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Abstract

Recent work on nonparametric identification of average partial effects (APEs) from panel

data require restrictions on individual or time heterogeneity. Identifying assumptions un-

der the “generalized first-differencing” category, such as time homogeneity (Chernozhukov,

Fernandez-Val, Hahn, and Newey, 2013), have testable equality restrictions on the distribu-

tion of the outcome variable. This paper proposes specification tests based on these restric-

tions. The bootstrap critical values for the resulting Kolmogorov-Smirnov and Cramer-von-

Mises statistics are shown to be asymptotically valid and deliver good finite-sample properties

in Monte Carlo simulations. An empirical application illustrates the merits of testing non-

parametric identification from an empiricist’s perspective.
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1 Introduction

In many empirical settings in economics, panel data are used to identify the effect of a

regressor on an outcome of interest. To ensure that a panel data set can identify such

an effect, empirical economists typically utilize a number of robustness checks or test the

parallel-trends assumption, when there are more than two time periods available.1 This paper

proposes alternative specification tests that build on recent developments in the theoretical

literature on nonparametric identification of average partial effects (APEs) from panel data.

As a key advantage, these new tests do not rely on parametric assumptions which are likely

to be misspecified in practice. Furthermore, the tests proposed here can be applied when

only two time periods are available, since they exploit restrictions on the entire distribution

of the outcome variable as opposed to restrictions on its mean only, as in the case of the

parallel-trends assumption.

Recent work on nonparametric identification of APEs from fixed-T panel data extend

fixed effects and correlated random effects identification strategies, originally introduced in

the linear model (Chamberlain, 1984; Mundlak, 1978), to fully nonseparable models. The

identifying assumptions in this setting may be viewed as restrictions on the following struc-

tural relationship,

Yit = ξt(Xit,Ai,Uit), for i = 1, . . . , n and t = 1, . . . , T . (1)

Yit is the outcome variable of interest, Xit is a dx × 1 regressor vector, which is assumed

to have finite support. Hence, the testing procedures proposed in this paper can only allow

discrete regressors to enter the structural function in a fully nonseparable way as in the above

model.2 Ai and Uit are individual-specific time-invariant and time-varying unobservables,

respectively. The model is static, hence Xit does not include lagged dependent variables or

other variables that can introduce feedback mechanisms. Equation (1) reflects the threats to

identification that researchers are typically concerned with in the panel data context. The

1The test of the parallel-trends assumption is most commonly used when the regressor is binary as in the
difference-in-difference framework.

2Section A in the supplementary appendix allows for a linear index of additively separable continuous regressors.
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time-invariant and time-varying unobservables may vary with the regressors and confound

the effect of interest. Furthermore, the relationship between the outcome variables, regressors

and unobservables, i.e., the structural function ξt, may change over time. Without further

restrictions, we cannot identify APEs from panel data.

Fixed effects strategies in nonseparable panel data models impose time homogeneity as-

sumptions, which restrict changes in the structural function and the distribution of the

idiosyncratic shocks across time (Chernozhukov, Fernandez-Val, Hahn, and Newey, 2013;

Hoderlein and White, 2012). Correlated random effects strategies restrict individual hetero-

geneity (Altonji and Matzkin, 2005; Bester and Hansen, 2009). Fortunately, the identifying

assumptions in both cases imply testable equality restrictions on the conditional distribu-

tion of the outcome variable. The contribution of this paper is to develop specification tests

based on these restrictions for time homogeneity in the presence of parallel trends as well as

correlated random effects. The testing problem extends the classical two-sample problem in

statistics to the panel setting, where the two samples are dependent and the data are possi-

bly demeaned. We hence propose bootstrap-adjusted critical values for Kolmogorov-Smirnov

(KS) and Cramer-von-Mises (CM) statistics and show that they are asymptotically valid.

From a practical standpoint, the choice over which identifying assumption to test emerges

naturally from the empirical context. The test for time homogeneity is suitable for observa-

tional panel data settings, where empirical researchers prefer fixed effects approaches allowing

for arbitrary individual heterogeneity. The intuition behind the testable restriction is that

subpopulations that do not experience changes in X over time (stayers) should have the same

distribution of the outcome variable after accounting for the parallel trend. Observational

panel data are the most widely used panel data in economics. However, the recent growth of

field experiments, where both baseline (pre-treatment) and follow-up (post-treatment) out-

come variables are collected, gives rise to a new type of panel data, which we refer to as

“experimental panel data.” For this type of panel data, identification of the APE, which

is more commonly referred to as the treatment on the treated (TOT), is achieved through

the conditional random effects assumption. This assumption falls under the correlated ran-

dom effects category and relates to unconfoundedness. Treatment is randomly assigned in
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the second time period. Therefore, we expect that the treatment and control group have

the same baseline distribution for the outcome variable if no implementation issues, such as

attrition or other selection problems, interfere with the randomization. Hence, this test can

be tailored to test identification in the presence of selection problems.

One of the main advantages of the specification tests proposed here is the interpretation

of their rejection. Unlike over-identification tests that combine several assumptions, the

specification tests here are based on implications of a particular identifying assumption. As

a result, their rejection is clear evidence against the identifying assumption in question. It is

important to note however that a rejection does not mean that the APE is not identified, but

rather that it is not identified by means of the chosen identifying assumption. Furthermore,

due to the nonparametric and nonseparable nature of the structural function we consider,

there are no additional functional-form assumptions that may be misspecified and hence

drive a rejection of the test, which is a problem with over-identification tests that rely on

parametric assumptions. This issue will be illustrated in an empirical example revisiting

Angrist and Newey (1991).

Another advantage of the specification tests proposed here is that they do not require

over-identifying restrictions on the object of interest, the APE. One practical implication is

that some of the specification tests, such as time homogeneity and conditional random effects,

are applicable even when T = 2. The commonly used test of the parallel-trends assumption

requires that T > 2. This is because the specification tests proposed here test distributional

assumptions, whereas the parallel trends assumption only exploits mean restrictions.

Related Literature. This paper builds on the recent work on fixed-T nonparametric

identification of APEs, which we categorize as “generalized first-differencing.” Under this

category, the APE is identified for a subpopulation using average changes of the outcome

variable across time or subpopulations that coincide with a change in the variable of interest.

This generalization allows us to put correlated random effects (Altonji and Matzkin, 2005;

Bester and Hansen, 2009) and time homogeneity (Chernozhukov, Fernandez-Val, Hahn, and

Newey, 2013; Hoderlein and White, 2012) under the same umbrella. Point-identification in

these papers is achieved only for a subpopulation. Chernozhukov, Fernandez-Val, Hahn, and
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Newey (2013) are not solely interested in the point-identified subpopulation, but are mainly

concerned with set identification and estimation building on Honore and Tamer (2006) and

Chernozhukov, Hong, and Tamer (2007). Another strand in the literature follows the classical

identification approach, which seeks to identify all structural objects, i.e., the structural

function and the conditional distribution of unobservables. This strand includes Altonji and

Matzkin (2005), Evdokimov (2010) and Evdokimov (2011).

The study of identification in panel data originated in the linear model with the seminal

work of Mundlak (1978), Chamberlain (1982), and Chamberlain (1984). The latter together

with more recent surveys such as Arellano and Honore (2001) and Arellano and Bonhomme

(2011) discuss the role of separability and time homogeneity in the linear as well as nonlinear

models. Variants of time homogeneity are also assumed in other work on nonlinear panel data

models, such as in Manski (1987) and Honore and Kyriazidou (2000b) for binary choice mod-

els, Honore (1992), Honore (1993), Kyriazidou (1997), and Honore and Kyriazidou (2000a)

for Tobit models.3

It is important to relate the differencing approach here to other identification approaches

in the literature. For random coefficient models, Graham and Powell (2012) use a differencing

approach that is similar in spirit to what we use here. Magnac (2004) introduces the concept

of quasi-differencing as the presence of a sufficient statistic for the individual effect, such

as conditional logit (Chamberlain, 1984, 2010). For semiparametric binary choice models,

Honore and Kyriazidou (2000b) use the intuition of quasi-differencing to nonparametrically

identify the common parameter. In the likelihood setting, Bonhomme (2012) proposes a sys-

tematic approach to finding moment restrictions that only depend on the common parameter

vector, and refers to it as a “functional differencing” approach.

In the nonlinear difference-in-difference setup with repeated cross-sections, as in Athey

and Imbens (2006) for binary treatments, and d’Haultfoeuille, Hoderlein, and Sasaki (2013)

for continuous treatments, variants of time homogeneity are imposed while allowing the

structural relationship to be time-varying. These identification strategies do not fall under the

3Note for Tobit models, exchangeability of the error terms across time is assumed, which is an implication of
time homogeneity as assumed in Chernozhukov, Fernandez-Val, Hahn, and Newey (2013).
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generalized first-differencing approach.4 Their identification approach relies on monotonicity

assumptions. Athey and Imbens (2006) exploit the monotonicity of the structural function

in a scalar unobservable, together with time homogeneity, to identify the distribution of the

counterfactual from which they can derive the APE. In d’Haultfoeuille, Hoderlein, and Sasaki

(2013), the time-varying structural function is monotonic in a time-invariant base function

of the regressors and unobservables. Together with a variant of time homogeneity and a

restriction on the variation in the distribution of the regressors across time, d’Haultfoeuille,

Hoderlein, and Sasaki (2013) point-identify several types of average and quantile effects.

The motivation behind the specification tests proposed here is most closely related to

recent work on nonparametric specification testing. Su, Hoderlein, and White (2013) and

Hoderlein, Su, and White (2013) propose nonparametric tests of monotonicity in a scalar

unobservable in the panel and cross-sectional setup, respectively. Hoderlein and Mammen

(2009), Lu and White (2014) and Su, Tu, and Ullah (2015) propose nonparametric tests of

separability. This paper also builds on work using re-sampling methods to obtain critical

values for KS statistics such as Andrews (1997) and Abadie (2002).

Outline of the Paper. The rest of this paper is organized as follows. The next section

reviews the identifying assumptions considered here and their testable restrictions. Section 3

proposes tests of the identifying assumptions that are shown to be asymptotically valid and

presents a simulation study to examine their performance in finite samples. Finally, Section

4 includes the empirical illustration.

2 Generalized First-Differencing: Identification and

Testable Restrictions

In this section, we review the identifying assumptions that fall under the umbrella of gener-

alized first-differencing and present testable restrictions. We start from the DGP in (1) and

4This is not surprising, since in repeated cross-sections, we do not observe the same individuals across time.
Hence, we cannot identify the APE from average changes across time as in the generalized first-differencing ap-
proach, if the underlying structural function is fully nonseparable.
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formally state the main assumptions. Let Xi = (Xi1, . . . , XiT ). For a set S, |S| denotes its

cardinality and ST = ×Tt=1S, e.g., S2 = S× S.

Assumption 2.1 (General DGP)

(i) Yit = ξt(Xit,Ai,Uit), where Yit ∈ Y ⊆ R, Xit ∈ X, Ai ∈ A ⊆ Rda, Uit ∈ U ⊆ Rdu, for

t = 1, 2, ..., T ,

(ii) X is finite, where |X| = K,

(iii) E[Yit] <∞ for all t = 1, 2, .., T ,

(iv) P (Xi = x) > 0 for all x ∈ XT .

The main content of the above assumption is the finite support of Xit in (ii). (i) may

be thought of as a ‘correct specification’ assumption. However, the choice of variables to

include in Xit only becomes restrictive when an identifying assumption is imposed on (i).

As for (iii) and (iv), they are regularity conditions that ensure that the APE exists for all

elements in the support of Xi, which simplifies our analysis. As noted above, we assume

that {Yit, Xit} are observable and {Ai,Uit} are unobservable, where Ai and Uit may be any

finite-dimensional vectors.

For the purposes of our discussion here, we define a subpopulation by its realization

of Xi = x, where x ∈ XT .5 Since |XT | is finite, we have finitely many subpopulations.

Each subpopulation, x ∈ XT , is characterized by its distribution of unobservables, i.e.

