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1. Introduction

The validation phase of the software production process has received
increasing attention in the last few years (e.g. Elspas, 1972; Hetzel,
1972; IEEE, 1973). The two most important approaches to validation which
have been studicd are program verification and program testing. In the
program verification approach a program is mathematically proved to be
correct over its entire input domain. In the testing approach a program
is shown to be correct over a finite subset of its input domain by
evaluating the program over that set. The verification approach is
limited to very small programs. The testing approach is generally
applicable and is likely to remain the most important software validation
tool.

Several programming tools have been built which automate parts of
the program testing process. Stucki (Stucki, 1973) and Brown (Brown, 1972)
describe systems which automatically insert instrumentation statements
into a program. The instrumentation statements keep a record of t;he
branches and statements that are executed during the testing of a program.
Reports can be generated which describe how thoroughly the statements and
branches have been tested. The system described by Brown also contains
features for manipulating a data base of test cases and for automatically
checking test results. Krause (Krause, 1973) describes a system for
extracting a sequence of paths from a program which "covers" each branch
in the program. The system extracts skeletal descriptions of the paths,
which the user examines in order to construct test cases which cause the
paths to be followed. The skeletal descriptions which are generated by
the system are similar to the "implicit descriptions" which are described

below. A scheme has been devised by Paige and Balkovitch (Paige, 1973)



for testing a program against its specifications. Ramamoorthy
(Ramamoorthy, 1973) has constructed a system which automatically checks
a program for anomolous statements and constructions. Ramamcorthy's system

also provides facilities for the automatic insertion of trace statements.

This paper describes the results of a research project in the
generation of test cases. The goals of the project were to design a
test data generation tool and to come to a better understanding of the
basic program testing problems. The following sections contain a descrip-
tion of a methodology for the automatic generation of test data. The
methodology is general and can be applied to programs in different
languages although it was designed with FORTRAN programs in mind. The
program testing problems which were discovered during the project are
described in context, along with the description of the methodology.

The methodology decomposes a program into a finite number of standard
classes of program paths. It then attempts to generate a set of test cases
which causes one path fram each class to be tested. The general test data
generation problem is undecidable. There is no algorithm which can examine
any class of paths through a program and generate a test case for that
class. A camplete standard set of test cases contains one test case for
each standard class of paths. The methodology attempts to generate 'a large

subset of the camplete set.

2. General Approach

The methodology consists of five phases. The first phase analyzes a
program and constructs descriptions of the standard classes of paths. The
input data which causes the paths in a class of paths to be followed can

be charactcrized by a subset of the assignments, loops, function calls and



branch predicates in the paths. The second phase of the methodology
constructs descriptions of the sets of input data which cause the
different standard classes of paths to be followed. The descriptions
generated by the second phase are implicit descriptions in the sense

that they do not explicitly describe a set of data il) teris of predicates
and relations. They contain assigmments and loops and other program-like
constructs. The third phase of the methodology attempts to transform the
implicit descriptions into equivalent explicit descriptions. An explicit
description consists entirely of predicates and relations. In general,
it is not possible to transform any implicit description into an explicit
description. The fourth phase constructs explicit descriptions of subsets
of the input data sets for which the third phase was unable to construct
explicit descripticons. The fifth phase of the methodology generates
input values which satisfy explicit descriptions. Explicit descriptions
of numeric input data consist of systems of equalities and inequalities.
Values which satisfy numeric explicit descriptions can be obtained by the

application of inequality solution techniques.

3. Generation of Class Dascriptions

(a) Boundary-Interior Test Paths. There are a potentially infinite

number of paths through a program which contains loops. Only a finite
mumber of these can be tested. One approach is to test the K shortest
paths, for some fixed constant K. The K shortest paths approach is
redundant and unpredictable, It causes intuitively similar tests to be
carried out. It tests the "important" paths through same programs but
not through others.

Another approach is to group the paths into a finite number of

standard classes and to test one path from each class. 1In the loop



reduction method paths are grouped into classes by ignoring iﬁerations of
loops. This method has two obviocus disadvantages. It does not distinguish _
between alternative paths through a loop and it does not distinguish

between the boundary and interior tests of a loop. A boundary test of a
loop is a test which causes ‘the loop to be entered but not iterated. An
interior test causes a.lobp to be entered and then iterated.at least once.
Experience indicates thét both the boundary and interior conditions of a
loop should be tested. .

