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ABSTRACT OF THE DISSERTATION

Attenuation and scattering structure in southern California
and tidal triggering of earthquakes
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In this dissertation, I study two fundamental topics in seismology, tidal triggering of

earthquakes and attenuation and scattering structure. Studies of tidal triggering help constrain

earthquake nucleation models and relate to earthquake predicability and forecasting. Resolving

attenuation and scattering behavior can provide more physically realistic models for strong ground

motion prediction equations (GMPEs) and improve our understanding of the physical properties

of rocks in the lithosphere. Chapter 1 is an introduction, providing background and motivation for

each of the following chapters. Chapters 2 & 3 focus on the topic of tidal triggering of earthquakes.

Chapter 2 studies tidal triggering in the central Japan region using M ≥ 3 earthquakes and finds no
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clear evidence for tidal triggering. Chapter 3 analyzes seismicity in the Coso region of California

and finds strong tidal triggering but an absence of remote triggering at the Coso geothermal field,

constraining earthquake triggering sensitivities at different time scales of stress perturbations.

Chapters 4–6 study the inelastic properties of the crust and upper mantle in southern California

using both coda and direct-wave observations. Chapter 4 stacks coda envelope functions across

southern California and synthesizes them using a two-layer model, composed of a shallow crustal

layer with strong wide-angle scattering and high P and S intrinsic attenuation and a deeper layer

with weaker scattering and lower intrinsic attenuation. Chapter 5 describes improvements to the

conventional coda-Q method to solve for coda attenuation, site amplification and source radiated

energy simultaneously. Chapter 6 models focal-sphere-dependent S/P amplitudes assuming a

whole-space intrinsic and scattering attenuation model around the San Bernardino region.
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Chapter 1

Introduction

Earthquakes are one of Earth’s most challenging natural hazards. Every year, there

are an average of about 20 M ≥ 7 earthquakes, including one great earthquake (M ≥ 8). The

unpredictable and abrupt release of energy by large earthquakes can cause many casualties and

severe property damage. Studying earthquakes can provide important information on earthquake

hazard prediction and strong ground motion estimation, as well as valuable data to probe Earth

structure, including its internal constitution and dynamic properties.

1.1 Tidal Triggering of Earthquakes

Earth’s tides are the distortions of Earth’s shape caused by gravitational potential changes

from external bodies, i.e., Sun, Moon, etc. This change of shape produces tidal stresses. Since

the gravitational changes are related to the relative periodic motions between Earth and celestial

bodies, the tidal stresses exhibit clear periodicities, i.e., semi-diurnal, diurnal, semi-monthly, etc.

Among all the tidal-stress components, the semi-diurnal one has the maximum amplitude. Since

the amplitude of these periodic (days to months) tidal stress variations is much higher than the

buildup of long-term tectonic stress over the same time period, the tidal stress may trigger faults

at a critical state. The continental crust is thought to be in a state of incipient failure (Zoback
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and Zoback, 2002) and the stress perturbation from Earth tides can potentially trigger ruptures

(Gomberg et al., 1997; Hill and Prejean, 2007; Delorey et al., 2017). Studying tidal triggering of

earthquakes can help us understand the earthquake nucleation process. However, it is not easy

to observe direct tidal triggering of earthquakes and the question as to whether tidal stress can

trigger earthquakes has been puzzling seismologists for over a century (Schuster, 1897). If we

could observe tidal triggering of earthquakes, this could shed light on the earthquake initiation

process and provide clues regarding earthquake forecasting and prediction.

Most of the convincing observations of tidal triggering occur near-shore and/or offshore

(Tanaka et al., 2002a; Cochran et al., 2004; Scholz et al., 2019), where the ocean loading term

(from the ocean tides) is much larger than the sold Earth tides. A robust statistical correlation

between solid Earth tides and earthquake occurrence on the continent is hard to detect and requires

a large and complete catalog (Métivier et al., 2009; Scholz et al., 2019). Consequently, increasing

the detection ability for small events can improve the possibility to observe tidal triggering, as well

as other kinds of triggering, i.e., remote triggering of earthquakes. In addition, triggering has been

observed more in certain susceptible regions, i.e., geothermal fields or volcanic regions, likely

owing to the role of fluids. Natural and/or anthropogenic fluid-related activities can efficiently

change the stress state locally, such as increasing pore pressure, which can reduce the effective

normal stress and promote seismicity. For this reason, geothermal fields and volcanic regions are

ideal places to conduct triggering studies (Brodsky and Prejean, 2005; Peng et al., 2010; Aiken

and Peng, 2014).

A key issue in seismology is whether the mechanisms of physical processes with different

time scales can trigger the slips on faults. The tidal force acts as an intermediate-term process

with a period of days to months. Besides the tidal triggering of earthquakes, there are two other

commonly-observed triggering behaviors, i.e., static stress triggering and remote triggering. Static
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stress triggering is induced by permanent stress changes caused by large-earthquake ruptures

and is often used to explain the occurrence of aftershock sequences near mainshock ruptures

(King et al., 1994; Stein, 1999). Remote or dynamic stress triggering is caused by the passing

seismic waves radiated by an earthquake (Gomberg et al., 1997; Hill and Prejean, 2007). The

typical period of the dynamic triggering is seconds. These different types of triggering have been

observed around the world (i.e., tidal triggering: Tanaka et al. (2002a); Cochran et al. (2004);

Scholz et al. (2019); remote triggering: Gomberg et al. (1997); Brodsky and Prejean (2005);

Hill and Prejean (2007); Peng et al. (2010); Aiken and Peng (2014)). Events at large distances

from mainshocks are clearly dynamically triggered, but there is a debate regarding the relative

importance of static versus dynamic triggering in generating aftershocks close to mainshocks

(Brodsky and Prejean, 2005; Hill and Prejean, 2007). These kinds of observations can shed lights

on discovering the physical mechanisms of the triggering.

1.2 Attenuation Structure of the Earth

The amplitude of ground motion can be described as the convolution of the source radiated

energy, the ray path effect (i.e., Green’s Function), and the site amplification term. The decrease

of amplitude with distance depends on two factors, geometrical spreading and attenuation, both

of which are involved in the Green’s Function. The geometrical spreading term describes the

decrease of seismic wave intensity with distance due to energy conservation, i.e., the area of

the wavefront increases as it moves further from the source. Seismic attenuation describes the

energy dissipation of seismic waves during wave propagation. Attenuation is caused by two

factors: scattering attenuation (elastic attenuation) and intrinsic attenuation (anelastic attenuation).

Intrinsic attenuation is caused by the energy transfer from the potential and kinetic energy to

heat loss, which is not reversible. Scattering is caused by heterogeneity in the media, which
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changes the propagation direction of the wavefield, and/or transfers it into other seismic phases.

Characterizing the intrinsic and scattering attenuation structure of the Earth is a fundamental

problem in seismology.

Attenuation parameters are an important input for accurate strong ground motion esti-

mation, especially at high frequencies (> 1 Hz). In addition, resolving attenuation can improve

our understanding of Earth’s interior structure and physical properties because attenuation has

different dependences on rock properties than seismic velocity. A significant difference between

the behaviors of intrinsic attenuation and scattering attenuation is that the scattered wavefield only

alters the propagation direction, rather than attenuates its energy. At local scales, the scattered

energy becomes part of the coda wave (Aki and Chouet, 1975), which is the tail that follows

direct arrivals in a seismogram. It is difficult to separate intrinsic and scattering attenuation using

only direct waves. Analysis of coda waves provides a powerful tool to separate intrinsic and

scattering attenuation.

To describe the coda energy decay with time, coda attenuation (QC) is defined as

E( f , t) = S( f )R( f )t−αe−2π f t/QC( f ), (1.1)

where E is the power spectrum, S is a frequency-dependent source amplitude term, R is a

frequency-dependent station amplitude term, t is the lapse time, f is the frequency, α is a positive

constant that is related to geometrical spreading and wave type (Aki and Chouet, 1975), and QC

is the coda quality factor. The physical meaning of QC is of great interest to seismologists. It

is a combination of intrinsic and scattering attenuation based on the scattering model (Aki and

Chouet, 1975; Shapiro et al., 2000). Many studies indicate the value of coda attenuation, Q−1
C ,

correlates with tectonics. For example, high Q−1
C values are observed in active regions and low
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values in stable regions (e.g. Singh and Herrmann, 1983; Hoshiba, 1993; Mitchell et al., 1997;

Hiramatsu et al., 2000; Jin and Aki, 2005; Sato et al., 2012). There are a variety of studies to

explore the relation between temporal changes of QC and seismicity, especially some possible

precursors before large earthquakes (Jin and Aki, 1988; Su and Aki, 1990). However, this topic is

still in debate, because this precursory behavior is not consistently observed (Beroza et al., 1995;

Hellweg et al., 1995; Aster et al., 1996; Tselentis, 1997; Sumiejski and Shearer, 2012).
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Chapter 2

No clear tidal triggering of earthquakes in

the central Japan region

We search for possible localized tidal triggering in earthquake occurrence near Japan by

testing for tidal periodicities in seismicity within a variety of space/time bins. We examine 74,610

earthquakes of M ≥ 3 in the Japan Meteorological Agency (JMA) catalog from January 2000

to April 2013. Because we use many earthquakes for which accurate focal mechanisms are not

available, we do not compute tidal stresses on individual fault planes, but instead assume that

the mechanisms are likely to be similar enough among nearby events that tidal triggering will

promote earthquake occurrence at specific tidal phases. After dividing the data into cells at a range

of spatial (0.2◦, 0.5◦, 1.0◦) and temporal dimensions (100, 200, 400 days), we apply Schuster’s

test for non-random event occurrence with respect to both the semi-diurnal and semi-monthly

tidal phases. Because the resulting p-values will be biased by temporal clustering caused by

aftershocks, we apply a declustering method that retains only one event per tidal cycle per phase

increment. Our results show a wide range of p-values for the localized earthquake bins, but the

number of bins with very small p-values (e.g., p < 0.05) is no more than might be expected due

to random chance, and there is no correlation of low p-value bins with the time of the 2010 M 9.0
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Tohoku-oki earthquake.

2.1 Introduction

Because cyclical stressing rates from the Earth tides are typically much higher than the

long-term buildup rate of tectonic stresses, many studies have searched for a possible correlation

between earthquake occurrence and tidal phase. Although most of these studies find no clear

relation between earthquakes and tides, evidence for at least some correlation has been found in a

number of regions. Métivier et al. (2009) and Wilcock (2009) reported regional tidal triggering

and Tanaka et al. (2002a) and Cochran et al. (2004) reported tidal triggering influence on a global

scale. Some studies have reported a positive correlation between tidal triggering and certain types

of focal mechanisms (Tsuruoka et al., 1995; Cochran et al., 2004). On the other hand, Shudde

and Barr (1977) and Vidale et al. (1998) reported no correlation or a weak regional correlation,

and on a global scale, Heaton (1982) and Hartzell and Heaton (1989) found no evidence for tidal

triggering.

Recently Tanaka and her collaborators (Tanaka et al., 2002b; Tanaka, 2010) suggested

that enhanced tidal correlation of earthquake occurrence may occur prior to large earthquakes

in a region near their hypocenters, including recent giant megathrust earthquakes in Sumatra

and Japan. Motivated in part by these results, Brinkman et al. (2015) presented an earthquake

generation model that predicts an increased likelihood of large earthquakes during periods when

small earthquake occurrence correlates with daily tidal stresses. Because of the potential value of

Tanaka’s observations for earthquake prediction, it is important to see if they can be confirmed

using additional data. Her analyses for the 2004 Sumatra and 2011 Tohoku-Oki earthquakes

used the GCMT catalog of M ≥ 5 events (Tanaka, 2010, 2012). Here we take advantage of

the much larger catalog of Japanese events provided by the local networks to examine possible

localized tidal triggering of earthquakes near Japan, including time periods before and after the
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2011 MW 9.0 Tohoku-Oki earthquake. We find no clear evidence for statistically significant tidal

periodicities in the seismicity rate for any of our space-time seismicity bins.

2.2 Method

Ideally, studies of possible tidal triggering of earthquakes should compute the tidal

stresses on the earthquake faults to establish directly when earthquakes should be encouraged

and discouraged. This requires knowledge of the fault orientation, which is usually estimated

from focal mechanisms and the local tectonics. However, because event catalogs typically only

include focal mechanisms for relatively large earthquakes, this prevents analysis of the much

more numerous smaller events.

Here we adopt the simpler approach of searching for non-random distributions of event

times with respect to tidal phase, without establishing any explicit relationship to stress or the

most likely tidal phase to promote triggering. It should be noted that this approach could fail

to detect tidal triggering if a variety of focal mechanisms are present in a region, which trigger

at different times during the tidal cycle. However, because nearby events typically have similar

focal mechanisms (e.g. Hardebeck, 2006), it is likely that sufficiently localized regions will show

clear peaks in occurrence time phase if tidal triggering is present. That is, similar mechanisms

likely have similar fault orientations and will have similar tidal stress behavior on the fault and

thus should trigger at nearly the same tidal phase. If local tidal triggering is present, we should

then see a peak in the number of events occurring at a particular tidal phase rather than a purely

random distribution of tidal phases.

To test the local similarity of Japanese focal mechanisms, we use events from the 1990

to 2010 GCMT catalog (see Fig. 2.1) and apply Hardeback’s (2006) method to measure the

angular difference between focal mechanism pairs. The angular difference is defined as the

minimum rotation about any axis to bring the two mechanisms into alignment. Figure 2.2 shows
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the relation between the hypocentroidal distance separation and angular difference of each pair

of events in the GCMT catalog. There is large scatter, but, as expected, the median angular

difference decreases as the separation distance decreases. Very similar results are obtained using

the declustered catalog that we describe later. The median angular difference is 31.0◦, 41.6◦, and

48.3◦ for separation distances of 0.2◦, 0.5◦, and 1◦, respectively. However, given that the median

angular difference is about 20◦ even at zero separation, it is likely that a substantial fraction of

the observed angular differences are due to measurement error, rather than true differences in

mechanisms (see Hardebeck, 2006). In any case, our approach here is to focus on nearby events

for which our assumption of focal mechanism similarity is most likely to be valid. We therefore

experiment with dividing the data into cells with spatial scales of 0.2◦, 0.5◦, and 1.0◦. To test for

possible temporal variations in tidal triggering, we also divide the data into temporal cells of 100

days, 200 days, and 400 days, aligned with the Tohoku-Oki earthquake time to account for the

possibility of abrupt changes at the time of this earthquake.

For the seismicity in each space-time cell, we apply Schuster’s test (often used in tidal

triggering studies, e.g., Schuster, 1897; Heaton, 1982; Tanaka et al., 2002b, 2004, 2006, etc.) to

test for statistically significant non-random distributions of tidal phases at the event times. Earth

tides exhibit a variety of periodicities, but two of the strongest are the semi-diurnal (12.4206-hour

period) and the semi-monthly (14.7653-day period). Note that the semi-monthly period is the

average time between new and full Moons, when the tides have higher amplitudes due to the

beating between the periods of the lunar and solar tides. If earthquakes are quickly triggered at

a threshold maximum level of stress, then both of these periods are likely to be associated with

earthquake occurrence.

For these two periods, we compute p-values for the distribution of tidal phases using

p = exp
(
−
(∑N

i=1 cosθi)
2 +(∑N

i=1 sinθi)
2

N

)
(2.1)
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where N is the number of earthquakes in the cell and θi is the tidal phase of the i-th event. The

p-value is an estimate of the probability that the tidal phases are randomly distributed; thus

p < 5% indicates a possibly significant correlation between Earth tide and earthquake occurrence

in the cell.

As discussed before, we have divided the catalog into small cells and apply Schuster’s test

separately to the data in each cell. Because there are a large number of cells, about 5% of them are

expected to have p-values smaller than 0.05 purely by random chance. However, if localized tidal

triggering is present for a significant number of cells, the number of cells with p < 0.05 will be

above the expected average. We test for this by plotting histograms of the p-values at increments

of 0.05, compared to a reference line that shows the expected purely random distribution.

Schuster’s test assumes that earthquakes are independent events and thus the p-values can

be biased by temporal earthquake clustering unrelated to the tides (e.g., aftershock sequences).

We can test whether this is an important factor in our data set by examining the distributions of

p-values for periods not associated with the tides, i.e., for which no triggering should be detected.

For this purpose we use over 70,000 earthquakes from the JMA catalog (see next section for more

details) and test over 500 seismicity bins at increments of 0.5◦ and 200 days. We first analyze the

raw catalog and test for non-random phase by computing the p-values with respect to periods of

7 hours, 12.42 hours (the semi-diurnal tidal period), and 17 hours; as well as the much longer

periods of 11 days, 14.77 days (the semi-monthly tidal period) and 19 days. These results are

plotted in the left column of Figure 2.3, which includes only bins for which there are 10 or more

events. In all cases, there are many more bins with p-values less than 0.05 than would be expected

due to random chance, and this is just as true for the non-tidal periods as the tidal periods. This is

strong evidence that temporal clustering is biasing the results.

Because most of the temporal clustering is probably caused by aftershock sequences, we

first experimented with removing aftershocks by applying the Reasenberg Declustering Method

(RDM) (Reasenberg, 1985). The basic idea of RDM is to identify aftershock populations by
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defining an interaction zone following each earthquake in the catalog. Any earthquake that occurs

within the interaction zone of a prior earthquake is considered an aftershock and is statistically

dependent on it. Events thus associated are referred to as belonging to a cluster. The spatial and

temporal extents of the interaction zone increase with the mainshock size and are defined based

on a probabilistic model. We applied the RDM algorithm (using its default parameters) to the

complete catalog to remove likely aftershocks and then processed the declustered catalog using

the same binning scheme as before. These results are shown in the middle column of Figure 2.3.

The anomalously large number of p-values below 0.05 is reduced somewhat compared to the raw

catalog, particular for the shorter periods shown in Figure 2.3a. However, with the exception of

the results for the 7 hour period, there are still more anomalous p-values than expected due to

random chance, even for the non-tidal periods. By increasing the radius scaling in the Reasenberg

method one can remove slightly more events, but not enough to change the overall results shown

in Figure 2.3. Thus, the RDM approach does not seem to assure statistical independence of the

occurrence times that go into Schuster’s test.

This could be caused by several factors. RDM may not be removing all the aftershocks or

the catalog could have a significant number of swarms, which have temporal clustering but are not

readily explained with mainshock-to-aftershock triggering. To better remove the biasing effects

of temporal clustering, we develop a new approach to event declustering that is specific to tidal

triggering analysis. This method bins the seismicity within each cell into 16 equal increments

of tidal phase and retains only the maximum sized earthquake per phase increment per tidal

cycle number (see Fig. 2.4). This prevents a large number of events separated in time by only a

small fraction of the target tidal periodicity from biasing the results. It also has the advantage

of potentially being able to identify tidal periodicities within extended aftershock sequences

(i.e., spanning many tidal cycles), which contain mostly events that would be removed with

RDM-declustering. Results of applying this tidal phase binning approach are shown in the right

column of Figure 2.3. The distribution of p-values now appears much more random, both at tidal
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periods and the four other periods that we tested.

Note that if tidal periodicities are present in a data set, the phase-binning approach is

slightly more likely to remove periodic events than “background” random events because they are

more likely to occur in the same phase bin. However, this bias is small, provided the number of

tidal cycles is large, and we ignore its effects here. Another potential difficulty with this approach

would occur if the seismicity rates were so high that most of the potential time bins contained

earthquakes, in which case tidal periodicity might appear only as a larger number of events within

particular bins and would go undetected if only one event is retained per bin. However, in our

analyses generally only a small fraction of the phase bins contain earthquakes. In particular,

99.7% of our tests for semidiurnal tides and 85.5% of our tests for semi-monthly tides have events

in fewer than 20% of the phase bins. Thus, this is not a problem for the vast majority of our

tests, with most of the exceptions being for the semi-monthly tests during the very high seismicity

rate immediately following the Tohoku mainshock. Because the tidal phase binning approach

provides the least-biased results, we adopt this method for the remainder of our analyses.

To see how our approach compares to more established methods for analyzing tidal

triggering based on Coulomb stress changes (e.g. Vidale et al., 1998), we examined solid-Earth

tidal strains (including the ocean loading term) computed for the Tohoku-Oki earthquake region

from 2005 through 2007 (Duncan Agnew, personal communication, 2015). We compared the

strains at three different offshore points, but saw only very small differences among them, so

for simplicity we consider only a point (36.54◦N, 141.77◦E) near the Tohoku epicenter. The

strain calculation is for the seafloor, but at the long wavelengths of the tidal deformation, there

is little depth dependence within the crust. From the strain tensor, we compute the stress tensor

components assuming λ = 45.9 GPa and µ = 44.1 GPa. We assume a large background tectonic

stress (20 MPa) with horizontal convergence at 293◦N, i.e., perpendicular to the trench. This

allows us to compute the Coulomb stress changes (e.g. King et al., 1994) for faults of any

orientation assuming an effective coefficient of friction of 0.4. For the shallow-dipping fault plane
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(strike 203◦, dip 10◦) inferred from the mainshock GCMT solution, these stresses have daily

maximum values of about 2700 Pa during the times of new and full moon, and maximum values

of about 700 Pa during first and third quarter moon.

We then performed two different tests. For the first test, we assumed the fault orientation

of the GCMT solution for the Tohoku mainshock and computed the Coulomb stress as a function

of time. We then found a stress value that is exceeded for only 5% of the time and created a

series of synthetic catalogs of n events with times randomly assigned within these periods of high

Coulomb stress. For each random catalog, we applied Schuster’s test for both the semi-diurnal and

semi-monthly periods and computed p-values. For n = 20, we found that 100% of the catalogs

had p-values below 0.05 for the semi-diurnal period and 50% had p-values below 0.05 for the

semi-monthly period. For the second test, we assigned a random fault orientation to each event,

computed the Coulomb stress, and assigned a random time from within the 5% of the time with

maximum stress. As expected for random fault orientations, the resulting event times are less

obviously periodic. For n = 20, we found that only 10% of the catalogs had p-values below

0.05 for the semi-diurnal period and 15% had p-values below 0.05 for the semi-monthly period.

