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Deductive semiparametric estimation in
Double-Sampling Designs with application to PEPFAR

Tianchen Qian∗ Constantine Frangakis† Constantin Yiannoutsos‡

June 27, 2019

Abstract

Non-ignorable dropout is common in studies with long follow-up time, and it can
bias study results unless handled carefully in the study design and the statistical anal-
ysis. A double-sampling design allocates additional resources to pursue a subsample
of the dropouts and find out their outcomes, which can address potential biases due
to non-ignorable dropout. It is desirable to construct semiparametric estimators for
the double-sampling design because of their robustness properties. However, obtain-
ing such semiparametric estimators remains a challenge due to the requirement of
the analytic form of the efficient influence function (EIF), the derivation of which
can be ad hoc and difficult for the double-sampling design. Recent work has shown
how the derivation of EIF can be made deductive and computerizable using the func-
tional derivative representation of the EIF in nonparametric models. This approach,
however, requires deriving the mixture of a continuous distribution and a point mass,
which can itself be challenging for complicated problems such as the double-sampling
design. We propose semiparametric estimators for the survival probability in double-
sampling designs by generalizing the deductive and computerizable estimation ap-
proach. In particular, we propose to build the semiparametric estimators based on a
discretized support structure, which approximates the possibly continuous observed
data distribution and circumvents the derivation of the mixture distribution. Our
approach is deductive in the sense that it is expected to produce semiparametric lo-
cally efficient estimators within finite steps without knowledge of the EIF. We apply
the proposed estimators to estimating the mortality rate in a double-sampling design
component of the President’s Emergency Plan for AIDS Relief (PEPFAR) program.
We evaluate the impact of double-sampling selection criteria on the mortality rate es-
timates. Simulation studies are conducted to evaluate the robustness of the proposed
estimators.

∗Department of Statistics, Harvard University. qiantianchen@fas.harvard.edu
†Department of Biostatistics, Johns Hopkins University.
‡Department of Biostatistics, Indiana University.
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Keywords: Deductive estimator; double-sampling design; missing data; semiparametric
estimator; survival analysis; Turing-computerization.
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1 Introduction

Studies with long follow-up often suffer from a high dropout rate. Dropouts can depend

on the outcome of interest, even after adjusting for observed covariates. This makes the

dropouts “non-ignorable” and biases the analysis based solely on the non-dropouts (Rubin,

1976). As a way to handle non-ignorable dropouts, double-sampling designs allocate ad-

ditional resources to pursue a sample of the dropouts and find out their outcomes (Baker

et al., 1993; Glynn et al., 1993; Frangakis and Rubin, 2001; Cochran, 2007). Compared

to standard double-sampling (where each dropout is sampled with equal probability), the

double-sampling can be more practical or informative if it targets dropouts whose history

at the dropout time has specific profiles. For example, An et al. (2009) found that such

“profile designs” can save more than 35% of resources compared to the standard double-

sampling design. It can also be more practical to double-sample relatively recent dropouts.

For data analysis of such profile double-sampling designs, An et al. (2014) employed a para-

metric approach to estimate the survival probability. However, analyses of such designs can

be more reliable if they do not rely heavily on parametric assumptions. Semiparametric

estimators (Newey, 1990; Tsiatis, 2007), which focus on modeling the parameter of interest

and treat the rest of the model as nuisance parameters, have had great success in various

areas (Cox, 1972; Liang and Zeger, 1986; Robins et al., 1994; Zhang et al., 2008), and

they are a promising alternative to the parametric estimators for double-sampling designs.

Robins et al. (2001) had suggested a possible way of deriving a semiparametric estimator

for double-sampling designs, but that and any other such existing proposals rely on first

coming up with and then verifying conjectures “by hand”. Such a process is prone to

human errors and is not generalizable.

Recently, Frangakis et al. (2015) proposed a different approach to construct semipara-

metric estimators. Contrary to the classical semiparametric framework (Bickel et al., 1993;

Tsiatis, 2007) which relies heavily on the conjecture and verification of the analytic form

of the efficient influence function (EIF), their approach produces semiparametric locally

efficient estimators by utilizing the Gateaux derivative representation of the EIF in non-

parametric models. This estimation procedure is deductive, in the sense that the estimator

is computed through a discrete and finite set of steps, without requiring conjecturing for or

theoretically deriving the EIF. If a semiparametric estimator can be obtained deductively,

human effort can be saved from difficult mathematical derivations and can be transferred,

for example, to designing new studies. Their approach is not directly applicable to the data
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analysis of double-sampling designs, however, because their estimation procedure requires

analytically evaluating the parameter of interest at a mixture of a continuous distribution

and a point mass. This analytic step is feasible for certain problems (e.g., for the two-phase

design considered in Frangakis et al. (2015)), but can become highly error-prone when de-

rived by hand in complicated problems like estimation of the survival probability in the

double-sampling design.

In this paper, we develop semiparametric estimators for the survival probability in

double-sampling designs, by generalizing the deductive estimator by Frangakis et al. (2015)

to problems where the aforementioned analytic evaluation is infeasible. We use a discretized

support structure to circumvent the analytical evaluation of the parameter of interest at a

mixture distribution. The discretized support is a discretized approximation of the sample

space constructed from the observed data, which enables numerical calculation of the es-

timand at the mixture. A similar discretization idea was used in Chamberlain (1987) for

deriving efficiency bounds in nonparametric models. Our method produces semiparamet-

ric locally efficient estimators within finite steps without knowledge of the EIF; i.e., it is

deductive.

We apply the method to estimating the mortality rate using data from a double-

sampling design component of the President’s Emergency Plan for AIDS Relief (PEPFAR),

an HIV monitoring and treatment program (Geng et al., 2015). In addition, we explore

and discuss how certain restrictions on the double-sampling selection criteria may impact

the estimated mortality rate, as the double-sampling for this study is more pragmatic if

restricted to relatively recent dropouts (An et al., 2014).

The paper is organized as follows. In Section 2, we introduce the double-sampling

design and the parameter of interest. In Section 3, we present the proposed estimation

method for survival probability in double-sampling designs. In particular, we present and

discuss how the discretized support idea facilitates the deductive estimation in double-

sampling designs. In Section 4, we present results from simulation studies which show the

performance of the proposed estimators and several other existing methods. In Section 5,

we apply the proposed method to estimating the mortality rate using data from a double-

sampling design component of PEPFAR, and we discuss the impact of restrictions on the

double-sampling selection criteria on the estimates. Section 6 concludes with discussion.
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2 Double-sampling design and parameter of interest

2.1 Double-sampling design

For clarity, we present arguments with a double-sampling design as shown in Figure 1, which

illustrates different patient types in the double-sampling component of PEPFAR. This

figure is a modified version of Figure 1 in An et al. (2014). First, we describe characteristics

that are inherent to a patient (i.e., potential outcomes (Rubin, 1976)), which would be

realized if the program could enroll and follow a patient indefinitely with a standard effort.

Then, we describe the actual double-sampling design consisting of two phases and the

observed data.

Patient inherent characteristics and parameter of interest. For each patient, there is an en-

rollment time Ei, covariates Zi at enrollment, and a survival time Ti (time from enrollment

to death). The parameter of interest is P (Ti>t) for a given t, which is the proportion of

patients surviving beyond year t for a population represented as a random sample by the

enrolled patients. If the program were to follow patients indefinitely with a standard effort

while they are alive, some patients would discontinue contact from the monitoring (patient

types (b1), (c), (d), (e1), and (e2) in Figure 1). For these patients, labeled true dropouts

and indicated by Ri = 0, denote by Li the time from enrollment to dropout and denote

by Wi any information available at dropping out in addition to Zi. For instance, Wi may

include Li and some longitudinal measurements.

Phase 1 of the double-sampling design and missingness due to administrative censoring. In

the first phase, the actual design enrolls patients at times Ei and monitors them with stan-

dard effort, not indefinitely, but until “Now”—the present time. The time from enrollment

Ei to “Now” is the time to administrative censoring, denoted by Ci. For patient i, define

∆i = 1 if Ci≥Ti and ∆i = 0 otherwise. Define Xi = min(Ci,Ti).

Simply based on Phase 1, the standard survival data (Xi,∆i) are not observed for

dropouts whose time to dropout satisfies Li<Xi. Denote such observed dropout patients

by Robs
i = 0 (patient types (c), (d), (e1), and (e2) in Figure 1), and denote the rest (observed

non-dropouts) by Robs
i = 1.

