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Abstract

Natural products from microorganisms are important small molecules that play roles in various 

biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm 

formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate 

virulence and persistence during infections. Here, we present selected examples of signaling 

natural products from human pathogenic bacteria that use these metabolites to gain a competitive 

advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.

Graphical Abstract
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The human body is inhabited by trillions of microorganisms of which the majority are 

commensal and harmless, yet some are pathogenic and can cause numerous infectious 

diseases.1,2 Despite the correlation between human microbiome and disease, the underlying 
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molecular mechanisms have not yet been fully elucidated.3 Natural products are considered 

to be signaling instruments of communications between microbe–host and microbe–

microbe.4,5 Examples of these interactions include virulence, biofilm formation, immune 

modulation, host colonization, nutrient acquisition, and stress response.6-12 Identifying and 

characterizing such signaling natural products from the human microbiota might enhance the 

current understanding of the communications and assist in the development of more 

effective strategies against human diseases. While great amounts of natural products have 

been isolated from human microbiota,13 we predominantly focus on human pathogenic 

bacteria. Here, we review selected examples of natural products isolated from major human 

pathogenic bacteria that inhabit the skin, oral and respiratory tracts, and gastrointestinal tract 

or are found throughout the human body, with specific interests in their structures, 

bioactivities, and biosynthesis if available. Some important natural products including short-

chain fatty acids and ribosomally synthesized and post-translationally modified peptides 

(RiPPs) are not included since they have been recently reviewed.14,15

PATHOGENIC BACTERIA RESIDING ON SKIN

Staphylococcus aureus is classified as Gram-positive skin pathogen commonly causing 

hospital- and community-acquired infectious diseases such as abscesses, bacteremia, and 

endocarditis.16 The emergence of antibiotic resistant S. aureus, particularly methicillin 

resistant (MRSA) strains, is a worldwide problem that needs efforts to develop novel 

treatment strategies. A dimodular nonribosomal peptide synthetase (NRPS, AusA/PznA) 

that is conserved across S. aureus and other skin-associated Staphylococci is responsible for 

producing three pyrazinone natural products named tyrvalin/aureusimine A (1), phevalin/

aureusimine B (2), and leuvalin (3).17,18 Their bioactivities were initially related to virulence 

factor gene expression in S. aureus.18 However, it was later found that the observed gene 

expression profile actually resulted from an inadvertent mutation in the sae two-component 

sensor kinase gene saeS, a known regulator of virulence factor expression.19,20 Although the 

biological roles of these compounds remain unknown, recent findings suggested that 

aureusimines may direct a metabolic switch regulating electron transfer and redox signaling,
20 and aureusimine B was found to be overproduced in S. aureus biofilm.21 It is notable that 

subsequent research on homologous dimodular NRPSs from gut bacteria produced the same 

products; however, these products were proposed to be shunt metabolites, and their 

precursors, the dipeptide aldehydes, were hypothesized to be the active form of these NRPS 

products that function as protease inhibitors.6

Another well-known signaling secondary metabolite of S. aureus is staphyloxanthin (4), an 

orange carotenoid pigment considered as its eponymous feature.22 This pigment is not 

required for the survival of S. aureus but acts as a virulence factor through antioxidant 

activity with its conjugated double bonds to scavenge free radicals.23 It was observed that 

the staphyloxanthin gene deletion strain was more sensitive to reactive oxygen species 

killing from host neutrophils and was less pathogenic in a mouse subcutaneous abscess 

model.24 Targeting staphyloxanthin biosynthesis was then explored to offer novel leads for 

anti-MRSA infectious drugs. The first biosynthetic step for staphyloxanthin is condensation 

of two farnesyl diphosphates to generate dehydrosqualene, which is the same for cholesterol 

biosynthesis. Thus, a known cholesterol biosynthesis inhibitor, BPH-652, was found to 
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block staphyloxanthin biosynthesis, leading to nonpigmented bacteria and hence more 

sensitivity to innate immune clearance. This result therefore indicates proof of principle for 

an antivirulence strategy against S. aureus.25

Mycobacterium ulcerans is a Gram-positive human skin pathogen that causes Buruli ulcer, 

which is characterized by skin ulcers and necrotic cutaneous lesions.26 Although it had been 

known for decades that a particular toxin from M. ulcerans was related to Buruli ulcer, the 

specific toxin was not identified until two polyketide-derived macrolides from acetone 

soluble M. ulcerans lipid extracts were isolated.27 The toxins were mycolactones A (5) and 

