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ABSTRACT OF THE DISSERTATION

Higher-Order Accurate Variance Estimation in Markov Chain Monte Carlo
(MCMC)

by

Deepak Bastola

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2021

Dr. James Flegal, Chairperson

Variance estimation in the context of high dimensional Markov Chain Monte Carlo

(MCMC) is an interesting topic in research. Practical implications of estimating vari-

ance are limited due to inherent systematic bias both in univariate and multivariate

settings. Recent advancements in high dimensional covariance matrix estimation in

MCMC setting including works on Lugsail Batch Means (LUG-BM) have proven to

improve the bias properties. Using spectral theory of estimation, we can further

improve upon the bias and variance properties of the estimators. Finite sample prop-

erties of variance estimators should be studied in detail using statistical properties of

the sampling bias, while accounting for the sampling error. The direction of this bias

is crucial in finite sample applications. Mean Square Error (MSE) has been tradition-

ally used to assess the quality of estimation. However, using alternate asymmetrical

loss functions is recommended as they are more natural to use in applications where

constructing optimal variance estimators in finite samples is required. Normality as-
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sumptions are required to make efficient use of these techniques and a careful analysis

should be done to ensure the assumptions for normality are met.
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Chapter 1

Introduction

1.1 Markov Chains

Covariance estimation is one of the fundamental methods in modern statistics. Its

importance is more pronounced in real-world problems such as astrophysics, finance,

remote sensing, medicine, genomics, geostatistics, and the like, where the parameter

space is very large and the degree of co-occurences between the variables is hard to

quantify. With the aid of computer simulations and Monte Carlo methods, generating

random variables from seemingly intractable distributions has become easy Roberts

and Rosenthal (2004). A better estimation of the error covariance matrix can lead

to better understanding of the modeling and inherent physical process. Moreover,

it can ultimately aid in dimension reduction which is highly desirable when dealing

with large dimensions.
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Markov Chain Monte Carlo (MCMC) is a set of simulation methods for drawing

samples from a distribuition, π(·), defined on a measurable space (X ,B), where X

is the state space and B is a countably generated Borel σ-algebra. MCMC methods

are widely used to analyze complex probability distributions and are practical when

independent sampling from such distributions is difficult. The distribution π(·) is

usually known only up to some proportionality constant. Although MCMC methods

produce dependent samples, the Ergodic Theorem guarantees that for Markov chain

started with invariant distribution π(·), long run averages follow the strong law of

large numbers (SLLN).

A time-homogeneous discrete time Markov chain, {Xn}n∈N, is a collection of ran-

dom variables, Xn, each defined on a measurable space (X ,B), such that,

P[Xn ∈ A|X1 = x1, ..., Xn−1 = xn−1] = P[Xn ∈ A|Xn−1 = xn−1], ∀A ∈ B.

A Markov chain consists of a state space, an initial distribution, and a transition

kernel. The state space X is the collection of the possible values of X. The initial

distribution is the marginal distribution of X1. The transition kernel is the conditional

distribution of Xn+1 given Xn i.e., P (Xn−1, A) = P[Xn ∈ A|Xn−1 = xn−1], where

P (x, ·) defines a distribution over (X ,B) for any x ∈ X , and P (·, A) is measurable

for any A ∈ B. The n-step transition kernel denotes the probability that the Markov

chain at x will be in set A after n steps. For x ∈ X , A ∈ B, and l ∈ {1, 2, 3, ..}, the

2



n-step kernel can then be defined as

P n(x,A) = P[Xm+l ∈ A|Xl = x].

A probability measure π(·) on B is called invariant for {Xn}n∈N, if, for all mea-

surable sets A,

π(A) =

∫
X
P (x,A)π(dx).

It can be shown that
∫
X P

n(x,A)π(dx) = π(A) for n = 1, 2, 3, ... . So, if X1 ∼ π, then

Xn ∼ π for all n and {Xn}n∈N is stationary. If P (x, ·) admits a density p(x′|x) then

equivalently,

π(x′) =

∫
X
p(x′|x)dx.

The Markov chain is said to be reversible with respect to π if, at stationarity, the

probability that xi ∈ A and xi+1 ∈ B are equal to the probability that xi+1 ∈ A and

xi ∈ B. In mathematical notation, reversibility condition is satisfied if π(x)p(x′|x) =

π(x′)p(x|x′), also referred to as “detailed balance”.
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1.1.1 Markov Chain Asymptotics

Let X∞ be a stationary Pn-Markov chain with the invariant probability distribu-

tion π that converges in probability to a Harris ergodic Markov chain. Then for any

bounded continuous function g : X → Rp such that Eπ|g| <∞, and for any n→∞,

∫
X
g(X)π(dx) = n−1

n∑
i=1

g(Xi) w.p. 1. (1.1)

If (1.1) holds for any n → ∞, then the MCMC procedure is called consistent. The

p-dimensional mean vector of interest is θ = Eπ{g(X)} =
∫
χ
g(X)π(dx). For ease

in notation, let’s call Yt = g(Xt), where g = (g(1), g(2), ...., g(p)). Then from the

consistency property, the estimator, θn = n−1
∑n

t=1 Yt → θ w.p. 1 as n→∞.

1.1.2 Ergodicity

A stochastic process {Xt} is said to be stationary if E [Xt] = θ for all j and the

covariance between two observations that are s time or space unit apart depends only

on the lag s i.e.,

R(s) = E [(Xt − µX) (Xt+s − µX)] , s = 0,±1,±2, . . . .

Markov chains will never be at stationary in practice. To assess Markov chains

in terms of how far away they are from stationarity, the notion of total variation

4



distance is established. The total variation distance is the largest difference between

the probabilities of a single event in B between the probability measures P n(x, ·) and

π(·), i.e.,

‖P n(x, ·)− π(·)‖TV = sup
A∈B
|P n(x,A)− π(A)|. (1.2)

The rate of convergence of the total variation distance between the n-step tran-

sition kernel to the invariant distribution determines the ergodicity of the Markov

chain. A Markov chain {Xn}n∈N is called Harris ergodic if it is ψ-irreducible, aperi-

odic, and Harris recurrent (Meyn and Tweedie, 1993; Jones, 2004). Harris ergodicity

implies that for every x ∈ X ,

‖P n(x, ·)− π(·)‖TV ↓ 0, (1.3)

as n→∞. However, Harris ergodicity is not enough to specify the rate of convergence

of the Markov chain to stationarity. The convergence rate of a Harris ergodic Markov

chain can be studied by finding an upper bound for the total variation distance.

A Harris Markov chain is geometrically ergodic if there exists a constant ρ ∈ [0, 1)

and a function M : X → [0,∞) such that for any x ∈ X and any n ∈ N,

‖P n(x, ·)− π(·)‖TV ≤M(x) · ρn. (1.4)

5



If M(x) is also bounded from above in (1.4) in addition to being geometrically ergodic,

the chain is called uniformly ergodic. Geometric ergodicity is the weaker of the two

and easier to establish.

Another form of ergodicity exists which is even weaker and is called polynomial

ergodicity. A Markov chain is polynomially ergodic of order m if there exists a non-

negative function M(x) and m ≥ 0 such that

‖P n(x, ·)− π(·)‖TV ≤M(x) · n−m. (1.5)

There exists many ways of proving ergodicity in the literature and they are often

established using drift and minorization conditions, see e.g. Meyn and Tweedie (1993),

Jones and Hobert (2001), and Roberts and Rosenthal (2004).

1.1.3 Mixing

Temporal dependence of observations that are far away in the past or future

can be studied under certain mixing conditions, see for e.g. Bradley (2005). Mixing

conditions are flexible and they are useful to quantify how fast observations far from

each other achieve independence (Rosenblatt, 1961), (Rosenblatt, 1972). Let Fn−∞ =

σ(..., Xn) be the smallest collection of subsets of Ω that contains the union of the

σ-fields Fna as a→ −∞. Similarly, let F∞n+m = σ(Xn+m, ...) be the smallest collection

of subsets that contain the union of the σ-fields Fan+m as a→∞.
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For any two σ-fields A and B ⊂ F , define the following measures of dependence,

α(A,B) = sup|P (A ∩B)− P (A)P (B)|, A ∈ A, B ∈ B

φ(A,B) = sup|P (B|A)− P (B)|, A ∈ A, B ∈ B, P (A) > 0,

where the supremum is taken over all pairs of (finite) partitions {A1, ......., AI} and

{B1, .....

.., BJ} of Ω such that Ai ∈ A for each i and Bj ∈ B for each j (Bradley, 2005). The

dependence coefficients can then be defined as

α(n) = sup
j∈Z

α(F i−∞,F∞j+n),

φ(n) = sup
j∈Z

φ(F i−∞,F∞j+n).

A random process is m-dependent if the σ-fields Fk1 and F∞k+m+1 are independent

for all k ≥ 1. The random sequence {X} is said to be strongly mixing (or α-mixing)

if α(n) → 0 as n→ ∞. It is said to be φ-mixing if φ(n) → 0 as n → ∞. Geometric

ergodic Markov chains are exponentially fast α-mixing. For stationary sequences,

mixing implies ergodicity. If φ(h) = O(h−a−ε) for some ε > 0, then φ is of order a.

Similarly, if α(h) = O(h−a−ε) for some ε > 0, then α is of order a.

7



1.1.4 Strong Invariance Principle

Let {Xn}n∈N be a stationary sequence of centered random variables and denote

Sn =
∑n

i=1 Xi to be some partial sums. A strong invariance principle states that the

given sequence can be defined on a rich probability space so that for some Brownian

process {Wt, t ≥ 0} and some specified σ2 > 0, we have

Sn − σWn = O(ψ(n)) a.s.

Theorem 1 (Kuelbs and Philipp, 1980) Let g (S1) , g (S2) , . . . be an Rp -valued sta-

tionary process such that EF‖g‖2+δ <∞ for some 0 < δ ≤ 1. Let αg(n) be the mixing

coefficients of the process {g (St)} and suppose, as n→∞,

αg(n) = O
(
n−(1+ε)(1+2/δ)

)
for ε > 0.

Then, a strong invariance principle holds with ψ(n) = n1/2−λ for some λ > 0 depend-

ing on ε, δ, and p only.

Condition 2 Let {B(t), t > 0} be a p-dimensional standard Brownian motion. There

exists a p× p lower triangular matrix L, a nonnegative increasing function ψ on the

positive integers, a finite random variable D, and a sufficiently rich probability space

8



such that, with probability 1, as n→∞

‖n (θn − θ)− LB(n)‖ < Dψ(n). (1.6)

Condition 3 The batch size b satisfies the following conditions: (a) the batch size b

is an integer sequence such that b → ∞, and n/b → ∞ as n → ∞, where b and n/b

are increasing; (b) there exists a constant c > 1 such that
∑

n (bnn
−1)

c
<∞.

Assumption 1 For some δ > 0, E ‖Y1‖2+δ < ∞ and there exists ε > 0 such that

{Xt} is α-mixing with α(n) = O
(
n−(4+ε)(1+2/δ)

)
.

1.1.5 Physical Dependence

Quantifying λ is still an open problem because it is very hard to quantify the

correlation of a stochastic process. For slow mixing Markov chains, λ close to 0, and

for fast mixing Markov chains λ close to 1/2. To capture the dependence structure

in time series, Wu (2005) introduces a novel physical dependence measure assuming

that the time series has the Markov form

Yt = g (. . . , εt−1, εt) ,

where {εt; t ∈ Z} are i.i.d. random variables and g is a measurable function such that

Yt is well-defined. This alternate physical dependence measure is easy to use and is

directly related to the underlying data-generating mechanism (Xiao and Wu, 2011).

9



Let (ε′t, t ∈ Z) be an i.i.d. copy of (εt, t ∈ Z) and let another time series started

at this i.i.d. copy be Y ′t := g (εt, . . . , ε1, ε
′
0, ε−1, ε−2, . . .). If ‖Yt‖p := (E |Yt|p)1/p

< ∞

for some p > 0, the physical dependence measure is defined as

Θp(m) =
∞∑
t=m

δp(t), m ≥ 0, where δp(t) = ‖Yt − Y ′t ‖p . (1.7)

The parameter δp(t) measures the impact of ε0 on Yt. It basically means that the

impact of error terms et far into the past or future becomes negligible so that they can

be treated as independent and the metric of this approximation is δp(t). Asymptotical

results then typically depends on the rate of decay of δp(t) as t→∞. Also, consider

a dependence adjusted and aggregated norm, resp. defined in Wu and Wu (2016) as

‖Y.,j‖p,α = sup
m>0

(m+ 1)αΘp,j(m) and Ψp,α = max
j∈[d]
‖Y.,j‖p,α ,

where α ∈ (0,∞) and d is the dimension of Yt. These quantities are important to

bound the bias of the variance estimators.

For some of the proofs, we assume a second order stationary linear time series as

our underlying Markov model with the following assumption

Yt =
∞∑
j=0

bjεt−j, t ∈ Z, (1.8)

where the coefficients bj are absolutely summable and {εk}k∈Z is a mean zero i.i.d.

10



sequence of random variables, such that E
(
|εk|4

)
< ∞ and E (ε2k) = σ2

ε > 0. When

the time series contains nonlinear features, a local Gaussian assumption and strictly

stationary assumption may be required in addition to the above set of assumptions

(Jordanger and Tjøstheim, 2017). The spectral density for these process are usually

approximated by an arbitrary order p spectral process.

We can see from (1.7) and (1.8) that δp(t) = |bt| ‖ε1 − ε′1‖, so that for linear

time series, decay rate of δp(t) translates to the assumptions on the decay rate of the

coefficients bt. Assuming
∑+∞

h=−∞ |h| |bh| <∞ or equivalently bh = O
(
|h|−2−δ) , δ > 0

implies that the lag-h autocovariance R(h) = σ2
ε

∑+∞
i=−∞ bibi+|h| is O

(
|h|−2−δ). For a

stationary linear process, it follows that Θα(h) = O
(
h−β

)
for any β > 0 (Shao and

Wu, 2007). For example, if δ4(i) = K |bi| for each i, then Θα = K
∑∞

i=0 |bi| < ∞,

where K = ‖εi − ε′i‖4 < ∞. Thus, short range or weak dependence assumption is

satisfied if Θα <∞.

1.2 Output Analysis

Let π be a distribution with support X and g : X → Rp be an π-integrable function

such that θ = Eπ(g). Let {Xt} be an π-invariant Harris recurrent Markov chain, set

{Yt} = {g(Xt)} and estimate θ with the ergodic averages Y n = n−1
∑n

t=1 Yt. The

statistical process of estimating θ from the output of the Markov chain, {Yn}n∈N, is

called output analysis. The rate of convergence of the Markov chain to the desired

stationary distribution dictates the quality of the estimates of θ for a given Monte

11



Carlo sample size.

Theorem 4 (Jones, 2004) Suppose X is polynomially ergodic of order k , Eπ|M(x)| <

∞ and Eπ |gi(x)|2+δ < ∞ for some δ such that kδ > 2 + δ, then as n → ∞, the ap-

proximate sampling distribution of the Monte Carlo error is available via a Markov

chain Central limit theorem

n1/2(Y n − θ)
d−→ Np(0,Σ), (1.9)

provided there exists p× p positive-definite matrix, Σ.

1.2.1 Univariate Analysis

The univariate central limit theorem (CLT) approximates the asymptotic behavior

of each component of the parameter vector θ. In a univariate analysis, we only

consider one component at a time. Let g(i), θ
(i)
n and θ(i) denote the ith components of

g, θn and θ, respectively. Then θ
(i)
n −θ(i) is the Monte carlo error of the ith component

that we want to estimate. If there exists 0 < σ2
i <∞, then as n→∞, the univariate

Markov chain CLT gives the approximate sampling distribution of this error as

√
n(θ(i)

n − θ(i))
d−→ N(0, σ2

i ), (1.10)

where σ2
i = Varπ{g(i)(X1)}+ 2

∑∞
t=1 Cov{g(i)(X1), g(i)(X1+t))}.
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The variance of the error in estimation consists of the variance of the chain if it

were independent in addition to the covariance among the chain due to the dependence

in the Markov chain. In order to assess the quality of estimation of θ(i), estimates of

σ2
i are needed. Consistent estimation of σ2

i has been studied extensively in literature.

Flegal and Jones (2010) studied the BM and SV method of consistent estimation of

σ2
i .

