shown in Equation (A.1), the 𝑃𝑂𝐷 was calculated based on the ratio of the number of 

successful predictions or hits, 𝐻, to the total number of samples, 𝑆. In a successful prediction, 

the 𝑊𝐼 is at least 1 day given that an aquatic habitat is sampled at the same time and location. 

The 𝑃𝑂𝐷 ranges from 0 to 1, with 1 corresponding to perfect detection. 

𝑃𝑂𝐷 =
𝐻

𝑆
                                                                      (A.4) 

As the same dataset was used for both calibration and validation, 75% of the samples 

were randomly selected for the former and 25% for the latter. To ensure the relevance of the 
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calibrated saturation threshold, bootstrapping was performed by randomly resampling the 

same dataset based on the 75:25 ratio with replacement to derive 1000 combinations as a 

representation of all the possible combinations. Each combination was used to calculate the 

𝑃𝑂𝐷 corresponding to the saturation threshold within a predefined range of 0.4 and 1, at 

intervals of 0.02. To determine and assess the reliability of the optimal threshold, the average 

𝑃𝑂𝐷, and the associated 95% confidence interval values were computed for each saturation 

threshold.  

Figure A.6 shows the results from the calibration and validation of the bootstrap 

samples. It can be observed that the average 𝑃𝑂𝐷 of the validation was consistent with that 

of the calibration for each saturation threshold. The confidence interval for validation was 

wider than that of calibration due to the smaller number of survey samples used. The average 

𝑃𝑂𝐷  for both the calibration and validation samples first reached 1 when the saturation 

threshold value decreased to 0.48. At the same time, the confidence intervals decreased to 

close to zero, indicating high reliability. Hence, the optimal saturation threshold was set as 

0.48 to ensure that all the observed aquatic habitats were captured in the model. 
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A.2 Supplementary figures 

 

Figure A.1: Typical rain-fed ponding in the study area in Arjo. The study site was in the 
valley bottom which is characterized by clay and clay loam with low permeability soil with 
high annual precipitation around 1500 mm which mainly distributed in the rainy season 
from May to October.  This rainfall distribution and irrigation during the dry season created 
many long-term surface water storages that provide potential mosquito habitats. 

 

Figure A.2: The distribution of the top 2mm soil types in USDA soil taxonomy from 
SoilGrids250m TAXOUSDA dataset. Most soil types in this area are characterized as clay or 
clay loam with low permeability ranging from 0.0015 to 0.015 m/hour. 
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Figure A.3: Arjo-Didessa Sugar Factory sugarcane plantation irrigation schedule. A normal 
sugar planting schedule (a) includes a 2-year cycle for virgin and (b) 1-year cycle for 
following (2~8) ratoons. The symbol for each stage: MA: Maturity/water withdraw; H: 
Harvesting; LW: Land work; P: Planting; RF: Rainfed; IR: Irrigation. 

 

 

Figure A.4: Time series of precipitation, temperature, and simulated surface layers soil 
saturation for the baseline simulation and streamflow at point A, B, and C (see Figure 2.1)  
All the time series were spatially-averaged, except streamflow. 
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Figure A.5: Time series of precipitation, temperature, and simulated surface layers soil 
saturation for the irrigation scenario at a specific point of each of the four farms (see Fig 1). 
The precipitation and temperature profiles were spatially averaged. The soil saturation 
profile reflects the 2-cycle rotational irrigation schedule whereby Farm #1 and Farm #3 
were irrigated first followed by Farm #2 and Farm #4. 
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Figure A.6: Model performance from the calibration and validation of the saturation 
threshold. The 75% of the samples were selected for calibration and the other 25% for 
validation and the process was repeated 1000 times. The mean 𝑃𝑂𝐷  values from the 
calibration and validation are represented by the blue line with a circle marker and red line 
with a cross marker, respectively. The corresponding 95% confidence intervals are indicated 
by the dotted blue and red lines, respectively. 

A.3 Supplementary tables 

Table A.1: ParFlow-CLM model input data and their properties. 