B (6), which are biosynthesized by giant polyketide synthases (PKSs) encoded by a 174 kb 

plasmid named pMUM001 in M. ulcerans.28 Mycolactones C (7) and D (8) were also 

identified from other clinical isolates of M. ulcerans, demonstrating the heterogeneity of 

these compounds.29 Various in vitro and in vivo studies revealed that mycolactones have a 

crucial part in the pathogenesis of Buruli ulcer, exhibiting cytotoxic, immunosuppressive, 

and analgesic properties.30-32 Several molecular targets of mycolactones have been 

characterized, including Wiskott-Aldrich syndrome protein (WASP) and neuronal Wiskott-

Aldrich syndrome protein (N-WASP), Sec61 translocon, type 2 angiotensin II receptors 

(AT2Rs), and mechanistic Target of Rapamycin (mTOR), explaining the tissue necrosis, 

paucity of immune response, and painlessness during the process of Buruli ulcer.33-36
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PATHOGENIC BACTERIA RESIDING IN ORAL AND RESPIRATORY TRACTS

Streptococcus mutans is a Gram-positive human commensal and pathogen that has been 

classified as a primary causative agent in dental cavies.37 The initial investigation of a hybrid 

NRPS/PKS containing gene cluster in S. mutans UA159 yielded mutanobactin A (9) and 

three of its analogues, mutanobactins B–D (10–12).38,39 Subsequently, systematic 

comparative metabolomics analysis utilizing the wild-type and mutanobactin gene deletion 

mutant and precursor feedings afforded 58 metabolites, 13 of which were structurally 

characterized by detailed MS/MS and isotopically labeled precursor feeding experiments.40 

In addition, a premature product, mutanamide (13), was also identified.40 The bioactivity 

assessment of mutanobactins revealed that mutanobactins A and B and mutanamide can 

blunt hyphal generation of the oral-pathogenic fungus Candida albicans, while 

mutanobactins A, B, and D can also perturb the biofilm generation of C. albicans.40 In 

addition, mutanobactins A and B and mutanamide were subjected to immunomodulatory 

assays by using the RAW264.7 macrophage cell line. Mutanobactin B was shown to 

upregulate the pro-inflammatory cytokines like IL-6 and IL-12 in RAW264.7 cells.40 These 

results represent a good example of signaling natural products playing dual roles in 

communications between microbe–microbe and microbe–host interactions. Very recently, S. 
mutans UA159 was validated to be a good heterologous host for the expression of 

biosynthetic gene clusters (BGCs) from anaerobic bacteria, and the successful activation of 

BGC1 and BGC4 from human oral bacteria S. mutans 35 and S. mutans NMT 4863 led to 

the discovery of mutanocyclin (14) and SNC1-465 (15), respectively.41 Mutanocyclin was a 

tetramic acid biosynthesized by NRPS/PKS, and it was also detected from fermentations of 

S. mutans 35, B30, B409, and B608, suggesting that mutanocyclin is the true product of 

BGC1 in S. mutans isolates. Although no antibacterial activities were detected, 

mutanocyclin was found to have significant antiinfiltration activity against leukocytes in 

CD45+ cells.41 The (2E)-decenoyl dipeptide SNC1-465 was also biosynthesized by NRPS/

Hu and Zhang Page 4

ACS Infect Dis. Author manuscript; available in PMC 2020 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PKS, but it was proposed to be either an assembly line derailment product or a side product 

cleaved from the preproduct.41 The biological role of SNC1-465 remains unknown.

Staphylococcus lugdunensis is a Gram-positive human nasal commensal and pathogen that 

is associated with osteoarticular infections, foreign-body-associated infections, bacteremia, 

and endocarditis.42 S. lugdunensis was reported to produce an antibiotic, lugdunin (16), that 

is a nonribosomal cyclic peptide featuring a thiazolidine ring.10 Lugdunin displayed a broad 

antimicrobial spectrum against Gram-positive bacteria including S. aureus and was found to 

act as a signaling molecule to prevent S. aureus colonization.10 A further molecular 

mechanism study revealed that lugdunin also had an immune modulatory activity through 

upregulating the expression of cytokines such as LL-37 and CXCL8 in epithelial cells to 

enhance the immune response for effective S. aureus clearance.43

Mycobacterium tuberculosis is a Gram-positive human pathogenic bacterium that causes 

tuberculosis. Multidrug resistant (MDR) strains of M. tuberculosis have been identified, 

which represent one of the major threats in infectious diseases.44 As treatments for MDR 

tuberculosis are limited, M. tuberculosis virulence factors may represent potent options for 

