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Abstract. Recently, deep learning (DL) has emerged as a revolutionary and versatile tool transforming industry applications

and generating new and improved capabilities for scientific discovery and model building. The adoption of DL in hydrology

has so far been gradual, but the related fields are now ripe for breakthroughs. This paper suggests that DL-based methods can

open a viable, complementary avenue toward knowledge discovery in hydrologic sciences. In the new avenue, machine-

learning algorithms present competing hypotheses that are consistent with data for scientists to further evaluate. Interrogative

studies are then invoked to interpret DL models. However, hydrology presents many challenges to DL-powered scientific

advances, such as data limitations, model diversity and variability, and the general inexperience of the hydrologic field with

DL.  The  roadmap  toward  DL-powered  scientific  advances  will  need  the  coordinated  effort  from  a  large  community

involving scientists and citizens. Integrating process-based models with DL models will help alleviate data limitations. The

sharing of data and baseline models will improve the efficiency of the community as a whole. Open competitions will greatly

propel  growth  in  hydrology  and  further  enhance  data  science  education  in  hydrology,  which  demands  a  grass-root

collaboration. There is a great number of research opportunities in this new area which may stimulate advances in machine

learning as well.
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1. Overview

Deep learning (DL) is a suite of tools centered on artfully designed large-size artificial neural networks. The deep networks

at the core of DL are said to have “depth” due to their multi-layered structures, which help represent abstract concepts about

the data . Given input  attributes that  describe an instance,  deep networks  can be trained to make predictions  of some

dependent  variables,  either  continuous  or  categorical, about  this instance. For  example, for  standard  computer  vision

problems, deep networks can recognize the theme or objects from a picture (Guo et al., 2016; He et al., 2016; Simonyan and

Zisserman, 2014) or remotely sensed images  (Zhu et al., 2017). For sequential data, DL can associate natural language

sequence to commands (Baughman et al., 2014; Hirschberg and Manning, 2015) or predict the action of an actor in the next

video frame (Vondrick et al., 2016). DL can also generate (or synthesize) images that carry certain artistic styles (Gatys et al.,

2016) or a natural language response to questions (Leviathan and Matias, 2018; Zen and Sak, 2015).  With the support of

deep architecture, deep networks can automatically engineer relevant concepts and features from large datasets, instead of

requiring  human  experts  to  define  these  features (Section  2.2.2).  As  a  foundational  component  of  modern  artificial

intelligence (AI), DL has made substantial strides in recent years and helped solve problems that have resisted AI for decades

(LeCun et al., 2015). 

While DL has stimulated exciting advances in  many disciplines and has  become the method of choice in some areas,

hydrology so far have only had a very limited set of DL applications (Shen, 2018) (hereafter referred to as Shen18). Despite

scattered reports of promising DL results (Fang et al., 2017; Laloy et al., 2017, 2018; Tao et al., 2016; Vandal et al., 2017;

Zhang et al., 2018), water scientists seemed to have reservations abouthave not widely adopted these new tools, perhaps with

some good reasoning. This collective opinion paper argues that there are many opportunities in hydrological sciences where

DL can help provide both stronger predictive capabilities and a complementary avenue toward scientific discovery. We then

reflect on why it has been challenging to harness the power of DL and big data in hydrology and explore what we can do as a

community to incubate progress.  Readers who are less familiar with machine learning or deep learning are referred to a

companion review paper (Shen18), which provides a more comprehensive and technical background than this opinion paper.

Many details behind the arguments in Section 2 are provided in Shen18.

We first voice the opinions that elements of a complementary machine learning-based scientific discovery avenue are taking

shape, and this avenue should at least be considered for problems with large data (section 2). Then, we propose several ways

to accelerate this avenue (section 3). Finally, we argue that hydrology offers a unique set of challenges for DL research

(section 4). 

2. The emergence of a complementary avenue
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We  are  witnessing the  growth  of  three  pillars  needed for  DL to  support  a  research  avenue that  is  complementary to

traditional hypothesis-driven research: big hydrologic data, powerful machine learning algorithms, and interrogative methods

to extract interpretable knowledge from the trained networks. This new avenue starts from data, uses DL methods to generate

hypotheses, and applies interrogative methods to help us understand hydrologic system functioning. We discuss these aspects

in the following sections.

2.1. With more data, opportunities arise

The fundamental  supporting factor  for  emerging opportunities with DL is  the growth of  big hydrologic data .,  with all

surface, sub-surface, urban, infrastructure, and ecosystem dimensions. Here, hydrology includes both the complete natural

and engineered water  cycle,  and associated  processes  in  the ecosystem and geologic  media.  There  are  ever  increasing

amounts of hydrologic data available through remote sensing (see a summary in Srinivasan, (2013)) and data compilations.

For example,  satellite-based datasets include precipitation, surface soil  moisture  (Entekhabi, 2010; Jackson et al.,  2016;

Mecklenburg et  al.,  2008), vegetation states and indices,  e.g.,  (Knyazikhin et al.,  1999),  and derived evapotranspiration

products (Mu et al., 2011), terrestrial water storage (Wahr et al., 2006), snowcover (Hall et al., 2006), and a planned mission

for estimating streamflows (Pavelsky et al., 2014), etc. On the data compilation side, there are now compilations of geologic

(Gleeson et al., 2014) and soil datasets; centralized management of streamflow and groundwater data in the United States,

Europe, parts of South America and Asia, or globally for some large rivers  (GRDC, 2017); water chemistry, groundwater

samples and other biogeophysical datasets. The Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI) operates two  datasystems for the discovery and archival of water data: the Hydrologic Information System

(CUAHSI, 2018c) for time series, and HydroShare for all water data types (Horsburgh et al., 2016).  An Internet of Water

(Aspen, 2017) has been proposed and is beginning to develop, thereby improving access to these emerging data sets.