In the BM method, the output is broken into blocks of equal size. Let a = an

be the number of batches and b = bn be the batch size. Then the run length of the

chain is n = ab. The dependence of a and b on n is implicit and is suppressed for

ease of notation. Asymptotically, the batch means Ȳi are i.i.d. on the limit n → ∞

and b → ∞. Functional limit theorem says that the batch means are uncorrelated

and normally distributed as b → ∞ and a is fixed (Glynn and Whitt, 1991). For

l = 0, ....., a− 1 batches, define the mean for ith component of Y and lth batch to be

Y l(b) =
1

b

b∑
t=1

Ylb+t.

Then, the BM estimate of σ2
i is

σ̂2
i,BM =

b

a− 1

a−1∑
l=0

(Y l(b)− Y n)2. (1.11)

If we use batches that overlap, we get the overlapping batch means (OBM) estimator.

Suppose there are n − b + 1 overlapping batches of length b and the mean for ith
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component of Y and lth batch is

Ẏl(b) =
1

b

b∑
t=1

Yl+t for l = 0, ...., n− b.

Then, the OBM estimator is defined as

σ̂2
i,OBM =

nb

(n− b)(n− b+ 1)

n−b∑
l=0

(Ẏl(b)− Y n)2. (1.12)

There exists another class of estimators of σ2
i called spectral variance (SV) esti-

mators. The lag k autocovariance is defined as γ(k) = γ(−k) = Eπ[YtYt+k], where

Yi’s are centered observations i.e., Yi = g(i)(Xi) − Eπg(i). The sample estimator for

the autocovariance at lag k is then given by

γn(k) = n−1

min(n,n−k)∑
t=max(1,1−k)

(Yt − Y n)(Yt+k − Y n). (1.13)

The sum of γn(k) has been used to estimate σ2
i in literature for some time. Flegal

and Jones (2010) investigated the truncated and weighted sum of (1.13) defined as

σ̂2
i,SV =

b−1∑
k=−(b−1)

wn(k)γn(k), (1.14)

where wn(·) is the lag window and b is the truncation point.

Assumption 2 Suppose (i)w(x) : R → [0, 1] is symmetric, piece-wise smooth with
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w(0) = 1 and
∫∞

0
w(x)xdx <∞, (ii) the Parzen characteristic exponent defined by

q = max

{
q0 : q0 ∈ Z+, g = lim

x→0

1− w(x)

|x|q0
<∞

}

is greater than or equal to 1.

Some common lag-windows are:

Bartlett:wn(k) = (1− |k|/b)I(|k| ≤ b)

(Bartlett) Flat-top:wn(k) = I(|k| ≤ b/2) + (2(1− |k|/b))I(b/2 < |k| ≤ b)

Lugsail:wn(k) =
1

1− c

(
1− |k|

b

)
I(0 ≤ k ≤ b)− c

1− c

(
1− |k|

b/r

)
I

(
0 ≤ k ≤ b

r

)

Tukey-Hanning:wn(k) = ((1 + cos(π|k|/b))/2)I(|k| ≤ b)

Parzen:wn(k) =



1− 6k2 + 6|k|3 for 0 ≤ |k| ≤ 1/2

2(1− |k|)3 for 1/2 ≤ |x| ≤ 1

0 otherwise.

Quadratic Spectral:wn(k) =
25

12π2k2

(
sin(6πk/5)

6πk/5
− cos(6πx/5)

)
.

For the Bartlett kernel, the Parzen characteristic exponent is 1 . For the Parzen and

QS kernels, the Parzen characteristic exponent is 2 . For the Parzen kernel, g = 6.

For the quadratic spectral kernel, g = 18π2/125. Here, g is the limiting value of

characteristic coefficient in assumption 1.

The effective sample size (ESS) is the number with the property that θn has the

same precision as the sample mean obtained by the same number of independent and
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identically distributed (i.i.d.) samples. The ESS for the ith component is given by

ESSi =
n

1 + 2
∑∞

k=1 ρi(k)
= n

λ2
i

σ2
i

. (1.15)

If consistent estimators of σ2
i and λ2

i are used then ESSi estimates are consistent.

Sample variance λ2
n,i is a consistent estimator of λ2

i . When the Markov chain is geo-

metrically ergodic, the BM and oBM methods produce strongly consistent estimators

of σ2
i (Jones et al., 2006; Flegal and Jones, 2010).

Univariate ESS is the most common approach in MCMC literature as it is fast and

simple to calculate. ESS is normally used to devise a stopping rule to terminating the

simulation in MCMC by pre-specifying a lower bound to the simulation run length for

the components (Vats et al., 2019). The lower-bound is specified by the component

with the smallest ESS i.e., the slowest mixing component in the Markov chain. So,

this approach might cause delayed termination of the Markov chain when used as a

stopping criteria.

1.2.2 Multivariate Analysis

In the mutivariate case, the approximate sampling distribution of the Monte Carlo

error, Y n − θ is given by the Markov chain CLT. It states that if there exists a p× p

positive definite symmetric matrix Σ, then the sampling distribution of the means
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converges to

√
n(Y n − θ)

d−→ Np(0,Σ) as n→∞, (1.16)

where

Σ = Varπ(Y1) +
∞∑
k=1

[Covπ(Y1, Y1+k) + Covπ(Y1, Y1+k)
T ]. (1.17)

Multivariate CLT holds under the same conditions as a univariate CLT (Roberts and

Rosenthal, 2004), (Jones et al., 2006). As opposed to the univariate analysis, Σ in

(1.17) now contains the autocovariances of each of the components of the chain and

the cross-covariances among the components of the chain.

Geometrically, the Markov chain CLT can also be written as

n(θn − θ)TΣ−1
n (θn − θ)

d−→ T 2
p,q,

where T 2
p,q is Hotelling’s T-squared distribution with dimensionality parameter p and

degrees of freedom q. If T 2
1−α,p,q is the 1 − α quantile of T 2

p,q, then a 100(1 − α)%

confidence region for θ is

Cα(n) = {θ ∈ Rp : n(θn − θ)TΣ−1
n (θn − θ) < T 2

1−α,p,q},
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where Σn is a strongly consistent estimator of Σ and q is dependent on Σn. The

volume of Cα(n) is

2πp/2

pΓ(p/2)

(
T 2

1−α,p,q

n

)p/2
|Σn|1/2. (1.18)

The multivariate BM estimator is similar to the univariate case except that we

have vectorized observations and means. If the mean vector is Y l(b) = 1
b

∑b
t=1 Ylb+t

for l = 0, ....., a− 1 batches, the BM estimator of Σ is

Σ̂BM =
b

a− 1

a−1∑
l=0

(Y l(b)− Y n)(Y l(b)− Y n)T . (1.19)

Strong consistency for multivariate BM has been studied by Vats et al. (2019). Mul-

tivariate BM is consistent, easy to implement and is readily implemented under a R

package called mcmcse (Flegal et al., 2015). Once we have a consistent estimator

for the asymptotic variance of the sampling distribution we can form asymptoticaly

valid confidence region around the estimates, Y n, to assess their reliability (Vats et al.,

2019).

The confidence region consists of an ellipsoid in p dimensions oriented along the

directions of the eigenvectors of Σn. The volume of the confidence region is propor-

tional to
√
|Σn|, where |Σn| is the estimated generalized variance of the Monte Carlo

error, |Σ|. The volume of confidence region can be used to see if the simulation effort

is big enough to achieve a desired level of precision in estimation (Jones et al., 2006;
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Vats et al., 2019). However, BM method tends to underestimate the volume of con-

fidence region unless the Markov chain is run for a large number of iterations (Vats

et al., 2019). Batch size selection is an open problem but Liu et al. (2021) shows that

asymptotically optimal batch size is proportional to
⌊
n1/3

⌋
.

Multivariate overlapping batch means (OBM) estimators are also available in lit-

erature. If we use n− b+ 1 overlapping batches of length b and if the mean vector is

Ẏl(b) = 1
b

∑b
t=1 Yl+t for l = 0, ...., n− b batches, then the OBM estimator of Σ is

Σ̂OBM =
nb

(n− b)(n− b+ 1)

n−b∑
l=0

(Ẏl(b)− Y n)(Ẏl(b)− Y n)T . (1.20)

OBM method is computationally slower than BM since there are n− b+ 1 instead of

bn
b
c batches (Flegal et al., 2008).

The sample autocovariance in vectorized form is given by

R̂(s) =
1

n

min(n,n−s)∑
max(1,1−s)

(Yt − Y n)(Yt+s − Y n)T .

The sample autocovariances are unbiased estimators of population autocovariances

upto O(n−1). So, using them in finite samples do not impact the bias of an estimator.

The multivariate SV estimator of Σ is a weighted and truncated sum of the lag s
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sample autocovariances, similar to the univariate case in (1.14),

Σ̂SV =
n−1∑

s=−n+1

wn

(s
b

)
R̂(s).

where wn(·) is the lag window, b is the truncation point, and R̂(s) is the sample

autocovariance. There are two sources of error in the above approximation. One is

due to the truncation and another is due to down-weighting caused by the lag window.

The lag weighting scheme yields negative bias, and such bias could be substantial in

finite samples.

Liu and Flegal (2018) extend Flegal and Jones’s (2010) work on OBM estimator

and SV estimator and devise another estimator called weighted Batch Means (WBM)

estimator that is computationally faster at higher dimensions. If we define a non-

overlapping BM vector as Y l(k) = 1
k

∑k
t=1 Ylk+t for l = 0, 1, ...., ak − 1 batches and

k = 1, 2, ...., b batch sizes, where ak = b(n/k)c, then the WBM estimator is defined

as

Σ̂WBM =
b∑

k=1

1

ak − 1

ak−1∑
l=0

k2∆wn(k)(Y l(k)− Y )(Y l(k)− Y )T , (1.21)

where ∆2wn(k) = wn(k − 1)− 2wn(k) + wn(k + 1) (Liu and Flegal, 2018).

A generalization to lag windows in broader time series and MCMC context called

lugsail lag window was introduced in Vats and Flegal (2018). The lugsail lag window

gives more than unit weight to small lag autocovariances and is an intuitive way
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to adjust finite sample bias. Vats and Flegal (2018) show that using a lugsail lag

window, the lugsail SV estimator is equivalent to the difference of two SV estimators

Σ̇L =
b−1∑

s=−(b−1)

wn(k)R̂(s) =
1

1− c
Σ̂SV
b −

c

1− c
Σ̂SV
b/r , (1.22)

and using the lugsail lag window in (1.21) yields the following form of lugsail BM

estimator

Σ̂L =
1

1− c
Σ̂BM
b − c

1− c
Σ̂BM
b/r , (1.23)

where Σ̂
(·)
b and Σ̂

(·)
b/r are estimators with integer batch sizes b and b/r respectively.

The estimators in (1.22) and (1.23) have smaller bias due to bias cancellation. The

amount of bias cancellation depends on the choice of r and c and there is variance

inflation due to the linear combinations involved in the construction of the estimator.

1.3 Examples

A few time series examples and a real life example on lupus cancer was used in this

thesis. The output of the Markov chain was approximated as a linear time series and

estimated assuming well studied autoregressive processes such as AR(1), AR(p) and

VAR(1). These examples are discussed briefly in the next subsections. First, define

the quantities that are an underlying parameters of the process or the data generating
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mechanism. The lag-weighted infinite sum of the autocovariances for univariate cases

is

Γ = 2
∞∑
h=1

hR(h).

Similarly, for the multivariate cases, the power lag weighted sum of mutivariate au-

tocovariances is

Γ(q) := −
∞∑
h=1

hq
[
R(h) +R(h)T

]
.

These values are negative for positively autocorrelated processes.

1.3.1 AR(1) Model

Consider the following autoregressive model of order 1 (AR(1)):

Xt = φXt−1 + εt for t = 1, 2, . . . (1.24)

where εt are i.i.d N(0, 1). If |φ| < 1, the Markov chain is geometrically ergodic.

Assuming the finite sample output from AR(1) process resembles a Markov chain,

we can estimate θ = E [Xt] by θn = X̄n. The true variance σ2 and the quantity Γ is

available for the AR(1) process so that we can easily calculate the bias and variance

of the Markov chain. The variance and covariances of the observations of the Markov
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chain from AR(1) process resp. are

Var (X1) =
1

1− φ2
and

Cov (X1, Xs) =
φs−1

1− φ2
.

The following quantities can be easily calculated for AR(1) process and can be used

to assess the quality of estimation

σ2 =
1

(1− φ)2
and (1.25)

Γ =
2φ

(1− φ2) (1− φ)2
. (1.26)

Derivations of (1.25) and (1.26) are provided in Section 1.4.

1.3.2 AR(p) Model

The stochastic process {Xt} has an AR(p) representation if they can be written

as

Xt =

p∑
j=1

φjXt−j + εt,
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where εt are i.i.d. random variables with variance σ2
e and E[|εt|2+δ] < ∞ for some

δ > 0. AR(p) process is a p-Markovian process. The autocovariances for AR(p)

process can be derived and estimated consistently using the Yule-Walker equations

where

E (XtXt−k) =

p∑
j=1

φjE (Xt−jXt−k) .

It’s easy to see that the above results in the homogeneous difference equation

R(k)−
p∑
j=1

φjR(k − j) = 0. (1.27)

This equation tells us that there are covariances at all lags for an AR(p) process.

Given the covariances R(k) satisfies
∑

k k
2R(k) < ∞, the spectral density of the

autocovariances is defined as

f(ω) =
∑
k

R(k) exp(ikω).

The spectral density can be approximated to any order by the spectral density of an

AR(p) process. Going in the opposite direction, the autocovariances can be obtained

from the spectral density using the inverse Fourier transform

R(k) =
1

2π

∫ 2π

0

f(ω) exp(−ikω).
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1.3.3 VAR(1) model

Consider the p-dimensional vector auto-regressive process of order 1 (VAR(1))

Xt = ΦXt−1 + εt,

for t = 1, 2, . . . where Xt ∈ Rp, εt are i.i.d. Np (0, Ip) and Φ is a p × p matrix. The

Markov chain is geometrically ergodic when the absolute value of the largest eigen-

value of Φ is less than 1 (Tjøstheim, 1990). In addition, if ⊗ denotes the Kronecker

product, the invariant distribution isNp(0, V ), where vec(V ) = (Ip2 − Φ⊗ Φ)−1 vec (Ip) .

Consider estimating θ = EXt by θn = X̄n. The following quantities are known to us

from standard time series theory

Σ = (Ip − Φ)−1 V + V (Ip − Φ)−1 − V and (1.28)

Γ = −
[
(Ip − Φ)−2 ΦV + V ΦT

(
Ip − ΦT

)−2
]
. (1.29)

Derivations of (1.28) and (1.29) are given in Section 1.4.

1.3.4 Bayesian Probit Regression

The lupus data available from Van Dyk and Meng (2001) contains disease statuses

for 55 patients, 18 of whom have been diagnosed with latent membranous lupus, along
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with two clinical covariates, IgA (immunoglobulin A) and ∆IgG (IgG3− IgG4). We

consider a probit regression model for the sampling distribution the response variable,

yi, an indicator of the disease with the predictor variables xi1 (∆IgG) and xi2 (IgA),

where i = 1, . . . , 55. For each patient, yi is modeled as independent Bernoulli random

variable as

Yi ∼ Bernoulli (Φ (β0 + β1xi1 + β2xi2)) ,

with flat prior on the parameters β = (β0, β1, β2). We want to estimate the posterior

expectation of β,Eπβ. We use PX-DA algorithm of Liu and Wu (1999) to sample

from π(β|y). Let TN(µ, σ2, ω) denote the distribution of a truncated normal variable

with mean µ and variance σ2 that is truncated to be positive if ω = 1 and negative

if ω = 0. The Algorithm consists of the following steps:

1. Draw z1, . . . , z55 independently with zi ∼ TN
(
xTi β, 1, yi

)
2. Draw g2 ∼ Gamma

(
55
2
, 1

2

∑55
i=1

[
zi − xTi

(
XTX

)−1
XT z

]2
)

and set z′ = (gz1 ,

. . . , gz55)T

3. Draw β′ ∼ N
((
XTX

)−1
XT z′,

(
XTX

)−1
)

.
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1.4 Derivations

Derivation of (1.25) The variance of AR(1) process is calculated as follows. We

have

σ2 = Var [X1] + 2
∞∑
s=1

Cov (Xt, Xt+s)

=
1

1− φ2
+ 2

∞∑
s=1

φs

1− φ2

=
1

1− φ2
+ 2 lim

n→∞

n∑
s=1

φs

1− φ2

=
1

1− φ2
+ 2 lim

n→∞

[
φ (1− φn−1)

1− φ

]
=

1

1− φ2
+

2

1− φ2
· φ

1− φ

=
1 + φ

(1− φ2) (1− φ)

=
1

(1− φ)2
.
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Derivation of (1.26) Similarly, the quantity Γ can be derived as follows. We have

Γ = 2
∞∑
s=1

s · Cov (Xt, Xt+s)

= 2 lim
n→∞

n∑
s=1

s · φs

1− φ2

=
2

1− φ2
lim
n→∞

n∑
s=1

sφs

=
2

1− φ2
lim
n→∞

n∑
s=1

[
φ (1− φn−1)

(1− φ)2
− nφn+1

1− φ

]

=
2

1− φ2

[
φ

(1− φ)2

]
=

2φ

(1− φ2) (1− φ)2
.