new drug development. M. tuberculosis was reported to produce the NRP-PK mycobactin 

siderophores (17), which are biosynthesized by two genetic loci, mbt-1 (mbtA-J) responsible 
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for mycobactin scaffold assembly and mbt-2 (mbtK-N) responsible for the lipid side-chain 

formation.45,46 The mbtB deletion strain showed attenuated growth in THP-1 cells, while the 

mbtE mutant showed a colony morphology change and also had growth defects in liquid 

fermentation and macrophages, suggesting mycobactins have an important role in the 

survival and virulence of M. tuberculosis.47,48 The mycobactin siderophore biosynthesis 

thus has provided attractive antituberculosis targets, and inhibitors of MbtA, MbtI, and 

MbtM have been investigated.49-52 In particular, 5′-O-[N-(salicyl)sulfamoyl]adenosine (Sal-

AMS) exhibited promising inhibitory activity toward the adenylation protein MbtA, acting 

as a reaction intermediate mimic.49 In vitro studies confirmed Sal-AMS inhibited M. 
tuberculosis growth when iron was limited, while in vivo Sal-AMS also inhibited M. 
tuberculosis growth significantly in mouse lungs but showed poor oral bioavailability and 

clearance rate.53 Further optimization efforts to enhance pharmacokenetic parameters are 

ongoing.54 The M. tuberculosis genome harbors another NRPS-encoding gene cluster 

(Rv0096-0101), which is responsible for a putative isonitrile lipopeptide (INLP) production.
55 The Rv0096-0101 gene cluster was shown to be critical for the in vivo survival and 

virulence of M. tuberculosis.56,57 The expression of this gene cluster was found to be highly 

upregulated under biofilm formation, albeit the chemical structure of the associated INLP 

remains elusive.58

PATHOGENIC BACTERIA RESIDING IN THE GASTROINTESTINAL TRACT

Escherichia coli is a Gram-negative bacterium that usually inhabits the human lower 

intestine. It commonly acts as a commensal but can be the causative pathogen for diarrheal 

diseases and extraintestinal infections.59 E. coli has evolved to produce siderophores to 

acquire iron from a low concentration microenvironment, which is common to many other 

Gram-negative enteric bacteria like Salmonella typhimurium, Salmonella enterica, and 

Klebsiella pneumoniae.60 Four types of siderophores have been reported from various E. 
coli strains: enterobactin (18), salmochelin (19), yersiniabactin (20), and aerobactin (21).61 

Enterobactin is a 2,3-dihydroxybenzoylserine trilactone biosynthesized by a dimodular 

NRPS from 2,3-dihydroxybenzoic acid and serine. Although enterobactin has a high 

efficiency for iron capture, hosts fight back by producing siderocalin, a small protein that 

binds enterobactin and stops its iron uptake. Pathogenic bacteria respond to the threat by 

generating salmochelin, a glycosylated derivative of enter-obactin. Such a structure 

modification of enterobactin prevents capture by siderocalin and restores efficient uptake of 

iron by pathogens.62 Yersiniabactin is an NRP-PK hybrid natural product assembled from 

salicylate, three cysteines, a malonyl group, and three methyl groups by an NRPS/PKS 

complex.63,64 The receptor of yersiniabactin was identified to develop a vaccine of 

pyelonephritis in an E. coli-caused urinary tract infectious mouse model.65 Aerobactin is a 

citryl-hydroxamate siderophore synthesized by the condensation of two oxidized lysines 

with citric acid, which is widely distributed in pathogenic Gram-negative bacteria to 

promote iron uptake.66 It is notable that knocking out only aerobactin resulted in a 

significant attenuation of virulence in a hypervirulent strain of Klebsiella pneumoniae, a life-

threatening infectious agent, suggesting the critical role of this metabolite during infection.66

Some E. coli strains can produce a genotoxin, colibactin, which has been associated with the 

pathogenesis of colorectal cancer in human hosts.67-69 The biosynthesis of colibactin is 
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linked to a 54 kb NRPS/PKS hybrid gene cluster (clb),70 but the structure characterization of 

colibactin has been blocked by both the complexity of the clb gene cluster and the instability 

of the genotoxic metabolite.71-81 Current extensive work from multiple independent groups 

suggested that the overall genotoxic effect of the clb gene cluster may arise from a mixture 

of metabolites with different activities.82-85 At least two activities, the DNA cross-linking 

and double-strand break (DSB) activities, have been associated with different metabolites 

