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One sentence summary: Deforestation of Amazon rainforest alters soil microbial community and physicochemical properties, which subsequently
alter microbially mediated biogeochemical processes, notably nitrogen cycle. The Amazon Rainforest is the largest terrestrial ecosystem on Earth and
deforestation changes co-occurrence patterns of microbial communities with potential consequences to biogeochemical cycles

Editor: Wietse de Boer
†Jorge L. M. Rodrigues, http://orcid.org/0000-0002-6446-6462

ABSTRACT

Co-occurrence networks allow for the identification of potential associations among species, which may be important for
understanding community assembly and ecosystem functions. We employed this strategy to examine prokaryotic
co-occurrence patterns in the Amazon soils and the response of these patterns to land use change to pasture, with the
hypothesis that altered microbial composition due to deforestation will mirror the co-occurrence patterns across
prokaryotic taxa. In this study, we calculated Spearman correlations between operational taxonomic units (OTUs) as
determined by 16S rRNA gene sequencing, and only robust correlations were considered for network construction (−0.80 ≥
P ≥ 0.80, adjusted P < 0.01). The constructed network represents distinct forest and pasture components, with altered
compositional and topological features. A comparative analysis between two representative modules of these contrasting
ecosystems revealed novel information regarding changes to metabolic pathways related to nitrogen cycling. Our results
showed that soil physicochemical properties such as temperature, C/N and H++Al3+ had a significant impact on prokaryotic
communities, with alterations to network topologies. Taken together, changes in co-occurrence patterns and
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physicochemical properties may contribute to ecosystem processes including nitrification and denitrification, two
important biogeochemical processes occurring in tropical forest systems.

Keywords: forest, land use change; microorganisms; ecological network; pasture; amazon; physicochemical properties;
nitrification; denitrification

INTRODUCTION

The Amazon is the largest continuous rainforest ecosystem in
the world and home to thousands of species (Dirzo and Raven
2003). Due to the growing demand for resources, mainly fuel
and food, the Amazon rainforest has been facing continuous
pressure over the last few decades, leaving its biological com-
position in jeopardy. One of the primary threats is forest-to-
pasture conversion, with a considerable impact on communi-
ties of microorganisms, plants and animals (Bierregaard et al.
2001; Soares-Filho et al. 2009; Rodrigues et al. 2013; Ranjan et al.
2015; Navarrete et al. 2015a). Though ecologists have long been
studying the roles of plant and animal communities to ecosys-
tem functions in tropical forests (Eva et al. 2004; Feigl et al. 2006;
Foley et al. 2007) and the effects of deforestation on these com-
munities (Fearnside 1999; Feeley and Silman 2009), knowledge of
the microbial ecology of deforestation is still rudimentary in the
Amazon (Mirza and Rodrigues 2012; Rodrigues et al. 2013; Navar-
rete et al. 2011, 2015a and 2015b, Paula et al. 2014; Ranjan et al.
2015; Meyer et al. 2017; Khan 2016).