Derivation of (1.28) We have

vec(V ) = (Ip2 − Φ⊗ Φ)−1 vec(Ω)
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Then

Ys = ΦYs−1 + εs

= Φ (ΦYs−2 + εs−1) + εs

= Φ2Ys−2 + Φεs−1 + εs

= Φ2 (ΦYs−3 + εs−2) + Φεs−1 + εs

...

= ΦsY0 + Φs−1ε1 + Φs−2ε2 + · · ·+ Φ2εs−2 + Φεs−1 + εs.

So, we get

R(s) = Cov (Y0, Ys)

= Cov
(
Y0,Φ

sY0 + Φs−1ε1 + Φs−2ε2 + · · ·+ Φ2εs−2 + Φεs−1 + εs
)

= Cov (Y0,Φ
sY0)

= Φs Cov (Y0, Y0)

= ΦsV
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Finally,

Σ =
∞∑

s=−∞

R(s)

=
∞∑
s=0

R(s) +
0∑

s=−∞

R(s)− V

=
∞∑
s=0

ΦsV +
0∑

s=−∞

V
(
ΦT
)s − V

= (Ip − Φ)−1 V + V (Ip − Φ)−1 − V.

1.5 Concluding Remarks

Markov chains can be approximated by various autoregressive processes where

rate of decay autocovariances have been carefully investigated. We need to carefully

analyze that these dependencies vanish sufficiently fast, so that processes far away

from each other in terms of time or lags are independent of each other. Various

mixing conditions and dependence measures exists to quantify this issue, but there is

no single solution available. Mean and variance of the output from a Markov process

is of major interest and their statistical properties should be studied in detail with

application to real-life examples and practical settings. Accurate variance estimation

methods are crucial to assess the reliability of the point estimates constructed from

such processes.

Stationarity is one of the prime assumptions, and we need to ensure our Markov
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chain starts from the stationary distribution. Polynomial ergodicity, albeit being a

weak assumption, is very practical in real applications. We try to identify research

venues that satisfy this condition and study the finite sample properties of variance

estimators that are constructed under this assumption. To this end, we also employ

various statistical concepts from spectral theory of estimation of the spectral density

at zero frequency.
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Chapter 2

Accurate Variance Estimation

BM type estimators discussed in Chapter 1 are computationally efficient but suffer

from systematic bias that affect coverage probabilities in finite sample simulations.

OBM estimator is slower than BM estimator because it involves averaging over more

batches. OBM estimator is asymptotically equivalent to SV estimator except for some

end effects (Flegal and Jones, 2010). A careful analysis of the bias of these estimators

is warranted for efficient use of these estimators in finite samples and is the main

theme of this thesis.

The bias property of the estimators can be optimized for desired applications

with careful selections of batch sizes as batch sizes are an inherent parameter of the

variance estimation process. Finding a single solution to compute batch sizes is still

an open problem because batch size is process dependent and is always sub-optimal

in practice. Asymptotically optimal batch size can be used in finite sample MSE and
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a non-optimal batch size can be appropriate if the associated MSEs are close (Song

and Schmeiser, 1995). So, in lieu of this observation, we do not pursue batch size

estimation vigorously in this thesis. Interested readers can see Liu et al. (2021) for

further information.

Although these variance estimators are already established to be asymptotically

unbiased and consistent, practitioners have had to deal with substantial bias in finite

samples. The bias is especially significant in a highly correlated Markov chain and

not accounting for the bias can skew our results drastically. Throughout this chapter,

we are interested in quantifying the error in estimating θ =
∫
g(x)π(dx) with Ȳ =

n−1
∑n

t=1 Yt. We know, Σ =
∑∞

s=−∞R(s) = limn→∞ nVarπ(Ȳ ). There are various

types of estimators used to estimate Σ as discussed in Chapter 1. We will take a

multivariate approach to the analysis and any univariate implications will be discussed

accordingly.

Assumption 3 Let Yt, t ∈ Z be a second order stationary stochastic process with the

following summability condition on the autocovariances

∑
h∈Z

(1 + |h|)r|R(h)| <∞

for some r ≥ 0.

Assumption 3 applies to univariate autocovariances. The condition r > 0 ensures

the absolute summability of the autocovariances. Also, r represents the smoothness

33



of the spectral density of the autocovariances. These basically tells us how fast the

autocovariances decay to zero. When r = 1, assumption 3 says that both
∑

h∈Z |R(h)|

and
∑

h∈Z h|R(h)| are finite. Multivariate version of this quantity will be introduced

later.

The bias properties of the estimators are studied in detail in Vats and Flegal

(2018). Define the following quantity

Γ(q) := −
∞∑
s=1

sq
[
R(s) +R(s)T

]
, (2.1)

with components Γij, and let Γ1 be denoted by Γ. This is a multivariate quan-

tity, where each entry in the matrix contain the weighted sum of cross-covariances

at different lags. We are mainly interested in the diagonal component of this ma-

trix. Polynomial ergodicity or m-dependence and appropriate moment conditions are

required to ensure Γ(q) and Σ are finite. Let the finite version of Γq be defined as

Γ
(q)
k := −

k∑
s=1

sq
[
R(s) +R(s)T

]
(2.2)

where s = 0, 1, 2 . . . and k = 1, 2, . . ..

Liu et al. (2021) devises a method of estimating Γ assuming a parametric AR(p)
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model. The exact form of the estimator of Γ is given by

Γ = 2

[(
p∑
i=1

φi

i∑
k=1

kR(k − i)

)
+

(σ2
e −R(0))

2

(
p∑
i=1

iφi

)](
1

1−
∑p

i=1 φi

)
. (2.3)

In finite samples, Γ in (2.3) is underestimated and using it results in sub-optimal

batch sizes under MSE loss. The asymptotic MSE of BM and OBM estimators can

be summarized as

MSE[Σ̂] =
CΓ2

b2
+

2SΣ2b

n
+ o

(
1

b2

)
+ o

(
b

n

)
, (2.4)

where C, S = 1 for BM and C = 1, S = 2/3 for OBM estimators (Flegal, 2008).

The MSE in (2.4) is also under-estimated. MSE optimal variance estimators also

suffer from boundary problem where they are naturally attracted to 0 and this gives

us a false sense of a smaller MSE. Further, the optimal batch size or lag truncation

parameter that is the minimizer of (2.4) is also underestimated. The underestimated

batch size when used in finite sample simulations produces less than optimal results.

Asymptotically optimal batch size decays at the rate of o(n1/3) (Flegal, 2008).

Following the suggestion in Andrews (1991), we can fit a parametric AR(p) model

to estimate the autocovariances or their spectral density. Suppose we fit a parametric

AR(p) second order stationary model in L2- sense to the spectral density fp(ω) with

the corresponding AR-based autocovariance functions, Rp(s). For lags higher than p,

the autocovariances are obtained by iterating the difference equation that the fitted
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model implies for its autocovariance using (1.27).

The autoregressive coefficients, ak, can also be estimated from the fitted AR(p)

model and the summability condition on the autocovariances of assumption 3 carries

over to the AR coefficients by the following observation from Braumann et al. (2021)

∞∑
k=1

(1 + |k|)r |ak| <∞. (2.5)

As the model order p approach infinity, the AR parameters converge to the parameters

corresponding to the infinite order AR approximation in the mean square (Gupta and

Mazumdar, 2012). Mean square convergence of the AR parameters under finite model

order as the number of observations go to infinity was studied in Bhansali (1981). A

time series fitted with AR(p) structure with a finite order p can achieve autocovariance

estimation with a parametric rate of convergence of
√
n (McMurry and Politis, 2015).

2.1 Single estimators

Single variance estimators are practitioners' first estimator of choice as they are

natural, easy to interpret and computationally fast to calculate. BM estimators and

OBM estimators are commonly used in MCMC, time series, stochastic simulations

literature (Flegal and Jones, 2010), (Chan and Yau, 2017), (Song and Schmeiser,

1995). The asymptotic bias properties of these estimators are well-studied. For
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example, the asymptotic bias of BM estimator is

E
[
Σ̂BM
b

]
= Σ +

Γ

b
+ o

(
1

b

)
. (2.6)
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Figure 2.1: Bias and variance trade-off of BM estimators in finite sample simulation,
n = 2e4.

BM estimator is asymptotically first-order unbiased. The parameter Γ is negative

under positive correlation and is underestimated in finite samples. This results in

under-coverage of credible intervals and incorrect sized hypothesis tests when these

quantities are used as sample statistics. So, finding higher-order bias terms is crucial

in finite sample MCMC other time series applications. MSE optimal batch sizes that
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take into effect the higher-order bias seem to perform better in finite samples.

Taking into consideration of higher-order bias of BM estimators, we can see in

Figure 2.1 that at low lags the proposed estimation method account for more bias

than the current estimation method of (2.6). The bias decays quickly as the lag grows

and is more influential in the low lag regions. The exact and proposed estimation

methods will be discussed shortly in the next section. The exact bias of estimator

has systematic error in addition to sampling bias. We can correct for the sampling

bias but the systematic bias is always persistent. In finite samples, the sampling bias

does not converge to zero. Also evident from Figure 2.1 is that the variance of the

exact and proposed estimation methods have similar rate of growth at large lags. The

MSE optimal batch sizes from the proposed methods are closer to the exact methods

than the current methods. It is important to note that the exact methods also has

sampling bias. We see similar behavior for OBM estimators and their discussions are

skipped in this section.

Accurate variance estimators are needed to construct valid confidence regions

around our estimates as discussed in Chapter 1. The volume of confidence region

is sensitive upon the generalized variance and using higher-order correct estimators

we can achieve volume inflation. Current estimators of variance underestimate the

variance, while pilot estimators constructed with MSE optimal batch-sizes from the

proposed methods are shown to be more accurate. The relative volume of the con-

fidence region constructed from the proposed methods are close to unity, while that
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for the current methods is vastly underestimated at different run lengths as shown in

Figure 2.2. It should be noted that the relative volumes are calculated relative to the

true volume calculated from the known values of Σ.
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Figure 2.2: Volume of confidence regions for the current and proposed BM and OBM
methods.
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2.2 Quadratic Coefficients

We can calculate the exact bias of some common estimators using an important

concept called quadratic coefficients, first mentioned in Song and Schmeiser (1993).

We can also visually analyze the variance properties of estimators of the variance of the

sample mean using quadratic coefficients . Quadratic coefficients are the weights given

to each covariances involved in the computation of finite sample expectation of the

variance estimator. For example, if Σ̂ is a quadratic-form estimator of nVarF (Ȳ ), then

the expected value of Σ̂ is E(Σ̂) =
∑n

i=1

∑n
j=1 qijE (YiYj) and qij’s are the quadratic

coefficients.

The bias and variance results of an estimator typically depend on the sample size

n and batch size b. We know, Σ =
∑∞

s=−∞R(s) = limn→∞ nVarF (Ȳ ). Then the BM

quadratic form estimator of Σ can be written as

Σ̂BM
b =

n∑
i=1

n∑
j=1

qBMij YiYj, (2.7)

where Y1, Y2, . . . , Yn are observations as discussed in Chapter 1. The quadratic coef-

ficients for BM estimators can be summarized as

qBMij =
1

dBM

(
aij
b2
− aii + ajj

nb
+

1

nb

)
,

where dBM = ((n− b)/b2). The derivation for the exact expression for the quadratic
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coefficients is straightforward with the observation that aij = 1 if the observations

come from the same batch, and aij = 0 otherwise. The coefficients qBMij can be written

as

qBMij =


1
n
, if i = 1, 2, ....., ab & j = f(i), ...., l(i),

−1
a(n−b) , o.w,

(2.8)

where l(i) = di/be · b is the last observation in the batch containing Xi and f(i) =

l(i) − b + 1 is the first observation in the batch containing Xi (Song and Schmeiser,

1993). If n observations can be divided into a batches of size b each, then we can

express the BM estimator in an alternate form as

Σ̂BM =
1

dBM

a∑
i=1

(Ȳb(i−1)+1 − Ȳ )2, (2.9)

where a = bn/bc, dBM = ((n− b)/b2). The ith batch mean is given by

Ȳb(i−1)+1 = b−1

b∑
j=1

Yb(i−1)+j,

which is the sample mean of b observations starting from Y(i−1)b+1. Using BM esti-

mator in this form, we can easily calculate the exact bias of the BM estimator. The
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exact bias of BM estimator is

E(Σ̂BM) = R(0) +
n

n− b
Γ0
b−1 −

b

n− b
Γ0
n−1 +

b

n(n− b)
Γ1
b−1 −

n

b(n− b)
Γ1
n−1. (2.10)

The proof of the bias expression (2.10) is given in Section 2.6. We have used the

following standard notations to quantify the univariate autocovariances in (2.10)

Γ0
k−1 = 2

k−1∑
s=1

R(s) Γjk−1 = 2
k−1∑
s=1

sjR(s),

and these are univariate analogues of the multivariate quantities in (2.1) and (2.2).

We do not pursue multivariate estimation in this thesis and is set for future work.

Using similar assumptions on the second-order stationarity of the time series but

without using quadratic coefficients, Aktaran-Kalaycı et al. (2007) calculates the exact

same result, but the proof based on quadratic coefficient has not been derived yet in

the literature. The bias can be further approximated as

Bias
(

Σ̂BM
b

)
= E[Σ̂BM

b ]− Σ = −
[(

Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
= I + II + III. (2.11)

We have assumed the rate of decay of the autocovariances as R(h) = O(h−2−δ)

throughout the thesis. With this assumption, we can approximate the order of each

term involved in (2.11), i.e., the rate of decay of the largest term in the summation.
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We can see that the rate of decay of I is

−Γ0
n−1 = 2

∞∑
i=n

R(i)− (Σ−R(0))

= 2
∞∑
i=n

i−2−δ − (Σ−R(0))

= O

(
1

n2

)
.

Similarly, the rate of decay of II is

Γ0
b−1 = (Σ−R(0))− 2

∞∑
i=b

R(i)

= (Σ−R(0))− 2
∞∑
i=b

i−2−δ

= −O
(

1

b2

)
.

And, finally the rate of decay of III is

−2

b
Γ1
b−1 = −1

b

(
∞∑
i=1

iR(i)−
∞∑
i=b

iR(i)

)

=
2

b

∞∑
i=b

i−1−δ − Γ

b

= O

(
1

b2

)
−O

(
1

b

)
.

Combining I, II, and III, we see that the bias is a combination of first-order and
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higher-order terms in finite samples.

Bias
(

Σ̂BM
b

)
= −

[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
= O

(
1

n2

)
−O

(
1

b2

)
+O

(
1

b2

)
−O

(
1

b

)
.

Theorem 5 Let g be such that EF
(
‖g‖2+δ

)
<∞ for some δ > 0. Let {Xn} be an π-

invariant polynomially ergodic Markov chain of order m > (4 + ε) (1 + 2/δ) for some

ε > 0. Then (1.6) holds with γ(n) = n1/2−λ for some λ > 0. Further, if condition 3

holds, then the bias of Σ̂BM
b is given by

Bias
(

Σ̂BM
b

)
=

[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
+O

(
1

b

)
. (2.12)

The proof of Theorem 5 is given in Section 2.6.

Lemma 6 (Andrews, 1991, Lemma 1) Suppose {Xt} is a mean zero α-mixing se-

quence of r.v.’s. If supt>1E ‖Xt‖4ν < ∞ and
∑∞

j=1 j
2α(j)(ν−1)/ν < ∞ for some

ν > 1, then
∑∞

j=0 supt>1

∥∥EXtX
′
t+j

∥∥ <∞ and

∞∑
j=1

∞∑
m=1

∞∑
n=1

sup
t>1
|κabcd(t, t+ j, t+m, t+ n)| <∞ ∀a, b, c, d 6 p

Assumption 4 For some δ > 0, E ‖Y1‖4+δ < ∞ and there exists ε > 0 such that

{Xt} is α-mixing with α(n) = o
(
n−(3+ε)(1+4/δ)

)
.