Phase 2: information after double-sampling. Phase 2 of the design selects a subset of the

observed dropouts, called a double-sample, and allocates additional resources for searching

for and finding this double-sample at “Now”. Denote by Si the indicator of being selected
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Observed Patient
n information type "Now" Z R Robs W L S X Δ

E1

C1 Z1 1 1 W1 UD 0 T1 1
T1

E2
C2 Z2 [0] 1 W2 [ L2 ] 0 C2 0

L2
T2

E3
C3 Z3 [1] 1 W3 UD 0 C3 0

T3

E4
C4 Z4 0 0 W4 L4 1 T4 1

L4
T4

E5
C5 Z5 0 0 W5 L5 1 C5 0

L5
T5

E6
C6 Z6 0 0 W6 L6 0 [T6] [1]

L6
T6

E7
C7 Z7 0 0 W7 L7 0 [C7] [0]

L7
T7

calendar time (t)

582

Dropout,
double-sampled,
alive at "Now"

(d)

(e1)
Dropout,

not double-sampled

Dropout,
not double-sampled (e2)

(c)33

58

1042

58

Non-dropout,
dies on observation

(a)

Non-dropout,
alive at "Now" (b1)

Non-dropout,
alive at "Now"

(b2)

Dropout,
double-sampled,

dies on observation

Figure 1: Characteristics for different patient types in a double-sampling design. Ei denotes
the enrollment time; Ci denotes the time to administrative censoring; Ti denotes the time
to death; Li denotes the time to dropout. Z denotes covariates observed at enrollment;
R denotes the true dropout status; Robs denotes the observed dropout status; W denotes
the dropout time and some other longitudinal measure; S denotes the double-sampling
selection indicator; (X,∆) is the standard survival outcome: X = min(T,C), ∆ =1(T ≤C),
where 1(·) is the indicator function. “UD” means undefined. Quantities in brackets are
unobserved. Note that unobserved L and undefined L cannot be distinguished from the
observed data. Column n denotes the number of patients of each type in the double-
sampling data set of PEPFAR. The figure is a modified version of Figure 1 in An et al.
(2014).
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as a double-sample. The survival data (Xi,∆i) is observed for the double-samples (those

with Si = 1).

The observed data for patient i is (Ci,R
obs
i ,Zi,Wi,Si,Xi,∆i). For the patients with

Robs
i = 1, we define Si = 0. For the patients with Robs

i = 0 and Si = 0, the survival data

(Xi,∆i) is not observed, and we define (Xi,∆i) = (NA,NA). If Wi only includes the dropout

time Li, Wi is undefined for the patients with Robs
i = 1 and we denote it by NA; if Wi

includes additional longitudinal measurement that is observed for those Robs
i = 1, then Wi

is defined for all patients. We use ⊥ to denote independence between random variables.

2.2 Identification of parameter

To identify the parameter of interest P (Ti>t) by the observed data distributions, we make

the following assumptions.

Assumption 1 (Patient-dependent double-sampling). For each observed dropout, Si can

depend on the patient characteristics (Zi,Wi); after we condition on (Zi,Wi), double-sampling

Si is independent of survival and enrollment times:

Si⊥ (Ti,Ei) |Robs
i = 0,Zi,Wi.

Assumption 2 (Exchangeability of enrollment times). Patients enrolled at different times

(or equivalently, patients having different time to administrative censoring Ci = “Now”−
Ei) have similar survival times after conditioning on Zi:

Ti⊥Ci |Zi.

Assumption 1 means that the probability of double-sampling an observed dropout can

depend on his/her characteristics known up to the dropout time Li, but not depending

on other unobserved information (such as prognostic information for the survival that are

not included in (Zi,Wi)). This can be ensured by including in (Zi,Wi) the variables used

by the investigators to select the double-samples. Assumption 2 means that there are no

time-trend in the survival times after conditional on Zi; this is plausible in practice when

the design is limited to a window period of enrollment. Intuitively, Assumption 1 helps

to recover the information missing due to dropout, and Assumption 2 helps to recover the

information missing due to administrative censoring.
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Throughout the paper, we use P (·) to denote the probability of an event or a point

in the sample space, and we use pr(·) to denote the probability density function of a

random variable with with respect to an appropriate dominating measure (the Lebesgue

measure for continuous variables and the counting measure for discrete variables). Under

Assumptions 1 and 2, the estimand P (Ti>t) is identifiable from the following components

of the observed data distribution:

P (Robs
i = 1); pr(Zi |Robs

i = 1); pr{(Xi,∆i) |Zi,Robs
i = 1}; (1)

P (Robs
i = 0); pr(Zi,Wi |Robs

i = 0); pr{(Xi,∆i) |Zi,Wi,R
obs
i = 0}, (2)

In particular, by Assumption 1 the distribution from the double-sampled individuals pr{(Xi,∆i) |
Zi,Wi,R

obs
i = 0,Si = 1} is the same as the one for all dropouts, pr{(Xi,∆i) |Zi,Wi, R

obs
i =

0}, and so, together with the second component of (2) gives, upon averaging over Wi,

pr{(Xi,∆i),Zi |Robs
i = 0}. That, together with (1), gives pr{(Xi,∆i),Zi}. Denote by survt(·)

the function that takes · as an arbitrary distribution of (Xi,∆i) from independent survival

and censoring times and returns the survival probability beyond t (this function is the

common probability limit of the Nelson-Aalen and Kaplan-Meier estimators). Then, by

Assumption 2, the estimand can be expressed in terms of the observed data distribution as

τ =P (Ti>t) =

∫
survt [pr{(Xi,∆i) |Zi}]pr(Zi)d(Zi). (3)

A detailed derivation of (3) is given in Appendix B.

3 Method

3.1 Review of the estimation procedure by Frangakis et al. (2015)

An estimand can be viewed as a functional of a distribution on the data. For example, in

the double-sampling design described above, (3) shows that P (Ti>t) is a functional τ(F ) of

the distribution F of the observed data. Estimation of τ(F ) requires modeling assumptions

because (3) involves regressions that, in practice, cannot be estimated fully nonparametri-

cally. In particular, suppose the estimand τ in (3) has a nonparametric efficient influence

function (EIF) denoted by φ(Oi,[F −τ,τ ]), where Oi represents the observed data from

subject i and F −τ represents the remaining components of the distribution other than τ .
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A semiparametric estimator τ̂ can be obtained by solving∑
i

φ{Oi,[(F −τ),τ ]}= 0 (4)

after substituting for (F −τ) estimates of a working model. Such an estimator is consistent

and locally efficient if the working estimators of (F −τ) are consistent with convergence

rates larger than n1/4 (van der Vaart, 2000). In classical semiparametric theory (Bickel

et al., 1993; Tsiatis, 2007), obtaining such a semiparametric estimator requires knowing

the analytic form of the EIF φ, the derivation of which usually relies on first conjecturing

for and then verifying the form of certain Hilbert spaces. Although this process has been

successful in some settings (Robins et al., 1994; Zhang et al., 2008), it is not guaranteed to

succeed for estimation in double-sampling designs.

An alternative approach to construct semiparametric estimators was proposed by Fran-

gakis et al. (2015), which does not require the analytic form of φ. The key idea in Frangakis

et al. (2015) is that, for any working distribution F (α) parametrized by α, one can ap-

proximate numerically the EIF φ as the numerical Gateaux derivative after perturbing the

working distribution F (α) by a small mass at each observed data point. Formally, let LOi

be a point mass at Oi, and let F(Oi,ε)(α) = (1−ε)F (α)+εLOi
be the perturbed distribu-

tion, i.e., a mixture of F (α) and LOi
, where ε> 0 is a small positive number. One can

approximate φ{Oi,F (α)} numerically by Gateaux{Oi,F (α),ε}, where

Gateaux{Oi,F (α),ε} :=
[
τ{F(Oi,ε)(α)}−τ{F (α)}

]
/ε.

Then, assuming α is 1-dimensional, one can find the best working distribution parameter

α̂ as one that makes zero the sum of the numerical EIFs,
∑

iGateaux{Oi,F (α),ε}. The

estimator solving (4) approximately is then τ{F (α̂)}. The standard error of the estimator

can be estimated by n−1
[∑

iGateaux{Oi,F (α̂),ε}2
]1/2

with n denoting the sample size.