The boundary-interior méthod generates separate classes of paths for
alternative paths through and for the goundary and interior tests of a
loop. Paths which differ othef'ﬁzén in traversals of loops are grouped
in different classes. Paths which difﬁer only in traversals of loops are

classified as follows. Suppose Pl and P, are two paths which enter and

2
leave a loop L. P1 and P2 are placed in different classes if:
(i) Pl is a boundary test and P2 an interior test of L
(ii) 2 and P, enter or leave L along different loop
entrance or loop exit branches
(iii) Pl and P2 are boundary tests anq.they follow different
paths through L
(iv) Pl and P2 are interior tests and they follow different
pathé through L on their first iteration of L.

(b) Class Descriptions. The first phase of the methodology uses

the boundary-interior approach to decompose a program into a finite set
of classes of paths. It constructs program-like descriptions of the
classes. Class Jescriptions consist of branch predicates, assignment
statements, I/0 statements and "FOR-loops". Figure 2 contains the
description of the class of paths which test the interior of (i.e., iterate

at least once) the loop in the program in Figure 1.



1l READN

2 IFN<OG'TO 10
3 M<«l

4 IFN=0 GO TOS8

5 M+«M*N

6 N+N-1
7 GOTO 4
8 PRINT M
9 HALT

10 PRINT -1
11 HALT

Figure 1: Factorial Program

The FOR-loop notation in Figqure 2 is used for 'denoting traversals
of loops. The use of the FOR-loop notation makes it possible to introduce
a variable into a description which denotes the number of times a loop is

traversed.

The class descriptions for a program will contain cammon subdescriptions.
A complete set of class descriptions can be represented in the form of a
"description tree". Figure 3 contains the description tree for the factorial

program in Figure 1.

(c} Class Description Generation Process. Phase one of the methodology

reads through a program and constructs its class description tree.



Nz 0
M+1
N =0
M+«M*#*N
N«<N-1
Kl=20

FOR I1 = 1 TO K1

N=20

M+ M*HN

N«+«N-1
N=20
PRINT M
HALT

Figure 2: Class Description

The phase one process has the structure of a recursive finite state

- automaton. Each copy of the automaton is associated with the processing

of a loop in the program. When a subloop is discovered during the
processing of some loop a fresh copy of the automaton is created for the
processing of the subloop. When the processing of a loop has been campleted,
control is returned to a previously interrupted copy of the autamaton. fThe

structure of the process is such that loops nust be properly nested.



N

N =20 N <D
M<1l " PRINT -1
HALT
N0 N=20
M+«M*N PRINT M
N+N-1 HALT
Kl =0
FOR T1 = 1 TO K1
N=20
M+ M*N
N+<nN-=-1
N=20
PRINT M
HALT

Fiqure 3: Description Tree

The structure of the phase one process is described by the state
diagram in Figure 4. As it reads through a program the process adds
assigmment statements, branch predicates, I/0O statcments and FOR-1cops
to the description tree. The process begins in the MAIN state. It
continues in this state until a branching statement or the entrance to a

loop is encountered. When it reaches a branching statement it constructs



' branches in the description tree which correspond to statement branches.
The BRANCH state chooses which branch to continue processing along.
When a loop entrance is encountered the process enters the ENTRANCE state.

It continues in the ENTRANCE state until a branching statement, the first

loop entrance

- —

4
4 \
statement e l'iﬁiﬂﬂ@'
/ .

EN

first statement
of L

branch

Figure 4: State Diagram for Class Description Generation Process

statement in the loop or the entrance to a subloop is reached. 1If a branching

statement is reached it sets up the appropriate branches in the description



tree. If the first statement is reached the PATH state is entercd. The
PATH state sets up subpaths in the tree which correspond to the alternative paths
which can be followed on the first iteration of the loop. If the
entrance to a subloop is encountered a fresh copy of the automaton is
created and entered at the ENTRANCE state. When the PATIl state
Ye-encounters the first statement of the loop being processed it passes
control to the ITERATE stafe. The ITERATE state constructs a FOR~-1loop
which describes all possible further iterations of the loop. 'The

ITERATE state passes control to the EXIT state. The EXIT state "exits"
from a loop. It constructs subpaths in the tree corresponding to the
different paths through the loop from the first statement of the loop to
same exit branch out of the loop. The BACKTRACK state causes control to
return to some previously interrupted copy of the automaton. Tt does

this by backtracking through the partially camplete description tree until
it encounters a node which has branches leading to uncompleted subpaths.
It passes control to BRANCH to choose a branch along which to continue the
tree construction process. The PRINT state prints out, or hands along to

phase 2, a completed class description.