Lemma 6 is satisfied under assumption 4.
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Theorem 7 Let g be such that EF
(
‖g‖4+δ

)
< ∞ for some δ > 0. Let {Xn} be an

π-invariant polynomially ergodic Markov chain and under lemma 6, condition 3 with

b = n1/2, for r ≥ 1, the asymptotic covariance of two BM estimators with integer

batch sizes b and b/r, resp., is

Cov(Σ̂BM
b , Σ̂BM

b/r ) =
2bΣ2

rn

[
1 +O

(
1

b

)
+O

(
b

n

)]
. (2.13)

Corollary 8 Under the same assumptions of Theorem 7, the asymptotic variance of

BM estimator with integer batch sizes b is

Var(Σ̂BM
b ) =

2Σ2b

n

[
1 +O

(
1

b

)
+O

(
b

n

)]
. (2.14)

The proof of Theorem 7 and Corollary 8 is given in Section 2.6. As r increases, the

covariance becomes smaller as expected. Similarly, the asymptotic correlation is,

Lim
b→∞

{Corr(Σ̂BM
b , Σ̂BM

b/r )} =
1√
r
. (2.15)

Theorem 9 (Pedrosa, 1994, Theorem 4.1) Let g be such that EF
(
‖g‖4+δ

)
<∞ for

some δ > 0. Let {Xn} be an π-invariant polynomially ergodic Markov chain and

under lemma 6, condition 3 with b = n1/2, for finite r ≥ 1, the asymptotic covariance
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of two OBM estimators with integer batch sizes b and b/r, resp., is

Cov(Σ̂OBM
b , Σ̂OBM

b/r ) =
4bΣ2

3rn

(
3

2
− 1

2r

)[
1 +O

(
b

n

)
+O

(
1

b

)]
. (2.16)

Corollary 10 Under the same assumptions of Theorem 9, the asymptotic variance

of OBM estimator with integer batch sizes b is

Var(Σ̂OBM
b ) =

4Σ2b

3n

[
1 +O

(
1

b

)
+O

(
b

n

)]
.

This result is equal to 2/3 of the variance of BM estimator. As r increases, the

covariance becomes smaller as expected.

Lim
b→∞

{Corr(Σ̂OBM
b , Σ̂OBM

b/r )} =

√
3

2
− 1

2r

The exact bias of OBM estimator is given in Aktaran-Kalaycı et al. (2007). The

approximate form of the bias for OBM estimator is

E[Σ̂OBM ] = Σ−

[(
Γ0
n−1 − Γ0

b−1

)
+
aΓ1

b−1

n− b
−

bn
(
Γ0
b−1 − Γ0

n−b
)

(n− b)(n− b+ 1)

]
+O

(
1

b

)
. (2.17)

The exact expression is very involving and is stated in Section 2.6 and the approximate

bias in (2.17) contains higher-order terms and is an improvement to the current

asymptotically first-order bias expression.
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2.3 Linear Combination Variance Estimators

Linear combination of variance estimators are known to improve upon the bias

properties at the cost of increase in variance, see for e.g. Pedrosa and Schmeiser (1993),

Aktaran-Kalaycı et al. (2009), Gupta et al. (2014). In finite samples, however, the

bias of these estimators is more important than the variance. The choice of batch

sizes and weights can be done with the motivation to lower the bias in such a way

that it offsets the systematic bias that come with the estimation process.
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Figure 2.3: Different variance estimation methods for n = 1e5 iterations.

Simonoff (1993) contends that in practical applications where bias is more crucial,

we should choose estimators that have smaller bias even if those estimators have large
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variance. So, it is highly desirable for the estimator to be asymptotically unbiased

even if the cost is additional variance. Linear combination of estimators account for

the higher order bias, and they need significantly fewer lags to do so, reducing our

computational costs in the process. The linear combination (LC) estimator with 3

components can be expressed as

Σ̂LC = α1Σ̂b + α2Σ̂b/r + α3Σ̂b/s, (2.18)

where are α1, α2, and α1 are some constants such that α1 +α2 +α3 = 1 and 0 < r ≤ s.

If we are motivated to reduce the systematic bias for BM type estimator, then such

estimators can be constructed as a linear combination for some 0 ≤ c1, c2 ≤ 1 as

follows

Σ̂LC =
1

1−c1 Σ̂b − c1
1−c1 Σ̂b/r − c2Σ̂b/s

1− c2

=
1

(1− c1)(1− c2)
Σ̂b −

c1

(1− c1)(1− c2)
Σ̂b/r −

c2

1− c2

Σ̂b/s.

The bias of various estimators in finite sample simulations of an AR(1) process

can be seen in Figure 2.3 and Figure 2.4 for batch sizes b = n1/2 and b = n1/3, resp.

In Figure 2.3, with larger batch sizes, there is more variability in our estimators,

especially at high correlation. Linear combination estimators are largely over-biased

and single estimators are under-biased. Same trends are apparent in Figure 2.4 except
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Figure 2.4: Different variance estimation methods for n = 1e5 iterations.

that the variability of the estimators is small due to smaller batch sizes. The weighted

BM estimator in Figure 2.4 refers to Lugsail BM estimator with r = 2.

Asymptotically, Σ̂LC is estimating the true variance as the coefficients add up to

1, but in finite samples its higher-order bias could be substantial. If c1 = c2 = c, then

the bias of the Σ̂LC can be calculated as

Bias(Σ̂LC) =
Γ

b

[
1− cr − cs+ c2s

(1− c)2

]
.

For c1 = 1/2, c2 = 1/3, r = 2, and s = 3, it is easily seen that the bias of Σ̂LC is

-3Γ/2b. This is clearly first order over-biased since Γ is negative.
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The bias is always persistent in finite sample simulations because the sample size

is fixed and there is always a trade-off involved between bias and variance due to

variability in the batch sizes, similar to the trade-off in single estimators. It is easy to

adjust the bias of linear combination estimators but the variance of linear combination

estimators becomes larger. The bias reduction and variance inflation results in smaller

batch sizes at optimality and reduces our computational cost.

Although, the variance of variance estimators is not as crucial as the bias, we

need the covariances to calculate the variance of the linear combination of variance

estimators. The expression for variance is more involving and can be expressed as

Var(Σ̂LC) =α2
1Var(Σ̂b) + α2

2Var(Σ̂b/r) + α2
3Var(Σ̂b/s) + 2α2α1Cov(Σ̂b/r, Σ̂b)

+ 2α3α1Cov(Σ̂b/s, Σ̂b) + 2α3α2Cov(Σ̂b/s, Σ̂b/r), (2.19)

where Σ̂LC is defined as in (2.18). To find the variance of the linear combination, we

need to find the covariances between each pair of estimators involved in the linear

combination, in addition to finding the variances of the estimators.

Using the lugsail Bartlett lag window in (1.21), we obtain the Lugsail BM (LUG-

BM) estimator (Vats and Flegal, 2018)

Σ̂L =
1

1− c
Σ̂BM
b − c

1− c
Σ̂BM
b/r . (2.20)

Here, Σ̂L is shorthand notation for LUG-BM estimator. When r = 2 and c = 1/2 in
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(2.20), we get the flat-top (FT-BM) estimator of Politis and Romano (1995) which

can be written as

Σ̂FT = 2Σ̂BM
b − Σ̂BM

b/2 . (2.21)

2.3.1 Bias and Variances
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Figure 2.5: Flat-top lag window.

FT estimators incorporate a common bias-correction procedure by integrating a

flat-top lag window. The current state-of-the-art bias calculations by practitioners

only account for the first-order asymptotic bias. Using Flat-top lag window of Fig-
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ure 2.5, there is a perfect first-order asymptotic bias cancellation i.e. the asymptotic

first-order bias of FT estimators is zero. Higher-order bias could be substantial in

highly correlated chains, especially at small b. It’s easy to see that the asymptotic

bias of FT estimators is

Bias(Σ̂FT
b ) = 2Bias(Σ̂b)− Bias(Σ̂b/2) = 2

Γ

b
− Γ

b/2
= 0.
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Figure 2.6: Perfect bias cancellation for FT estimators.

Because of this one cannot find an optimal batch size when this bias expression

is used in the MSE expression as seen in Figure 2.6. In the current setting, the first-
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order unbiased nature of FT estimators make them unusable in practical applications

where one needs to construct pilot estimators. MSE optimal batch sizes are crucial

to construct variance estimators in any finite sample applications. With the proposed

BM estimation methods, the bias of the higher-order correct FT estimator is

Bias(Σ̂FT
b ) = 2Bias(Σ̂b)− Bias(Σ̂b/2)

= 2

[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
−
[(

Γ0
n−1 − Γ0

b/2−1

)
+

1

b/2
Γ1
b/2−1

]
= Γ0

n−1 −
(
2Γ0

b−1 − Γ0
b/2−1

)
+

2

b

(
Γ0
b−1 − Γ0

b/2−1

)
6= 0.

So, we get a non-zero bias for FT estimators as also seen in Figure 2.6. We can

achieve MSE optimality in terms of batch size using the proposed methodology and

this is not possible with the existing methodologies.

On the same note, we can generalize the bias of LUG-BM estimator as

Bias
(

Σ̂L
)

= Γ0
n−1 −

1

1− c

[(
Γ0
b−1 −

1

b
Γ1
b−1

)]
+

c

1− c

[(
Γ0
b
r
−1
− r

b
Γ1
b
r
−1

)]
+ o

(
1

b

)
.

(2.22)

These incorporate single estimators, and various linear combination estimators with

appropriate parameters. So, by choosing r and c in (2.22) we can effectively adjust

the finite-sample bias of our estimators. Recommendations for choosing the constants

r and c are given in Vats and Flegal (2018). Similarly, the variance of LUG-BM
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estimator is more involved and can be written as

Var
(

Σ̂L
)

=
2Σ2b

n

[(
nr (c2 − 2c+ r)

(1− c)2r(nr − b)

)
−
(
b (c2 + (1− 2c)r)

(1− c)2r(nr − b)

)]
+ o

(
b2

n2

)
.

(2.23)
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Figure 2.7: Different lag windows.

The variance expression in (2.23) is new in the sense that it contains higher-order

terms. The proof is delegated to Section 2.6. The variance of LUG-BM estimator for
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c = 1/2 is given by

Var
(

Σ̂L
)

=
2Σ2b

n

(
4nr2 − 3nr − b
r(nr − b)

)
+ o

(
b2

n2

)
. (2.24)

And the variance in (2.23) or (2.24) reduces to the variance of single BM estimator for

r = 1 without the second order terms. On the same note, the variance of LUG-OBM

estimator can be written as

Var
(

Σ̆L
)

=
4Σ2b

3n

[
c2r − 3cr + c+ r2

(c− 1)2r2

]
+ o

(
b

n

)
. (2.25)

LUG-BM estimator can be further modified to allow for more points of disconti-

nuity in the lag window so that the resulting estimator can be expressed as a linear

combination of more than two BM estimators with varying batch sizes. For example,

consider the modified lugsail lag window with s > r > 1, that has the following form

wn(k) =α

(
1− |k|

b

)
I(0 ≤ |k| ≤ b) + β

(
1− |k|

b/r

)
I(0 ≤ |k| ≤ b

r
)

+ γ

(
1− |k|

b/s

)
I

(
0 ≤ |k| ≤ b

s

)
. (2.26)

Modified lugsail lag window has 3 points of discontinuity, namely at b, b/r, and

b/s. Lugsail lag window with r = 1 has one point of discontinuity and lugsail window

with r = 2 has 2 points of discontinuity, and so on. Lugsail window with r = 2 is
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Figure 2.8: MSE comparison of diagonal components of Markov chain with n = 2e4
and φ = 0.92.

also called flat top window that has a trapezoidal shape and this gives unit weight

to auto-covariances upto a cutoff and linearly down-weights the autocovariances until

the lag b. Lugsail lag window with r > 2 go beyond unity at small lags and the

resulting over weighting of low lags autocovariances that are less biased results in

variance estimators with nice bias properties (Vats and Flegal (2018)).
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2.4 Examples
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Figure 2.9: MSE comparison of diagonal components of Markov chain with n = 2e4
and φ = 0.92.

For optimally estimating the linear combination, i.e., asymptotically unbiased and

consistent, one needs to carefully study the bias and variance of individual estimators

involved in the combination and reflect that in the optimal choice of parameters

involved in the linear combination. This is relevant in finite samples where there is

substantial sampling bias. The rate of decrease in bias is faster in linear combination
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estimators but the rate of decrease in variance is slower compared to the bias so that

the optimality is reached at smaller batch sizes. This can be seen in Figure 2.8 where

the MSE from each of the 4 components of a slow mixing 4-dimensional Markov chain

from VAR(1) example is depicted. The bias is seen to decay faster and the MSE at

optimality is smaller for the linear combination estimator. This results in smaller

batch sizes for the linear combination estimator and this reduces our computational

burden.

We have also demonstrated this using a real life example of lupus cancer data

discussed in Chapter 1. The MSE of these 3 components can be seen for BM estima-

tors and OBM estimators in Figure 2.9 and Figure 2.10, respectively. The bias and

variance follows similar trend as in the theoretical example. The bias decay faster for

OBM and the variance is reduced compared to BM estimators. So, the optimal batch

sizes for OBM estimators are smaller than those for BM estimators. One caveat is

that, the exact variance in this case is unknown. However, the true autocovariance

and sample autocovariance differ by O(1/n) at most and this should not impact our

results by much and the bias and variance growth trends should be the same.

2.5 Batch Sizes

Univariate optimal batch sizes are generally MSE optimal batch sizes and they

usually grow at the rate of o(n1/3) (Flegal and Jones, 2010). We can optimize the batch
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Figure 2.10: MSE comparison of diagonal components of Markov chain with n = 4e4.

size that results in minimum MSE using common optimization routines in R. The

batch sizes computed in this section use Brent optimization routine of optim function

in R. Brent’s method is a combination of bisection, secant and inverse quadratic

interpolation method that results in fast convergence and is useful when the function

to optimize is known to be convex (Brent, 1971).

The optimal batch sizes for lugsail BM estimators that minimize the MSE calcu-

lated with higher-order corrected bias are computed for both slow and fast mixing
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Average Batch Sizes with Standard Errors for n = 2e4
ρ = 0.8 ρ = 0.9

Method r = 1 r = 2 r = 1 r = 2
Exact 42.98 (0.11) 23.41 (0.05) 66.53 (0.13) 40.68 (0.09)
Proposed 30.81 (0.08) 17.24 (0.05) 47.35 (0.09) 28.45 (0.05)
Current 9.18 (0.09) 26.13 (0.08) 12.89 (0.14) 56.28 (0.14)

Table 2.1: Average batch sizes from VAR(1) process using different estimation meth-
ods.

Markov chain run for small sample size of n = 2e4. At this small sample size, we know

there is significant bias present in our variance estimators. Current methods result

in very small optimal batch sizes as seen in Table 2.1. These batch sizes are the geo-

metric mean of the univariate MSE optimal batch sizes of the individual components

of the Markov chain. Also noticeable is that the standard errors for the batch sizes

computed from proposed methods are very small. The MSE decay of the individual

components behave similarly and an average of batch sizes would also give similar

results.

Lag-based methods from Politis and Romano (1995) was employed for r = 2,

since current methods yield an optimal batch size of zero. Lag-based method seems

to overestimate the MSE optimal batch size. Proposed estimation methods are a

significant improvement over the current methods and should be used to construct

near optimal variance estimators. Similarly, the growth of MSE optimal batch size of

BM estimators for different mixing Markov chains can be seen compared for exact,

proposed and current estimation methods in Figure 2.11. Exact BM gives us the

largest batch sizes and the methods involving linear combination yields relatively
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small batch sizes. The current BM method gives the smallest batch size, but it is

significantly underestimated and far from the exact batch sizes.
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Figure 2.11: Batch size vs Markov chain correlation for different estimation methods
for n = 2e4.
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2.6 Proofs

Proof of (2.10) The quadratic coefficients can be summarized for BM estimators

as

qBMij =
1

dB

(
aij
b2
− aii + ajj

nb
+

a

n2

)
.

For observations falling within the same batch, the quadratic coefficients is

qBMij =
b2

(n− b)

(
1

b2
− 2

bn
+

1

bn

)
=

1

n
.

Similarly, for observations falling outside of batches the quadratic coefficient is

qBMij =
b2

(n− b)

(
− 2

bn
+

1

bn

)
= − 1

a(n− b)
.