The fraction of significant p-values increases with the number of events in the synthetic catalog.

For n = 100, 30% of the catalogs had p-values below 0.05 for the semi-diurnal period and 56%

had p-values below 0.05 for the semi-monthly period. Thus, given sufficient numbers of events,

our simple approach will detect tidal triggering driven by Coulomb stress changes, even if the

faults have random orientation. However, as described above and shown in Figure 2.2, the focal

mechanisms in our dataset are quite similar over short distances, and thus we expect our method

to perform for the real data more like the first synthetic test than the second. Our test is less

sensitive than tests based on explicit Coulomb stress calculations because we do not take into

account the tidal stress amplitude (e.g., some of the 12-hour tides are of higher amplitude than

others). However, because we do not require event focal mechanisms we can apply our test to

larger numbers of events, which should compensate to some degree for its lower sensitivity.

13



2.3 Results

We examine M ≥ 3 events in the JMA catalog from January 2000 to April 2013 in the

central Japan region from 130◦E to 146◦E and from 29◦N to 46◦N (see Figure 2.1). Although

the JMA catalog contains many events smaller than M 3, we use this cutoff to yield a relatively

complete catalog even in the offshore region (see Supplemental Figure S2.1). It’s possible that

the catalog is missing a small number of events larger than M 3, but this is unlikely to bias our

results very much, particularly because there is no reason to expect tidally triggered events to

be absent from the catalog more than non-tidally triggered events. Later we will show that our

results are robust with respect to the minimum magnitude, i.e., we obtain similar conclusions

using a less conservative M 2.5 cutoff. We analyze a total of 74,610 earthquakes, of which only

1187 are in the GCMT catalog, with 25 earthquakes larger than M 7.0 including the 2011 MW

9.0 Tohoku-Oki earthquake. We divide the data into cells with a range of spatial (0.2◦, 0.5◦, 1.0◦

in both latitude and longitude) and temporal dimensions (100, 200, 400 days) and compute the

p-value for each cell (following our phase-bin declustering method) with respect to both the

semi-diurnal and semi-monthly tidal phases.

Figure 2.5 summarizes our results for all of the space-time bins with respect to both

the semi-diurnal and semi-monthly tidal phases, presenting results only for bins containing at

least 10 events. The distribution of p-values now appears close to random. Although one can

identify specific bins with p-values below 0.05, the total number of such bins is close to what

would be expected due to random chance. For the semi-diurnal tidal period, only 3 of the 9 bin

combinations have numbers of p-values below 0.05 that are more than the numbers expected

due to random chance. For the semi-monthly tidal period, none of the 9 bin combinations have

numbers of p-values below 0.05 that are more than the expected numbers. However, this plot

could mask the presence of extremely anomalous p-values that might none-the-less indicate

strong tidal triggering in one or more bins. To test for this possibility, we identified 62 out of
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7365 total bins (i.e., 0.84%) with p-values less than 0.01 and 2 out of 7365 total bins (i.e., 0.03%)

with p-values less than 0.001 for semidiurnal tides and for semi-monthly tides 37 out of 6443

total bins (i.e., 0.57%) with p-values less than 0.01 and none with p-values less than 0.001. These

numbers do not indicate the presence of any bins with p-values below what might be expected for

the total number of bins that we analyzed (see Supplemental Figure S2.2).

Tanaka (2010; 2012) suggested that enhanced tidal correlation of earthquakes may occur

prior to large earthquakes in a region near their hypocenters. Our results here are relevant to the

question as to whether such enhanced tidal correlation can observed before the 2011 MW 9.0

Tohoku-Oki earthquake. Figure 2.6 and Figure 2.7 show the distribution of anomalously low

p-values (≤ 0.05) for our temporal cells immediately prior to the Tohoku-Oki earthquake. We

also plot the Chu et al. (2011) hypocenter for the mainshock. Red rectangles indicate that the

p-value of the cell is smaller than 0.05, gray rectangles are for larger p-values. In general, the

number of cells with p≤ 0.05 is no more than would be expected from random chance. There

also is no compelling correlation of the red cells in this figure with the Tohoku-Oki epicenter.

There are some red cells near the epicenter for the (1◦, 200 day) and (1◦, 400 day) bins for

the semi-diurnal period and the (0.5◦, 400 day) bin for the semi-monthly period (with p-values

of 0.029, 0.045, and 0.01, respectively), but these anomalies are not robust with respect to the

binning scheme. As an additional test, we repeated our analyses using a magnitude cutoff of 2.5

rather than 3.0 (resulting in about 2 times more earthquakes in total), and found that only the (1◦,

400 day) semi-diurnal bin near the epicenter remained anomalous (in this case with a p-value

of 0.026 rather than 0.01). The M ≥ 2.5 results are plotted in Supplemental Figures S2.3 and

S2.4. The M ≥ 2.5 results also yielded a semi-diurnal 0.2◦ bin near the epicenter with a p-value

of 0.036 for all three time windows as the 11 events in this bin are all within 100 days of the

Tohoku-Oki mainshock. The largest occupation fraction of phase bins is 8.54% for the 100 day

case. It should be noted that 10 of these 11 events are from the immediate foreshock sequence

of the Tohuku-Oki mainshock (see below), but represent only a somewhat arbitrarily windowed
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portion of the complete foreshock sequence.

The Tohoku-Oki earthquake was preceded by a pronounced 23-day foreshock sequence

(Kato et al., 2012), including aftershocks of a MW 7.3 earthquake occurring two days before the

MW 9.0 mainshock. The foreshocks occurred mainly to the east and northeast of the mainshock

epicenter. Because none of our spatial bins captures the entire foreshock sequence, it makes sense

to study the sequence separately to see whether it might exhibit any tidal periodicity. Figure 2.8

shows the locations of 327 M ≥ 2.5 foreshocks and the diurnal tidal phase versus time for both

the raw catalog and the phase-bin reclustered catalog (the foreshock sequence is not long enough

to test for semi-monthly periodicity). The p-values in both cases are about 0.65 and thus there is

no evidence for tidal periodicity in the foreshock sequence. Overall, we find no clear evidence for

observable tidal triggering in seismicity prior to the 2011 Tohoku-Oki earthquake.

As described earlier, our approach has the advantage of including many more earthquakes

than methods that require fault orientations in order to explicitly compute tidal contributions

to Coulomb stresses, but the disadvantage of not taking into account variations in tidal stress

amplitudes. A full Coulomb stress analysis is beyond the scope of our paper, but as a final test

we did find the number of events in the catalog from 2005 to 2007 within the 5% of times with

the highest Coulomb stress and the 5% of times with the lowest Coulomb stress, assuming all

the faults have the same orientation as the shallow-dipping fault in the GCMT solution for the

Tohoku mainshock. For the Reasenberg declustered catalog, 4.56% and 5.26% of the events

occurred during the highest and lowest stress times, respectively. For the original catalog, the

corresponding numbers are 4.64% and 5.41%. Thus, these results do not provide any evidence for

strong tidal triggering in the 2005-2007 catalog, at least for events with shallow-dipping thrust

mechanisms.
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2.4 Conclusions

We use a large set of earthquakes to search for evidence of localized tidal triggering near

central Japan from 2000 to 2013. A new time-bin declustering method is adopted to remove

temporal clustering that can bias tidal triggering estimates. The method bins the seismicity within

each cell into 16 equal increments of tidal phase and retains only the maximum size earthquake

per phase increment per tidal cycle number. After examining the results for all of the space-time

bins with respect to both the semi-diurnal and semi-monthly tidal phases, we find that the number

of bins indicating possible tidal periodicities is no more than might be expected due to random

chance and that there is no clear tidal triggering signal prior to the 2011 Tohoku-Oki earthquake.
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Figure 2.3: A comparison of the p-value distribution resulting from periodicity tests applied to
seismicity bins in (left) the original JMA catalog, (middle) the Reasenberg declustered catalog,
and (right) the phase-bin declustered catalog. The histograms show the numbers of p-values for
bins with cell dimension (0.5◦ and 200 days) for tests at different possible periods, including
non-tidal and tidal. The number in the upper right corner shows the total cell numbers for each
case. The red line shows the expected number for a purely random distribution.
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Figure 2.4: A synthetic example showing how the phase-bin declustering method works. (a)
Event time versus phase for a given period. Red dots represent individual event location in time
versus phase. Vertical dashed lines separate each cycle into eight equal increments. The sloping
lines show increasing phase with respect to time in each cycle. Note that events within a tight
temporal cluster (e.g., a swarm or aftershock sequence) will tend to occur at the same phase,
possibly biasing tests of phase randomness. (b) The phase-bin declustered catalog, in which
only the maximum magnitude event is retained for each phase bin at each cycle.
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Figure 2.5: Histograms of the p-value distributions for tests of seismicity periodicity for (a) the
semi-diurnal tidal period, and (b) the semi-monthly tidal period, for bins over a range of spatial
(0.2◦, 0.5◦, 1.0◦) and temporal dimensions (100, 200, 400 days). The numbers in the upper left
corner show “spatial, temporal size” for each case. The number in the upper right corner in each
histogram shows the total number of cells. The red line shows the expected number for a purely
random distribution.
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Figure 2.6: The spatial distribution of anomalous p-values for possible semi-diurnal tidal
periodicity for M ≥ 3 seismicity bins over a range of spatial (0.2◦, 0.5◦, 1.0◦) and temporal
dimensions (100, 200, 400 days), with each time bin ending immediately before the 2011 MW

9.0 Tohoku-Oki earthquake. The star indicates the mainshock epicenter from Chu et al. [2011].
Red indicates p-values less than 0.05, yellow for p-values between 0.05 and 0.1 and gray for
the other p-values. Only cells with more than 10 events are plotted. The number in each panel
shows “(number of cells with p < 0.05)/(number of plotted cells)”.
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Figure 2.7: The spatial distribution of anomalous p-values for possible semi-monthly tidal
periodicity for M ≥ 3 seismicity bins over a range of spatial (0.2◦, 0.5◦, 1.0◦) and temporal
dimensions (100, 200, 400 days), with each time bin ending immediately before the 2011 MW

9.0 Tohoku-Oki earthquake. The star indicates the mainshock epicenter from Chu et al. [2011].
Red indicates p-values less than 0.05, yellow for p-values between 0.05 and 0.1 and gray for
the other p-values. Only cells with more than 10 events are plotted. The number in each panel
shows “(number of cells with p < 0.05)/(number of plotted cells)”.
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Figure 2.8: Foreshocks of the Tohoku-Oki earthquake: (a) Map of seismicity in the foreshock
region within 400 days prior to the MW 9.0 Tohoku-Oki earthquake, showing the epicenters of the
MW 9.0 mainshock (large black triangle) and the MW 7.3 foreshock (small black star) and all the
327 MW ≥ 2.5 foreshocks (blue and red dots) between 2/13/11 and 3/11/11, including aftershocks
of the MW 7.3 foreshock (red dots). (b) Diurnal tidal phase versus time for the original 23-day
foreshock sequence of the Tohoku-Oki earthquake between 2/13/11 and 3/11/11. Black star
represents the MW 7.3 foreshock and the p-value is listed. (c) Diurnal tidal phase versus time for
the phase-bin declustered 23-day foreshock sequence of the Tohoku-Oki earthquake between
2/13/11 and 3/11/11.
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Figure S2.1: Earthquake count as a function of minimum magnitude for the JMA catalog
(January 2000 to April 2013). The solid green line shows Gutenberg-Richter relationship. (a) is
for the whole Japan region seen in Fig. 1, and (b) is for the offshore region marked with the
black rectangle in Fig. 1.
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Figure S2.2: Histograms, similar to Fig. 5, but computed using 8 bins for the phase-bin
declustering, of the p-value distributions for tests of seismicity periodicity for (a) the semi-
diurnal tidal period and (b) the semi-monthly tidal period, for bins over a range of spatial (0.2◦,
0.5◦, 1.0◦) and temporal dimensions (100, 200, 400 days). The numbers in the upper left corner
show “spatial, temporal size” for each case. The number in the upper right corner in each
histogram shows the total number of cells. The red line shows the expected number for a purely
random distribution.
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Figure S2.3: The spatial distribution of anomalous p-values for possible semi-dirunal tidal
periodicity for M ≥ 2.5 seismicity bins over a range of spatial (0.2◦, 0.5◦, 1.0◦) and temporal
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the other p-values. Only cells with more than 10 events are plotted. The number in each panel
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Figure S2.4: The spatial distribution of anomalous p-values for possible semi-monthly tidal
periodicity for M ≥ 2.5 seismicity bins over a range of spatial (0.2◦, 0.5◦, 1.0◦) and temporal
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Red indicates p-values less than 0.05, yellow for p-values between 0.05 and 0.1 and gray for
the other p-values. Only cells with more than 10 events are plotted. The number in each panel
shows “(number of cells with p < 0.05)/(number of plotted cells)”.
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Chapter 3

Spatial decorrelation of tidal triggering

and remote triggering at the Coso

geothermal field

The triggering response of seismic fault systems to short- to mid-term (i.e., seconds to

months) stress fluctuations can improve our understanding of earthquake nucleation, rupture

failure processes, and local stress states. Geothermal fields are well known to be susceptible to

triggering effects, since the injection and extraction activities change the local stress and fluid flow

conditions within geothermal areas. Here, we examine two often-studied triggering responses at

very different time scales: tidal triggering by Earth tides (day to month) and remote triggering

by seismic waves (seconds), within the Coso geothermal field and its vicinity. Considering that

the triggered earthquakes are typically small, we take the advantage of the new quake template

matching catalog in southern California, which has nearly 2 times more events in the Coso region

and is complete to about magnitude 0.3, to examine the tidal and remote triggering. We observe

strong tidal triggering of earthquakes, but no remote triggering, within the Coso geothermal field

(CGF), even though the fluctuations of tidal stresses are significantly smaller than those of the
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passing seismic waves. The preferentially tidal triggered earthquakes occur near the time of the

maximum extensional tidal strain. A possible physical mechanism to interpret these two different

triggering responses is a fluid unclogging fracture process sensitive to long-period strain/stress

changes.

3.1 Introduction

A long-standing question in seismology is whether different periodic physical processes

can trigger earthquakes and what this implies for earthquake initiation mechanisms. The con-

tinental crust is thought to be in a state of incipient failure nearly everywhere (Zoback and

Zoback, 2002) and stress fluctuations can potentially push faults in a critical stress state to failure

(Gomberg et al., 1997; Hill and Prejean, 2007; Delorey et al., 2017), either directly or from

reductions in normal stress due to fluid transport and pore-pressure changes. If this is true,

widespread earthquake triggering should be observed if the stress perturbations are large enough.

Two of the most widely studied examples of stress fluctuations as possible earthquake

triggers occur at very different time scales. Dynamic triggering from the passing of seismic

waves from distant earthquakes occurs at scales of seconds to tens of seconds, whereas triggering

caused by Earth tides occurs over times of hours to days. Remote triggering from earthquakes

has been observed worldwide for over two decades, especially in geothermal and volcanic areas

(Hill et al., 1993; Gomberg and Davis, 1996; Prejean et al., 2004; Brodsky and Prejean, 2005;

Peng et al., 2010; Meng and Peng, 2014; Aiken and Peng, 2014). In contrast, searches for tidal

triggering of earthquakes have a much longer history, but positive results are still elusive (e.g.

Schuster, 1897; Vidale et al., 1998; Beeler and Lockner, 2003; Wang and Shearer, 2015). Most of

the well-documented tidal triggering examples are observed near-shore or offshore, where the

ocean loading term can be almost ten times larger than the solid Earth tide alone (Tsuruoka et al.,

1995; Cochran et al., 2004; Tanaka et al., 2002a, 2006; Métivier et al., 2009; Wilcock, 2009; Ide
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et al., 2016; Scholz et al., 2019). A robust statistical correlation between solid Earth tides and

earthquake occurrence on the continent is hard to detect and requires a large and complete catalog

(Métivier et al., 2009; Scholz et al., 2019).

Geothermal fields and volcanic areas are apparently more susceptible to triggering effects,

because of their active tectonic settings and the presence of fluid and/or magma. In commercial

geothermal fields, the continuous injection and extraction of fluids alters the stress state and fluid

flow conditions within the porous medium and complex fracture system (Martı́nez-Garzón et al.,

2013). Here we study the Coso region, which includes one of the largest geothermal plants in

the United States. It has been in operation since 1987 witha total of 270 MW of rated capacity

(Monastero, 2002). The Coso geothermal field (CGF) is located in eastern California between the

Sierra Nevada and Argus Ranges, in the transtensional stress regime between the strike-slip San

Andreas fault and the extensional Basin and Range province, subject to major strike-slip faulting

and some normal faults (Walter and Weaver, 1980; Reasenberg et al., 1980). Zhang et al. (2017)

report that remote triggering more likely occurs with the area surrounding the CGF rather than

within the CGF itself. We investigate both remote and tidal triggering within and near the CGF to

study the effects of the local stress state and fluid conditions on the triggering response.

3.2 Methodology

Both tidal and remote triggering studies require a large number of events to ensure

their statistical confidence (Harrington and Brodsky, 2006; Métivier et al., 2009; Scholz et al.,

2019). Recently, Ross et al. (2019) applied the template matching approach to detect 1.8 million

earthquakes in southern California, about a 10-fold increase from the Southern California Seismic

Network (SCSN) catalog (Yang et al., 2012). This enlarged catalog, with many more small events,

improves our ability to detect statistically significant earthquake triggering (Vidale et al., 1998;

Harrington and Brodsky, 2006). The completeness magnitudes in the CGF and its surroundings
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are 0.0 and 0.3, respectively, compared to 0.5 for the SCSN catalog (see Figures 3.1 & S3.1).

Tidal triggering studies often apply Schuster’s test for statistical significance. However,

this test assumes each event is independent, so the p-value can be biased by clustering effects in

the seismicity, i.e., aftershock sequences and earthquake swarms (e.g. Wang and Shearer, 2015),

which are not related to the triggering process. In this study, we apply two different methods

to decluster the catalog. We first use the Reasenbergdeclustering method (RDM) (Reasenberg,

1985), which identifies aftershocks by checking whether these events are statistically located

within the spatial and temporal interaction zone of a prior earthquake. The size of the interaction

zone increases with earthquake magnitude. Since there are some swarms in the Coso region

(Zhang et al., 2017) and RDM fails to identify and decluster the swarms, we apply the phase-bin

declustering method (PBDM) (Wang and Shearer, 2015) to the RDM-declustered catalog. The

PBDM declusters the catalog based on the tidal cycles, so it is only used for the tidal triggering

study. Each cycle is divided into several equal-size bins, and only the largest event in each bin is

kept. This processing removes the fully occupied cycles automatically in computing the p-values.

In this study, the solid earth tides are computed for the 2004 version of the Goddard Ocean Tide

Model (GOT4.7) plus a local model for the west coast of United States and British Columbia of

Canada, using the program SPOTL (Agnew, 1997, 2012; Ray, 1999). The PBDM is applied to

the synthetic tidal signals, which is dominated by the semi-diurnal periodicity.

Ideally, the geometry of the fault planes or the focal mechanisms of the triggered events

could be used to relate tidal stress fluctuations to the shear and normal stress changes on the faults.

However, faulting is complex in our study region and obtaining reliable focal mechanisms for the

tiny events that make up the bulk of our catalog is very difficult (Martı́nez-Garzón et al., 2013).

Therefore, we divide the study region into small cells (0.02◦×0.02◦) (see Figures 3.2 & 3.3),

in which it is likely that the earthquakes will have similar focal mechanisms (Hardebeck, 2006;

Wang and Shearer, 2015). These similar nearby events will be triggered at the same tidal phase

assuming the background tectonic stress state is almost uniform. To examine the correlation
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between solid Earth tides and earthquake occurrence, we apply Schuster’s test separately to the

events in each small cell (Schuster, 1897), using only cells containing more than 200 events to

ensure reasonable statistical confidence. For a random sequence, the Schuster’s p-value is defined

as

p = exp

(
−((

N

∑
i=1

cos(θi))
2 +(

N

∑
i=1

sin(θi))
2)/N

)
, (3.1)

where is the tidal phase for the i-th event and N is the total event number. We define the maximum

value of the tidal signal as occurring at 0 phase, i.e., dilatational strain in this study (see Figure

S3.2a]). The p-value indicates the estimated probability that the earthquake occurrence has no

correlation with the tidal phases. The 5%, i.e., 0.05, p-value is often used as a proxy to indicate a

significant correlation between Earth tides and earthquake occurrence. However, since Schuster’s

test may overestimate the significance (Cochran et al., 2004), to be conservative we require a

much lower p-value of 0.001 as a threshold to detect tidal triggering in our study region. Also,

similar to Cochran et al. (2004), we define the number of excess events (Nex) as the number of

events in the half cycle centered at the peak triggered tidal phase (see Figure S3.2b). The percent

of excess event is defined as, Rex = (Nex−N/2)/N. In Figure S3.1b, the Rex for the subarea A is

around 7%, while the tidal triggering is visibly apparent with p-values smaller than 0.001.

To examine remote triggering, we calculate the seismicity change within 10 days after

a large distant event relative to the background seismicity using β-statistics (Matthews and

Reasenberg, 1988; Reasenberg and Simpson, 1992; Kilb et al., 2000; Hill and Prejean, 2007;

Zhang et al., 2017). The beta-value is defined by the difference between the expected earthquake

number within the study time window and the reference background seismicity normalized by

the standard deviation of the expected seismicity. The beta-value is defined as,

β = [na−E(na;nb)]/
√

var(na;nb), (3.2)
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where E(na;nb) = nb(ta/tb) is the expected number during window ta based on the background

seismicity within tb and var(na;nb) = nb/(ta/tb) is the variance for a Poisson process. To facilitate

comparisons, we apply the same spatial gridding scheme as in the tidal triggering study. A β-

value larger than 2 or smaller than -2 indicates the remote triggering or not with 95% statistical

confidence.

