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Nrf2 induces IL-17D to mediate tumor and virus surveillance
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Searles1, Allen Washington Jr.1, Endi K. Santosa1, Beichen Liu1, Timothy E. O’Sullivan3, 
Olivier Harismendy2, and Jack D. Bui1,^

1Department of Pathology, University of California, San Diego, CA, 92093, USA

2Moores Cancer Center Oncogenomics Laboratory, University of California, San Diego, CA 
92093, USA

3Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA

SUMMARY

Cells undergoing xenobiotic or oxidative stress activate the transcription factor Nrf2, which 

initiates an intrinsic “stress surveillance” pathway. We recently found that the cytokine IL-17D 

effects a form of extrinsic stress surveillance by inducing antitumor immunity, but how IL-17D is 

regulated remains unknown. Here, we show that Nrf2 induced IL-17D in cancer cell lines. 

Moreover, both Nrf2 and IL-17D were induced in primary tumors as well as during viral infection 

in vivo. Expression of IL-17D in tumors and virally infected cells is essential for optimal 

protection of the host as il17d−/− mice experienced a higher incidence of tumors and exacerbated 

viral infections compared to WT animals. Moreover, activating Nrf2 to induce IL-17D in 

established tumors led to natural killer cell-dependent tumor regression. These data demonstrate 

that Nrf2 can initiate both intrinsic and extrinsic stress surveillance pathways and highlight the use 

of Nrf2 agonists as immune therapies for cancer and infection.

eTOC Blurb

Saddawi-Konefka et al. show that the transcription factor nuclear factor erythroid derived 2- like 2, 

or Nrf2, induces the cytokine interleukin-17D. Nrf2/IL-17D-mediated natural killer cell 

recruitment can lead to the regression of established tumors. Therefore, inducing IL-17D using 

Nrf2 agonists has potential for cancer immune therapy.
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INTRODUCTION

Cells undergoing malignant transformation or viral infection constitute cells in a “stressed 

state,” characterized by altered metabolism and imbalanced reactive oxidative species (ROS) 

(Gorrini et al., 2013; Martindale and Holbrook, 2002; Schwarz, 1996). In order to deal with 

ROS, cells activate the transcription factor Nrf2 (Nuclear factor erythroid derived 2- like 2 or 

Nfe2l2). Nrf2 is a member of the cap ‘n’ collar family of bZip transcription factors and is 

recognized as the primary responder to cellular oxidative stress (Ma, 2013). Nrf2 induces 

genes involved primarily in antioxidant defense, oxidant signaling, and drug metabolism; 

and, secondarily, in metabolism, cell proliferation, and proteasome activity (Malhotra et al., 

2010; Schafer et al., 2012; Turei et al., 2013).

The cell-protective pathways induced by Nrf2 can have opposing effects on cancer 

development. For example, Nrf2 protects somatic and premalignant cells from carcinogens, 

and in this context fulfills a tumor suppressor role (Kensler and Wakabayashi, 2010; Ma and 

He, 2012). On the other hand, it is well documented that Nrf2 can promote the growth and 

survival of established tumors by inducing anti-oxidative pathways that help cancers deal 

with chronic oxidative stress, a hallmark of cancer progression (Jaramillo and Zhang, 2013; 

Sporn and Liby, 2012). It is not known whether Nrf2 regulates extrinsic stress response 

mechanisms that operate to suppress carcinogenesis.

Recently, our group identified the cytokine IL-17D as a molecule expressed at higher levels 

in highly immunogenic tumor cells compared to poorly immunogenic tumor cells 

(O’Sullivan et al., 2014; Saddawi-Konefka et al., 2014). When IL-17D was overexpressed in 

poorly immunogenic cancer cells, it led to immune rejection mediated by natural killer (NK) 
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cells. The regulation of IL-17D is not known, but based on its tumor rejection activities, we 

hypothesize that IL-17D would initiate tumor surveillance and thus accompany early cellular 

transformation.

Here, we show direct and compelling evidence that Nrf2 induces the expression of IL-17D, 

therefore initiating antitumor immune responses. We also find that viral infection induces 

Nrf2 and IL-17D, presumably by causing local oxidative stress. The induction of IL-17D is 

required for effective cancer surveillance and antiviral responses, as mice deficient in 

IL-17D had increased formation of MCA-induced tumors and exacerbated pathology when 

infected with vaccinia virus (VV) or murine cytomegalovirus (MCMV). Our data document 

a link between cellular oxidative stress - resulting from viral infection or tumorigenesis - and 

the initiation of immunity. Moreover, our results define an immune activating role for the 

well-studied factor Nrf2, which has not been previously defined. This role for Nrf2 in 

inducing IL-17D has therapeutic benefit in our mouse models.

RESULTS

Nrf2 induces IL-17D

To explore IL-17D regulation, we performed a transcription factor binding site (TFBS) 

analysis of the promoter and intronic regions of the human and mouse il17d genes (Fig. 1A). 

Our analysis revealed several putative Nrf2 binding sites, defined as anti-oxidant responsive 

elements (ARE) (Nguyen et al., 2003) (Fig. 1A, Table S1). Given the abundance of ARE in 

promoter and intronic regions of il17d, we hypothesized that the activation of Nrf2 would 

induce IL-17D. To test this, we treated murine embryonic fibroblasts (MEFs) and the 3-

methylcholanthrene (MCA)-induced sarcoma cell line F244 (O’Sullivan et al., 2012; 

Shankaran et al., 2001) with H2O2, a known activator of Nrf2 (Pergola et al., 2011; Tkachev 

et al., 2011) (Fig. 1B). H2O2 treatment led to significant, time-responsive increases in the 

transcript of il17d. Similarly, activation of Nrf2 with tert-butylhydroquinone (tBHQ) resulted 

in the increase of il17d transcript in the murine melanoma cell line B16, the human Burkitt’s 

lymphoma cell line Ramos and in the MCA-induced sarcoma cell line F244 (Fig. 1C, S1A).