Let R(h) = cov (Yi, Yi+h) be the covariance. The expected value of the BM estimator

is,

E(Σ̂BM) = E

[ n∑
r=1

n∑
s=1

q(BM)
rs YrYs

]
= E[I + II + III]
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This expectation can be decomposed into three parts. The first is within batch

expectation.

E[I] = a · E
[ b∑
r=1

q(BM)
rr YrY

T
r +

b−1∑
s=1

b−s∑
r=1

q(BM)
rs

(
YrY

T
r+s + Yr+sY

T
r

)]

= a · 1

n
·
[
bR(0) + 2

b−1∑
j=1

(b− j)R(j)

]

= a · 1

n
·
[ b−1∑
j=−(b−1)

(b− |j|)R(j)

]

=
n

b
· 1

n
· b
[ b−1∑
j=−(b−1)

(
1− |j|

b

)
R(j)

]

= R(0) + Γb−1
0 − 1

b
Γb−1

1

Similarly, outside batches within lag b− 1, the expectation is

E[II] = (a− 1) · E
[ b−1∑
s=1

b∑
r=b−s+1

q(BM)
rs

(
YrY

T
r+s + Yr+sY

T
r

)]

=

(
n− b
b
· −b
n(n− b)

·
b−1∑
−(b−1)

j ·R(j)

)

= − 1

n
Γb−1

1
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And, expectations for lag b and beyond is,

E[III] = 2 · −b
n(n− b)

·
n−1∑
j=b

(n− j)R(j)

=
−2b

n(n− b)
·
[
n
n−1∑
j=b

R(j)−
n−1∑
j=b

j ·R(j)

]

= − b

n− b
(
Γn−1

0 − Γb−1
0

)
+

b

n(n− b)
(
Γn−1

1 − Γb−1
1

)

Combining all the three above, the expected value of BM estimator in terms of

quadratic coefficient is,

E(Σ̂BM
b ) = R(0) +

n

n− b
Γ0
b−1 −

b

n− b
Γ0
n−1 +

b

n(n− b)
Γ1
b−1 −

n

b(n− b)
Γ1
n−1.

This expression can be further approximated as follows:
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E[Σ̂BM
b ] = R(0) +

+∞∑
i=−∞

Ri −
+∞∑
i=−∞

Ri +
aΓ0

b−1 − Γ0
n−1

a− 1
+

Γ1
n−1 − a2Γ1

b−1

n(a− 1)

= R(0) + Σ−R0 − 2
n−1∑
i=1

Ri − 2
+∞∑
i=n

Ri +
aΓ0

b−1 − Γ0
n−1

a− 1
+

Γ1
n−1 − a2Γ1

b−1

n(a− 1)

= Σ− a

a− 1

[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1 +

Γ1
n−1

na

]
− 2

+∞∑
i=n

Ri

= Σ−
(

1 +
1

a− 1

)[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1 +

Γ1
n−1

na

]
− 2

+∞∑
i=n

Ri

= Σ−
[(

Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1 +

Γ1
n−1

na

]
+

1

a− 1

[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1 +

Γ1
n−1

na

]
− 2

+∞∑
i=n

Ri

Proof of Theorem 7 Again, assume the rate of decay of autocovariances is R(h) =

O(|h|−2−δ). A Markov chain is polynomially ergodic of order m if γ(n) = n−m. Then,

the strong mixing conditions imply

α(n) ≤ n−m(EπM),

provided we know the existence of M . Let EYt = 0, and E|Yt|2+δ < ∞ for some

δ > 0, and all t. We know that (White, 1984, Corollary 6.17)

|EYt+hYt| ≤ 2(2
1
2

+1) · α(h)
δ

2(2+δ) · (EY 2
t+h)

1
2 · (E|Yt|2+δ))

1
2+δ .
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Suppose suptE|Yt|2+δ ≤ ∆ <∞. Then, we see that

|EYt+hYt| ≤ 2 · (2
1
2

+1) · α(h)
δ

2(2+δ) ·
(
suptEY

2
t

) 1
2 ·
(
suptE|Yt|2+δ)

) 1
2+δ

≤ 2 · (2
1
2

+1) · α(h)
δ

2(2+δ) ·∆
2

2+δ ,

since (EY 2
t )1/2 ≤ (E|Yt|r)1/r for r > 2 and EY 2

t ≤ suptEY
2
t . Assuming polynomially

ergodic markov chain, we have

|EXt+hXt| ≤ 2 · (2
1
2

+1) ·
(
h−m(EπM)

) δ
2(2+δ)

·∆
2

2+δ

≤ K · h−
mδ

2(2+δ)

= O

(
h−

mδ
2(2+δ)

−ε
)

Comparing this with R(h) = E
[
Xt+hXt

]
= O

(
|h|−2−ε), it’s easy to see that

− mδ

2(2 + δ)
= −2 =⇒ m = 4 +

8

δ
.

So, the auto-covariance convergence rate of Pedrosa (1994) is satisfied if we have a

polynomially ergodic, α-mixing markov chain of order greater than 4(1 + ε)(1 + 2
δ
).

Then, the covariance of two BM estimators with batch size b and b/r, resp., can be

written as (Pedrosa, 1994, Lemma 4.1 - 4.3)

Cov(Σ̂
(1)
b , Σ̂

(2)
b/r) = 2ΦA + ΦB, (2.27)
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where,

ΦA =
n∑

r,s,t,u=1

q(1)
rs q

(2)
tu R(t− r)R(u− s)

ΦB =
n∑

τ,s,t,u=1

q(1)
rs q

(2)
lu κ4 (Xi, Xi+r, Xi+s, Xi+t)

For simplicity, assume both b and b/r are integers. The cross product in ΦA can

be decomposed into two major parts where both the quadratic coefficients overlap

and parts where the larger batch is dominant. The first term where both batch have

overlap with common weight 1/n is

I =

(
nr

b

)
·
(
b

r

)2

·
(

1

n

)2

=
b

rn
.

The second term where smaller batch have small negative weights, while the bigger

batch has larger positive weights is

II =

(
n

b

)
·
(

(r − 1)b2

r

)
·
(

−b
n(nr − b)

)
·
(

1

n

)
=

(1− r)
r(r − b

n
)
·
(
b2

n2

)
=

(1− r)
r2

(
b2

n2

)
+

(1− r)
r2

b

nr − b

(
b2

n2

)
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Similarly, the small order terms can be additionally written as

III =

(
n

b
− 1

)
·
(
b(b− 1)

)
·
(

b2

n2(nr − b)(n− b)

)
=

b2(b− 1)

n2(nr − b)
= O

(
b3

n3

)
.

On the other hand, due to the summability of the cumulant condition, ΦB can be

approximated as

ΦB =
n∑

τ,s,t,u=1

q(1)
rs q

(2)
tu κ4

∞∑
v=∞

bvbv+s−rbv+t−rbv+u−r

= O

(
1

n2

n∑
r=1

∞∑
f=−∞

bf

∞∑
g=−∞

bg

∞∑
h=−∞

bh

∞∑
v=−∞

bv

)

= O

(
1

n

)
.

Therefore, the asymptotic covariance can be written as

Cov(Σ̂
(1)
b , Σ̂

(2)
b/r) = 2Σ2

[
b

rn
+

(1− r)
r2

(
b2

n2

)
+

(1− r)
r2

b

nr − b

(
b2

n2

)]
+O

(
b3

n3

)
+O

(
1

n

)
=

2bΣ2

rn

[
1 +O

(
1

b

)
+O

(
b

n

)]
.

Proof of Corollary (8) Corollary (8) can be proven directly from Theorem 7.

However, we can do a standalone proof of Var(Σ̂BM). We need the following lemma.
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Lemma 11 (Pedrosa, 1994, Lemma 4.1 - 4.3) The variance of BM estimator can be

written in terms of quadratic coefficients as

Var(Σ̂BM) = 2Σ2

[
n∑
i=1

n∑
j=1

(
qBMij

)2

]
+O

(
1

n

)
+O

(
b2

n2

)
.

The indexing of the observation within lag b can be done as follows

b∑
r=1

b∑
s=1

YrY
T
s =

b∑
r=1

YrY
T
r +

b−1∑
s=1

b−s∑
r=1

(
YrY

T
r+s + Yr+sY

T
r

)
+

b−1∑
s=1

b∑
r=b−s+1

(
YrY

T
r+s + Yr+sY

T
r

)
.

Then the variance of BM estimator can be calculated as

Var(Σ̂BM) = 2Σ2

[
n∑
i=1

n∑
j=1

(qBMij )2

]
+O

(
1

n

)
+O

(
b2

n2

)

= 2Σ2

[(
a ·
(

1

n

)2

· b2

)
+

(
(a− 1) ·

(
−1

a(n− b)

)2

· b(b− 1)

)
+ 2

n−1∑
j=b

(n− j)
(
−1

a(n− b)

)2]
+O

(
1

n

)
+O

(
b2

n2

)

=
2Σ2b

n
+O

(
1

n

)
+O

(
b2

n2

)
=

2Σ2b

n

[
1 +O

(
1

b

)
+O

(
b

n

)]
.

The exact bias of univariate OBM estimator described in Aktaran-Kalaycı et al.
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(2007) can be written as

E[Σ̂OBM
b ] =R0 +

2

n− b

{ ∞∑
i=1

−
∞∑
i=b

}[
n− b−

(
a+

1

a
− 1

n− b+ 1

)
i+

i2

n− b+ 1

]
Ri

+
2

n− b

{ ∞∑
i=b

−
∞∑

i=n−b+1

{[
− bn

n− b+ 1
+

(
2b

n− b+ 1
− 1

a

)
i

]
Ri

+
2

n− b

{ ∞∑
i=n−b+1

−
∞∑
i=n

}[
b− n2 + n

n− b+ 1
+

(
2n+ 1

n− b+ 1
− 1

a

)
i− i2

n− b+ 1

]
Ri

= Σ− Γ0
n−1 + Γ0

b−1 −
1

n− b

(
a+

1

a
− 1

n− b+ 1

)
Γ1
b−1 +

Γ2,b−1

(n− b)(n− b+ 1)

+
bn

(n− b)(n− b+ 1)

(
Γ0
b−1 − Γ0

n−b
)

+ o

(
b

n

)
+ o

(
1

b

)
+O

(
b

n2

)
+O

(
1

n

)
= Σ−

[(
Γ0
n−1 − Γ0

b−1

)
+
aΓ1

b−1

n− b
−
bn
(
Γ0
b−1 − Γ0

n−b
)

(n− b)(n− b+ 1)

]
+O

(
1

b2

)
.

2.7 Concluding Remarks

Asymptotically optimal estimators have limited practical use, even when we com-

bine information from various estimators. Single variance estimators, though appeal-

ing, is systematically biased even after bias correction because the rate of decay of bias

is slow in finite sample settings. Linear combination estimators should be employed

to adjust the systematic bias.

In finite samples, sampling bias is also crucial and there has not been many studies

to address this issue in MCMC and time series methodology. Current MSE optimal

estimators perform poorly in finite samples. Asymptotical results are sound, but their
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practical utility are minimal due to these limitations. However, utilizing the exact

systematic error expressions we can reduce the finite sample bias of these estimators.

In terms of MCMC and BM methodology, in particular, the finite sample adjust-

ment methodologies discussed in this chapter is new and this opens up grounds for

future research. These new methodologies also advocate for using linear combination

estimators whenever it is possible computationally.
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Chapter 3

Spectral Variance Estimators

3.1 Spectral variance estimators

Frequency analysis of time series has long history (Schuster, 1897). The peri-

odogram approach yields smaller bias of the spectral estimates (Das et al., 2021).

The correlation between periodogram ordinates at Fourier frequencies is of the order

O(1/n). There is a wide array of literature studies in the empirical spectral distri-

bution of the sample autocovariance matrix when the observations are assumed to

come from a linear time series with certain restriction on the coefficients (Anderson,

1971), (Priestley, 1981), (Shao and Wu, 2007). CLT for spectral density estimates

under appropriate regularity conditions have been established in the Fourier domain

(Chanda, 2005), (Liu and Wu, 2010), (Lin and Liu, 2012), (Panaretos et al., 2013),

(Wu and Zaffaroni, 2018).
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If Yt is short-range dependent, namely,
∑∞

h=0 |R(h)| < ∞, then it sufficient for

the existence of the spectral density. The true spectral density given by

fY (ω) =
1

2π

∑
h∈Z

R(h)eikω, for ω ∈ [−π, π],

is continuous and bounded under assumption 3. Without loss of generality, assume

E[Yt] = 0, i.e. if µ 6= 0 we replace Yt by Yt − Ȳ where Ȳ = n−1
∑n

r=1 Yt and the

corresponding analysis of f̂Y (ω) remains unchanged, asymptotically. Let f (1)(0) =∑∞
−∞ h

1R(h), then above implies that
∣∣f (1)(0)

∣∣ ≤∑∞−∞ h1 |R(h)| <∞ for r = 1.

The Fourier transform of a set of observations Y1, ......, Yn, can be written as

Jn(ω) = n−1/2
∑n

t=1 Yte
itω and the corresponding periodogram is written as In(ω) =

|Jn(ω)|2. Some properties of the spectral density function are:

1. fY (ω) is even,

2. fY (ω) is non-negative for all ω ∈ [−π, π], and
∫ π
−π fY (ω)dω = 1,

3. RY (h) =
∫ π
−π e

ihωfY (ω)dω =
∫ π
−π cos(hω)fX(ω)dω.

Note that since cos is a periodic function with the period 2π, the range of values of

the spectral density is determined by the value of fY (ω) for ω ∈ [0, π] (Brockwell and

Davis, 1991).

Generally, autoregressive processes of finite order satisfy assumption 3 (Den Haan

and Levin, 1996). We can estimate the spectral density by smoothing the peri-
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odogram. The estimated spectral density of f with the AR(p) fitted model is then,

f̂n (ω) =
1

2π

∫ 2π

0

W (ω − λ)In (λ) dλ,

where W is a non-negative symmetric function satisfying
∫
W (u)du = 2π and also

the finiteness property,
∫
W 2(u)du < ∞. Define Wh(·) = (1/h)W (·/h), where h is a

bandwidth. Here, h serves the same purpose as b−1. Note that Σ/(2π) is the value of

the spectral density matrix of Yi at zero frequency. We can estimate the SV estimator

by using the spectral theory of estimation at frequency zero.

Σ̂SV
ij = 2πf̂n,ij (0)

The finite sample bias of SV estimator can be derived from Priestley (1981), Politis

and Romano (1995), Kokoszka and Jouzdani (2020). The bias can be derived as

E
[
Σ̂SV

]
= Σ− 2

n−1∑
i=1

(
1− w

(
i

b

))
Ri −

2

n

n−1∑
i=1

|i|w
(
i

b

)
Ri −

∑
|i|≥n

Ri +O

(
b

n

)

= Σ− 2
b−1∑
i=1

(
1− w

(
i

b

))
Ri −

2

n

b−1∑
i=1

|i|w
(
i

b

)
Ri −

∑
|i|≥b

Ri +O

(
b

n

)

= Σ−
∑
|i|≤b

(
1− w

(
i

b

)(
1− |i|

n

))
Ri −

∑
|i|>b

Ri +O

(
b

n

)
.

The second term is due to the lag window and the third term is the contribution due

to truncation of the autocovariances beyond lag b. The rate of decay of batch size
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determined due to the interplay of
∑∞

j=−∞ j
r |R(j)| <∞ and limx→0

1−K(x)
xq

. So, the

bias can be optimized by a trade off of r and q. Note the following set of common

assumptions:

C1. Θ0,4 =
∑

i≥0 δ4(i) <∞

C2.
∑

t1,...,tk−1∈Z

∣∣cum
(
X0, Xt1 , . . . , Xtk−1

)∣∣ <∞ for k = 4

3.1.1 Central Limit Thoerem

Using the m-dependent approximation and martingale approximation, Liu and

Wu (2010) establishes the normality of fn(ω) − Efn(ω). The absolute summability

of the autocovariances, C2, is not enough to establish the consistency of the estima-

tor Σ̂SV (Hörmann and Kokoszka, 2010). Assuming C1, the cumulant summability

condition C2 is not required for asymptotic normality (Berkes et al., 2016). Let

κ =
∫ 1

−1
W 2(u)du.

Theorem 12 (Liu and Wu (2010)) Suppose that EY1 = 0,EY 4
1 <∞ and Θ0,4 <∞.