4. Implicit Input Data Descriptions

The input data which causes a path to be followed is the data which
causes, the predicates in the path to be satisfied. ‘Ihe predicates in a
path, together with the input and camputational statements wich affect
the variables in the predicates, form an "implicit" description of the
subset of the input domain which causes the path to be followed. Phase 2

of the methodology constricts implicit input data descriptions of the



sets of data which causc classes of paths to be followed. It does this
by extracting the predicates and predicate affecting statements fram class

descriptions. Figure 5 contains the implicit input data description

for the class description in Figure 2.

=
v,
o

FOR I1 =1 70 K1
N=20

N+N-1

=
0o
o

Figure 5: Implicit Input Data Description

Phase two can be described in two parts. The first part of phase
fwo deletes the output statements from a class description and replaces
all input statemants by assignment statements. Each input statement in
& program is assumed to read the next value in an input stream, ‘The
values in the input stream are represented by the dummy input variables
#1, #2, ... . Different notations cau be developed for different kinds
of program input. In Figure 5 the i1 :t statement "READ N" has been
replaced by the assignment N « §1. Special consideration must be given
to input statements which occur inside loops. Similar techniques can be

used for subroutine input.
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The second part of phase two deletes all "unnecessary” assigrinent
statements. It does this by reading backwards from each predicate. As
it reads back it constructs lists of "predicate affecting" variables.

It uses these lists to determine which assignment statements do not affect

predicates and can be deleted from a description.

5. Transforming Implicit into Explicit Descriptions

(a) Explicit Input Data Descriptions. An explicit input data

description for a FORTRAN program consists of a system of inequalities in
input variables and constants. It is usually only possible to construct
"partially" explicit descriptions. Partially explicit descriptions are
simplified implicit descriptions. Like implicit descriptions, they con-
tain assignments and FOR-loops as well as predicates and relations. Phase
three of the methodology is a symbolic interpretation process which
transforms implicit descriptions into explicit ard partially explicit
descriptions. )

Phase three attempts to evaluate and delete the assignment statements |
and FOR-lcops in an implicit description. An assignment statement is
evaluated by substituting the current symbolic values of the independent
variables in the statement into the statement. The expression on the right
hand side of the resulting statement becomes the current synbolic value
of the variable on the left hand side. Symbolic values are substituted
for occurrences of variables in predicates and relations. Figure 6 contains
a partially explicit description for the implicit description in Figure 5.
The assignment N + #1 has been evaluated and the symbolic value #1
substituted for N in the predicates N2 0 and N = 0.

The assignment N + N - 1 has also been evaluated..
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N <« #1

#1

v
o

#1 = 0

N+« #l-1

Klz0

FORI1 =1T0K1
N =0

N«+~N-1

Figure 6: Partially Explicit Description

The current symbolic value #1 - 1 of N cannot be substituted for
occurrences of N in the FOR-loop because N is assigned a value in the loop.
Phase three attampts to evaluate and delete FOR-loops by finding "closed
forms" for iterative expressions. The FOR-loop in Figure 6 can be
replaced by the closed form in Figure 7. Once the FOR-lcops have been
eliminated from a partially explicit description, further evaluation may
be possible. The value of N computed in the assignnen.t N+ #1 - 1 can be
substituted for N in the closed form expression for the FOR-loop. A
symbolic value for N can also be substituted into the predicate N = 0.
Figure 8 contains the resulting description.

Some assignment statements can be deleted once they have been
evaluated and others will remain in the resulting partially explicit
description. Assignment statements which do not affect predicates in a
partially explicit description can be deleted from the description. All
of the assigrnment statements in Figure 8 can be deleted. Figure 9 contains
the resulting description. In this case a completely explicit description

is generated.