Moreover,  unconventional  data  sources  are starting to  emerge.  High-resolution  sensing  of  Earth  will  be  provided  by

increasing amount of CubeSats, Unmanned Aerial Vehicles, balloons, inexpensive photogrammetric sensing and many other

sources (McCabe et al., 2017). These new sources provide new forms of measurements not envisioned before. For example,

cell  phone  signal  strength  and  cell-phone  pictures  can contribute  to  high  resolution  monitoring  of  rainfall  intensity

(Allamano et al., 2015). Inexpensive infrared camera images can detect water  levels in complex urban water flows (Hiroi

and Kawaguchi, 2016). Internet-of-Things (IoT) sensors embedded in water infrastructure can transmit data about the states

of water in our environment (Zhang et al., 2018). These new sources of information provided unprecedented volumes and

multi-faceted coverages  of  the  natural  and  built  environment. However,  since  each  new  data  source  has  its  own

characteristics  and peculiarities,  the  identification of  the  appropriate  approaches to  fully  exploit  their  value,  especially

synergistically, creates a significant challenge. In contrast, DL models can be built  , without significant human expertise and

extensive manual labour, to rapidly derive useful information from these data. 
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2.2. DL: A big step forward

2.2.1. Rapid adoption

The field of hydrology has witnessed flows and ebbs of several generations of machine learning methods in the past few

decades. From regularized linear regression (Tibshirani and Tibshirani, 1994) to Support Vector Regression  (Drucker et al.,

1996), from genetic programming (Koza, 1992) to artificial neural networks (Chang et al., 2014; Chen et al., 2018; Hsu et

al., 1995, 1997, 2002), from classification and regression tree to random forest (Ho, 1995), from Gaussian Process (Snelson

and Ghahramani, 2006) to Radial Basis Function Network (Moradkhani et al., 2004), each approach offered useful solutions

to a set of problems, but each also faced its own limitations. As a result, over time, some may have grown dispassionate

about progress in machine learning, while some others may have concerns about whether DL represents real progress or is

just a “hype.” 

The progress in AI brought forth by DL to various industries and scientific disciplines is revolutionary (Section 4 in Shen18)

and  can  no  longer  be  ignored  by  the  hydrology  community. Major  technology  firms  have  rapidly  adopted  and

commercialized DL-powered  AI (Evans  et  al.,  2018). For  example,  Google  has  re-oriented  its  research  priority from

“mobile-first” to “AI- first” (Dignan, 2018). The benefits of these investments can now be felt  by ordinary users of their

services  such  as  machine  translation  and  digital  assistants who can  engage  in  conversations  sounding  like  a  human

(Leviathan and Matias, 2018). AI patents grew at a 34% compound annual growth rate between 2013 and 2017, apparently

after DL’s breakthroughs in 2012 (Columbus, 2018). More than 65% of data professionals responded to a survey indicating

AI as their company’s most significant data initiative for next year. 

DL is gaining adoption in a wide range of scientific disciplines and, in some areas, has started to substantially transform

those disciplines. The fast growth is clearly witnessed from literature searches. Since 2011, the number of entries with DL as

a topic increased almost exponentially, showing around  100% compound annual  growth rate before 2017 (Table 1). DL

evolved from occupying less than 1% of machine learning entries in computer science in 2011 to 46% in 2017. This change

showcases massive conversion from traditional  machine learning to DL within computer science. Other disciplines lagged

slightly behind, but also experienced exponential increase. They also saw the DL/ML ratio jumping from 0% in 2011 to 33%

in 2017. As reviewed in Shen18, DL has enhanced the statistical power of data in high energy physics, and the use of DL can

be considered to be equivalent to a 25% increase in the experimental dataset (Baldi et al., 2015). In biology, DL has been

used  to  predict  potential  pathological  implications  from genetic  sequences  (Angermueller  et  al.,  2016). DL models  in

computational fed with raw-level data have been shown to outperform those using expert-defined features when they predict

high-level  outcomes,  e.g.,  toxicity,  from molecular  compositions (Goh et  al.,  2017). Just  like  other  methods,  DL may

eventually be replaced by newer ones, but that is not a reason to hold out on possible progress. 

Table 1. Number of papers returned from searches on ISI Web of Science. 
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year DL-nonCS DL-CS ML-non-CS ML-CS DL/ML-CS DL/ML-nonCS
2011 0 23 1068 1838 1% 0%
2012 15 25 1310 1899 1% 1%
2013 35 80 1677 2360 3% 2%
2014 84 238 2228 3050 8% 4%
2015 308 709 3074 4405 16% 10%
2016 841 1462 4414 5361 27% 19%
2017 2035 2723 6125 5860 46% 33%

DL-CS results were obtained by searching  for  topic (TS)=“Deep Learning” AND “Research area” (SU)= “Computer
Science”; ML-CS was obtained the same way as DL-CS, only that “Deep learning” was replaced by “machine learning”;
DL-nonCS was obtained  by  TS=“Deep Learning” NOT SU=“Computer  Science” NOT SU=education.  Education was
removed because entries in this category were not related to our definition of DL. There were also 19 articles in 2011 where
deep learning was about education in disciplines other than SU=Education. Therefore, 19 was used as a blank value and
also subtracted from the DL-nonCS column.  DL/ML-CS is ratio of DL-CS to ML-CS expressed as a percentage.  DL/ML-
nonCS was obtained similarly.