Next, we determined whether the transcription factor Nrf2 directly binds to the TFBS we 

identified in our analysis of the il17d gene. We performed a ChIP-qPCR (chromatin 

immunoprecipitation followed by polymerase chain reaction amplification of specific 

sequences) in tBHQ-treated or control-treated B16 cell lines. Cells were fixed and sonicated 

before immunoprecipitation with Nrf2-specific antibody or control IgG. Fractionation and 

Western Blot analysis confirmed that Nrf2 preferentially accumulated in the nuclear fraction 

of treated cells (not shown). qPCR analysis of ChIP fractions revealed two sites upstream of 

the il17d start site where Nrf2 has significant binding following activation (Fig. 1D). These 

two binding sites for Nrf2 corresponded to Nrf2 target ARE elements identified at 4195, 

4860 and 3730 bp upstream of the il17d start site (Fig. 1A, Table S1). qPCR analysis of the 

known gene target for Nrf2, Heme Oxygenase 1 (hmox1), also indicated Nrf2 binding 

following tBHQ treatment in the B16 cell line (Fig. S1B).

TFBS analysis with the ENCODE UCSC browser revealed that other transcription factors 

might bind and regulate IL-17D (data not shown), indicating that Nrf2 may not be wholly 
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responsible for the induction of IL-17D. In order to examine the necessity of Nrf2 for the 

induction of IL-17D, we activated Nrf2 in the F244 or B16 cell lines in the presence of 

siRNA specific to nrf2 (Fig. 1E, Fig. S1C, D) and in F244 and B16 cell lines bearing a stable 

knockdown of nrf2 via shRNA (Fig. S1E–J). Knockdown of Nrf2 in B16 and F244 (~80%, 

Fig. S1C–F) was sufficient to block the induction of il17d following activation of Nrf2 with 

either H2O2 or tBHQ. Altogether, we found that Nrf2 not only directly bound to the il17d 
promoter region but also was required for efficient induction of il17d by oxidative stress.

Nrf2 and IL-17D are co-expressed in primary tumors and during viral infection

To determine the relevance of the Nrf2 regulation of IL-17D in vivo, we examined the 

expression of IL-17D, Nrf2 and its known target genes in primary human and mouse tumors. 

Analyzing gene expression in primary MCA-induced tumors (from Fig. 4A) revealed that 

nrf2, its target hmox1 and il17d were upregulated compared to normal untreated skin 

samples (Fig. 2A). Using data sourced from The Cancer Genome Atlas (TCGA), we found 

that il17d expression directly correlated with the expression of ARE- containing Nrf2 targets 

(signature of nine genes in total, see methods) across all available human cancers (n=9755) 

(Fig. 2B). The results are not significant (p=0.07), likely due to the fact that TCGA data 

includes many tumors harvested at late timepoints, when we hypothesize il17d and nrf2 
expression to be uncoupled due to editing of IL-17D (O’Sullivan et al., 2014). Moreover, 

infiltrated immune cells that have a different gene expression profile can influence the 

results (Aran et al., 2015). We also found that a high level of IL-17D expression in 13 out of 

31 human cancer types confers a survival advantage (Table S2), representatively shown for 

brain lower grade glioma and ovarian serous cystadenocarcinoma (Fig. S2A). Additionally, 

an analysis of our MCA-sarcoma tumor cell lines demonstrated that Nrf2 and il17d are co-

expressed in murine tumor cell lines (Fig. 2C). Matching our previous data (O’Sullivan et 

al., 2014; Saddawi-Konefka et al., 2014), cell lines expressing high levels of IL-17D tended 

to behave as regressors, now underlined by their co-expression of Nrf2. Together, these data 

suggest that Nrf2 regulates IL-17D during primary tumor formation in both human and 

mouse systems in order to initiate productive antitumor immune responses leading to tumor 

regression and prolonged survival. IL-17D expression only correlates with better survival in 

a fraction of human cancers (Fig S2, Table S2), suggesting that its regulation might be 

context-dependent and underlining the importance of analyzing its regulation in defined in 

vivo mouse models.

Viral infections represent another sort of cellular stress. Since IL-17D recruits NK cells that 

can mediate antiviral responses, we sought to examine the role of the Nrf2-IL-17D axis in 

antiviral immunity. First, we measured Nrf2 and IL-17D following vaccinia virus (VV) and 

murine cytomegalovirus (MCMV) infection. In vitro, we observed an increase in the 

transcript levels of il17d in both infected primary derived fibroblasts and tumor cell lines 

(Fig. 3A, B). The results in the tumor cell lines are not significant, likely due to the fact that 

tumors are not the primary target for viruses. For in vivo analysis, we scarified WT mice 

with VV. Tissue harvested from these mice had increased expression of il17d and Nrf2 (Fig. 

3C, D; example of VV scar Fig. S3A, B). To model the local activation of Nrf2 and IL-17D 

in vivo, we adapted a system in which we topically applied tBHQ onto the dorsal flanks of 

mice (Schafer et al., 2014). Mice treated topically with tBHQ had increased transcript and 
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protein levels of il17d and Nrf2, respectively, commensurate with those observed following 

infection by scarification (Fig. 3E, F). Together, these results suggest that the Nrf2-IL-17D 

regulatory axis is activated during primary tumorigenesis and viral infection in order to 

confer protection from disease progression.