N« §1

#1 2 0

#1 =2 0

N+ #1 -1

Klzo0
(N<OQOVN>KL-1
N« N-Kl

N=20

Figure 7: Description with Closed Form

N« #1

)"
o

#1
N+ $#1-1

Kl =0

(#1 -1 < 0 v #1 -1 > K1 - 1)
N« #l -1-~K1

#1-1-Kl =0
Figure 8: Partially Explicit Description

#1 =2 0

#1 = 0

Kl =0

(1 ~1 <0 v #1-15Kl-1)

- #1 -1-K1l =0

Figure 9: Explicit Input Data Description



14

(b) Interpretation Problems. There are several problems which

make interpretation a complicated process and which can prevent the
construction of a completely explicit input data description. The
problems result from the presence of array references and FOR-loops in
an implicit description. -

FORTRAN array references have the property that they may stand for
different array elements, depending on the values of the indices in the
reference. Suppose that the value of an index in a reference can only
be determined at execution time. Then the symbolic interpreter may be
unable to camplete the evaluation of the statement in which the

reference occurs. In the example in Figure 10 the interpreter can

A(K,2) « 121
A(J,2) « 144

x b A(K,Z)

Figure 10: Indeterminate Variable References Problem

evaluate the first two assignments and assign the values 121 and 144
to the variable syinbols A(K,2) and A(J,2). If the interpreter is
unable to determine whether or not K is equal to J at that point in the
program it cannot assign the value 121 or 144 to X and cannot camplete the
evaluation of X <« A(K,2). The symbolic value of A(K,2) will be "indeter-
minate". The best the interpreter can do is to assign the symbolic values
"A(K,2)" to X and refrain from deleting the assignments A(K,2) < 121 and
A(J,2) « 144, |

The interpreta{:ion process in phase three of the interprecter uses
the concept of the "domain" and '!rangé" of a variable symbol to determine

when evaluati~n and deletion can take place. The domain of a



variable symbol which occurs at some poLint in a program is the set of
variables which that symbol may stan;i for at execution time. The range
of the symbol is the set of possible values of the ranges of the variables
in the domain of the symbol. The domain of an -array reference is deter-
mined by the ranges of its inc'iices..

There are three classes of FOR-loop interpretation problems. The
first involves the substitution of values computed outside FOR-loops for
variable references occurring inside FOR-loops. Suppose that a reference
to a variable X occurs in a predicate or on the right hand side of an
assignment inside a loop. ILet Xy be the value of X on entry to the loop.
If X also appears on the left hand side of an assignment in the loop
then the initial value X 0 of X cannot be "brought into" the loop and the
. assignment of XO to X outside the loop cannot be deleted fram the
description. This problem occurs in the example in Figure 5. The value
#1 -1 for N cannot be brought into the loop in the partia]_.ly explicit
description in Figure 6 In this particular example a closed form for the
FOR-loop was discovered which allowed the substitution to be carried out
later on in the evaluation process, and the assignment N + #1 -1 to be
deleted.

The second class of problems involves the substitution of values
computed inside FOR-loops for variable referenceé occurring outside
FOR-loops. Suppose that a variable X is 'computed inside a loop and then
referenced outside the loop. If there is no closed form for the iteratively
camputed value of X then the value of X cannot be "brought out" of the loop
and the FOR-loop cannot be deleted. In the example in Figure 6 it was
possible to construct a ciosc_—:d form for the iteratively camputed value of
N which could be "brqught out” of the loop and substituted for the reference
to N in the predicate N = 0, It will usually be difficult to construct

closed forms. The construction of the closed form for even the simple

-
-

15



' I'OR-loop in Figuré 6 requires the application of a relatively sophisticated
closed form role.

The third class of-FOR-loop interpretation problems involves the
interpretation of "disjunctive" and "recurrence" statements. Suppose that
a program contains a loop L and that the conditional statement "IF P THEN
X + Y" occurs inside L.._ﬁhase one fo the methodology will distinguish
between the paths througﬁ L fbr‘yhich P is true and those for which ~ P
is true. Each class dcscriptién which is constructed by phase one will
contain a description of a pakticular path through L and a FOR-loop which
describes all possible iterations of L. 'The FOR-loop will contain the
disjunctive statement (P AX =« V):.:: ~P, A disjunctive statement
consists of a number of Egégg connected by the v symbol. An assignment
which occurs as part of a term in a disjunctive statement cannot be
synholically evaluated unless the interpreter is able to determine the
truth values of the predicates in the statement. When the phase thiree
interpreter encounters a disjunctive statement is marks the values of the
assigned variables in the statement as "indeterminate",

In a recurrence assignment, the variable on the left hand side also
occurs on the right hand side. The description in Figure 6 contains the
recurrence assignment N + N - 1. Recurrence assignments can occur both
inside and outside FOR-loops and can bé evaluated in the normal way when
they occur outside a loop. They cannot be symbolically evaluated when
they occur inside a loop. The phase three interpreter marks the values
of assigned variables in recurrence assignments as indeterminate.