Variable Resolution 
Input 
Type 

Latency Source 

Topography 30-meter Distributed -  
SRTM Version 3.0 
(JPL, 2013) 

Precipitation 
0.04°×0.04°, 
1-hourly 

Distributed ∼1 hour 
PERSIANN-CCS (Hong 
et al., 2004; Nguyen et 
al., 2019) 

Short-Wave 
radiation 

0.25°×0.25°, 
3-hourly 

Distributed 4.5-5.5 month GLDAS (Rodell, 2004) 

Long-Wave 
radiation 

0.25°×0.25°, 
3-hourly 

Distributed 4.5-5.5 month GLDAS 

Air 
Temperature 

0.25°×0.25°, 
3-hourly 

Distributed 4.5-5.5 month GLDAS 

Atmospheric 
Pressure 

0.25°×0.25°, 
3-hourly 

Distributed 4.5-5.5 month GLDAS 

Water-vapor 
specific 
humidity 

0.25°×0.25°, 
3-hourly 

Distributed 4.5-5.5 month GLDAS 

North-to-South 
Component of 
Wind Speed 

0.5°× 
0.625°, 1-
hourly 

Distributed 4.5-5.5 month 
MERRA-2 (Gelaro et 
al., 2017) 

East-to-West 
Component of 
Wind Speed 

0.5°× 
0.625°, 1-
hourly 

Distributed 4.5-5.5 month 
MERRA-2 (Gelaro et 
al., 2017) 

Land use 
30-meter 
16-day 

Distributed ~12 hours 

Landsat 8 (United 
States Geological 
Survey Earth 
Resources 
Observation and 
Science Center, 2013) 
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Soil type 250-meter Distributed - 
SoilGrids250m, 
TAXOUSDA (Hengl et 
al., 2017) 

Depth to 
Bedrock 

250-meter Distributed - 
SoilGrids250m, 
BDRICM (Hengl et al., 
2017) 

Near Surface 
Permeability (< 
100 m) 

Regional 
Scale 

Distributed - 
GLHYMPS, 2.0 
(Gleeson et al., 2014) 
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Appendix B 

 

Supporting Information for Chapter 3 

B.1 Supplementary text 

B.1.1 Depression hierarchy 

An example of depression hierarchy is illustrated by the binary tree representation 

in Figure B.1. Each node represents a nested depression which aggregates to form a 

compound depression. Nodes 1 and 2 from Level 1 fill the Node 3 to form a larger Level 2 

depression. When Node 3 overflows along with Node 4, they begin to fill Node 5 up to Level 

3. There can be other depressions like Node 6 that do not contain nested depressions. 

B.1.2 Sensitivity analysis on threshold selection 

The vertical accuracy of the original 1-m resolution LiDAR DEM is 0.09 m in terms of 

the root mean square error which means that the vertical error of the DEM is about 0.18 m 

at 95% confidence interval. Resampling the DEM to a lower resolution has the effect of 

reducing the vertical area by the scaling factor. For example, by error propagation analysis, 

the vertical error of the resampled 10-m resolution DEM is 0.018 m. In theory, the most 

conservative approach is to set the depth threshold to be greater than the vertical error. 

However, the depressions are characterized by an average depth (Equation (3.1)) so the 

vertical error will result in an underestimation of the number of depressions if set directly 

as the depth threshold. At best, it can only serve as a rough guide on the order of magnitude 

for the threshold if there is no other information.  

As an alternative, we use the NWI data to evaluate the performance of using a 

combination of different thresholds for depth and area in a sensitivity analysis. Similar to Li 

et al. (2011), the performance was quantified by a sensitivity metric and a specificity metric 

as shown below. The higher the sensitivity and specificity, the better the performance of the 

tested threshold. Ideally, an appropriate threshold should be set low enough so that D2P can 
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match a good number of depressions but not too low as to compromise the ability of D2P to 

distinguish depressions likely to be true from artifacts. 

Sensitivity =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝐷2𝑃 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
× 100% 

Specificity =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑁𝑊𝐼 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
× 100% 

Figure B.2 shows the sensitivity and specificity matrices for different depth and area 

thresholds applied on the 10-m resampled DEM. We narrow down our selection to a 

threshold combination ranging from 800 m2 to 1200 m2 in area and 0 m to 0.0036 m in depth 

whereby both sensitivity and specificity exceed 45%. Generally, sensitivity is lower 

compared to specificity across all the combinations which is reasonable because D2P 

identifies both wet and dry depressions whereas the benchmark NWI data only records 

ponds or wetlands. Hence, we prioritized specificity over sensitivity in selecting the 

threshold when the combined value is the same. Finally, we chose an area threshold of 900 

m2 to maximize specificity. For the selected area threshold, both sensitivity and specific 

were indifferent to the depth threshold between 0 m and 0.0036 m so the upper limit was 

selected since the depressions with average depth below 0.0036 m may not be of significance 

to the hydrologic simulation. 