IL-17D protects the host from primary tumorigenesis and viral infection

We previously showed that IL-17D can mediate tumor rejection when overexpressed in 

cancer cells (O’Sullivan et al., 2014), but its endogenous role in cancer immunosurveillance 

had not been demonstrated. Therefore, we compared the development of primary tumors in 

WT versus il17d−/− mice, each treated with the carcinogen 3-methylcholanthrene (MCA). 

Since the immune cellularity of il17d−/− mice has not been studied, we first immune-

phenotyped these mice. We found that the major immune populations in the spleen, lymph 

node, bone marrow and blood were similar between WT and il17d−/− mice (Fig. S4 and data 

not shown). Despite demonstrating a largely normal immune system at baseline, strikingly, 

il17d−/− mice were significantly more susceptible to the development of primary tumors 

(Fig. 4A). At a 25μg dose of MCA, approximately twice the number of il17d−/− mice 

compared to WT mice developed primary tumors. At a 5μg dose of MCA, WT mice are 

largely tumor free, whereas approximately 40% of il17d−/− mice developed primary tumors. 

These findings confirm that, similar to Nrf2, the cytokine IL-17D can protect the host from 

primary carcinogen-induced tumor formation.

Since we found Nrf2 and IL-17D to be induced after viral infection, we next tested the role 

of IL-17D in viral infection. Following infection of WT and il17d−/− animals, we observed 

an exacerbation of the VV scar in il17d−/− animals compared to WT animals at two doses 

(Fig. 4B). Similarly, il17d−/− mice were more susceptible to another virus, MCMV, 

displayed as an increase in weight loss after systemic infection (Fig. 4C). To test whether 

IL-17D can directly inhibit viral replication or progression, we infected either parent or 

IL-17D-expressing tumor cell lines with VV (Fig. S3C). Expression of IL-17D in vitro did 

not protect cells from infection, suggesting that IL-17D’s role in protecting the host from 

viral infection may require the immune system. These findings imply that virus infection 

may activate the Nrf2-IL-17D axis to initiate surveillance and contribute to host antiviral 

defense.

Activating tumor-intrinsic Nrf2 delays tumor growth in vivo via induction of tumor-derived 
IL-17D

Having shown a requirement for IL-17D in effective tumor surveillance (O’Sullivan et al., 

2014; Saddawi-Konefka et al., 2014) (Fig. 4A), we hypothesized that activating Nrf2 in vivo 

would induce IL-17D in established tumors, which in turn would initiate protective 

immunosurveillance. To examine this, tumor bearing mice were treated topically with tBHQ 

or lanolin control cream beginning when tumors achieved an average diameter of 3mm. We 

found that treatment with tBHQ delayed tumor growth in WT mice bearing F244 or B16 

tumors (Fig. 5A, B). Moreover, tBHQ led to the in vivo induction of both hmox1 and il17d 
in tumors derived from both transplanted cell lines (Fig. 5C).
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Recognizing that tBHQ could induce Nrf2 in both host and tumor cells and that Nrf2 might 

induce targets other than IL-17D, we wanted to examine: first, whether tBHQ is activating 

Nrf2 and IL-17D in tumor cells versus host cells; second whether tBHQ necessarily and 

specifically induces IL-17D to mediate tumor regression; and third, whether Nrf2 is required 

to induce IL-17D and delay tumor growth. Therefore, we transplanted nrf2−/− and il17d−/− 

mice with B16 and treated with tBHQ. We observed delayed tumor growth of B16 in nrf2−/− 

and il17d−/− mice (Fig. 5D, E), demonstrating that host expression of nrf2 or il17d is not 

required for the response to tBHQ.

To examine the role of tumor-derived IL-17D during tBHQ-induced tumor rejection, we 

utilized an MCA sarcoma cell line that we generated from an il17d−/− host (named F38K1; 

derived from MCA experiment in Fig. 4A). Based on established definitions for tumor 

growth phenotypes (O’Sullivan et al., 2012), we classified F38K1 as a progressor tumor 

(Fig. S5A). We confirmed F38K1’s sensitivity to Nrf2 activation by stimulating the cell line 

in vitro and measuring hmox1 transcript expression, which increased in the presence of 

tBHQ (Fig. S5B). In vivo, tBHQ treatment in WT (Fig. 5F) and il17d−/− (Fig. S5C) mice 

transplanted with F38K1 failed to delay tumor growth. This finding implies that the 

antitumor response resulting from the activation of Nrf2, via topical application of tBHQ, 

requires tumor-expressed IL-17D and not the many previously described targets of Nrf2 

(Malhotra et al., 2010; Turei et al., 2013).

To analyze the requirement of tumor-derived Nrf2 during tBHQ-induced tumor rejection, we 

generated independent sarcoma and melanoma cell lines bearing a stable knockdown of nrf2 
via shRNA (Fig. S1 E–J). We chose the two shRNA constructs that showed the best 

downregulation of nrf2 (90% and 83% for F244 sarcoma; 88% and 80% for B16 melanoma) 

for further experiments. tBHQ treatment had no influence on in vitro cell growth in any of 

the transduced cell lines (Fig. S5D, E and not shown). When transplanted into WT mice, 

tBHQ treatment failed to delay tumor growth of the two nrf2 knockdown cell lines (Fig. 5G, 

H and data not shown), in contrast to the shRNA control cell lines (Fig. S5F). Moreover, the 

tBHQ-mediated induction of il17d (and hmox1) was abolished in vivo when nrf2 was 

knocked down (Fig. 5I). These results show that tumor-derived Nrf2 is required for both the 

tBHQ-dependent induction of il17d as well as the rejection of established tumors. It should 

be noted that silencing nrf2 in these progressor tumors actually caused them to display 

growth delay compared to the parental cells (Fig. 5G, H and not shown). These results 

indicate that Nrf2 may have tumor promoting activity and thus, the tumor rejection by 

tBHQ-induction of IL-17D must be stronger than the tumor promoting activity of Nrf2.

