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The twin epidemics of obesity and type 2 diabetes (T2D)
are a serious health, social, and economic issue. The
dysregulation of adipose tissue biology is central to the
development of these two metabolic disorders, as adi-
pose tissue plays a pivotal role in regulating whole-body
metabolism and energy homeostasis (1). Accumulating
evidence indicates that multiple aspects of adipose bi-
ology are regulated, in part, by epigenetic mechanisms.
The precise and comprehensive understanding of the
epigenetic control of adipose tissue biology is crucial to
identifying novel therapeutic interventions that target
epigenetic issues. Here, we review the recent findings
on DNA methylation events and machinery in regulating
the developmental processes and metabolic function of
adipocytes. We highlight the following points: 1) DNA
methylation is a key epigenetic regulator of adipose
development and gene regulation, 2) emerging evidence
suggests that DNA methylation is involved in the trans-
generational passage of obesity and other metabolic
disorders, 3) DNA methylation is involved in regulating
the altered transcriptional landscape of dysfunctional
adipose tissue, 4) genome-wide studies reveal specific
DNA methylation events that associate with obesity and
T2D, and 5) the enzymatic effectors of DNA methylation
have physiological functions in adipose development
and metabolic function.

EPIGENETIC CHANGES ARE LINKED TO OBESITY
AND TYPE 2 DIABETES

Obesity and type 2 diabetes (T2D) are highly complex
human diseases, and genetics plays an important role in
the etiology of both. With the advent of next-generation
sequencing, several common single nucleotide polymor-
phisms (SNPs) have been discovered in association with
disease susceptibility. However, the vast majority of these

variants have not been tested for causality, and even if
proven causal, they cannot fully explain many clinical
features such as high heritability, high discordance in adult
monozygotic twins, and the close relationship with envi-
ronmental factors (2–5). Therefore, it has long been
speculated that nongenetic variation, such as epigenetic
alterations, plays a role in pathogenesis. This notion has
been borne out by a recent epigenome-wide association
study that linked alterations in DNAmethylation to whole-
body insulin sensitivity (6).

DNA methylation is a reversible epigenetic mark in-
volving the covalent transfer of a methyl group to the C-5
position of a cytosine residue by DNA methyltransferases
(DNMTs), usually in the context of a cytosine-guanine
dinucleotide (CpG) doublet. Though methylated DNA has
long been thought to be a static mark, recent studies
indicate that methylated DNA undergoes dynamic and
reversible remodeling through DNA demethylases, namely,
the ten-eleven translocation (TET) proteins. Mounting
evidence supports that DNA methylation is involved in
various forms of metabolic perturbation, from the abnor-
mal development of adipose tissue to the dysfunction of
adult adipocytes. Here, we will discuss the DNA methyl-
ation events that impact metabolism and the functional
roles of DNMTs and TET proteins in adipose biology, with
an emphasis on those that may be associated with obesity
and T2D.

DNA METHYLATION AND ITS MACHINERY

DNA methylation is a process by which methyl groups are
added to the DNA molecule, especially at the 5 carbon of
the cytosine ring, which forms 5-methylcytosine (5mC)
(7). In mammals, 5mC is mostly found in the context of
paired symmetrical methylation of a CpG site, a site in
which a cytosine is located next to a guanidine (7).
However, non-CpG methylation is also detected in human
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and other species (8–10). In the bulk of genomic DNA,
most CpGs are methylated, whereas those located in a CpG
island (where CpG sites cluster to form repetitive sequences)
remain largely unmethylated (7).

DNA methylation is mediated by DNMTs. In mammals,
five family members of the DNMT proteins have been
characterized—Dnmt1, -2, -3a, -3b, and -3L—yet only the
first three possess DNMT activity (11). DNMT1 is the
maintenance Dnmt for replication, whereas DNMT3a and
-3b are referred as de novo DNMTs, as they can establish
a new DNA methylation pattern (11). The DNMT3-like
protein Dnmt3L is homologous to the other Dnmt3s but
lacks catalytic activity, and Dnmt2 has sequence homology
to all Dnmts but methylates cytoplasmic tRNA instead of
DNA (11).