FAi,Ui1,Ui2,...,UiT |Xi(.|x). Hence, we can think of individuals in a subpopulation as draws

from the same distribution.6

Now we define our object of interest using the general DGP. For a fixed-T panel, the

APE is only point-identified for a subpopulation as established previously in Chernozhukov,

Fernandez-Val, Hahn, and Newey (2013) and Hoderlein and White (2012). Hence, our object

5This is in line with common approaches in the literature to divide up the populations into groups based on
the realizations of the regressors or treatment variables, such as movers and stayers as introduced in Chamberlain
(1982), and the treatment and control groups in the treatment effects literature.

6For fixed effects strategies, one can allow FAi,Ui1,Ui2,...,UiT |Xi(.|x) = limn→∞
1
n

∑n
i=1 F

i
Ai,Ui1,Ui2,...,UiT |Xi(.|x),

i.e., each individual in a subpopulation may be a draw from a different distribution. The intuition here is that
we are using within-group variation, individual heterogeneity could be even more general. However, for correlated
random effects strategies, this will interfere with identification.
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of interest here is the APE of a discrete regressor X on Y for a subpopulation x. Specifically,

our object of interest is the APE of changing Xit from x to x′, x 6= x′, for subpopulation

Xi = x. We use the counterfactual notation, Y x
it = ξt(x,Ai,Uit).

βt(x→ x′|Xi = x) = E[Y x′
it |Xi = x]− E[Y x

it |Xi = x]

=

∫ {
ξt(x

′, a, u)− ξt(x, a, u)
}
dFAi,Uit|Xi(a, u|x). (2)

The above equation expresses the identification problem here. The APE is the difference

between the same function ξt evaluated at x and x′ averaged over the same distribution of

unobservables.

The identifying assumptions that fall under the generalized first-differencing category

impose restrictions that ensure that the APE is identified by looking at average differences of

the outcome variable across time and subpopulations. To simplify the illustration of results,

we will focus on the two-period case (T = 2), where we have two subpopulations (x, x) and

(x, x′), stayers and movers. If x = 0 and x′ = 1, then this would be the classical difference-in-

difference setup. Our object of interest is β2(x→ x′|Xi = (x, x′)), i.e., it is the APE of moving

from x to x′ for subpopulation (x, x′) in the second time period. In this setup, generalized

first-differencing allows for the identification of the APE using E[Yi2 − Yi1|Xi = (x, x)] and

E[Yi2 − Yi1|Xi = (x, x′)]. The following lemma gives a condition that formally characterizes

the generalized first-differencing approach.

Lemma 2.1 (Generalized First-Differencing)

Let Assumption 2.1 hold,

β2(x→ x′|Xi = (x, x′)) = E[Yi2 − Yi1|Xi = (x, x′)]− E[Yi2 − Yi1|Xi = (x, x)]

if and only if

∫
(ξ2(x, a, u2)− ξ1(x, a, u1))

×
(
dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x′))− dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x))

)
= 0. (3)
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All proofs of Section 2 are given in Appendix A.1. The term on the left-hand side of (3) is the

integral of the product of the change in the structural function due to time and the difference

in the distribution of unobservables between the two subpopulations. The condition in (3)

can be viewed as an orthogonality condition, in the sense that two variables, A and B, are

orthogonal if E[AB] = 0. Assuming that the density fAi,Ui1,Ui2|Xi exists and is positive

everywhere, we can obtain the following version of the condition,

E

[
(Y x
i2 − Y x

i1)

{
fAi,Ui1,Ui2|Xi(Ai,Ui1,Ui2|(x, x′))− fAi,Ui1,Ui2|Xi(Ai,Ui1,Ui2|(x, x))

}
fAi,Ui1,Ui2|Xi(Ai,Ui1,Ui2|(x, x′))

∣∣∣∣∣Xi = (x, x′)

]
= 0.

The above equation shows how (3), while holding x fixed, decomposes the change in the

outcome variable into two components: (1) the change in the structural function due to

time, (2) the difference in the distribution of unobservables due to the change in Xi2. For

identification to be achieved here, these two sources of change have to be orthogonal.

The following theorem shows that time homogeneity fulfills the condition (3) and gives

the testable restrictions implied by this identification approach. The testable restrictions

here are not over-identifying restrictions on the object of interest, the APE.

Theorem 2.1 Fixed Effects: Identification & Testable Restrictions (T = 2)

Let Assumption 2.1 hold.

If ξt(x, a, u) = ξ(x, a, u) + λt(x), ∀(x, a, u) ∈ X× A× U, and

Ui1|Xi,Ai
d
= Ui2|Xi,Ai,

then (i)

∫
(ξ2(x, a, u2)− ξ1(x, a, u1))(
dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x′))− dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x))

)
= 0.

(ii)FYi1−λ1(x)|Xi(.|(x, x)) = FYi2−λ2(x)|Xi(.|(x, x)), ∀x ∈ X

The identity of distribution assumption on the idiosyncratic shocks across time conditional

on Xi and Ai was referred to in Chernozhukov, Fernandez-Val, Hahn, and Newey (2013) as

time homogeneity in the case of discrete regressors. Hoderlein and White (2012) also rely

on a similar time homogeneity assumption to identify local average structural derivatives.
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As pointed out in Chernozhukov, Fernandez-Val, Hoderlein, Holzmann, and Newey (2015),

the time homogeneity assumption can be equivalently stated as Ei1|Xi
d
= Ei2|Xi, where Eit =

(A′i,U ′it)′. The assumption on the structural function ensures that it is stationary in the

unobservables. Both Hoderlein and White (2012) and Chernozhukov, Fernandez-Val, Hahn,

and Newey (2013) also impose time stationarity assumptions on the structural function. We

will refer to λt(x) as a generalized parallel trend.

The above theorem shows that time homogeneity together with the restriction on the

structural function satisfies the generalized first-differencing condition restated in (i) of the

above theorem. The identification approach using time homogeneity fits the setup in obser-

vational panel data models, where empirical researchers prefer to leave the distribution of

unobservable individual heterogeneity unrestricted (fixed effects). The stayer subpopulation

(x, x) is used to identify the generalized parallel trend. The difference between the average

change of the outcome variable for the mover subpopulation (x, x′) and the generalized par-

allel trend then identifies the APE in question. In essence, time homogeneity together with

stationarity of the structural function in unobservables ensures that the distribution of the

outcome variable does not change across time due to unobservables. Hence, we can identify

the APE from an average change in the outcome variable that coincides with a change in the

regressors, after accounting for the parallel trend.

The testable restriction in (ii) of the above theorem follows intuitively. The distribution

of the outcome variable for individuals who do not experience changes in their regressors, i.e.,

the stayer subpopulations, should not change across time after adjusting for the generalized

parallel trend.7 The extension to the case where T > 2 is straightforward and is presented

in Section 3.1.

The fixed effects approach is particularly appropriate for observational panel data settings.

The finite-support assumption on Xit can restrict the applicability of the test procedures pro-

posed here. We can allow for a vector of additively separable possibly continuous regressors

Wit, a dw× 1 vector, where Yit = ξ(Xit,Ai,Uit) +W ′itγ+λt. Section A in the supplementary

7Note here that requiring stayer subpopulations implies that we cannot use variables, such as age, which cannot
stay constant over time.
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appendix contains the relevant identification and testing results.

An alternative approach to identifying average partial effects is to use restrictions on

individual heterogeneity. The following theorem illustrates how the conditional random ef-

fects assumption fulfills the generalized first-differencing condition and also has a testable

restriction for T = 2.

Theorem 2.2 Conditional Random Effects: Identification & Testable Restric-

tions (T = 2)

Let Assumption 2.1 hold.

If Ai,Ui1,Ui2|Xi
d
= Ai,Ui1,Ui2|Xi1,

then (i)

∫
(ξ2(x, a, u2)− ξ1(x, a, u1))

×
(
dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x′))− dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x))

)
= 0

(ii) FYi1|Xi(.|(x, x
′)) = FYi1|Xi(.|(x, x)), ∀x, x′ ∈ X, x 6= x′

The above identifying assumption imposes an exclusion restriction on Xi2 from the con-

ditioning set of the distribution of all unobservables. One interpretation of this assumption

is that selection is on the observables Xi1, and hence it relates to unconfoundedness. It is

more appropriately referred to as a conditional random effects assumption. This identify-

ing assumption is particularly suitable in field experiments, where pre- and post-treatment

outcome variables are measured. The testable restriction in (ii) of the above theorem is inher-

ently a testable restriction of random assignment of Xi2. If the treatment is in fact randomly

assigned, then the distribution of the pre-treatment outcome variable in the first time period

for the control group Xi = (x, x) should be the same as that of the pre-treatment outcome

variable of the treatment group Xi = (x, x′). Given the variety of implementation issues

that may interfere with random assignment in field experiments, such as attrition and other

selection problems, the above identifying assumption and the resulting testable restriction

can be tailored to that setting as in the following example.

Example 1 Attrition in a Field Experiment
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Consider a simple example of attrition in a field experiment. Suppose that we have a field

experiment with a single treatment, i.e. X
(1)

it ∈ {0, 1}, and we observe the control group

(X
(1)

i = (0, 0)) and treatment group (X
(1)

i = (0, 1)). The treatment is randomly assigned

in the second period, hence we expect the treatment and control group to have the same

distribution of unobservables. We observe the outcome variable before and after treatment,

Yi1 and Yi2, only for individuals which choose to respond pre- and post-treatment. Let X
(2)

i

be a binary variable for whether individuals respond or not. The identification question is

whether E[Yi2|X
(1)

i = (0, 1), X
(2)

i = 1] − E[Yi2|X
(1)

i = (0, 0), X
(2)

i = 1] can identify the APE

β2(0→ 1|X(1)
i = (0, 1), X

(2)

i = 1). Note that by the above theorem if the conditional random

effects assumption holds, specifically Ai,Ui1,Ui2|X
(1)

i , X
(2)

i
d
= Ai,Ui1,Ui2|X(1)

i1 , X
(2)

i ,8 then the

APE in question is identified and we have the testable restriction, F
Yi1|X

(1)
i ,X

(2)

i

(.|(x, x′), 1) =

F
Yi1|X

(1)

i ,X
(2)

i

(.|(x, x), 1). The intuition here is that the identification of the APE is still possi-

ble if conditioning on whether individuals respond or not does not interfere with the random

assignment of X
(1)

i2 . The testable implication is hence that the pre-treatment outcome variable

of the respondents in the control and treatment group has the same distribution.

The exclusion restriction in Theorem 2.2 can alternatively be imposed on Xi1 as opposed

to Xi2, which yields Ai,Ui1,Ui2|Xi
d
= Ai,Ui1,Ui2|Xi2.9 This assumption allows Xi2 to depend

on past shocks Ui1. In industrial organization (e.g. Olley and Pakes, 1996), Uit is a firm’s

productivity, which is unobservable to the econometrician, and Xi,t+1 are inputs. This variant

of the conditional random effects assumption is more suitable here since it allows future inputs

to depend on past productivity.

The conditional random effects assumption is a special case of correlated random effects

assumptions, which have been considered in Altonji and Matzkin (2005) and Bester and

Hansen (2009). Altonji and Matzkin (2005) shows how correlated random effects assumptions

can achieve identification of APEs. The following theorem presents the testable restrictions

for the general class of correlated random effects assumptions when T ≥ 2. We first introduce

8Note that one can omit X
(1)
i from the conditioning set in this example, since X

(1)

i1 = 0 for all subpopulations
in this example.

9Note that the testable restriction in this setup would be that FYi2|Xi(.|(x, x)) = FYi2|Xi(.|(x′, x)) for all x, x′ ∈ X,
x 6= x′.
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the notation xt to denote the tth column of x.

Theorem 2.3 Correlated Random Effects: Identification and Testable Restric-

tions (T ≥ 2)

Let Assumption 2.1 hold.