Many of the abovementioned advances were driven by DL’s domination in AI competitions:

 The  ImageNet  Challenges  is  an  open  competition  to  evaluate  algorithms  for  object  detection  and  image

classification (Russakovsky et al., 2014). Topics change during each contest, and a dataset of ~14M tagged images

and videos were cumulatively compiled, with convenient and uniform data access provided by the organizers. The

2010 Challenge was won by a large-scale Support Vector Machine (SVM). Convolutional Neural Network, a kind

of deep network, first won this contest in 2012 (Krizhevsky et al., 2012a). This victory heralded the  exponential

growth of DL in popularity. Since then, and until 2017 (the last contest), the vast majority of entrants and all contest

winners used CNNs, which edges out other methods by large margins (Schmidhuber, 2015). 
 The IJCNN traffic sign recognition contest, which is composed of 50,000 images (48 pixels x 48 pixels), witnessed

superhuman   visual  recognition  performance  (greater  than  human  recognition) from  CNN-based  methods

(Stallkamp et al., 2011). CNNs also performed better than humans on recognition of cancers from medical images

(Yu et al., 2016).
 The TIMIT speech corpus is a dataset that holds the recordings from 630 English speakers. LSTM-based models

showed a large edge over Hidden Markov Model (HMM) results (Graves et al., 2013) in recognizing the speeches.

Similarly,  LSTM-based  methods  significantly  outperformed all  statistical  approaches  in keyword  spotting

(Indermuhle et  al.,  2012),  optical  character  recognition, language identification, text-to-speech synthesis, social

signal classification, machine translation and Chinese handwriting recognition.
 An LSTM-based speech recognition system has achieved “human parity” in conversational speech recognition on

the  Switchboard  corpus  (Xiong  et  al.,  2016).  A parallel  version  achieved  best-known pixel-wise  brain  image

segmentation results on the MRBrainS13 dataset (Stollenga et al., 2015). The improvement in language translation

software can be witnessed by ordinary web users.
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 A  time-series  forecasting  contests,  Computational  Intelligence  in  Forecasting  Competition,  was  won  by  a

combination of fuzzy and exponential models in 2015 when no LSTM was present, but LSTM won the contest in

2016 (CIF, 2016).

In contrast, only a handful of applications of  big data  DL could be found in hydrology.  Vision DL has been  employed to

retrieve precipitation from satellite images, where exihibited a materially-superior performance than earlier-generation neural

networks (Tao et al., 2017, 2018). GAN was used to imitate and generate scanning images of geologic media (Laloy et al.,

2018). Time-series deep learning network was employed  to  temporally  extend satellite-sensed soil moisture  observations

(Fang et al., 2017) and was found to be more reliable than simpler methods.  Regionalized time series DL rainfall-runoff

models have been created (Kratzert et al., 2018). There are also DL studies, based on smaller dataset, to help predict water

flows in the urban environment (Assem et al., 2017) and water infrastructure (Zhang et al., 2018).  In addition to utilizing big

data, DL was able to create valuable, big datasets that could not have been otherwise possible. For example, utilizing DL,

researchers were able to generate new datasets for Tropical Cyclones, Atmospheric Rivers and Weather Fronts  (Liu et al.,

2016;  Matsuoka  et  al.,  2017) by  tracking  them. Machine  learning  has  also  been  harnessed  to  tackled  the  convection

parameterization issue in climate modelling (Gentine et al., 2018).

2.2.2. Technical advances

Underpinning the  powerful performance of DL are its technical advances.  The deep architectures have several distinctive

advantages: (1) deep networks are designed with the capacity to represent extremely complex functions. (2) After training,

the intermediate layers can perform modular functions which can be migrated to other tasks, in a process called transfer

learning, and extend the value of the training data.  (3) The hidden layer structures  have been designed to  automatically

extract  features,  which  helps  dramatically reducing labor, expertise and  the  trial  and  error  time  needed  for  feature

engineering. (4) Compared to earlier models like classification trees, deep networks are differentiable, meaning that we can

calculate derivatives of outputs with respect to inputs or the parameters in the network. This feature enables highly efficient

training algorithms that exploit these derivatives. Moreover, the differentiability of neural networks  enables querying DL

models for sensitivity analysis of outputs to input parameters, a task of key importance in many  scientific applications,

including hydrology. Metaphorically, the intermediate (or hidden) layers in DL algorithms can be understood as placeholders

for tools that are to be built by deep networks themselves. These hidden layers are trained to calculate certain features from

the  data,  which  are  then  used  to  predict  the  dependent  variables.  For  example,  Yosinski  (2015) showed  that  some

intermediate layers of a deep vision recognition network are responsible for identifying the location of human or animal

faces; Karpathy et al.,  (2015) showed that some hidden cells in a text prediction network act as length counters of a line

while some others keep track of whether the text is in quotes or not. These functionality were not bestowed by the network

designers, but emerged by themselves after network training. Earlier network architectures either did not have the needed

depth, or were not designed in an artful way such that the intermediate layers could be effectively trained. For more technical

details, refer to an introduction in Schmidhuber (2015) and Shen (2018). 
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Given that deep networks can identify features without guide, it follows that they  may extract features that the  algorithm

designers  were  unaware of,  or  did  not  intentionally encode the  network to  do,  leading to  a  potential  pathway toward

knowledge discovery. For example, deep networks recently showed that grid-like neuron response structures automatically

emerge at intermediate network layers for a network trained to imitate how mammals perform navigation, providing strong

support to a Nobel-winning neuroscience theory about the functioning of these structures (Banino et al., 2018). 

Deep  networks  may  be  more  robust  than  simpler  models  despite  their  large  size,  if  they  are  regularized  properly

(regularization techniques  apply penalty to model complexity to make the model more robust) and are chosen based on

validation errors in a two-stage approach  (Kawaguchi et  al., 2017). Effective regularization techniques include (i) early

stopping: monitor the training progress on a separate validation set and stop the training once validation metrics start to

deteriorate; and/or (ii) novel regularization techniques such as dropout (Srivastava et al., 2014). DL models can be easier to

train than previous networks, as their architectures and new stochastic gradient techniques (Kingma and Ba, 2014) address

issues like vanishing gradient (Hochreiter, 1998). Training large networks used today was computationally implausible until

scientists started to exploit the parallel processing power of graphical processing units (GPUs). Nowadays new application-

specific integrated circuits have also been created to specifically tackle DL, although DL architectures are rapidly evolving.