Soil is a heterogeneous environment that harbors enor-
mously diverse microbial communities (Torsvik, Goksoyr and
Daae 1990; Curtis, Sloan and Scannell 2002). Members of these
communities interact in ways that affect their growth and
metabolism. Such interactions can result in patterns of species
abundance across space and time. Cooperative metabolic inter-
actions can lead to increased growth of interacting bacteria
and ultimately to positive co-occurrence patterns in abundance,
while competition for the same resources may lead to an inverse
pattern (Greenblum et al. 2013). Abundance patterns may also
reflect the response of different species to a common envi-
ronmental factor rather than their direct interactions (Zhou
et al. 2011). A co-occurring microbial pair therefore indicates
they are either interacting synergistically or they have simi-
lar responses to environmental factors. This inter-taxa relation-
ship may help reveal the niche spaces shared by members of a
prokaryotic community (Williams, Howe and Hofmockel 2014),
which is particularly valuable in evaluating the impacts of envi-
ronmental changes such as deforestation on microbial commu-
nities. To analyze co-occurrence patterns, organizing commu-
nity data into networks can be helpful, where each node rep-
resents a species and the edges represent correlations in abun-
dance (Zhou et al. 2011). Each network may be divided into sub-
networks, termed modules, which contain a set of members e.g.
microbial species that have a higher number of links among
them than with members of other modules (Bascompte and
Stouffer 2009). Groups belonging to a module may have simi-
lar ecological niches (Olesen et al. 2007). Although it is currently
not possible to map out direct interactions in complex micro-
bial communities, an empirical study reported that phylogenetic
markers (e.g. 16S rRNA gene) properly predict the niche-defining
properties (Fuhrman et al. 2006). Hence, microbial network stud-
ies provide a way forward to understand and test potential
inter-taxa relationships in microbial communities (Zhou et al.
2011; Faust et al. 2012; Williams, Howe and Hofmockel 2014;
Widder et al. 2014), and to enable posing questions about their
niche spaces. Few recent studies have been conducted to explore

the impact of deforestation on network structures, demonstrat-
ing the alteration of co-occurrence patterns of microbial com-
munities in tropical forests (Navarrete et al. 2015b; Khan 2016;
Wood et al. 2017; Tian et al. 2018). The identification of spe-
cific co-occurring bacterial taxa from the network study offers
insights on the functional attributes and adaptation strategies
of microbial communities in their ecosystems. Such information
is essentially important for environments like Amazon soils,
where the basic ecology and microbiology are mostly inconspic-
uous.

Characterization of soil physicochemical properties is impor-
tant to explore the factors that affect microbial ecosystem and
provide a better picture of how microbial communities and their
diversity change (Guo and Gifford 2002; Don, Schumacher and
Freibauer 2011; Navarrete et al. 2015b; Khan et al. 2018). Defor-
estation results in substantial alterations of the vegetation char-
acteristics (e.g. plant biomass, species composition) and exerts
substantial impacts on soil physicochemical properties (e.g.
soil C, elemental stoichiometry, temperature, pH) (Guo and Gif-
ford 2002; Don, Schumacher and Freibauer 2011). Consequently,
microbial diversity and ecological processes are expected to be
affected as well. For example, the slash-and-burn process of
deforestation causes an initial loss of terrestrial nutrients, espe-
cially nitrate, through hydrologic leaching and emission of gases
(Davidson et al. 2007), which most likely imposes a strong selec-
tive pressure on soil microbes to scavenge atmospheric nitro-
gen (Neill et al. 1995; Mirza and Rodrigues 2012; Paula et al. 2014).
Therefore, it is important to incorporate these factors for better
understanding of microbial ecology and any alterations in bio-
geochemical processes caused by anthropogenic activities such
as deforestation.

By constructing correlation networks using 16S rRNA gene
data, and estimating network defining topologies, we aimed: (i)
to quantify the impact of prokaryotic diversity loss on the net-
work structure and composition; (ii) to obtain information on the
relative importance of individual prokaryotic species in the net-
works; (iii) to detect potential changes in important ecosystem
processes that may result from forest-to-pasture conversion and
(iv) to characterize differences in soil physicochemical proper-
ties, and evaluate the relationships with prokaryotic community
structures and potentially, their ecosystem processes.

MATERIALS AND METHODS

Site description and sampling

The Amazon Rainforest Microbial Observatory (ARMO) study site
is located at Fazenda Nova Vida in the State of Rondonia, Brazil
(10◦10′18.71′′S, 62◦47′15.67′′W), representing the area with one
of the highest rates of deforestation of the Brazilian Amazo-
nia in the last two decades (INPE. 2011). Our study was con-
ducted on a total of 10 soil samples collected from a primary
forest (n = 5) and established pasture (n = 5; 38-year old) at
the end of the rainy season, March 2010. Following the removal
of litter, soil sampling was performed using a 5 cm-diameter
corer to 10-cm depth with samples being transported on ice to
the laboratory and stored at −80◦C until soil DNA extractions.