If Ai,Ui1,Ui2, ...,UiT |Xi
d
= Ai,Ui1,Ui2, ...,UiT |h(Xi),

then (i)βt(xt → x′t|Xi = x) = E[Yit|Xi = x′]− E[Yit|Xi = x], (Altonji and Matzkin, 2005)

(ii)FYiτ |Xi(.|x) = FYiτ |Xi(.|x
′),

∀x, x′ ∈ XT , t, τ ∈ {1, . . . , T}, where xt 6= x′t, xτ = x′τ and h(x) = h(x′). (4)

In the above theorem, (i) is a re-statement of a result in Altonji and Matzkin (2005), whereas

(ii) gives the testable restrictions for this class of identifying assumptions. Now we proceed

to propose specification tests of all of the aforementioned restrictions.

3 Testing Identifying Assumptions

In this section, we develop statistics to test the restrictions implied by the identifying assump-

tions presented in Section 2. The APE of a subpopulation may be identified using different

assumptions. For instance, Theorems 2.1 and 2.3 show how the APE can be identified using

time homogeneity and correlated random effects, respectively. The statistics proposed here

do not test whether the APE is identified or not. They test whether a particular identify-

ing assumption holds. Their rejection is hence evidence against the assumption in question

only. As pointed out above, the empirical setting typically suggests a suitable identification

strategy.

The testable implications of the identifying assumptions we consider are equality restric-

tions on the conditional distribution of the outcome variable, hence they are an extension

of the classical two-sample problem. The KS and CM statistics are well-known statistics for

testing the equality of two distributions. Under the assumptions of the classical two-sample

problem, i.e. the two samples are independent and each consists of i.i.d. observations of a
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continuous random variable, the two statistics have known asymptotic critical values that

can be used in practice. There are three sources of differences between our setup and the

classical two-sample problem. First, in cross-sectional panel data, we have dependence across

time due to the time-invariant unobservables as well as time-series dependence of the idiosyn-

cratic shocks. Secondly, to account for parallel trends in the case of time homogeneity, we

have to compare the distribution of demeaned random variables. Thirdly, as illustrated in

Theorem 2.1 and 2.2, each identifying assumption implies several equality restrictions that

have to hold jointly. To obtain the p-value of all the statistics proposed below, we propose

the following bootstrap procedure. Let Tn denote the statistic obtained from the original

sample and T bn the properly centered statistic obtained from the bth bootstrap sample. Let

B denote the number of bootstrap replications.

Procedure 3.1 (Bootstrap Procedure)

1. Compute the statistic in question, Tn, for the original sample, {{Y1, X1}, ..., {Yn, Xn}}.

2. Resample n observations {{Ŷ1, X̂1}, ..., {Ŷn, X̂n}} with replacement from the original

sample. Compute T bn, the centered statistic for the bth bootstrap sample .

3. Repeat 1-2 B times.

4. Calculate the p-values of the tests with pn =
∑B

b=1 1{T bn > Tn}/B. Reject if p-value is

smaller than some significance level α.

The key feature that warrants some attention in the above procedure is that we are resampling

individuals. We treat all of the observations of an individual as a single object. Hence, our

procedure is valid without any restrictions on the time series dependence in our data. This

is intuitive, since we have a fixed-T setup. The bootstrap procedure exploits cross-sectional

independence. In the following, we show that our test statistics whose p-values are obtained

using the above procedure are asymptotically valid to test time homogeneity and correlated

random effects.
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3.1 Testing Time Homogeneity

Theorem 2.1 establishes the testable restriction of time homogeneity for the T = 2 case. For

T > 2, the testable restrictions are similarly given by the following

FYi,t−1|(Xi,t−1,Xit)(.|(x, x)) = FYit−∆λt(x)|(Xi,t−1,Xit)(.|(x, x)), ∀x ∈ X, t = 2, . . . , T, (5)

where ∆λt(x) ≡ λt(x) − λt−1(x). Recall that X is the support of Xit, a dx × 1 vector, and

K ≡ |X|. The stayer subpopulations are the individuals that have the same value x ∈ X in

both periods.10 Hence, in the above we have K × (T − 1) restrictions that we would like to

test jointly.11

Let ∆Xit = Xit −Xi,t−1. We can integrate (5) over (Xi,t−1, Xit) = (x, x) conditional on

∆Xit = 0 to obtain the following hypothesis

Hgpt,T
0 : FYi,t−1|∆Xit(.|0) = FYit|∆Xit(.,∆Λt|0), for t = 2, . . . , T , (6)

where ∆Λt ≡ (∆λt(x
1),∆λt(x

2), . . . ,∆λt(x
K)) and FYit|∆Xit(.,∆Λt|0) ≡

∑K
k=1 P ((Xi,t−1, Xit) =

(xk, xk)|∆Xit = 0)FYit−∆λt(xk)|(Xi,t−1,Xit)(.|(x
k, xk)). The null hypothesis Hgpt,T

0 is an impli-

cation of the more disaggregated restriction in (5). While it controls size, there are power

trade-offs that might have implications for finite-sample properties. This issue is explored

through a simulation study in Section C in the supplementary appendix.

Hgpt,T
0 consists of T−1 restrictions. Thus, the following statistics test all T−1 restrictions

10For instance, if Xit includes two binary regressors for union and high school completion, then K = 4, since the
elements in the support of Xit represent the four categories: union members with and without high school degrees
as well as non-union members with and without high school degrees. Stayer subpopulations are individuals that
remained in one of these four categories in two time periods. In general, K is equal to the number of dummy
variables in a fully saturated model with discrete regressors as described in Angrist (2001).

11The restriction in (5) is a natural extension of the testable restriction in Theorem 2.1 for the T = 2 case. It is
possible however to write a more disaggregated hypothesis. Note that FYit|(Xi,t−1,Xi,t)(y|(x, x)) =

∑
x∈XTx,t

P (Xi =

x|(Xi,t−1, Xit) = (x, x))FYit|Xi(y|x), where XTx,t = {x ∈ XT : (xt−1, xt) = (x, x)} for x ∈ X and t = 2, . . . , T . Thus,

the testable restriction can be alternatively written as FYi,t−1|Xi(.|x) = FYit−∆λt(x)|Xi(.|x), ∀x ∈ XTx,t, x ∈ X, t =
2, ..., T .
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jointly,

KSgpt,Tn,Y =
1

T − 1

T∑
t=2

∥∥∥√n{Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit|∆Xit(.,∆Λn,t|0)
}∥∥∥
∞,Y

,

CMgpt,T
n,φ =

1

T − 1

T∑
t=2

∥∥∥√n{Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit|∆Xit(.,∆Λn,t|0)
}∥∥∥

2,φ
, (7)

where Fn,Yit|∆Xit and ∆Λn,t denote sample analogues of FYit|∆Xit and ∆Λt, respectively.

Procedure 3.1 can be used to obtain p-values for the above statistics with the following

centered statistics for the bootstrap sample

KSgpt,T,bn,Y =
1

T − 1

T∑
t=2

∥∥∥√n{F bn,Yi,t−1|∆Xit(.|0)− F bn,Yit|∆Xit(.,∆Λbn,t|0)
}

−
√
n
{
Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit|∆Xit(.,∆Λn,t|0)

}∥∥∥
∞,Y

,

CMgpt,T,b
n,φ =

1

T − 1

T∑
t=2

∥∥∥√n{F bn,Yi,t−1|∆Xit(.|0)− F bn,Yit|∆Xit(.,∆Λbn,t|0)
}

−
√
n
{
Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit|∆Xit(.,∆Λn,t|0)

}∥∥∥
2,φ
,

where F bn,Yit|∆Xit and ∆Λbn,t denote bootstrap sample analogues of FYit|∆Xit and ∆Λt, respec-

tively, for the bth bootstrap sample.

The following theorem shows that the bootstrap critical values of the above test statistics

deliver correct asymptotic size and consistency against fixed alternatives. First, we have to

impose an additional assumption.

Assumption 3.1 (Bounded Density)

FYit(.) has a density fYit(.) that is bounded, i.e. supy∈Y |fYit(y)| <∞, t = 1, . . . , T .

Theorem 3.1 Given that {Yi, Xi}ni=1 is an iid sequence, |X| = K, P (∆Xit = 0) > 0 for

t = 2, . . . , T , FYit|Xi(.|x) is non-degenerate for t = 1, . . . , T and x ∈ XT , and Assumption 3.1

holds. Procedure 3.1 for KSgpt,Tn,Y and CMgpt,T
n,φ to test Hgpt,T

0 (i) provides correct asymptotic

size α and (ii) is consistent against any fixed alternative of Hgpt,T
0 .

The proof is given in Appendix A.2. Assumption 3.1 merits some discussion. By demean-

ing the variables, we are introducing asymptotically normal noise to the empirical process.
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Assumption 3.1 ensures that the empirical process converges nonetheless to a Brownian

bridge by allowing us to apply the functional delta method. From here, it is straightforward

to show that the bootstrap empirical process converges to the same tight limit process as

the empirical process. Then, we show that the bootstrap critical values of the test statistics

deliver correct asymptotic size and are consistent against fixed alternatives.

Alternatively, one could approach the T > 2 case as a multiple testing problem, where

we have T − 1 hypotheses of time homogeneity. For t = 2, . . . , T ,

Hgpt,t
0 : FYi,t−1|∆Xit(.|0) = FYit|∆Xit(.,∆Λt|0).

For each t, the statistics can be computed similar to the T = 2 case. A multiple-testing

correction procedure, such as the step-down procedures in Romano and Wolf (2005) and

Romano, Shaikh, and Wolf (2008), can then be adapted to control the family-wise error rate

for testing {Hgpt,t
0 }Tt=2.

3.2 Testing Correlated Random Effects Assumptions

Theorem 2.3 gives the testable restriction of the correlated random effects assumption as

follows

FYit|Xi(.|x) = FYit|Xi(.|x
′), ∀x, x′ ∈ X,∀t = 1, 2, . . . , T, where xt = x′t, h(x) = h(x′).

(8)

h : XT 7→ H is the restriction imposed on the distribution of unobservables. For T = 2 and

h(Xi) = Xi1, this delivers the conditional random effects assumption as in Theorem 2.2.

Note that the restriction implies that L ≡ |H| < |XT |, where H = {hl}Ll=1.12

Now we introduce some notation in order to write the testable restriction. For l =

1, 2, . . . , L, define XTt,k,l ≡ {x ∈ XT : xt = xk, h(x) = hl}. This is the set of subpopula-

tions that have the same realization of Xit at time t, xk, and have the same distribution of

12Correlated random effects strategies restrict heterogeneity across subpopulations. Two subpopulations, x and
x′, will have the same distribution of unobservables if h(x) = h(x′). Thus, it follows that |H| < |XT |.
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unobservables, since h(x) = hl. The testable restrictions state that the distribution of the

outcome variable at time t for all subpopulations in this set are expected to be equal. This

holds for all time periods and all K elements in X, which yields the following hypothesis,

Hcre
0 : FYit|Xi(.|x) = FYit|Xi(.|x

′),

∀x, x′ ∈ XTk,l,t, k = 1, 2, . . . ,K, l = 1, 2, . . . , L, t = 1, 2, . . . , T .

For the conditional random effects assumption and T = 2, x = (xk, xk) and x′ = (xk, xj)

j 6= k, j, k = 1, 2, . . . ,K. The testable restrictions apply for t = 1 only. In that case, Hcre
0

simplifies to the testable restriction in Theorem 2.2.

When |XTk,l,t| > 2, we have equality restrictions on more than two cdfs. Hence, it is a

multiple sample problem. In this setting, Quessy and Ethier (2012) introduce an “averaged”

cdf. We follow their approach here and introduce the following cdf,

F̄k,l,t =
1

|XTk,l,t|
∑

x∈XTk,l,t

FYit|Xi(.|x), (9)

which averages over the cdfs of the outcome variable at time period t for subpopulations in

the set XTk,l,t.