The estimator τ{F (α̂)} has consistency properties beyond those of the maximum like-

lihood estimator for the same working model F (α), since the former depends only on the

parts of F that are present in the nonparametric influence function EIF. For example,

Frangakis et al. (2015) show that in the two-phase design, τ{F (α̂)} shares the double ro-

bustness of the estimators require the form of the EIF. A general condition regarding the

true distribution F0 and the working model F for the consistency of τ{F (α̂)} is stated in

Appendix A.
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3.2 Proposed method: deductive estimation with discretized sup-

port

A semiparametric estimator is deductive, if it does not rely on conjectures for the functional

form of the EIF φ and it is produced in the sense of Turing (1937) (i.e., using a discrete and

finite set of instructions, and, for every input, finishing in discrete finite steps). τ{F (α̂)}
in Section 3.1 is such an example. Deductive estimators are desired for analysis of the

double-sampling designs, because they often have additional robustness properties that the

maximum likelihood estimator does not have, and they do not require the difficult deriva-

tion of the EIF. However, directly application of the deductive estimation procedure in

Frangakis et al. (2015) to the double-sampling design is infeasible, because of the difficulty

in evaluating τ{F(Oi,ε)(α)}.
We generalize the deductive estimation procedure to double-sampling designs by in-

corporating the so-called discretized support. The purpose of the discretized support is to

approximate possibly continuous working models (i.e., F (α)) via discretization. Intuitively,

if the support of a discretized working model contains all the observed data points, perturb-

ing the working model by a point mass at an observed data point (i.e., F(Oi,ε)(α)) would

be as simple as changing the values in a probability table, and this would circumvent the

analytic evaluation of τ{F(Oi,ε)(α)}. A similar discretization idea was used in Chamberlain

(1987) for deriving nonparametric efficiency bounds.

In the following we use lower case letter to denote the realized value of random vari-

ables. Recall that the observed data from patient i in the double-sampling design is

(ci,r
obs
i ,zi,wi,si,xi,δi), and we useOi to denote the observed data from patient i excluding ci;

i.e., Oi = (robs
i ,zi,wi,si,xi,δi). Suppose that among the n total patients there are m observed

dropouts (robs
i = 0) and m1 patients get double-sampled (robs

i = 0,si = 1), and that the data

is ordered such that robs
1 = robs

2 = ···= robs
m = 0, robs

m+1 = ···= robs
n = 1, s1 = s2 = ···= sm1 = 1,

and sm1+1 = ···= sn = 0. The discretized support for those with robs
i = 0 is defined as

Ω0 = {0}⊗{(z1,w1),...,(zm,wm)}⊗{(s1,x1,δ1),...,(sm,xm,δm)},

where ⊗ denotes Cartesian product1. Each element in Ω0 is a vector of the same length as

(Robs,Z,W,S,X,∆), and we have Oi ∈Ω0 for 1≤ i≤m. The discretized support for those

1The set operation {·} removes duplicates. In particular, {(z1,w1),...,(zm,wm)} is the set of all unique
pairs (zi,wi) for 1≤ i≤m, and {(s1,x1,δ1),...,(sm,xm,δm)} is the set of all unique triples (si,xi,δi) for
1≤ i≤m.
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with robs
i = 1 is defined as

Ω1 = {1}⊗{(zm+1,wm+1),...,(zn,wn)}⊗{(sm+1,xm+1,δm+1),...,(sn,xn,δn)},

and similarly we have Oi ∈Ω1 for m+1≤ i≤n. The overall discretized support is defined

as

Ω = Ω0∪Ω1,

and we have Oi ∈Ω for 1≤ i≤n.

The deductive estimation procedure in Frangakis et al. (2015) is now feasible for the

double-sampling design by conducting all the computations on the discretized support

Ω. Suppose we have a class of fitted working distributions F̂ (α) on Ω, parametrized by

a 1-dimensional α. In other words, for each value of α, F̂ (α) is a discrete probability

distribution on the sample space Ω. The particular form of F̂ (α) will be described in detail

in Section 3.3. Because Oi ∈Ω for all i, the mixture distribution F̂(Oi,ε)(α) = (1−ε)F̂ (α)+

εLOi
with a small ε> 0 is also a discrete probability distribution on Ω, and can be computed

directly from F̂ (α) and Oi.

For any probability distribution G on Ω, it is straightforward to compute the induced

distribution components (1) and (2) through averaging and normalization; details are pro-

vided in Appendix C for completeness. Therefore, the estimand τ(G) can be computed by

(3) nonparametrically because the sample space of G is discrete. We compute τ{F̂ (α)}
and τ{F̂(Oi,ε)(α)} for all 1≤ i≤n, and find α̂ that solves

n∑
i=1

Gateaux{Oi,F̂ (α),ε}=
n∑
i=1

[
τ{F̂(Oi,ε)(α)}−τ{F̂ (α)}

]
/ε= 0 (5)

with a small ε> 0. The deductive estimator for τ =P (T > t) is τ̂ = τ{F̂ (α̂)}. The standard

error of τ̂ can be estimated by n−1
[∑

iGateaux{Oi, F̂ (α̂),ε}2
]1/2

.

Although formally the estimation procedure looks similar to that in Frangakis et al.

(2015), the underlying implementation is completely different. In the two-phase design

considered in Frangakis et al. (2015), they were able to derive analytically the estimand

evaluated at a mixture distribution, τ{F̂(Oi,ε)(α)}, for any estimand τ . For the double-

sampling design we consider here, however, deriving τ{F̂(Oi,ε)(α)} is complicated and error-

prone because of the presence of survival outcomes. Our proposed discretized support
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separates the computation of the mixture distribution F̂(Oi,ε)(α) and the computation of

the estimand for an arbitrary distribution τ(G), which makes the deductive estimation

feasible for double-sampling designs.

The estimator τ̂ has the following robustness property. Suppose we decompose F (α) :=

(R,H(α)), where H isolates the components of the distribution that are modeled through α

in step 3, and R is the remaining part of F . Generally, the expected EIF, φ̄(R0,H0)(R,H) :=

E(R0,H0){φ(Oi,R,H)}, is zero at the truth (R0,H0) but possibly also at other values of (R,H)

(e.g., double-robustness). Under regularity conditions usually needed for consistency with

estimating equations, the above estimator when taking a working model Rw should be

consistent if the model {H(α)} includes a distribution H∗ that satisfies condition (A.2) of

Appendix A

φ̄(R0,H0)(Rw,H
∗) = 0 and τ(Rw,H

∗) = τ(R0,H0),

that is, the distribution H∗ zeros out the limit EIF and gives the correct value of the

estimand.

3.3 Working distributions F̂ (α) on the discretized support Ω

Here we give the form of the working distributions F̂ (α) used in Section 3.2. We first

describe how a working distribution F̂ on Ω is estimated based on the observed data, then

describe how to extend it to F̂ (α), a class of working distributions parameterized by a

1-dimensional α.

In the following, let o= (robs,z,w,s,x,δ) denote an arbitrary point in Ω, let PF̂ (o) denote

the probability of o under the distribution F̂ , and let P̂ denote a discrete probability

measure that is estimated from the observed distribution, which we will describe after (6).

The working distribution F̂ is given by

PF̂ (robs,z,w,s,x,δ) =P̂ (Robs = robs)P̂ (Z = z,W =w |Robs = robs)

× P̂ (S= s |Robs = robs,Z = z,W =w)

× P̂ (X =x,∆ = δ |Robs = robs,Z = z,W =w,S= s). (6)

For notation simplicity, we will omit the lowercase letters inside P̂ (·) for the rest of the

section if no confusion is caused. For the terms on the right hand side of (6), P̂ (Robs) and

P̂ (Z,W |Robs) are estimated by their empirical distributions. The selection probability for

double-sampling, P̂ (S |Robs = 0,Z,W ), is estimated by logistic regression. The probability
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on the survival information, P̂ (X,∆ |Robs,Z,W,S), is estimated as follows.

By construction of Ω, we have (x,δ) = (NA,NA) if and only if robs = 0,s= 0, so P̂ (X =

NA,∆ =NA |Robs = 0,Z,W,S= 0) = 1. For P̂ (X,∆ |Robs,Z,W,S) with (Robs = 0,S= 1) or

Robs = 1, we consider two different approaches: (i) an estimate based on Cox proportional

hazards models, and (ii) an estimate based on log-normal regressions. For (i), Cox propor-

tional hazards models (Cox, 1972) are fitted under the working independence assumption

T ⊥C |Robs,Z,W,S to obtain

P̂ (T =x |Robs = 0,Z,W,S= 1) and P̂ (C =x |Robs = 0,Z,W,S= 1) for x∈{x1,...,xm1},

P̂ (T =x |Robs = 1,Z,W,S= 0) and P̂ (C =x |Robs = 1,Z,W,S= 0) for x∈{xm+1,...,xn}.
(7)

For (ii), log-normal regressions are fitted under the working independence assumption

T ⊥C |Robs,Z,W,S to obtain probability density functions for T |Robs = 0,Z,W,S= 1, C |
Robs = 0,Z,W,S= 1, T |Robs = 1,Z,W,S= 0, and C |Robs = 1,Z,W,S= 0. The probability

density functions are then converted to (7). For either approach, the fitted probability on

(X,∆) is then computed as

P̂ (X =x,∆ = δ |Robs,Z,W,S) =
{
P̂ (T =x |Robs,Z,W,S)P̂ (C >x |Robs,Z,W,S)

}δ
×
{
P̂ (T >x |Robs,Z,W,S)P̂ (C =x |Robs,Z,W,S)

}1−δ
, (8)

and it is further normalized so that

m1∑
i=1

P̂ (X =xi,∆ = δi |Robs = 0,Z = z,W =w,S= 1) = 1 if robs = 0,

n∑
i=m+1

P̂ (X =xi,∆ = δi |Robs = 1,Z = z,W =w) = 1 if robs = 1. (9)

We note that in both approaches, the working models for Robs = 0 and Robs = 1 are varia-

tionally independent; i.e., no parameter is shared across working models. A more detailed

exposition of how each term in (6) is computed is given in Appendix D.