Let 1/b+ b/n→ 0. Then, for ω = 0 or π,

√
n

b

{
f̂n,ij(ω)− E

(
f̂n,ij(ω)

)}
⇒ κ1/2N

(
0, fii(ω)fjj(ω) + f 2

ij(ω)
)
.

For Bartlett kernel in particular with q = 1 and r = 1, under C1, C2, and b = o(n),
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(Anderson, 1971) we have

lim
n→∞

b|E
[
Σ̂SV

]
− Σ| = 0 (3.1)

Remark 13 (Liu and Wu, 2010, Remark 5) If there exists a kernel with q = 1 and

r = 1 and
∑

k≥1 kδk,2 < ∞, then E
(
f̂n,ij(ω)

)
− fij(ω) = O (b−1), and E

(
f̂n,ij(ω)

)
can be replaced by fij(ω) as long as n log n = o (b3).

In order to use Theorem 12 in finite samples, however we need to account for the

finite sample bias. As we saw in (3.1), the bias is zero only asymptotically. To account

for the finite sample bias, we need to derive the bias using the form of Bartlett kernel

as

E
[
Σ̂SV

]
= Σ−

∑
|i|≤b

(
n|i|+ b|i| − |i|2

bn

)
Ri −

∑
|i|>b

Ri +O

(
b

n

)

= Σ−
(

1

b
+

1

n

)
Γb−1

1 +
1

bn
Γb−1

2 − Γn−1
0 + Γb−1

0 +O

(
b

n

)
+O

(
1

n

)
= Σ−

[(
Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
+ o

(
1

b

)
+O

(
b

n

)
+O

(
1

n

)
.

Thus, we get the similar rate of bias decay as for Σ̂SV as for Σ̂BM estimator from

Chapter 2. It is well known that OBM estimator is equivalent to SV estimator except

for some end effects (Flegal and Jones, 2010). More specifically, in the univariate case
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the variance of a SV estimator in the context of MCMC is

Var
(

Σ̂2
ii

)
=

4

3
Σ2
ii

b

n
+ o

(
b

n

)
+ η,

where η tends to 0 (Flegal, 2008). For Bartlett kernel with κ = 2/3, the variance of

the SV estimator (ω = 0) can also be derived from Theorem 12 as

Var
(

Σ̂SV
b

)
= 4π2Var

(
f̂n,ij (0)

)
=

4

3

b

n
·
(
2πfn,ij(0)2

)
=

4

3

b

n
Σ2.

3.2 Concluding Remarks

Spectral estimators are the least biased estimators available. They are compu-

tationally expensive in real life where we are limited to time-domain analysis in the

context of MCMC and other real-world applications in time series, longitudinal data,

etc. However, they share similar bias properties with OBM and BM estimators. In

our linear model, if we assume the errors are Gaussian then the error in estimation

(bias) vanishes and it is easier to prove normality results. But Markov chains also

show nonlinear behavior and we need to account for that. And it is extremely hard

to establish normality results of spectral variance estimator in the context of MCMC

variance and the current chapter constitutes some preliminary work and the rest is

left for future work.
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Chapter 4

Alternative Loss Functions

4.1 Alternative Loss Functions

Mean Square Error (MSE) has been traditionally used as an optimality criteria for

evaluating the estimators and assessing their risk. However, MSE carries information

about the variance and the square of bias, but not the direction of bias. Asymmetrical

loss functions are desirable in many cases because they help to validate a different

choice of center for any distribution. Asymmetrical loss functions let the researchers

specify their preference over overestimation or underestimation or validate an estima-

tor with finite sample sampling bias and irreducible systematic error. The penalty for

overestimation or underestimation can be reduced accordingly using the alternative

loss function.

Lugsail estimators of Chapter 2 are asymptotically unbiased, but retain significant
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Figure 4.1: Bias comparison of different Lugsail estimators in finite samples, n = 2e4.

bias in finite samples as seen in Figure 4.1. For a fixed sample size n, the bias of

Lugsail variance estimators with c = 1/2 and different r can be seen to approach zero

either from above for r = 3 or from below for r = 1 and r = 2, respectively. Lugsail

estimator with r = 3 is clearly over-biased after some lags and those with either r = 1

or r = 2 are clearly under-biased for a particular b. For a particular b, if we know

the truth, these systematic biases are fixed and we could potentially adjust for the

sampling bias.
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4.2 Distributional assumptions

For a m-dependent stochastic processes, using regression based linear analysis

Gupta et al. (2014) derives asymptotically normally distributed variance estimators

including BM estimators. There will always be bias in estimation in finite samples,

as this is the core message of the thesis. This chapter does not go deep into prov-

ing these normality assumptions and delegate them to future work. But, given the

assumptions for normality are met, theoretically we can calculate the scaling needed

for our estimators to be optimal under some loss functions that converges to MSE

loss in the limiting case.

Univariate BM estimators, σ2,BM
b , can be shown to be distributed as a scaled

chi-squared for fixed a as b→∞ i.e.,

σ̂2,BM
b =⇒

b→∞
σ2χ2

a−1/(a− 1).

This is not a consistent estimator of variance as the variance does not go to zero in

the limit b→∞. Glynn and Whitt (1991) shows that as a→∞,

σ2χ2
a−1/(a− 1)⇒ σ2
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and

√
a

(
σ2χ2

a

a
− σ2

)
⇒ N

(
0, 2σ4

)
.

Under strict regularity conditions and physical dependence measures SV estimator

was shown to be normally distributed in Theorem 12. These results hold in time series

context and have not been shown vigorously in MCMC literature. So, the contents

of this chapter are more applicable in the context of time series.
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4.3 Stein’s Loss
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Figure 4.2: Expected Stein’s loss, σ2
true = 10.

Stein’s loss is one of the prominent asymmetrical loss function that is the anal-

ogous of the squared error loss in least squares regression (See. Stein (1975), Dey

and Srinivasan (1985), Loh (1988)). Sometimes it is also called Entropy loss in the

literature and is normally related to estimating the mean vector of a d-dimensional

normal distribution with known covariance matrix. It measures the Kullback-Leibler

divergence between two multivariate normal distributions with the same means and

covariances Σ̂ and Σ. Stein’s loss has been used in terms of sample covariance matrix

estimation in wide array of literature including Ledoit and Wolf (2015) and Ledoit
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and Wolf (2018).
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Figure 4.3: Expected Stein’s loss for different estimation methods versus n.

In its simple form, the univariate Stein’s loss can be written as

L(d, θ) ∝
(
d

θ

)
− ln

(
d

θ

)
− 1,

where d is the estimator and θ is the parameter we are estimating. For example,
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the shape of Stein’s loss for estimating a mean parameter centered at 10 is shown in

Figure 4.2. It is asymmetrical and underestimation are more heavily penalized than

overestimation.

Using Stein’s loss to our variance estimators where the truth is known, we see in

Figure 4.3 that proposed estimation methods of Chapter 2 seem to do well in terms of

Stein’s loss. The proposed LUG-BM and LUG-OBM estimators are constructed with

r = 3 in linear combination in (1.23) and they are seen to perform worse than proposed

FT-BM and FT-OBM methods. Also, noticeable is that the current methods for single

estimators do not perform very well compared to the linear combination methods.

4.4 LINEX Loss

LINEX (LINear-EXponential) loss function is a convex, infinitely differentiable

asymmetrical loss function that has a unique minimum (Zellner, 1986). It is a com-

bination of linear and exponential function of the bias and can be controlled by an

asymmetry and a scaling parameter. The optimal estimators under LINEX loss not

only depends on the estimator itself but also on the variance and higher order mo-

ments of the distribution of the estimator. The problem of optimization under LINEX

loss is straightforward given the nice smoothness properties.
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Figure 4.4: Expected LINEX loss for different c, σ2
true = 10.

LINEX loss of using estimator Σ̂ to estimate Σ is

L(∆) = k · exp(c ·∆) + d ·∆ + e,

where ∆ = Σ̂ − Σ and k, c, and e are some real parameters. For example, if we

want to penalize underestimation more than overestimation, LINEX loss function is

appropriate with e = −k, d = −ck, and c < 0 and the resulting loss function becomes

L(∆) = k · (exp(c ·∆)− c ·∆− 1). (4.1)
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Further, LINEX loss function can also be written in the following form with k = 1/c2

L(∆) =
1

c2
(exp(c ·∆)− c ·∆− 1). (4.2)

The form of LINEX loss in (4.2) is important because it allows us to see that LINEX

loss converges to MSE loss as c→ 0 using Taylor series expansion and L’Hopital rule.

We can see that

1

c2
(exp(c∆)− c∆− 1) =

1

c2

( ∞∑
i=0

ci∆i

i!
− c∆− 1

)
=

1

c2

( ∞∑
i=2

ci∆i

i!

)
≈ ∆2

2
,

where a factor of 1/2 arises to account for the symmetry of the MSE loss.

The LINEX loss function for Σ = 10 is depicted in Figure 4.4 for two different

asymmetry parameters. As we can see in the figure, for negative c, underestimation

are more heavily penalized than overestimation and the opposite holds for positive c.

In a way, this is an improvement over Stein’s loss now that we have control over the

direction of the asymmetry.

4.4.1 Simulation Study

We can calculate the expected linex loss of BM estimators in finite sample set-

ting. The optimal integer-valued batch-size for BM estimators can be obtained by
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minimizing the following naive linex loss function

∑N
i=1k ·

(
exp
(
c(Σ̂− Σ)

)
− c(Σ̂− Σ)

)
− 1

)
N

,

where N is the number of replication. For simplicity, assume the value of c and k is

known and optimize over the batch size by treating it as the only free parameter that

Σ̂ implicitly depends on. The expected LINEX loss BM estimator for c = −0.005

and k = 0.1 can be seen for different b in Figure 4.5 for four different Markov chains

of length n = 2e4 constructed from AR(1) process.

Similarly, the MSE loss under the same setting for BM estimators can be seen

in Figure 4.6. Remarkably, these figures show that the optimal batch size using the

two alternate loss functions are same for small values of c. The only difference is the

magnitude of the loss. LINEX loss is significantly smaller than MSE loss. So, using

LINEX loss one can achieve a scaling in MSE loss for a particular b.

4.4.2 Expected LINEX loss

A simulation study was done to optimize the parameters of the LINEX loss for

a particular bias of univariate modified lugsail estimator. Also, the optimal weight

of the linear combination was optimized using a modification to the ridge penalty

function. The two dimensional optimization can be easily done using L-BFGS-B
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Figure 4.5: Batch-size optimization under LINEX loss of BM estimators for n = 1e4,
c = −0.005, k = 0.1.

method in optim function in R. The objective function for minimization is

f(α) =
1

N

N∑
i=1

L(Σi,α) + λαTα

=
1

N

N∑
i=1

(
k
(
ec(α

T ·Σi−Σ) − c(αT ·Σi − Σ)− 1
))

+ λαTα.
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Figure 4.6: Batch-size optimization under MSE loss of BM estimators for n = 1e4,
c = −0.005, k = 0.1.

The gradient of the objective function at a single point is

J(α) =
∂f(α)

∂α
= c · k ·

[(
ec(α

TΣ−Σ) − 1

)
·ΣT

]
+ 2λ ·αT .

The unconstrained 3-D optimization problem can be reduced to 2-D optimization

using the sum constraint, α1 + α2 + α3 = 1. The parameter space is reduced from

(α1, α2, α3) to (α2, α3) and α1 = 1−α2−α3. Further, the parameters (α2, α3) can be
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Figure 4.7: LINEX and MSE loss for φ = 0.95 for Linear Combination estimators
with (α1, α2, α3) = (1.67,−0.33,−0.34).

constrained to be negative by using α1 = 1 + α2 + α3 in the objective function. This

is a nice trick as it forces the parameters to be negative and also very close to 1; the

degree of closeness is controlled by the ridge penalty parameter λ. The parameters

are updated as

αi+1 = αi − η · J(αi).

Instead of computing the gradient over a randomly chosen point, gradient is computed
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over a randomly chosen batch

αi+1 = αi − η
B∑
i=1

J(αi),

where B is batch-size and η is the learning rate. These are hand-picked. The penalty

parameter is calculated using k-fold cross-validation. The resulting optimal coeffi-

cients are (α1, α2, α3) = (1.67,−0.33,−0.34) and the corresponding lag window in

(2.26) becomes

wn(k) =1.67

(
1− |k|

b

)
I(0 ≤ |k| ≤ b)− 0.33

(
1− |k|

b/2

)
I

(
0 ≤ |k| ≤ b

2

)
− 0.33

(
1− |k|

b/4

)
I

(
0 ≤ |k| ≤ b

4

)
. (4.3)

The lag window in (4.3) can also be written of the form as in (2.26)

Σ̂LC =
1

(1− c1)(1− c2)
Σ̂b −

c1

(1− c1)(1− c2)
Σ̂b/r −

c2

1− c2

Σ̂b/s, (4.4)

with c1 = 1/5 and c2 = 1/4.

Finally, using the optimal linear combination one can calculate the expected

LINEX loss and MSE loss for a slow mixing Markov chain using AR(1) example.

In Figure 4.11, we can see that for the optimal linear combination, the expected linex

loss is reduced drastically compared to the MSE loss and, the bias decay is same for

both the loss function. In other words, at fixed b, these two loss functions are a scaled
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version of one another for some known parameters c and k. The parameter k does not

play a crucial role and could be unity. Some guidance on how to pick the parameter

c is discussed in the next sections.

4.4.3 A Thought Experiment

We will be limited to preliminary analytical analysis of LINEX and CHECK loss

function in this chapter. Let’s go through a simple thought experiment. Suppose X1,

X2, · · · ,Xn are i.i.d N(µ, σ2), then the unbiased estimator of the population variance

in the unknown mean case is given by

σ̂2
UNBIASED =

1

n− 1

n∑
i=1

(Xi − X̄)2.

We know that the MSE optimal estimator of the population variance is biased with

an alternate scaling factor as

σ̂2
MSE =

1

n+ 1

n∑
i=1

(Xi − X̄)2.

To find the LINEX optimal estimator, lets consider the alternate scaling version

of the square deviations where m is the scaling factor as

σ̂2
LINEX =

1

m

n∑
i=1

(Xi − X̄)2.
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We know
∑n

i=1(Xi − X̄)2 ∼ σ2χ2
n−1. Denote σ̂2

LINEX by σ̂2 for simplicity. So, appro-

priately scaled version of the estimator of the variance follows Chi-square distribution

with n− 1 degrees of freedom, i.e.,

m · σ̂
2

σ2
∼ χ2

n−1.

The expected LINEX loss for σ̂2 is derived in Section 4.9 and can be written as

E[L(σ̂2 − σ2)] = ke−cσ
2

(
1− 2cσ2

m

)−n−1
2

− kcσ2

m
(n− 1) + kcσ2 − k. (4.5)

It is also shown in Section 4.9 that the approximate value of c that results in unbiased

estimation in this toy example is

c ≈ −n+ 1

n− 1
· 1

σ2
. (4.6)

If the i.i.d. normal distribution of interest is taken to be N(3, 32) and we simulate

n = 1000 observations from it, we see in Figure 4.8 that we get an alternate scaling in

terms of expected LINEX loss and the asymmetry parameter that results in unbiased

estimation is copt = −0.15 and this approximately agrees with (4.6).
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Figure 4.8: Optimal scaling for LINEX loss in a toy example with X ∼ N(3, 33).

4.4.4 LINEX Optimal Estimator

Suppose the error in estimation, or the sampling bias, is of the form ∆ = Σ̂−E[Σ̂].

We need to minimize this sampling bias in finite samples. Then, the expected loss in

(4.2) is

E[L(Σ̂− E[Σ̂])] = E

(
k
(
exp(c(Σ̂− E[Σ̂]))− c(Σ̂− E[Σ̂])− 1

))
. (4.7)

Taking derivative of (4.7) w.r.t. Σ̂ and setting it equal to 0, we get

E
[
exp(c(Σ̂LIN − E[Σ̂]))

]
= 1. (4.8)
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Solving Σ̂LIN from (4.8) that minimizes (4.7), we get

Σ̂LIN = −
lnE

(
exp(−cE[Σ̂])

)
c

= −
ln(ME[Σ̂](−c))

c
= −

KE[Σ̂](−c)
c

, (4.9)

where MX(t) = exp(µt + 1
2
σ2t2) is the moment generating function whenever X ∼

N(µ, σ2) and KX(t) is the corresponding cumulant generating function. The optimal

estimator under LINEX loss can be written in terms of cumulant generating function

under the distribution of an estimator of Σ. Under the assumption of normality, we

have

Σ̂LIN = − ln(MΣBM (−c))
c

= E[Σ̂]− Var(Σ̂)

2
· c. (4.10)

For negative c, the resulting estimator that minimizes LINEX loss is larger than the

one that minimizes the squared error loss. We may have extra terms if the normality

distribution is not met, however those terms are very small and can effectively be

controlled with suitable choice of c. For each value of bias and variance, we can

calculate the value of c that minimizes the expected LINEX loss by treating c as

random.