The KS and CM statistics for the restrictions in time period t and fixing xk are given by

KScren,k,t =
L∑
l=1

Pn(h(Xi) = hl)
∑

x∈XTk,l,t

Pn(Xi = x|h(Xi) = hl)‖
√
n{Fn,Yit|Xi(.|x)− F̄n,k,l,t(.)}‖∞,Y

CM cre
n,k,t =

L∑
l=1

Pn(h(Xi) = hl)
∑

x∈XTk,l,t

Pn(Xi = x|h(Xi) = hl)‖
√
n{Fn,Yit|Xi(.|x)− F̄n,k,l,t(.)}‖2,φ

Averaging the above statistics over k and t, we obtain the statistics that test Hcre
0 ,

KScren,Y =
1

KT

K∑
k=1

T∑
t=1

KScren,k,t,

CM cre
n,φ =

1

KT

K∑
k=1

T∑
t=1

CM cre
n,k,t.
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The bootstrap-centered statistics are given by KScre,bn,Y =
∑K

k=1

∑T
t=1KS

cre,b
n,k,t/KT and

CM cre,b
n,φ =

∑K
k=1

∑T
t=1CM

cre,b
n,k,t /KT , where

KScre,bn,k,t =
L∑
l=1

P bn(h(Xi) = hl)
∑

x∈XTk,l,t

P bn(Xi = x|h(Xi) = hl)

× ‖
√
n{F bn,Yit|Xi(.|x)− F̄ bn,k,l,t(.)− (Fn,Yit|Xi(.|x)− F̄n,k,l,t(.))}‖∞,Y,

CM cre,b
n,k,t =

L∑
l=1

P bn(h(Xi) = hl)
∑

x∈XTk,l,t

P bn(Xi = x|h(Xi) = hl)

× ‖
√
n{F bn,Yit|Xi(.|x)− F̄ bn,k,l,t(.)− (Fn,Yit|Xi(.|x)− F̄n,k,l,t(.))}‖2,φ.

The above statistics use the bootstrap empirical probabilities P bn(A) for an event A.

The following theorem shows that the bootstrap critical values for the above statistics

obtained using Procedure 3.1 are asymptotically valid.

Theorem 3.2 Given {Yi, Xi}ni=1 is an iid sequence, |X| = K, P (Xi = x) > 0 for all x ∈ XT ,

and FYit|Xi(.) is non-degenerate for all t = 1, 2, . . . , T , the procedure described in 1-4 for

KScren,Y and CM cre
n,φ to test Hcre

0 (i) provides correct asymptotic size α and (ii) is consistent

against fixed alternatives.

The proof is in Appendix A.2. The convergence of the empirical and bootstrap empirical

processes to a tight Brownian bridge follows from results in Van der Vaart and Wellner

(2000). The remainder of the proof follows by similar arguments to Theorem 3.1.

3.3 Monte Carlo Study

In this section, we examine the finite-sample performance of the proposed bootstrap proce-

dure for obtaining the critical values of the KS and CM statistics to test time homogeneity

and conditional random effects assumptions. For time homogeneity, we will consider several

of its variants, time homogeneity with no trend (λt(x) = 0), a parallel trend (λt(x) = λt for

all x ∈ X), and a generalized parallel trend (λt(x)).

Table 1 describes the models we consider in our Monte Carlo design. The structural

function ξ(x, a, u) is adapted from the design in Evdokimov (2010) to include a location shift
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µ0 in order to maintain E[Yi1] to be the same for all models A-D.13 Xit is a binomial random

variable that is standardized to have mean 0 and standard deviation 1. Models A-C are

variants of time homogeneity. Model A exhibits time homogeneity without a parallel trend.

Model B allows for a parallel trend (λt). Model C allows for a generalized parallel trend that

depends on the regressor (λtsign(Xit)). If λt = λ1 for all t = 2, . . . , T , Models A, B and C are

all equivalent. Thus, λt−λ1 exhibits the location shift by which Models B and C deviate from

Model A. The difference between Models B and C is that the latter allows subpopulations

with positive Xit to have a location shift equal to λt, whereas subpopulations with negative

Xit to have a location shift equal to −λt. Model D exhibits the conditional random effects

assumption, while allowing for a time-varying scale shift in the structural function, σt. If

σt = σ1 for all t = 2, . . . , T , then Model D also exhibits time homogeneity with a parallel

trend, λt. Thus, Model D deviates from time homogeneity with a parallel trend (Model B)

by σt − σ1. In the simulations, we impose the normalizations, λ1 = 0 and σ1 = 1.

This section is organized as follows. Section 3.3.1 presents the baseline Monte Carlo re-

sults for testing time homogeneity and conditional random effects. Section 3.3.2 examines the

behavior of the statistics of time homogeneity with a parallel trend and a generalized parallel

trend in a design resembling the National Longitudinal Survey of Youth (NLSY) subsample

which we consider in the empirical illustration. Sections C.1-C.3 of the supplementary ap-

pendix includes additional simulation results that examine the choice of density in the CM

statistic and the relative performance of aggregated and disaggregated statistics for testing

time homogeneity. The simulation results point out several issues that practitioners have to

address in implementing the tests proposed here. Section C.4 of the supplementary appendix

summarizes the resulting recommendations for practitioners.

3.3.1 Testing Identifying Assumptions: Baseline Results

In the baseline results, we examine the finite-sample behavior of the bootstrap procedure for

n = 500, 2000, T = K = 2, and p = 0.5. Thus, we expect half of the sample to be stayers

13This point relates to the choice of density used to compute the CM statistic and is discussed in greater detail
in Section C.1 in the supplementary appendix.
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Table 1: Models Considered in the Monte Carlo Design

Model Ai Uit Yit

A Ai = 0.5
√
TX̄T + 0.5ψi Uit = εitX̄T Yit = ξ(Xit,Ai,Uit)

B ” ” Yit = ξ(Xit,Ai,Uit) + λt
C ” ” Yit = ξ(Xit,Ai,Uit) + λtsign(Xit)

D Ai = 0.5
√
TXi1 + 0.5ψi Uit = Xi1εit Yit = ξ(Xit,Ai,Uit)σt + λt

Notes: ξ(x, a, u) = µ0 + a+ (2 + a)x+ u; Xit = {Zit − p(K − 1)}/
√

(K − 1)p(1− p),
Zit

i.i.d.∼ Binomial(K-1, p); εit
i.i.d.∼ N(0, 1); ψi

i.i.d.∼ N(0,1); X̄T ≡
∑T

t=1Xit/T ; sign(g(x))

= 1{g(x) ≥ 0} − 1{g(x) < 0}; λ1 = 0, σ1 = 1.

and half to be movers. In this design, we set E[Yi1] = 0 by assigning µ0 an appropriate

value.14 In terms of the models that exhibit time homogeneity, we consider Model A as well

as Models B and C, with λ2 = 0.25, which is about 10% of the standard deviation of Yi1.15

For Model D, we set λ2 = 0.5 and σ2 = 1.1.

Under each model, we compute the bootstrap-adjusted p-values using Procedure 3.1 with

B = 200 for the following statistics:

KSntn,Y = ‖Fn,Yi1|∆Xi2(.|0)− Fn,Yi2|∆Xi2(.|0)‖∞,Y (10)

KSptn,Y = ‖Fn,Yi1|∆Xi2(.|0)− Fn,Yi2−∆λn|∆Xi2(.|0)‖∞,Y (11)

KSgptn,Y = ‖Fn,Yi1|∆Xi2(.|0)− Fn,Yi2|∆Xi2(.,∆Λn|0)‖∞,Y (12)

KScren,Y =

K∑
l=1

Pn(Xi1 = xl)
1

K

K∑
k=1

‖Fn,Yi1|Xi(.|(x
l, xk))− F̄n,l,1(.)‖∞,Y (13)

CMnt
n,φ = ‖Fn,Yi1|∆Xi2(.|0)− Fn,Yi2|∆Xi2(.|0)‖2,φ (14)

CMpt
n,φ = ‖Fn,Yi1|∆Xi2(.|0)− Fn,Yi2−∆λn|∆Xi2(.|0)‖2,φ (15)

CMgpt
n,φ = ‖Fn,Yi1|∆Xi2(.|0)− Fn,Yi2|∆Xi2(.,∆Λn|0)‖2,φ (16)

CM cre
n,φ =

K∑
l=1

Pn(Xi1 = xl)
1

K

K∑
k=1

‖Fn,Yi1|Xi(.|(x
l, xk))− F̄n,l,1(.)‖2,φ. (17)

where F̄n,l,1(.) =
∑K

k=1 Fn,Yi1|Xi(.|(l, xk))/K, ∆λn =
∑n

i=1(Yi2−Yi1)1{∆Xi2 = 0}/
∑n

i=1 1{∆Xi2 =

14We numerically calculate µ0 by calculating the E[Yi1] for models A-D, where ξ(x, a, u) = a+(2+a)x+u, using
a sample of size 10, 000, 000. For models A-C, µ0 = 0.354. For model D, µ0 = 0.707.

15The standard deviation of Yi1 is numerically calculated to be 2.6, using a sample of size 10, 000, 000.
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0}. ∆Λn is defined in Section 3.1. In our baseline study, we set φ to be the standard normal

density. We examine the behavior of the CM statistic using other densities in Section C.1

of the supplementary appendix. Both the KS and CM statistics are computed on a grid

{y, y + 0.01, y + 0.02, . . . , ȳ}, where y = mini,t Ỹit, ȳ = maxi,t Ỹit, and Ỹit denotes the appro-

priately demeaned Yit.
16 Note that the statistics with nt super-script test time homogeneity

with no trend, pt test time homogeneity with a parallel trend, gpt test time homogeneity with

a generalized parallel trend, λt(Xit), and cre test the conditional random effects assumption.

For K = 2, X = {−1, 1} and the cre KS statistic simplifies to the following,

KScren,Y = Pn(Xi1 = −1)‖Fn,Yi1|Xi(.|(−1,−1))− Fn,Yi1|Xi(.|(−1, 1))‖∞,Y

+ Pn(Xi1 = 1)‖Fn,Yi1|Xi(.|(1,−1))− Fn,Yi1|Xi(.|(1, 1))‖∞,Y.

The respective CM statistic follows by substituting ‖.‖2,φ in lieu of ‖.‖∞,Y in the above.

Table 2 reports the rejection probabilities using the bootstrap-adjusted p-values for the

above statistics in the baseline Monte Carlo design. Under Models A-C, we find that the

finite-sample behavior of the bootstrap-adjusted KS and CM statistics are very similar. They

both provide good size control and have fairly similar power properties. As expected, finite-

sample power improves as n increases. It is worth noting that for these models, the KS

statistic for pt and gpt, especially for n = 500, tends to be under-sized.

Under Model D, the cre statistics provide good size control, where the CM statistic

seems to fare better in this regard than the KS statistic. However, for pt, the KS statistic

exhibits better finite-sample power than the CM statistic, whereas the latter has better power

properties than the former for gpt. Overall, the gpt statistics seem less powerful in detecting

time heterogeneity in the scale as in Model D compared to pt. This may be due to two

factors. First, the gpt allows for parallel trends that depend on the regressor. Some of the

time heterogeneity in the scale may be mistakenly soaked up by these generalized parallel

trends, which makes the gpt statistics less powerful at detecting scale deviations from time

homogeneity relative to the pt statistics. Secondly, the pt uses an estimate of λ2 that uses

16For instance for the pt statistics, Ỹi1 = Yi1 and Ỹi2 = Yi2 −∆λn.
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the entire stayer subsample, which is expected to be n/2 in our design, whereas the gpt uses

estimates of λ2(−1) and λ2(1) for subsamples Xi = x ∈ {(−1,−1), (1, 1)}, respectively. The

size of these subsamples is expected to be n/4. Hence, these estimates will be noisier than

the estimates of λ2 used to construct the pt statistics, which may affect the finite-sample

power properties of the gpt statistics.