Khan et al. 3

Soil physicochemical properties were analyzed at the Labora-
torio de Fertilidade do Solo, Department of Soil Sciences, Uni-
versity of Sao Paulo. More detailed information about the sam-
pling sites are provided in the supplementary materials and
methods.

DNA extraction, amplification and sequencing

Ten grams of soil from each sample were used for extracting
total genomic DNA using the PowerLyzer PowerSoil DNA iso-
lation kit (MoBio Inc, Carlsbad, CA, USA). The concentration
and purity of soil DNA were determined spectrophotometri-
cally (NanoDrop Technologies Inc., Wilmington, DE). Prokary-
otic primers 515F and 806R, which amplify the V4 hyper-variable
region of 16S rRNA gene, were used for PCR amplification as
described elsewhere (Caporaso et al. 2012). A unique 12-bp long
barcode was incorporated to the forward primer for specific
identification of each sample. The resulting bar-coded ampli-
cons were pooled in an equimolar concentration for sequenc-
ing using the MiSeq platform to produce 300 bp length paired-
end reads (Illumina, Inc., San Diego, California) at the DOE Joint
Genome Institute (Walnut Creek, CA).

Sequence processing and taxonomic assignment

All upstream and downstream analyses of raw Illumina
sequences were carried out in the QIIME 1.8.0 environment as
described elsewhere (Caporaso et al. 2010; Kuczynski et al. 2012).
Raw sequences belonging to a specific sample were sorted based
on the barcode sequences, followed by quality filtering to discard
anonymous bases and removal of primer sequences. Sequences
were assigned to Operational Taxonomic Units (OTUs) at a min-
imum of 97% sequence identity using de novo OTU-picking pro-
tocol with QIIME 1.8.0 (Caporaso et al. 2010) with the follow-
ing controls before analysis: (i) singleton OTUs were removed
from downstream analysis to reduce the possibility of sequenc-
ing error and to differentiate unique OTUs from potential data
noise, (ii) resampling was performed 10 times and subsequent
results were based on standard means of resampling. The algo-
rithm Uclust (Edgar 2010) was used to cluster the quality-filtered
reads against the GreenGenes database (DeSantis et al. 2006),
which was followed by the assignment of taxonomy using the
RDP classifier (Wang et al. 2007).

Taxonomic network construction

We constructed a network using the relative abundance data
of the OTUs from 10 samples (five forest and five pasture sam-
ples), with forestation status was included as a binary variable.
We considered only the OTUs that were observed in at least five
samples. The relative abundance data for these OTUs were used
to construct Spearman correlation coefficients between all pos-
sible pairs of OTUs across samples. The analysis was performed
in R environment using the package ‘multtest’ package (Pollard,
Sandrine and van der Laan 2005). A correlation coefficient was
considered statistically robust if a numeric value was either ≥
0.8 or ≤ −0.8 with significance of P ≤ 0.01. To reduce the chances
of obtaining false positive results, the Benjamini and Hochberg
(BH) false discovery rate correction was performed throughout
the dataset (Benjamini and Hochberg 1995). When construct-
ing networks, only significant pairwise relationships were used,
with each node representing an OTU and each edge represent-
ing a significant pairwise association between them, a positive

correlation between two OTUs denoted similar abundance pat-
terns, while a negative correlation was characterized as opposite
abundance patterns. Interacting nodes within networks repre-
sented co-occurrence across samples. The OTUs that were pos-
itively correlated with the forestation status were considered
forest-associated and those that are negatively correlated were
considered pasture-associated.