DNA methylation has long been thought to be a static
epigenetic mark, but emerging evidence suggests that it
undergoes dynamic and reversible remodeling in somatic
cells during developmental and pathogenic processes
(12,13), making its machinery and effects attractive
drug targets. For example, DNA methylation can be erased
by either passive or active mechanisms or a combination of
both (14). Passive demethylation is often due to the loss of
5mC during successive rounds of replication in the absence
of methylation maintenance machinery such as DNMT1.
By contrast, active demethylation is mediated by a set of
enzymes; TET proteins (TET1, -2, and -3) oxidize 5mC to
hydroxymethylcytosine (5hmC), which is then converted
to unmethylated cytosine (5C) through base excision re-
pair and thymidine DNA glycosylase (15).

The biological importance of DNA methylation as a ma-
jor type of epigenetic modification in regulating gene
expression has been well established. In general, reduced
DNAmethylation in the promoter or other gene regulatory
regions is associated with increased DNA binding of tran-
scription factors and chromatin proteins, thus allowing
gene transcription to occur (16). By contrast, increased

DNA methylation at the regulatory regions is often asso-
ciated with gene repression (17).

DNA METHYLATION IN ADIPOGENESIS

DNA methylation plays an important role in a broad
scope of developmental processes including adipogenesis
(18–21). Inhibiting DNMT in multipotent C3H10T1/2
cells and 3T3-L1 preadipocytes stimulates spontaneous
differentiation and enhances differentiation in response
to adipogenic inducers (22,23). However, genetic studies
have conflicting results with regard to the exact role of
DNMTs in adipogenesis. DNMT1 is crucial for maintaining
DNA methylation and repressive histone H3K9 methyl-
ation patterns prior to differentiation, suggesting it
represses 3T3-L1 adipogenesis (24). However, knocking
down Dnmt1 and -3a impairs 3T3-L1 adipogenesis (25).
This discrepancy might be due to the experimental con-
ditions and tissue culture variables between the two
laboratory environments. In another controversy, it was
found that, in late-stage differentiation, DNMT inhibition
promoted lipid accumulation by enhancing lipogenesis by
upregulating the lipogenic transcription factor Srebp1c
(25). By contrast, other groups reported that DNMT in-
hibition reduced adipogenic capacity in 3T3-L1 and ST2
mesenchymal precursor cell lines by upregulating canon-
ical Wnt signaling (21,26).

Fortunately, there is more consensus in the field about
the DNAmethylation profile of key adipocyte genes during
differentiation (Fig. 1). PPARg is expressed mainly in
adipose tissue, where it regulates fatty acid storage and
glucose metabolism, and C/EBP is involved in adipogen-
esis. The promoters of both genes are gradually demethy-
lated during 3T3-L1 adipogenesis, correlating with increased
expression of the genes (27,28). This coincides with the
loss of repressive histone marks (H3K9me3) and the
gain of active marks (e.g., H3K27ac and H3K4me3)
(28), although the regulation of this timing is not clearly

Figure 1—Summary of the relationship between environmental factors and DNA (de)methylation machinery in the regulation of adipose
biology. Various perturbations from environmental cues affect the expression or activity of DNMTs and TETs, which alters the DNA
methylation profile of specific target genes with concordant changes in gene expression and phenotypic changes in adipose biology. The
dotted line is used to depict relationships with weaker evidence. Small arrow inserts indicate the direction of change in DNA methylation at
affected genes. Plus and minus signs indicate the direction of gene expression change.
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understood. In addition, dexamethasone treatment causes
Cebpa demethylation in C3H10T1/2 cells, with a concor-
dant release of DNMT3a and -3b from the promoter (28).
It is also noteworthy that the gene bodies of both Pparg
and Cebpa are highly hypermethylated in embryonic stem
cells to restrict lineage commitment to adipogenesis (29).
Similarly, reduced DNA methylation is observed during
adipogenesis at the promoters of other adipocyte genes
(e.g., Lep [30], Slc2a4 [GLUT4] [30], and Peln [27]). In-
triguingly, recent global profiling studies have demon-
strated that 5hmC (a cytosine that is an intermediate
product of DNA demethylation) colocalizes with PPARg
at enhancers in 3T3-L1 adipocytes (31), and PPARg-
positive nuclei sorted from visceral adipose tissue from
healthy humans are strongly coenriched with 5hmC (32).
Given that the TET proteins, especially TET1 and TET2,
are necessary for adipose conversion (33) and that PPARg
physically interacts with them (27,34) indicate that PPARg
is influencing the methylation pattern.