3.3.2 Monte Carlo Study Resembling NLSY 1983-1987

In this section, we design a Monte Carlo experiment that resembles the subsample of the

NLSY 1983-1987, which we will use in our empirical illustration. Thus, we set n = 1000,

T = 5, and K = 16. The schooling variable, measured by the highest grade completed,

takes integer values between 6 and 20 in the NLSY sample, hence our choice of K for the

simulations. We adjust the models in Table 1 in order to match the mean and standard

deviation of the outcome variable, log hourly wage, in the NLSY sample we consider. There

are two main adjustments:

(1) The regressors are generated to increase the proportion of stayers to resemble the pro-

portion of stayers in the NLSY. Xit is defined as in the design in Table 1. However, we

change the design of Zit as follows

Zi1
i.i.d.∼ Bin(K − 1, p)

Zi2 = Zi1 + 1{πi2 > 1}1{Zi1 < K − 1}

Zi3 = Zi2 + 1{πi3 > 1.5}1{Zi2 < K − 1}

Zi4 = Zi3 + 1{πi4 > 2}1{Zi3 < K − 1}

Zi5 = Zi4 + 1{πi5 > 2}1{Zi4 < K − 1}

where πit
i.i.d.∼ N(0, 1) across i, t.

(2) The structural function used in this design is given by: ξ(x, a, u) = µ0+(a+ (2 + a)x+ u) /c0,

where we choose µ0 and c0 so that the means and standard deviations of the outcome

variable in each time period of the design matches the annual means and standard
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deviations of log hourly wage in the NLSY 1983-1987, which are reported in Table 5.17

It remains to set the values for λt and σt for t = 1, . . . , 5. For Models B and C, we set

λ1 = 0 and fix λt+1 − λt = at, where we let at = 0.005, 0.01, 0.025, which correspond to

0.01, 0.02 and 0.05 proportion of the standard deviation of Yi1, respectively.18 For Model D,

we fix at = 0.01. As for σt, we set (σ1, σ2, σ3, σ4, σ5) = (1, 1 + b2, 1, 1 − b2, 1), where we let

b2 = 0.025, 0.05, 0.1, which correspond to proportions of the standard deviation of Yi1. Table

3 reports the proportion of the stayer subpopulation relative to the entire population for every

two periods, P (Xi,t−1 = Xit), as well as population means and standard deviations of Yit

for all time periods for some of the models we consider here. All quantities are numerically

calculated using a sample of size n = 10, 000, 000. Comparing these quantities with their

corresponding quantities for the NLSY subsample in 1983-1987 in Table 5, we find that the

models we consider in our simulation study seem to match the data quite well in terms of the

year-to-year proportion of the stayers to the entire sample as well as the mean and standard

deviation of log hourly wage.

In this section, we focus on the tests of time homogeneity with a parallel trend (pt) and

a generalized parallel trend (gpt). Since T = 5, we use the following statistics,

KSpt,Tn,Y =
1

T − 1

T∑
t=2

∥∥∥√n{Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit−∆λn,t|∆Xit(.|0)
}∥∥∥
∞,Y

, (18)

KSgpt,Tn,Y =
1

T − 1

T∑
t=2

∥∥∥√n{Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit|∆Xit(.,∆Λn,t|0)
}∥∥∥
∞,Y

, (19)

CMpt,T
n,φ =

1

T − 1

T∑
t=2

∥∥∥√n{Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit−∆λn,t|∆Xit(.|0)
}∥∥∥

2,φ
, (20)

CMgpt,T
n,φ =

1

T − 1

T∑
t=2

∥∥∥√n{Fn,Yi,t−1|∆Xit(.|0)− Fn,Yit|∆Xit(.,∆Λn,t|0)
}∥∥∥

2,φ
, (21)

17For Models A-C, µ0 = 5.95; for Model D, µ0 = 6.14. For Models A-C, c0 = 2×2.61; for Model D, c0 = 2×3.77.
The quantities for µ0 and c0/2 are numerically calculated from the expected value and standard deviation of Yi1,
respectively, using a sample of size 10, 000, 000, where ξ(x, a, u) = a+ (2 + a)x+ u.

18It is worth noting that under Model B, at = 0.025 corresponds to a 2.5% average increase from year-to-year in
the outcome variable for stayer subpopulations. Under Model C, it would correspond to a 5% difference in average
increase in the outcome variable between stayer subpopulations with above average Xit and those below average
Xit.
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where ∆λn,t =
∑n

i=1 ∆Yit1{∆Xit = 0}/
∑n

i=1 1{∆Xit = 0}, ∆λn,t(x) =
∑n

i=1 ∆Yit1{(Xi,t−1, Xit) =

(x, x)}/
∑n

i=1 1{(Xi,t−1, Xit) = (x, x)}, ∆Λn,t =
(
∆λn,t(x

1), . . . ,∆λn,t(x
K)
)′

. We consider

the CM statistics with different choices of φ: N(6.5, 0.25), N(6.5, 0.5) and U(0, 14). The

mean of the normal densities is chosen to be close to the overall mean of Yit across indi-

viduals and time. The standard deviation of Yit is about 0.5, thus we consider two normal

densities, one with the same and one with a smaller standard deviation than the outcome

variable. The uniform density we consider gives equal weight to a large proportion of the

support of Yit.

Table 4 reports the simulation rejection probabilities for the above statistics using the

bootstrap-adjusted p-values. Overall, the KS and CM statistics for pt control size for Models

A and B. They also reflect good finite-sample power properties under Models C and D. The

CM statistic with N(6.5, 0.25) performs better than with N(6.5, 0.5) under small deviations

from the pt null hypothesis, i.e. Model C with λt+1 − λt = 0.01 and Model D |σt − σt+1| =

0.025, 0.05, which suggests that giving higher weight to the center of the distribution improves

finite-sample power in our setup. The CM statistic with U(0, 14) seems to be fairly close to

the performance of the CM statistic with N(6.5, 0.25). The gpt statistics tend to be quite

under-sized under Models A-C and has no power under Model D in our simulation study.

Section C.3 in the supplementary appendix proposes alternative CM statistics that perform

substantially better for the gpt hypothesis in simulations.

4 Empirical Illustration: Returns to Schooling

4.1 Revisiting Angrist and Newey (1991)

Consider the linear fixed effects model where for i = 1, . . . , n, t = 1, . . . , T

Yit = X ′itβ +Ai + Uit, (22)

E[Uit|Xi1, . . . , XiT ,Ai] = 0 (23)
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where Xit and β are dx × 1 vectors. The key identifying assumption in the above is the re-

striction in (23), which is referred to by Chamberlain (1984) as “strict exogeneity conditional

on a latent variable.” Chamberlain (1984) proposes a minimum chi-square (MCS) procedure

to test the restrictions implied by (22) and (23). Angrist and Newey (1991) show that the

over-identification tests from three stage least squares (3SLS) equivalents of the Chamber-

lain (1984) procedure yield statistics that are identical to the MCS statistic.19 The testable

restrictions are obtained from considering the linear prediction of Ai given Xi

Ai = X ′i1η1 + · · ·+X ′iT ηT + Ei. (24)

By construction, Ei is uncorrelated with Xi1, . . . , XiT .20 Taking deviations of Yit from YiT

for t = 1, . . . , T − 1 and plugging (24) into YiT yields the equations for the simplest 3SLS

procedure

Yi1 − YiT = (Xi1 −XiT )′β + (Ui1 − UiT )

...

Yi1 − Yi,T−1 = (Xi,T−1 −XiT )′β + (Ui,T−1 − UiT )

YiT = X ′iTβ +X ′i1η1 + · · ·+X ′iT ηT + Ei + UiT .

Using a subsample of the national longitudinal survey of youth (NLSY) 1983-1987, Angrist

and Newey (1991) estimate the union-wage effects as well as returns to schooling and apply

their over-identification test.21 Their over-identification test does not reject for the union-

wage equation, but rejects for the returns to schooling equation at the 5% level. In Section 4.2,

we will revisit the returns to schooling application and apply the test for time homogeneity

in the presence of a parallel trend, which is a test of nonparametric identification.

19They also show that it can simplify to the degrees of freedom times R2 from the regression of the residuals
from the analysis of covariance (ANACOVA) on all leads and lags of the regressors when some transformations of
the time-varying unobservables are homoskedastic.

20Chamberlain (1984) points out that (24) is not restrictive under the assumptions that variances are finite and
that the joint distribution of (Xi,Ai) does not depend on i.

21Returns to schooling is not usually identified in the panel data context, because individual schooling does
not usually change over a short-T horizon. However, 20% of the sample considered in Angrist and Newey (1991)
experiences changes in schooling.
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We use a revised version of the sample used in Angrist and Newey (1991) with 1087

young men. The descriptive statistics are reported in Table 5 and are quite similar to

their counterparts reported in Angrist and Newey (1991, Table 1). The main ANACOVA

specification of Mincer’s human capital earnings function in Angrist and Newey (1991) is

given by the following

Yit = λt + β1Sit + β2S
2
it + β3Age

2
it + β4Sit ∗Ageit + β5Uit +Ai + Uit (25)

where Y is log earnings and S is years of completed education (highest grade completed) and

U is a dummy variable for union status. The above model is nonlinear in schooling, however

it is linear in the unobservables, Ai and Uit. We replicate the ANACOVA estimates of the

above equation and compute the over-identification test proposed by Angrist and Newey

(1991) in Table 6.22 Column (1) refers to the estimation of the above specification, Column

(2) refers to a restricted version of it, and Column (3) is a regression that only includes

S, Age2 and U .23 As in Angrist and Newey (1991), the over-identification test is rejected,

which implies that the linear fixed effects model cannot identify returns to schooling. In the

following section, we revisit this application and test the time homogeneity assumption in

order to examine whether the APE of schooling is nonparametrically identified.

4.2 Testing Time Homogeneity: Returns to Schooling (NLSY,

1983-1987)

The linear specification is the most widely used specification of Mincer’s equation. Card

(1999) however points out that there is no economic justification for the linear specification

and cites empirical findings of possible nonlinearities in the relationship between schooling

and earnings. Here we consider two variants of the following model exhibiting time homo-

22Note that the coefficient on Ageit cannot be separately identified from the time effects λt, which explains its
omission from the regression table.

23Our replication exercise shows that the full revised sample delivers qualitatively similar results to Angrist and
Newey (1991). Quantitatively, most parameter estimates are similar, except for the coefficient on S in RF . Table
6 in the supplementary appendix shows a few other replications that deliver more similar results to Angrist and
Newey (1991). For details on the reasoning behind the different specifications, see Angrist and Newey (1991).
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geneity with a parallel trend, where Yit is log earnings,

Yit = ξ(Xit,Ai,Uit) + λt,

Uit|Xi,Ai
d
= Ui1|Xi,Ai.

In the first variant, we only include schooling, i.e. Xit = Sit. In the second variant, we

include both schooling and union status, i.e. Xit = (Sit, Uit)
′.24

The model implies that stayers should have the same distribution for log earnings across

time, once appropriately demeaned. Formally, the testable implication is given as follows

H0 : FYi,t−1|∆Xit(.|0) = FYit−∆λt|∆Xit(.|0), for t = 2, . . . , T . (26)

For Xit = Sit, the stayers are individuals that do not change their schooling status. In the

second variant, the stayers are individuals that neither change their schooling nor their union

status.

To test the above null, Table 7 reports the bootstrap-adjusted p-values of the KS and

CM statistics for the full sample (1983-1987) using the statistics in (18) and (20), where

we let Xit = Sit and Xit = (Sit, Uit)
′. For the CM statistic, we use densities N(6.5, 0.25)

and N(6.5, 0.5). We use 200 bootstrap replications and the same grid for Y defined in the

simulation section. For all statistics we consider for the full sample, we do not reject time

homogeneity with a parallel trend at the 10% and 25% level of significance when Xit = Sit

and Xit = (Sit, Uit)
′, respectively. The Monte Carlo results in Section 3.3.2 indicate that the

test statistics have good finite-sample power properties in a design similar to this empirical

example. Hence, the non-rejection is unlikely to be driven by low finite-sample power of the

statistics.

In addition, Table 7 reports the bootstrap-adjusted p-values for the two-period statistics,

1983-84, 1984-85, 1985-86, and 1986-87, for the KS and CM statistics given in (11) and (15).

For both variants of the model, the p-values of the two-period statistics are greater than 5%.