(c) Interpretation Process. The phase three interpretation process
Erp

consists of two parts. In the first part the assignment statements and
FOR-loops in a description are evaluated.' Values of variables are

substituted into predicates and relations. In the second part the



Immecessary stét@nents and FOR-loops in the evaluated description are
deleted. The separation of evaluation and statement deletion simplifies
the problem of deu;-rmini.ng if an assignment can be deleted from a partially
explicit description.

The evaluation part of 1.:_he interpretation process (the evaluator),
has the structure of thé.recursive automaton in Figure .ll. A new copy
of the automaton is created whenever Ia sub FOR~loop is discovered during
the processing of a description. FEach of the states in the automaton
is associated with a subprocess which makes a "symbol pass", "evaluation

pass" or "closed-form pass" over ap implicit or partially explicit

description.
L 3
' end of
% : c description @
of end of end of end of end of
loop loop loop loop loop
0 Tee - 7 o :

Figure 11: State Diagram for Evaluation Process

The evaluator begins in the E state at the_ first statement of a
description. 7The E state uses an E-list to symbolically evaluate
assignment statements and substitute values of variables into predicates
and relation. A E-list is an ordered list of ordered pairs. The first

element of each pair is a variable symbol and the second a symbolic value.
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"+ Each time a new symbolic value is computed for a variable an ordered pair
is added to the end of the E-list. When the E-state encounters a subloop
the evaluator creates a’new copy of the automaton and enters it at the
first S-state. It saves the interrupted copy of the automaton, together
with its partial.ly conpleted E-list.

The S-state subproc:es|s Creates "FOR-loop symbol lists" or S-lists.
S-lists are lis_té of ordéred pa.ti_rs of variable symbols and statement numbers.
An S-list for a loo;-_a oontains_ an ordered pair for each variable symbol
which occurs on the left hand side of an assignment in the loop. The
evaluator uses the S-list for a loap to determine when a value of a
variable can be "brought inside" 'a. loop. Consider the example in

4
Figure 12.

X« 10
FORI =1 to N

Y « X

X+ 20
Figure 12: FOR-Loop

Suppose that the S-list for the loop has be constructed and that the
evaluator is attempting to evaluate the assignment Y « X. If the S-list
does not contain an entry for X then the value 10 can be brought into the
loop and substituted for the occurrence of X in the assigrment. If the
S-list does contain an entry for X then the value of X is indeterminate

in the loop.



When the S-state of an automaton reaches the end of a FOR-loop control
passes Lo the- following E-state of the automaton. The E-state uses the
computed S-list for‘ the foop, an B-list which it constructs as it goes
along, and the partially completed E-lists of the outer loops to evaluate
the assignments in the loop. It usc‘s the S-list to determine when it is
possible to bring a value from an outer loop E-list into the loop which
is being processed.

After two S and E passes have been applied in succession to a
FOR-1o0p, tl;e C-state of the automaton is entered. The C-state attempts
to find a closed form for the evaluated FOR~-loop produced by the two
S-I passes. It attempts to find closed forms for all of the iteratively
canputed values and predicates in the loop.

When a C-pass reaches the end of a loop control passes to the
BACKIRACK state. The BACKTRACK state returns control to the interrupted
automaton associated with the next enter FOR-loop. If the loop is at
the top level of the description control returns to, the "top level"
automaton. The process halts when the C-state in the top level autaomaton
reaches the end of the implicit description.

One of the interesting features of implicit description evaluation
is the nccessity for repeated applications of S and E passes to a FOR-loop.
The evaluator described in Figure 12 carries out two S-E passes in |

succession to each loop each time the loop is encountered. The reason

why more than one S-E pass is necessary is that processing on some earlier |

portion of a FOR-loop may be blocked by the presence of unevaluatable
statements later in the loop. Once the statements which come later in the
loop have been evaluated it may be possible to carry out the blocked
processing on a sccopd S-E pass of the loop. Consider the example in

Figure 13. On the first S-pass over the loop an S-list containing the

19
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variable symbols T and }}(X) will be constructed. On the first E-pass
the evaluator will attempt to evaluate the assignment T + A(4). The
evaluator will not be able to bring the value A(4) = 3 into the loop
since A(X) will be in the S-list and it will not be able to determine
at that point that A(X) =% A(4). When the assignment A(X)} < 6 is
encountered the evaluator will be able to bring the value X = 2 into
the loop since X will not be in the loop's S-list. The first S-E pass

will generate the partially explicit descfiption in Figure 14.