Consider Σ̂BM
b and call it Σ̂ for the sake of simplicity. The analysis in this section

can equally be applied to lugsail estimators as single BM estimators are the simplest

case of lugsail estimators with r = 1. Then, the finite sample bias of the estimator
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can be written as

E
[
Σ̂
]

= Σ−
[(

Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
+O

(
1

b

)
.

For a fixed b, denote the finite sample systematic bias of the estimator , Σ̂, as

µe = E[Σ̂]− Σ = −
[(

Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
.

Then the expected LINEX loss of Σ̂ around its expected value E[Σ̂] is

E[L(Σ̂− E[Σ̂])] = E

(
k
(
ec(Σ̂−E[Σ̂]) − c(Σ̂− E[Σ̂])− 1

))
= E

(
k
(
1 + c(Σ̂− E[Σ̂]) +

c2(Σ̂− E[Σ̂])2

2
+
c3(Σ̂− E[Σ̂])3

6
+ · · ·

· · · − c(Σ̂− E[Σ̂])− 1
))

=
k · c2

2
E
[
(Σ̂− E[Σ̂])2

]
+
k · c3

6
E
[
(Σ̂− E[Σ̂])3

]
= I + II. (4.11)

Presented here are some preliminary results. For I, we see that

E
[
(Σ̂− E[Σ̂])2

]
= E[(Σ̂− Σ− (E[Σ̂]− Σ))2]

= E(Σ̂− Σ)2 − 2E(Σ̂− Σ) · (E[Σ̂]− Σ) + (E[Σ̂]− Σ)2

=
1

a− 1

(
Σ2
ij + ΣiiΣjj

)
− µ2

e.
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Similarly, for II, we see that

E
[
(Σ̂− E[Σ̂])3

]
= E[(Σ̂− Σ− (E[Σ̂]− Σ))3]

= E(Σ̂− Σ)3 − 3E(Σ̂− Σ)2 · (E[Σ̂]− Σ) + 3E(Σ̂− Σ) · (E[Σ̂]− Σ)2−

(E[Σ̂]− Σ)3

= 0− 3E(Σ̂− Σ)2 · (E[Σ̂]− Σ) + 2(E[Σ̂]− Σ)3

= − 3

a− 1

(
Σ2
ij + ΣiiΣjj

)
· µe + 2µ3

e.

The third central moment of the estimator, E(Σ̂ − Σ)3, is taken to be zero from

the normality assumption. Proving this result in the MCMC context requires a lot

of extra technical conditions and is not pursued vigorously in this thesis. A simple

proof using Brownian Motion analogue is provided in Section 4.9 together with the

derivation of the various sums involved in (4.11). Combining I and II, we have

E[L(Σ̂− E[Σ̂])] =
k · c2

2
E
[
(Σ̂− E[Σ̂])2

]
+
k · c3

6
E
[
(Σ̂− E[Σ̂])3

]
=
k · c2

2

(
1

a− 1

(
Σ2
ij + ΣiiΣjj

)
− µ2

e

)
+

k · c3

6

(
− 3

a− 1

(
Σ2
ij + ΣiiΣjj

)
· µe + 2µ3

e

)
. (4.12)

Taking derivative of (4.12) w.r.t. c and equating it to 0, we have

c =

(
1

a−1

(
Σ2
ij + ΣiiΣjj

)
− µ2

e

3
2(a−1)

(
Σ2
ij + ΣiiΣjj

)
· µe − µ3

e

)
. (4.13)
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So, the expected LINEX loss in (4.7) is minimized for c in (4.13). The constant

c is negative when we are underestimating and positive when we are overestimating

when all other parameters are fixed. Using c in (4.10) we can achieve scaling of the

estimators in terms of LINEX loss to adjust for the finite sample bias, although this

is an approximate scaling when the estimator deviate from normality. We can easily

extend this to lugsail estimator with r > 1 and this is left for future work.

A toy simulation in this regard was done to verify that the LINEX optimal coef-

ficient in (4.12) is valid. We can see in Table 4.1 that at particular batch sizes that

are taken to be close to MSE optimal batch sizes, we see an improvement to the bias

results after adjustment using LINEX optimal coefficients calculated using (4.13) for

all the lugsail estimators involved in Figure 4.1.

Bias adjustment with LINEX loss
r = 1 r = 2 r = 3

Batch Size 80 40 50
Old Bias -9.23 -5.53 5.28
c -0.38 -0.0916 0.1105
New Bias 0.3374 -2.65 0.06

Table 4.1: Comparison of MSE optimal and LINEX optimal bias

With similar reasoning for SV estimator, the value of c that minimizes the LINEX

loss of the SV estimator in finite samples is

c =

(
2b
3n

(
Σ2
ij + ΣiiΣjj

)
− µ2

e

b
n

(
Σ2
ij + ΣiiΣjj

)
· µe − µ3

e

)
.
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This result cannot be applied in MCMC context at present and more research needs

to be done in the future, but given the assumptions of Theorem 12 is met, this gives

a way to adjust the bias in finite samples. It is presented here for completeness.

4.5 CHECK Loss
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Figure 4.9: Expected CHECK Loss for different τ .

Check loss or LIN-LIN (LINear-LINear) loss is another simple asymmetrical loss

function that is piece-wise linear and it has been widely used as an alternative to MSE

loss in quantile regression and forecast literature, see Koenker and Bassett Jr (1978)

and Elliott et al. (2005). Check loss minimizes the sum of positive and negative error
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terms and is used when overestimating or underestimating is more desirable. It is

additive scale-able, and separable. For τ ∈ (0, 1), define check loss as

ρτ (e) = [τ − 1(e < 0)] · e, (4.14)

where e = Y −m is an error term. As we can see in Figure 4.9 τ smaller than 0.5

result in over-penalization of underestimation and vice-versa. The expected CHECK

loss can be written as

E[ρτ (Y −m)] = τ

∫ ∞
m

(y −m)f(y)dy − (1− τ)

∫ m

−∞
(y −m)f(y)dy. (4.15)

The minimizer of (4.15) is qτ = m = F−1(τ).

Consider Σ̂BM
b and let e = Σ̂BM

b − Σ be the error in estimation. The error can

be decomposed into systematic error and sampling error. The systematic error is

irreducible and the sampling error has variability. We can expand the loss around

the finite sample bias. Let the following be the finite sample bias and the standard

deviation

µe = E(e) = −
[(

Γ0
n−1 − Γ0

b−1

)
+

1

b
Γ1
b−1

]
σe =

√
2Σ2b

n
.
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Then, the expected loss of e is

E[L(e)] = E[(τ − 1{e<0}) · e]

=

∫
(τ − 1{e<0}) · e · dF (e)

= τµe −
∫ 0

−∞
e · dF (e).

Assuming normality of the error distribution, and making a change of variable e =

µe + σez, where z is a standard normal r.v., the above expression can be written as

E[L(e)] = τµe −
∫ −µe

σe

−∞
(µe + σez) · dF (z)

= µe

[
τ − F

(
− µe
σe

)]
+ σe · f

(
− µe
σe

)
. (4.16)

4.6 Quad-quad Loss

Quad-Quad loss, also called asymmetrical quadratic loss, is a piece-wise quadratic

loss function and can be written as

ρτ (e) = [τ − (2τ − 1)1(e < 0)] · e2.

Quad-quad loss approaches MSE loss when τ = 1/2. Similar to the case for Check

loss, as we can see in Figure 4.10, τ smaller than 0.5 results in over-penalization
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Figure 4.10: Expected Quad-quad loss for different τ .

of underestimation and vice-versa. So, it is easy to see that quad-quad loss is just

an extension to MSE loss with unequal weights given to positive and negative error

terms. The expected quad-quad loss is

E[L(e)] = τ(µ2
e + σ2

e)− (2τ − 1)

[
µeΦ

(
−µe
σe

)
+ 2µeσe

(
−φ
(
−µe
σe

))
+ σ2

e

(
µe
σe
φ

(
−µe
σe

)
+ Φ(−µe

σe
)

)]
. (4.17)
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The proof for (4.17) is given in Section 4.9. And the optimal estimator that minimizes

the expected quad-quad loss is

σ̂2
opt = σ2 −

(
2τ − 1

τ

)
· σe · φ

(
−µe
σe

)
.

4.7 Multivariate Loss

There exists a multivariate loss function from Komunjer and Owyang (2012) that

is a generalization of check loss and it can be written as

Lp(τ, ~e) = (‖e‖p + α′e) · ‖e‖p−1
p , (4.18)

where α = 2τ − 1. This loss function reduces to multivariate check loss for p = 1. It

reduces to multivariate MSE loss for p = 2 and n = 1. Here, n is the dimension of ~e.

For univariate case with p = 1, the loss function is just a scaled version of check loss

as shown below

|e|+ α · e = (1 + α · sign(e)) · |e|

= 2(τ + (1− 2τ)1(e < 0)) · |e|

= 2(τ + 1(u < 0)) · e.

The multivariate loss in (4.18) with n = 3 and p = 1 reduces to linear combination
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of three univariate check loss functions i.e.,

L1(α, e) = |e1|+ |e2|+ |e3|+ α1 · e1 + α2 · e2 + α3 · e3

= |e1|+ +α1 · e1 + |e2|+ α2 · e2 + |e3|+ α3 · e3

= L1(α1, e1) + L2(α2, e2) + L3(α3, e3).

This multivariate loss assumes that the individual losses are independent of each other

and are thus separable. Quad-Quad loss function is not separable and serves limited

practical applications. We can see that

L2(τ, e) = (‖e‖2 + τ ′ · e) ‖e‖2 = (e2
1 + e2

2) + (τ1e1 + τ2e2)(e2
1 + e2

2)1/2.

4.8 Scaling Estimators

Let mσ̂2 be a scaled estimator where m is a positive integer greater than 1. Then

with the normality assumption, we can write

mσ̂2 d−→ N

(
mσ2,

2m2σ4b

n

)
. (4.19)
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Figure 4.11: Scaled estimators on red with τ = 0.40 and m = 1.12 from an AR(1)
process with φ = 0.95. Green histogram corresponds to unscaled estimator with
σ2 = 400

Let e = mσ̂2−σ2 be the error. Then the optimal estimator that minimizes the check

loss for a given τ is given by

σ̂2
opt =

σ2

m
+ σ2 ·

√
2b

n
· F−1(1− τ),

where F is the Cumulative Distribution Function (CDF) of e. Assuming normality

we can see in Figure 4.11, we can achieve scaling of univariate BM estimators so that
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it’s sampling bias is reduced in finite samples.

4.9 Proofs

Proof of (4.5) The expected LINEX loss for σ̂2 can be obtained as follows. The

expected LINEX loss is

E[L(σ̂2 − σ2)] = E

(
k
(
ec(σ̂

2−σ2) − c(σ̂2 − σ2)− 1
))

= k · E
((
e
cσ2

(
σ̂2

σ2−1
)
− cσ2

(
σ̂2

σ2
− 1

)
− 1
))

= ke−cσ
2

E[e
cσ2

(
σ̂2

σ2

)
]− kcσ2

(
E

[
σ̂2

σ2

]
− 1

)
− k

= ke−cσ
2

E[e
cσ2

m

(
mσ̂2

σ2

)
]− kcσ2

m

(
E

[
mσ̂2

σ2

]
−m

)
− k

Using the moment generating function of Chi-square distribution, MX(t) = E[etX ] =

(1− 2t)−
n
2 , whenever X ∼ χ2

n, we have

E[L(σ̂2 − σ2)] = ke−cσ
2

(
1− 2cσ2

m

)−n−1
2

− kcσ2

m
(n− 1) + kcσ2 − k.
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Taking derivative w.r.t. m and equating it to 0, we have

ecσ
2

=

(
1− 2cσ2

m

)− (n+1)
2

1

m
=

1− e−
2cσ2

n+1

2cσ2

=

2cσ2

n+1
− 4c2σ4

(n+1)2 + 8c3σ6

(n+1)3 +O
(

1
n4

)
2cσ2

=
1

n+ 1
− 2cσ2

(n+ 1)2
+

4c2σ4

(n+ 1)3
+O

(
1

n4

)
.

So, 1/m increases when c is negative and approaches MSE optimal coefficient

1/(n + 1) from above in the limiting case when c goes to 0. When c is positive, the

opposite holds. This analysis advocates for using alternate scaling of our estimators

to get unbiased estimators in finite samples. Approximately, for m = n− 1, the value

of c that results in unbiased estimation in this toy example is

c ≈ −n+ 1

n− 1
· 1

σ2
.

Proof of (4.11) The scaled second central moment of Σ̂ can be calculated using

Brownian motion concepts.

E
[
(Σ̂− Σ)2

]
= E[Σ̂2]− 2ΣE[Σ̂] + Σ2
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The scaled third central moment of Σ̂ that measures the skewness is

E
[
(Σ̂− Σ)3

]
= E[Σ̂3]− 3ΣE[Σ̂2] + 3Σ2E[Σ̂]− Σ3

We make use of the following useful formulas.

( n∑
i=0

ai

)2

=
n∑
i=0

a2
i + 2

n∑
s=1

n−s∑
i=0

aiai+s (4.20)

( n∑
i=0

ai

)3

=
n∑
i=0

a3
i + 3

n∑
s=1

n−s∑
i=0

a2
i ai+s + 3

n∑
s=1

n−s∑
i=0

aia
2
i+s + 6

n∑
t=1

n−t∑
r=1

n−t−r∑
i=0

aiai+tai+t+r

(4.21)

Proposition 1. If (X1, · · · , X4) are jointly normally distributed with zero mean

then the forth-order moment is:

E [X1X2X3X4] = E [X1X2]E [X3X4] + E [X1X3]E [X2X4] + E [X1X4]E [X2X3]

Proposition 2. If (X1, · · · , X6) are jointly normally distributed with zero mean
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then the sixth-order moment given by Isserlis (1918) is:

E[X1X2X3X4X5X6]

= E[X1X2]E[X3X4]E[X5X6] + E[X1X2]E[X3X5]E[X4X6] + E[X1X2]E[X3X6]E[X4X5]

+ E[X1X3]E[X2X4]E[X5X6] + E[X1X3]E[X2X5]E[X4X6] + E[X1X3]E[X2X6]E[X4X5]

+ E[X1X4]E[X2X3]E[X5X6] + E[X1X4]E[X2X5]E[X3X6] + E[X1X4]E[X2X6]E[X3X5]

+ E[X1X5]E[X2X3]E[X4X6] + E[X1X5]E[X2X4]E[X3X6] + E[X1X5]E[X2X6]E[X3X4]

+ E[X1X6]E[X2X3]E[X4X5] + E[X1X6]E[X2X4]E[X3X5] + E[X1X6]E[X2X5]E[X3X4].

Let B(t) be a p-dimensional standard Brownian motion. Let B(i) be the ith compo-

nent of B(t). Define Σ̃ as the Brownian motion counterpart of Σ̂. Let B̄ = n−1B(n).

Define Brownian motion increments as Ut = B(t)− B(t− 1) for t = 1, ....., n. Then,

using B̄l(k) = k−1[B(lk+ k)−B(lk)], for any batch l and batch size k, the Brownian

motion difference can be decomposed into

B̄
(i)
l (k)− B̄ =

(
n− k
nk

) l+k∑
t=l

U
(i)
t −

1

n

l∑
t=1

U
(i)
t −

1

n

n∑
t=l+k+1

U
(i)
t

We have E[B̄
(i)
l (k)− B̄] = 0 for l = 0, .....a− 1 and

Var
[
B̄

(i)
l (k)− B̄(i)

]
=

(
n− k
nk

)2

k +
n− k
n2

=
n− k
nk
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We focus our attention for k = b for the case of BM. The Brownian motion counterpart

of BM estimator is

Σ̃ =
b

a− 1

a−1∑
l=0

(
B̄l(b)− B̄

) (
B̄l(b)− B̄

)T
. (4.22)

Then,

B̄
(i)
l (b)− B̄(i) ∼ N

(
0,
n− b
bn

)

and

B̄l(b)− B̄ ∼ N

(
0,
n− b
bn

Ip

)

Let C(t) be the p-dimensional scaled Brownian motion i.e., C(t) = LB(t). Let C(i)

be the ith component of C(t). Let C̄ = n−1C(n) and C̄l(k) = k−1[C(lk + k)− C(lk)]

as before, then

C̄l(b)− C̄ ∼ N

(
0,
n− b
bn

Σ

)

Let’s focus on E[Σ̂3]. In terms of scaled Brownian motion, this term can be written
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as,

E[Σ̃3] = E

( b

a− 1

a−1∑
l=0

(
C̄l(b)− C̄

) (
C̄l(b)− C̄

)T)3


Consider each term of E[Σ̃3] from the expansion given in (4.21).