We also report the p-value of an F test for every two-period combination, which is based on

24Note that we cannot include Age in this model, since there would be no stayer subpopulations.
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another implication of time homogeneity with a parallel trend,

E[∆Yit|(Xi,t−1, Xit) = (x, x)] = E[∆Yit|(Xi,t−1, Xit) = (x′, x′)] ∀x, x′ ∈ X, x 6= x′,

(27)

The F-statistic for all two-period combinations does not reject the implication in (27) at the

5% level of significance as well.

Using the first variant of our model, we can estimate the APE of schooling for every

two-period combination as follows

β̂t(∆Sit = 1) =

n∑
i=1

∆Yit1{∆Sit = 1}/
n∑
i=1

1{∆Sit = 1} −∆λn,t (28)

where ∆λn,t =
∑n

i=1 ∆Yit1{∆Sit = 0}/
∑n

i=1 1{∆Sit = 0}.25 The standard errors are com-

puted under the assumption of cross-sectional independence.26

The second variant of our model allows us to estimate the APE of schooling holding union

status constant. Hence, we only use individuals that increase their schooling (∆Sit = 1) but

do not change their union status (∆Uit = 0) as follows

β̂t(∆Sit = 1|∆Uit = 0)

=

n∑
i=1

∆Yit1{∆Sit = 1,∆Uit = 0}/
n∑
i=1

1{∆Sit = 1,∆Uit = 0} −∆λun,t (29)

where the parallel trend is estimated using individuals that neither change their schooling or

union status, specifically ∆λun,t =
∑n

i=1 ∆Yit1{∆Sit = ∆Uit = 0}/
∑n

i=1 1{∆Sit = ∆Uit = 0}.

Table 8 reports the estimates of the APE from the two variants of our model.27 The

estimates of the APE in both cases deliver qualitatively similar results. The APE of schooling

is only statistically significant in 1985-86. The APE of schooling when controlling for union

25Since schooling only increases by unit increments only, ∆Sit = 1 characterizes all mover subpopulations.
26Since the statistics are computed for each two-period combination using first differences of individual observa-

tions, there is no need for clustering. Each APE estimate is simply a cross-sectional average of ∆Yit. Furthermore,
∆λn,t uses the stayer subpopulations, which are independent of the mover subpopulations. Hence, the two terms

in β̂t(∆Sit = 1) are independent.
27Estimates of the APE for different initial levels of schooling are reported in Table 7 and 8 in the supplementary

appendix.
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status using (29) is smaller in magnitude than the APE using (28). This is not surprising,

since in the latter we average over all individuals that increased their education regardless of

whether they changed their union status or not.

For illustration purposes, we also compute the APE of joining or leaving the union holding

schooling constant (∆Sit = 0), which the second variant of our model allows us to estimate

as follows, for ∆u ∈ {−1, 1}.

β̂t(∆Uit = ∆u|∆Sit = 0)

=

n∑
i=1

∆Yit1{∆Uit = ∆u,∆Sit = 0}/
n∑
i=1

1{∆Uit = ∆u,∆Sit = 0} −∆λun,t, (30)

where ∆u = 1 yields an estimate of the APE of joining the union and ∆u = −1 yields an

estimate of the APE of leaving the union. The estimates of the APE of joining and leaving

the union are reported in Table 9.28 Except in 1985-86, we find statistically significant results

for the APE of joining the union ranging between 0.102 and 0.176. As for the APE of leaving

the union, we find statistically significant results in 1983-84 and 1985-86, which are -0.114

and -0.22. It is worth noting that the ANACOVA coefficient on Uit in Table 6 is about 0.14,

which lies in the range of the nonparametric APE estimates.

5 Conclusion

This paper contributes to the literature on nonparametric identification of APEs by proposing

tests of identifying assumptions, such as time homogeneity (Chernozhukov, Fernandez-Val,

Hahn, and Newey, 2013) and correlated random effects (Altonji and Matzkin, 2005). The

bootstrap critical values of the KS and CM statistics are shown to be asymptotically valid

and perform well in finite samples. The specification tests proposed here have some special

features. First, they impose minimal assumptions on the structural relationship between the

outcome variable, regressors and unobservables. They also do not rely on over-identifying

restrictions on the object of interest, the APE. The empirical application revisiting Angrist

28The estimates of the APE conditional on certain schooling levels are reported in Tables 9 and10 in the supple-
mentary appendix.
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and Newey (1991) illustrates the merits of testing nonparametric identification from an em-

piricist’s perspective. Over-identification tests that rely on parametric assumptions have a

well-known weakness. Their rejection may be due to the misspecification of the parametric

model imposed on the data, even if the object of interest is nonparametrically identified. The

rejection of the tests provided here has one clear interpretation; it is evidence against the

identifying assumption in question.
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A Mathematical Proofs

A.1 Proofs of Section 2 Results

Proof (Lemma 2.1) We first decompose E[Yi2 − Yi1|Xi = (x, x′)] as follows

E[Yi2 − Yi1|Xi = (x, x′)] = E[Yi2 − Y xi2|Xi = (x, x′)] + E[Y xi2 − Yi1|Xi = (x, x′)]

= β2(x→ x′|Xi = (x, x′))︸ ︷︷ ︸
APE for Period 2 for Xi = (x, x′)

+E[Y xi2 − Yi1|Xi = (x, x′)]︸ ︷︷ ︸
Counterfactual Trend

. (31)

Thus, the identification of the counterfactual trend is necessary and sufficient for the identification of
β2(x→ x′|Xi = (x, x′)). The former is identified iff

E[Y xi2 − Yi1|Xi = (x, x′)]− E[Yi2 − Yi1|Xi = (x, x)] = 0

By definition, the above is true iff∫
(ξ2(x, a, u2)− ξ1(x, a, u1))(dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x′))− dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x))) = 0.

�

Proof (Theorem 2.1) (i) The condition in Theorem 2.1 simplifies to the following∫
(ξ(x, a, u2) + λ2(x)− ξ(x, a, u1)− λ1(x))

×
(
dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x′))− dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x))

)
= 0.
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Clearly, λ2(x)− λ1(x) cancel out from the above integrals and the above simplifies to∫
(ξ(x, a, u2)− ξ(x, a, u1))

×
(
dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x′))− dFAi,Ui1,Ui2|Xi(a, u1, u2|(x, x))

)
= 0.

Now we show that Ui1|Xi,Ai
d
= Ui2|Xi,Ai implies that for any x,29∫

(ξ(x, a, u2)− ξ(x, a, u1))dFAi,Ui1,Ui2|Xi(a, u1, u2|x) = 0.

Note that by the time homogeneity assumption Ai,Ui1|Xi
d
= Ai,Ui2|Xi, which implies the result from

the following,∫
ξ(x, a, u1)dFAi,Ui1,Ui2|Xi(a, u1, u2|x) =

∫
ξ(x, a, u1)dFAi,Ui1|Xi(a, u1|x)

=

∫
ξ(x, a, u2)dFAi,Ui2|Xi(a, u2|x) =

∫
ξ(x, a, u2)dFAi,Ui1,Ui2|Xi(a, u1, u2|x) (32)

(ii) is straightforward from the following:

FYi1−λ1(x)|Xi(y|(x, x)) =

∫
1{ξ(x, a, u1) ≤ y}dFAi,Ui1|Xi(a, u1|(x, x))

=

∫
1{ξ(x, a, u2) ≤ y}dFAi,Ui2|Xi(a, u2|(x, x))

= FYi2−λ2(x)|Xi(y|(x, x)), ∀y ∈ Y

where the above equalities follow from noting that the conditions of the theorem imply that FAi,Ui1|Xi =
FAi,Ui2|Xi and that Y xit − λt(x) = ξ(x, a, ut) for t = 1, 2. �

Proof (Theorem 2.2) (i) The result follows by plugging in the sufficient condition given in the state-
ment of the theorem into condition (3) from Lemma 2.1.
(ii) Note that the condition in the theorem implies that FAi,Ui1|Xi1(.|x) = FAi,Ui1|Xi(.|(x, x)) =
FAi,Ui1|Xi(.|(x, x′)). It follows that

FYi1|Xi(y|(x, x)) =

∫
1{ξ1(x, a, u1) ≤ y}dFAi,Ui1|Xi(a, u1|(x, x))

=

∫
1{ξ1(x, a, u1) ≤ y}dFAi,Ui1|Xi(a, u1|(x, x′)) = FYi1|Xi(y|(x, x

′)) ∀y ∈ Y.

�

Proof (Theorem 2.3)
(i) follows by the correlated random effects assumption and h(x) = h(x′)

βt(xt → x′t|Xi = x′) =

∫
(ξt(x

′
t, a, u)− ξt(xt, a, u))FAi,Uit|Xi(a, u|x

′)

= E[Yit|Xi = x′]−
∫
ξt(xt, a, u))dFAi,Uit|Xi(a, u|h(x))

= E[Yit|Xi = x′]− E[Yit|Xi = x].

29Note that under arbitrary individual heterogeneity, FAi|Xi(.|(x, x)) 6= FAi|Xi(.|(x, x′)), which implies that
FAi,Ui1,Ui2|Xi(., ., .|(x, x′)) 6= FAi,Ui1,Ui2|Xi(., ., .|(x, x)).
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(ii) Since xτ = x′τ and h(x) = h(x′), the correlated random effects assumption implies the following

FYiτ |Xi(y|x) =

∫
1{ξτ (xτ , a, uτ ) ≤ y}dFAi,Uiτ |Xi(a, uτ |x)

=

∫
1{ξτ (x′τ , a, uτ ) ≤ y}dFAi,Uiτ |Xi(a, uτ |x

′) = FYiτ |Xi(y|x
′).

�

A.2 Proofs of Section 3 Results

Proof (Theorem 3.1)
We first consider the case when T = 2. In order to show (i) and (ii), we first have to show that
the underlying empirical and bootstrap empirical processes, given below, converge to the same tight
Brownian bridge. For notational convenience, let Ft(.|∆Xi2 = 0) ≡ FYit|∆Xi2(.|0) and Ft(.|Xi =

(xk, xk)) ≡ FYit|Xi(.|(xk, xk)).

We define the empirical and bootstrap empirical processes, Gn|∆Xi2=0(∆Λn) and Ĝn|∆Xi2=0(∆Λn)

Gn|∆Xi2=0(∆Λn) =
√
n(F1,n(.|∆Xi2 = 0)− F1(.|∆Xi2 = 0))

−
√
n(F2,n(.,∆Λn|∆Xi2 = 0)− F2(.,∆Λ|∆Xi2 = 0))

Ĝn|∆Xi2=0(∆Λn) =
√
n(F̂1,n(.|∆Xi2 = 0)− F1,n(.|∆Xi2 = 0))

−
√
n(F̂2,n(.,∆Λ̂n|∆Xi2 = 0)− F2,n(.,∆Λn|∆Xi2 = 0))

Now note that

F2,n(.,∆Λn|∆Xi2 = 0) =

K∑
k=1

Pn(Xi1 = Xi2 = xk)F2,n(.+ ∆λn(xk)|Xi1 = Xi2 = xk)

F2(.,∆Λ|∆Xi2 = 0) =

K∑
k=1

P (Xi1 = Xi2 = xk)F2(.+ ∆λ(xk)|Xi1 = Xi2 = xk) (33)

Since Assumption 3.1 holds, it follows that, for x ∈ X, F2(. + ∆λ(x)|Xi1 = Xi2 = x) is Hadamard
differentiable tangentially to D× Y by Lemma D.1 in the supplementary appendix, where D = {g ∈
L∞(F) : g is ρ2-uniformly continuous}, where ρ2 is the variance metric. The Hadamard derivative
is given by φ′F2|x(.),∆λ(x)(g, ε) = g(. + ∆λ(x)) + εf2(. + ∆λ(x)|Xi1 = Xi2 = x), where Ft|x(.) denotes

Ft(.|Xi1 = Xi2 = x) for t = 1, 2. Now F1|x(.) − F2|x(. + ∆λ(x)) is trivially Hadamard differentiable
tangentially to D× L∞(Y)× Y.

Let Ft|x,n(.) be the sample analogue of Ft|x(.). Now noting that

√
n

 F1|.,n(.)− F1|.(.)
F2|.,n(.)− F2|.(.)

∆Λn − Λ

 
 G1|.