3.3 Results

We first examine tidal triggering based on two different tidal signals, dilatational strain

(Figure 3.2 & 3.3) and tidal height (Figure S3.7). Both results indicate there is strong tidal

triggering, i.e. p < 0.1%, in part of the CGF, located where there is observed surface subsidence

and highly active seismicity (see Figure 3.2, 3.3, and S3.7). This anomaly is distinct from

its surroundings, as the only extreme low p-value region is located in the CGF. Based on the

spatial pattern of p-values, we divided the CGF into four subareas (see Figure 3.2c). Figure 3.2d

illustrates that subarea A shows strong tidal triggering, subarea B shows weak tidal triggering,

and the other two subareas have no clear tidal triggering behavior. After we remove the potential

swarms in this region using PBM, significant tidal triggering in subarea A is still present (see

Figure 3.3). In the CGF, about 95% of earthquakes are shallow (< 3 km) earthquakes and related

to geothermal operations. In CGF, about 95% of earthquakes are shallow earthquakes and related

to geothermal operation (Zhang et al., 2017). Tidal triggering is observed for the shallow events

alone (see Figure 3.3). We also designed several statistical tests to examine the spatial robustness

of this low p-value region (see supplement and Figures S3.4-3.6). The triggered dilatational

tidal phase in subarea A is around 0◦, implying triggering occurs at times corresponding to the

maximum dilatational stress.

Zhang et al. (2017) observed the absence of remote triggering in the CGF. They considered

magnitude 1.3 and greater events in the SCSN catalog, compared to magnitude 0 in the QTM
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catalog used here. We search for distant earthquakes from 2008 to 2017 with Ms ≥ 7, depth ≤

20 and epicentral distance > 100 km in the GCMT catalog (Dziewonski et al., 1981; Ekström

et al., 2012). The estimated peak-ground velocities (PGVs) in the CGF are required to exceed

0.02 cm/s (Prejean et al., 2004; Harrington and Brodsky, 2006). The PGV can be estimated using

the equation, , where Ms is the surface wave magnitude, A is the distance to the event, and T

is surface-wave period (Lay and Wallace, 1995). We find 5 events in the catalog meeting these

requirements (see Table S3.1). Of these, the 2010 El Mayor-Cucapah earthquake (Ms=7.3) is by

far the strongest, generating over 0.2 cm/s PGV. For this earthquake, the CGF and its subarea A

show no significant remote triggering within 10 days and 30 days after the event (see Figure 3.4).

In addition, the other 5 earthquakes do not trigger earthquakes remotely in this area (see Figure

S3.11-S3.14). Thus, using a greatly enhanced earthquake catalog our results confirm the absence

of remote triggering in the CGF reported by Zhang et al. (2017).

3.4 Discussion and Conclusions

In this study, we directly observe a frequency-dependent earthquake triggering behavior

in the Coso geothermal field. Compared to the reported tidal triggering in mid-ocean ridge or

subduction zone environments (Tsuruoka et al., 1995; Cochran et al., 2004; Tanaka et al., 2002a,

2006; Métivier et al., 2009; Wilcock, 2009; Ide et al., 2016; Scholz et al., 2019), our study finds

continental tidal triggering within the CGF but not its surroundings. However, detection of tidal

triggering at the CGF required the large number of low magnitude (M < 0.5) earthquakes in

the QTM catalog, as the SCSN catalog or QTM catalog cannot confirm a significant tidal signal

using only magnitude 0.5 or larger events (see Figure S3.8). We also attempted to explore the

triggering response of the Salton Sea geothermal field. Although we find some evidence for tidal

triggering near this field (see Figure S3.10), its significance is much less clear than at Coso, since

unfortunately the CalEnergy Subnetwort (EN) seismic network has been turned off since 2014
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(see Figure S3.9) and there are many fewer events to analyze. Therefore, we do not include any

discussion here for the Salton Sea field.

The continuous extraction of hot water and the injection of cold water into a geothermal

reservoir causes deflation of the reservoir. At the CGF, we observe that the tidal triggered

earthquakes preferentially occur around the maximum of the dilatation tidal stress. This result

is consistent with most events occurring on normal and strike-slip faults caused by deflation

of the geothermal reservoir, and which may be triggered by the dilatation stress (Fialko and

Simons, 2000; Yu et al., 2018). It should be noted that the tidal stresses on the continent are much

smaller than the dynamic stresses from passing seismic waves in remote triggering studies. The

peak dynamic stress can be estimated using the equation , where v is the PGV, c is the phase

velocity, assuming 3 km/s, and is the shear modulus, assuming 30 GPa, giving the stress for the

six earthquakes we studied as ranging from 2 to 20 kPa. The peak dilatational tidal stress is about

0.5 kPa estimated from the peak dilatation tidal strain, assuming a Poisson solid. The tidal stress

in the CGF is much smaller than the dynamic stress for the 2010 El Mayor-Cucapah earthquake

( 20 kPa). These frequency-dependent triggering behaviors shed light on the elusive mechanisms

of triggering. Zhang et al. (2017) proposed that an unclogging fracture process removes the

pore pressure gradient within the CGF and inhibits remote triggering. Under the unclogging

scenario, the fluid driven into the porous medium by the periodic dilatational strain can act as a

low-pass filter (Brodsky and Prejean, 2005). The pressure oscillation amplitude increases with

the periodicity of the dilatational stress. The higher pore pressure change reduces the effective

normal stress and enhances the probability of rupture failure, which can cause the geothermal

fields to be more susceptible to tidal stress rather than dynamic stress. Previous studies have

pointed out that long-period seismic waves trigger earthquakes more efficiently than short-period

seismic waves at similar stress levels (Brodsky and Prejean, 2005) and static stresses can trigger

local earthquakes even at smaller stress levels at the Long Valley Caldera geothermal field (Kilb

et al., 2002; Hill et al., 2003).
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Our study of remote triggering and dynamic triggering in Coso geothermal region is

the first direct observation of frequency-dependent triggering since Brodsky and Prejean (2005)

proposed a frequency-dependent triggering mechanism. Further analysis of catalogs with many

small events may help to resolve whether this triggering behavior is a universal phenomenon.
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Figure 3.1: Seismicity in the Coso geothermal field. (a) shows the seismicity in the CGF (blue)
and its surrounding area (black). (b) illustrates the Gutenberg-Richter law in the CGF and
its vicinity with triangles indicating the approximate completeness magnitudes. (c) plots the
temporal variation of completeness magnitudes (red line) in the CGF.
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Figure 3.2: Spatial variations in tidal triggering compared to observed vertical surface displace-
ment. (a) plots the p-value distribution for tidal triggering based on a 0.02◦ by 0.02◦ grid with
shifts of 0.01◦. (b) shows the surface displacement, as derived from InSAR data of Sentinel-1
between November 2014 and December 2017. (c) and (d) show four subsets of seismicity in
CGF and their corresponding tidal phase histograms and p-values.
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Figure 3.3: Maps of p-values, tidal triggering ratios, and triggered tidal phases in 0.02◦ by
0.02◦ grids with 0.005◦ shifts, with respect to the dilatational tidal strain. The top row shows the
results for the RDM catalog alone. The middle and bottom rows show results for the RDM and
PBDM catalogs, with the bottom row restricted to shallow events only (< 3 km).
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Figure 3.4: Estimates of seismicity rate changes and magnitude vs. time plots for subsets
of the Coso seismicity for the 2010 El Mayor-Cucapah (EMC) earthquake. (a) indicates the
beta test results in the CGF and its vicinity, and (b) shows the beta test in the black box. (c)
shows the seismicity in the four subsets in (b) within 200 days before the EMC earthquake to
100 days after it. The black dots indicate small earthquakes (M < 1), blue dots for moderate
earthquakes (1 < M < 4) and red dots for large earthquakes (M > 4). The red dashed line marks
the earthquake occurrence time and the two green lines mark 10 days and 30 days after the EMC
occurrence.
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3.5 Supplementary Materials

3.5.1 Statistical Tests

To examine the spatial robustness of this low p-value region, we randomly pick one

event and find the closest 200 or 500 events, then we apply PBM to this cluster and compute its

p-value. We run this process for 2000 times (> 1/0.001 to check the randomness of the extreme

low p-value). After repeating this process many times, the results indicate that the extreme low

p-values are almost all located in subarea A in the CGF (see Figure S4). In some cases, there

may be extreme low p-values outside CGF, however, considering the randomness of the p-values,

the robust spatial locations of the p-values are within the CGF region. The distribution of the

triggered tidal phase in subarea A and B of CGF are more uniform than the surrounding areas

(see Figure S4). Secondly, we randomly pick 5 years in the dataset and run the same process

described above to check the location of the extreme low p-values. The results are similar to the

whole dataset (see Figure S5). The spatial distribution of low p-values is generally more compact

for the 500 event clusters than the 200 event clusters, since more tidal triggered events in the CGF

dominate the p-values for the 500 event clusters. Finally, we compare the injection, projection,

and net production data with the declustered seismicity within the CGF. The correlations between

the seismicity and these parameters are very weak (see Figure S6), which has been reported by

Trugman et al. (2016). This indicates that the tidal triggering of earthquakes has no significant

modulation from anthropogenic activities.
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Figure S3.5: An Example of p-value distributions of 2000 randomly picked clusters from one
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Figure S3.6: Comparison of declustered seismicity rate and production, injection and net
production rate. The seismicity, production, injection, and net projection are normalized by their
maximum values.
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Figure S3.7: Maps of p-values, tidal triggering ratios and triggered tidal phases similar to Figure
3. The tidal phases in this plot are computed using the tidal height, rather than dilatational strain.
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Figure S3.11: Estimates of seismicity rate changes and magnitude vs. time plots for subsets of
the Coso seismicity for 2010 Gwaii earthquake.
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Figure S3.12: Estimates of seismicity rate changes and magnitude vs. time plots for subsets of
the Coso seismicity for 2010 Gwaii earthquake.
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Figure S3.13: Estimates of seismicity rate changes and magnitude vs. time plots for subsets of
the Coso seismicity for 2017 Chiapas earthquake.
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Figure S3.14: Estimates of seismicity rate changes and magnitude vs. time plots for subsets of
the Coso seismicity for 2013 Craig earthquake.
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Figure S3.15: Estimates of seismicity rate changes and magnitude vs. time plots for subsets of
the Coso seismicity for 2012 Baja earthquake.
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Table S3.1: Earthquakes for remote triggering

Date Time Ms Latitude Longitude Depth (km) Location

2010/04/04 22:40:43.0 7.3 32.30◦ -115.27◦ 6.0
El Mayor-Cucapah,

Mexico

2012/04/12 07:15:48.5 7.0 28.70◦ -113.10◦ 13.0
Baja California,

Mexico
2012/10/28 03:04:08.8 7.8 52.79◦ -132.10◦ 6.0 Gwaii, Haida
2013/01/05 08:58:19.3 7.7 55.39◦ -134.65◦ 6.0 Craig, US
2017/09/08 04:49:19.2 8.2 15.02◦ -93.90◦ 6.0 Chiapas, Mexico

58



Chapter 4

Using direct and coda wave envelopes to

resolve the scattering and intrinsic

attenuation structure of Southern

California

Characterizing scattering and absorbing properties and the power spectrum of crustal

heterogeneity is a fundamental problem for informing strong ground motion estimates at high

frequencies, where scattering and attenuation effects are critical. We perform a comprehensive

study of local earthquake coda waves in southern California to constrain scattering and intrin-

sic attenuation structure. We analyze data from 1195 spatially distributed earthquakes from

1981–2013 at source depths of 10 to 15 km and epicentral distances from 0–250 km with magni-

tudes larger than 1.8. We stack envelope functions from 28,127 vertical-component and 27,521

transverse-component seismograms, filtered from 2 to 4 Hz. We model these observations using a

particle-based Monte Carlo algorithm that includes intrinsic attenuation as well as both P- and

S-wave scattering and both single and multiple scattering events. We find that spatially averaged
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coda-wave behavior for southern California can be explained only with models containing an

increase in scattering strength and intrinsic attenuation within the uppermost crust, i.e., they are

poorly fit with half-space models of constant scattering strength. A reasonable fit to our data is

obtained with a two-layer model, composed of a shallow crustal layer with strong wide-angle

scattering and high P and S intrinsic attenuation and a deeper layer with weaker scattering and

lower intrinsic attenuation (top 5.5 km: αQI = 250, βQI = 125, heterogeneity correlation length a

= 50 m, fractional velocity heterogeneity ε = 0.4; lower crust: αQI = 900, βQI = 400, a = 2 km, ε

= 0.05).

4.1 Introduction

The seismic coda is a tail of scattered waves that follows direct arrivals in a seismogram.

Since the pioneering work of Aki and Chouet (1975), coda waves are known to be generated by

random heterogeneity in the Earth. In the ensuing decades, researchers have conducted a wide

variety of observational, theoretical and numerical studies of seismic coda waves and scattering

processes. Although most seismic analyses of Earth structure rely on observations of the travel

times and waveforms of direct seismic waves that travel along ray paths determined by Earth’s

large-scale velocity structure, coda waves, containing seismic energy scattered by smaller-scale

velocity or density perturbations, can be used to interpret high-frequency seismic signals. In

particular, the temporal decay of coda wave amplitudes provides important information about

scattering strength and attenuation.

Since Aki (1969) first interpreted coda waves using a single-scattering model, many

methods have been developed to relate seismic attenuation to coda wave properties. Attenuation

is characterized by the quality factor Q, whose reciprocal is the fractional energy loss per cycle of

the passing wave. Attenuation is caused by two factors: scattering and anelastic phenomena and

the total attenuation Q can be expressed as Q−1 = Q−1
I +Q−1

Sc , where QI and QSc are the intrinsic
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and scattering attenuation, respectively. Separating and determining the effects of scattering

and intrinsic attenuation has been of interest to seismologists for many years (e.g. Wu, 1985;

Frankel and Wennerberg, 1987; Wu and Aki, 1988; Hoshiba, 1991; Fehler et al., 1992; Carcolé

and Sato, 2010). Local and regional seismic attenuation structure is an important input for many

seismic applications and provides information to understand lithospheric properties and tectonics.

Attenuation is also a key input parameter for strong ground motion estimates and magnitude

versus yield relations for nuclear explosion monitoring.

Radiative transfer theory (RTT) is a widely used approach to model and separate the

effects of intrinsic and scattering attenuation. Based on RTT, Wu (1985) introduced a method for

determining both intrinsic and scattering attenuation, and Wu and Aki (1988) applied this approach

to estimate attenuation in the Hindu Kush region. The Monte Carlo method was introduced by

Gusev and Abubakirov (1987) and Hoshiba (1991) to numerically solve the radiative transfer

equation and simulate the temporal shape of the coda envelope function. Based on this approach,

Fehler et al. (1992) developed the Multiple Lapse Time Window Analysis (MLTWA) method

to study attenuation in the Kanto-Tokai region. In the following decades, the Monte Carlo

approach has been widely used to study scattering and attenuation structures throughout the Earth

(e.g. Margerin and Nolet, 2003a,b; Shearer and Earle, 2004; ?; Mancinelli et al., 2016). The

MLTWA method has also been employed to study intrinsic and scattering attenuation structure

in different regions (e.g. Fehler et al., 1992; Bianco et al., 2002; Lee et al., 2010; Carcolé and

Sato, 2010). Other recent studies have adopted RTT to resolve attenuation, especially scattering

attenuation, in the crust (Przybilla et al., 2006, 2009); in a volcanic region (Yamamoto and Sato,

2010). Non-isotropic scattering and conversion scattering between P and S waves can be readily

accommodated in Monte Carlo RTT simulations (Przybilla et al., 2006, 2009) and the mode

conversion and multiple scattering should be included to describe the seismic energy propagation

in the volcanic environments (Yamamoto and Sato, 2010).

Another approach considers coda attenuation QC instead of intrinsic and scattering attenu-
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ation (i.e., the coda-Q method). The coda energy decay can be expressed as

E(t, f ) = S( f )t−αe−2π f t/QC( f ) (4.1)

where E is the power spectrum, S is a frequency-dependent source term, t is the lapse time, f

is the frequency, α is a positive constant that is related to wave type (Aki and Chouet, 1975),

and QC is the coda quality factor. The frequency-dependent QC depends on both scattering and

anelastic absorption structure. In particular, at long lapse times, when coda waves are in the

diffusive regime, QC asymptotically approaches the intrinsic Q in a uniform half-space model

(Shapiro et al., 2000). This method provides another important parameter to measure and many

studies have mapped coda attenuation variations in different regions (e.g. Jin and Aki, 2005;

Mukhopadhyay and Tyagi, 2008; Calvet and Margerin, 2013).

Southern California is one of the most well-studied seismically active regions in the

world. For use in seismic hazard estimation, there are a variety of seismic attenuation models in

southern California obtained by different methods (Frankel et al., 1990; Aki, 1996; Raoof et al.,

1999; Hauksson and Shearer, 2006). Our goal in this study is to obtain spatially averaged high-

frequency full-waveform envelope functions and apply modeling to resolve the depth dependence

of scattering and intrinsic attenuation in southern California. We consider both vertical- and

transverse-component seismograms at a range of source-receiver distances, stack and average

the waveform envelope functions, which include direct P and S waves and their codas. We then

apply a Monte Carlo, particle-based method to forward model the envelope functions at different

distances. This method includes multiple non-isotropic scattering, conversions between P and S

waves and intrinsic attenuation, and is based on a realistic 1-D velocity model that yields accurate

P and S arrival times as well as Moho reflections. We obtain good fits to the data stacks with a

two-layer model of intrinsic attenuation and scattering properties.
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4.2 Dataset

We select local events from a relocated catalog Yang et al. (2012) from 1981 to 2013

and download waveform data using the Seismogram Transfer Program (STP) available from the

Southern California Earthquake Center (SCEC).

We use four criteria to select the seismic data:

1) To ensure good signal-to-noise ratios even at large epicentral distances, we only use

events with magnitudes larger than 1.8. This criterion is to guarantee that the signal-to-noise ratio

is high enough to characterize the seismic signals and coda wave decay. The seismic signals from

these events are generally recorded by multiple stations at a variety of azimuths, which helps

average out any focal mechanism effects.

2) We only select events at depths from 10 km to 15 km. This minimizes complications

due to strong scattering and lateral heterogeneity in the shallow crust and simplifies our modeling

by ensuring that travel times are approximately only a function of distance.

3) Since we want both vertical and transverse component records for our comparisons to

synthetics, we only use data from three-component stations.

4) Since our focus is on high frequencies, we only use the short period (EH) and broadband

(BH, HH) seismic channels.

Figure 4.1 shows the distribution of events and stations. To get a more uniform distribution

of sources than the original catalog, we apply the following criteria: First, we divide the catalog

into 0.1◦ wide cells. In each spatial cell, we keep all the events with magnitudes larger than

4.0. For events with magnitudes between 1.8 and 4.0, we separate the events into bins of 0.2 in

magnitude. In each magnitude bin, we select a single representative event, the one recorded by

the most stations. We store the waveforms using a -5 to 200 s window relative to the P arrival to

capture the entire waveform, including Moho reflections and the S coda.

All clipped seismograms are discarded. Waveform clipping is caused by instrument
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limitations at large amplitudes, and occurs most often when the epicentral distance is small and/or

the event magnitude is large (e.g. Yang and Ben-Zion, 2010). We use a simple algorithm to

detect the clipped waveforms. The basic idea is to check whether waveform peaks and troughs

have nearly the same value when they approach the extreme values of the traces. Within a 3-s

window centered on the maximum absolute value point, we find the values for the 10 highest

peaks and 10 lowest troughs. We then compute the mean and standard deviation (SD) of the

peak and trough values respectively. If the SD-to-mean ratio is less than 0.06, we discard the

seismogram as probably clipped (the 0.06 value was determined empirically for our dataset from

visual inspection of seismograms). In total, we flagged 2160 vertical components and 1217

horizontal components as clipped.

4.3 Data Processing and Methodology

4.3.1 Data Processing

At local and regional scales, seismic records vary considerably among different source-

receiver paths, especially at high frequencies. These differences contain valuable information

about lateral variations in velocity structure, attenuation, and scattering, but greatly complicate

data presentation and modeling efforts. Here we focus on a simpler problem: generating a

laterally averaged model of the average wavefield properties of direct and coda waves in southern

California, which we then attempt to simulate using a model with properties that vary only with

depth.

To process the data, we adopt the envelope-stacking method (e.g. Hedlin et al., 1997;

Shearer and Earle, 2008). Unlike conventional seismogram-stacking methods, this approach

discards phase information and only considers the energy in the seismograms. It is well suited

for coda-wave analysis because it does not require waveform coherence among the traces. By

stacking many records, we can improve the signal-to-noise ratio as well as average the energy
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radiated from different focal mechanisms, which simplifies the modeling by allowing us to ignore

the source focal mechanism. This method has been successfully adopted to interpret PKP and

PKKP precursors (Hedlin et al., 1997; Shearer et al., 1998; Mancinelli and Shearer, 2013) and P

coda (Shearer and Earle, 2004).

Before stacking, the seismograms are filtered at 2–4 Hz with a zero-phase, fourth-order

Butterworth filter and the envelope function is calculated. For each trace we estimate the noise

level from a 3-s time window before the P-wave arrival and the coda level from a 3-s time window

starting at twice the S-wave travel time. We require that the coda level be at least three times

larger than the noise level. We apply a noise correction by assuming that the noise is uncorrelated

to the signal, so that we can remove the noise energy from each trace. Before stacking, we

normalize the traces to their maximum amplitude in order to uniformly weight seismograms

from events of varying sizes. Because the peak amplitude may be less stable than time-averaged

amplitude measures, we also experimented with normalizing each trace to the average amplitude

in a 3-s time window centered on the peak amplitude. However, this alternate normalization led

to negligible differences in the final data stacks, so for simplicity we use the peak amplitude

normalization here. All the traces are aligned on the P-wave arrival and binned at 10-km intervals

in epicentral distance. These processes are applied to seismic signals from both vertical (V) and

transverse (T) components within 250-km epicentral distance. Note that surface waves are of

minor importance in our data set because of the deep sources (10 to 15 km), limited distance

range and relatively high frequencies (2 to 4 Hz).