A(4) « 3
MRI=1toN
T « A(4)
A(X)+é

X+« 10

Figure 13: FOR-Loop.

X< 2

A(4) « 3

FORI =11T0N
T « A(4)
A(2) « 6

X+ 10

Figure 14: FOR-loop After First S-E Pass
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The S-list constructed during the second S-E pass will contain the
symbols T and A(2). The value A(4) = 3 will be bfought into the loop since
the symbol A(4) cannot be equivalent to any of the variable symbols that
will be in the S-list. The second S-E pass will generate the partially

explicit path in Figure 15.

A(4) « 3

FORI =1 TON

A(2) <« 6

X+ 10
Figure 15: FOR-loop after second S-E Pass.

Although it has not been proved, experience indicates that two S-E
passes are sufficient to complete the S-E processing of any FORTRAN implicit
path description. More passes. may be necessary for prograpming lanquages
containing other kinds of program and data structures.

The deletion part of the interpretation process deletes assignment state-
ments which no lorger affect predicates. The deletion part of the interpreter
works in the same way as the deletion subprocess in phase two of the methodology.
The deletion process in phase two deletes assignment sfatenents which do not
affect predicates in class descriptions. The phase three deletion process
deletes assignmcnt statements which do not affect predicates in evaluated
partially explicit descriptions. In both cases the deletion process constructs
lists of prcdicate—aﬁfc-ct'_ing variables by reading backwards from each predicate
in a description. The process uses these lists to determine which assignment

statenrnds mast be rotaineg.



6. Explicit Subset Descriptions

Phase three of the methodology transforms implicit descriptions into
explicit and partially e.xplicit descriptions. Ir-nplicit descriptions which
contain FOR-loops will usually be. transformed into partially explicit
rather than explicit descriptions. It is usually very difficult to find
closed forms for and to éliminate FOR~1loops from imiolicit descriptions.
Implicit descriptions which do not contain FOR-loops can almost always be
transformed into explicit descriptions.

Each of the explicit and partially explicit descriptions which are
generated by phase three of the methodology describes a set of input data.
Phase four of the methodology constructs explicit descriptions of subsets
of the sets which are described by partially explicit descriptions. It
constructs subset descriptions by traversing the FOR-loops in partially
explicit descriptions. Suppose that a partially explicit description D
contains a FOR-loop whose loop upperbound is a variable K = 0. D describes
the set of all input data which satisfies the predicates in D for all
feasible choices of K. ILoop-free descriptions of subsets of D can be
constructed by choosing particular values of K. If D contains disjunctive
statements, subset descriptions consisting of simple seguences of
predicates and assignments can be constructed by choosing a particular
term in each disjunctive expression. Phase four constructs explicit
subset descriptions by choosing particular values of loop bounds and
pai{ticular terms in disjunctive statements.

Figure 7 contains a closed form for the FOR-loop in the example in
Figure 6. Suppose that the evaluator had been unable to construct the
closed form for the FOR-loop. Then phase three would have generated the

partiolly explicit description in Figure 16. TEach choice of a non-negative

22



#1 2z 0

#1 = 0

N+ #1 -1

Kl1z20

FOR I1 = 1 TO K1
N=0

N+N-1

Figure 16: Partially Explicit Description Containing

FOR-1o0p.

integer value for K1 corresponds to a different subset of the set
described by the partially explicit description. Figure 17 cchtains the
subset description corresponding to the choice K1 = 0. The description
in Figure 17 contains no FOR-loops and can be evaluated to produce the
explicit subset description in Figure 18.

A description is feasible if there are values in the input domain
which satisfy the dcsc}:iptions. Infeasible descriptions descri_be the empty

subset of the input domain.

Figure 17: Partially Explicit Subset Description

23
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#1 = 0
#1 = 0

$1-1=0
Figure 18: Explicit Subset Descriptions

Particular choices of values for loop bounds and terms in disjunctive
statements can result in the generation of infeasible subset descriptions.
If a partially explicit description is itself infeasible then all choices
of loop bounds and disjunctive terms will result in infeasible subset
descriptions. Phase four of the methodology attempts to choose loop
bounds and disjunctive terms in such a way that the resulting subset
description is feasible whenever the original partially explicit description
is feasible.