Primary types of successful deep learning architectures include convolutional neural networks (CNN) for image recognition

(Krizhevsky et  al.,  2012b; Ranzato et  al.,  2006),  Long short-term memory (LSTM)  (Greff et  al.,  2015; Hochreiter and

Schmidhuber, 1997) for time series modeling, variational  auto-encoders (VAE) (Kingma and Welling, 2013), and deep belief

networks  for  pattern  recognition  and  data  (typically  image  but  also  text  or  sound,  etc)  generation  (section  3.2  in

Shen17Shen18). Besides these new architectures, a novel generative model concept called generative adversarial networks

(GANs) has become an active area of  research.  The key characteristic  of GANs is that  they are learned by creating a

competition  between  the  actual  generative  model  or  ‘‘generator’’ and  a  discriminator  in  a  zero-sum game framework

(Goodfellow et  al.,  2014), in which these components are learned jointly.  Compared to other generative models, GANs

potentially offer much greater flexibility in the patterns to be generated. The power of GANs has been recognized recently in

the  geoscientific  community,  especially  in  machine  learning  research  inspired  by  physics,  where  deep  generative

modelsGANs have been used for to generate certain complicated physical, environmental, and socio-economic systems with

deep generative models (Albert et al., 2018; Laloy et al., 2018).

2.3. Network interrogative methods to enable knowledge gain from deep networks

Conventionally, neural networks were primarily used to approximate mappings between inputs and outputs. The focus was

put on improving predictive accuracy. In terms of the use of neural networks in scientific research, then, there have been a

major concern that DL and more generally machine learning (ML) are referred to as black boxes that cannot be understood

by humans and, thus, cannot serve to advance scientific understanding. At the same time, data-driven research may lack

clearly-stated hypotheses which is in contrast to traditional hypothesis-driven scientific methods. There has been significant
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pressure from inside and outside the DL community to make the network decisions more explainable. For example, new (as

of  January  2018) European  data  privacy  laws  dictate  that  automated  individual  decision  making, which  significantly

influences  the  algorithm’s  users  must  provide  a  “right  to  explanation”  where  a user  can  ask  for  an explanation of  an

algorithmic decision (Goodman and Flaxman, 2016). 

Some recent progress in DL research focused on addressing these concerns. Notably, a new sub-discipline, known as “AI

neuroscience” has produced useful interrogative techniques to help scientists interpret the DL model (see literature in Section

5.2 in Shen18).  The main classes of interpretive methods include (i)  relevance back-propagation: attributing deep network

decisions to input features or a subset of inputs; (ii) transferring knowledge from deep networks to interpretable, reduced-

order models such as classification trees. (iii) visualization of network activations. Many scientists have also devised case-

by-case adhoc methods, e.g., to investigate the correlation between inputs and cell activations (Shen, 2018; Voosen, 2017).

Interpretive DL methods have so far not been employed in hydrology or even geosciences. However, to give some examples

from other domains, in medical image diagnosis, some researchers used relevance back-propagation methods to show which

pixel on an image led the network to make its decision about anatomy classifications (Kumar and Menkovski, 2016). They

found that the network traced its decisions to image landmarks mostly often used by human experts. In more recent research,

AI researchers trained their network to not only classify an image, but also didactically explain why the decision was made

and why an image is one class instead of another (Figure  1). Extending this  idea  to the  precipitation retrieval problem in

hydrology as in (Tao et al., 2017, 2018), we could let DL inform us what features on the satellite cloud image is helpful for

reducing bias in precipitation retrieval. 
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Figure 0. (Reprinted from Hendricks et al., 2016 with permission) Authors trained a joint classification and explanation network
for image classification. The bolded text is a “class-relevant” attribute (a distinguishing attribute for the class) in the explanation.
Their classification network extracts visual features (regions on the image) responsible for the decision. Then, the explanation
network  links these regions  to distinguishing  words  in  a dictionary to form an explanation that  explains  the  reason for the
classification, and why it is not other classes. This level of explanation may be difficult to achieve for hydrologic problems due to
limited supervising data (annotated dictionary for classes), but it is possible to borrow the idea of isolating features in the input
data and associating them with some descriptive words.

2.4. The complementary research avenue

As  the  interrogative  methods  further  grow,  there  emerges  a  research  avenue  toward  attaining  knowledge that  is

complementary to the traditional hypothesis-driven one (Figure 2). The data-driven research avenue can be divided into four

steps: (i) hypotheses are generated by machine learning algorithms from data; (ii) the validation step is where data withheld

from  training,  and  different  from  training,  are  employed  to  evaluate  the  machine-learning-generated  hypotheses;  (iii)

interpretive methods are employed to extract data-consistent and human-understandable hypotheses (Mount et al., 2016)

(described in Section 2.3); and (iv) the retained hypotheses are presented to scientists for analysis and further data collection,

and the process iterates. 