Activating Nrf2 mediates tumor rejection via recruitment of NK cells

To determine whether the immune system was required for the antitumor effect of Nrf2 

agonists, we transplanted B16 melanoma cells into immune-deficient mice: rag2−/−, which 

lack adaptive immunity but possess intact NK cells and macrophages (Shinkai et al., 1992) 

and rag2−/− x γc−/−, which lack adaptive immunity as well as NK cells (Mazurier et al., 

1999). Notably, we found that topical treatment of tumors with tBHQ delayed tumor growth 

in rag2−/− but not rag2−/− x γc−/− (Fig. 6A, B). This suggests that NK cells are the immune 

population responsible for tBHQ-mediated tumor rejection. To identify the immune cells 
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recruited by tBHQ treatment, we harvested B16 tumors after 7 days of treatment 

(representative image shown in Fig. 5A) and performed a FACS analysis of tumor 

infiltrating leukocytes (TILs). Our TIL analysis revealed an increase in the percentage and 

total number of infiltrating NK cells when tumors were treated with tBHQ (Fig. 6C–E), a 

result consistent with our prior study showing that IL-17D recruited NK cells via induction 

of the chemokine CCL2 (O’Sullivan et al., 2014; Saddawi-Konefka et al., 2014). No other 

TIL populations were found to be different in treated versus untreated tumors (Fig. 6C). We 

next investigated the requirement of Nrf2 and IL-17D for the recruitment of NK cells. When 

nrf2 was knocked down or il17d was deleted within the tumor cell (by transplanting the cell 

line F38K1), the tBHQ- mediated increase in NK cells was abolished (Fig. 6F). NK cells in 

tumors did not differ in activation or function (as assessed by expression of CD69, IFNγ and 

Granzyme B) (Fig. S5G). Together, our results show that NK cells are recruited into tBHQ-

treated tumors and that tumor-expressed Nrf2 and IL-17D are required for the tBHQ-

mediated recruitment of NK cells. In order to assess if il17d expression correlated with NK 

cell infiltration in human cancer, we used the Z-scores from RNAseq of four NK-cell-

expressed genes from TCGA to approximate the presence of NK cells in human skin 

cutaneous melanoma and sarcoma (Fig S6A). We found no positive correlation, probably 

due to the fact that TCGA data represents chronic rather than acute induction of IL-17D as 

assessed in our mouse model. The same held true for the correlation of il17d with NK- and 

macrophage-recruiting gene products (CCL5 and CCL2, Fig. S6B, C) as well as NK cell-

expressed genes NKG2D and NKP46 (Fig. S6D, E). This does not exclude a role for Nrf2 

and IL-17D in NK cell recruitment in human cancers, but rather calls for a more detailed 

analysis of human cancer biopsies after acute induction of IL-17D. To date, this is not 

possible but might be done in the future if tBHQ or another Nrf2 agonist reaches clinical 

trials.

DISCUSSION

In this study, we have demonstrated an obligate role for IL-17D in effective tumor 

surveillance, optimal antiviral responses, and cancer immune therapy via Nrf2 agonists. It is 

well established that immune responses to viruses and transformed cells have overlapping 

features (Raulet and Guerra, 2009): both involve NK cells, Th1 immunity, and CD8+ T cells. 

Moreover, NKG2D ligands are induced by viral infection (Shafi et al., 2011; Vivier et al., 

2011) as well as being constitutively expressed on cancer cells (Diefenbach et al., 2001; 

Guerra et al., 2008). As such, our finding that IL-17D is induced by viral infection and 

expressed constitutively by immunogenic cancer cells has precedence in principle and data.

We have definitively shown that Nrf2, an oxidative stress response factor, can function as a 

tumor suppressor via direct induction of IL-17D. A tumor suppressor role for Nrf2 is 

supported by previous studies showing that mice genetically deficient in Nrf2 are more 

susceptible to a wide range of carcinogen-induced cancers (see review (Ma and He, 2012)). 

For example, nrf2−/− mice displayed increased incidence of forestomach cancer (Ramos-

Gomez et al., 2003) and bladder cancer (Iida et al., 2004) induced by carcinogens known to 

induce oxidative stress. Nrf2−/− mice also had increased skin cancer in a model of 

sulforaphane-mediated protection from DMBA/TPA induced carcinogenesis (Xu et al., 

2006). To our knowledge, there are no studies to address whether Nrf2 participates in tumor 
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immunosurveillance in any of these model systems. Importantly, cancer immunoediting and 

tumor elimination have been extensively documented in mouse models of MCA-induced 

sarcomas, and it was recently shown that MCA can acutely induce Nrf2 and its target genes 

in liver after 24 hours (Jin et al., 2013). Accordingly, we show that Nrf2, its target genes and 

IL-17D are induced in MCA tumors. We suggest that Nrf2 can mediate anti-cancer functions 

by inducing immune-dependent pathways, namely the IL-17D-dependent recruitment of NK 

cells.