Figure 4.2 (a) and (d) shows the stacked envelopes aligned on the P-wave arrival, which is

set to zero time. The V component stack clearly shows the direct P and S arrivals with coda waves

that decay with time. At distances beyond 200 km, the stacked envelopes are not as smooth as

at shorter distances, owing to fewer contributing seismograms. Compared to the V components,

the T components have a relatively larger S/P peak energy ratio, since the S waves have higher

amplitudes on the horizontal components and the P-wave energy is relatively weak.
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The stacking process does not include the absolute amplitude versus distance information,

which was removed by the amplitude normalization applied to the envelopes prior to stacking. To

consider this, we adopt the coda normalization method to compute the absolute amplitudes. The

basic idea is to use the coda wave at a fixed lapse time as a reference to calibrate the amplitudes

of the direct P and S waves. The peak amplitude of the direct wave, AD
i j( f ,r) can be expressed as

(Yoshimoto et al., 1993),

AD
i j( f , t) = Iθφr−γ exp

[
− π f

Q( f )V
r
]

Si( f )R j( f ) (4.2)

where Iθφ is the source radiation pattern, r is the hypocentral distance, γ denotes the geometrical

spreading exponent, Si is the i-the source spectral amplitude, R j describes the site effect of j-th

receiver, V indicates the average wave velocity, and Q is the average attenuation. In the logarithm

domain, we assume the peak amplitude is the summation of three terms:

log(AD
i j( f , t)) = log(Si( f ))+ log(R j( f ))+ log(Dk( f ,r)) (4.3)

where Dk is equal to Iθφr−γ exp
[
− π f

Q( f )V r
]
, which means the ray path term contains the radiation

pattern, geometrical spreading and propagation attenuation. Because our stacking approach

averages lateral variations and source radiation pattern effects in the observations, the ray path

term D( f ,r) is only a function of distance. The coda amplitude in the logarithm domain can be

expressed as (Aki and Chouet, 1975)

log(AC
i j( f , t)) = log(Si( f ))+ log(R j( f ))−α log(t)− −π f t

QC( f )
(4.4)

where the QC( f ) is the frequency-dependent coda attenuation. The lapse time should be long

enough to guarantee that the coda waves average the media variations and source radiation pattern
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effects. Comparing equation (3) and (4) and reordering the terms, we also have

log[
AD

i j( f )rγ

AC
i j( f , t)

] =C( f ,r) (4.5)

where the constant C( f ,r) is a function of distance and frequency based on our stacking approach.

Here we assume the geometrical spreading exponent γ = 1.

We used the coda normalization method to process the P- and S-wave amplitude of each

vertical peak component and the S-wave peak amplitude of the transverse component. A 3-s

time window starting from the P-wave arrival is used to measure the average P-wave amplitude

from the envelope functions. For the S waves, we search for the peak amplitude within ±5 s

around the predicted S-arrival time and use a 3-s window centered on the maximum value point

to measure the average S-wave amplitude. To estimate the coda wave amplitude, we use a 5-s

time window starting at lapse time 60 s for epicentral distances smaller than 100 km and 110 s for

epicentral distances larger than 100 km to ensure the lapse time is larger than twice the S-wave

travel time. Since the results of log10[
AD

i j( f )rγ

AC
i j( f ,t)

] from observations are rather scattered, we compute

the median value in each 5 km bin in epicentral distance. Figure 4.2 (b) and (e) illustrate that

the S-wave amplitudes gradually decrease with epicentral distance. It is noted that we compute

the coda-normalized peak amplitude using the hypocentral distance, but plot the results versus

epicentral distance. The jump of peak amplitudes at epicentral distance 100 km is caused by the

reference coda time window change at this distance.

4.3.2 Monte Carlo simulation

Monte Carlo simulation is a versatile and powerful approach for simulating scattering

in complex models. Gusev and Abubakirov (1987) first introduced the Monte Carlo method

in seismology to model S-wave scattering in a uniform whole space. Later work adopting this

approach is described by Hoshiba (1991, 1994, 1997), Margerin and Michel Capillo Van Tiggelen
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(2000), Yoshimoto (2000), Margerin and Nolet (2003a,b), and Shearer and Earle (2004). Although

there are some differences among applications of Monte Carlo methods, the basic idea of each

algorithm is similar. The source is modeled as spraying millions of seismic energy particles,

which can be tracked through the seismic velocity model using ray theory. The particles are

continuously subject to a scattering probability and tested for possible scattering events by using a

random number generator. During its propagation, the energy carried by each particle is reduced

by any intrinsic attenuation. Finally, the particles that reach the surface are counted and summed

in time-range bins as the total energy flux. To compare more directly with seismic records, the

energy carried by the particles may be decomposed into three components (vertical, transverse,

radial) based on the ray incidence angle. At the end of the calculation, all the time-range bins

can be converted to envelope functions to compare with real data. The Monte Carlo approach

obeys energy conservation and multiple scattering and geometric spreading effects are naturally

obtained.

Here, based on Shearer and Earle’s (2004) early work on modeling teleseismic P coda,

we develop a flexible Monte Carlo code that can be applied to simulations at different scales,

in particular to local and regional scattering problems. For such efforts, our algorithm has the

advantage of modeling P- and S-coda waves simultaneously, furthermore, it can constrain the

intrinsic and scattering attenuation for both P- and S waves, compared to some other methods such

as the multiple-lapse-time-window approach (MLTWA) (Fehler et al., 1992); coda normalization

method (Yoshimoto et al., 1993) and the coda-Q method (Hiramatsu et al., 2000), which only

compute or invert P- or S-wave attenuation separately. In addition, the Monte Carlo method can

handle realistic depth-dependent models, which can take into account the free surface, velocity

gradients in the crust, and the presence of the Moho discontinuity.

In a Monte Carlo simulation, the scattering probabilities and scattering angles can be

computed based on theoretical results for random heterogeneity models. The scattering strength

can be described as the mean free path (Sato et al., 2012). On the computer, this can be simulated
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by testing whether the ray path length of the particle exceeds a random length, obtained for

each particle and scattering volume by randomly sampling an exponential distribution based

on the mean free path. When a scattering event occurs, the scattering angle is again randomly

determined based on a physical model of the scattering medium. As in many previous studies,

we define the random medium using just two parameters, the correlation distance, a, and the

root-mean-square (RMS) fractional velocity fluctuation, ε. The scattering heterogeneity in the

medium can be statistically parameterized by the von Karman autocorrelation function (ACF)

(Sato et al., 2012, p. 23).

R(r) =
ε22(1−κ)

Γ(κ)
(

r
a
)

κ

Kκ(
r
a
) (4.6)

where r is the lag distance, a is the correlation distance, ε is the RMS fractional velocity fluctuation,

Γ is the gamma function and Kκ is the modified Bessel function of the second kind of order κ.

The 3-D Fourier transform of equation (6) gives the 3-D power spectral density function (PSDF)

(Sato et al., 2012, p. 23).

P(m) =
2π3/2Γ(κ+3/2)ε2a3

Γ(κ)(1+a2m2)k+3/2 (4.7)

where m is absolute value of the wave number and κ controls the relative proportion of large

and small scale heterogeneity. The P- to S-wave velocity ratio is assumed to be
√

3, i.e., a

Poisson solid, and the fractional P- and S-wave velocity fluctuations are assumed equal. The

density/velocity perturbation scaling factor is 0.8, which is estimated for the lithosphere from

Birch’s Law (Sato et al., 2012). Increasing this value will generally cause more back-scattering.

We assume a Bessel function order number κ of 0.3 for the simulation, which is within the range

of 0.0–0.5 used to describe crustal heterogeneity in previous studies (Frankel and Clayton, 1986;

Przybilla et al., 2009; Bydlon and Dunham, 2015; Savran and Olsen, 2016).

Shearer and Earle (2008) described the Monte Carlo approach in some detail. We note
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a few key points here. For efficiency, we pre-compute a large table of ray paths for both P and

S waves based on the velocity model for thousands of ray parameters. The energy particle’s

trajectories can then be estimated from this table without performing any ray tracing during

the main calculation. Similarly the reflection and transmission coefficients at each interface are

pre-computed at the same ray parameter values. When a particle hits an interface, a random

number is generated to compare with these coefficients to determine the behavior of this particle,

i.e., whether it is reflected or transmitted and/or converts from P to S, etc. S-wave polarities

are accounted for by tracking the SH/SV energy ratio. Distinct from the whole Earth case, for

regional models we define a maximum possible depth and ignore any particles that exceed this

depth. In this study, we do not model the Pn and Sn waves, since within this epicentral distance

range, their amplitudes are small compared to the direct P and S waves.

For our simulations, we assume a single point source at 13 km depth (our data stacks are

for events from 10 to 15 km depth). We assume an isotropic source, i.e., we do not consider

radiation pattern effects. We spray equal numbers of P-wave and S-wave particles, while setting

the S-wave particle energy to 14 times the P-wave particle energy, within the range of 9 to 17

observed in studies of P- and S-wave corner frequency (see Boatwright and Fletcher, 1984;

Abercrombie, 1995). Note that this is less than the theoretical ratio of 23.4 for a Poisson solid

and double-couple source with identical P- and S-wave corner frequencies. The initial polarity

of the S wave is randomly assigned. Because each simulation takes several hours to run and

our models contain many free parameters, we do not attempt a formal inversion. Instead, our

results are derived from trial-and-error forward modeling in an effort to find model parameters

that produce a reasonable fit to the observed data stacks.
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4.4 Results

We assume a smoothed version of a classic 1-D southern California velocity model shown

in Figure 4.4a (Hadley and Kanamori, 1977) for ray tracing. This model features a strong velocity

gradient in the upper crust (0–5.5 km), a weak velocity gradient in the lower crust (5.5–32 km)

and an upper mantle Pn velocity of 7.80 km/s.

We first attempted to fit our observations (i.e., the direct phase and coda wave envelope

stacks, including the range dependence of their absolute amplitudes), with uniform scattering and

intrinsic attenuation properties, i.e., a half-space scattering and attenuation model (combined with

the 1-D velocity model), and experimented with a variety of parameter choices. However, we

found that none of these uniform models could explain the time and range dependence of the

coda amplitudes seen in our data stacks. The problem is that relatively strong scattering (resulting

from strong heterogeneity, ε = 0.4,a = 50 m) and intrinsic attenuation (QP = 250,QS = 150) is

required to explain the coda amplitude and decay at short epicentral distances, but such strong

scattering will over-predict coda amplitudes at long distances. Similarly, relatively weak scattering

(related to weaker heterogeneity, ε = 0.05,a = 1.5 km, QP = 800,QS = 200) will fit the coda at

long distances, but will under-predict coda amplitudes at short distances. This is illustrated in

Figure 4.3, which compares transverse-component data stacks with predictions for half-space

models tuned to fit the short and long range data, respectively. Although there are a number of

free parameters in our model (e.g., ε and a, which determine scattering strength and scattering

angle; QP and QS, which set intrinsic attenuation), we have experimented with enough models

that we are confident that the data stacks cannot be fit over their entire time and distance range

with uniform scattering and attenuation properties.

Our preferred model (see Figure 4.4b and in Table 4.1), based on fitting both the envelope

shapes and their absolute amplitude versus distance, contains two layers, a shallow crustal layer

with strong wide-angle scattering and high intrinsic attenuation and a deeper layer with weaker
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scattering and lower intrinsic attenuation. We do not claim that this model is unique and it is

likely that alternate models (e.g., with more layers or with gradients in properties) exist that

could provide equal or better fits. However, to fit the data these models will almost certainly also

have stronger scattering and intrinsic attenuation in the uppermost crust than in the mid to lower

crust. The existence of strong scattering and attenuation at shallow depths has also been noted

in some previous studies (e.g. Anderson and Hough, 1984; Abercrombie, 1995; Chandler et al.,

2006; Hauksson and Shearer, 2006) and the Hauksson and Shearer (2006) Q model for southern

California has greatly increased attenuation within the top few kilometers of the crust.

The properties of our preferred two-layered attenuation model are shown in Figure 4b and

Table 4.1 and the predictions of this model are compared to the data stacks in Figure 4.4c. At the

scale of this plot, the fits appear good, but it is hard to compare the small amplitude signals at

long times. To better show the fit over the entire amplitude scale, Figure 4.5 shows a comparison

in log amplitude. In this case, the synthetics are seen to underpredict the data stacks at long

times for some of the closest range bins. This plot also makes clear that synthetics underpredict

the P amplitude observed on the transverse component stacks, although this mismatch occurs at

relatively low amplitude compared to other parts of the coda envelopes (see Fig. 4.4c). Because

we achieve a reasonably good fit to the P wavetrain on the vertical component, this suggests that

the P-wave transverse-to-vertical energy ratio in the real data is greater than in our synthetics.

One possible explanation is that large-scale 3D velocity structure in southern California causes

some bending of ray paths out of the vertical plane that defines P/SV arrivals in 1-D models, but

we have not yet attempted to test this idea.

However, these comparisons do not include absolute amplitude information, since that

information has been removed by the amplitude normalization applied to the envelopes prior

to stacking. To show this, we separately process the P- and S-wave peak amplitude of the

vertical components and the S-wave peak amplitude of the transverse components using the

coda normalization method in the Data Processing section. We compute log10[
AD

i j( f )rγ

AC
i j( f ,t)

] for each
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observed and synthetic envelope. Since the results from observations are rather scattered, we

compute the median value in each 5 km bin in epicentral distance. The comparison is shown in

Figure 4.6 and the overall fit of both P- and S-wave amplitudes to the model predictions is very

good within 200 km. In the next section, we will discuss possible sources for the misfits shown in

Figure 4.6.

In our preferred model, the interface between the upper and lower crust is at 5.5 km,

which matches the (Hadley and Kanamori, 1977) velocity model. For comparison, some southern

California attenuation studies have thinner upper crustal layers, i.e., 3 km from (Abercrombie,

1995) and 4 km from (Chandler et al., 2006). We find there is a trade-off between the scattering

strength of the upper crust and its thickness, i.e., thicker layers with weaker scattering could also

fit the data (a similar tradeoff was noted for the stronger upper-mantle scattering layer of Shearer

and Earle, 2004). In our simulations, thinner upper-crustal layers with more scattering could fit

the data almost as well as our preferred model, but fits degraded notably for layers less than 3 km

thick, as the strong P-wave coda and S-wave coda could not be fit simultaneously.

We selected our preferred model by finding the model with the best fit to both the

waveform envelopes and their absolute amplitude decay simultaneously. In doing so, we defined

a misfit measure err between the Monte Carlo simulations and the data using

err =
n

∑
i=1

m

∑
i=1

[
log10(di(t j))− log10(si(t j))

]2
+

l

∑
k=1

[
log10([

AD
obsrk

AC
obs

])− log10([
AD

synrk

AC
syn

])

]2

(4.8)

where si(t j) indicates the amplitude of the j-th time point for the i-th synthetic trace, di(t j) is the

corresponding data amplitude, n is the total number of stacked envelopes, m is the total number of

discrete time points for each envelope and k is the index of epicentral distance. AD and AC follow

the rules for coda normalization. The misfit function contains two parts, the relative difference of

the normalized waveform stacks between synthetics and real data and the difference in absolute

amplitudes based on the coda normalization method. We use a 60 s time window starting from
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5 s after the P-wave arrival to capture the main features of the P- and S-wave coda for vertical

components and a 30 s time window starting from 5 s after the S-wave arrival to capture the

main features of the S-wave coda for transverse components. From the trial-and-error forward

modeling, our preferred model has the minimum misfit err.

4.4.1 Comparison to body-wave attenuation studies

The non-dimensional parameter ak, where a is the correlation length and k is the wavenum-

ber, affects the directivity of scattering (Przybilla et al., 2009; Sato et al., 2012, p. 146). The

scattering is primarily in the forward direction for ak� 1 and relatively more in the backward

direction for ak� 1. When ak ≈ 1, the scattering is strongest because of the similar scales of

heterogeneity and seismic wavelength. However, the scattering patterns can be complicated and

depend on the specific parameter choices for the heterogeneous media model.

Attenuation studies based on spectral studies of body-wave phases are sensitive to the

combined effects of intrinsic and scattering attenuation, which we will term total attenuation.

Generally, the total attenuation, QT , can be computed from Q−1
T = Q−1

I +Q−1
Sc , where QI and QSC

are the intrinsic and scattering attenuation, respectively. The scattering attenuation is defined by

Q−1
Sc = g0v/ω (Carcolé and Sato, 2010; Sato et al., 2012, p. 66), where g0 = l−1 is the scattering

coefficient, which is the reciprocal of mean free path, ω is the angular frequency and v is the P- or

S-wave velocity. The scattering coefficient is a measure of both the scattering excitation and the

amplitude attenuation with distance.

In our upper-crust model, P- and S-wave ak are 0.14 and 0.24, respectively, resulting in

wide-angle scattering. The upper-crust P- and S-wave scattering attenuation is 192 and 133 based

on the mean free paths from our preferred model (see Table 4.1). Spectral analyses of direct P

and S arrivals have indicated strong attenuation in the upper 3 to 4 km in southern California

(Anderson and Hough, 1984; Abercrombie, 1995; Chandler et al., 2006). Abercrombie measured

αQ (P-wave Q) of about 27 at a borehole site and 50 at a nearby granite site. Values of βQ (S-wave
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Q), which is measured from broadband spectral analysis, of 21, 36, and 42 were obtained by

Abercrombie (1995), Chandler et al. (2006), and Anderson and Hough (1984), respectively. Our

model has higher Q values (e.g. 108 for P wave and 64 for S wave), likely because it represents

an average over the 5.5-km-thick upper layer and does not capture the lower Q values near the

surface.

In our lower-crust model, P- and S-wave ak are equal to 5.6 and 9.7, respectively, and

the scattering is mainly forward. In this case, much of the scattered energy will remain close

enough to the direct arrival that it will contribute to the direct-phase amplitude in observations

(Sato, 1982). Also, other effects like envelope broadening and diffraction can make the behavior

of peak amplitudes much more complex (Sato and Fehler, 2016). Thus it is not appropriate to

simply use the mean free path to define the scattering-attenuation contribution to direct-phase

attenuation. Indeed, our lower-crust model P- and S-wave mean free paths of 21 and 7.3 km,

respectively, would predict QSc values of 59 and 36 for P- and S-waves. These are much less than

Q estimates for the lower crust from body-wave studies (Jin et al., 1994; Hauksson and Shearer,

2006), even without taking into account any contribution from intrinsic attenuation. Instead, for

the lower crust, it is more appropriate to use the transport mean free path (Turner, 1998; Przybilla

et al., 2009) in computing the new Q∗Sc when computing the total Q, because it takes into account

the directionality of the scattering. The transport mean paths for P and S waves can be expressed

as (Turner, 1998; Przybilla et al., 2009),

lp
t =

g0
sp +g0

ss−gD
ss +g0

ps

(g0
ps +g0

pp−gD
pp)(g0

sp +g0
ss−gD

ss)−gD
psgD

sp
(4.9)

ls
t =

g0
ps +g0

pp−gD
pp +g0

sp

(g0
sp +g0

ss−gD
ss)(g0

ps +g0
pp−gD

pp)−gD
psgD

sp
(4.10)
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with

gD
i j =

1
4π

∮
gi j(θ,φ)cosθdΩ (4.11)

The transport mean free paths in our lower-crust model are 202 and 191 km, for P and S

waves respectively, much greater than the corresponding mean free paths, and result in the new

scattering attenuation Q∗Sc of 569 and 931 for P and S wave, respectively, where we use Q∗Sc to

avoid confusion with QSc, which is based on the mean free path. Our Monte Carlo modeling

approach was used in a previous global study of teleseismic P coda (Shearer and Earle, 2004).

Their preferred model had upper-mantle scattering (0–200 km) with a = 2 km and ε = 0.055 at

1-Hz, values comparable to the lower-crust and upper-mantle scattering parameters in our study

(although it should be noted that only the lower-crustal parameters are important for fitting our

data). Our lower-crustal total αQT of 349 and βQT of 280 differ from the average αQ of 500

to 900 and βQ of 600 to 1000 estimated by Hauksson and Shearer (2006) from direct P- and

S-wave spectra in southern California. In our modeling, we assumed that the intrinsic βQI and

αQI are related by βQI ≈ (4/9)αQI (Knopoff, 1971), which assumes a Poissonian solid and that

shear attenuation dominates over bulk attenuation (Qµ� Qκ). In contrast, Hauksson and Shearer

[2006] found βQ/αQ > 1, that is, less attenuation of S waves than P waves. We cannot explain

our coda data with such values. In our simulations, increasing lower crustal intrinsic βQI to 500

or decreasing αQI to 800 produces noticeably poorer fits to the data stacks. Our results greatly

prefer βQ/αQ ratios less than one, in which shear attenuation dominates.

Another coda-based method to estimate intrinsic and scattering attenuation is multiple

lapse-time window analysis (MLTWA) (Fehler et al., 1992). This approach was applied to

southern California by Jin et al. (1994), who obtained S-wave intrinsic βQI of about 200–300 and

scattering βQSc of 300–900 at 3 Hz. Our model contains S-wave intrinsic βQI of 125 and 400

for the upper and lower crust, respectively, and scattering βQSc of 133 and 931 for the upper and
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lower crust respectively. Note that this implies body-wave S-wave attenuation is dominated by

scattering in the upper crust, whereas lower crustal apparent attenuation is dominated by intrinsic

attenuation. Similar to S waves, in our model, the P-wave scattering αQSc of 192 in the upper

crust dominates over the intrinsic αQI of 250 and in the lower crust the intrinsic αQI of 900 is

more than the scattering αQSc of 569. Considering that the MLTWA method gives the average

attenuation over a station region, without taking into account any depth dependence, the Jin et al.