The  classical  avenue,  especially  when  applied  to  modelling  studies,  faces  non-uniqueness  and  subjectivity.  To  give  a

concrete example, consider a classical problem of rainfall-runoff modeling. Suppose a hydrologist found that hydrologic

responses in several nearby basins are different. Some basins produce flashier peaks while others have smaller peaks in

summer, large seasonal fluctuation and large peak streamflows only in winter. Taking a modeling approach, the hydrologist

might invoke a conceptual hydrologic model, e.g., Topmodel (Beven, 1997) and find that the model results do not adequately

describe the observed heterogeneity in the rainfall-runoff response. It might be hypothesized that the different behaviors are
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due to heterogeneity in soil texture, which is not well represented in the model. Subsequently, the hydrologist incorporates

processes  that  represent  soil  spatial  heterogeneity,  such  as  modified  soil  pedo-transfer  functions  that  can  differentiate

between the soil types in different regions. Perhaps with some parameter adjustment, this model can provide streamflow

predictions that are qualitatively similar to the observations. This procedure then increases the hydrologist’s confidence that

the  heterogeneity  in  soil  hydraulic  parameters  is  responsible  for  their  different  hydrologic  responses.  However,  this

improvement is not conclusive due to process equifinality: there can be alternative processes that can also result in similar

outcomes, e.g., the influence of soil thickness, Karsted geology, terrain or drainage density. The identification of potential

improvement might be dependent on the hydrologist’s intuition or pre-conceptions, which are nonetheless important but

potentially biased. Furthermore, incorporating all the physics into the model may prove technically challenging or too time-

consuming.

Figure 0. Comparing two alternative avenues toward gaining knowledge from data. In the classical avenue, scientists compile and
interpret data, form hypotheses, (optionally) build models to describe data and hypotheses (the green path). Then the model results
with data to affirm or reject the hypotheses and the feedbacks (the yellow path) allow the scientist to revise the model and iterate.
In the data-driven avenue, scientists collect data and define the target variables of DL models (the green path). Then interpretive
methods  are  invoked  to  extract  data-consistent  and  human-understandable  hypotheses  (the  yellow  path).  There  must  be  a
hypotheses validation step where data withheld from training is used to evaluate or reject the hypotheses. 

Compared to the classical avenue, the data-driven approach allows us to more efficiently explore a larger set of hypotheses.

Although it cannot be said that the machine learning algorithms present no human bias (because inputs are human-defined

and some hyper-parameters are empirically adjusted), the larger set of hypotheses presented will at least greatly reduce that

risk. First, let us examine a CART-based data-driven approach. We could start with physiographic data for many basins in

this region, including terrain, soil type, soil thickness, etc. We can use CART to model the process-based model’s errors,

which allows us to separate out the conditions under which these errors occur more frequently. We let the pattern emerge out

of data without enforcing a strong human pre-conceived hypothesis. Attention must be paid to the robustness of the data

mining and utilize holdout dataset or cross-validation to verify the generality of the conclusion. Data may suggest that soil

thickness is the main reason for the error. Or, if data do not prefer one hypothesis over the other, then all hypotheses are
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equally possible and cannot be ruled out. This advantage of DL can be summarized in a short phrase, “an algorithm has no

ego.” On a practical level, this approach can more efficiently and simultaneously examine multiple competing hypotheses.

Figure  3.  (adapted  from  Fang  and  Shen  2017.  Reprint  permission  obtained).  We  calculated  storage-streamflow  correlation
patterns over continental United States (CONUS) and divided small or mesoscale basins into multiple classes. We studied what
physical  factors most  cleanly separate different correlation patterns.  In this  case,  what separates  the blue class (storage and
streamflow are highly correlated across all flow regimes) and the green class turned out to be soil thickness. It suggests the blue
basins  in  the  south  has  good  correlation  because  they  have  thick  soils,  which  facilitates  infiltration,  water  storage,  and
groundwater-dominated streamflow.

One example of such analyses was carried out in  Fang and Shen, (2017) where differences in basin storage-streamflow

correlations were explained by physical factors using CART, an earlier-generation data mining method (Figure 4). The data

mining  analysis  allowed  patterns  to  emerge,  which  inspired  hypotheses  about  key  factors  that  control  the  hydrologic

functioning of different systems, such as soil thickness and soil bulk density are important controls of streamflow-storage

relationships. For another example, data-mining analysis showed that drought recovery time is associated to temperature and

precipitation,  while  biodiversity  only  has  secondary  importance  (Schwalm et  al.,  2017).  Scientists  need  to  define  the

predictors and general model types, but they do not pose strongly constraining hypotheses about the controlling factors, and

instead “let the data speak”. The key to this approach is a large amount of data from which patterns emerge. 

However, working with DL models, we need to further resort to interrogative methods to make the results understandable

(Figure 2 right panel). For example, we can construct DL models to predict the errors of the process-based model, and then

use visualization techniques to see which variable, under which condition, lead to the error. Because DL can absorb a large

amount of data, it can find commonality among data as well as identify differences. Whereas CART models are limited by

the amount of data and face stability problems in lower branches (data are exponentially less at lower branches), DL models

may produce a more robust interpretation. 

The machine learning paradigm lends us to finding “unrecognized linkages” (Wagener et al., 2010) or find complex patterns

in the data that humans could not easily realize or capture. Owning to the strong capability of DL, it can better approximate

the “best  achievable model” (BAM) for the mapping relations between inputs and output.  As such, it  lends support  to
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measuring the information content contained in the inputs about the output. Nearing et al., (2016) utilized Gaussian Process

regression to approximate the BAM. DL can play similar roles and can also allow for modelling, perhaps in a more thorough

way. The simplicity of building DL model and altering inputs makes it an ideal testbed for new ideas. 

Outputs from the hidden layers of deep networks can now be visualized to gain insights about the transformations performed

on the input data by the network (Samek et al., 2017). For image recognition tasks, one can invert the DL model to find out

the parts of the inputs that led the network to make a certain decision (Mahendran and Vedaldi, 2015). There are also means

to visualize outputs from recurrent networks, e.g., showing the conditions under which certain cells are activated (Karpathy

et al., 2015). These visualizations can illustrate the relationships that the data-driven model has identified.

Considering the above potential benefits, the data-driven avenue should at least be considered or given an opportunity to

play a role in  hydrological  sciences discovery. However, this avenue may be uncomfortable to some researchers. In the

classical avenue, the scientist must originate the hypotheses before constructing models; in the data-driven oneavenue, the

data mining/knowledge discovery process is  a precursor  step to the main hypotheses formation-- hypotheses  cannot be

generated before the data mining analysis (Mount et al., 2016). This feature is a natural consequence of handing part of the

work to an algorithm but may cause some disarray for those who follow what has been perceived as structured scientific

methods. Especially, hypotheses can no longer be unequivocally stated during the proposal stage of research. 