In addition, we also evaluated the sensitivity and specificity of the threshold for the 

original DEM resolution of 1 m and the other resampled resolutions of 5 m and 20 m in Figure 

B.3 to Figure B.5. For the same corresponding thresholds, the sensitivity and specificity 

generally increased with resolution. Notably, both the sensitivity and specificity were able 

to exceed 55% for both the 1-m and 5-m resolutions. This occurred in the 1-m resolution for 

5 combinations of area and depth thresholds namely, 1200 m2, 0 m and 0.0009 m; 900 m2, 

0.09 m; 800 m2, 0.09 m and 0.18 m. For the 5-m resolution DEM, the optimal threshold was 

800 m2 and 0.09 m. At 20-m resolution, the performance of all the threshold combinations 

was poor, with a sensitivity less than 25% and specificity less than 20%. This indicated that 

the 20-m resolution DEM was not suitable for identifying depressions in the study area.  
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Li et al., 2011 stated that higher resolution DEMs typically require larger area 

threshold as there is a higher probability of small artifactual depressions that need to be 

removed. However, the same trend was not observed in our study. Based on this analysis, 

the optimal area threshold across the resolutions of 1 m, 5 m, 10 m were all around 800 m2 

to 900 m2. A possible reason could be that the NWI information may not be up to date, 

thereby distorting the number of matched depressions in both sensitivity and specificity. On 

the other hand, the study by Li et al. identified wetlands using a combination of aerial 

photography and field survey.  

B.1.3 Metrics for evaluation of identified surface depressions 

Each cell in the study area was classified as 𝑀1 if it belongs to a depression identified 

by D2P and 𝑀0 otherwise. Similarly, each cell in the same study area was classified as 𝐵1 if it 

belongs to a pond delineated using the benchmark NAIP imagery and 𝐵0 otherwise. 

𝑃𝑂𝐷 =  
𝑀1 ∩ 𝐵1

𝑀1 ∩ 𝐵1 + 𝑀0 ∩ 𝐵1
 

𝐹𝐴𝑅 =  
𝑀1 ∩ 𝐵0

𝑀1 ∩ 𝐵0 + 𝑀0 ∩ 𝐵0
 

𝐶𝑆𝐼 =  
𝑀1 ∩ 𝐵1

𝑀1 ∩ 𝐵1 + 𝑀1 ∩ 𝐵0 + +𝑀0 ∩ 𝐵1
 

𝑀0 & 𝑀1 : Binary classification of depressions identified by D2P. 

𝐵0 & 𝐵1 : Binary classification of depressions identified using NAIP as benchmark. 

B.1.4 Comparison of DEM processing method from Case 1 to Case 4 

To highlight the differences across the cases, Figure B.6 shows a comparison of an 

example river network and river elevation profile for a river segment overlapping with a 

depression in the GCEW study area. Due to the difference in DEM processing methods, there 

is a slight difference in the river paths (Figure B.6a, Figure B.6c, Figure B.6e and Figure B.6g) 

but the river density was set to be the same in all cases for consistency. From the river profile 

elevation in Figure B.6b, the slope within each reach is defined by the elevation at the 

upstream and downstream ends in Case 1 after the depressions are filled. In Case 2 (Figure 
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B.6d), the depressions are first filled, similar to Case 1, but the slope varies locally within 

each reach to follow the depression-less profile more closely. In Case 3 (Figure B.6f), the 

adapted CRS algorithm is applied directly before filling, and this has the effect of removing 

the depressions overlapping with the river by breaching. Case 4 implements the adapted CRS 

algorithm with different constraints for depressions and non-depression segments, so the 

depressions are preserved along with the downstream structure such as the dam as shown 

in Figure B.6h. 

B.2 Supplementary figures 

 

Figure B.1: Illustration of (a) depression hierarchy and (b) corresponding binary tree 
representation. 
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Figure B.2: Specificity and sensitivity matrices for identified surface depressions based on 
10-meter resolution DEM. Values greater than 45% in both matrices are in black. 

 

Figure B.3: Specificity and sensitivity matrices for identified surface depressions based on 
1-meter resolution DEM. Values greater than 45% in both matrices are in black, values 
greater than 50% are demarcated by black dashed line, and values greater than 55% are 
denoted by asterisk. 
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Figure B.4: Specificity and sensitivity matrices for identified surface depressions based on 
5-meter resolution DEM. Values greater than 45% in both matrices are in black, values 
greater than 50% are demarcated by black dashed line, and values greater than 55% are 
denoted by asterisk. 

