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ON THE BEAM IMPEDANCE OF SHALLOW TAPERED CAVITIES 

Arne F. Jacob, Glen R. Lambertson, Ferd Voelker 

Lawrence Berkeley Laboratory 
1 Cyclotron Road 

Berkeley, California 94720, USA 

Abstract 

LSAP-078 
LBL-28189 

A local enlargement of a beam tube may support high-Q resonances just below the cutoff frequency 
of the first TM-mode. We have investigated the longitudinal beam impedance of such cavities that 
have gradual changes in pipe radius. For convenience, circular cross sections and linear tapers 
were assumed in the analysis. Several methods with different approximations have been compared. 
The calculations gave values for the stored energy and the Q-factor which agreed well, while the 
numbers obtained for Zs exhibit some variation, but remain very small. 

Introduction 

To permit elliptically polarized light to emerge from the Advanced Light Source {ALS) a channel with 
circular cross section will be machined into the vacuum chamber. Where this channel joins tangen
tially the curved beam tube, the enlarged cross section forms a shallow cavity. Depending on its 
length, such a chamber may support one or more high-Q resonances just below the cutoff of the 
beam pipe. The question whether it would present enough impedance to the beam to drive cou
pled-bunch instabilities prompted us to investigate the problem in more detail. 

An experimental approach was not seen as being very practical and cost effective so that a theoret
ical examination was pursued. Further to reduce the task, a simplified example cavity with rotational 
symmetry was chosen because it was thought to provide enough insight into the beam impedance 
issues. Two different procedures were considered. The first to be described uses a semi-numerical 
technique to give an approximate solution of Maxwell's equations for that problem. In the second 
method, simple but realistic field distributions were assumed, yielding quasi analytical answers for 
the transit time effect. Also the result of a digital 2-D calculation will be reported. 

Semi-numerical Description 

The Method 

The dimensions of the cavity model with circular cross sections used in these simulations are shown 
in Fig.1. The radii have been chosen to match the minimum and maximum TM01 cutoff frequencies 

of the cross section of the actual cavity. For simplicity, the taper has been assumed to be linear, 
although in principle the method allows for any contour. The 5% increase in radius reduces the 
TMo1 cutoff frequency from 4.989 GHz to 4.761 GHz, leaving only a very narrow band for high-Q 

resonances. The short length further limits their number. 
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Fig. 1: Longitudinal cross section of the tapered cavity. 

For each cross section of an axially nonuniform structure the fields can be expressed in terms of the 
normal modes of the local aperture. Relating the various fields to one another, leads to the so~called 
generalized transmission line or telegraphist's equations, which for tapered transitions have the 

form 1 

d 
dz = -c11 -c21 

(1) 

-C12 -C22 

where Zi represents the characteristic impedance of a waveguide mode, and 'Yi its propagation 

constant along the axial coordinate z. The complex amplitudes, Vi and li, of the transverse electric 

-> -> 
and magnetic field eigenvectors, E ti and H ti• respectively, are defined through 

(2) 

-> -> -> -> 
where E t and H t are the total transverse fields, and e i and h i are normalized through the surface 

integrals 

,, 
\., 

.. , 
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e i dS = h i dS = 1 . 

J
->2 J->2 

s s 

The coupling coefficients in Eq.1 are then given by 

-> de i 

1 
-> 

Cik = e kTzdS. 

s 

At frequency w the longitudinal field components are obtained from 

-> -> 
jwcEz = V·( n z x E tl• 

(3) 

(4) 

-> 
where c and p. are the permittivity and permeability of the volume, and n z the unit vector in axial 

direction. The system of coupled differential equations (1) can now be integrated. For that purpose, 
however, it has to be reasonably truncated and boundary conditions have to be set. As the taper 
considered here is very flat, modes of higher order than the fundamental TM01 will be excited only 

very weakly and have therefore been neglected. This in turn greatly simplifies the analysis. Eq. 1 then 
reduces to 

For the circular cross section, the elements of the matrix can be calculated from 

k2 

Z . c 
"Y1 1 = JWJI. + -. -I 

JWC 
"Y1 /Z1 = jwc , 

(5) 

(6) 

where the local quantities r, tan <P. and kc are the pipe radius, the slope of the cavity wall, and the 

cutoff wave number, respectively. 