DNA methylation has also been implicated in the trans-
generational regulation of adipose development. Maternal
obesity predisposes offspring to obesity and T2D, yet the
mechanisms remain unknown. A rodent study demon-
strated that maternal obesity increases the expression
of Zfp423 (the key transcription factor committing cells
to the adipocyte lineage [35] and maintaining white ad-
ipocyte identity [36]), which results from hypomethylation
at the promoter region of Zfp423, which has exceptionally
high density of CpGs in the promoter (37). Increased
Zfp423 expression implies increased adipose expansion
but fewer beige/brown adipocytes, which can contribute to
increased adiposity during fetal development and meta-
bolic dysfunction later in life. Another mechanism for
transgenerational regulation could be PPARg, which has
reduced expression and function in obesity and adipose
metabolic dysfunction. Offspring that are born to obese rat
mothers have persistently lower PPARg expression, more
epigenetic repression, including DNA hypermethylation,
and reduced enrichment of active histone marks at the
PPARg promoter region (38).

DNA (de)methylation governs brown adipocyte–specific
gene regulation and development. In contrast to white
adipocytes, which store excess energy in the form of
triglycerides, brown and beige adipocytes dissipate energy
in the form of heat. While white and brown adipose
development share a similar genetic cascade, they have
distinct transcriptional and epigenetic programs (39). A
genome-wide study showed that the overall DNA methyl-
ation pattern of white adipocytes is different from that of
brown (40). Compared with the white 3T3-L1 cell line, the
brown adipocyte cell line HIB-1B has reduced methylation
at the CpGs around cAMP response elements, which are
important for the sympathetic stimulation of Ucp1 expres-
sion, a marker gene for brown adipocytes that mediates
adaptive thermogenesis (41). In 3T3-L1 adipocytes, the
corepressor protein RIP140 recruits repressive histone
modifiers, such as HDAC1 and -3, and all three DNMTs

to the Ucp1 enhancer and promoter regions for gene
repression (42). Consistently, treatment of 3T3-L1 and
mouse embryonic fibroblasts with DNMT inhibitor increases
Ucp1 expression. Furthermore, TET-mediated DNA deme-
thylation is required for the gene activation of Prdm16, an
important transcriptional regulator of brown adipose de-
velopment (43).

A more recent study reports that DNA methylation is
involved in transgenerational regulation of brown and
beige adipose activity (44). Interestingly, paternal cold
exposure before mating results in improved systemic
metabolism and protection from diet-induced obesity of
the male offspring. Such transgenerational impact of cold
exposure through male lineage was associated with differ-
ential methylation at multipole loci (44). Most promi-
nently, the gene body of Adrb3, which encodes a protein
mediating b-adrenergic stimulation in brown adipose tis-
sue, was hypomethylated in association with increased
gene expression in sperm genomic DNA (44). More studies
should be conducted to understand the functional impli-
cation of DNA methylation in plasticity between beige and
white adipocytes in response to various stimuli. Elucidat-
ing the epigenetic mechanisms of brown and beige adipose
biology will shed light on effective therapeutic interven-
tions for obesity and obesity-related human diseases.

Notably, a majority of these studies were conducted
using tissue culture models. Although the results from
in vitro studies provide important insights and are often
conserved in vivo, the epigenome can profoundly differ
between in vitro and in vivo contexts. Therefore, in vivo
studies are required to better understand the physiological
role of epigenetics in adipocyte commitment and devel-
opmental processes. Also, it will be important to investi-
gate how distinct DNA methylation events interact with
other epigenetic and transcriptional regulators to confer
genomic target specificity and gene regulation.

DNA METHYLATION IN ADIPOCYTE FUNCTION

In obesity and obesity-related metabolic issues, adipokine
regulation is profoundly altered (45), and some of these
changes are regulated by DNA methylation (Table 1).
Leptin is the key adipokine that mediates adipose tis-
sue–brain communication to maintain energy homeostasis
and normal body weight (46). Obesity is typically associ-
ated with high leptin levels and results in resistance to
leptin (47). So far, the molecular and epigenetic mecha-
nisms underlying that remain largely unknown.