 

Figure B.5: Specificity and sensitivity matrices for identified surface depressions based on 
20-meter resolution DEM. Values greater than 45% in both matrices are in black, values 
greater than 50% are demarcated by black dashed line, and values greater than 55% are 
denoted by asterisk. 
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Figure B.6: Comparison of the river network (left column) and river elevation profile (right 
column) for a river segment overlapping with a depression for (a)(b) Case 1, (c)(d) Case 2, 
(e)(f) Case 3 and (g)(h) Case 4. 
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Appendix C 

 

Supporting Information for Chapter 4 

C.1 Supplementary text 

C.1.1 Larval density estimation 

In the study area, the surveyed larval habitats include drainage ditch, river 

edge/reservoir shoreline, swamp/marsh, rice puddle, animal footprint, tire track/road 

puddle, man-made pond, natural pond/rain pool, rock pool, water container, irrigation canal, 

and brick pit. The larval habitats were classified as temporary, semi-permanent or 

permanent habitats. Since larval density can be significantly different in the dry and rainy 

season (Hinne et al., 2021; Kweka et al., 2012) and the timing and duration of the survey 

periods were inconsistent, we sorted the measured larval densities from the 769 sample 

points (Figure 4.1) into dry season (January to April; November to December) and rainy 

season (May to October). We then calculated the average larval density for each season as 

shown in Figure C.3.  

In the surveyed area, the larval density for temporary habitats was higher in rainy 

season than dry season during which the habitats are less stable. On the other hand, the 

larval density for semi-permanent and permanent habitats were higher in the dry season. 

Most of the semi-permanent and permanent were associated with river edges and swamps 

whereby the larvae are prone to flushing in the rainy season. Finally, the larval density in 

Table 4.1 was calculated based on the average of the dry season and rainy season densities. 

C.1.2 Irrigation scheme design 

Figure C.4 shows the monthly irrigation schedule obtained from the Arjo-Didessa 

Sugar Factory which is tailored to the sugarcane planting cycle. 
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To model irrigation in ParFlow-CLM, the irrigation interval and rate are required user 

inputs. For the irrigation interval, a report on the design of the local irrigation system 

recommended an interval of 8-12 days so we set the interval as 10 days.  

To determine the irrigation rate, we first calculated the irrigation depth, which is 

defined as the amount of water that needs to be applied when soil water content is depleted 

to the wilting point. The irrigation depth (𝐼𝑟𝑟𝐷) was calculated as 

𝐼𝑟𝑟𝐷 = (𝐹𝐶 − 𝑊𝑃) × 𝐷𝑒𝑝𝑡ℎ𝑠𝑜𝑖𝑙 ,                                             (C.1) 

where  𝐹𝐶 is the field capacity,  𝑊𝑃 is the permanent wilting point and 𝐷𝑒𝑝𝑡ℎ𝑠𝑜𝑖𝑙  is the soil 

depth.  

A soil depth of 2 m was assumed. The study area is characterized by clay and clay 

loam with low permeability. Based on resources by the Northeast Region Certified Crop 

Advisor (https://nrcca.cals.cornell.edu/soil/CA2/CA0212.1-3.php), the field capacity 

volumetric soil moisture content of clay was set as 50% and the wilting point volumetric soil 

moisture content was set as 15%.  An irrigation depth of 700 mm was obtained using 

Equation (C.1). As we set the irrigation to be applied when 50% of the irrigation depth was 

depleted, the actual irrigation depth to be applied over the 10-day irrigation interval was 

350 mm. Assuming an intermittent irrigation strategy, we set the irrigation to be applied for 

22 hours in a day over a 3-day period within the 10-day cycle. The irrigation rate was then 

calculated to be 5.3 mm/hour.  