Granted, the interrogative methods as a whole are new and time is required for them to grow. We need to note that the

nascent “DL neuroscience” literature did not exist until 2015. However, if we outright reject the complementary avenue

based on our habitual thinking that neural networks are black boxes, we may deny ourselves opportunities for breakthroughs.

3. Challenges and opportunities for DL in hydrology

The field of  hydrology has a unique set of challenges that are  also  research opportunities for DL.  Many of these  science

challenges have, to date, not been effectively addressed using traditional methods, and  cannot be sufficiently tackled by

individual research groups. Some challenges for which DL approaches might be exploited are presented below.

Observations in  hydrology and water  science  generally  are  regionally  and temporally  imbalanced.  For  example,  while

streamflow observations are relatively dense in the United States, such data are sparse in most other parts of the world .,

either because measurements have not been made or are not made accessible. There is often a dearth of observations that can

be used as comprehensive training datasets for DL algorithms. Few hydrologic applications have as much data as what

standard  AI research applications such as imagine recognition or  natural  language processing need. Remote sensing of

hydrologic variables also has limitations, including effects of canopy and clouds which can limit observations, temporal

density of observations because of orbital paths, and observation footprints, which create challenges when trying to validate

satellite observations with field point measurements. A body of literature studying this problem across  different geographic
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regions can be loosely summarized under the topic of “prediction in ungauged basins” (PUB) (Hrachowitz et al., 2013). PUB

problems pose a significant challenge to data-driven methods.

Global change is altering the hydrologic and related cycles, and hydrologists must now make predictions in anticipation of

changes, beyond previously observed ranges (Wagener et al., 2010). Especially, more frequent extremes have been observed

for many parts of the world and  such extremes  have been projected to occur  more frequently in the future.  Data-driven

methods must demonstrate  their capability  to make reasonable predictions  when applied  out of the range of  the  training

dataset. 

Observations of the water cycle tend to focus on one aspect of the water cycle, and seldom offer a complete description. For

example, we can estimate total terrestrial water storage (Wahr, 2004) or top 5-cm surface soil moisture via multiple satellite

missions.  It is difficult, however,  to directly combine such observations of components of the water cycle into a complete

picture of the water cycle.  A challenge, then, is merging distinct observations, with all their space-time discontinuities to aid

predictions, model validation, and to provide a more complete understanding of the global water cycle. 

Hydrologic data are accompanied by a large amount of strongly heterogeneous (Blöschl, 2006) “contextual variables” such

as land use, climate, geology, and soil properties. The proper scale at which to represent heterogeneity in natural systems is a

vexing problem (Archfield et al., 2015), as micro-scale of soil heterogeneity, for example, is not computationally realistic in

hydrologic models.  The scale at which heterogeneity should be represented varies with setting and elements of the water

cycle  (Ajami et al., 2016). Moreover, while we recognize that  heterogeneity exists in contextual features, many of these

features,  such  as  soil  properties  and  hydrogeology, are  poorly  characterized  across  landscapes,  but  both  features  play

important role in controlling water movement. Heterogeneity needs to be adequately represented without radically bloating

the parameter space of the models. Moreover, the heterogeneous physiographic factors covary (Troch et al., 2013) and exert

complicated causal and non-causal connections, but we have limited knowledge of their covariation. Consequently, training

with insufficient data may result in many alternative DL models that cannot be rejected.

Hydrologic problems fit poorly into the template of problems for which standard network structures (Section 3.2 in Shen18)

are designed, i.e., purely image recognition or time series prediction problems, or a mixture of both. For example, catchment

hydrologic problems are characterized by both spatially  heterogeneous but  temporally  static  attributes  (topography and

hydrogeology) and temporal (atmospheric forcing) dimensions. Such input dimension are not efficiently represented by with

typical input dimensions of LSTM or CNN. 

Because large and diverse datasets are needed for DL application, access to  properly pre-processed and formatted present

practical challenges. These steps of data compilation, pre-processing, and formatting often occupy too much unnecessary

time for researchers. Many of the processing tasks for images cannot be handled by individual research groups. Compared to

the DL community in AI and chemistry, etc., DL learning community in hydrology is not sufficiently coordinated, resulting

in significant waste of effort and “recreation reinvention of wheels”. 
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Deep generative models such as GANs can be used for the stochastic generation of natural textures. This has recently led to

methodological  advances in  subsurface  hydrology  (Laloy et  al.,  2017, 2018,  Mosser  et  al.,  2017)  where  the  ability  to

efficiently and accurately simulate complicated geologic structures with given (non-Gaussian) geostatistical properties is of

paramount importance for  uncertainty quantification of  subsurface flow and  transport  models. However,  amongst  other

directions for future research, more work is needed (i) to generate the complete range of structural complexity observed in

geologic layers, (ii)  deal efficiently with  large 3D domains and (iii),  account for  various types of direct (e.g., observed

geologic facies at a given location, mean property value over a specific area,  etc) and indirect (e.g.,  measured hydrologic

state variables to be used within an inverse modeling procedure) conditioning data in the simulation.

4. A community roadmap toward DL-powered scientific advances in hydrology

Despite the challenges articulated above, here we offer a shared vision for a community roadmap for advancing hydrologic

sciences using DL (Figure 3). A well-coordinated community is much more efficient and powerful in resolving problems, as

we  have  seen  in  other  scientific  endeavours. Montanari  et  al.  (2013) noted,  “future  science  must  be  based  on  an

interdisciplinary approach” and “the research challenges in hydrology for the next 10 years should be tackled through a

collective effort”. We see that several steps are crucial in this roadmap: devising ways to integrate physical knowledge, use

DL to infer unknown quantities,  process-based models (PBMs) and DL, community approaches in  sharing and accessing

data, open and transparent model competitions, baseline models and visualization packages and an education program that

introduces data-driven methods at various levels.