The axial symmetry of the structure allows one readily to state the boundary conditions. For large z 
the fields should decay, exponentially approaching zero amplitude. At z = 0 the resonance condition 
imposes either an open or a short circuit looking into the cavity. Thus, either the electric or the 
magnetic field have to be normal in that plane. If only the TM01 mode is taken into account, this 

condition readily determines the starting values for the integration of Eq.5. From Eqs.2 and 4, they 
read V 1 = 0 and l1 = 1 for modes with an even axial symmetry in Ez. and V 1 = 1 and 11 = o in the other 

case. The value of the nonzero component enters only as a linear scaling constant and therefore 
has been chosen to be unity. The resonant frequency was set by using the boundary condition at 
large z. Of course it cannot be determined exactly because of the exponential z-dependence of the 
fields. Therefore a location z2 far enough away where the fields are sufficiently small was chosen. 

~··~·' I 
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Then the frequency was varied until both the fields and their slopes were reasonably close to zero. 

From the knowledge of the field distributions, all the cavity parameters relevant to the beam can be 
evaluated. Using Eqs.2 and 4, the voltage experienced by the beam, travelling at the velocity of 
light, is then calculated using 

{7) 

where cos and sin apply to the short and open circuit cases, respectively, ko is the wave number in 

free space, Jn is the Bessel function of nth order, and xa1 is the first zero of J0. Ideally, the inte

grated voltage is invariant across the aperture 2, and should, in particular, give the same result 
when evaluated at the beam pipe radius r1 according to 

{8) 

The dissipated power P and the stored energy U in the cavity can be expressed in terms of the 
mode current as 

z2 

P = 4 Rs f I 1: I 2 dz , 

0 

where 

Rs =- ~ -\}2;; 

z2 

u = 21-L f 1 11 1 2dz 

0 

{9) 

is the wall resistance. The conductivity is denoted by (J. Finally, using Eqs.7, or 8, and 9, the beam 
impedance at resonance and the quality factor of the cavity can be computed from 

zs = 
I Vsl 2 

p 
u 

a= w P. {10) 

<j 
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Results 

At first Eq.S was numerically integrated using a Runge-Kutta algorithm. The first resonance was 
found at 4.866 ... GHz. The mode has an even axial symmetry in Ez, as illustrated in Fig.2 for one half 

of the cavity. The frequency setting is critical for the far-end boundary condition to be fulfilled be

cause of the exponential nature of the field's z-dependence below cutoff. For a = 2·107 1 ;om, the 
Q-factor is 14, 718; its value is rather insensitive to variations in the numerical parameters such as 
the number of steps during the integrations, the value of z2, or, to some extent, the resonant fre-

quency. The opposite is true for the beam impedance, Zs: its value, which, from Eqs. 7 and 1 o, was 

found to be on the order of a few 10 0, varies by as much as an order of magnitude depending on 
the settings. Integrating along the beam pipe radius as indicated in Eq.8 approximately doubles the 
voltage. For completeness, it should be mentioned here that a second mode of the odd type was 
found at 4.986 GHz, i.e. less than 4 MHz below the beam tube cutoff. Its parameters are of the same 
order of magnitude as for the even mode. However, with the approximations involved in the calcu
lations, its existence can be questioned. 

0 100 200 300 z [mm] 400 

Fig.2: Plot of 11, the normalized longitudinal electric field. 

In an attempt to further simplify the calculations, the coupling factor c11 in Eq.S was set to zero. For 

the mode current 11, Eq.S can then be rewritten as 

(11) 

For the even mode the integration then yields a resonant frequency which is about 2 MHz higher 
than previously, and 2% more stored energy and dissipated power. The Q-factor is identical, and 
the beam impedance is the same within the variation indicated above. Substituting Ez for 11 in Eq.11 

only introduces a small change because the two quantities are very similar for gradual tapers. This 
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latter approach has the advantage that no knowledge of the eigenmodes of the various cross-sec
tions is required. The only information needed is the z-dependence of the cutoff frequency, which 
could be obtained, in more complicated cases, by purely numerical means. 