Lep methylation is inversely correlated with adipocyte-
specific Lep expression. For example, the LEP promoter is
hypermethylated in the stromal vascular fraction but
hypomethylated in the adipocyte fraction of human vis-
ceral adipose tissue (48). Lep promoter methylation decreases
during mouse adipogenesis concurrently with increased
Lep expression (49). Consistent with this, DNMT inhibition
increases LEP expression in cell lines such as primary fibro-
blasts and HeLa cells (48).
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Reduced Lep methylation could account for obesity-
related leptin upregulation (49,50); however, the results
have been inconsistent (51,52). Surprisingly, studies sug-
gest that the Lep locus is hypermethylated in obesity. A
high-fat diet regimen initially reduces Lep promoter meth-
ylation for up to 8 weeks, yet prolonged high-fat feeding
for more than 12 and 14 weeks increases Lep methylation,
especially in epididymal fat (53,54). This is accompanied by
increased occupancy of DNMT1, DNMT3a, and DNMT3b
at the Lep promoter (54). Similarly, long-term maternal
high-fat feeding in rats results in increased birth weight,
Lep hypermethylation, and increased plasma leptin levels
in offspring (51). Diet-induced weight loss in obese female
subjects accompanies LEP hypomethylation in association
with increased LEP expression (48). By contrast, bariatric
surgery–induced weight loss does not alter LEP methyla-
tion, though it decreases LEP expression (48). These
results seem paradoxical and suggest that epigenetic mod-
ification occurs as a feedback regulatory mechanism due to
increased LEP expression but is insufficient to normalize
the expression. Further investigations are necessary to
draw a general conclusion as to whether and how DNA
methylation contributes to leptin gene regulation in var-
ious regimens of weight gain and loss.

Adiponectin is a protein hormone mainly produced by
adipose tissue and is encoded by the Adipoq/ADIPOQ gene in
mouse and human (55). It plays an important role in the
maintenance of energy homeostasis by regulating glucose and
lipid metabolism (56). Reduced circulating adiponectin level
is correlated with obesity, insulin resistance, and T2D (55).
Consistent with this, the Adipoq proximal promoter region is
hypermethylated in obesemice (57) due to increasedDNMT1

expression and activity. Moreover, systemic administration
of DNMT inhibitor rescues adiponectin expression and
improves glucose intolerance in high fat–fed wild-type
mice (57). Human studies also support that ADIPOQ meth-
ylation in subcutaneous adipose tissue is positively correlated
with BMI, waist girth, and fasting LDL cholesterol in plasma
(58). ADIPOQ is also hypermethylated in the maternal
adipose tissue of obese pregnant women, resulting in signif-
icantly lower plasma adiponectin levels (59).

Fibroblast growth factor 21 (FGF21) is well-known as
a hepatokine, but it is also expressed in other tissues
including fat and muscle (60). FGF21 facilitates glucose
uptake in adipocytes (61–63) through unknown mecha-
nisms. Adipocyte expression of Fgf21 is negatively regu-
lated by Dnmt3a, with concordant changes in DNA
methylation in Dnmt3a gain- and loss-of-function models.
Consistently, CpGs around FGF21 are hypermethylated in
adipose tissue from T2D patients with a negative corre-
lation with FGF21 expression in adipose tissue (64).

Tumor necrosis factor a (TNFa) was traditionally con-
sidered to be secreted chiefly by macrophages, but it is also
produced by other cell types including adipocytes (65). It is
well established that circulating TNFa levels are positively
correlated with insulin resistance in obesity (66). Contrary
to what is expected, obese individuals with significant
weight loss have decreased methylation at the promoter
of Tnf. For instance, the obese women who lost more
weight in a low-calorie diet intervention displayed lower
promoter methylation levels of Tnf in adipose tissue (67).
Similarly, obese men with significant weight reduction
through a balanced-nutrition intervention also showed
decreased methylation levels (68). Similar to the case

Table 1—Summary of differential methylated loci in adipocytes in association with obesity and T2D.
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with LEP methylation, hypermethylation at the Tnf may
occur as an adaptive mechanism to prevent further pro-
duction of TNFa in obesity.