(1994) values are roughly consistent with our results.

4.5 Discussion

Since the earthquakes and stations are not evenly distributed in southern California, we use

a bootstrap technique (Efron and Tibshirani, 1994) to check the stability of the envelope-stacking

results. First, we evenly divide our study region using a 5 by 5 grid, i.e., 25 cells. We randomly

pick three cells and only stack the envelope records from the events in these cells. To ensure

the stability of the stacks, we only use stacks containing at least 10 records. This process is

independently run 30 times. For each binned distance, we estimate the standard error in the

stacked envelopes from the bootstrap results. The Figure 4.7 shows the 1-σ error of our stacking

results.

Overall, the fit between the real data and Monte Carlo synthetics shown above is fairly

good. However, there are some details that matter in the processing. Ideally, before comparing

real data with Monte Carlo simulations, the same data binning and stacking process should

also be applied to the synthetic results using the epicentral distance distribution seen in the real

data. Adopting this approach, we normalize each synthetic trace, multiply it by the appropriate

data epicentral distance distribution coefficient and stack the results. Figure 4.8 shows there are

significant differences between the resulting stacked synthetics and those for the single epicentral

distances. Within each stacking bin, the P- and S-wave differential arrival times vary with
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epicentral distance. During the stacking process, since the envelopes are aligned to the P-wave

arrivals, the S waves do not arrive at exactly the same time. As a result, the S/P amplitude ratio

becomes smaller, since the S-wave energy is not summed at the same time. In addition, both P-

and S- wave coda energy decays more slowly after stacking.

In the Monte Carlo simulations, we set κ in the von Karman ACF to 0.3. The parameter κ

controls the relative proportion of large and small scale heterogeneity and previous studies have

used κ = 0 to 0.5 to describe the crustal heterogeneity. There are two cases of special interest:

κ = 0 and κ = 0.5 for an exponential model. We experimented with κ values of 0.1, 0.3, 0.5

and 1.0 and obtained misfit err of 24.27, 21.76, 22.68 and 25.00, respectively. As a result, our

preferred value of κ is within 0.3 to 0.5. Better constraints on κ and the power spectrum of crustal

heterogeneity could be obtained by examining the frequency dependence of coda properties,

which will be a target of future work.

To constrain the correlation length a and the RMS fractional velocity fluctuation ε in

the von Karman model, we tested a series of values around our preferred model to generate the

synthetics. When we computed the Monte Carlo simulations, we set κ = 0.3 and kept the intrinsic

attenuation the same as our preferred model. The misfit err are computed and listed in Tables 4.2

and 4.3. For the upper crust, our preferred RMS fractional velocity fluctuation ε is within 0.4 to

0.45 and the correlation length a is within 45–50 m. For the lower crust, ε is within 0.045–0.055

and a is within 1.8–2.2 km. Since the results from the Monte Carlo simulations suffer slight

random perturbation around the true ones for each model run, the misfit err may fluctuate a little

around its true value.

In Figures 4.4 and 4.5, to compare the synthetic results and real data, the P-wave arrival

time is added to each trace of real data and then each trace is adjusted to match the S-wave peaks.

For both the V and T components, the arrival-time differences between P and S waves show the

discrepancy, especially at large distance. In ray tracing, at large distances (>150 km), the direct

P- and S-wave travel times mainly depend on the structure of the lower crust and upper mantle
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where the major part of the propagating ray path is located. Our 1-D depth-dependent model

may depart from the real Earth due to lateral velocity variations beneath southern California (e.g.

Tape et al., 2010). These two factors likely both contribute to the travel-time discrepancy. There

are double S-wave peaks in the synthetic envelopes from about 50 to 80 km in both the V and T

components, which are not seen clearly in the data stacks. The secondary peaks are caused by

the critically-reflected S-wave from the Moho discontinuity. In southern California, the S-wave

impedance contrast may not be consistently as large as in our model for computing the synthetics.

In addition, the depth of the Moho discontinuity varies across southern California. Both of these

factors will tend to remove from the data stacks the second S-wave peak seen in the synthetics.

In the stacking procedure, we normalize each envelope with respect to the largest energy

peak, which usually is the S-wave energy. The comparison of vertical components in Figure 4.4

shows a systematic discrepancy of the P-wave peak amplitude. In comparison to the data stacks,

at small distances, our simulation has smaller amplitudes, while at large distances, the simulation

shows larger amplitudes. In Figure 4.6, we compare the P- and S-wave peak amplitudes. Some

discrepancies exist, especially near epicentral distance 60 km and beyond 200 km. In the Monte

Carlo simulation, both the velocity and attenuation structures are 1-D depth dependent and the

scattering strength is uniform within each layer. These discrepancies may be due to the influence

of unmodeled 3-D variations in velocity, scattering, and/or attenuation in southern California (e.g.

Aki, 1996; Hauksson and Shearer, 2006; Tape et al., 2010). It is possible that other complications

in the real Earth are important, such as statistical anisotropy (e.g., different horizontal and vertical

small-scale heterogeneity strength or scale length) or stronger scattering in near-source regions

due to earthquakes occurring in more fractured crust. However, despite the limitations in our

model, it provides a reasonable first-order approximation to the 1-D scattering and attenuation

structure in the southern California crust as resolved in P and S-wave coda at 2–4 Hz. In future

work, we hope to explore perturbations to this model by considering lateral variability and other

factors.
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In this study, the scattering coefficients for the random elastic heterogeneity in the Monte

Carlo simulation are computed based on the Born Approximation, which using first-order pertur-

bation theory. The Born Approximation assumes that the primary wavefield is unchanged and the

perturbed wavefield is small (Aki and Richards, 1980, p. 742). Unlike some Born methods, our

approach does account for the amplitude reduction in the primary wavefield that occurs from one

or more scattering events. However, our preferred lower-crustal model RMS fractional velocity

fluctuation ε is 0.4, a large value that could cause the small perturbed wavefield assumption to

fail locally to describe the scattering and result in a discrepancy between the strength of the

computed scattering coefficients in this study and the true ones. This problem needs to be tested

by other methods. Thus, while our modeling shows that the upper crust must have much stronger

scattering than in the lower crust, the exact value of ε required to produce the scattering has some

uncertainty.

4.6 Conclusions

In summary, we apply an envelope-function stacking method to resolve the time and

range dependence of spatially averaged direct and coda wave amplitudes at high frequencies

(2–4 Hz) across southern California, including the P- and S-wave coda decay rates and their

relative amplitude information. We model the data stacks using energy-conserving and multi-

scattering regional Monte Carlo simulations. The synthetic results show the southern California

region has depth-dependent scattering and attenuation properties and seismic observations can

be reasonably fit with a two-layered model composed of a shallow crustal layer with strong

wide-angle scattering and high intrinsic attenuation and a deeper layer with weaker scattering and

lower intrinsic attenuation.
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Figure 4.1: Locations of earthquakes and stations used in this study. The event epicenters are
shown as black dots and the station locations are shown as red triangles. Quaternary faults are
depicted as light black curves.
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Figure 4.2: Stacked envelope functions, peak amplitudes of S waves and number of contributing
traces versus epicentral distance. (a) & (d) show the stacked envelopes aligned on their P-wave
arrivals, defined as zero time. (b) & (e) show the logarithmic S-wave peak amplitudes decrease
with distance and the mean value is removed. The histograms in (c) & (f) show the number of
traces in each stack, note the log scale.
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Figure 4.3: Examples of uniform half-space intrinsic and scattering attenuation models that
can fit the data stacks at long ranges (left) or at short ranges (right). The black lines show the
data stacks and the red lines show synthetics computed using the Monte Carlo method. The
left model has relatively weak scattering and attenuation, which is required to fit the data at 50
to 100 km range, but underpredicts the coda amplitudes at close ranges. The right model has
relatively strong scattering and attenuation, which is required to fit the data at 0 to 30 km range,
but overpredicts the coda amplitudes at long ranges.
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Figure 4.4: Our preferred model for the Monte Carlo simulation and the synthetic results
compared to the data stacks. (a) the 1D intrinsic and scattering attenuation model. (b) and (c)
synthetic results compared with real data for the vertical components, respectively. The red lines
are the synthetic predictions; black lines are the data stacks.
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the synthetic predictions; black lines are the data stacks. The decaying amplitude before the
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on the coda normalization method. Red dots show the data and the blue dashed line shows
predictions of the Monte Carlo method applied to a layered scattering model. The shift at 100
km occurs because of a change at that distance in the lapse time used for the normalization (see
text). The black lines show the median values of the data binned every 5 km. (a) P-wave peak
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Table 4.1: Model parameters, including layer thickness (∆z km), correlation length (a m), rms
perturbation (ε), intrinsic Q (αQI and βQI), scattering Q (αQSc and βQSc), the new scattering Q∗

(αQ∗Sc and βQ∗Sc), and total Q (αQT and βQT ).

Layer ∆z a ε αQSc
αQ∗Sc

αQI
αQT

βQSc
βQ∗Sc

βQI
βQT

upper crust 5.5 50 0.4 192 161 250 108 133 108 125 64
ower crust 26.5 2000 0.05 59 569 900 349 36 931 400 280

Table 4.2: Misfit error table with correlation length (a) and rms perturbation (ε) of the upper
crust.

a
ε

0.3 0.35 0.4 0.45 0.5

40 27.30 24.94 23.45 22.35 21.99
45 25.02 23.31 22.17 21.58 22.34
50 23.44 22.07 21.76 22.56 24.21
55 22.53 21.77 22.54 24.04 26.25
60 22.30 22.43 24.13 26.60 29.15

Table 4.3: Misfit error table with correlation length (a) and rms perturbation (ε) of the lower
crust and upper mantle.

a
ε

0.04 0.045 0.05 0.055 0.06

1.6 26.67 25.78 26.38 27.15 27.36
1.8 24.40 23.72 23.91 24.16 23.69
2.0 23.40 23.14 21.76 23.22 23.44
2.2 23.24 22.94 24.16 24.28 23.54
2.5 24.61 24.77 25.44 25.79 25.86
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Chapter 5

An Improved Method to Determine

Coda-Q, Earthquake Magnitude and Site

Amplification: Theory and Application to

Southern California

Seismic coda waves can be used to constrain attenuation, estimate earthquake magnitudes,

and determine site amplification factors. We have developed a new multi-station and multi-event

method to determine these three important seismic parameters simultaneously. We analyze 642

representative local (≤ 100 km) and shallow (≤ 20 km) earthquakes with catalog magnitudes

between 1.8 to 5.4 in southern California at multiple frequency bands centered at 1.5, 3, 6, and

12 Hz. We find that the length of the moving-average time window can affect the measurement

of coda attenuation QC, but our tests indicate that the optimal window length is about 15 times

the dominant data period. We use linear regression to fit each coda section and use only those

portions that agree with the model decay rate with a correlation coefficient larger than 0.9. For a

frequency-dependent coda-QC model (QC = Q0 f n) at 1 Hz reference frequency, our results yield
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estimates for Q0 and n of 107–288 and 0.42–1.14, respectively. Our coda magnitude estimates

are linearly correlated with catalog magnitudes, and our observed lateral variations in coda-QC

and our site amplification factors are in general agreement with previous results, although there

are notable differences at some locations. This approach provides a unified, accurate and stable

method to measure coda-QC, earthquake magnitude, and site amplification using coda waves of

locally recorded earthquakes.

5.1 Introduction

Since Aki (1969) and Aki and Chouet (1975) first interpreted coda waves using a single-

scattering model, many methods have been developed to relate seismic attenuation to coda wave

properties. Attenuation is characterized by the quality factor Q, whose reciprocal is the fractional

energy loss per cycle of the passing wave. The coda energy decay can be expressed as

E( f , t) = S( f )R( f )t−αe−2π f t/QC( f ) (5.1)

where E is the power spectrum, S is a frequency-dependent source amplitude term, R is a

frequency-dependent station amplitude term, t is the lapse time, f is the frequency, α is a positive

constant that is related to geometrical spreading and wave type (Aki and Chouet, 1975), and QC

is the coda quality factor. Some studies indicate the value of coda attenuation, Q−1
C , correlates

with tectonics. High Q−1
C values are observed in active regions and low values in stable regions

(e.g. Singh and Herrmann, 1983; Hoshiba, 1993; Mitchell et al., 1997; Hiramatsu et al., 2000; Jin

and Aki, 2005; Sato et al., 2012).

The properties of QC are of great interest. Rautian and Khalturin (1978) first observed that

the measured QC depends on the lapse time, and ensuing studies reported an increase of QC with

lapse time all around the world (e.g. Phillips and Aki, 1986; Ibanez et al., 1990; Hiramatsu et al.,

2000; Carcolé and Sato, 2010; Calvet and Margerin, 2013). Another research question is whether
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there are temporal changes in QC associated with seismicity. Some studies found evidence that

coda attenuation QC may change prior to earthquakes (Jin and Aki, 1988; Su and Aki, 1990,

e.g.), and others observed a change of QC just before or after the earthquakes (e.g. Peng et al.,

1987; Tsukuda, 1988; Wang et al., 1989; Huang and Kisslinger, 1992). However, other studies,

including several that used similar earthquake pairs, have not obtained clear temporal changes in

coda QC (e.g. Huang and Wyss, 1988; Woodgold, 1994; Beroza et al., 1995; Hellweg et al., 1995;

Aster et al., 1996; Tselentis, 1997; Sumiejski and Shearer, 2012).

The physical meaning of coda-Q has also been widely discussed. Several studies have

shown that coda waves are predominantly composed of scattered S waves (Aki and Chouet,

1975; Tsujiura, 1978; Kato et al., 1995). Coda attenuation contains contributions from both

scattering attenuation and intrinsic attenuation and separating these two factors is a long-standing

problem in seismology. There are two end-member models used to interpret coda attenuation,

the single scattering model and the diffusion model. The single scattering model predicts that

coda attenuation is a combination of scattering and intrinsic attenuation, Q−1
C = Q−1

Sc +Q−1
I ,

while the diffusion model shows that QC asymptotically approaches the intrinsic attenuation QI

at increasing times in the coda wavetrain in a simple uniform half-space (Shapiro et al., 2000).

Another studies (Yomogida et al., 1997; Margerin et al., 1998, 1999; Wegler, 2004) use more

complex but more realistic layer model to study the QC and indicate the relation between QC and

intrinsic and scattering attenuation structure is complicated. Margerin et al. (1998) first points

out the ‘leakage effect’, which significant affects QC in the layered models in the low-frequency

range.

Determining the sensitivity of coda-Q to both scattering and intrinsic attenuation is an area

of active research (Wennerberg, 1993; Margerin et al., 1998, 1999), in which advanced simulation

methods such as radiative transfer are applied to more realistic depth-dependent models than the

simple models that motivated early coda research (Wang and Shearer, 2017). We do not address

these issues here, as we adopt an empirical approach to examine the origin of coda-Q variations
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in southern California, without attempting to resolve specific physical models that can explain

coda-Q and its variations. We hope, however, that improved observational constraints on coda-Q

will inform future modeling by identifying interesting signals to be explained, in particular the

scale length of coda-Q variations and whether they are more coherent when mapped to station or

source locations.

Earthquake magnitude is an important parameter for a variety of investigations. Current

methods to determine magnitude depend on the amplitude of body waves, or on coda duration

and/or amplitude (Lee et al., 1972; Herrmann, 1975; Archuleta et al., 1982; Bakun, 1984; Eaton,

1992; Mayeda et al., 2003; Sens-Schönfelder and Wegler, 2006; Denieul et al., 2015; Hawthorne

et al., 2017). However, estimated magnitudes from body-wave amplitudes can be biased by

the source radiation pattern and raypath focusing and defocusing anomalies (Mayeda et al.,

2003). Since coda-wave magnitudes were first implemented by Johnson (1979) and Suteau and

Whitcomb (1979), coda-wave magnitudes have proven to be more stable compared to other

methods (Mayeda and Walter, 1996; Mayeda et al., 2003), as scattering tends to average out much

of the spatial variability seen in direct-wave amplitudes.

Understanding and measuring site amplification is a fundamental problem for seismolo-

gists and earthquake engineers and helps to improve strong ground motion estimates. Since the

late coda is dominately shear waves, the site amplification of coda waves closely approximates

that of direct shear waves (Tsujiura, 1978; Phillips and Aki, 1986; Kato et al., 1995). By com-

paring results from direct shear waves and coda waves, Tsujiura (1978) and Tucker et al. (1984)

argued that coda waves provide a more stable estimate of site effects, because the coda waves are

composed of scattered seismic waves from different directions and average the heterogeneities

around the source and receiver.

Based on a variety of research goals, previous studies have developed different methods to

measure coda Q, source amplitude terms (e.g., magnitude), and site terms (e.g. Boatwright et al.,

1991; Mayeda and Walter, 1996; Prieto et al., 2004; Shearer et al., 2006; Eulenfeld and Wegler,
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2016). Starting with equation (5.1), most studies have attempted to separate the three terms,

eliminate two of them and solve for the remaining term of interest (i.e., most coda-Q studies

remove the source and station terms and then use linear regression to fit the coda energy decay).

Dewberry and Crosson (1995) focus on the earthquake source by first fitting for coda-Q from

individual records and then using least-squares inversion to solve for the best-fitting source and

station amplitude terms, assuming the single scattering model. Mayeda and Walter (1996) used an

empirical raypath correction based on 2-D multiple scattering to estimate the coda magnitude and

spectra. Later, Eulenfeld and Wegler (2016) developed an improved method to fit the envelopes

of direct S wave and S coda to resolve source amplitude terms and site terms, together with

attenuation terms (intrinsic and scattering attenuation), and applied this method to data from

USarray (Eulenfeld and Wegler, 2017). They used an analytic approximate solution of 3-D

isotropic radiative transfer theory (Paasschens, 1997) to model the scattering effect to separate

intrinsic and scattering attenuation.

Southern California is one of the most well-studied seismically active regions in the world

and has seen a variety of studies on seismic attenuation structure (Frankel et al., 1990; Mayeda

et al., 1991; Aki, 1996; Raoof et al., 1999; Hauksson and Shearer, 2006; Wang and Shearer,

2017; Lin and Jordan, 2018) and source properties and site effects (Boatwright et al., 1991;

Kato et al., 1995; Su and Aki, 1995; Ben-Zion and Zhu, 2002; Prieto et al., 2004; Shearer et al.,

2006; Trugman and Shearer, 2017). Here, based on equation (5.1), we invert the data to resolve

simultaneously the coda attenuation QC, the source amplitude terms, and the station amplitude

terms, assuming the multiple scattering model from late S coda (> 2 times S travel time). To

reduce the size of the inverse problem, we show how to set up a simplified problem with many

fewer time points than the original data, but which produces the same L2-norm solution. To

consider lateral variations in the attenuation structure in southern California, we introduce a

source-side attenuation term together with the conventional station attenuation term to describe

the coda energy decay. We show how our source amplitude term estimates can be related to coda
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magnitude and compare our coda attenuation and site amplification terms to those obtained in

previous studies.

5.2 Data Selection and Proceeding

5.2.1 Data Selection

We select local events from a relocated catalog (Yang et al., 2012) from 2000 to 2013

and download waveform data using the Seismogram Transfer Program (STP) available from

the Southern California Earthquake Center (SCEC). We use only events shallower than 20 km

and stations at less than 100 km epicentral distance (to focus on body waves). We require

three-components (either short-period (EH) or broadband (HH, BH) seismometers), since we

compute the smoothed energy densities based on vector summation of the three components. The

seismograms are generally sampled at 100 Hz.

Most coda-Q studies have examined station-averaged coda-Q, requiring a minimum

number of recorded events at each station to obtain stable estimates. For our multi-station and

multi-event method (MSMEM), we also require both a minimum number of stations recording

each event and events recorded by each station, and have found that a threshold of 10 events per

station and 10 stations per event is enough to yield stable results. We filter the seismograms with

a 4th-order zero-phase Butterworth filter at the following octave frequency bands: 1–2, 2–4, 4–8

and 8–16 Hz. For each trace, we estimate the noise level by using the energy densities in a 3-s

time window before the P-wave arrival and the coda level from a 40-s window starting at the 50-s

lapse time used to measure the coda attenuation at each frequency band. We require that the coda

level be at least five times larger than the pre-event noise level.

96



5.3 Methodology: Multiple Station and Multiple Event

Method

5.3.1 Single Station and Multiple Event Method

Even if the dependence of measured coda attenuation QC on the components is weak,

the site amplifications between vertical and horizontal components may be different (Kato et al.,

1995). We directly measure coda attenuation QC from the energy densities. We rewrite equation

(5.1) as

Ei j( f , tk) = Si( f )R j( f )t−α

k e−2π f tk/QCi j , (5.2)

where Ei j indicates the energy density of the coda wave, Si indicates the i-th source amplitude

term, R j indicates the j-th station amplitude term, and QCi j is the quality factor of the coda wave

for the raypath between the i-th source and j-th station. To implement linear inversion, we take

the natural logarithm and obtain

ei j( f , tk) = si( f )+ r j( f )+(−α) log(tk)+
−2π f

QCi j( f )
tk (5.3)

where ei j, si and r j denote logEi j, logSi and logR j, respectively.