After the construction of networks, the following topologi-
cal features were measured using Cytoscape 3.2.1 (Cline et al.
2007), and used to describe network properties: (i) connectiv-
ity, which is the number of links (i.e. edges) of a node to other
nodes; (ii) clustering coefficient, a measure of interconnectivity
in the neighborhood of a node; (iii) path length, which is the aver-
age number of edges on the shortest path connecting any two
nodes and (iv) betweenness centrality, which reflects the num-
ber of times a node plays a role as a connector along the short-
est path between two other nodes. While average values of the
indexes are generally used to describe the overall features of the
network, the relative betweenness centrality value of each node
can indicate its relative importance in the network. Nodes with
higher betweenness centrality values are likely to be situated in
the core of the network and those with lower values are expected
to have a more peripheral location (Greenblum et al. 2013), which
may represent important ecological and biological insights.

Networks were visualized with Cytoscape 3.2.1 using the
edge-weighted spring embedded layout to obtain an overall distri-
bution pattern of the nodes, and group attributes layout, where
nodes are separated into modules (Cline et al. 2007). Modules
comprise groups of highly connected nodes and were detected
using the Girvan–Newman algorithm in Gephi version 0.9.2
(Newman and Girvan 2004; Bastian, Heymann and Jacomy 2009).
This algorithm estimates the edge betweenness of each edge in
a network, which is defined as the number of the shortest paths
between pairs of nodes. This algorithm divides the network into
modules within which edges are most frequent between nodes
(e.g. OTUs), and thus finds edges that are responsible for con-
necting many other nodes within a module. The modules are
only loosely connected by a few inter-module edges with high
edge betweenness as all the shortest paths from one module to
another must run through them and removing these edges with
lead to separate the modules from one another.

Predictive functional profiling

To determine the functional potential of the network mem-
bers, we used the Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt) approach
(Langille et al. 2013) and Functional Annotation of Prokaryotic
Taxa (FAPROTAX; Louca, Parfrey and Doebeli 2016). Linear Dis-
criminant Analysis (LDA) was performed using the LDA Effect
Size (LEfSe) algorithm for comparing predictive functional cat-
egories between forest and pasture communities (Segata et al.
2011). More detailed information about the predictive functional
profiling is provided in the supplementary materials and meth-
ods.

Quantitative PCR targeting bacterial taxa

Seven dominant bacterial taxa—Acidobacteria, Firmicutes,
Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Acti-
nobacteria and Verrucomicrobia—were quantified by qPCR using
phylum/class specific primer sets (Table S1, Supporting Informa-
tion). We identified these taxa for quantitative analysis by qPCR
as major variations were shown in their relative abundances
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between Amazon forest and pasture (Rodrigues et al. 2013; Ran-
jan et al. 2015). A total of 15 replicates (5 biological × 3 technical)
were used for each land use and each taxon. Each 20 μl-reaction
mixture contained 10 μl of SYBR Green Supermix (2X, Bio-Rad,
Hercules, CA), 0.3 μM of each primer and 5 ng of DNA sample.
Reactions were performed with the Applied Biosystems 7300
real-time PCR system and conditions were experimentally
determined for each primer set (Table S1, Supporting Informa-
tion). Negative controls were included with each reaction using
PCR-grade water. Dissociation curve analysis of each post-
reaction confirmed the specificity of the products. Standard
curves (103 to 107 copies per reaction) were generated with the
pCR2.1-TOPO vector containing a PCR-amplified fragment for
each phylum or class (Invitrogen Corp., Carlsbad, CA). Reaction
efficiency (E) was determined with the equation E = 10(−1/slope).