(colibactin (22) and colibactin-645 (23), respectively) produced by promiscuous enzymes 

encoded by clb.86,87

Klebsiella oxytoca are Gram-negative human gut bacteria that cause antibiotic-associated 

hemorrhagic colitis (AAHC), a right-sided segmental colitis featured by bloody diarrhea and 

severe cramps.88 The initial investigation of the molecular mechanism for the pathogenesis 

of colitis caused by K. oxytoca revealed a pyrrolobenzodiazepine natural product tilivalline 

(24).89 Tilivalline was observed to induce human cell apoptosis and block epithelial barrier 

function, which resulted in mucosal damage in AAHC.89 A recent study of the biosynthesis 

of tilivalline demonstrated that its NRPS first generates tilimycin (25), followed by a 

nonenzymatic reaction with indole affording tilivalline. It has also been observed that 

tilimycin is spontaneously converted to another product culdesacin (26).90,91 While 

culdesacin demonstrated no obvious bioactivity, tilimycin showed a higher cytotoxic activity 

to human cells than tilivalline. The detailed mode of action study of these two toxins 

indicated that tilimycin acts as a genotoxin to cause DNA strand breakage while tilivalline 

binds tubulin and stabilizes microtubules leading to mitotic arrest, contributing collectively 

in the pathogenicity of colitis.92
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Bacillus cereus are Gram-positive bacteria, and some strains are harmful to humans, causing 

foodborne illness.93 Cereulide (27) was reported to be the causative toxin of the emetic 

foodborne diseases originating from B. cereus.94 It is a depsipeptide containing six α-amino 

acids and six α-hydroxy acids that are biosynthesized by an NRPS (Ces).95 Cereulide 

caused mitochondrial swelling of HEp-2 cells and consequently cell death,94 and the toxic 

effects of cereulide were proposed to be due to its ionophoretic properties.96

PATHOGENIC BACTERIA RESIDING THROUGHOUT THE HUMAN BODY

Acinetobacter baumannii are Gram-negative human pathogenic bacteria that cause hospital- 

and community-acquired infections in the skin, respiratory tract, blood, urinary tract, and 

other soft tissues.97,98 The emergence of multidrug resistant A. baumannii is a high threat to 

human health, and it lacks efficient treatments. To successfully cause infections in a host, A. 
baumannii utilizes siderophores to compete for iron from the host. Three types of 

siderophores have been observed from clinical isolates of A. baumannii: acinetobactin, 

fimsbactin, and baumannoferrin.99 Acinetobactin (28) is a catechol-hydroxamate 

siderophore and is assembled from N-hydroxyhistamine, L-threonine, and 2,3-

dihydroxybenzoic acid by an NRPS assembly line.100,101 Acinetobactin was initially 

generated in preacinetobactin with an oxazoline group (28b) and rapidly isomerizes 

nonenzymatically into isoxazolidinone acinetobactin (28a) under basic conditions.102 This 

pH-triggered siderophore swapping enables its iron uptake over a broad pH range during an 

infection. Bioinformatic analysis of 50 clinical isolates indicated that acinetobactin was 

highly conserved in most A. baumannii isolates.103 Fimsbactin A (29) to Fimsbactin F are 

catechol-hydroxamate siderophores and only distributed in the A. baumannii ATCC 17978 

clinical isolate.103,104 According to its genome information, a 26 kb gene cluster containing 

NRPS genes was found to be responsible for biosynthesis, secretion, and utilization of 
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fimsbactins.104 Baumannoferrins A (30) and B (31) contain only hydroxamates and were 

isolated from A. baumannii AYE that does not produce acinetobactin.105 Baumannoferrins 

A and B are derivatized from citrate, 1,3-diaminopropane, 2,4-diaminobutyrate, decenoic 

acid, and α-ketoglutarate. The discovery of different siderophores from different A. 
baumannii strains suggests the critical role of siderophores for this pathogen, although 

different siderophore-mediated uptake systems could be used to fulfill the need.