Conventional methods measure the coda attenuation QC from the waveforms by only

considering the time-dependent terms in equation (5.3). Assuming the geometrical spreading

term α is a constant, e.g., α is set to 2 for body-wave coda studies, assuming the single scattering

model (Aki and Chouet, 1975; Dewberry and Crosson, 1995; Carcolé and Sato, 2010). In this

study, we use α = 1.5 estimated from 3D diffusion theory in a whole space (Paasschens, 1997;

Margerin et al., 1998). We find that the choice of α does not effect the results significantly (see
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discussion). We can express (3) as

bi j( f , tk) = ei j( f , tk)+α log(tk) =Ci j +
−2π f

QCi j( f )
tk (5.4)

in which we subtract −α log(tk) from our original coda power time series, a(t), to create a new

time series, b(t) which has been corrected for geometrical spreading. For each b(t), we can

apply simple linear regression to solve for the best-fitting amplitude factor C and slope param-

eter −2π f/QC. This provides a separate coda attenuation estimate Q−1
C for each seismogram.

Assuming that much of the variation Q−1
C is caused by near-station differences, the values Q−1

C

obtained at each station can be averaged to obtain a measure of the average attenuation proper-

ties around the station (Jin and Aki, 1988; Aki, 1996; Carcolé and Sato, 2010). We term this

commonly-applied approach the Single Station and Multiple Event Method (SSMEM). Notice

that by replacing the separate event and station amplitude factors si and r j in equation (5.3) with

a seismogram-specific scaling factor, Ci j, the model now has many more free parameters.

Previous studies have shown that the coda attenuation QC increases with lapse time

but eventually settles at a stable value (Rautian and Khalturin, 1978; Phillips and Aki, 1986;

Yoshimoto and Jin, 2008; Carcolé and Sato, 2010; Calvet and Margerin, 2013). However, the

required lapse time for convergence is hard to determine precisely. It depends on a variety of

factors, such as the frequency band and source location. There are two main approaches to

setting the minimum lapse time for data analysis. One is to use the lapse time αr/v, where α is a

time-lapse coefficient, always set to 2 (Hiramatsu et al., 2000; Carcolé and Sato, 2010; Calvet

and Margerin, 2013), r is the epicentral distance, and v is the average crustal shear-wave velocity.

The coda waves after twice the shear-wave travel time are considered independent of the source

mechanisms and affected only by the multiple scattering behavior. Another strategy is to use

a constant lapse time, but long enough to ensure that the coda waves suffer enough scattering

during the propagation (Kato et al., 1995; Calvet and Margerin, 2013). A further complication is
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that the coda attenuation measurement also depends on the length of the time window. Given

the scatter in real data, a too-short window cannot reliably determine the coda-decay rate, but a

too-long window may extend into the low signal-to-noise regime where the coda begins to merge

back into the background noise. Here, we use a 40-s-long time window starting at a lapse time of

50 s. Note that 50 s is slightly more than twice the S-wave travel time at the maximum epicentral

distance of 100 km and that our signal-to-noise selection criteria should ensure that we are still

resolving coda power at 90 s.

The squared seismograms are smoothed with a moving-average window. The length of

the appropriate moving window depends on the frequency band (Phillips and Aki, 1986; Carcolé

and Sato, 2010; Calvet and Margerin, 2013). The choice of averaging length can affect the

measurement of coda attenuation QC. Most previous studies define the length as a function

of the central frequency of the frequency band, TW = a/ f , where f is the central frequency

and a is an adjustable parameter. If a is too large, the coda decay rate will change because of

over-smoothing; on the other hand, if a is too small, near-zero values may persist in the coda

window, which will bias the fits in the log domain. In this study, a is assigned 15, comparable

to Phillips and Aki (1986) and Calvet and Margerin (2013). We use linear regression to fit

each smoothed coda wave and only those portions that agree with the model decay rate with a

correlation coefficient larger than 0.9 are used for later analyses. The coda waves with positive

coefficients (i.e., their amplitudes grow with time and QCi j < 0) are discarded. This procedure

serves to remove observations contaminated by aftershocks, noise spikes, or other effects.

5.3.2 Multiple Station and Multiple Event Method

Because our goal is to solve for both source amplitude terms and station amplitude terms

together with coda attenuation, we model Ci j in equation (5.4) as a sum of a source amplitude
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term si and station amplitude term r j. For one coda record at frequency f we have



bi j(t1)

bi j(t2)
...

bi j(tk)


=



ei j(t1)

ei j(t2)
...

ei j(tk)


+



log(t1)

log(t2)
...

log(tk)


α =



1

1
...

1


si +



1

1
...

1


r j +



t1

t2
...

tk


−2π f
QCi j

(5.5)

The decay rate depends only on the average medium properties of the crust sampled by the coda

waves. These properties of coda waves offer an alternative approach for studying the source and

site effects on high-frequency seismic waves. Local coda waves are likely backscattered S waves

from heterogeneities distributed in a volume surrounding the source and receiver (Tsujiura, 1978;

Aki, 1980; Mayeda et al., 1991; Koyanagi et al., 1992). This explains why local S-wave coda

records decay at a similar rate for all source-station pairs within a localized region. However, our

study region in southern California is large enough that lateral variations in attenuation structure

are apparent, so modeling coda decay variations only as a function of the station location, as in the

SSMEM method, may be insufficient. Because the coda decay rates at a single station can vary

(see Figure 5.2) at all frequency ranges, we introduce another attenuation term, the source-side

attenuation term. Equation (5.5) is rewritten as



bi j(t1)

bi j(t2)
...

bi j(tk)


=



1

1
...

1


si +



1

1
...

1


r j +



t1

t2
...

tk


−2π f
QS

Ci
+



t1

t2
...

tk


−2π f
QR

C j
, (5.6)

where QS
Ci is the i-th source-side coda attenuation and QR

C j is j-th station-side coda attenuation.

We combine the records from different stations and different events and rearrange equation

(5.6) as d=Gm. The G matrix is large and sparse, but in principle solvable using sparse-matrix
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least-square methods. However, each data vector bi j(tk) contains a 40-s waveform (i.e., 4000

discrete time points), which when combined with many different events and stations, results in a

very large inverse problem. To reduce the size of the problem, we define a corrected data vector

b̂i j(tk) = êi j(tk)+α log(tk), where êi j(tk) is the best fitting ei j(tk) by using equation (5.4). In the

appendix, we prove that the new inverse problem has the same L2-norm solution as equation (5.6).

Since the fit to the data vector is controlled by only two parameters, we can greatly reduce the

size of the corrected data vector. In this study, we use just 2 points to represent each waveform

instead of 4000 points.

5.3.3 Error Estimation

Based on the least-squares solution, the misfit function is defined as,

err =

√
∑i, j,k(b̂i j(tk)− si− r j +2π f tk/QS

Ci +2π f tk/QR
C j)

2√
∑i, j,k b̂2

i j(tk)
. (5.7)

where i is the index for the source, j for the station and k for the time series. The least-squares

method finds the parameters that minimize err. However, to avoid biasing the solution with

anomalous data (outliers) we exclude some of the data as follows. We define a reference misfit

based on equation (5.4) as

erri j
1 =

√
n

∑
k=1

(b̂i j(tk)−Ci j−
−2π f

QCi j( f )
tk)2. (5.8)

err1 describes the misfit between a single coda waveform and its best fitting curve from a model

that includes a custom amplitude scaling term, Ci j. After solving the inverse problem of equation

(5.6), we define the new misfit for each trace as

erri j
2 =

√
n

∑
k=1

(b̂i j(tk)− si− r j +
2π f

QCi j( f )
tk)2. (5.9)
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err2 describes the misfit between a single coda waveform and its best fitting curve from a model

in which the amplitude scaling is given by the sum of a source term, si, and a receiver term, r j.

For some waveforms, the coda amplitude is poorly approximated by this sum and the misfit will

be correspondingly larger. If err2 > 5× err1, we flag this trace as an outlier and remove it from

the dataset. After removing all the outliers, we repeat solving the inverse problem and continue

removing outliers until there are no more outliers found. In this study, this process converges after

4–6 iterations and removes about 20% of the original data. This fraction exceeds the percentage

of individual seismograms that fail the misfit test because removal of traces will sometimes cause

entire events or stations to be removed from the dataset if they no longer meet the 10 stations per

event and 10 events per station criteria.

The model uncertainty of the least-squares inverse problem can be estimated by using the

method in Menke (2012). If we assume the data are uncorrelated and the variance of the observed

data is σd , the covariance matrix of the least squares solution m can be estimated from

cov[m] =
[
[GT G]−1GT ]

σ
2
d
[
[GT G]−1GT ]T = σ

2
d(G

T G)−1. (5.10)

where GT G is invertible in this overdetermined inverse problem. The data resolution matrix for

the overdetermined inverse problem N = G[GT G]−1GT = I indicates the prediction error can be

ignored in the inversion (Menke, 2012, p. 70). The single coda waveform can be described by

equation (5.5). Since we use the corrected coda waveforms in the inversion and do not know the

measurement error, the variance estimated from the difference between the coda waveform and

the best fitting curve by equation (5.5) is used as the data variance,

σ
2
d = ∑

k,i, j
(b̂i j(tk)−Ci j−

−2π f
QCi j( f )

tk)2/(N−1), (5.11)

where N is the product of the number of points in each discrete time series and the number of

coda waveforms. In each frequency range, the estimated source and station amplitude term errors
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are of order 10−2 and the source- and station-side attenuation terms are of order 10−4. The formal

relative errors are thus about 1% of the best-fitting attenuation terms, although this should be

considered a lower error bound because it does not take into account the possibility of systematic

(correlated) errors in the data, such as might be generated by 3D attenuation structure not fully

modeled by source and station amplitude terms alone.

5.4 Results

In total we obtained 16,318 measurements from 642 events with catalog magnitudes

between 1.8 and 5.4 at 105 stations. The numbers of seismograms are 14,781, 14,781, 14,909 and

8244 for the frequency bands centered at 1.5, 3, 6 and 12 Hz, respectively.

5.4.1 Coda Magnitude and Coda Spectra

Coda waves are less affected by the source radiation pattern and directivity than direct

waves and thus coda-derived magnitudes are potentially more reliable and stable than those

computed using other methods. At long lapse times, coda waves sample and average a large

volume surrounding the source and receiver region. In equation (5.7), the source amplitude term

is a measure of the source radiated energy at a particular frequency (Aki, 1969; Mayeda and

Walter, 1996; Mayeda et al., 2003; Sens-Schönfelder and Wegler, 2006; Baltay et al., 2010),

which can be used to compute the source magnitude or source spectra.

In the inversion, there is a trade-off between the source and station amplitude terms and

the source-side attenuation and the station-side attenuation terms (i.e., if we remove a constant

from the source amplitude terms and add it to the station amplitude terms, the misfit shown in

equation (5.8) for the inverse problem remains the same). However, the relative differences in

the terms among each set are resolved, even if their mean values are uncertain because of the

source vs. station trade-off. We can resolve the trade-off by setting the mean of one set of terms
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to zero, which will maximize the signal in the other set of terms. For example, we can remove

the mean of the source-side attenuation terms and add it to the station-side attenuation terms and

then compute station specific coda-Q, which can be compared with the conventional SSMEM

method. Sens-Schönfelder and Wegler (2006) use a similar method to solve for coda magnitude

assuming the logarithmic average of the station terms is zero at all frequency ranges and then

fit the source spectra by applying the omega-squared model. Here, we also remove the absolute

amplitudes from the source terms and Figure 5.3 shows the source amplitude terms at different

frequency bands. At the low-frequency bandpasses (1–2 and 2–4 Hz), the source amplitude terms

scale linearly with catalog magnitude (i.e., larger source amplitude terms for larger earthquakes),

as expected given that these two frequency ranges are well below the corner frequencies of most

earthquakes in our dataset. At frequencies above 4 Hz, the source amplitude terms no longer

scale linearly because the effect of earthquake corner frequency can no longer be ignored.

For small earthquakes (ML ≤ 3.5), the magnitudes listed in the catalog are the local

magnitudes (ML) rather the moment magnitudes (MW ). Previous studies have indicated that

MW 6= ML (Shearer et al., 2006; Hutton et al., 2010; Ross et al., 2016; Trugman and Shearer,

2017). Before calibrating the source amplitude term to coda spectra, we need to compute the

moment (M0) for each event as our first step. Here, we follow the method in Shearer et al. (2006).

At low frequency (1–2 Hz), we first perform a linear regression between catalog magnitude ML

and source amplitude terms s: ML = as+b. Since we use the energy densities of the seismograms

and the moment is proportional to the low frequency amplitude, the source amplitude terms scale

linearly with log moment as log10(M0) = s/2+C with scaling factor 0.5. The moment magnitude

MW (Kanamori, 1977) may be expressed as

MW =
2
3

log10 M0−10.7 (5.12)

where the moment M0 is in N-m. Finally, the source amplitude term of each event is converted
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to moment by assuming that ML = MW at MW = 3.5, consistent with recent results of Ross et al.

[2016]. We estimate the moment M0 as a function of catalog moment ML expressed as,

M0 = 101.26(ML−3.5)1.43×1014 N ·m (5.13)

Our observed scaling between ML and log10(M0) is 1.26, which is within the range of 1.0 to 1.5

found in previous studies. Ben-Zion and Zhu (2002) obtained 1.0 for ML < 3 events and 1.34 for

3.5 < ML < 6.0 in southern California and Bakun (1984) estimated 1.2 for 1.5≤ML < 3.5 events

and 1.5 for 3.0 < ML < 6.0 events in central California. Scaling factors in other studies include

1.0 for ML < 3.7 by Abercrombie (1996), 1.04 for 1.5≤ML ≤ 3.1 by Shearer et al. (2006), 1.1 for

1.5≤ML ≤ 4 by Hawthorne et al. (2017), 1.22 for 0≤ML ≤ 4 by Ross et al. (2016), and 1.5 for

1.8≤ML ≤ 3.4 by Prieto et al. (2004). In general, larger scaling factors are expected for larger

earthquakes where ML and MW are in better agreement (see Figure 9.25 from Shearer, 2009), and

this is seen in the observed factors of 1.39 for 3≤ML ≤ 7 events by citetarchuleta1982source

and 1.5 for 3≤ML ≤ 7 by Thatcher and Hanks (1973). Note that our coda study includes larger

earthquakes (112 ML ≥ 3.5 events and 69 ML ≥ 4.0 events than the 1.5≤ML ≤ 3.1 range in the

P-wave spectral study of Shearer et al., 2006).

Differences in the source amplitude terms as a function of frequency contain information

about the source spectra. However, because of the tradeoff between the average source and

station amplitude terms, the source amplitude terms at a given frequency only resolve the relative

differences among the events and cannot be used directly to estimate the source spectrum of

individual events by comparing the terms at different frequencies. To resolve this ambiguity, we

apply the multiple-event empirical Green’s function (EGF) approach used in spectral analysis

of direct phases (e.g. Shearer et al., 2006; Oth et al., 2011). We stack the source amplitude

terms at 0.2 increments in calibrated moment magnitude bins from MW = 2.3 to 3.9 for the

frequency bands centered at 1.5, 3, 6 and 12 Hz, respectively. Following Shearer et al. (2006),
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we estimate an EGF spectrum that will bring the stacked source amplitude terms into agreement

with a theoretical model of the source spectra. Specifically we minimize the L2-norm residual

between the EGF-corrected stacked spectra and a self-similar Brune-type circular crack model

(Brune, 1970; Madariaga, 2007). The amplitude of source spectra model is expressed as

S( f ) =
2Ω0

1+( f/ fc)η
, (5.14)

where Ω0 is the long-period displacement amplitude, f is the frequency, fc is the corner frequency

and 2 is the scaling factor from displacement to the energy densities. The corner frequency in

the source model related to the moment and the stress drop is expressed as (Madariaga, 1976;

Abercrombie, 1995; Shearer et al., 2006),

fc =
0.42β

(M0/∆σ)1/3 (5.15)

where β is the S-wave velocity, M0 is the moment, and ∆σ is the stress drop, and β is shear-wave

velocity, assumed here a constant 3.5 km/s.

Assuming a self-similar constant stress drop model, we perform a grid search over stress

drop to determine the EGF that minimizes the difference between the EGF-corrected stacked

spectra and the synthetic spectra of the Brune-type source model. Following Trugman and Shearer

(2017), we also experiment with models in which stress drop varies as a function of moment,

specifically as

log10 ∆σ = ε0 + ε1S(0) (5.16)

where S(0) is the long-period displacement amplitude (proportional to moment), ε0 and ε1 are

two model parameters to describe the scaling between moment and stress drop.

Figure 4 shows results for both the self-similar and non-self-similar scaling models.
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Results for the 8–16 Hz frequency range are problematic (i.e., yield poor fits), most likely a result

of the poorer signal-to-noise in this band and the fact that it is difficult to use a single center

frequency for plotting purposes when many of the earthquake corner frequencies are in this range.

Consequently, we only use the 1–2, 2–4 and 4–8 Hz bands to fit the source spectra. The best

fitting ω−2 Brune-type stress drop for the self-similar model is 19 MPa, which is higher than

the average stress drop seen in previous studies. However, the best fitting ω−2 Brune-type stress

drop for the non-self-similar model ranges from 2.5 MPa to 13.7 MPa with scaling parameter

ε1 = 0.31, which roughly agrees with results for the San Jacinto region of southern California

in Trugman and Shearer (2017). Compared to the self-similar source model (err = 0.165), the

non-self-similar source model yields a better fit (err = 0.121) (see Figure 5.4 a & b). However,

the model fits are far from exact, and there is a fundamental trade-off between the non-self-similar

scaling parameter (ε1) and the assumed high-frequency fall-off rate (η) (Trugman and Shearer,

2017). Thus, the source spectral results shown here should be considered tentative until a more

complete analysis can be performed that considers all of the model uncertainties and parameter

tradeoffs. However, uncertainties in the source spectral calibration do not affect the accuracy of

the amplitude and coda decay terms that are the main focus of this paper. We plan further study of

coda-based source spectral estimates and comparisons to direct phase spectral analyses in future

work.

5.4.2 Site Amplification

As mentioned in the Coda Magnitude section, the mean value of the station amplitude

terms is removed, which means the station amplitude terms are relative to the ‘average station’

(Phillips and Aki, 1986; Su et al., 1991, 1992; Su and Aki, 1995). Since the smoothed energy

densities are used in this study, we apply a scaling factor of 0.5 to correct them to amplitude site

amplification factors. Figure 5.5 a–d show the site amplification factors at different frequency

bands. To validate the accuracy of our approach, we compare our results with another coda-based
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method to determine site amplification developed by Phillips and Aki (1986), which was used by

later studies in southern California (i.e. Su et al., 1991, 1992; Su and Aki, 1995). Their method

is also based on equation (5.3); given the frequency and lapse time, the logarithmic RMS coda

energy can be written as

ei j(tk) = si + r j + ci j(tk), (5.17)

where ci j(tk) is a constant among all the records given the lapse time tk, which assumes a uniform

spacial distribution of the coda attenuation QC. The uniform coda attenuation QC can explain

most of the observations compared to the station and source side variant QC (see Table 1). This

assumption differs from our MSMEM approach and may cause some differences in the results.

We compute an average of ei j over all the available stations for the i-th source and this average

(ē jk
i j (tk)) is removed from the RMS energy ei j with the fixed i-th source, that is

1
2

[
ei j(tk)− ē jk

i j (tk)
]
= r j− r̄, (5.18)

where r̄ is the average site amplification and the scaling factor 1/2 is used to correct the results to

amplitude site amplification. Equation (5.18) can be written in the form d = Gm. The G is a large,

sparse matrix, so we apply the same least-squares method. The results at different frequency

bands are shown in Figure 5.5 e–h. In general, the results from the two methods are quite similar,

as shown in Figure 5.6. The ratio of differences between the methods are less than 0.3 in log-10

scale, scaling factor 2, 100%, 99%, 95% and 85% at 1–2, 2–4, 4–8, 8–16 Hz, respectively. These

comparisons indicate our site amplification results are generally consistent with the method of

Phillips and Aki (1986).

In Su et al. (1992); Su and Aki (1995), they pointed out the site amplification is related

to the geology underlying the station. Our results are spatially consistent with their results. For

instances, the stations on the Mesozoic granitic rocks or Pre-Cretaceous metamorphic rocks have
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low site amplification but gradually increase with frequency, which appears on the stations around

the San Jacinto Fault Zone (-116.6◦W, 33.5◦N). At the centered frequency 1.5 Hz, the region

around the northern end of the Chino Fault (-117.6◦W, 34◦N) and the southeastern region of the

Salton Trough (-115.8– -115.2◦W, 33◦N), which consist mainly of Cenozoic sediments, show the

highest amplification and gradually decrease with frequency. Also, along the San Andreas fault,

the site amplifications do not show systematic changes, which was also pointed out by Su et al.

(1992).

5.4.3 Coda Attenuation

Coda attenuation QC is another important parameter in our method. We separate coda

attenuation into two parts, source-side attenuation (QS
C) and station-side attenuation (QR

C) (see

equation (5.6)). Considering the trade-off between these two terms, to view the variation in

source-side attenuation and station-side attenuation, we rewrite the attenuation terms in the new

form,

QS
Ci
−1

+QR
C j
−1

= δQS
Ci
−1

+δQR
C j
−1

+Q−1
C (5.19)

where q̄ is the mean value of the total attenuation terms and δQS−1
Ci and δQR−1

C j are perturbations

to mean coda Q−1
C on the source and station sides, respectively. The reciprocal of the summation

of the station-side variation (δQR−1
C ) and the mean value (Q−1

C ), which is the station-side coda

attenuation (QR
C) has the same physical and mathematical meaning as in the conventional method

(SSMEM). Similarly, we can define a source-side attenuation term, QS
C, which is the reciprocal of

the summation of the source-side variation (δQS−1
C ) and the mean value (Q−1

C ), likely describes

differences in scattering from heterogeneity close to the source regions.