In contrast to the tumor suppressor role of Nrf2, other studies have shown that Nrf2 

expression in tumor cells can promote their survival in the face of oxidative stress, hypoxia, 

and/or chemotherapy (Jaramillo and Zhang, 2013; Sporn and Liby, 2012). In fact, Nrf2 

blockade has become an anti-cancer approach since certain cancer cells (and model systems) 

report oncogene-induced, constitutive Nrf2 activity as associated with tumor growth and 

metastasis (DeNicola et al., 2011; Shelton and Jaiswal, 2013). These studies have prompted 

a re-evaluation of the role of Nrf2 in cancer and support a model whereby Nrf2 is a “double-

edged sword” that can suppress or promote cancer. Notably, a recent study found that Nrf2 

acts early in tumorigenesis to suppress tumor formation and later-on to promote tumor 

formation (Satoh et al., 2013). We propose that Nrf2-mediated induction of IL-17D activates 

antitumor immunity at an early stage to eliminate the tumor before Nrf2 exerts its pro-tumor 

activity. This early immune pressure mediated by NK cells could lead to cancer 

immunoediting, resulting in the loss of IL-17D expression as an immune evasion 

mechanism. Therefore, the expression of IL-17D in late stage human cancers may not 

always correlate with good prognosis or NK cell infiltration, as shown in Table S2 and 

Figure S2B, C and S6. In fact, given the known tumor promoting roles of Nrf2, late stage 

human cancers that display chronic inflammation may express high levels of Nrf2 without 

incurring the antitumor responses that could be mediated by IL-17D and/or NK cells. Thus, 

it will be important to determine if acute induction of Nrf2 in human cancer can indeed serve 

as a therapeutic mechanism to induce IL-17D and/or recruit NK cells to mediate antitumor 

immune responses.

We have implicated that Nrf2 agonists, some of which are currently in clinical trials, would 

be highly efficacious inducers of cancer immunosurveillance and immune therapy by acutely 

inducing IL-17D. Further studies are needed to determine whether Nrf2 agonists can be used 

to treat a broad range of established human tumors and/or prevent the development of 

cancer. It will be important to cast a broad and deep net in these studies, as it is likely that 

the role of the Nrf2-IL-17D pathway in tumor progression is context-dependent. Notably, 

our data suggest that the clinical use of antioxidants to prevent cancer and promote overall 

health may inadvertently limit Nrf2 induction and attenuate an endogenous tumor 

surveillance pathway. On the other hand, judicious use of oxidative species may find a niche 

in immunotherapy. For example, drugs such as tBHQ, which do not induce ROS but can 

directly induce the Nrf2-IL-17D pathway may have even higher efficacy as they would 

activate an endogenous tumor surveillance pathway without producing genotoxic ROS.

The role of other IL-17 family members in cancer is still controversial. For the most studied 

member, IL-17A, tumor-promoting roles (Charles et al., 2009; Nam et al., 2008; Numasaki 

et al., 2003), antitumor functions (Benatar et al., 2008; Benchetrit et al., 2002; Muranski et 
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al., 2008), and immune cell recruiting roles (Martin-Orozco et al., 2009) have all been 

documented. Specifically, an antitumor role in humans was shown whereby IL-17A 

production correlated with CD8+ T cell and CD57+ NK cell presence in esophageal 

squamous cell carcinomas (Lv et al., 2011) and was associated with the induction of T cell-, 

NK cell- and DC-attracting chemokines (Lu et al., 2013). On the other hand, a pro-tumor 

role for IL-17A was shown in breast cancer whereby neutralizing IL-17A with antibodies 

reduced chemokine expression, and thereby breast cancer cell migration and metastasis (Roy 

et al., 2014). Although we have only defined antitumor activities for IL-17D, the fact that 

Nrf2 can induce IL-17D might suggest that IL-17D could also have tumor promoting 

activities, similar to IL-17A. This could certainly limit therapies based on IL-17D.

We also found that IL-17D is induced by viral infection and is required for optimal antiviral 

responses. The IL-17 family of cytokines has been characterized as essential to antimicrobial 

host defense (see reviews (Gaffen, 2011; Gu et al., 2013; Iwakura et al., 2011; Jin and Dong, 

2013)). Specifically, IL-17C and IL-17A/F are thought to mediate anti-bacterial and anti-

fungal responses via recruitment of neutrophils. IL-17E contributes to anti-helminth 

responses via recruitment of eosinophils. Our finding that IL-17D is induced during viral 

infection, recruits NK cells, and is required for optimal responses to VV and MCMV 

infection, suggests that the IL-17 family may have evolved to mediate distinct and specific 

anti-pathogen responses. Given the ancient origin of the IL-17 family, it is tempting to 

speculate that IL-17D and IL-17C were the first family members to evolve to mediate local 

control of pathogen infection prior to the evolution of adaptive immunity.

To date, the signals that induce and maintain Nrf2 activity during carcinogenesis are still 

unclear. We speculate that during tumor formation, Nrf2 activation occurs acutely due to 

carcinogen exposure, is maintained subacutely by oncogenes, and can be detected 

constitutively in advanced cancers by mutation or inflammatory cells providing an oxidative 

burst. Indeed, previous studies have found that MCA induced Nrf2 and its target genes 

acutely (Jin et al., 2014), in line with our finding that MCA induced Nrf2 and IL-17D in our 

tumor model. Moreover, oncogenic alleles have been shown to induce Nrf2 (DeNicola et al., 

2011), and mutations in KEAP1 can be detected in cancer cells, leading to constitutive Nrf2 

activation (Padmanabhan et al., 2006; Shibata et al., 2008; Sjoblom et al., 2006). Future 

studies will clarify the kinetics of Nrf2 and IL-17D induction during tumor formation.

Finally, it is clear that cancers display metabolic and oxidative stress while also 

demonstrating an inflammatory component. In fact, these characteristics of cancer have been 

touted as “next generation hallmarks” (Hanahan and Weinberg, 2011). Based on our 

findings, it is tempting to conclude that the Nrf2/IL-17D pathway represents an important 

molecular bridge that connects two hallmarks of cancer – inflammation and oxidative stress.

METHODS AND MATERIALS

Transcription Factor Binding Analysis

Sequences for mouse and human il17d genes were analyzed for the presence of antioxidant 

responsive elements (ARE) [TGAcTCAGCa], a sequence to which the Nrf2-sMAF 
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heterodimer is known to bind (Nguyen et al., 2003). ARE sequences identified in mouse and 

human il17d genes are listed in Table S1.