We then extend the working distribution F̂ to F (α), a class of working distributions,

by adding a 1-dimensional parameter α to P̂ (X,∆ |Robs,Z,W,S) while leaving the other

factors of PF̂ in (6) unchanged, as follows. If P̂ (X,∆ |Robs,Z,W,S) is obtained from Cox
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models (i.e., approach (i) above), the extended probability parameterized by α is:

P̂ (X =x,∆ = δ |Robs = robs,Z,W,S;α)

= max[0,P̂ (X =x,∆ = δ |Robs = robs,Z,W,S){1+αx/c(robs)
max }], (10)

where c
(0)
max = max{ci : 1≤ i≤m} and c

(1)
max = max{ci :m+1≤ i≤n}. For α> 0, this exten-

sion increases the probability of (x,δ) pairs with larger x values; for α< 0, this extension

increases the probability of (x,δ) pairs with smaller x values; when α= 0, this extension

has no effect. The probability calculated by (10) is then normalized to ensure (9).

If P̂ (X,∆ |Robs,Z,W,S) is obtained from log-normal regressions (i.e., approach (ii)

above), suppose the fitted regression has mean (after log transformation)

Ê{log(T ) |Robs = 0,Z,W,S= 1}= β̂0 +Zβ̂1 +Wβ̂2,

Ê{log(T ) |Robs = 1,Z,W}= γ̂0 +Zγ̂1 +Wγ̂2.

The free parameter α is added to the intercepts β̂0 and γ̂0, and the extended probability

P̂ (X,∆ |Robs,Z,W,S;α) is then computed using (8). For α> 0, this extension increases the

probability for larger T values; for α< 0, this extension increases the probability for smaller

T values; when α= 0, this extension has no effect. Note that the log-normal regression fits

of C is unchanged.

3.4 Remarks on the choice of Ω and F̂ (α)

We comment on our particular choice of the discretized support Ω and the working distri-

butions F̂ (α), and discuss other choices that we have considered.

A necessary condition for Ω is to include all the observed data points to make the per-

turbation (i.e., (1−ε)F̂ (α)+εLOi
) easy to compute. This is not sufficient, though. When

we attempted to set Ω = {O1,...,On}, even though the perturbation is straightforward, the

support turned out to be not rich enough to allow the computation of the distribution com-

ponents in (1) and (2) (especially the distributions involving (X,∆)). Therefore, we define

Ω to be the Cartesian product of unique (z,w) pairs and unique (s,x,δ) triples from the

observed data, which allows computation of both the perturbation and the estimand. Note

that instead of constructing an overall Cartesian product space, the discretized support is

defined within Robs = 1 and Robs = 0, because pr(Robs = 1) can be reliably estimated by the
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empirical frequency and we want the working distribution on Ω to accommodate this. We

did not include ci in constructing Ω, because as shown in (3) its distribution is not needed

to identify the parameter of interest.

The choice of an appropriate Ω may depend on the dimension of (Z,W ). Suppose, for

example, that (Z,W ) can only take a few categorical values, then Ω′= {O1,...,On} may be

rich enough to allow computation of the distribution components in (1) and (2) when the

sample size is relatively large compared to the number of (Z,W )-categories. However, when

(Z,W ) is multi-dimensional or has continuous variables, a richer discretized support such

as the Cartesian product used in Section 3.2 is needed. It is an open question regarding

the exact requirements for the discretized support Ω, and how such requirements relate to

the dimensionality of the variables involved and to the sample size of the data.

We described in Section 3.3 two approaches to fit the working distribution F̂ on Ω, one

based on Cox proportional hazards models and the other based on log-normal regressions.

Extending F̂ to F̂ (α) is different for the two approaches: for Cox model-based F̂ , the free

parameter α is added onto the probability distribution of (X,∆) directly; for log-normal

regression-based F̂ , the free parameter α is added as an intercept to the regression fits for

T . A necessary condition for a valid extension F̂ (α) is that (5) explores values around 0 as

α varies. Other attempts, such as adding the free parameter α to a regression coefficient

in the Cox model fits of T and C for Cox model-based F̂ , have failed due to the fact that

(5) does not equal zero for any α value.

We note that the working independence assumption T ⊥C |Robs,Z,W,S and other

modeling assumptions used in calculating P̂ (X,∆ |Robs,Z,W,S) (proportional hazards as-

sumption for Cox model-based F̂ , parametric form for log-normal regression-based F̂ )

may not and is not expected to hold, and they are just a convenient way to construct

P̂ (X,∆ |Robs,Z,W,S). In fact, Frangakis and Rubin (2001) showed in a setting without

covariates that T ⊥C |Robs can fail to hold. In the following simulation studies, we see

that the proposed estimators are robust to violation of those working assumptions.

4 Simulation

We evaluate the performance of the proposed deductive estimators and compare it with

other existing approaches through simulation studies. In Section 4.1 we describe the gener-

ative models used in the simulations. In Section 4.2 the proposed estimators are compared
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with three other estimators in terms of consistency and coverage probability of confidence

intervals. In Section 4.3 we evaluate the performance of the proposed estimators when

an incorrect model for the double-sampling selection is used. In Section 4.4 we assess the

impact of extending the working model F̂ to F̂ (α) on the performance of the proposed

estimators.

The simulation results show that the proposed estimators are consistent under possibly

incorrect working models for both (X,∆) and for S. The confidence interval can be anti-

conservative for small sample sizes, and it becomes close to the nominal level coverage as

sample size gets larger. The simulation also shows that the model extension step (from F̂

to F̂ (α)) contributes to the robustness of the estimators.

We briefly summarize the results of some additional simulation studies, the details of

which are not listed in the paper. The proposed estimators are not sensitive to the choice

of ε as long as ε is small enough (recall that ε is used in calculating the numerical Gateaux

derivative in (5)): we varied ε from 1×10−4 to 1×10−8 given the sample sizes used in the

simulation study (n= 50, 100, 200, 500), and the performance of the proposed estimators

stays effectively the same. In addition to the continuous generative model described below,

we used a discrete generative model (where Z,T,C,L are all discrete and each has around

10 levels), and the proposed estimators are consistent with nominal level confidence interval

coverage.

4.1 Generative models

We consider two generative models. In the first generative model (GM-1), the baseline

covariate, Z, is generated from Uniform[−2,2]. The true dropout status, R, is generated as

Bernoulli random variables with success probability (Z+3)/6. The survival time, T , is gen-

erated as 5 times a Weilbull-distributed random variable with scale parameter exp(Z) and

shape parameter 5. The administrative censoring time, C, is generated from Uniform[0.5,2],

which mimics a continuous accrual process with a constant accrual rate. The dropout

time, L, is generated from Uniform[T/3,T ] for those with R= 0, and is NA for those with

R= 1. This is the only longitudinal measurement; i.e., W =L. The observed dropout

status, Robs, equals 1 for those with R= 1, and is defined as Robs =1{min(T,C)<L} for

those with R= 0, where 1(·) is the indicator function. L is then set to NA for those with

(R= 0,Robs = 1). The selection for double-sampling, S, is generated as a Bernoulli ran-

dom variable with success probability expit{(L+Z+1)/2} for those with Robs = 0, where
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expit(y) = {1+exp(−y)}−1. The survival data, (X,∆), is defined by X = min(T,C) and

∆ =1(T ≤C) for those with Robs = 1 or (Robs = 0,S= 1), and is (NA,NA) otherwise. The

parameter of interest is τ =P (T > 0.7) = 77.1%.

In the second generative model (GM-2), Z and R are generated the same way as in

GM-1. The survival time T and the administrative censoring time C are generated in-

dependently from a log-normal distribution LN(Z, 0.25), where A∼LN(µ,σ2) means that

log(A) follows a normal distribution with mean µ and variance σ2. The dropout time

L∼Uniform[T/3,T ] for those with R= 0 and is NA for those with R= 1. Robs,X,∆

are calculated the same way as in GM-1, and S is generated as Bernoulli with success

probability expit{(L−Z+1)/2} for those with Robs = 0. The parameter of interest is

τ =P (T > 0.7) = 58.8%.