In addition the geometry was evaluated using URMEL-T 3. All results agree well with the previous 
data, except for the value of the beam impedance which is on the order of a few kO, and depends 
on the discretization, and thus did not appear to be very reliable. 

The uncertainties in all methods arise from the fact that, because of the slowly varying fields, the 
integral of the fields involves differences of large, but very similar quantities. Small variations in the 
numerical parameters then have effects which may be bigger than the result itself. It should be 
mentioned that the simple method outlined above should, in principle, be probed by adding more 
modes, until a stabilization of the results is achieved. As this, however, requires a different and more 
elaborate solution, another way, which will be presented next, was chosen. 

Analytical Models 

Taking the inverse approach, assumptions for the z-dependence of the longitudinal electric field 
were made. This actually corresponds to a different taper profile than in the previous case. If the 
shape of the fields is very similar, however, the order of magnitude of the effect is expected to be 
correct. 

At first the voltage experienced by the beam was evaluated with the assumed axial field 

Ez = Eo sech(az) 

where Eo and a are scaling constants. Then the voltage becomes 

~ ko~ 
1 Vs 1 = 2 Eo f sech(az) cos(koz) dz = Eo!" sech 2a . 

0 

The constant a was set so that the axial position where the field has zero curvature is approximately 
the same as in the previous case (az=0.88@ z==0.045 m). Assuming the same resonant frequency, 

the resulting voltage is about 9·10-5m-E0, which is in close agreement with the former result. If the 

dissipated power is of comparable magnitude, the beam impedance is about 20 0, thus confirming 
the previous calculations. However, the result exhibits some variation as a function of the uncer
tainty dZ in determining the point of zero curvature. For large enough values of ko/a, i.e. for long 

tapers, the impedance varies by a factor 

z ko~dz/1.76 --e 
Z+dZ ' 

which, for dz == t0.1z is about 5 in our case. 

... 
I 

\f 

L 
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Yet another calculation was carried out with the field distribution being approximated by 

k2 
E _ E c 1 + C cos bz 
z- 02 1+C 

k 
for I z I ~ z1 , {12a) 

m 

and 

k
2 

2 2 
00 1 + C cos bz1 _ (k _ k )1 /2 (z _ z1) 

Ez = Eo k2 1 + C e oo o for I z I ~ z1 , {12b) 

m 

where kc is the transverse cutoff wave number, a function of z which varies from km at the cavity 

center to k 00 in the tube. The constants C and b, and the wave number at resonance k0 are yet to 

be determined. Approximating the Hertz vector by its z-component II for TM waves in cylindrical 
pipes, the following relations can be written: 

2 
II= Ez/kc, 

o2II 2 2 
Ez = -

2 
+ k

0 
II = k II , oz c 

{13a) 

{13b) 

{13c) 

where the index t refers to transverse quantities. With the matching conditions at z = z1 one obtains 

from Eqs.13 for the fields of Eq. 12 

{14) 

and 

C =-cos bz1. {15) 

Evaluating Eq.13b at z = 0 finally yields 

{16) 
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With 

00 00 

J 
'k v8 = Ez el oz dz = 2 J Ez cos k0z dz , 

-00 0 

the voltage experienced by the beam can now be evaluated from the longitudinal field in Eq.12. 
Using Eqs.14, 15, 16, and, from Eq.13b, the formula 

2 2 
k
0 

+ c (k
0 

- b2) cos bz 

k2 = --------
c 1 + C cos bz 

the integration yields the surprising result Vs = 0. This special field shape confirms that the beam 

impedance may be very small. The calculation yielded a shallow cavity of the shape depicted with 
suppressed zero in Fig.3. The parameters z1, km, and k00 were the same as in the previous cases. 

0 50 100 150 z [mm] 200 

Fig.3: Ratio of cavity radius to beam pipe radius. 

Conclusions 

The beam impedance of very shallow tapered cavities has been studied, using several different 
approaches. Both semi-numerical methods and analytical models indicate that, because of the 
transit time effect, the beam is weakly coupled to such cavities. Although some approximations are 
involved in the model and in the calculations, we conclude that this feature in the ALS will be harm
less. 
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