Two gencral techniques can be used to help ensure the generation of
feasible subset descriptions. The predicates which constrain the loop
bounds in a partially explicit descfiption form a loop bound subdescription.
The first teqhnique is éo only choose loop bound values which satisfy loop
bound subdescriptions. These subdescriptions will often be simple léop—
free systems of predicates from which loop bound values can be easily
generated. The subdescription constraining the loop bound in Figure 16
consists of the single prédicate Kl 2 0. If a subdescription's
minimal  solution is always chosen then the resulting subset description
will be as short as possible. The secord technique is heuristic search.
If a subset description is infeasible then a new subset description can
be generéted by choosing new loop bound values or disjunctive terms.
Different heuristics can be used to quide the search through the set of
possible choices. Suppose, for example, that a variable in a subset

description is constrained by contradictory predicates and that in the
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original partially explicit description the value of the variable is set
inside a FOeroob. If Fhe‘EOR—loop was iterated K times in forming the
subset description then a new subset description can be generated by
iterating the lodp K+l tﬁnes: Other rules can be developed for other

kinds of feasibility_problems.

7. Generation of Test Cases

Phase five is the test data éeneration phase of the methodology. It
divides standard classes of paths into three sets: those for which it can
generate test data, those for whith it can determine infeasibility, and
those for which it can neither generatg test data nor determine infeasibility.
In general, since the ‘test data generatlon problem is unsolvable, this is
the best that can be expected from a test data generation methodology.

Phase five is an integratéd collection of inequality solution
techniques that can be applied to all of or parts of explicit descriptions
for FORTRAN programs. The techniques are applied to camplete descriptions
éo generate test cases and to subdescriptions'to check feasibility. If
a subdescription is infeasible then the description is infeasible. The
phase‘fiveltechniques are applied to both the explicit descriptions which
are gencrated by phase three of the methodology and to the subset
descriptions generated by phase four.

There are several well defined methods for solving classes of
inequalities which do not contain function calls, subroutine calls, and
array references with variable indices. Somz of the methods afe effective
in the sense that they always produce solutions. Others are partially
effective, they produce solutions to some systems of inequalities but
not to others. Phase five includes both effective and partially effective

methods. It uses a straightforward cffective method for solving linear



systems in one variable. Kuhn's metmqi (Kuhn, 1956) is used to produce
solutions for linear real valued systems in several variables. A method
developed by Singhania and described in' (Howden, 1972) is used to praduce
solutions for non-linear systems in one variable of degree less than five.
Both Kuhn's and Singhania's method are éffective. A large number of the
descriptions which are generated by phases three and four of the
methodology can be solved using these and other effective techniques.

The explicit subse£ description in Figure 18 can be easily solved using
the method for linear systems in one variable.

Phase five uses partially effective methods for solving general
non-linear system and integer valued systems. The basic method is
backtrack search. 'The backtrack search method constructs a sequence of
partial solutions to a system. A partial solution to a system is a set
of values for some subset of the variables in. the system which does not
contradict the relations constraining those variables. The method orders
the variables in a system into a Sequence. It begins by finding a partial
solution for the first variable in the Sequence. It then attempts to
extend this partial solution by choosing a .value for the next variable in
the sequence. It coﬁtinues until a complete solution has been constructed
If it is unable to extend a partial solution at same stage it "bécks ﬁp“
and attempts to change the previous partial solution. If it backs wp to
the initial single variable system and exhausts the set of all possible
values which satisfy the constraints on that variable then the system is
unsolvable.

The backtrack approach can be applied directly to the solution of
lincar il"lLf_’tJt.‘f vatued tystus. Kuhn's method is used to generate a
sequence of lincar systoms, each of which contains one less variable than

its predecessor in the Sequence. Any solution to a member of the sequence

26



. is a partial solution to its predecessdr. The first member of the sequence
is the original system. The last member is a single variable system. 'The
method begins by chbosiné an integer solution to the single variable system.
It uses this solution to reduce the sécond to last system to a single
variable system. It then gttémpts to construct integer solutions to
this syséem. The intege;_solution to the two variable system can be used
to reduce and solve the three variable system, and so on. If same reduced
system has no integer solution the method backs up and attempts to
construct a different integer solution to the previous reduced system
in the sequence. | .
The backtrack mathod caﬁ aléo be applied to non-linear systems.
The non-linear system is replaced with a linear system by substituting
dummy lincar variables for occurrences of variables raised to powers
greater than one. Kuhn's method is used to generate a sequence of partial
solutions to the linear system. At each stage the method checks to see
that the pértial solution to the linear system does not contradict the
substitution relationships. If the substitution relationships are
not contradicted then the next partial solution in the sequence is
constructed. -If some rélationship is contradicted then the method backs
up and attempts to construct an alternative linear partial solution. The
backtrack method is illustrated }or the non-linear integer valued system
in Figure 19.