GM-1 GM-2

τ =P (T > 0.7) 77.1% 58.8%
P (Robs = 0) 0.43 0.36
P (S= 1 |Robs = 0) 0.65 0.73
10-th and 90-th percentiles of P (S= 1 |Robs = 0,Z,L) (0.50, 0.80) (0.65, 0.81)
P (∆ = 1 |∆ 6=NA) 0.70 0.48
10-th and 90-th percentiles of X |X 6=NA (0.53, 1.18) (0.15, 3.59)
corr(T,C |Z,Robs) 0.02 0.24
corr(T,C |Z,L,Robs = 0) 0.00 0.12

Table 1: Descriptive statistics of the two generative models. corr stands for Pearson’s
partial correlation. All quantities are calculated from a simulated data set with 1,000,000
sample size.

Table 1 lists the descriptive statistics of the two generative models, which are calcu-

lated from a simulated data set with 1,000,000 sample size for each GM. For GM-1 (GM-

2), 43% (36%) individuals drop out during the study, and among them 65% (73%) are

double-sampled. For the patients with Robs = 0, the 10-th and the 90-th percentiles of the

probability of being double-sampled are 0.50 and 0.80 for GM-1 (0.65 and 0.81 for GM-2).

Among the patients with observed (X,∆), 70% are dead on observation (∆ = 1) for GM-1

(48% for GM-2), and the 10-th and the 90-th percentiles of X are 0.53 and 1.18 for GM-1

(0.15 and 3.59 for GM-2). The Pearson’s partial correlation is corr(T,C |Z,Robs) = 0.02

for GM-1 (0.24 for GM-2), and corr(T,C |Z,L,Robs = 0) = 0.00 for GM-1 (0.12 for GM-2);

these are computed using R package ppcor (Kim, 2015). This implies that although As-
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sumption 2 holds for both GMs, independent censoring conditional on Z,Robs or Z,L,Robs

does not hold for GM-2 and may be slightly violated for GM-1. In addition, in GM-1 the

proportional hazards assumption on T |Z holds, and in GM-2 the proportional hazards

assumption on T |Z does not hold (Bender et al., 2005).

4.2 Simulation on consistency

We evaluate the performance of the proposed estimators in terms of consistency and con-

fidence interval coverage and compare them with other existing methods. We consider the

following five estimators:

• DE.Cox: the deductive estimator proposed in Section 3 with Cox model as working

model for the distribution of (X,∆). (Z,L) are included in both the Cox model fits

and the model for double-sampling selection S. ε is set to be 1×10−4.

• DE.LN: the deductive estimator proposed in Section 3 with log-normal regression

as working model for the distribution of (X,∆). (Z,L) are included in both the

log-normal regression and the model for double-sampling selection S. ε is set to be

1×10−4.

• PAR: the estimator in An et al. (2014) that is based on parametric assumptions. In

this particular implementation we used, T |R= 1,Z and T |R= 0,Z,L are assumed

to follow log-normal distributions. The R code to compute the estimator and the

standard error is provided by Dr. Ming-Wen An.

• KM.S: a stratified Kaplan-Meier estimator with stratification variable Robs. In this

estimator, a Kaplan-Meier estimator (Kaplan and Meier, 1958) is computed sepa-

rately for the patients with (Robs = 0,S= 1) and for the patients with Robs = 1, and a

weighted average is taken using weights P̂ (Robs). The bias-corrected and accelerated

(BCa) bootstrap 95% confidence interval is obtained using R package boot (Canty

and Ripley, 2017), with 1000 bootstrap replicates.

• KM.C: a Kaplan-Meier estimator using only complete cases (i.e., data with Robs = 1

or (Robs = 0,S= 1)) without any weighting.

The simulation result is shown in Table 2. Simulation is conducted for sample size

n= 50, 100, 200, 500, each with 1000 replicates. Both DE.Cox and DE.LN are consistent
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DE.Cox DE.LN PAR KM.S KM.C

GM n Bias CP SD Bias CP SD Bias CP SD Bias CP SD Bias CP SD

50 0.6 92.1 6.5 0.0 91.6 6.7 -1.5 89.9 6.0 -0.8 95.6 6.9 -1.4 97.7 6.8
100 -0.1 94.2 4.6 -0.2 93.7 4.6 -1.9 89.4 4.2 -1.1 95.1 4.9 -1.7 98.6 4.9
200 0.2 93.2 3.3 0.1 92.7 3.3 -1.9 87.4 3.0 -0.8 93.9 3.4 -1.4 98.8 3.4

1

500 0.0 93.9 2.0 0.0 93.6 2.0 -2.1 74.8 1.9 -0.9 93.0 2.2 -1.5 98.1 2.2

50 2.3 85.6 9.2 0.4 88.7 11.6 0.2 92.8 7.2 12.7 67.4 7.8 15.0 62.6 7.5
100 0.3 89.8 6.2 0.7 91.1 7.1 -0.2 94.2 4.7 12.9 36.9 5.3 15.2 37.6 5.0
200 -0.2 92.1 4.1 0.7 93.4 4.5 -0.2 94.4 3.3 12.9 8.7 3.7 15.2 8.8 3.5

2

500 -0.4 92.8 2.5 0.4 93.8 2.7 -0.4 94.7 2.0 12.6 0.1 2.3 14.9 0.1 2.3

* Note: Bias and SD in the table have been multiplied by 100, so the Bias and SD are on the scale of
percentage survival probability.

Table 2: Simulation result for estimators DE.Cox, DE.LN, PAR, KM.S aand KM.C. GM:
generative model; n: sample size; CP: coverage probability (in %) of 95% confidence interval
based on normal approximation; SD: standard deviation. All results are based on 1000
replicates.

under both GM-1 and GM-2; their coverage probability of 95% confidence interval based

on normal approximation is anti-conservative for small sample sizes such as n= 50 (with

actual coverage probability being around 92%), but it becomes close to the nominal level for

n= 500. PAR is consistent under GM-2 because T |R,Z follows log-normal distribution,

and it is more efficient (i.e., has smaller standard deviation) than the other estimators

because of the parametric assumption; it is inconsistent under GM-1 because the log-normal

parametric assumption is violated there. KM.S is possibly inconsistent under GM-1, as the

coverage probability starts to decrease as n gets larger; however, this possible inconsistency

is small because corr(T,C |Z,Robs) = 0.02, which means that the assumption T ⊥C |Z,Robs

required for its consistency is only slightly violated. KM.S is severely inconsistent under

GM-2, where corr(T,C |Z,Robs) = 0.24. KM.C is severely inconsistent under GM-2; under

GM-1, it is possibly inconsistent because the bias does not decrease as n grows, but its

confidence interval is conservative and has larger than nominal coverage probability.

The simulation result shows the potential robustness of DE.Cox and DE.LN. Under GM-

2, the working independence assumption T ⊥C |Z,L,Robs and the proportional hazards

assumption for T |Z,L,Robs are both likely violated, yet DE.Cox is consistent with close

to nominal confidence interval coverage especially when n is large. Under GM-1, the log-

normal distributional assumption T |Z,L,Robs is likely violated, yet DE.LN is consistent
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with close to nominal confidence interval coverage especially when n is large.

4.3 Simulation with incorrect double-sampling model for S

We evaluate the performance of DE.Cox and DE.LN when an incorrect model for the

double-sampling selection, P (S= 1 |Robs = 0,Z,L), is used. In particular, let DE.Cox.WrongS

and DE.LN.WrongS denote the estimators DE.Cox and DE.LN, respectively, when the

model P̂ (S= 1 |Robs = 0,Z,L) only includes an intercept (i.e., regressors Z,L are omitted).

The simulation result is shown in Table 3. For both estimators, the performances under

correct model for S and under incorrect model for S are comparable under both GMs,

indicating that the proposed estimators are likely robust to incorrect models of the double-

sampling selection.

DE.Cox DE.Cox.WrongS DE.LN DE.LN.WrongS

GM n Bias CP SD Bias CP SD Bias CP SD Bias CP SD

50 0.6 92.1 6.5 0.4 93.3 6.5 0.0 91.6 6.7 0.1 92.3 6.7
100 -0.1 94.2 4.6 0.0 94.8 4.5 -0.2 93.7 4.6 -0.1 94.0 4.5
200 0.2 93.2 3.3 0.3 94.2 3.3 0.1 92.7 3.3 0.3 93.1 3.3

1

500 0.0 93.9 2.0 0.2 94.5 2.0 0.0 93.6 2.0 0.1 93.9 2.0

50 2.3 85.6 9.2 2.3 85.9 9.3 0.4 88.7 11.6 0.4 88.8 11.6
100 0.3 89.8 6.2 0.3 89.7 6.2 0.7 91.1 7.1 0.7 90.9 7.1
200 -0.2 92.1 4.1 -0.2 92.2 4.1 0.7 93.4 4.5 0.7 93.1 4.5

2

500 -0.4 92.8 2.5 -0.4 92.8 2.5 0.4 93.8 2.7 0.4 93.8 2.7

* Note: Bias and SD in the table have been multiplied by 100, so the Bias and SD are on the scale of
percentage survival probability.