Cell Lines

MCA-induced sarcoma cell lines were generated from primary tumors and expanded in vitro 

until at least the second passage before freezing. For experimentation, tumor cell lines were 

thawed from early passages and grown in RPMI 1640 (Gibco) supplemented with 10% FCS 

(Atlanta Biologics) (as previously described (O’Sullivan et al., 2012). Other tumor cell lines 

used – Ramos, B16, LLC – were cultured similarly. Primary derived mouse embryonic 

fibroblasts were derived from fetuses 12.5–13.5 days p.c. (as described (Conner, 2001a, b).

Nrf2 Activation and Knockdown

Nrf2 was activated in cell lines in vitro with either tert-butylhydroquinone (Spectrum) or 

H2O2 (Fisher). tBHQ was used at 50μM in DMSO, and H2O2 was used at 10μM for 0.5–1 

hours before being washed out. Treated cells were harvested at timepoints between 6 and 12 

hours for analysis. Activation of Nrf2 in vivo was adapted from methods described by 

(Schafer et al., 2014). For in vivo Nrf2 activation, a cream containing 50mM tBHQ 

solubilized in DMSO was mixed 1:1 (v/v) with Lanolin cream (Sigma) (controls were a 1:1 

mixture of DMSO:Lanolin) and heated gently in a water bath to allow for mixing. The 

mixture was allowed to cool overnight before use. Hair along the flank was removed one day 

before the initiation of topical treatments. To knockdown Nrf2, a mixture of three siRNAs to 

nrf2 or control siRNA were used (Invitrogen) (Fujita et al., 2011). siRNA was transfected 

into cells with Lipofectamine 2000 (Thermo Fisher) as recommended by the manufacturer. 

For shRNA knockdown, five different shRNAs to nrf2 or control shRNA (Sigma) were co-

transfected with lentiviral plasmids into 293T cells using Lipofectamine 2000. Virus-

containing supernatant was used to transduce sarcoma and melanoma tumor cell lines. Cells 

were grown in the presence of 10–40 μg/ml puromycin, and nrf2 knockdown was confirmed 

with qPCR.

The Cancer Genome Atlas (TCGA)

Human tumor data was sourced from the TCGA analytical tool, UCSC Cancer Genome 

Browser (http://cancergenome.nih.gov/). PANCAN normalized gene expression data was 

used to partition tumors into roughly equally numbered groups, compare transcript 

expression levels, and generate survival curves for patients. For ARE-containing gene 

signature, the following genes were used: hmox1, NADPH dehydrogenase (nqo)1, 

thioredoxin reductase (txnrd)1, glutathione S-transferase -alpha (gsta)4, -mu (gstm) 1 and 3, 

sulfiredoxin (srxn) 1, epoxide hydrolase (ephx)1 and alsin Rho guanine nucleotide exchange 
factor (als)2. For analyzing NK cell metagenes, the expression Z-scores from RNAseq for 

the genes perforin1, granzyme B, NKG2D and natural cytotoxicity triggering receptor1 were 

added up and used as “NK score” (approximation of the presence of NK cells).

Mice

C57BL/6-strain WT, C57BL/6 x129-strain WT, B6-Rag2tm1.1Cgn (rag2−/−), B6-Rag2tm1Fwa 

II2rγtm1Wjl (rag2−/− x γc−/−), B6-Il17dtm1Lex/Mmucd (il17d−/−) (UC Davis MMRC), and 
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B6-Nfe2l2tm1Ywk/J (nrf2−/−) (Jackson) were used for studies in this work. To control for 

microbiota-influenced immunity disparities, WT mice were bred for at least one generation 

in house before use. Rag2−/− and Rag2−/− x γc−/− colonies are maintained and in routine use 

in our lab. Il17d−/− and nrf2−/− mice were obtained from UC Davis MMRC and Jackson 

Laboratory, respectively. Mice were backcrossed to a C57/Bl6 background for several 

generations until >99% pure. All mouse experiments were approved by the UCSD 

Institutional Animal Care and Use Committee (IACUC protocol #S06201) using a marker 

assisted selection (i.e. “speed congenic”) approach. Mouse genomes were assessed at the 

DartMouseTM Speed Congenic Core Facility at the Geisel School of Medicine at 

Dartmouth. DartMouse uses the Illumina, Inc. (San Diego, CA) GoldenGate Genotyping 

Assay to interrogate 1449 SNPs spread throughout the genome. The raw SNP data were 

analyzed using DartMouse’s SNaP-MapTM and Map- SynthTM software, allowing the 

determination for each mouse of the genetic background at each SNP location. Genetic 

background at the final back-cross generation was determined to be >99% for the desired 

C57BL/6 background. nrf2 genotyping was performed as recommended (Jackson 

Laboratory), and il17d genotypes from tail biopsies were determined using real time PCR 

(Transnetyx, Cordova, TN).

Tumorigenesis and Tumor Transplantations

Primary tumorigenesis was performed as previously described (O’Sullivan et al., 2012; 

Shankaran et al., 2001). MCA was dissolved in corn oil (Sigma) prior to instillation. To 

induce primary tumors, 5μg or 25μg doses of MCA were injected subcutaneously along a 

single flank. Tumor development was monitored and measured weekly between two and six 

months post MCA instillation. Tumors were harvested for cell line generation and RNA 

when tumors achieved an average diameter of 25mm. For transplantation studies, tumor cell 

lines were trypsinized, washed with cold PBS three times, and injected subcutaneously 

along the flanks of mice (previously described (O’Sullivan et al., 2012)). Hair was removed 

from the flanks of mice at least one day prior to transplantation. Tumor progression was 

assessed by averaging the greatest two diameter measurements of the tumor.