C.1.3 Model calibration 

At each grid cell, ponding is assumed to occur if the soil saturation exceeds the 

threshold, 𝜃 . The threshold was calibrated to ensure that the model will predict the 

occurrence of ponding at locations in line with the field surveyed larval habitats for soil 

saturation above 𝜃. The value for  𝜃 was obtained based on a sensitivity analysis by altering 

the threshold and noting the corresponding change in the 𝑃𝑂𝐷. The 𝑃𝑂𝐷 determines if the 

model can predict an aquatic habitat successfully and was calculated based on the ratio of 

the number of successful predictions or hits, H, to the total number of samples, S: 

𝑃𝑂𝐷 = 𝐻/𝑆,                                                                 (C.2) 

https://nrcca.cals.cornell.edu/soil/CA2/CA0212.1-3.php
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Figure C.6 shows the results of the sensitivity analysis. In general, the 𝑃𝑂𝐷 curve is 

higher for the simulation excluding dry season. This is because irrigation was only 

approximated by a simplified scheme in the dry season and may not resolve the localized 

irrigation dynamics. As the threshold was lowered, 𝑃𝑂𝐷  increased because ponding 

occurred across a larger area in the model. The ponding was highly governed by soil type 

and the influence of topography was less apparent. On the other hand, when the threshold 

was increased, less ponding was predicted resulting in a lower 𝑃𝑂𝐷  but the topographic 

variability was better represented. Since the survey only focused on areas with ponding, we 

do not have definitive information on locations without ponding in the study area. Hence, we 

selected a threshold of 0.75 for a reasonable 𝑃𝑂𝐷 of 0.66 (excluding dry season) without 

obscuring topographic variability.  

In EMOD, we calibrated 10 key parameters identified from a sensitivity analysis and 

Table C.2 presents the calibrated values. Using the calibrated parameters, we compared the 

simulated prevalence rate against field data for January 2018 and October 2018 (Figure C.7). 

The results are within the same order of magnitude. We also compared the simulated 

monthly number of clinical cases with the recorded malaria cases from April 2018 to May 

2020 (Figure C.8). Apart from the two peaks that were missed in October 2018 and 

November 2019, the simulated malaria cases compare reasonably well with observation 

both in terms of magnitude and dynamics. As the clinical malaria cases were sourced from 

major hospitals within the study area, the two peaks in recorded cases could be anomalous 

due to an influx of patients from outside seeking treatment at the hospitals. Overall, the 

model shows a good agreement with the field observation. 
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C.2 Supplementary figures 

 

Figure C.1: Annual climate data from PERSIANN-CCS-CDR and ERA5 in the study area in 
Arjo. (a) total precipitation, (b) average temperature and (c) average relative humidity. 

 

Figure C.2: Monthly climatology derived from PERSIANN-CCS-CDR and ERA5 climate data 
in the study area in Arjo. (a) total precipitation, (b) average temperature and (c) average 
relative humidity. 
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Figure C.3: Average larval densities for temporary, semi-permanent, and permanent 
habitats during rainy and dry seasons based on field survey. 

 

Figure C.4: Arjo-Didessa Sugar Factory sugarcane plantation irrigation schedule. A normal 
sugar planting schedule includes (a) a 2-year cycle for virgin and (b) a 1-year cycle for 
following 2 ratoons. MA: Maturity/water withdraw; H: Harvesting; LW: Land work; P: 
Planting; RF: Rainfed; IR: Irrigation. 
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Figure C.5: Adjustment of decay factors for temporary and semi-permanent habitats in 
default EMOD function. The objective is to match the (a) intra-annual variability and (b) 
inter-annual variability of the habitats from the hydrologic model as closely as possible. 
Decay factor of semi-permanent habitat also must be smaller than that of temporary habitat. 

 

Figure C.6: Sensitivity analysis of saturation threshold to 𝑃𝑂𝐷. The 𝑃𝑂𝐷 determines if the 
model can predict an aquatic habitat successfully and was calculated based on the ratio of 
the number of successful predictions to the total number of observations. 

 

Figure C.7: Comparison of simulated monthly average prevalence rate with one standard 
error and sampled PCR. and was calculated based on the ratio of the number of successful 
predictions to the total number of observations. 
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Figure C.8: Comparison of simulated monthly confirmed cases and clinical data. The 95% 
confidence interval is indicated by the orange band. 
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Figure C.9: Time series of daily climate data and comparison of simulated daily malaria 
transmission results between “Default EMOD” scenario and “Integrated EMOD-NonIrr” 
scenario. Climate data include (a) precipitation and (b) temperature. Malaria transmission 
results include (c) habitat larval capacity (d) adult vector abundance (e) adult vector 
infection rate (f) entomological inoculation rate and (g) parasite prevalence rate. The 
simulation was performed for a 20-year period from 2000 to 2020 but here we only show 
the results from 2010 to 2020 for simplicity. 