Table 3: Simulation result for estimators DE.Cox and DE.LN, and when they are using in-
correct model for P (S= 1 |Robs = 0,Z,W ) (columns with WrongS). GM: generative model;
n: sample size; CP: coverage probability (in %) of 95% confidence interval based on nor-
mal approximation; SD: standard deviation. All results are based on 1000 replicates. The
columns for DE.Cox and DE.LN are the same as those in Table 2, and are included here
for comparison.
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4.4 Simulation on the impact of α

We evaluate the impact of the free parameter α on the performance of the proposed

estimators. In particular, we consider two additional estimators: DE.Cox(α= 0) and

DE.LN(α= 0). DE.Cox(α= 0) uses the same working models as DE.Cox, but it did not

solve (5) for α̂ and output as estimator τ{F̂ (α̂)}; instead, it sets α= 0 and outputs as

estimator τ{F̂ (0)}. DE.LN(α= 0) uses the same working models as DE.LN, but it sets

α= 0 and outputs as estimator τ{F̂ (0)}. Recall that for DE.Cox and DE.LN, α= 0 means

that no extension is added to the fitted working distribution F̂ .

DE.Cox DE.Cox(α= 0) DE.LN DE.LN(α= 0)

GM n Bias CP SD Bias CP SD Bias CP SD Bias CP SD

50 0.6 92.1 6.5 1.1 92.8 6.3 0.0 91.6 6.7 -2.9 83.7 8.3
100 -0.1 94.2 4.6 0.3 94.2 4.5 -0.2 93.7 4.6 -3.3 82.1 5.9
200 0.2 93.2 3.3 0.3 93.4 3.3 0.1 92.7 3.3 -3.1 76.9 4.1

1

500 0.0 93.9 2.0 0.0 94.3 2.0 0.0 93.6 2.0 -3.5 55.7 2.6

50 2.3 85.6 9.2 5.2 82.7 9.5 0.4 88.7 11.6 3.5 85.8 10.4
100 0.3 89.8 6.2 1.5 89.4 6.1 0.7 91.1 7.1 2.6 89.8 6.9
200 -0.2 92.1 4.1 0.3 93.5 4.0 0.7 93.4 4.5 2.6 89.9 4.7

2

500 -0.4 92.8 2.5 -0.5 92.9 2.5 0.4 93.8 2.7 2.1 84.4 2.9

* Note: Bias and SD in the table have been multiplied by 100, so the Bias and SD are on the scale of
percentage survival probability.

Table 4: Simulation result for estimators DE.Cox, DE.Cox(α= 0), DE.LN, and DE.LN(α=
0). GM: generative model; n: sample size; CP: coverage probability (in %) of 95% con-
fidence interval based on normal approximation; SD: standard deviation. All results are
based on 1000 replicates. The columns for DE.Cox and DE.LN are the same as those in
Table 2, and are included here for comparison.

The simulation result is shown in Table 4. DE.Cox and DE.Cox(α= 0) have very similar

performance under both GMs. On the other hand, DE.LN and DE.LN(α= 0) have very

different performance: DE.LN is consistent, whereas DE.LN(α= 0) is severely inconsistent

under both GMs. This shows the robustness brought by the α̂ that solves (5).
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5 Application to PEPFAR

We apply the proposed method to estimating the mortality rate using the data set from

a double-sampling design component of the President’s Emergency Plan for Aids Relief

(PEPFAR), and HIV monitoring and treatment program in East Africa evaluating the

antiretroviral treatment (ART) for HIV-infected people (Geng et al., 2015). The data

set consists of 1,773 HIV-infected adults from Morogoro, Tanzania, who started ART after

entering the study. 673 patients (38%) dropped out during the study. Among the dropouts,

91 (14% of the dropouts) got double-sampled. We use baseline age and pre-treatment CD4

value as Z, and the loss to follow-up time L and the CD4 value measured at the last visit

before dropout as W . The first column in Figure 1 gives the number of patients of each

type; for the types that are not distinguishable from the observed data (such as (b1) and

(b2)), a single number is reported.

Estimated mortality rate. We use the estimators proposed in Section 3 and two other es-

timators considered in the simulation study (Section 4.2) to estimate the mortality rate

P (T ≤ t) for 0≤ t≤ 2 using the PEPFAR data. Figure 2 shows the result, with solid curves

representing the estimates and dashed curves representing the 95% pointwise confidence in-

tervals. The deductive estimator using Cox proportional hazards model (DE.Cox, in black)

and the stratified Kaplan-Meier estimator (KM.S, in blue) give very similar mortality rate

estimates, although the confidence interval of KM.S is wider. The deductive estimator us-

ing log-normal regression (DE.LN, in yellow) gives slightly higher mortality rate estimates,

with confidence interval width comparable to DE.Cox. The complete-case Kaplan-Meier

estimator (KM.C, in green) gives much lower estimates than the other three; it is known

to be biased for double-sampling designs (Frangakis and Rubin, 2001), and we include it

for reference. The estimates and the confidence intervals for t= 0.5, 1, 1.5, 2 are listed in

the first four rows (with γ=∞) in Table 5.

Impact of the double-sampling selection criteria on the estimated mortality rate. In practice,

to double-sample a dropout may require a considerable amount of effort and resource;

therefore, it may be more feasible to double-sample relatively recent dropouts (An et al.,

2014). We evaluate the impact of such restrictions on double-sampling selection on the

estimated mortality, by creating pseudo data sets based on the PEPFAR data, as follows.

Suppose an investigator decides that only the recent dropouts have positive probability to

be double-sampled, where a dropout is recent if his/her dropout time is within the past
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Figure 2: Estimated mortality rate (solid
line) with 95% pointwise confidence in-
terval (dashed line) using all patients
data from PEPFAR with four esti-
mators: DE.Cox, DE.LN, KM.S, KM.C.
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Figure 3: Estimated mortality rate (solid
line) with 95% pointwise confidence interval
(dashed line) estimated by DE.Cox, using
PEPFAR patients data with various γ re-
strictions: all double-samples included (γ=
∞), past 2-year dropouts included (γ= 2),
past 1.5-year dropouts included (γ= 1.5),
past 1-year dropouts included (γ= 1).
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DE.Cox DE.LN KM.S KM.C

γ t mort CI mort CI mort CI mort CI

0.5 11.7 (9.8, 13.6) 13.5 (11.5, 15.6) 11.7 (8.5, 15.7) 5.8 (4.3, 7.3)
1.0 13.4 (11.4, 15.4) 16.2 (13.9, 18.6) 13.4 (10.0, 17.2) 7.8 (5.9, 9.6)
1.5 17.5 (15.3, 19.7) 20.7 (17.7, 23.6) 17.4 (13.4, 21.6) 9.5 (7.3, 11.7)

∞

2.0 19.0 (16.8, 21.2) 21.6 (18.7, 24.6) 19.6 (15.4, 24.2) 10.5 (8.1, 12.9)

0.5 10.9 (9.1, 12.7) 13.4 (11.4, 15.4) 10.4 (7.3, 14.7) 5.3 (3.9, 6.8)
1.0 12.7 (10.7, 14.7) 16.4 (14.0, 18.7) 12.2 (8.7, 16.2) 7.3 (5.5, 9.1)
1.5 17.7 (15.5, 19.8) 21.3 (18.3, 24.3) 16.9 (12.8, 21.8) 9.1 (6.9, 11.2)

2

2.0 19.9 (17.7, 22.1) 22.3 (19.3, 25.3) 19.8 (15.3, 25.5) 10.1 (7.7, 12.5)

0.5 11.6 (9.8, 13.5) 15.3 (13.2, 17.4) 11.7 (7.7, 16.3) 5.3 (3.9, 6.8)
1.0 13.6 (11.6, 15.5) 18.8 (16.3, 21.3) 13.6 (9.5, 18.3) 7.3 (5.5, 9.1)
1.5 21.8 (19.7, 23.9) 25.0 (21.9, 28.1) 19.9 (14.9, 25.6) 9.2 (7.0, 11.3)

1.5

2.0 26.6 (24.4, 28.8) 27.5 (24.4, 30.5) 24.4 (18.3, 31.0) 10.2 (7.7, 12.7)

0.5 10.7 (9.2, 12.2) 16.6 (14.6, 18.6) 11.7 (6.7, 17.8) 4.8 (3.4, 6.2)
1.0 11.9 (10.3, 13.5) 19.6 (17.3, 22.0) 13.0 (7.9, 19.1) 6.7 (4.9, 8.4)
1.5 23.8 (21.7, 25.9) 23.9 (21.1, 26.7) 18.6 (11.6, 26.8) 7.8 (5.8, 9.9)