G2|.
E

 (34)

where G1|. and G2|. are each K × 1 tight Brownian bridges on {L∞(Y)}K and E is a K-dimensional

normal random vector. We define E(x) as follows,
√
n(∆λn(x)−∆λ(x))

p→ E(x).
By Theorem 3.9.4 in Van der Vaart and Wellner (2000), it follows that

√
n
(
F1|.,n(.)− F2|.,n(.+ ∆λn(.))− (F1|.(.)− F2|.(.+ ∆λ(.)))

)
7→ G1,2|., (35)

where G1,2|x = G1|x − φ′F2|x,∆λ(x)(G2|x, E(x)), which is a tight Brownian bridge.

To show the weak convergence of the bootstrap empirical process given below, we have to check
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the conditions in Theorem 3.9.11 in Van der Vaart and Wellner (2000),

√
n
(
F̂1|.,n(.)− F̂2|.,n(.+ ∆λ̂n(.))− (F1|.,n(.)− F2|.,n(.+ ∆λn(.)))

)
7→ G1,2|.. (36)

The conditions in Theorem 3.9.11 include (a) Hadamard-differentiability tangentially to a subspace
D×L∞(Y)×Y, (b) the underlying empirical processes converge to a separable limit, and (c) Condition
(3.9.9), p. 378, in Van der Vaart and Wellner (2000) holds in outer probability. (a) follows from
the above. Now (b) follows by (34) and tightness, since the latter implies separability. Finally,
(c) is fulfilled if the conditions of Theorem 3.6.2 hold. We can consider (G1|.,G2|., E) as a tight
Brownian bridge on L∞(F) × L∞(F) × Y, where F = {1{y ≤ t} : t ∈ Y}. Note that E is finite-
dimensional, it suffices to show that Theorem 3.6.2 applies to F . Since F is clearly Donsker and
supf∈F |

∫
(f −

∫
fdFt|x(y))2dFt|x(y)| < ∞, the conditions in Theorem 3.6.2. hold. Thus, (c) holds,

which implies (36).

Now we relate (35) and (36) to Gn|∆Xi2=0 and Ĝn|∆Xi2=0, respectively.

Gn|∆Xi2=0

=
√
n(F1,n(.|∆Xi2)− F2,n(.,∆Λn|∆Xi2 = 0))−

√
n(F1(.|∆Xi2 = 0)− F2(.,∆Λ|∆Xi2 = 0))

=
√
n

K∑
k=1

Pn(Xi1 = Xi2 = xk|∆Xi2 = 0)
(
F1|xk,n(.)− F2|xk,n(.+ ∆λn(xk))

)
−
√
n

K∑
k=1

Pn(Xi1 = Xi2 = xk|∆Xi2 = 0)
(
F1|xk(.)− F2|xk(.+ ∆λ(xk))

)

=
√
n

K∑
k=1

P (Xi1 = Xi2 = xk|∆Xi2 = 0)
(
F1|xk,n(.)− F2|xk,n(.+ ∆λn(xk))

)
−
√
n

K∑
k=1

P (Xi1 = Xi2 = xk|∆Xi2 = 0)
(
F1|xk(.)− F2|xk(.+ ∆λ(xk))

)
+

K∑
k=1

(Pn(Xi1 = Xi2 = xk|∆Xi2 = 0)− P (Xi1 = Xi2 = xk|∆Xi2 = 0))

×
√
n
(
F1|xk,n(.)− F2|xk,n(.+ ∆λn(xk))− (F1|xk(.)− F2|xk(.+ ∆λ(xk)))

)
(37)

 
K∑
k=1

P (Xi1 = Xi2 = xk|∆Xi2 = 0)(G1|xk − φ′F2,∆λ(xk)(G2|xk , E(xk)))

≡ H(∆Λ) (38)

since the last term of the last equality converges to zero in probability by the weak convergence of

(37) and Pn(Xi1 = Xi2 = xk|∆Xi2 = 0)
p→ P (Xi1 = Xi2 = xk|∆Xi2 = 0) for all k = 1, 2, ...,K.

Hence, we have shown that the empirical process, Gn|∆Xi2=0 converges to a tight Brownian bridge.
Now the bootstrap empirical process can be decomposed as follows

Ĝn|∆Xi2=0

=
√
n
(
F̂1,n(.|∆Xi2 = 0)− F̂2,n(.,∆Λ̂n|∆Xi2 = 0)− {F1,n(.|∆Xi2 = 0)− F2,n(.,∆Λn|∆Xi2 = 0)}

)
=
√
n

K∑
k=1

P̂n(Xi1 = Xi2 = xk|∆Xi2 = 0)

×
(
F̂1|xk,n(.+ ∆λ̂n(xk))− F̂2|xk,n(.)− (F1|xk,n(.+ ∆λn(xk))− F2|xk,n(.))

)
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=
√
n

K∑
k=1

P (Xi1 = Xi2 = xk|∆Xi2 = 0)

×
(
F̂1|xk,n(.)− F̂2|xk,n(.+ ∆λ̂n(xk))− (F1|xk,n(.)− F2|xk,n(.+ ∆λn(xk)))

)
+

K∑
k=1

(P̂n(Xi1 = Xi2 = xk|∆Xi2 = 0)− P (Xi1 = Xi2 = xk|∆Xi2 = 0))

×
√
n
(
F̂1|xk,n(.)− F̂2|xk,n(.+ ∆λ̂n(xk))− (F1|xk,n(.)− F2|xk,n(.+ ∆λn(xk)))

)
 H(∆Λ) (39)

where the first term of the last equality follows by the continuous mapping theorem and (36). The
second term converges to zero by (36) and (P̂n(Xi1 = Xi2 = xk|∆Xi2 = 0) − P (Xi1 = Xi2 =

xk|∆Xi2 = 0))
p→ 0 by Lemma D.2 in Section D.3 in the supplementary appendix. Thus, the

bootstrap empirical process converges to the same tight Brownian bridge as the empirical process.
Since ‖.‖∞,Y and ‖.‖2,φ are continuous, convex functionals, it follows that ‖H‖∞,Y and ‖H‖2,φ have

absolutely continuous and strictly increasing distributions on their support [0,∞), except possibly at
zero, by Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998). Since F1(.|∆Xi2 = 0) and
F2(.|∆Xi2 = 0) are non-degenerate, then P (‖H‖∞,Y = 0) = 0 and P (‖H‖2,φ = 0) = 0. Thus,
both norms of H have absolutely continuous distributions on [0,∞). Now the critical values of the
bootstrap-adjusted KS and CM tests are given by

ĉKSn = inf{t : P̂n(‖Ĝn|∆Xi2=0‖∞,Y > t) ≤ α},

ĉCMn = inf{t : P̂n(‖Ĝn|∆Xi2=0‖2,φ > t) ≤ α},

where P̂n is the bootstrap probability measure for the sample. Given the above, it follows that

ĉKSn
p→ cKS = inf{t : P (‖H(∆Λ)‖∞,Y > t) ≤ α},

ĉCMn
p→ cCM = inf{t : P (‖H(∆Λ)‖2,φ > t) ≤ α}.

Thus, under the null, the bootstrap-adjusted critical values yield correct asymptotic size. Hence, we
have shown (i). By the tightness of the limit process, it follows that ĉKSn and ĉCMn are bounded in
probability. The statistics KSn,Y(∆Λn) and CMn,φ(∆Λn) clearly diverge to infinity under an alter-
native hypothesis. Thus, the tests are consistent against any fixed alternative, which proves (ii).

The extension to the case where T > 2 is straightforward since the statistic in (7) are convex
functions of two-period statistics for (t − 1, t), where t = 2, . . . T . Hence, Theorem 11.1 Davydov,
Lifshits, and Smorodina (1998) applies, which implies that the statistics in (7) for T > 2 have
absolutely continuous and strictly increasing distributions. Hence the bootstrap-adjusted critical
values yield correct asymptotic size and are consistent against fixed alternatives by similar arguments
to the T = 2 case. �

Proof (Theorem 3.2)

We first have to show that the underlying empirical and bootstrap empirical processes converge to

the same tight Brownian bridge. Let mk,l ≡ |{x ∈ XTk,l,t : x ∈ XT }|. Our statistics can be written as

follows:

KSn,Y =
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

Pn(h(Xi) = hl)

mk,l∑
j=1

Pn(Xi = xj |h(Xi) = hl)‖
√
n{Ft,n(.|xj)− F̄t,n,l(.)}‖∞,Y
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CMn,φ =
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

Pn(h(Xi) = hl)

mk,l∑
j=1

Pn(Xi = xj |h(Xi) = hl)‖
√
n{Ft,n(.|xj)− F̄t,n,l(.)}‖2,φ.

Let (ζ(., x))x∈XT be the vector that contains the elements {ζ(., x) : x ∈ XT }.
√
n (F1,n(.|Xi = x)− F1(.|Xi = x))x∈XT√
n (F2,n(.|Xi = x)− F2(.|Xi = x))x∈XT

...√
n (FT,n(.|Xi = x)− FT (.|Xi = x))x∈XT

 G (40)

Since T <∞ and |XT | <∞, the joint distribution of the centered empirical conditional cdfs converges
to a tight Brownian bridge. Now note that a linear combination of the above yields the empirical
process that we use to construct our statistics.


 √

n(F1,n(.|xj)− F̄1,n,l(.)− (F1(.|xj)− F̄1,l(.)))
...√

n(FT,n(.|xj)− F̄T,n,l(.)− (FT (.|xj)− F̄T,l(.)))


j∈{1,2,...,mk,l}


l∈{1,2,...,L}


k∈{1,...,K}

 H,

where H ≡ ((Hj,l)j=1,..,mk,l)l=1,..,L. Note that the above process is a (T
∑K
k=1

∑L
l=1mk,l)× 1 vector

of functionals. Since all of the above processes are defined on a Donsker class, the bootstrap empirical
process also converges to the same limit process by Theorem 3.6.1 in Van der Vaart and Wellner
(2000).



√
n(F̂1,n(.|xj)− ˆ̄F1,n,l(.)− (F1,n(.|xj)− F̄1,n,l(.)))

...
√
n(F̂T,n(.|xj)− ˆ̄FT,n,l(.)− (FT,n(.|xj)− F̄T,n,l(.)))


j∈{1,2,...,mk,l}


l∈{1,2,...,L}


k∈{1,...,K}

 H.

Now we give the limiting statistics as follows,

KSY =
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

P (h(Xi) = hl)

mk,l∑
j=1

P (Xi = xj |h(Xi) = hl)‖Hj,l‖∞,Y,

CMφ =
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

P (h(Xi) = hl)

mk,l∑
j=1

Pn(Xi = xj |h(Xi) = hl)‖Hj,l‖2,φ.