 

Figure C.10: The distribution of the top two-meter soil types in USDA soil taxonomy from 
SoilGrids250m TAXOUSDA dataset. Most soil types in this area are characterized as clay or 
clay loam with low permeability ranging from 0.0015 to 0.015 m/h. 

 

Figure C.11: Comparison of simulated semi-permanent habitats between “Default EMOD” 
scenario (black line) and “Integrated EMOD-NonIrr” scenario (blue line) in 2018. Earlier 
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rising limb in “Default EMOD” scenario: (1) no infiltration, new ponds created 
instantaneously by rainfall; (2) ponds formed some time after rainfall when soil saturation 
exceeded threshold. Delayed falling limb in “Default EMOD” scenario: (3) habitat area 
continued to increase with rainfall; (4) pond drained/dried up and soil became unsaturated 
after a period without rainfall, new rainfall insufficient to create ponding as soil saturation 
remained below threshold. 

 

Figure C.12: Simulation results from sensitivity analysis of malaria transmission to different 
amplitudes of larval habitat seasonality, α. Time series include (a) daily temperature (b) 
synthetic sinusoidal larval habitat (c) habitat larval capacity (d) adult vector abundance (e) 
adult vector infection rate and (f) parasite prevalence rate. 
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C.3 Supplementary tables 

Table C.1: Input data for ParFlow-CLM and EMOD. 

Variable Resolution Input Type Latency Source 

Topography 5-meter Distributed -  

ALOS WORLD 3D 
Topographic Data 
(Takaku et al., 2016; 
Takaku & Tadono, 
2017) 

Precipitation 
0.04°×0.04°, 
3-hourly 

Distributed ∼1 hour 
PERSIANN-CCS-CDR 
(Sadeghi et al., 
2021) 

Surface Solar 
Radiation 
Downwards 

0.25°×0.25°, 
1-hourly 

Distributed 5 days 
ERA5 (Hersbach et 
al., 2018, 2020) 

Surface Thermal 
Radiation 
Downwards 

0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

Air Temperature 
(2m above ground 
surface) 

0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

Skin Temperature 
0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

Surface Pressure 
0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

Water-vapor 
specific humidity 

0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

North-to-South 
Component of 
Wind Speed (10m 
above ground 
surface) 

0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

East-to-West 
Component of 
Wind Speed (10m 
above ground 
surface) 

0.25°×0.25°, 
1-hourly 

Distributed 5 days ERA5 

Land use (2000) 30-meter Distributed - 
GlobeLand30 (Chen 
et al., 2015) 

Land use (2010) 30-meter Distributed - GlobeLand30 
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Land use (2020) 30-meter Distributed - GlobeLand30 

Soil type 250-meter Distributed - 
SoilGrids250m, 
TAXOUSDA (Hengl 
et al., 2017) 

Depth to Bedrock 250-meter Distributed - 
SoilGrids250m, 
BDRICM (Hengl et 
al., 2017) 

Near Surface 
Permeability (< 
100 m) 

Regional 
Scale 

Distributed - 
GLHYMPS, 2.0 
(Gleeson et al., 
2014) 

Table C.2: Calibrated parameters in EMOD. 

Parameter Value 

Acquire_Modifier 0.25 

Base_Gametocyte_Production_Rate 0.0615 

Gametocyte_Stage_Survival_Rate 0.565 

Base_Gametocyte_Mosquito_Survival_Rate 0.002 

Antigen_Switch_Rate 1.2×10-10 

Aquatic_Arrhenius_1 85,884,000,000 

Aquatic_Arrhenius_2 7,495 

Infected_Arrhenius_1 121,726,800,000 

Infected_Arrhenius_2 6,751 

Scaling factor for larval capacity 1.15×10-7 

Table C.3: Spatial average of adult vector and parasite prevalence rate from the dry season 
(November 2016 to April 2017) and the rain season (May 2017 to October 2017). 

Parameter 

Dry Season Rainy Season 

Adult 
Vectors 
(# /km2) 

Prevalence 
(Fraction) 

Adult 
Vectors 
(# /km2) 

Prevalence 
(Fraction) 

Default EMOD 1.56×103 0.0895 1.78×103 0.0785 

Integrated EMOD-NonIrr 1.01×103 0.0486 2.14×103 0.0505 

Integrated EMOD-Irr 1.98×103 0.0718 2.53×103 0.1010 

 