Figure 0. A roadmap toward DL-powered scientific discovery in hydrologic science. Data availability can be increased by (green
arrows) collecting and compiling existing data, incorporate novel data sources such as those collected by citizen scientists, remote
sensing and modelled dataset. The modelling competitions and the integration between PBM and DL will build important shared
computing  and  analytic  infrastructure,  which,  together with  data  sources,  support  a  wide  range  of  hydrologic  applications.
Interpretive methods should be attempted to extract knowledge from trained deep networks (orange arrows). Underpinning these
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activities  is the enhanced, community-based educational program for machine learning in hydrology (purple arrows). However,
these activities, especially the modelling competitions, might in turn feedback to the educational activity.

4.1. Integrating physical knowledge, process-based models, and DL models 

To address the challenge of data limitations, we envision that a critical and necessary step is to more organically integrate

hydrologic knowledge, process-based models, and DL. Process-based models, as they are derived from underlying physics,

require less data for calibration than data-driven models. They can provide estimates for spatial and temporal data gaps and

unobserved hydrologic processes. Well-constructed  PBMs should also be able to  represent temporal changes and trends.

However, because data-driven models directly target observations, these models may have better performance in locations

and periods where data are available. Also, as discussed earlier, data-driven models are less prone to a priori model structural

error than are PBMs. We should aim to maximally utilize the best features of each type of models.

There will be a diversity of approaches with which PBMs and data-driven models could be combined. Karpatne et al., (2017)

compiled a list of approaches of what they collectively call “theory-guided data science,” which include () using knowledge

to design data-driven model; () using knowledge to initialize network states; () using physical knowledge to construct priors

states to constrain the data-driven models; () using knowledge-based constrained optimization (although this may be difficult

to implement in practice); ()  using theory as regularization terms for the data-driven model, which will force the model to

respect  these  constraints;  and  () learn  hybrid  models,  where  the  data-driven  method  is  used  as  surrogate  for  certain

partpartpartparts of the physical model. One may also impose multiple learning objectives based on the knowledge of the

problem. 

There are a multitude of potential approaches and this list can be further expanded to accommodate various objectives. First,

we can focus on PBM errors (difference between PBM simulation and observations). Non-deep machine learning has already

shown promise in correcting PBM errors. Abramowitz et al. (2006) developed an ANN to predict the error in net ecosystem

exchange from a land surface model, and achieved 95% reduction in annual error. More importantly, an ANN trained to

correct the error at one biome corrects the PBM in another biome with a different temperature regime (Abramowitz et al.,

2007). In the context of weather forecasts, machine learning methods were used to learn the patterns from past forecasting

errors  (Delle  Monache et  al.,  2011,  2013),  leading to  a  20 percent  improvement  in  performance for  events  of  similar

characteristics (Junk et  al.,  2015).  Their  results suggest PBMs make structural  errors  that  are independent  of the  state-

variable  regimes. We envision that PBMs can better resolve the impacts of regime changes, while DL can better capture

state-independent error patterns and do mild state-dependent extrapolations. A co-benefit  of  modelling PBM error is that

insights are gained about the PBM. Using interrogative methods to reverse engineer what DL has learned about PBM error

provides possible avenues for improving the underlying PBM processes. 
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Second, PBMs can augment input data for DL models. PBMs can be used to increase supervising data for DLs, for example,

for climate or landuse scenarios that have not existed presently, to augment existing data. Furthermore, if the DL training is

limited by available data,  we may not be able to reject many alternative DL models that  could  generate unphysical or

unrealistic outputs. Providing PBM simulations as either training data or regularization terms can help to nudge DL models

to generate physically meaningful outputs. The extent to which errors in PBM model results affects DL outcomes remains to

be explored.  A theoretical framework is lacking for  separately  estimating aleatory uncertainty (resulting from data noise),

and epistemic uncertainty (resulting from PBM error and training data paucity) and uncertainty due to regime-shift.  There

are  significant  research  opportunities in  this  area. The  advantages  and  disadvantages  of various approaches  could  be

systematically and efficiently evaluated in community-coordinated fashion.

4.2. Multi-faced, community-coordinated hydrologic modeling competitions

There are many possible approaches and many alternative model structures for using DL to make hydrologic predictions and

to provide insight into hydrologic processes. In the light of these challenges, we  argue that open, fast and standardized

competitions are one effective way of accelerating the progress. The competitions can evaluate the models not only in terms

of predictive performance but also the attainment of understanding. 

The  impacts of  competitions  are  best  evidenced  in the  community-coordinated challenges in  computer  science using a

standardized set of problems. These competitions have  strongly propelled  the  advances in AI. Some have argued that the

contributions of the ImageNet dataset and the competition may be more significant than stimulating the winning algorithms

(Gershgorn, 2017). New methods can be evaluated objectively and disseminated rapidly through competitions. Because the

problems are standardized, they remove biases due to data sources and pre-processing.  The community can  quickly  learn

advantages and disadvantages of alternative model design through these competitions, which also encourage reproducibility. 

We envision multi-faceted hydrologic modeling competitions where various models ranging from process-based ones to DL

ones  are  evaluated  and  compared.  The coordinators  can,  for  example,  provide  a  set  of  standard  atmospheric  forcings,

landscape  characteristics,  and  observed  variables. and  provide  targeted  questions  which  participants  must  a ddress.