Viral Infections

VV Western Reserve was kindly donated by the Dr. Ananda Goldrath (UCSD) and MCMV 

Smith Strain by Dr. Elina Zuniga (UCSD). Primary fibroblasts or tumor cell lines were 

incubated with 1×105pfu of MCMV or VV, respectively, per 4×105 cells for 2h, washed and 

harvested after 24h. Viral titers following VV infection were determined by plaque assays on 

Vero cells (kindly donated by Dr. Elina Zuniga). In vivo, age and sex-matched eight to 

twelve week old C57Bl/6 WT or il17d−/− mice were infected with VV by scarification at 

1×105 or 1×106 pfu. VV scars were monitored daily and expressed as the average of the two 

maximum scar diameters. For MCMV, mice were infected with 3×105 pfu/mouse i.p. and 

weighed daily for disease progression.

Antibodies and FACS Analysis

Tumor tissues were digested both mechanically by chopping with razor blades and 

chemically with 1mg/mL type IA collagenase (Sigma-Aldrich) for 30 minutes at 37°C. 

Following digestion, cell suspensions were washed, filtered and stained as previously 
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described (O’Sullivan et al., 2012). The following antibodies were used: Ly6C (ER-MP20, 

Serotec), MHCII (M5/114 15.2, eBioscience), Ly6G (1A8, Biolegend), CD8 (53-6.7, 

eBioscience), CD44 (IM7, Biolegend), CD3 (17A.2, Biolegend), CD4 (GK1.5, Biolegend), 

CD69 (H1.2F3, Biolegend), Granzyme B (NGZB, eBioscience), IFNγ (XMG 1.2, 

Biolegend), TCRβ (H57-597, Biolegend), B220 (RA3-6B2, eBioscience), NK1.1 (PK136, 

Biolegend), CD11b (M1/70, eBioscience), CD45 (30-F11, Biolegend). Stained cell 

suspensions were analyzed on a BD FACS CANTO II (BD Biosciences).

Western Blot

Cells were lysed in 4x sample buffer containing SDS (Bio-Rad) and β-mercaptoethanol 

(Sigma) before boiling at 95°C for 5 min. Samples were run on SDS-PAGE gels (Biorad), 

and expression of Nrf2 was analyzed by Western Blotting using anti-Nrf2 (C-20, Santa Cruz 

Biotech). β-actin (A5441, Sigma-Aldrich) was used as loading control. Blotted bands were 

quantified with CS6 Photoshop imaging software.

Immunohistochemistry

Tissues were fixed in 10% Formalin (Sigma-Aldrich) for 24 hours before embedding in 

paraffin. Sections were stained with α-Nrf2 (C-20) by the UCSD Core Histology and 

Immunohistochemistry service using the Ventana Discovery Ultra (Roche). Slides were 

imaged on a Leica DM 2500 microscope and photographed with a Leica DFC 420 digital 

camera.

Chromatin Immunoprecipitation

ChIP for Nrf2 was performed as described previously (DeNicola et al., 2011). Following 

activation of Nrf2 with tBHQ, cells were fixed in 1% formaldehyde for 10 minutes at room 

temperature, quenched with 0.125M glycine for 5 minutes at room temperature, washed with 

cold PBS and resuspended in lysis buffer [1% SDS, 10mM EDTA pH 8, 50mM Tris-HCL 

pH 8], fresh protease inhibitor cocktail for 5 minutes on ice. To generate chromatin 

fragments of around 200bp, cell lysates were sonicated on ice for 15 cycles [15 seconds on, 

45 seconds off] and pelleted by centrifugation at 13,000 rpm for 5 minutes. Protein A 

dynabeads (Life Technologies), pre-blocked in 0.5% BSA in PBS (w/v), were incubated 

with 8μg α-Nrf2 (C-20) or normal rabbit IgG (sc-2027, Santa Cruz Biotech) overnight at 

4°C and then washed with additional blocking buffer and RIPA. To immunoprecipitate Nrf2-

chromatin complexes, conjugated dynabeads were mixed with sonicated lysate - diluted 1:9 

in dilution buffer with protease inhibitors - and allowed to rotate overnight at 4°C. 

Immunoprecipitates were processed as suggested by the dynabeads manufacturer (Life 

Technologies) and purified using the QiaQuick PCR DNA kit (Qiagen). qPCR sequences 

used for ChIP samples appear in Table S3.

Quantitative PCR

RNA was isolated with Trizol (Ambion) and converted to cDNA (Applied Biosystems High-

Capacity cDNA Reverse Transcription Kit). qPCRs were prepared with 2x Universal SYBR 

Green Master Mix (Applied Biosystems) and performed on Bio-Rad CFX96 (Bio-Rad) 

machine. The following primer sequences were used: HPRT (fw - 
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GCTTGCTGGTGAAAAGGACCTCTCGAAG; rv - 

CCCTGAAGTACTCATTATAGTCAAGGGCAT), IL-17D (fw – 

AGCTTGTCCATGCTGGAGTT; rv – CTCTACGGGGAGGAGGACTT) HMOX-1 (fw –

TGAAGGAGGCCACCAAGGAGG; rv – AGAGGTCACCCAGGTAGCGGG), Keratin 18 

(fw- AGCCATTACTTCAAGATCATC; rv- CTCTGTCTCATACTTGACTCT).