2

x -4y + 6y" =22
-X + 2y -~ 2y2 20
~X + 5y - 5y2 z -1

Figure 19: Non-linear Integer Valued System
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The substitution z =;y2 reduces the non-linear system to the linear system

in Figure 20.

X =4y + 6z 2 2

-X - 2y -~ 2z

A%
=]

v
1
[

=X + S5y - 5z
Figure 20: Linear System

Kuhn's method can be applied to the system in Figure 20 to produce the

sequence of systems in Figure 21.

X -4y + 6z = 2 -2y + 4z = 2

X -2y -22:z0 yt+tzz1l
X+ 5y ~-5zz -1

L]

Figure 21: Sequence of Partial Solution Systems

An initial linear bartial solution can be constructed by choosing a
value for z which satisfies the last system in the sequence. Subpose.z=l
is chosen.. This can be used to reduce the preceeding system to the single

variable system in Figure 22.

Figure 22: Reduced System




The initial partial solution can be extended to a two variable partial
solution by choosing a value for y which satisfies the reduced system.
Suppose y=0 is chosen. Although (z=1,y=0) is a partial solution to-the
linear system it contradicts the substitution relationship z=y2. The
method will backtrack at this point and cﬁoose a new value for y. If
y=1 is chosen then a complete solution to the original system will be

. generated,

In order to be able to generate test data for other than the lowest
level functions and subroutines in a program, phase five of the methodology
must be capable of solving systems containing functions and subroutine
calls. In certain special cases a function call can be conveniently replaced
with an equivalent subsystem of inequalities which does not contain the call.
The only general technique which has been developed is a variation of the
backtrack scarch method. Suppose that a system contains a single sub-
routine call. The system is fi_rst pai‘tially solved to find a set of
bourds on the input to the subroutine and a set of bounds on its output..

A set of input values which satisfies the input bourds is chosen and the
subroutine is evaluated. If the resulting output satisfies the output
bourds then. a solution to the part of the system which affects a_nd is
affected by the subroutine has been discovered. If the output does not
satisfy the bounds the method backtracks and a new set of input values is
chosen. The method can be extended to systems containing more than one
subroutine or function call. It cannot be easily applied to systems in

which there are complicated interactions betweer. subroutine calls,

8. Conclusions and Future Research

The methodology which is described in the-preceedidg sections can

be used to generate data for programs which must be completely tested.




The boundary interior approach to the classification of program paths
which is used in phase one permits the selection of a finite yet intuitively
camplete set of test cases. The méthodology can be used to build a system
which will automatically generate test data for some classes of paths,
determine the infeasibility of other classes and print out partially
explicit descriptions of the input data which causes the remaining classes
of paths to be followad.

Parts of the methodology can be used for purposeé other than the
automatic generation of test data. Phases one and +wo can be used to
print out descriptions of the standz;lrd classes of paths through a program
and implicit descriptions of the input data which causes the paths to be
followed. These two phases could be used as part of an interactive testing
system. The first four phases could be used as part of a partial program
correctness system. In the boundary-interior approach to program
correctness the correctness of one path from each standard clasé of paths
is proved. Phases one through four can be used to generate simple loop-
free path descriptions. 'The correctness of a loop-free program path
is considerably easier to prove than the correctness of an entire program.

Many of the basic problems of test data generation were discovered
during the design of the netﬁodology. The most important involve thé
loop structure, éubroutine calls and compiexity of arithmetic expressions
in programs. It might be interesting to characterize the set of testable
progfam schemata. A schema is testable if all interpretations of the
schema yield testable programs. A testable program is a program for which
it is possible to automatically generate a camplete set of test data.

Present research plans include the implementation of phases one
and two of the methodology and an extensive investigation of its general

applicability. Further study of the subroutine problem is also planned.



General techniques must be developed for solving predicate systems which

contain calls to user defined subroutines and functions.
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