To validate our approach, we compare our results with those from SSMSM, which mea-

sures the attenuation at each station recording multiple events. The measured coda attenuations
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are averaged and plotted at each station. As shown in Figure 5.7, the spatial variations in QC are

similar for the different methods. Previous studies (e.g. Aki, 1980; Jin and Aki, 2005; Carcolé

and Sato, 2010) have indicated the coda attenuation follows a frequency-dependent power law,

Q( f ) = Q0 f n. The results from MSMEM indicate that Q0 and n are within the ranges 107–288

and 0.42–1.14, respectively. The results from SSMEM are in reasonable agreement, with Q0 and

η within the range 111–264 and 0.45–0.99, respectively. The spatial variations of Q0 and n are

also correlated between the methods, as shown in Figure 5.8. Although there are some differences,

overall the results from MSMEM are consistent with SSMEM. In general our values of Q0 and

n agree with previous studies, which indicate Q0 is within 100–500 and n within 0.4–1.3 (e.g.

Singh and Herrmann, 1983; Jin and Aki, 1988; Mayeda et al., 1991; Jin and Aki, 2005; Yun et al.,

2007; Carcolé and Sato, 2010).

In Figure 5.9, we show the spatial distribution of the removed mean source-side attenuation

terms−2π f/QS
C at 1–2, 2–4, 4–8, 8–16 Hz, respectively. The spatial patterns between source-side

attenuation and station-side attenuation at different frequency bands are similar but have some

variation. As in the case of the site amplification results, the largest discrepancy appears for

the frequency band 8–16 Hz, probably because of a low signal-to-noise ratio. On the other

hand, the spatial variations of source-side attenuation are not exactly the same as the station-side

variations, because the sources are located at different depths from 0–20 km. Figure 5.10 and

Figure S5.1–S5.4 in the supporting information indicates that the source-side attenuation is not

related to the source depth. However, the source-side attenuation shows positive correlation with

the coda magnitudes (see Figure 5.11c). To examine this relationship, we compute the source-side

attenuation using the coda wave in the first-half time window (i.e. 50–70 s) and the second-half

time window (i.e. 70–90 s), compared to the results within the whole-time window 50–90 s. The

comparison of the two half-time windows indicates that the positive correlation is an artifact from

the low signal-to-noise ratio at longer times. This positive correlation is stronger in the second

time window than in the first time window and this effect is stronger for small events than larger
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events. The strongest positive correlation appears in the second time window at the frequency

range 8–16 Hz, together with the most scattered results. The misfit errors for the second half-time

window are systematically larger than the misfit errors for the first half-time windows. Because

of this time dependence, it is likely that signal-to-noise issues are causing the apparent positive

relation between coda-Q and coda magnitude.

5.5 Discussion

Geometrical spreading of coda waves is accounted for by the α term. Here, we use

α = 1.5 for epicentral distances smaller than 100 km, assuming the 3D diffusion case in a whole

space, as in previous studies (Margerin et al., 1998; Calvet and Margerin, 2013). If instead we

use α = 2.0, assuming the single scattering model, which is another widely applied value in coda

attenuation studies (see Hiramatsu et al., 2000; Carcolé and Sato, 2010), there is little change

in the relative values among the station, source, and attenuation terms, but there is a systematic

shift in their absolute values. In this study, since we remove the mean value from the station

amplitude terms and the source-side attenuation terms, the shift occurs in the other terms and is

−0.699 for the source amplitude terms (si) and 7.27×10−3 for the station-side attenuation terms

(−2π f/QR
C). It should be noted that we use a fixed time window to measure the coda waves.

Calvet and Margerin (2013) found that QC estimated by using SSMEM and α = 2 is typically

about 10% higher than when using α = 1.5. Considering they used a time window starting at

twice the S travel time and a fixed lapse time, their results are consistent with ours. Overall, larger

α values slightly increase the QC values, but since physically realistic α values are from 1–2, the

variation of α does not affect the final results very much.

Previous studies (Calvet and Margerin, 2013) indicate that the choice of the time windows

can affect the measurement of coda attenuation. To consider this issue, we test time windows of

30, 40 and 50 s. We find that compared to the 40s case, the relative differences are small, i.e.,
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over 90% of the station and source amplitude terms have a difference smaller than 0.5 and source-

and station-side Q−1
C smaller than 0.001. This indicates that within the window length range of

30–50 s, the solutions are robust. Second, increasing the window length increases the measured

QC, which was also reported by Calvet and Margerin (2013). To examine this effect, we keep

the window length fixed at 40 s and change the starting lapse time to 60 and 70 s. We find the

measured QC systematically increases with the starting lapse time, which was also reported by

some other studies, (Rautian and Khalturin, 1978; Phillips and Aki, 1986; Hiramatsu et al., 2000;

Yoshimoto and Jin, 2008; Carcolé and Sato, 2010).

The physical meaning of coda attenuation QC, including the relative importance of

scattering versus intrinsic attenuation, has been debated for some time. In principle, contributions

to the coda come from within an ellipsoidal-shaped volume defined by the source-to-scatterer-to-

station travel time. Relating differences in observed coda QC to variations in properties within this

volume is not straightforward, but some clues about the source of coda QC variations are provided

by mapping them to the stations or the source-receiver midpoint (Roecker et al., 1982; Pulli, 1984;

Steck et al., 1989; Aki, 1996). Here we examine coda QC variations across southern California,

as assigned both to the stations (Fig. 5.7) and to the sources (Fig. 5.9). These maps exhibit spatial

coherence, which provides some reassurance that the observed variations are not caused by purely

random coda fluctuations, but they often exhibit changes over shorter length scales than the size

of the scattering ellipsoid. This indicates that the entire scattering volume does not contribute

equally to coda QC variations, that changes in properties in the shallow crust beneath the stations

and within seismically active regions are particularly important. In general, both the source-side

and station-side coda-Q results show common lower values around the Salton Sea, a geothermal

region, consistent with previous coda at lower frequency (< 4 Hz) and direct wave attenuation

studies (Aki, 1996; Hauksson and Shearer, 2006). A difference between direct and coda wave

studies is seen in the region of the Chino Basin and San Gabriel Valley, where S-wave attenuation

(QS) is low (Hauksson and Shearer, 2006), which is consistent with our source-side attenuation
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(see Figure 5.9), however, station coda-Q is high (Aki, 1996), also consistent with our results (see

Figure 5.7).

In contrast to most previous studies, which focus on receiver-side QC variations, here we

consider two attenuation terms, source-side attenuation (QS
C) and station-side attenuation (QR

C).

Because any increase in the number of model parameters in an inversion should lead to a better

fit, it is important to examine how misfit varies for different model parameter choices. Table 1

lists misfit errors for different coda-Q models, including purely source-side and receiver-side QC

models. At lower frequencies (1–2 and 2–4 Hz), the station-side QC model fits better than the

source-side QC model, even though it has fewer parameters (i.e., the number of stations is smaller

than the number of events). In contrast, at high frequency (8–16 Hz), the source-side QC model

fits better. However, even for the better-fitting models, the differences in the misfit errors are

very small, and using source- or station-side QC terms yields only slightly better fits than those

achieved with a uniform QC model. Despite these small changes in fit, it is clear that the QC

terms are measuring a real property of the crust, given the spatial coherence seen in the maps of

Figures 5.7 and 5.9. The small changes in misfit occur because of the large scatter in coda decay

for individual records and the fact that the average coda decay is mostly accounted for with the

geometrical spreading term, such that QC is relatively large (i.e., 2π f/QC is consistently small).

To illustrate the importance of each part of equation (5.6), we rewrite the misfit function

as,

err =

√
∑i, j,k(êi j(tk)+α log tk− c̄−δsi−δr j + q̄+δqS

i +δqR
j )

2√
∑i, j,k b̂2

i j(tk)
. (5.20)

where the c̄ is the mean value of the total source (s) and station (r) amplitude terms, δs and δr

are the removed mean source and station amplitude terms, similarly, q̄ is the mean value of the

total QC terms, and δqS and δqR are the removed mean source-side and station-side QC terms.

We remove one term on the right-hand side from the equation (5.20) each time and compute the
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misfit errors, which are listed in Table 2. The geometric spreading term is the most important

part of the inverse problem, and the source amplitude term, station amplitude term and the mean

QC term are important in the inversion. Considering the number of events is much larger than

than the number of stations, the residuals for the synthetics containing only the source amplitude

terms are smaller than those containing only the station amplitude terms, as expected. For the

QC terms, similar to Table 1, the uniform mean QC terms mostly explain the observations and

including the source-side and/or station-side QC terms does not improve the fit very much. Also,

comparing the misfit errors after removing different QC terms, it is difficult to tell whether the

source- or station-side QC term dominates the inversion, so we prefer the both-side QC model in

our MEMSM from both the physical and mathematical explanations.

When solving equation (5.6), we only keep the station-side attenuation terms. We find the

attenuation QC is almost the same as the QC measured by SSMEM for each station with error less

than 0.1%. However, our MEMSM approach provides an additional three useful parameters, the

source and station amplitude terms together with source-side QC. To validate that MEMSM is a

consistent and robust method, we compare the source amplitude terms and station amplitude terms

between the both-side QC attenuation model, the source-side model, and the station-side model,

as shown in Figure 5.12 and 5.13, respectively. Generally, the source and station amplitude terms

are relatively consistent regardless of differing QC attenuation models, especially for the low-

frequency bands (< 8 Hz). For the high-frequency band (8–16 Hz), we find larger discrepancies

between the both-side QC and station-side QC models for the source amplitude terms and between

the both-side QC and source-side QC models for the station amplitude terms. This is caused by

the weaker signal-to-noise ratio in this frequency band, especially for small earthquakes. Also,

analysis of the source amplitude terms indicates that the source spectra calibrated from the source

amplitude terms are consistent for the low frequency bands (< 8 Hz) regardless of different QC

attenuation models.

Jin and Aki (2005) point out the coincidence between low QC and high dilatational strain
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rate (< 4 Hz) assuming the brittle-ductile interaction hypothesis of earthquake loading by plate-

driving force in Japan. Here, we examine this coincidence in southern California. The strain

rate data are derived from the Community Geodetic Model (CGM) (Sandwell and Wessel, 2016).

Similar to Jin and Aki (2005), we compute the dilatational strain rate (exx + eyy) (see Figure 5.14

a,b). To better illustrate the comparison between QC and dilatational strain rate, we interpolate the

dilatational strain rate based on the station locations (see Figure 5.14 c,d). From this comparison

of QC and dilatational strain rate in Southern California, we do not find a clear correlation between

QC and dilatational strain rate. In Japan, the Niigata-Kobe Tectonic Zone (NKTZ) is a high strain

rate zone where the dilatational strain rate is an order of magnitude larger than the surrounding

region and NKTZ is also a volcanic and geothermal region. However, in southern California, the

background tectonics is strike-slip, compared to the convergence tectonics in Japan. The shear

strain rate is much larger than dilatational strain rate and the dilatational strain rate is spatially

smoother in southern California. These factors may result in no coincidence between low QC and

dilatation strain rate in southern California.

5.6 Conclusion

In summary, based on a standard model for coda energy decay, we invert for separate

source, station and coda attenuation terms in the logarithmic domain. We develop a method

to use a representative expression of coda waves as the data vector to greatly reduce the size

of the least-squares inverse problem. Applying our method to data from southern California

in four different frequency bands, we obtain source amplitude terms related to coda magnitude

and source spectra, station amplitude terms related to site effects, and coda Q terms related to

lateral variations in scattering and attenuation. Our approach provides an efficient, robust, and

self-consistent method to simultaneously determine coda-Q, earthquake magnitude, and site

amplification.
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Appendix

The least-square solution for over-determined inverse problem b = Gm is,

m = (GTG)−1(GTb). (5.21)

For an arbitrary coda waveform, the equation (5.4) can be expressed as,



b(t1)

b(t2)
...

b(tk)


=



a(t1)

a(t2)
...

a(tk)


+



log(t1)

log(t2)
...

log(tk)


α =



1

1
...

1


C+



t1

t2
...

tk


q =



1t1

1t2
...

1tk


C

q

 (5.22)

b = Gm. (5.23)

And the corrected data vector is expressed as,

b̂ = G(GTG)−1GTb. (5.24)

The difference vector n between the data vector b and corrected data vector b̂ is defined as,

n = b− b̂ = b−G(GTG)−1GTb. (5.25)

The difference vector n yields GTn = 0. Given (GTG) is invertable, which is valid in this study,
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the proof is as below,

GTn=GTb−GTG(GTG)−1GTb = GTb−GTb = 0 (5.26)

=[gT
1 gT

2 ]n =

0

0

, (5.27)

where, gT
1 = [1 1 · · · 1]T and gT

2 = [t1 t2 · · · tk]T .

The solution for the inverse problem b̂ = Gm̂ is,

m̂=(GTG)−1(GTb̂) = (GTG)−1GT(b−n) = (GTG)−1GTb− (GTG)−1GTn (5.28)

=(GTG)−1GTb = m. (5.29)

This solution indicates for any single coda wave, the solutions for both raw data vector

and corrected data vector are the same. Furthermore, we prove this conclusion is still valid for

multiple traces as the equation (5.6). The equation (5.6) can be rewritten as,



b11

b12
...

bnm


=



g10· · · 0 g1 0 · · · 0 g2 0 · · · 0

g10· · · 0 0 g1· · · 0 0 g2· · · 0
...

...
...

...
...

...
...

...
...

...
...

...

0 0· · ·g1 0 0 · · ·g1 0 0 · · ·g2




s

r

q

 (5.30)

b = G̃m (5.31)

where G̃ is used to distinguish from G in equation (A5.3), the vector g1 and g2 are the same as

those in equation (A5.7), s, r and q are the source amplitude term, station amplitude term and

attenuation term vectors. It is noted here we do not separate the attenuation terms into the source-
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and station-side attenuation terms, since the proof is quite similar and the results here are valid.

For an arbitrary single coda waveform, we have proven the difference vector n = b− b̂ yields

G̃Tn = 0. Here we will expand this result to multiple traces based on equation (5.6),

G̃Tn=



g1g1· · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · ·g1

g1 0 · · · 0

0 g1· · · 0
...

... · · · ...

0 0 · · ·g1

g2 0 · · · 0

0 g2· · · 0
...

... · · · ...

0 0 · · ·g2





b11− b̂11

b12− b̂12
...

bnm− b̂nm


(5.32)

(5.33)
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G̃Tn=



g1g1· · · 0

0 0 · · · 0
...

... · · · ...

0 0 · · ·g1

g1 0 · · · 0

0 g1· · · 0
...

... · · · ...

0 0 · · ·g1

g2 0 · · · 0

0 g2· · · 0
...

... · · · ...

0 0 · · ·g2





n11

n12
...

nnm


=



∑i g1n1i

∑i g1n2i
...

∑i g1nni

∑i g1ni1

∑i g1ni2
...

∑i g1nim

∑i g2ni1

∑i g2ni2
...

∑i g2nim



= 0 (5.34)

m̂−m = (G̃TG̃)−1G̃Tb̂− (G̃TG̃)−1G̃Tb = (G̃TG̃)−1G̃T(b̂−b) (5.35)

= (G̃TG̃)−1G̃Tn = 0 (5.36)

Here, we have proven that when we used the corrected data vector b̂, we can get the same solution.
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Figure 5.1: Locations of earthquakes and stations used in this study. The event epicenters are
shown as black dots and the station locations are shown as red triangles. Quaternary faults are
depicted as light black curves. The red box in the top right plot indicates our study region in the
western U.S. map.
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Figure 5.2: Observed coda energy decay curves at station IKP for different earthquakes at
2–4 Hz. (a) shows mean-squared coda amplitudes (black lines) and the best-fitting curves (red
dashed lines) using equation (5.5). (b) shows the difference of the slopes of the best-fitting
energy decay curves.
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Figure 5.3: Uncorrected demeaned source amplitude terms versus catalog magnitudes at 1–2,
2–4, 4–8, and 8–16 Hz frequency bands. The red dashed lines show the best-fitting linear
regression between source amplitude terms and local magnitudes.
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Figure 5.4: EGF-corrected, stacked source spectra from the source amplitude terms at 1–2,
2–4, and 4–8 Hz for (a) self-similar and (b) non-self-similar source models and their misfit
with respect to a Brune-type source spectrum. The blue dots indicate the EGF-corrected source
amplitude terms. Red triangles show the EGF. The black dashed lines indicate the theoretical
source models.
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Figure 5.5: Comparisons of site amplification terms between our MSMEM and the method of
Phillips and Aki (1986). The colors show the site amplification (log 10) relative to the ‘average
station,’ with amplification factors ranging from 0.25 (dark red) to 10 (dark blue). (a)–(d) show
the site amplification effect from MSMEM at 1–2, 2–4, 4–8 and 8–16 Hz; (e)–(h) show results
from the method of Phillips and Aki (1986).

125



-0.8 -0.4 0 0.4 0.8 1.2

P
h

ill
ip

s
' M

e
th

o
d

-0.8

-0.4

0

0.4

0.8

1.2
1-2 Hz

-0.8 -0.4 0 0.4 0.8 1.2
-0.8

-0.4

0

0.4

0.8

1.2
2-4 Hz

MEMSM
-0.8 -0.4 0 0.4 0.8

P
h

ill
ip

s
' M

e
th

o
d

-0.8

-0.4

0

0.4

0.8
4-8 Hz

MEMSM
-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8
8-16 Hz

Figure 5.6: Comparisons of site amplification between our MSMEM and the method of Phillips
and Aki (1986) at 1–2, 2–4, 4–8 and 8–16 Hz. The reference red and blue dashed lines show
identical values and differences of ±0.3, respectively.

126



−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

150

190

230

270

310

350

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

250

300

350

400

450

500

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

400

480

560

640

720

800

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

650

820

990

1160

1330

1500

1
-2

 H
z

2
-4

 H
z

4
-8

 H
z

8
-1

6
 H

z

MSMEM SSMEMa) e)

b)

c) g)

d)

f)

h)
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The scale of Q value is shown at the right-hand side of each subplot.

128



−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−0.02

−0.01

0.00

0.01

0.02

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−0.02

−0.01

0.00

0.01

0.02

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−0.03

−0.01

0.01

0.03

−119˚ −118˚ −117˚ −116˚ −115˚

33˚

34˚

35˚

−0.04

−0.02

0.00

0.02

0.04

1-2 Hz 2-4 Hz

4-8 Hz 8-16 Hz

150

450

190

230

310

620

470

375

315

275

400

440

675

1050

620

740

920

1210

1750

a) b)

c) d)

Figure 5.9: Spatial distribution of the source-side coda attenuation terms −2π f/QS
C or QS

C at
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Figure 5.10: Relation between the source-side coda attenuation terms−2π f/QS
C with the source

depths at 1–2, 2–4, 4–8 and 8–16 Hz. The first row shows source-side coda attenuation terms
for the time window 50–70 s, the second row shows the results for the time window 70–90 s and
the third row shows the results for the time window 50-90 s. Each black dot represents an event
and red lines indicate the median values of the source-side coda attenuation terms binned at 0.2
intervals in coda magnitude.
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Figure 5.11: Relation between the source-side coda attenuation terms −2π f/QS
C with the coda

magnitudes at 1–2, 2–4, 4–8 and 8–16 Hz. The first row shows the results of source-side coda
attenuation terms for the time window 50–70 s, the second row shows the results for the time
window 70–90 s and the third row shows the results for the time window 50-90 s. Each black
dot shows the result for each event and red lines indicate the median values of the source-side
coda attenuation terms binned at 0.2 interval in coda magnitude.
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Figure 5.12: Comparisons of the source amplitude terms between both-side MSMEM and
station-side MSMEM, source-side MSMEM at 1–2, 2–4, 4–8 and 8–16 Hz, respectively. The
top four figures show comparisons of source amplitude terms between both-side MSMEM and
station-side MSMEM; the bottom figures show comparisons of station amplitude terms between
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Figure 5.13: Comparisons of the station amplitude terms from both-side MSMEM and station-
side MSMEM, source-side MSMEM, the same as Figure 12 .
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Figure 5.14: Comparisons of the coda attenuation QC with the dilatational strain rate in southern
California at 1–2 and 2–4 Hz. (a) and (b) show the spatial distribution of the dilatational strain
rate together with the spatial distribution of the QC at 1–2 and 2–4 Hz. (c) and (d) show the
comparison of the QC and the interpolated dilatational strain rates at the same station locations.
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Table 5.1: Misfit error table of the inversion problem for all the QC models

1–2 Hz 2–4 Hz 4–8 Hz 8–16 Hz
No QC 0.0367 0.0391 0.0415 0.0639

Uniform QC 0.0248 0.0206 0.0191 0.0241
Source-side QC 0.0245 0.0203 0.0187 0.0229
Station-side QC 0.0244 0.0202 0.0186 0.0231
Both-side QC 0.0241 0.0199 0.0180 0.0214
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Table 5.2: Misfit error table from removing each term on the right side of equation (5.20)

1–2 Hz 2–4 Hz 4–8 Hz 8–16 Hz
All terms included 0.0241 0.0199 0.0204 0.0214

No geometric spreading 0.4000 0.4006 0.4050 0.4046
No q̄, δqS and δqR 0.1696 0.2503 0.2869 0.3671

No q̄ 0.1625 0.2002 0.2667 0.3303
No δqS and δqR 0.0419 0.0376 0.0511 0.0772

No δqS 0.0349 0.0311 0.0430 0.0570
No δqR 0.0332 0.0303 0.0400 0.0647

No δs and δr 0.2607 0.2455 0.2355 0.2095
No δs 0.2271 0.2243 0.2247 0.1961
No δr 0.1128 0.0855 0.0755 0.0922
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5.7 Supplementary Materials
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Figure S5.1: Spatial distribution of the source-side coda attenuation terms −2π f/QS
C or QS

C
at 1–2, 2–4, 4–8 and 8–16 Hz with source depth 0–5 km. The scale of the attenuation terms
is shown at the right-hand side of each subplot. The color bar is linearized in −2π f/QS

C and
corresponding QS

C.
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Figure S5.2: Spatial distribution of the source-side coda attenuation terms −2π f/QS
C or QS

C
at 1–2, 2–4, 4–8 and 8–16 Hz with source depth 5–10 km. The scale of the attenuation terms
is shown at the right-hand side of each subplot. The color bar is linearized in −2π f/QS

C and
corresponding QS

C.
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Figure S5.3: Spatial distribution of the source-side coda attenuation terms −2π f/QS
C or QS

C at
1–2, 2–4, 4–8 and 8–16 Hz with source depth 10–15 km. The scale of the attenuation terms
is shown at the right-hand side of each subplot. The color bar is linearized in −2π f/QS

C and
corresponding QS

C.
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Figure S5.4: Spatial distribution of the source-side coda attenuation terms −2π f/QS
C or QS

C at
1–2, 2–4, 4–8 and 8–16 Hz with source depth 15–20 km. The scale of the attenuation terms
is shown at the right-hand side of each subplot. The color bar is linearized in −2π f/QS

C and
corresponding QS

C.
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Chapter 6

Focal mechanism effects on S/P amplitude

ratios in the San Bernardino region,

southern California

Ground Motion Prediction Equations (GMPEs) for seismic hazard analysis have been

developed for many regions, which account for earthquake magnitude, epicentral distance, and

local site effects on peak ground motions. However, they typically do not include effects related

to sampling different parts of the earthquake focal sphere, and the spatial distribution of observed

peak amplitudes often fails to show a clear radiation pattern, especially at higher frequencies and

longer ranges. Here, we investigate the effects of focal mechanisms on observed ground motions

in the San Jacinto fault zone region of southern California. We identify clusters of earthquakes

with similar strike-slip focal mechanisms and good azimuthal station coverage recorded by the

combined Southern California Seismic Network and ANZA network and compute their S/P

amplitude ratios. We examine how these S/P ratios, and their azimuthal patterns, vary with

distance and frequency, finding that the radiation-pattern signature is clearest for measurements

below 2 Hz. We model the observed peak absolute S/P amplitude ratios with a seismic phonon-
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based, Monte Carlo algorithm that includes intrinsic attenuation, P- and S-wave scattering based

on random heterogeneity models, and multiple scattering. Using forward modeling, we achieve a

reasonable fit to the observations using a model with von Karman type scattering (heterogeneity

correlation length a = 2 km, fractional velocity heterogeneity ε = 0.05) and frequency-dependent

(Q = Q0 f η) intrinsic attenuation (QP = 250,QS = 312 at 1.5 Hz and η = 0.2). Our preferred

model has stronger P attenuation than S attenuation in both the scattering and intrinsic attenuation

components.