Since the above is a linear combination of convex continuous functionals, it follows that Theorem
11.1 in Davydov, Lifshits, and Smorodina (1998) applies. Thus, the distributions of KSY and CMφ

are absolutely continuous and strictly increasing on (0,∞). Since Ft(.|Xi = x) is non-degenerate for
x ∈ XT and t = 1, 2..., T , it follows that P (KSY = 0) = 0 and P (CMφ = 0) = 0. Hence, it follows
that their distribution is absolutely continuous on [0,∞). Now it remains to show that KSn,Y and
CMn,φ converge to KSY and CMφ, respectively.
Let Tn with norm ‖.‖ denote either the KS or CM with their respective norms, and let Hn,j,l denote
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the relevant empirical process

Tn =
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

Pn(h(Xi) = hl)

mk,l∑
j=1

Pn(Xi = xj |h(Xi) = hl)‖Hn,j,l‖

=
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

P (h(Xi) = hl)

mk,l∑
j=1

P (Xi = xj |h(Xi) = hl)‖Hn,j,l‖

+
1

KT

T∑
t=1

K∑
k=1

L∑
l=1

Pn(h(Xi) = hl)

mk,l∑
j=1

(Pn(Xi = xj |h(Xi) = hl)− P (Xi = xj |h(Xi) = hl))‖Hn,j,l‖

+
1

KT

T∑
t=1

L∑
l=1

(Pn(h(Xi) = hl)− P (h(Xi) = hl))

mk,l∑
j=1

Pn(Xi = xj |h(Xi) = hl)‖Hn,j,l‖

 T

where T equals KSY and CMφ for the KS and CM statistics, respectively. The convergence follows
since the latter two terms converge in probability to zero, since (Pn(Xi = xj |h(Xi) = hl) − P (Xi =

xj |h(Xi) = hl))
p→ 0 and (Pn(h(Xi) = hl) − P (h(Xi) = hl))

p→ 0, and both terms are multiplied by
Op(1) terms. (i) and (ii) follow by similar arguments as in Theorem 3.1. �
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Table 2: Baseline Simulation Results: T = 2, K = 2.
n=500 n=2000

KS CM KS CM

α 0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

Model A

nt 0.035 0.056 0.110 0.032 0.049 0.114 0.033 0.057 0.101 0.029 0.054 0.108
pt 0.013 0.024 0.052 0.022 0.054 0.093 0.021 0.035 0.070 0.032 0.060 0.112
gpt 0.003 0.011 0.030 0.011 0.031 0.062 0.007 0.025 0.050 0.033 0.057 0.095
cre 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model B

nt 0.366 0.492 0.630 0.360 0.467 0.590 0.933 0.971 0.989 0.945 0.971 0.993
pt 0.014 0.020 0.053 0.019 0.042 0.101 0.024 0.032 0.069 0.034 0.059 0.111
gpt 0.003 0.007 0.029 0.018 0.030 0.068 0.007 0.023 0.050 0.029 0.057 0.098
cre 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model C

nt 0.308 0.440 0.598 0.264 0.377 0.511 0.929 0.968 0.988 0.926 0.959 0.982
pt 0.342 0.450 0.584 0.344 0.452 0.567 0.970 0.986 0.993 0.967 0.986 0.993
gpt 0.003 0.008 0.029 0.017 0.033 0.067 0.009 0.026 0.049 0.032 0.054 0.099
cre 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Model D

nt 0.985 0.995 1.000 0.925 0.961 0.983 1.000 1.000 1.000 1.000 1.000 1.000
pt 0.409 0.531 0.666 0.107 0.165 0.273 0.989 0.993 0.996 0.555 0.692 0.800
gpt 0.014 0.032 0.059 0.075 0.130 0.195 0.108 0.169 0.279 0.320 0.428 0.549
cre 0.035 0.063 0.114 0.025 0.044 0.106 0.029 0.052 0.109 0.027 0.043 0.092

Notes: The table reports the rejection probabilities across 1, 000 simulations using the bootstrap
critical values for the statistics defined in Equations (10)-(17), where nt, pt, gpt, and cre follow
the convention of the superscripts in the definitions. Bold font indicates that the model considered
satisfies the null hypothesis for the statistic in question. Models A-D are defined in Table 1. The
CM statistic is implemented using φ as the standard normal density.
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Table 3: Monte Carlo Design Resembling NLSY: Means and Standard Deviations
t 1 2 3 4 5

P (Xi,t−1 = Xit) 0.84 0.93 0.91 0.96

Model B (λt+1 − λt = 0.05)

E[Yit] 6.30 6.38 6.44 6.48 6.53
std(Yit) (0.50) (0.52) (0.53) (0.52) (0.52)

Model B (λt+1 − λt = 0.1)

E[Yit] 6.30 6.43 6.54 6.63 6.73
std(Yit) (0.50) (0.52) (0.53) (0.52) (0.52)

Model C (λt+1 − λt = 0.05)

E[Yit] 6.30 6.33 6.35 6.34 6.34
std(Yit) (0.50) (0.52) (0.53) (0.52) (0.52)

Model C (λt+1 − λt = 0.1)

E[Yit] 6.30 6.33 6.35 6.35 6.36
std(Yit) (0.50) (0.52) (0.53) (0.52) (0.52)

Model D (λt+1 − λt = 0.05, |σt+1 − σt| = 0.1)

E[Yit] 6.30 6.39 6.43 6.46 6.53
std(Yit) (0.50) (0.57) (0.52) (0.47) (0.52)

Model D (λt+1 − λt = 0.1, |σt+1 − σt| = 0.1)

E[Yit] 6.30 6.44 6.53 6.61 6.73
std(Yit) (0.50) (0.57) (0.52) (0.47) (0.52)

Notes: All quantities in the above table are numerically
calculated using a sample with n = 10, 000, 000. Models
B-D are defined in Table 1 and adjusted as described in
Section 3.3.2. std(.) denotes the standard deviation of the
variable in the brackets.
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Table 4: Simulation Resembling Subsample of NLSY 1983-1987: n = 1000, T = 5, K = 16

KS CM(N(6.5,0.25)) CM(N(6.5,0.5)) CM(U(0,14))

0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

Model A

pt 0.007 0.016 0.042 0.015 0.028 0.061 0.008 0.027 0.069 0.014 0.031 0.062
gpt 0.005 0.008 0.011 0.001 0.007 0.018 0.003 0.011 0.031 0.003 0.007 0.014

Model B (λt+1 − λt = 0.005)

pt 0.001 0.001 0.002 0.003 0.006 0.013 0.003 0.007 0.019 0.002 0.005 0.014
gpt 0.001 0.003 0.004 0.002 0.006 0.017 0.002 0.006 0.020 0.002 0.006 0.014

Model B (λt+1 − λt = 0.010)

pt 0.007 0.015 0.044 0.014 0.024 0.057 0.012 0.029 0.069 0.015 0.029 0.062
gpt 0.006 0.008 0.015 0.004 0.007 0.019 0.004 0.016 0.032 0.005 0.009 0.016

Model B (λt+1 − λt = 0.025)

pt 0.007 0.019 0.042 0.013 0.030 0.063 0.015 0.028 0.064 0.016 0.032 0.066
gpt 0.005 0.008 0.016 0.004 0.006 0.017 0.004 0.012 0.027 0.003 0.006 0.015

Model C (λt+1 − λt = 0.005)

pt 0.001 0.002 0.010 0.006 0.016 0.042 0.007 0.016 0.043 0.009 0.019 0.041
gpt 0.003 0.003 0.004 0.003 0.007 0.017 0.003 0.007 0.017 0.002 0.006 0.016

Model C (λt+1 − λt = 0.010)

pt 0.342 0.507 0.704 0.502 0.687 0.855 0.251 0.401 0.610 0.474 0.642 0.815
gpt 0.005 0.007 0.015 0.005 0.009 0.019 0.007 0.014 0.029 0.002 0.006 0.014

Model C (λt+1 − λt = 0.025)

pt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gpt 0.005 0.008 0.017 0.005 0.007 0.021 0.005 0.011 0.023 0.003 0.008 0.018

Model D (|σt+1 − σt| = 0.025)

pt 0.152 0.228 0.339 0.218 0.315 0.440 0.085 0.141 0.226 0.267 0.374 0.502
gpt 0.005 0.008 0.013 0.001 0.007 0.018 0.004 0.008 0.023 0.003 0.006 0.017

Model D (|σt+1 − σt| = 0.05)

pt 0.832 0.894 0.944 0.929 0.967 0.979 0.576 0.704 0.823 0.966 0.977 0.990
gpt 0.005 0.010 0.022 0.003 0.010 0.028 0.006 0.011 0.025 0.002 0.015 0.028

Model D (|σt+1 − σt| = 0.1)

pt 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
gpt 0.016 0.027 0.050 0.019 0.042 0.072 0.009 0.015 0.045 0.038 0.056 0.091

Notes: The table reports rejection probabilities across 1,000 simulations using the bootstrap crit-
ical values for the statistics defined in Equations (18)-(21). Bold font indicates that the model
considered satisfies the null hypothesis for the statistic in question. Models A-D are defined in
Table 1. The CM statistic is implemented using the densities reported in brackets following CM
in the respective column title.
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Table 5: Descriptive Statistics: Returns to Schooling
1983 1984 1985 1986 1987

Race 0.12
Age 21.84

(2.22)
S 12.34 12.45 12.57 12.57 12.61

(1.77) (1.83) (1.94) (1.94) (1.98)
Union (U) 0.20 0.20 0.21 0.19 0.23
South 0.29 0.30 0.30 0.30 0.30
Urban 0.76 0.77 0.76 0.77 0.76
Log Hourly Wage (Y ) 6.31 6.39 6.50 6.61 6.72

(0.48) (0.49) (0.49) (0.49) (0.50)
Pn(Si,t−1 = Sit) 0.89 0.93 0.95 0.96
Pn(Uit = Ui,t−1) 0.85 0.86 0.88 0.85
Pn(Uit = Ui,t−1, Sit = Si,t−1) 0.75 0.81 0.84 0.82

Notes: The table reports cross-sectional means of each variable for 1983-1987 from
the NLSY (n = 1, 087). Standard deviations are in brackets. S is highest grade
completed, South and Urban are binary variables for whether the individual lives in
the South or in an urban area, respectively. Pn(A) denotes the empirical probability
of A.

Table 6: Returns to Schooling: ANACOVA Results
RF X A
(1) (2) (3)

S -0.0688 0.0772 0.0714
0.1308 0.0152 0.0148

S2 -0.0070 -0.0005
0.0048 0.0004

Age2 -0.0030 -0.0001
0.0005 0.0003

S ∗Age 0.0134
0.0015

U 0.1397 0.1423 0.1424
0.0162 0.0163 0.0163

χ2 Statistic 150.07 149.10 176.90
(df) (83) (85) (45)

Notes: This is a replication of the ANACOVA
results in Angrist and Newey (1991, Table 3).
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Table 7: Testing Time Homogeneity with a Parallel Trend of Log Earnings (Sit)

Statistic KS CM CM F
φ N(6.5, 0.25) N(6.5, 0.5)

Xit = Sit

Full Sample 0.30 0.34 0.12

1983-84 0.49 0.16 0.08 0.11
1984-85 0.12 0.23 0.13 0.09
1985-86 0.46 0.61 0.56 0.25
1986-87 0.43 0.40 0.15 0.46

Xit = (Sit, Uit)
′

Full Sample 0.36 0.43 0.26

1983-84 0.36 0.20 0.06 0.17
1984-85 0.08 0.11 0.08 0.05
1985-86 0.79 0.70 0.64 0.16
1986-87 0.30 0.51 0.21 0.25

Notes: The above reports the p-values of the tests
for time homogeneity using the NLSY subsample, n =
1, 087. For the KS and CM statistic, the table reports
the bootstrap adjusted p-value using 200 bootstrap sim-
ulations. The p-value for the F statistic for the restric-
tion in (27) is also reported in the last column.

Table 8: APE of Schooling on Log Hourly Wage - NLSY 1983-1987
Period Subs APE S.E. t-Stat

β̂(∆Sit = 1)

1983-84 122 -0.012 0.043 -0.267
1984-85 73 0.095 0.055 1.723
1985-86 58 0.226 0.060 3.737
1986-87 41 -0.012 0.068 -0.179

β̂(∆Sit = 1|Uit = Ui,t−1 = 0)

1983-84 108 -0.001 0.040 -0.014
1984-85 61 0.075 0.051 1.468
1985-86 44 0.144 0.061 2.363
1986-87 33 0.018 0.073 0.248

Notes: The APE formulae are given in (28)
and (29). Subs denotes subsample size.
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Table 9: APE of Joining and Leaving the Union on Log Earnings - NLSY 1983-87

Period Subs APE S.E. t-Stat

Joining: β̂(∆Uit = 1|∆Sit = 0)

1983-84 71 0.176 0.049 3.60
1984-85 67 0.132 0.068 1.96
1985-86 48 0.010 0.064 0.15
1986-87 99 0.102 0.050 2.05

Leaving: β̂(∆Uit = −1|∆Sit = 0)

1983-84 73 -0.220 0.061 -3.59
1984-85 68 -0.034 0.057 -0.60
1985-86 67 -0.114 0.044 -2.56
1986-87 59 -0.071 0.060 -1.19

Notes: The formula for the APE estimates is
given in (30). Subs denotes subsample size.
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