In addition to these sites, global profiling studies have
detected profound changes in DNA methylation at multi-
ple loci in obesity and T2D (Table 1). Studies of mono-
zygotic twins discordant for T2D identified differential
methylation at 7,046 genetic loci, including at candidate
genes for T2D identified through GWAS such as PPARG,
IRS1, TCF7L2, and KCNQ1 (69). Three independent stud-
ies found DNA hypermethylation at the CpGs near HIF3A
(70–72) in relation to BMI. This gene encodes a protein
that is part of the heterodimeric hypoxia-inducible factor
(HIF) transcriptional complex, which regulates many adap-
tive responses to hypoxia. The specific role of HIF3A in
adipose biology is not well-known, but adipocyte-specific
depletion of Hif1a in the HIF heterodimer improved in-
sulin sensitivity in the context of a high-fat diet (73).

Additionally, differential methylation has been identified
at adipose biology–related genes (e.g., FTO, TCF7L2, IRS1,
CCL18, and SPP1) in obesity and T2D (69). A recent mouse
adipocyte methylome study identified a number of differ-
entially methylated regions in diet-induced obesity, some of
which negatively correlate with gene expression changes
(e.g., Pck1, Tcf7l2, and Akt2) (74). Cross-species analysis
identified 170 differentially methylated regions that are
conserved in human obesity, and 30 of them (e.g., Mkl1,
KCNA3, and Etaa1) overlap with SNPs or nearby proxies that
are associated with human T2D genetic risk. The authors
integrated the DNA methylome with other chromatin mod-
ification maps, transcription localization maps, and disease
associations (SNP/expression quantitative trait loci) to reveal
DNA methylation events that might be more functionally
relevant to disease susceptibility.

Genome-wide studies provide a powerful tool to discover
changes in DNA methylation that might be functionally
relevant to human obesity and T2D. However, they have
a few major limitations. A majority of profiling studies,
especially human studies, use an array-based method that
covers a fraction of the CpG sites, being biased toward
promoters and strongly underrepresenting distal regulatory
elements. Base pair–resolution studies will be necessary in the
future. Also, it should be noted that there is little overlap
among the differentially modified gene loci between studies.
Furthermore, it will be of great importance to address the
causality of individualmethylation events and follow up on the
metabolic function of the proteins encoded by affected genes.

DNMT AND TET PROTEINS IN ADIPOSE BIOLOGY

Emerging evidence indicates that DNMTs are directly
involved in regulating metabolic function in addition to
developmental processes. The basal level of Dnmt1 and -3a
is modestly high, while that of -3b is barely detectable in
various mouse adipose tissues. Adipose DNMT levels are
significantly increased in diet-induced obesity as well as in
genetically obese ob/ob mice (75). Dnmt3a-overexpressor

mice on a high-fat diet have increased expression of
inflammatory cytokines such as TNF-a and MCP-1 (75).
As discussed earlier, DNMT1-mediated hypermethylation
suppresses Adipoq expression in obesity (57). Adipose
Dnmt3a plays a causal role in the development of insulin
resistance in mice, as evidenced by adipose-specific de-
ficiency of Dnmt3a conferring protection from diet-induced
metabolic dysregulation independent of body weight or
adiposity (64). Future studies should be conducted and
followed up to determine whether there is a conserved
role for DNMT3A in human insulin resistance.

Consistently, pharmacological DNMT inhibition improves
insulin resistance both in vitro and in vivo (57,64), suggesting
that DNMT inhibition can be an attractive therapeutic
approach for metabolic disorders. Notably, administration
of pan-inhibitors of histone deacetylase exerts beneficial
metabolic effects in bothmice and humans, such as increased
energy expenditure, insulin sensitivity, and secretion (76–79).
Together, these studies provide proof of principal that
targeting epigenetic issues can be considered for thera-
peutic intervention to approach metabolic disorders.