Importantly, the evaluation criteria should include not only performance-type criteria such as model efficiency coefficients

and bias but also qualitative/explanatory ones such as explanations for control variables and model errors. Over-simplified

or poorly-constructed models may provide more accessible explanations, but they might be misleading because the models

may be overfitted to a given situation. Their simplicity may also constrain their ability to digest large datasets as a way of

reducing uncertainty. Multi-faceted competitions allow us to also identify a “Pareto front” of explainability and performance

and help rule out “false explanations”. The objective of the competition is not only to seek the best simulation performance,

but also those methods that offer deeper insight into hydrologic processes. 

Another important value of competitions is that organizers will provide a standard input dataset and well-defined tasks . The

entire community can leverage such effort. A substantial amount of effort is required to establish such a dataset, which may
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only be possible under a  specifically  designed project.  Moreover,  open competitions in  the computer  science field  has

produced well-known models such as AlexNet (Krizhevsky et al., 2012b),  GoogLeNet (Szegedy et al., 2015), etc. These

models serve as benchmarks and quick entry points for others and greatly improved reproducibility and the effectiveness of

comparisons. Standard models, datasets and evaluation metrics will greatly improve DL adoption and hydrologic sciences.

4.3. Community-shared resources and broader involvement

A useful approach to address the major obstacle of data limitation is to increase our data repositories and to open access to

existing data. Data  value  can be greatly enhanced by centralized data  compilations, a task many institutions are already

undertaking. For example, the Consortium of Universities for the Advancement of Hydrologic Science, Inc.  (CUAHSI)

provides  access to  large amounts  of  hydrologic data  (CUAHSI, 2018a).  As another  example,  in  2015, a  project  called

Collaborative Research Actions (Endo et al., 2015) was proposed in Belmont Forum, which is a group of the world's major

and emerging funders of global environmental-change research. Many scientists from different countries join the project and

focus on the same issue, Food-Energy-Water Nexus. They shared their data (heterogeneous data) and research results from

different regions. 

Using data sharing standards will advance data sharing across domains (WaterML2, 2018).  Providing access to data through

web  services,  such  as  used  by  CUAHSI,  negates  the  problem  of  storing  data  in  a  single  location  and  enhances

discoverability. Data brokers also provide more channels to share experiences, scholarly discussions, and debates along with

the generation of data. 

An important area where DL is expected to deliver significant value is the analysis of big and sub-research-quality data such

as those collected by citizen scientists. Many aspects of the water cycle are directly accessible by everyone. Citizen scientists

already  gather  data  about  precipitation  (CoCoRaHS,  2018),  temperature,  humidity,  soil  moisture,  river  stage

(CrowdHydrology,  2018),  and  potentially  groundwater  levels.  These  quantities  can  be  measured  using  inexpensive

instruments such as  cameras,  pressure gauges and moisture sensors. Volunteer scientists can also be solicited for data in

places where such data can best reduce the uncertainty of the DL model, as in a framework called active learning (Settles,

2012). Social  data have been used to help monitoring flood inundation (Sadler et al., 2018; Wang et al., 2018). Crowd-

sourced data have played roles in DL research, where a large but noisy dataset was argued to be more useful than a much

smaller but well-curated dataset (Huang et al., 2016; Izadinia et al., 2015). Even though there are problems related to data

quality which can be overcome using AI approaches. An important co-benefit of involving citizen scientists is the education

and outreach to the public. The active engagement is much more effective when the public has a stake in the research

outcomes. 

17

465

470

475

480

485

490



4.4. Education

A major barrier to realizing the benefits of more data science lies in our undergraduate and DL lies in our undergraduate and

graduate curriculum. Little in a standard hydrologist’s curriculum prepares students for a future with substantially more data-

driven science and engineering. Statistical courses  often do not cover machine learning basics, yet  data mining courses

offered by computer science departments lack the connections to the water discipline. Given the interdisciplinary nature of

hydrology, it  has been long recognized that  it takes a community to raise a hydrologist (Merwade and Ruddell, 2012;

Wagener et al., 2012). We propose a concerted effort by current hydrologic machine learning researchers, with participation

from computer scientists, to pool and share educational content. Such effort will form the basis of a hydrologic data mining

curriculum and leverage the wit  of  the  community. Collaborations may  form through  either  grassroot collaborations or

institutionally-supported education projects,  e.g.,  (CUAHSI, 2018b). The open competitions  would be a great source of

education materials. A diversity of models that have been evaluated and contrasted help clarify Pros and Cons of different

methods. Shared datasets, DL algorithms and data pre-processing software can be leveraged in classrooms.

As with the design of any education effort, it is important to consider inclusiveness and diversity. Research has found that the

introductory computer science classes, especially those taken by non-majors, are instrumental in developing a desire to stay

in the field (Lehman, 2017). In addition, the portrayal of gender stereotypes regarding computing and the increase in weed-

out courses (Aspray, 2016) have both discouraged women students in computer science (Sax et al., 2017). To counter such

negative impacts, the introductory courses in the curriculum need to assume little prior programming experiences. Moreover,

the richness of natural science in hydrology may help bridge the gender gap.

5. Concluding remarks

In this opinion paper, we argue that  hydrologic  scientists ought to give thoughts to a research avenue that complements

traditional approaches, wherein DL-powered data mining is used to generate hypotheses, predictions, and insights. Although

in the  past  there  may have been strong reservations toward black-box  approaches,  recent efforts  have  been  put  in  the

interpretation and understanding of deep learning networks, and hydrologists have the opportunity to push research forward

in this regard.  Progress in hydrology and other disciplines show that there is substantial promise in incorporating DL into

toolbox. However, challenges such as data limitation and model variability demand a community-coordinated approach. 

We  have  also  argued  for  open  hydrologic  competitions  that  emphasize  both  performance  and  explainability. These

competitions, along with shared data and DL models, will greatly improve the growth of the field as a whole.  Hydrologists

should make use of the potential of citizen science, and exploit DL as a valuable tool toward scientific discovery.
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