1

2.0 26.7 (24.6, 28.8) 25.7 (22.9, 28.4) 21.1 (13.7, 29.6) 8.4 (6.2, 10.5)

Table 5: Estimated t-year mortality rate (mort, in %) and 95% confidence intervals (CI)
using estimators DE.Cox, DE.LN, KM.S, and KM.C. γ=∞ means that the estimates are
calculated from the original PEPFAR data. γ= 2, 1.5, or 1 means that the estimates are
calculated from the pseudo data set where only the past 2-, 1.5-, or 1-year dropouts are
possible for double-sampling.
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γ years; in other words, if Ci−Li≤ γ. A pseudo data set with regard to γ is created

by setting Si = 0 and (Xi,∆i) = (NA,NA) for those in the PEPFAR data with Ci−Li>
γ. Figure 3 gives the estimated morality rates (in solid curves) and the 95% pointwise

confidence intervals (in dashed curves) for the pseudo data sets with different γ, using the

deductive estimator with Cox proportional hazards model (DE.Cox). Four γ values are

considered: γ=∞ (no restrictions on double-sampling selection, which corresponds to 91

double-samples in the original PEPFAR data), and γ= 2, 1.5, 1 (only the past 2-, 1.5-,

or 1-year dropouts are possible for double-sampling, which corresponds to 77, 62, or 33

double-samples in the pseudo data set). By definition, the curve for γ=∞ (black curve in

Figure 3) is the same as the black curve in Figure 2. We see that for DE.Cox, the curve for

γ= 2 (in yellow) is similar to that for γ=∞ throughout 0≤ t≤ 2; the curve for γ= 1.5 (in

blue) starts to diverge from that for γ=∞ at around t= 1.5; the curve for γ= 1 (in green)

starts to diverge from that for γ=∞ at around t= 1. Figures of various γ values for the

other three estimators (DE.LN, KM.S, KM.C) are included in Appendix E. Although the

exact same pattern (the curve for γ= γ0 diverging from that for γ=∞ at around t= γ0) is

not observed for the other estimators, the general conclusion is that the more restrictive the

selection criteria is (i.e., smaller γ), the more different the estimate is from that when there

is no restriction. This is because for a given γ <∞, no double-samples would have been

enrolled in the study for longer than γ years, and therefore little information is available

regarding the beyond-γ survival probability for the dropouts and such estimate will be

largely based on extrapolation. The estimates and the confidence intervals for t= 0.5, 1,

1.5, 2 using pseudo data sets with γ=∞, 2, 1.5, 1 are listed in Table 5.

6 Discussion

We proposed a deductive method to produce semiparametric estimators for estimating sur-

vival probability in the double-sampling design. The method generalizes the approach in

Frangakis et al. (2015) by incorporating the discretized support structure and is easily com-

puterizable. Two implementations of the method are described: one using Cox models as

working models, and the other using log-normal regressions as working models. We applied

the method to estimating mortality rate using data from a double-sampling component at

a site of the PEPFAR program, and evaluated the impact of double-sampling selection

criteria on the estimated mortality rate.
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The simulation results show that the confidence interval calculated from normal approx-

imation and the influence function-based standard error, n−1
[∑

iGateaux{Oi, F̂ (α̂),ε}2
]1/2

,

can be anti-conservative for the deductive estimators with lower than nominal level coverage

probability, especially for small sample size such as n= 50 or 100. A potential alternative

is to use bootstrap to obtain the confidence intervals; however, we were not able to numeri-

cally validate this due to the computational cost of bootstrapping the deductive estimator.

It would be interesting to compare the proposed estimators with estimators derived if

one had used the explicit form of the EIF. While Robins and Rotnitzky (2001) describe

briefly the conditions that the EIF satisfies through a set of equations, we have found that

by solving those equations by hand, we had high risk of introducing possible errors. We

are also unaware of any work that gives a closed form expression of the EIF.

In the literature, discussions on robust estimators have been partly based on character-

izing robust estimating functions; see, for example, Robins et al. (2000) and Robins and

Rotnitzky (2001). Although our estimators are obtained by (numerically) solving the EIF

equation, it is more difficult to find analytically all the conditions for which the estimators

are consistent, precisely because the focus is on problems in which the EIF is difficult to

derive analytically. Perhaps, therefore, a supplemental numerical method may exist that

can also characterize more intuitively these conditions.

R code for the simulation and the data analysis in the paper can be downloaded at

https://github.com/tqian/dce_ds.
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Appendix

A Robustness of the deductive estimator

Suppose the working model assumes the true distribution F0 belongs in some set F . Then

the estimator, say τ̂ , that solves the nonparametric EIF within the working model will, in

the limit, be

τ(F ∗), for F ∗ ∈F that solves E0φ(Di,F
∗) = 0, (A.1)

where E0 denotes the expectation under F0. Therefore, by denoting φ̄(F0,F ) :=E0φ(Di,F ),

and assuming sufficient smoothness of the distributions, the estimator τ̂ will converge to

the true value τ(F0) under the following joint conditions:τ(F ∗) = τ(F0) (providing correct estimand)

F ∗ solves φ̄(F0,F
∗) = 0 (fitting the model {F} using φ)

(A.2)

The analytic form of above expressions may not be easily accessible when the form of

the EIF is not. Suppose however, a computational method can easily determine just the

”zeros” of the expressions, that is, given any F0, the features of F ∗ that are restricted

in order to satisfy conditions (A.2). With such a method, coupled with the method of

deductive estimation, the researcher can focus efforts to clarify and model especially well

those restricted features, as this would provide approximate consistency of the estimator.

B Identification of P (T > t)

Suppose survt(·) is a function that takes an arbitrary distribution L of (X,∆) from indepen-

dent survival and censoring times and returns the survival probability beyond t, P (T > t)

(this function is the probability limit of the Kaplan-Meier estimator (Kaplan and Meier,

1958)). By Assumption 2 (T ⊥C |Z), we have P (T > t |Z = z) = survt{L(X,∆ | z)}, where

L(X,∆ | z) denotes the conditional distribution of (X,∆) given Z = z. Thus,

P (T > t) =EZ [survt{L(X,∆ |Z)}].
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Let pX,∆|Z(x,δ | z) denote the probability density function of L(X,∆ |Z). We have

pX,∆|Z(x,δ | z) = pX,∆,Robs|Z(x,δ,1 | z)+pX,∆,Robs|Z(x,δ,0 | z). (B.1)

By basic probability manipulation, we have

pX,∆,Robs|Z(x,δ,1 | z) = pX,∆,Robs,Z(x,δ,1,z)/pZ(z)

= pRobs(1)pZ|Robs(z | 1)pX,∆|Robs,Z(x,δ | 1,z)/pZ(z), (B.2)

and

pX,∆,Robs|Z(x,δ,0 | z)

= pX,∆,Robs,Z(x,δ,0,z)/pZ(z)

=

∫
pX,∆,Robs,Z,W (x,δ,0,z,w)µ(dw)/pZ(z)

=

∫
pRobs(0)pZ,W |Robs(z,w | 0)pX,∆|Robs,Z,W,S(x,δ | 0,z,w,1)µ(dw)/pZ(z), (B.3)

where µ is the dominating measure, and (B.3) follows from Assumption 1; i.e.,

pX,∆|Robs,Z,W (x,δ | 0,z,w) = pX,∆|Robs,Z,W,S(x,δ | 0,z,w,1).

Plugging (B.2) and (B.3) into (B.1), we have that pX,∆|Z(x,δ | z), and hence P (T > t), is

identifiable from the observed data distribution components (1) and (2).

C Computing (1) and (2) from an arbitrary distribu-

tion on Ω

Suppose G is an arbitrary probability distribution on Ω = Ω0∪Ω1. Because Ω is discrete

and so is G, we will use P (·) instead pr(·). For an arbitrary point o∈Ω, we use o(z) to

denote the entry of o corresponding to Z, and similarly for o(x), o(δ), etc. We define

0/0 = 0. The distribution components (1) and (2) can be computed as follows.
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P (Robs = 1) =
∑
o∈Ω1

G(o),

P (Z = z∗ |Robs = 1) =

∑
o∈Ω1

G(o)1{o(z) = z∗}∑
o∈Ω1

G(o)
,

P (X =x∗,∆ = δ∗ |Z = z∗,Robs = 1) =

∑
o∈Ω1

G(o)1{o(x) =x∗,o(δ) = δ∗,o(z) = z∗}∑
o∈Ω1

G(o)1{o(z) = z∗}
,

P (Robs = 0) = 1−P (Robs = 1),

P (Z = z∗,W =w∗ |Robs = 0) =

∑
o∈Ω0

G(o)1{o(z) = z∗,o(w) =w∗}∑
o∈Ω0

G(o)
,

and

P (X =x∗,∆ = δ∗ |Z = z∗,W =w∗,Robs = 0,S= 1)

=

∑
o∈Ω0

G(o)1{o(x) =x∗,o(δ) = δ∗,o(z) = z∗,o(w) =w∗,s= 1}∑
o∈Ω1

G(o)1{o(z) = z∗,o(w) =w∗,s= 1}
.