Statistics

Alpha diversity was calculated using species richness, and Bray–
Curtis dissimilarity was used to calculate the pairwise dis-
similarities (beta diversity) and perform principal coordinate
analysis (PCoA) between OTUs dataset across samples. Anal-
ysis of similarity (ANOSIM) was performed to assess whether
taxonomic compositions are significantly different across the
terrestrial environments. To calculate the relationships of the
soil physicochemical properties with the relative abundance
of major taxa, alpha diversity (species richness) and species
similarity (PCo1 loadings that explains highest variation within
the dataset), we used Pearson correlation test as described
elsewhere (Fierer and Jackson 2006). In addition, we calcu-
lated PCo1 loadings for each module, termed module eigengene
(Langfelder and Horvath 2007), and correlated with the soil fac-
tors as previously described (Deng et al. 2012) to explore the
relationships between individual modules and abiotic factors. To
obtain the relationships between the prokaryotic communities
and the soil physicochemical properties, a PCoA biplot was gen-
erated using the OTU-level abundance dataset, where soil fac-
tors were fitted as vectors using two R packages—‘ape’ (Paradis,
Claude and Strimmer 2004) and ‘vegan’ (Oksanen et al. 2013).

Data accessibility

To determine whether differences in the relative abundances of
major taxonomic categories between land uses are statistically
significant, we used the Mann–Whitney test. Using the same
statistical test, we compared the alpha diversities, and pairwise
taxonomic distances between samples. Unless otherwise speci-
fied, QIIME 1.9.0 and GraphPad Prism 7.00 were used for perform-
ing statistical analyses and visualizing the results.

RESULTS

OTU filtering and data standardization

To reduce the noise caused by potential PCR or sequencing
errors, singleton OTUs from each sample were filtered out
prior to downstream analysis. Following filtering, the number of
sequences obtained from different samples ranged from 27 014
to 34 659 with an average length of 250 bases. The abundance of
OTUs is provided in Table S2 (Supporting Information). We calcu-
lated the relative abundance of the OTUs and then discarded the
OTUs that were observed in less than five samples to keep the
OTUs that are better representative of the two land uses. This

resulted in a total number of 1660 OTUs, of which 1043 OTUs
belong to forest and 1062 OTUs to pasture samples.

Network and topological features

A correlation network, which included only significant
OTU–OTU relationships based on their relative abun-
dances, was constructed using both forest and pasture
datasets. This network has a total of 1193 nodes and
2913 edges; where 2778 have positive and only 135 have
negative correlations (Fig. S1, Supporting Information).
In the network, we noticed a major connected part of
640 nodes and 2493 edges with distinct components of forest
and pasture. We then visualized the giant connected part with
modules, which provided a total of 14 modules (Fig. 1). Impor-
tantly, the calculated modules are mostly composed of either
forest or pasture-associated nodes, and the rest of the network
(disconnected part) mostly comprises the nodes that did not
satisfy the correlation criteria with the forestation status (−0.80
≥ ρ ≥ 0.80, BH-adjusted P < 0.01). The forest component has a
lower number of nodes (255) and edges (1385) in comparison
to pasture (848 nodes and 1645 edges). We then calculated the
betweenness centrality and clustering coefficient of forest- and
pasture-associated nodes, where forest nodes have significantly
lower (P < 0.001) average betweenness centrality (Fig. 2A) and
higher (P < 0.05) average clustering coefficient (Fig. 2B) scores
compared to the pasture nodes.

Network memberships

The distribution of major microbial phyla between forest and
pasture components was not preserved. We determined that
microbial communities comprising the networks were signifi-
cantly different between forest and pasture. These differences
were true at the phylum—[analysis of similarity (ANOSIM): R =
0.81, P < 0.01)], genus—[ANOSIM: R = 0.98, P < 0.02], and OTU-
level [ANOSIM: R = 0.99, P < 0.02]. The largest variations in
network phyla/class in response to forest-to-pasture conversion
were observed for Alphaproteobacteria and Firmicutes (Fig. 3A). The
former taxa decreased from the mean value of 23.56% [±1.01;
α = 0.05 confidence intervals (CI)] to 11.69% (±2.5; α = 0.05 CI)
and latter taxa increased from 3.44% (±2.2; α = 0.05 CI) to 27.60%
(±10.7; α = 0.05 CI). Two other major groups, Acidobacteria (P <