Statistical Analysis

Statistical significance was determined by the Welch’s t test, using a two-tailed analysis, the 

Log-Rank test, or the repeated measures ANOVA test with the InStat 3.0 software 

(GraphPad, CA). Error bars are depicted using SEM. All experiments were repeated at least 

twice. * P < 0.05, ** P < 0.01, *** P < 0.001 in all data shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• The transcription factor Nrf2 induces the cytokine IL-17D

• IL-17D is required for effective antitumor and antiviral immune 

responses

• Induction of Nrf2 by agonists in established tumors can lead to tumor 

regression

• IL-17D-mediated tumor regression requires Nrf2 expression in tumors

Saddawi-Konefka et al. Page 17

Cell Rep. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. The transcription factor Nrf2 induces IL-17D
(A) Consensus sequence analysis of Nrf2 TFBS in the promoter and intronic regions of 

human and mouse il17d genes. Green highlights represent Nrf2 binding sites in (D).

(B) H2O2 activates Nrf2 and induces il17d in MEFs (left) and MCA-induced sarcoma 

(right).

(C) Pharmacologic activation of Nrf2 with tBHQ induces il17d in the murine melanoma B16 

(left) and human Burkitt’s lymphoma cell line Ramos (right).

(D) ChIP of B16 melanoma cells treated with tBHQ shows that Nrf2 directly binds to 

chromatin upstream of the il17d gene (regions around 4196,4860 (left), and 3730 bp (right) 

upstream of the il17d start site). Values are expressed as the % of Nrf2 bound in 

immunoprecipated samples compared to input samples.

(E) siRNA to nrf2 prior to activation with H2O2/tBHQ in tumor cell lines blocks the 

induction of il17d in MCA sarcoma (left) or B16 melanoma (right). TFBS [transcription 

factor binding site].

Experiments repeated at least twice. Error bars represent ± SEM. Supported by Fig. S1 and 

Tables S1 and S3.
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Fig. 2. Nrf2 is activated in primary murine tumors and its activation correlates with the 
expression of il17d in human cancers
(A) Expression of nrf2, hmox1, il17d and keratin in primary MCA-induced sarcomas (n=9) 

assessed via qPCR and compared to normal untreated skin (n=6).

(B) Expression of il17d in all available TCGA human cancers correlates with the expression 

of ARE-containing genes.

(C) MCA-induced sarcomas grouped according to their growth phenotype in WT mice (n=3 

per group) show correlations in their expression of il17d transcript and Nrf2 protein.

Experiments repeated at least twice. Error bars represent ± SEM. Supported by Fig. S2.
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Fig. 3. The expressions of il17d and Nrf2 correlate following viral infection
(A) Primary-derived adult fibroblasts infected with vaccina virus (VV) or mouse 

cytomegalovirus (MCMV) show an increase in the transcript of il17d.

(B) An MCA sarcoma or B16 melanoma cell line increases il17d transcript following VV 

infection in vitro.

(C) Infection by scarification with VV in vivo leads to an increase in il17d and nrf2 
transcript expression.

(D) IHC for Nrf2 protein in infected versus non-infected scars show an increase in Nrf2 

protein expression in skin spanning dermis to epidermis. Scale bar=200μm.

(E) Topical application of tBHQ on the flank in vivo increases il17d and nrf2 transcript 

expression.

(F) Nrf2 protein expression is similarly increased following tBHQ topical applications.

Experiments repeated at least twice. Error bars represent ± SEM. Supported by Fig. S3.
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Fig. 4. IL-17D protects from primary tumorigenesis and viral infection
(A) Primary tumors induced with the carcinogen 3-MCA in il17d−/− versus WT mice 

develop tumors at a higher frequency at low (5μg, left) and high doses (25μg, right) of 

carcinogen.

(B) Scars infected with VV in il17d−/− mice are larger than in WT before scar resolution at 

both a lower (10^5, left) and higher pfu (10^6, right).

(C) Il17d−/− mice i.p. infected with 3×105 pfu MCMV are more susceptible than WT mice, 

as measured by weight loss.

Experiments repeated at least twice. Error bars represent ± SEM. Supported by Fig. S3 and 

S4.
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Fig. 5. Activating Nrf2 induces IL-17D and delays tumor growth in vivo
Tumor cells were transplanted subcutaneously and allowed to reach an established size 

(~3×3mm) before the initiation of topical treatments with tBHQ once daily for seven days.

(A) and (B) When transplanted in WT hosts, B16 (A) and F244 (B) regress following tBHQ 

treatment.

(C) Il17d and the Nrf2 target gene hmox1 are upregulated in B16 and F244 tumors treated 

with tBHQ.

(D) and (E) Topical treatments with tBHQ delay the growth of B16 when transplanted into 

nrf2−/− (D) and il17d−/− (E) mice.

(F) Topical tBHQ fails to induce the regression of il17d−/− MCA sarcoma cells transplanted 

into WT mice.

(G) and (H) tBHQ treatment fails to delay tumor growth when nrf2 is knocked down via 

shRNA in B16 melanoma (G) or F244 sarcoma cells (H).

(H) Il17d and the Nrf2 target gene hmox1 are not induced in B16 and F244 tumors treated 

with tBHQ after nrf2 knockdown.

Experiments repeated at least twice with no fewer than 10 mice. Error bars represent ± SEM. 

Supported by Fig. S5.
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Fig. 6. Inducing Nrf2 via tBHQ leads to the recruitment of NK cells into tumors
(A) and (B) tBHQ delays the growth of B16 tumors when transplanted into Rag2−/− (A), but 

not Rag2−/−xγc+ (B) hosts.

(C) – (E) Topical treatment of B16 melanomas with tBHQ increases the percentage (C–E) 

and total number (E) of NK cells present in tumors, while other immune populations remain 

unchanged (C).

(F) The tBHQ-induced increase in NK cell recruitment is prevented when nrf2 is knocked 

down or il17d is deleted (F38K1) in tumors.

Experiments repeated at least twice. Error bars represent ± SEM. Supported by Fig. S4, S5 

and S6.
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