Emerging evidence suggests that the TET proteins play
an important metabolic function in adipocytes. All three
TETs are expressed in mouse adipose tissue, but only Tet2
expression is reduced in diet-induced obesity. The expres-
sion of TET1 and TET2 is diminished in adipose stem cells
from obese subjects, concurrent with a reduction of global
5hmC levels (80). It is noteworthy that global 5hmC levels
are downregulated in blood samples from patients with
diabetes, and this is dependent on TET2 action (81); this
further suggests that altered TET2 action may influence
glucose homeostasis. PPARg and the TET proteins appear to
functionally and physically interact (34). During adipogen-
esis, PPARg, via the physical interaction with TET1,
increases local demethylation around PPARg-binding sites
(27). In mature adipocytes, TET2 facilitates the transcrip-
tional activity of PPARg and insulin-sensitizing efficacy of
PPARg agonist by sustaining DNA binding of PPARg at
certain target loci (34). It is noteworthy that global 5hmC
levels are downregulated in blood samples from patients
with diabetes, further demonstrating that TET2 plays a nec-
essary role in maintaining glucose homeostasis as a down-
stream effector of AMPK, especially in the oncogenic state
(81). Together, these studies suggest that TET2 is a critical
epigenetic sensor/regulator of glucose in the cell.

CONCLUDING REMARKS

Accumulating evidence suggests that epigenetics, which
sits at the interface of genetics and environment, plays
a dynamic role in the regulation of metabolic processes.
With the reversibility of epigenetic changes, drugs that
target these changes hold great promise for the preven-
tion, diagnosis, treatment, and prognosis of metabolic
disorders; however, there are still several challenges to
overcome (see OUTSTANDING QUESTIONS [below]). First, it is
essential to gain a more accurate and comprehensive
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understanding of DNA methylation events that are at the
core of pathogenesis. Despite a plethora of studies report-
ing DNA methylation changes in association with disease
state, we still lack information about which changes are
core to the condition and which events drive the pheno-
type. Capturing more dynamic changes through base pair–
resolution profiling during fine time course studies will be
necessary. Second, target specificity needs to be carefully
addressed. DNA methylation is involved in a broad spectrum
of biological processes in multiple tissues and cell types.
Although systemic administration of DNMT inhibitors
improves the metabolic profile, it is still under investigation
whether they have deleterious effects due to nonspecificity.
Target-specific epigenetic editing studies in mouse models
have been performed and will be needed to address this
question. Third, more thorough biological validation in cells
and animals will be critical. Some epigenetic changes may
increase disease susceptibility, but someoccur as a consequence
of the disease phenotype. Thus, functional validation of in-
dividual DNA methylation events and machinery should be
done to resolve the consequence/causality issue in a definite
way. In conclusion, we seek to elucidate the reversible and
treatable epigenetic changes that can be used for personalized
medicine and targeted therapy for metabolic diseases.

OUTSTANDING QUESTIONS

What triggers the change in DNA (de)methylation and
machinery? Epigenetic regulation operates at multiple
levels, and little is known about which stimuli (e.g., nu-
tritional signals and molecular and epigenetic regulators)
drive the change.

How dynamic is the change in methylation? A vast
majority of studies profiled the change between disease
and nondisease states, but very few studies have examined
reversibility. It is difficult to delineate which changes are
initial, and likely contribute to the pathogenesis, and
which are consequential. Cataloging the dynamic changes
may help narrow down the list to causal and treatable
epigenetic changes.

What confers target specificity? DNA methylation ma-
chinery does not bind to DNA in a sequence-specific
manner. Identifying recruiting factors that target genomic
loci will be critical to achieving specificity.

What is the role of DNA methylation in interindividual
differences in disease susceptibility and drug efficacy?
DNA methylation is highly variable between individuals,
even in those with the same genetic content, as evidenced
by monozygotic twin studies. Investigating which changes
are important to etiology and efficacy may identify new
therapeutic approaches.

What is the role of metabolic cofactors in disease-
associated DNA methylation? Epigenetics is regulated at
multiple levels, and several key metabolites function as
cofactors. DNMTs use S-adenosyl-L-methionine, generated
by the methionine cycle, as the methyl donor, whereas TET
enzymes require a-ketoglutarate, a key by-product of the
tricarboxylic acid cycle. A change in metabolic state

would affect the concentration of these metabolites in
cells and modulate the enzymatic activity of DNMTs and
TETs. Understanding the regulatory function and mech-
anism of DNA (de)methylation at the cofactor levels will be
crucial for developing a nutritional approach to therapy.
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