0.05) and Nitrospirae (P < 0.01) showed significant decreases with
forest-to-pasture conversion from 22.46% (±4.4; α = 0.05 CI) to
12.19% (±5.5; α = 0.05 CI) and 2.1% (±0.9; α = 0.05 CI) to 0.39%
(±0.2; α = 0.05 CI), respectively, while the class Betaproteobacteria
showed a significant increase (P < 0.01) from 2.9% (±1.6; α = 0.05
CI) to 7.3% (±0.8; α = 0.05 CI). Intriguingly, Crenarchaeota com-
prised 3.6% (±0.7; α = 0.05 CI) of the forest network, but none of
the OTUs in the pasture network were assigned to this archaeal
phylum.

After binning OTUs into genera, 25.9% and 21.25% of all
forest and pasture sequences, respectively, were assigned to
the top 20 genera in each system (Figure S2, Supporting Infor-
mation). Among these abundant genera, the largest percentile
decrease for genera in response to the ecosystem conversion
was observed with Rhodoplanes [14.05% (±0.5; α = 0.05 CI) in for-
est and 5.56% (±1.4; α = 0.05 CI) in pasture, P < 0.0001], which was
counterbalanced by two endospore-forming genera, Sporosarcina
[0.9% (±0.7; α = 0.05 CI) in forest and 7.8% (±3.3; α = 0.05 CI) in
pasture, P < 0.01] and Bacillus [0.27% (±0.1; α = 0.05 CI) in forest
and 2.17% (±1.08; α = 0.05 CI) in pasture, P < 0.01]. More notice-
ably, Candidatus Nitrososphaera (P < 0.0001) and Nitrospira (P <
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Figure 1. Network of co-occurring OTUs pairs based on a Spearman correlation (−0.80 ≥ ≥ 0.80) with significance of adjusted P ≤ 0.01. An interaction (edge) between
nodes (OTUs) implies a significant correlation. Red edges represent negative correlations, while the grey edges represent positive correlations. The network is visualized
using group attributes layout in Cytoscape 3.2.1, where every module is given an arbitrary number. Among 14 modules, 6 modules are forest associated (M3, M5, M8,

M10, M12 and M14; green labeling), 5 modules are pasture associated (M1, M4, M6, M7 and M11; red labeling), and 3 modules comprise both types of nodes (M2, M9
and M13; blue labeling).

Figure 2. Mean of topological features of the forest and pasture components of the network; (A), average betweenness centralities, (B), average clustering coefficients.
Statistical significance was calculated using Mann–Whitney test. Error bars represent standard error. Symbols (∗) and (∗∗∗) indicate significance values of P < 0.05 and

P < 0.001, respectively.

0.001) contributed 3.1% (±0.9; α = 0.05 CI) and 1.05% (±0.2; α =
0.05 CI) in the forest network, respectively, whereas none of the
OTUs in pasture network belong to these genera.

Quantitative PCR (qPCR)

We selected seven dominant bacterial taxa to be quantified
by qPCR. Cycle threshold (Ct) values were obtained for each
specific primer set using a representative 16S rRNA gene
sequence per phylum or class. The Ct values were used to
calculate the actual copy numbers of each microbial phy-
lum or class standard curves (Table S3, Supporting Informa-
tion). All seven qPCR assays showed R2 values above 0.97
with reaction efficiencies ranging between 1.79 and 2.35. The
16S rRNA gene copy numbers of Acidobacteria (P < 0.001),
Alphaproteobacteria (P < 0.05) and Gammaproteobacteria (P <

0.001) were significantly higher for forest samples, while those
numbers observed for Firmicutes (P < 0.001), Betaproteobacte-
ria (P < 0.05) and Verrucomicrobia (P < 0.01) were higher

for pasture samples. The 16S rRNA gene copy numbers for mem-
bers of the phylum Actinobacteria were not significantly different
between land uses (Fig. 3B).