D Details about the computation of terms in (6)

Recall that the observed data for patient i is denoted by (robs
i ,zi,wi,si,xi,δi), and we assume

that the data is sorted so that robs
i = 0 for 1≤ i≤m, robs

i = 1 for m+1≤ i≤n, si = 1 for

1≤ i≤m1, and si = 0 for m1 +1≤ i≤n, and that x1<x2< ... < xm1 and xm+1 <xm+2 <

... < xn. This last assumption that no ties in x values is for notation simplicity in the

following exposition; our estimation program allows ties in x values.

Let o= (robs,z,w,s,x,δ) denote an arbitrary point in Ω (see Section 3.2 for the definition

of Ω), and let PF̂ (o) denote the probability of o under the distribution F̂ . We rewrite (6)

here for reference:

PF̂ (robs,z,w,s,x,δ) =P̂ (Robs = robs)P̂ (Z = z,W =w |Robs = robs)

× P̂ (S= s |Robs = robs,Z = z,W =w)

× P̂ (X =x,∆ = δ |Robs = robs,Z = z,W =w,S= s).

Each of the terms on the right hand side is computed as follows:

• P̂ (Robs = robs): the probability of being an observed dropout. This is fitted by the
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empirical frequency: P̂ (Robs = robs) =n−1
∑n

i=11(robs
i = robs).

• P̂ (Z = z,W =w |Robs = robs). This is fitted by the empirical frequency:

P̂ (Z = z,W =w |Robs = robs) =

∑n
i=11(robs

i = robs,zi = z,wi =w)∑n
i=11(robs

i = robs)
.

• P̂ (S= 1 |Robs = 0,Z = z,W =w). This is fitted by logistic regression using data from

patients with robs
i = 0 and with Z,W being regressors. For Robs = 1, S is always equal

to 0 by the construction of Ω.

• P̂ (X =x,∆ = δ |Robs = robs,Z = z,W =w,S= s). For (robs = 0,s= 0), by the construc-

tion of Ω we have (x,δ) = (NA,NA), and hence the corresponding probability equals

1. For (robs = 0,s= 1) or robs = 1, this probability is fitted using the likelihood arising

from one of two working models: Cox proportional hazards model (Cox, 1972) or log-

normal regression. In both working models, the working assumption of conditional

independent censoring (T ⊥C |Robs,Z,W,S) is used.

– When Cox proportional hazards model is used as the working model, we fit four

separate Cox models without sharing parameters across models:

T ∼Z,W |Robs = 0,S= 1; C ∼Z,W |Robs = 0,S= 1;

T ∼Z,W |Robs = 1; C ∼Z,W |Robs = 1. (D.1)

For example, T ∼Z,W |Robs = 0,S= 1 means that we fit a Cox model with T be-

ing the failure time (hence C being the censoring time), with Z,W as regressors,

and using data from patients with Robs = 0,S= 1; C ∼Z,W |Robs = 1 means that

we fit a Cox model with C being the failure time (hence T being the censoring

time), with Z,W as regressors, and using data from patients with Robs = 1. For

each model the baseline hazard is estimated using Breslow’s method (Breslow,

1974). This gives the following survival probabilities:

S
(0)
T (x;z,w) := P̂ (T >x |Z = z,W =w,Robs = 0,S= 1)

S
(0)
C (x;z,w) := P̂ (C >x |Z = z,W =w,Robs = 0,S= 1)
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for x∈{x1,...,xm1} (because here (x,z,w)∈Ω0
2), and

S
(1)
T (x;z,w) := P̂ (T >x |Z = z,W =w,Robs = 1)

S
(1)
C (x;z,w) := P̂ (C >x |Z = z,W =w,Robs = 1)

for x∈{xm+1,...,xn} (because here (x,z,w)∈Ω1). The survival probabilities

(cumulative) are then converted to discrete probability mass as follows. For

(x,z,w)∈Ω0, suppose x=xi for some 1≤ i≤m1, then

p
(0)
T (x;z,w) := P̂ (T =x |Z = z,W =w,Robs = 0,S= 1)

=

1−S(0)
T (x1;z,w) if i= 1,

S
(0)
T (xi−1;z,w)−S(0)

T (xi;z,w) otherwise.

Similarly, we calculate

p
(0)
C (x;z,w) := P̂ (C =x |Z = z,W =w,Robs = 0,S= 1).

The probability on (X,∆) for Ω0 is calculated as

P̂ (X =x,∆ = δ |Robs = 0,Z = z,W =w,S= 1)

= {p(0)
T (x;z,w)S

(0)
C (x;z,w)}δ {S(0)

T (x;z,w)p
(0)
C (x;z,w)}(1−δ), (D.2)

and is further normalized over x∈{x1,...,xm1} (within each (z,w) pair) to ensure

m1∑
i=1

P̂ (X =xi,∆ = δi |Robs = 0,Z = z,W =w,S= 1) = 1. (D.3)

p
(1)
T (x;z,w), p

(1)
C (x;z,w), and the probability on (X,∆) for Ω1, P̂ (X =x,∆ = δ |

Robs = 1,Z = z,W =w), is calculated similarly.

– When log-normal regression is used as the working model, we fit the four log-

normal regressions (D.1) using survreg function in R package survival (Therneau,

2015), without sharing parameters across models. This gives the following prob-

2We are abusing the notation slightly; more precisely, we meant (robs = 0,z,w,s= 1,x,δ)∈Ω0.

34



ability density functions (with respect to Lebesgue measure):

f
(0)
T (t;z,w) := pT |Z,W,Robs=0,S=1(t | z,w),

f
(0)
C (t;z,w) := pC|Z,W,Robs=0,S=1(t | z,w),

f
(1)
T (t;z,w) := pT |Z,W,Robs=1(t | z,w),

f
(1)
C (t;z,w) := pC|Z,W,Robs=1(t | z,w).

These probability density functions are then converted to probability mass func-

tions with positive probability only at points in Ω0 and Ω1, respectively. For

example, for (x,z,w)∈Ω0, suppose x=xi for some 1≤ i≤m1, then

p
(0)
T (x;z,w) := P̂ (T =x |Z = z,W =w,Robs = 0,S= 1)

=


∫ (x1+x2)/2

0
f

(0)
T (t;z,w)dt if i= 1,∫ (xi+xi+1)/2

(xi−1+xi)/2
f

(0)
T (t;z,w)dt if 2≤ i≤m1−1,∫∞

(xm1−1+xm1 )/2
f

(0)
T (t;z,w)dt if i=m1.

p
(0)
C (x;z,w), p

(1)
T (x;z,w) and p

(1)
T (x;z,w) are computed similarly. The survival

probabilities (such as S
(0)
T (x;z,w)) are then calculated from the probability mass

functions, and the probability on (X,∆) is calculated as (D.2) and further nor-

malized to ensure (D.3).

E Additional results regarding the impact of γ on the

estimated mortality rate

Here we include results of the estimated mortality rate based on pseudo data sets with

various γ values, using three estimators (DE.LN in Figure E.1, KM.S in Figure E.2, KM.C

in Figure E.3). The result of the estimator DE.Cox has been presented and discussed

in the “Impact of the double-sampling selection criteria on the estimated mortality rate”

paragraph of Section 5.
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Figure E.1: Estimated mortality rate (solid line) with 95% pointwise confidence interval
(dashed line) estimated by DE.LN, using PEPFAR patients data with various γ restrictions:
all double-samples included (γ=∞), past 2-year dropouts included (γ= 2), past 1.5-year
dropouts included (γ= 1.5), past 1-year dropouts included (γ= 1).
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Figure E.2: Estimated mortality rate (solid line) with 95% pointwise confidence interval
(dashed line) estimated by KM.S, using PEPFAR patients data with various γ restrictions:
all double-samples included (γ=∞), past 2-year dropouts included (γ= 2), past 1.5-year
dropouts included (γ= 1.5), past 1-year dropouts included (γ= 1).

37



0

10

20

30

0.0 0.5 1.0 1.5 2.0

Time on ART (years)

M
or

ta
lit

y 
ra

te
 (

%
) 

es
tim

at
ed

 b
y 

K
M

.C

γ ∞ 2 1.5 1

Figure E.3: Estimated mortality rate (solid line) with 95% pointwise confidence interval
(dashed line) estimated by KM.C, using PEPFAR patients data with various γ restrictions:
all double-samples included (γ=∞), past 2-year dropouts included (γ= 2), past 1.5-year
dropouts included (γ= 1.5), past 1-year dropouts included (γ= 1).
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