Pseudomonas aeruginosa is a Gram-negative opportunistic human pathogen that can infect 

virtually all tissues.106,107 P. aeruginosa possesses multiple signaling networks that 

coordinately regulate virulence and persistence during infections, making it a major threat to 

human health.108 N-Acyl homoserine lactones (AHLs) are quorum sensing signaling 

molecules biosynthesized from S-adenosylmethionine by many Gram-negative bacteria to 

control gene expression.5 P. aeruginosa was observed to have two AHL systems: Las and 

Rhl systems. The former one is regulated by N-3-oxododecanoyl homoserine lactone (3-

oxo-C12-HSL, 32),109 which controls various virulence gene expressions involved in acute 

infection and host cell damage.110 The latter one is regulated by N-butanoyl homoserine 

lactone (C4-HSL, 33),111 which negatively controls the expression of type III secretion 

regulon.112 An in vivo study showed that AHL system deficiencies attributed to a decrease 

in infection severity.113 In addition, quorum sensing has been found to regulate other 

secondary metabolite biosyntheses in P. aeruginosa. For example, recent studies from two 

independent groups identified rare azetidine-containing alkaloids, azetidomonamides A (34) 

and B (35),114,115 which are biosynthesized from a conserved NRPS pathway regulated by 

quorum sensing. No antibacterial and cytotoxic activities were observed, while 

azetidomonamide gene deletion strains displayed rapid virulence in a Galleria mellonella 
model, suggesting a host adaption function for these metabolites.114

P. aeruginosa also utilizes siderophores for iron acquisition under iron limiting conditions. It 

produces two kinds of peptide siderophores biosynthesized by NRPSs: pyoverdines and 

pyochelin. The structures of pyoverdines (PVDs) contain a dihydroquinoline chromophore, a 

6–12 amino acids peptide, and a side chain that varies in succinate, malate, α-ketoglutarate, 
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or their amide derivatives.116 More than 60 PVDs have been determined from different 

Pseudomonas, while P. aeruginosa was found to produce PVDI (36), PVDII, and PVDIII, 

which differ by the peptide chain.117 The biogenesis, maturation, and transport of PVDs 

were linked to the pvd locus with divergence across different strains, indicating a strain-

specific structure diversity of PVDs.118-121 Pyochelin (37) is biosynthesized from a 

salicylate, a hydroxy acid, and two cysteines by an NRPS-encoding gene cluster pch.122 Its 

iron chelation ability is much lower than that of pyoverdine.123 It was observed that 

pyochelin was first produced and then switched to pyoverdine only if iron concentration 

became very low.123 Both pyoverdine and pyochelin are essential for survival and virulence 

gene expression for infections in immunosuppressed mice models.124 Pyoverdine was also 

found to act as a key inhibitory molecule for the biofilm formation of Aspergillus fumigatus 
that resides in the same body niche, suggesting signaling interactions between different 

kingdoms.125

The P. aeruginosa genome contains a pvc gene cluster that was initially linked to 

pseudoverdine (38) production, a fluorescent bicyclic compound similar to the pyoverdine 

chromophore.126 Due to the similarity between PvcA and isonitrile synthases, further 

investigation of the pvc gene cluster revealed a new metabolite paerucumarin (39), an 

isonitrile functionalized cumarin.127 It was found that pvc operon can enhance the 

expression of the chaperone/usher pathway (cup) genes related to biofilm formation and the 

iron-controlled genes, and this regulation was mediated through paerucumarin.128,129 

Besides, the biosynthetic intermediate, isonitrile-functionalized tyrosine was observed to 

modulate swarming motility and quorum sensing in P. aeruginosa.130

P. aeruginosa secretes another family of virulence factor, phenazines. Pyocyanin (40) is the 

most well studied one and is related to its blue-green color feature.131 Pyocyanin is a 

redoxactive tricyclic zwitterion and contributes to both acute and chronic infections since it 

inhibits lymphocyte proliferation,132 damages epithelial cells,133 and inactivates protease 

inhibitors to cause tissue damage.134 The biosynthesis of pyocyanin involves phz1 and phz2 
that synthesize phenazine-1-carboxylic acid (PCA) and phzM and phzS that convert PCA to 

pyocyanin.135,136
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CONCLUSIONS

Chemical signaling has been known to play an important role in bacterial infection and 

pathogenesis, but the underlying molecular mechanism and the responsible specialized 

bacterial metabolites often remain elusive. Recent technological advances in genome 

sequencing, bioinformatics, genome editing, synthetic biology, and analytical chemistry 

have promoted the identification and characterization of many new bioactive natural 

products from pathogenic bacteria. Since the emergence of drug resistant pathogens arises 

faster over the development of new antibiotics, blocking these signaling systems in the 

pathogens is expected to overcome the existing resistant mechanisms and provide new 

strategies for treatment. In addition, as many of these specialized metabolites are not 

essential to in vitro survival but have a critical role during in vivo infection, they may 

represent new antimicrobial targets for which the pathogen has less of a chance of 

developing drug resistance. We thus expect to see a further development in this field to 

effectively combat bacterial infections, in particular toward strains that are multidrug 

resistant.
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