We compared the abundance ratios of dominant bacte-
rial taxa between forest and pasture as determined by the
16S rRNA gene sequencing and qPCR. While we notice varia-
tions in ratios of bacterial taxa, the alteration of abundances
in these taxa following deforestation mostly followed similar
trends as estimated in both approaches (Fig. S3A, Support-
ing Information), especially the taxa that showed major vari-
ations in abundances between forest and pasture. The abun-
dance differences between qPCR and 16S rRNA gene sequencing
on the bacterial taxa remained similar when 16S rRNA gene
sequencing data are corrected for copy-number variation
(Fig. S3B, Supporting Information).
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Figure 3. Abundances of major microbial taxa in forest and pasture soils. (A) Relative abundance of major microbial phyla and classes in forest (black) and pasture

(grey) networks. These microbial taxa comprise more than 98% of 16S rRNA gene reads, (B) Copy numbers of seven major bacterial phyla and classes per gram of dry soil
determined by quantitative PCR in two different land uses in the Amazon. Forest, black; pasture, grey. Error bars represent the standard error. Statistical significance
was calculated using Mann–Whitney test. Symbols (∗), (∗∗) and (∗∗∗) indicate significance values of P < 0.05, P < 0.01 and P < 0.001, respectively.

Module comparisons

Among 14 modules, 6 modules comprised only forest associ-
ated (M3, M5, M8, M10, M12 and M14) and 5 modules com-
prised only pasture-associated (M1, M4, M6, M7 and M11) nodes,
with 3 modules consisting of both types of nodes (M2, M9 and
M13). Consistent with the overall network membership (Fig. 3A),
pasture modules were dominated by Firmicutes nodes, whereas
alphaproteobacterial, acidobacterial nodes mostly dominated
in the forest modules (Fig. S4A, Supporting Information). For
example, M6 is a pasture module with 61 nodes, where 39.3%
of the nodes belonged to Firmicutes followed by Acidobacteria
(9.8%) and Alphaproteobacteria (6.6%). On the other hand, M8
is a forest-associated module with 55 nodes, where Alphapro-
teobacteria and Acidobacteria comprised 18.2% and 10.9%, respec-
tively. The M6 and M8 modules were most connected in their
respective communities, with the average connectivity val-
ues of 10.6 and 7.9, respectively (Fig. S4B, Supporting Infor-
mation). We further investigated these two modules by ana-
lyzing the betweenness centrality values of nodes to explore
how land use change altered network co-ocurrence organi-
zation. The relative importance of individual nodes, as indi-
cated by their betweenness centrality values, was compared
between the forest (M8; Fig. 4A) and pasture (M6; Fig. 4B) mod-
ules. In both modules, most of the nodes were not classified
to the genus level. Among the classified members with known
functional attributes, Candidatus Nitrososphaera, Nitrospira,
Cenarchaeales (an order of Thaumarchaeota) and Rhodoplanes, were
distributed in the forest module (M8). Betweenness centrality
values for these taxa were estimated to be 5.8 × 10−4, 7.27 × 10−5,
1.52 × 10−5 and zero, respectively (Fig. 4A). Similarly, we identi-
fied Candidatus Solibacter, Paenibacillus and Ammoniphilus in the
pasture associated module (M6), with their centrality values of
1.26 × 10−3, 3.21 × 10−4 and 1.26 × 10−4, respectively (Fig. 4B).