E[Σ̃3,ij] = E

( b

a− 1

a−1∑
l=0

(
C̄

(i)
l (b)− C̄(i)

)(
C̄

(j)
l (b)− C̄(j)

)T)3


=

(
b

a− 1

)3

E [I + II + III + IV] (4.23)

I =
a−1∑
l=0

((
C̄

(i)
l (b)− C̄(i)

)3 (
C̄

(j)
l (b)− C̄(j)

)3
)

=
a−1∑
l=0

Z3
i Z

3
j

where Zi =
(
C̄

(i)
l (b)− C̄(i)

)
and Zj =

(
C̄

(j)
l (b)− C̄(j)

)
. Then,

 Zi

Zj

 ∼ N


 0

0

 , n− bbn

 Σii Σij

Σij Σjj



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E[I] =
a−1∑
l=0

E[Z3
i Z

3
j ] =

a−1∑
l=0

E[ZiZiZiZjZjZj]

=
a−1∑
l=0

(
9 · E[Z2

i ]E[ZiZj]E[Z2
j ] + 6 · E[ZiZj]E[ZiZj]E[ZiZj]

)
= a ·

(
n− b
bn

)3 (
9ΣiiΣijΣjj + 6Σ3

ij

)
= a

(
1

b3
− 3

b2n
+

3

bn2
− 1

n3

)(
9ΣiiΣijΣjj + 6Σ3

ij

)
= o

(
a2

b3

)
(4.24)

II = 3

a−1∑
s=1

a−1−s∑
l=0

((
C̄

(i)
l (b)− C̄(i)

)2 (
C̄

(j)
l (b)− C̄(j)

)2 (
C̄

(i)
l+s(b)− C̄

(i)
)(

C̄
(j)
l+s(b)− C̄

(j)
))

= 3 ·
a−1∑
s=1

a−1−s∑
l=0

Z2
1Z

2
2Z3Z4

where Z1 =
(
C̄

(i)
l (b)− C̄(i)

)
, Z2 =

(
C̄

(j)
l (b)− C̄(j)

)
, Z3 =

(
C̄

(i)
l+s(b)− C̄(i)

)
, and

Z4 =
(
C̄

(j)
l+s(b)− C̄(j)

)
. The joint distribution of (Z1, Z2, Z3, Z4) can be written as



Z1

Z2

Z3

Z4


∼ N





0

0

0

0


,



(
n−b
bn

)
Σii

(
n−b
bn

)
Σij − 1

n
Σii − 1

n
Σij(

n−b
bn

)
Σjj − 1

n
Σij − 1

n
Σjj(

n−b
bn

)
Σii

(
n−b
bn

)
Σij(

n−b
bn

)
Σjj




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Then,

E[II] = 3
a−1∑
s=1

a−1−s∑
l=0

E[Z2
1Z

2
2Z3Z4]

= 3 ·
a−1∑
s=1

a−1−s∑
l=0

(
ΣiiΣijΣjj

((
n− b
bn

)3

+
8(n− b)
bn3

)
+ Σ3

ij

(
2

(
n− b
bn

)3

+
4(n− b)
bn3

))

=
3a(a− 1)

2

(
ΣiiΣijΣjj

((
n− b
bn

)3

+
8(n− b)
bn3

)
+ Σ3

ij

(
2

(
n− b
bn

)3

+
4(n− b)
bn3

))

=
3a(a− 1)

2

(
ΣiiΣijΣjj

(
1

b3
− 3

b2n
+

11

bn2
− 9

n3

)
+ Σ3

ij

(
2

b3
− 6

b2n
+

10

bn2
− 6

n3

))
=

1

2

(
3a(a− 1)

b3
ΣiiΣijΣjj +

6a(a− 1)

b3
Σ3
ij

)
+ o

(
a2

b3

)
(4.25)

III = 3 ·
a−1∑
s=1

a−1−s∑
l=0

((
C̄

(i)
l (b)− C̄(i)

)(
C̄

(j)
l (b)− C̄(j)

)(
C̄

(i)
l+s(b)− C̄

(i)
)2 (

C̄
(j)
l+s(b)− C̄

(j)
)2
)

= 3 ·
a−1∑
s=1

a−1−s∑
l=0

Z1Z2Z
2
3Z

2
4

Similar to II,

E[III] = 3
a−1∑
s=1

a−1−s∑
l=0

E[Z1Z2Z
2
3Z

2
4 ] =

1

2

(
3a(a− 1)

b3
ΣiiΣijΣjj +

6a(a− 1)

b3
Σ3
ij

)
+ o

(
a2

b3

)
(4.26)
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IV = 6 ·
a−1∑
t=1

a−1−t∑
r=1

a−1−t−r∑
l=0

(
C̄

(i)
l (b)− C̄(i)

)(
C̄

(j)
l (b)− C̄(j)

)(
C̄

(i)
l+t(b)− C̄

(i)
)(

C̄
(j)
l+t(b)− C̄

(j)
)

(
C̄

(i)
l+t+r(b)− C̄

(i)
)(

C̄
(j)
l+t+r(b)− C̄

(j)
)

= 6 ·
a−1∑
t=1

a−1−t∑
r=1

a−1−t−r∑
l=0

Z1Z2Z3Z4Z5Z6

where Z1 =
(
C̄

(i)
l (b)− C̄(i)

)
, Z2 =

(
C̄

(j)
l (b)− C̄(j)

)
, Z3 =

(
C̄

(i)
l+t(b)− C̄(i)

)
, Z4 =(

C̄
(j)
l+t(b)− C̄(j)

)
, Z5 =

(
C̄

(i)
l+t+r(b)− C̄(i)

)
, Z6 =

(
C̄

(j)
l+t+r(b)− C̄(j)

)
. The joint dis-

tribution of (Z1, Z2, Z3, Z4, Z5, Z6) is



Z1

Z2

Z3

Z4

Z5

Z6


∼ N





0

0

0

0

0

0


,



(
n−b
bn

)
Σii

(
n−b
bn

)
Σij − 1

n
Σii − 1

n
Σij − 1

n
Σii − 1

n
Σij(

n−b
bn

)
Σjj − 1

n
Σij − 1

n
Σjj − 1

n
Σij − 1

n
Σjj(

n−b
bn

)
Σii

(
n−b
bn

)
Σij − 1

n
Σii − 1

n
Σij(

n−b
bn

)
Σjj − 1

n
Σij − 1

n
Σjj(

n−b
bn

)
Σii

(
n−b
bn

)
Σij(

n−b
bn

)
Σjj




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Then,

E[IV] = 6 ·
a−1∑
t=1

a−1−t∑
r=1

a−1−t−r∑
l=0

E[Z1Z2Z3Z4Z5Z6]

= 6 ·
a−1∑
t=1

a−1−t∑
r=1

a−1−t−r∑
l=0

(
ΣiiΣijΣjj

(
3(n− b)
bn3

− 6

n3

)
+

Σ3
ij

((
n− b
bn

)3

+
3(n− b)
bn3

− 2

n3

))

= a(a2 − 3a+ 2)

(
ΣiiΣijΣjj

(
3(n− b)
bn3

− 6

n3

)
+

Σ3
ij

((
n− b
bn

)3

+
3(n− b)
bn3

− 2

n3

))

= a(a2 − 3a+ 2)

(
ΣiiΣijΣjj

(
3

bn2
− 9

n3

)
+ Σ3

ij

(
1

b3
− 3

b2n
+

6

bn2
− 6

n3

))
=

(
a(a− 1)(a− 2)

b3
− 3a(a− 1)(a− 2)

b2n

)
Σ3
ij + o

(
a2

b3

)
(4.27)

Combining (4.23),(4.24),(4.25),(4.26), and (4.27), we get,

E[Σ̃3,ij] =

(
3a

(a− 1)2

)
ΣiiΣijΣjj +

(
a2 + a+ 6

(a− 1)2

)
Σ3
ij + o

(
1

a

)
= Σ3

ij +
3

a− 1

(
ΣiiΣijΣjj + Σ3

ij

)
+

3

(a− 1)2

(
ΣiiΣijΣjj + Σ3

ij

)
+ o

(
1

a

)
= Σ3

ij +
3

a− 1

(
ΣiiΣijΣjj + Σ3

ij

)
+ o

(
1

a

)
(4.28)

Let’s focus on E[Σ̂2]. In terms of scaled Brownian motion, this term can be written
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as,

E[Σ̃2] = E

( b

a− 1

a−1∑
l=0

(
C̄l(b)− C̄

) (
C̄l(b)− C̄

)T)2


Each term can be written as,

E[Σ̃2,ij ] = E

( b

a− 1

a−1∑
l=0

(
C̄

(i)
l (b)− C̄

)(
C̄

(j)
l (b)− C̄

))2


=

(
b

a− 1

)2

E[A+B] (4.29)

A =
a−1∑
l=0

((
C̄

(i)
l (b)− C̄(i)

)2 (
C̄

(j)
l (b)− C̄(j)

)2
)

=
a−1∑
l=0

Z2
i Z

2
j

E[A] =

a−1∑
l=0

E[Z2
i Z

2
j ]

= a ·
(
n− b
bn

)2 [
2Σ2

ij + ΣiiΣjj

]
= a

[(
1

b2
+

1

n2
− 2

bn

)[
2Σ2

ij + ΣiiΣjj

]]
=

a

b2
[
2Σ2

ij + ΣiiΣjj

]
+ o

( a
b2

)
(4.30)
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B = 2 ·
a−1∑
s=1

a−1−s∑
l=0

((
C̄

(i)
l (b)− C̄(i)

)(
C̄

(j)
l (b)− C̄(j)

)(
C̄

(i)
l+s(b)− C̄

(i)
)(

C̄
(j)
l+s(b)− C̄

(j)
))

= 2 ·
a−1∑
s=1

a−1−s∑
l=0

Z1Z2Z3Z4

E[B] = 2 ·
a−1∑
s=1

a−1−s∑
l=0

E[Z1Z2Z3Z4]

= 2 · a(a− 1)

2

[(
n− b
bn

)2

Σ2
ij +

∑
ii Σjj

n2
+

∑2
ij

n2

]

= a(a− 1)

[
Σ2
ij

b2
+

1

n2

[
2Σ2

ij + ΣiiΣjj

]
−

2Σ2
ij

bn

]

= Σ2
ij

[
(a− 1)(a− 2)

b2

]
+ o

( a
b2

)
(4.31)

Using (4.29), (4.30), and (4.31), we have,

E[Σ̃2,ij] =
a(a− 1)Σ2

ij + aΣiiΣjj

(a− 1)2
+ o

(
1

a

)
= Σ2

ij +
1

a− 1

(
Σ2
ij + ΣiiΣjj

)
+ o

(
1

a

)
(4.32)

Let’s focus on E[Σ̂]. In terms of scaled Brownian motion, this term can be written
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as,

E[Σ̃] = E

[(
b

a− 1

a−1∑
l=0

(
C̄l(b)− C̄

) (
C̄l(b)− C̄

)T)]

Each term can be written as,

E[Σ̃ij] = E

[(
b

a− 1

a−1∑
l=0

(
C̄

(i)
l (b)− C̄

)(
C̄

(j)
l (b)− C̄

))]

=
b

a− 1

a−1∑
l=0

E
[(
C̄

(i)
l (b)− C̄

)(
C̄

(j)
l (b)− C̄

)]
=

b

a− 1
· a ·

(
n− b
bn

)
Σij

= Σij (4.33)

Combining (4.33) and (4.32), we have

E
[
(Σ̃ij − Σij)

2
]

= E[Σ̃2
ij]− 2ΣE[Σ̃ij] + Σ2

= Σ2
ij +

1

a− 1

(
Σ2
ij + ΣiiΣjj

)
+ o

(
1

a

)
− Σ2

ij

=
1

a− 1

(
Σ2
ij + ΣiiΣjj

)
+ o

(
1

a

)
. (4.34)
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Combining (4.33), (4.32), and (4.28), we have

E
[
(Σ̃ij − Σij)

3
]

= E[Σ̃3
ij]− 3ΣE[Σ̃2

ij] + 3Σ2
ijE[Σ̃ij]− Σ3

ij

= Σ3
ij +

3

a− 1

(
ΣiiΣijΣjj + Σ3

ij

)
+ o

(
1

a

)
− 3Σij

(
Σ2
ij +

1

a− 1

(
Σ2
ij + ΣiiΣjj

)
+ o

(
1

a

))
+ 2Σ3

ij

= 0. (4.35)

Proof of (4.17) The expected quad-quad loss is

E[L(e)] = E[(τ − (2τ − 1)1{e<0}) · e2]

=

∫
(τ − (2τ − 1)1{e<0}) · e2 · dF (e)

= τ(µ2
e + σ2

e)− (2τ − 1)

∫ 0

−∞
(µ2

e + 2µeσez + σ2
ez

2) · dF (e)

= τ(µ2
e + σ2

e)− (2τ − 1)

[ ∫ −µe
σe

−∞
µ2
edF (z) + 2µeσe

∫ −µe
σe

−∞
zdF (z)+

σ2
e

∫ −µe
σe

−∞
z2dF (z)

]
= τ(µ2

e + σ2
e)− (2τ − 1)

[
µeΦ

(
−µe
σe

)
+ 2µeσe

(
−φ(−µe

σe
)

)
+

σ2
e

(
µe
σe
φ(−µe

σe
) + Φ(−µe

σe
)

)]
.
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Then the optimal estimator that minimizes the expected quad-quad loss is

σ̂2
opt = σ2 +

(
2τ − 1

τ

)
· σe ·

∫ −µe
σe

−∞
zdF (z)

= σ2 −
(

2τ − 1

τ

)
· σe · φ

(
−µe
σe

)
.

4.10 Concluding Remarks

Alternative loss functions that approximate MSE loss are useful substitute for un-

biased estimation when we have an asymmetrical preference for overestimation and

underestimation. To be able to get concrete answers from using these alternative loss

functions, one needs to make certain distributional assumptions. Normality assump-

tions are valid with certain regularity conditions, but these regularity conditions are

hard to justify in finite sample settings. We could do adhoc corrections to the bias

and variance and improve the statistical properties of our estimators with the use of

these alternative loss functions. More research in this regard is left for future work.
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Chapter 5

Conclusions

Variance estimators in MCMC and time-series suffer from systematic error and

sampling bias, especially in finite sample settings. Unbiased estimation is highly de-

sirable in real-life applications and current methodologies that are based upon asymp-

totic unbiasedness do not perform very well in such settings. Estimators should be

constructed at or near optimality of the parameters they that heavily depend upon

and the properties of such estimators should closely resemble the data-generating

mechanism. One of the most important parameter in the context of variance esti-

mation is the batch size or the lag-trunction parameter. But the batch size that

minimizes asymptotic MSE underperforms in finite sample simulations and we need

to take into account the systematic error in finite samples in addition to sampling

bias.

Special care shoud be done to assess the bias of the estimators in finite sample
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settings. Knowing and estimating the systematic bias upto good precision, one can

construct optimal variance estimators at or near a new optimal batch size that takes

into account the inherent bias in the estimation process. This approach works both

for single and linear combination estimators, although this bias is easier to control in

linear combination estimators and the bias effect worsens as our sample size decreases.

In small sample settings, linear combination estimators should be employed to

fully offset the systematic bias. Overestimating the variance is equally a point of con-

cern in finite samples, although the estimators are asymptotically unbiased. These

estimtors could be adjusted to be unbiased under some alternate loss fuctions like

LINEX or Check loss. However, only preliminary works has been done in this re-

gard in this thesis. Theoretical analysis regarding asymmetrical loss functions in the

context of MCMC variance estimation is one obvious next step. Integrating all the

variance estimation procedure and connecting the MCMC technical assumptions to

the asymptotic theory of spectral estimation is another future research direction. I

believe that this thesis lays good foundation for both of these future research endeav-

ors.
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