6.1 Introduction

Ground motion prediction equations (GMPEs) have been developed and applied to many

regions of the world (e.g. Boore and Joyner, 1982; Baltay and Beroza, 2013; Yabe and Ide,

2014). The equations account for the reduction in amplitude with distance by averaging the

behavior of many different events to create empirical relations that can be used for strong ground

motion prediction and earthquake early warning systems (Yabe et al., 2014; Bostock et al., 2015;

Takemura et al., 2016, 2017). Currently, however, there is no consensus on the relative importance

of factors such as geometrical spreading, intrinsic attenuation, and scattering, which is necessary

for successfully developing 3-D physics-based GMPEs. The geometrical spreading term can

be predicted fairly easily, at least for 1-D velocity models, but separating the effects of intrinsic

and scattering attenuation is more challenging, and has involved application of multiple-lapse

time window analysis (MLTWA) (Fehler et al., 1992; Jin et al., 1994; Padhy et al., 2007; Carcolé

and Sato, 2010) and radiative transfer theory (RTT) (Przybilla et al., 2006, 2009; Eulenfeld and

Wegler, 2016, 2017; Wang and Shearer, 2017; Zeng, 2017; Ogiso, 2018).

Most scattering studies have focused on the behavior of coda waves, but constraints

on scattering can also be obtained from analysis of earthquake radiation patterns. Since Liu

and Helmberger (1985) first noted the frequency-dependent apparent radiation pattern of S
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waves, a number of authors (Takemura et al., 2009, 2016, 2017; Yoshimoto et al., 2015) have

analyzed the radiation patterns of P and/or S waves at high frequency (>1 Hz). These studies

observe significant distortion of the radiation pattern, especially at higher frequencies (>4 Hz),

where the amplitudes become more scattered with no clear azimuthal dependence. To model

the observations, Takemura et al. (2009, 2017) applied 2D and 3D finite-difference methods to

compute the effects of scattering within heterogeneous media on the radiation pattern. These

studies found that a multiple scattering process caused by small-scale heterogeneity in the medium

could account for the observed frequency- and distance-dependent changes in the radiation pattern.

Turning the problem around, a number of studies have used absolute P and S amplitudes

(e.g. Ebel and Bonjer, 1990; Rögnvaldsson and Slunga, 1993; Schwartz, 1995; Nakamura et al.,

1999) to help determine focal mechanisms. To better isolate radiation pattern effects from

magnitude, geometrical spreading, attenuation, and especially the site effect, other studies have

used S/P amplitude ratios (e.g. Kisslinger, 1980; Kisslinger et al., 1981; Julian and Foulger,

1996; Rau et al., 1996; Shen et al., 1997; Hardebeck and Shearer, 2003) to determine the focal

mechanisms. The S/P amplitude ratios have also been used to discriminate between explosions

and earthquakes (Kim et al., 1997; Houng and Hong, 2013; Houng, 2017; Pyle and Walter, 2019).

Here, we measure the peak absolute S/P amplitude ratios of a cluster of strike-slip earth-

quakes in the San Bernardino region of southern California over multiple frequency bands. The

radiation pattern becomes more isotropic at higher frequencies and longer ranges, in agreement

with previous work. We then apply a particle-based, Monte Carlo approach to forward model the

energy flux at different distances from a double-couple source. This method has the advantage of

including multiple non-isotropic scattering, conversions between P and S waves, and intrinsic

attenuation. We obtain good fits to the peak absolute S/P amplitude ratio with von Karman type

scattering and a frequency-dependent intrinsic attenuation model, and explore the implications of

these results for P and S-wave attenuation mechanisms.
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6.2 Dataset

We identify two clusters at the same location with different depths. The shallow cluster

contains 33 earthquakes from 3 to 7 km depth and the deep cluster contains 40 earthquakes

from 15 to 17 km depth with similar strike-slip focal mechanisms and good azimuthal station

coverage (80 stations) recorded by the combined Southern California Seismic Network and

ANZA network (Caltech and USGS, 1926; Vernon and Diego, 1982) (see Figure 6.1). The focal

mechanisms are selected from a relocated catalog (Hauksson et al., 2012; Yang et al., 2012),

and are determined using the HASH method developed by Hardebeck and Shearer (2002, 2003).

This method searches for double-couple focal mechanism solutions to fit the polarities recorded

by stations for each event and uses the S/P ratios as an additional constraint. We download

three-component waveform data for stations within 100 km using the Seismogram Transfer

Program (STP) available from the Southern California Earthquake Center (SCEC) and compute

the squared root energy densities based on vector summation of the three components. The P

and S amplitude levels are computed from the mean value within a 0.5 second time window

centered at the maximum P or S wave amplitude, respectively. We filter the seismograms with a

4th-order zero-phase Butterworth filter for the following frequency bands: 1–2, 2–4, 4–8 and 8–12

Hz. The amplitudes decrease with hypocentral distance (see Figure 6.2). Figure 6.3 shows the

amplitudes versus the differences between the strike directions of the fault planes and azimuths of

the source-station pairs. The radiation pattern for the lower-frequency range (1–2 Hz) shows the

expected four lobe pattern, but the observations are more scattered and the radiation pattern less

clear at higher frequencies, particularly for the highest-frequency range (8–12 Hz) (see Figure

S6.2 & S6.4). Since there is no difference in the S/P amplitude ratios for shallow and deep events

(see Figure S6.1, S6.2 and S6.3), we use them together as our observations.
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6.3 Monte Carlo Simulation

To investigate the radiation pattern behavior with distance and azimuth, we apply a

particle-based, Monte Carlo method to synthesize the energy density. Monte Carlo simulation is

a versatile and powerful approach for simulating scattering in complex models. Since Gusev and

Abubakirov (1987) first introduced the Monte Carlo simulation in seismology to model S-wave

scattering in a uniform whole space, many studies (Hoshiba, 1991, 1994, 1997; Margerin and

Michel Capillo Van Tiggelen, 2000; Yoshimoto, 2000; Margerin and Nolet, 2003a,b) adopted

this approach to model wave propagation in heterogeneous media. Here, we use the Monte

Carlo scattering simulation described by Shearer and Earle (2004), adapted to include the source

radiation pattern and a whole-space background model. The energy carried by each particle

sprayed from the source is determined by wave type (P or S wave) and its corresponding radiation

pattern for a double-couple source, following the equations in Aki and Richards (2002, p. 79, eq.

4.33). We assume that the total S-wave energy is 14 times the P-wave energy, following Wang

and Shearer (2017).

In the Monte Carlo simulation, the scattering probabilities and scattering patterns depend

on the random heterogeneity model. We adopt a stochastic random velocity model characterized

by a von Karman-type power spectral density function (PSDF) in the wavenumber domain (Sato

et al., 2012, p. 23),

P(m) =
2π3/2Γ(κ+3/2)ε2a3

Γ(κ)(1+a2m2)k+3/2 (6.1)

where m is the wavenumber, a is the correlation distance, describing the scale of the heterogeneity;

ε is the root-mean-square (RMS) fractional velocity fluctuation; and κ is the Hurst parameter,

which controls the relative proportion of large- and small-scale heterogeneity. We assume the

Hurst number κ is equal to 0.3, following Wang and Shearer (2017) based on their analysis

and modeling of coda waves in southern California. Note that this value is within the range

0.0–0.5 found in crustal studies (Frankel and Clayton, 1986; Przybilla et al., 2009; Bydlon and
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Dunham, 2015; Savran and Olsen, 2016; Sato, 2019). The P-to-S velocity ratio is set to
√

3, i.e.,

a Poisson solid and the density/velocity perturbation scaling factor is 0.8 (Sato et al., 2012). In

the simulation, the strength of the scattering can be described using the mean free path (Sato

et al., 2012). In the computation, a scattering event occurs when the ray path length of the particle

exceeds a random length set by randomly sampling an exponential distribution based on the

mean free path. The scattering angle is randomly determined based on the physical scattering

pattern. Since our energy flux is obtained from whole-space synthetics, we correct the synthetics

to a half space assuming total reflection on the free surface, following Wegler (2004). The S/P

amplitude ratios are computed from the energy flux and compared with the real data. Considering

the bandpass frequency ranges are 1–2, 2–4, 4–8, and 8–12 Hz, we choose a centered frequency

at each frequency range for the Monte Carlo simulations (i.e., 1.5, 3, 6, and 10 Hz).

6.4 Results

To model seismic wave propagation in a heterogeneous medium, we assume a uniform

background P-wave velocity of 6.70 km/s and S-wave velocity of 3.87 km/s, values appropriate

for the lower crust in southern California (below about 5 km depth). However, to obtain the most

accurate possible take-off angles at the focal sphere for the radiation pattern, we compute ray

paths based on a classic 1-D southern California velocity model (Hadley and Kanamori, 1977).

To select the best intrinsic and scattering models to model the S/P amplitude ratio (SPAR),

we define a misfit measure err between the synthetics and observations as

err = ∑
i, j,k,l

∣∣log10 (SPARsyn(ri,φ j,θk, fl))− log10 (SPARobs(ri,φ j,θk, fl))
∣∣ , (6.2)

where r, φ, θ, f are the distance, relative azimuth from the fault plan, takeoff angle, and frequency,

respectively. In this study, we use the L1-norm misfit of the log10 (SPAR) to reduce the effect

of outliers, since the observed S/P amplitude ratios are highly scattered. To fit the observations,

146



we use frequency-dependent intrinsic attenuation parameters, i.e., Q( f ) = Q0 · f η, where Q0 is

the quality factor at 1 Hz and η is the frequency dependent exponent, based on previous studies,

e.g., Carcolé and Sato (2010) and Lin and Jordan (2018). After extensive trial-and-error forward

modeling, we show the predictions of our best-fitting model in Figures 6.4, 6.5, and 6.6, which

is able to roughly fit the range dependence in the SPAR values over the different frequency

bands. The intrinsic attenuation parameters are QP = 250,QS = 312 at 1.5 Hz, and η = 0.2. The

scattering model is characterized by a von Karman ACF with correlation length a = 2 km and rms

strength fluctuation ε = 0.05. This model is reasonably consistent with crustal results reported

by previous studies, which are within the general range, ε = 0.008−0.1 and a = 0.05−16 km

for the crust (Takemura et al., 2009, 2016, 2017; Bydlon and Dunham, 2015; Savran and Olsen,

2016; Wang and Shearer, 2017; Lin and Jordan, 2018; Sato, 2019).

6.5 Discussion and Conclusions

Overall, our model fits the S/P amplitude ratios reasonably well across the different

frequency bands, although a few observations deviate from the synthetics. The focal mechanisms

are obtained using the HASH method developed by Hardebeck and Shearer (2002, 2003). The

focal mechanisms of the events are similar, but not identical, for our event clusters. This is why

we plot the S/P amplitude observations versus station azimuth relative to the radiation pattern

rather than versus absolute azimuth. However, if the scatter in the focal mechanisms were due

to errors in the strike, dip and rake estimates, rather than true scatter in the mechanisms, this

approach might be flawed. To test this possibility, we plotted the S/P ratio versus station azimuth

(see Figure S6.3) and found much more scatter in the results. This suggests that it is indeed

appropriate to correct for differences in the individual event focal mechanisms, as we have done

here, but errors in the focal mechanisms or non-double-couple source components will add some

uncertainty to interpretation of S/P amplitude ratio measurements. The computed takeoff angles
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are based on the choice of the seismic velocity model. In this study, we also tested a smoothed

version of the standard Hadley-Kanamori model (Shearer, 1997). The difference in takeoff angles

between these two models is not significant (Hardebeck and Shearer, 2002) and does not affect

our final choice of attenuation model. We do not consider lateral or 3-D variations in the velocity

and attenuation structure in southern California or any near-source structure, such as fractures or

anisotropy (e.g. Hauksson and Shearer, 2006; Tape et al., 2010; Wang and Shearer, 2019).

Here we achieve a reasonable fit to the S/P ratios using a whole-space model. At the

frequency range 1–2 Hz, we observe slightly smaller synthetic S/P ratios, but within one-standard

deviation error (see Figure 6.5 & S6.4). We tested the effect of increasing our assumed source-

radiated S-to-P energy ratio from 14 to 23.4, the value for identical P and S corner frequencies

and a Poisson solid (Boatwright and Fletcher, 1984; Abercrombie, 1995), but found no significant

difference (see Figure S6.6). Another reason for the S/P difference may be measurement error.

Figure S6.5a and S6.7a illustrates that even if there is no attenuation, some individual measure-

ments are much larger than the predictions. Considering these factors and our good fit at higher

frequency ranges (>2 Hz), our model provides an acceptable overall fit to the observations (see

Figure 6.5, 6.6 and S6.5).

Wang and Shearer (2017) found that a two-layer model was necessary to fit the distance-

dependence of average coda-wave envelopes from local earthquakes in southern California, with

stronger scattering and intrinsic attenuation in the upper 5.5 km than in the lower crust. In Figure

6.4b and 6.5b, we compare the observed S/P amplitude ratios to predictions (computed using

the phonon code) for the two-layer model in Wang and Shearer (2017). The two-layer model

generally under-predicts the observations, suggesting that in the San Bernardino region the overall

attenuation is not as strong as the average across southern California. However, the distance

dependence is similar to the observations, which is why a two-layer model is not required to

explain our S/P results for this region. This is supported by the fact that no significant differences

are seen in S/P amplitude ratios between shallow and deep events (see Figure S6.1, S6.2 & S6.3).
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However, in the future, we hope to build on this work to explore the range of scattering and

intrinsic attenuation models that can explain both S/P ratios and coda envelopes in different

regions across southern California.

The dominant scattering direction is determined by the parameter ak, where a is the

correlation distance, the same as equation (1), and k is the wave number. The scattering is

primarily backward for ak << 1, and the scattering is forward for ak >> 1 (Sato et al., 2012, p.

146). In general, values of ak are proportional to frequency, suggesting that at low frequencies

ak is reduced and scattering might tend to be backward. But, in this work, even at the lowest

frequency of 1.5 Hz, we find ak is 2.8 and 4.9 for P and S waves, respectively, indicating

forward scattering. The scattering attenuation for the forward scattering can be computed using

QSc = v/ωlt , where lt is transport free mean path (Turner, 1998; Przybilla et al., 2009; Wang

and Shearer, 2017). In this study, we find both the intrinsic and scattering attenuation of the P

wave are smaller than that of the S wave (see Table 6.1). Some previous crustal studies have

found that the total P attenuation is less than the S attenuation (e.g. Yoshimoto et al., 1993; Chung

and Sato, 2001; Hauksson and Shearer, 2006; Lin and Jordan, 2018), while the Takemura et al.

(2017) analysis of scattering in the Chugoku region of Japan suggested that intrinsic attenuation

dominates over scattering attenuation and that the intrinsic P attenuation is greater than the

intrinsic S attenuation. Proposed explanations for stronger P-wave attenuation than S-wave

attenuation include scattering (Yoshimoto et al., 1993; Lin and Jordan, 2018) and partial fluid

saturation of crustal rock, which cause increasing internal dissipation in compression (Ponko and

Sanders, 1994; Hauksson and Shearer, 2006).
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Figure 6.1: Locations and depths of earthquakes (33 shallow and 40 deep earthquakes) and 80
stations used in this study in San Bernardino region, southern California. (a) Stations are plotted
as black triangles and earthquake epicenters are within the small rectangular box. Quaternary
faults are depicted as light black curves and three major faults are illustrated as bold curves and
labeled with their names. The red box in the top right plot indicates our study region in the
western U.S. map. (b) Histogram of event depths. (c) A closeup of the epicentral region, with
shallow and deep events shown as red and blue dots, respectively.
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Figure 6.2: Observed peak absolute S/P amplitude ratios versus hypocentral distances at
frequency 1–2, 2–4, 4–8, and 8–12 Hz, respectively. Black dashed line indicates the best linear
fit of the data, where the slope is listed in each figure. We plot the median S/P amplitude ratios
within the 5 km bins with one standard deviation error bars. The color bar shows the takeoff
angle for each recording.
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Figure 6.3: Observed peak absolute S/P amplitude ratios versus differences between strikes
and azimuths at 1–2, 2–4, 4–8, and 8–12 Hz, respectively. The color bar shows the epicentral
distance for each recording.
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Figure 6.4: A synthetic example showing how the phase-bin declustering method works. (a)
Event time versus phase for a given period. Red dots represent individual event location in time
versus phase. Vertical dashed lines separate each cycle into eight equal increments. The sloping
lines show increasing phase with respect to time in each cycle. Note that events within a tight
temporal cluster (e.g., a swarm or aftershock sequence) will tend to occur at the same phase,
possibly biasing tests of phase randomness. (b) The phase-bin declustered catalog, in which
only the maximum magnitude event is retained for each phase bin at each cycle.
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Figure 6.5: Comparison of the observed (black dots) and synthetic (red dots) peak absolute S/P
amplitude ratios versus hypocentral distance, using the best-fitting intrinsic (QP = 250,QS = 312
at 1.5 Hz and η = 0.2) and Von Karman scattering model (a = 2 km, and κ = 0.3) at 1–2, 2–4,
4–8, and 8–12 Hz, respectively. The synthetic S/P amplitude ratios from the two-layer model in
Wang and Shearer (2017) are shown in (b) as blue dots.
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Figure 6.6: Comparison of the observed (black dots) and synthetic (red dots) peak absolute S/P
amplitude ratios versus difference between strike and azimuth, using the best-fitting model as in
Figure 4.
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Table 6.1: Model parameters, including correlation length (a), rms perturbation (ε), intrinsic Q
(αQI and βQI for P and S waves, respectively), scattering Q (αQSc and βQSc), and total Q (αQT

and βQT ) for different frequencies.

Frequency αQI
αQSc

αQT
βQI

βQSc
βQT

1.5 Hz 250 470 163 312 759 221
3 Hz 287 569 190 358 931 258
6 Hz 330 732 227 412 1203 306

10 Hz 365 908 266 456 1502 350
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6.6 Supplementary Materials
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Figure S6.1: Observed peak absolute S/P amplitude ratios of shallow (red dots) and deep (blue
dots) earthquakes versus hypocentral distances at frequency bands 1–2, 2–4, 4–8, and 8–12 Hz,
respectively.
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Figure S6.2: Observed peak absolute S/P amplitude ratios of shallow (red dots) and deep (blue
dots) earthquakes versus difference between strikes and azimuths (DSA) at frequency bands
1–2, 2–4, 4–8, and 8–12 Hz, respectively. The black line is the best fitting sine function to the
S/P amplitude ratios at each frequency range.
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Figure S6.3: Observed peak absolute S/P amplitude ratios of shallow (red dots) and deep (blue
dots) earthquakes versus azimuths at frequency bands 1–2, 2–4, 4–8, and 8–12 Hz, respectively.
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Figure S6.4: Comparison of observed (black dots) and synthetic (red dots) peak absolute S/P
amplitude ratios at frequency bands 1–2, 2–4, 4–8, and 8–12 Hz, respectively. The synthetics
are computed from the non-attenuated model.
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Figure S6.5: Comparison of synthetic synthetic peak absolute S/P amplitude ratios from the
non-attenuated model using the source radiated S-wave energy to P-wave energy ratio 14 (red
dots) and 23.4 (blue dots) at frequency bands 1–2, 2–4, 4–8, and 8–12 Hz, respectively.
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Figure S6.6: Comparison of the ‘stacked’ observed (black dots) and synthetic (red dots) peak
absolute S/P amplitude ratios versus DSAs, using the non-attenuated model by applying the
same moving median approach as in Figure S4, at frequency bands 1–2, 2–4, 4–8, and 8–12 Hz,
respectively.
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