Relationship between the community structures and
soil physicochemical properties

We have 22 soil variables incorporated in our analysis (Table S4,
Supporting Information). Among them, B (P < 0.01), exchange-
able acidity (H++Al+3; P < 0.01), Mn (P < 0.01), S (P < 0.01), cation
exchange capacity (T; P < 0.01) were significantly higher and C
(P < 0.01), C/N (P < 0.01), Fe (P < 0.05), Mg (P < 0.05), pH (P <

0.05), temperature (P < 0.01) and base saturation (V; P < 0.05)
were significantly lower in forest soils compared to those in
pasture. Among these statistically different variables, temper-
ature, exchangeable acidity (H++Al+3) and C/N were calculated
to have strongest correlations (as determined by Pearson corre-
lation test) with most of the major taxonomy classes (Fig. 5A)
and diversity metrics (species richness and community similar-
ity by Bray–Curtis) (Fig. 5B). For community similarity, we used
the PCo1 loadings from the principal coordinate analysis (PCoA),
which explained 55.8% of the variation in the original dataset.

Our statistical analyses showed that soil microbial composi-
tion and diversity were directly affected by soil physicochemi-
cal properties. A coordination plot revealed that pasture com-
munities have positive associations with temperature (r2 = 0.97,
P < 0.01), C/N (r2 = 0.95, P < 0.01) and Fe (r2 = 0.77, P < 0.05),
while forest communities have positive associations with soil
acidity (H++Al+3; r2 = 0.87, P < 0.01), S (r2 = 0.89, P < 0.01), base
saturation (V; r2 = 0.91, P < 0.01) and cation exchange capac-
ity (T; r2 = 0.77, P < 0.01) (Fig. S5, Supporting Information). We
then asked what particular taxa are impacted by the soil fac-
tors and our analysis showed that soil acidity (H++Al3+), soil
temperature and C/N ratio had the highest influences on the
microbial composition and diversity in both land uses. Here,
acidity (H++Al3+) was observed to have strong positive correla-
tions with Crenarchaeota (r = 0.9, P < 0.001), Nitrospirae (r = 0.87,
P < 0.0001), Alphaproteobacteria (r = 0.97, P < 0.0001), Gemmati-
monadetes (r = 0.94, P < 0.0001), Chlamydiae (r = 0.91, P < 0.0001)
and Gammaproteobacteria (r = 0.72, P < 0.05), Acidobacteria (r =
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Figure 4. A representative module was obtained from (A), forest and (B), pasture components of the network for comparative analysis. The criteria used in comparing
these modules were that they were most connected within their members and have high node size. Forest module (M8) is comprised of 55 nodes with average

connectivity of 7.98, while the pasture module is comprised of 61 nodes with average connectivity of 10.62. The size of the nodes in each network is scaled according
to their betweenness centrality values to indicate their relative importance in their networks.

Figure 5. Relationship between the microbial community structures and soil physicochemical parameters. (A), Pearson correlations between the relative abundances
of major microbial taxa and soil variables. (B), Pearson correlations of the species richness (alpha diversity) and community similarity, the ordination score of the first
axis of principal coordinate analysis (PCoA) (which explains 55.78% of the variance in the original data), with the soil variables. C, carbon; N, nitrogen; Fe, iron; V, base

saturation; m, aluminum saturation; Ca, calcium; Mg, magnesium; Mn, manganese; B, boron; Cu, copper; T, cation exchange capacity; SB, sum of bases; H++Al3+ ,
exchangeable acidity; OM, organic matter; P, phosphorus; S, sulfur. The color gradient represents the correlation strength of the relationships. Symbols (∗), (∗∗) and
(∗∗∗) indicate significance values of P < 0.05, P < 0.01 and P < 0.001, respectively.
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0.69, P < 0.05) and negative correlations with Deltaproteobacte-
ria (r = −0.82, P < 0.01), Firmicutes (r = −0.78, P < 0.01), Betapro-
teobacteria (r = −0.92, P < 0.0001) (Fig. 5A). On the other hand,
temperature and C/N had reverse relationships with the above
microbial taxa. We also noticed that Cyanobacteria, Chloroflexi,
Bacteroidetes and Planctomycetes were not correlated to any of the
22 soil variables measured in this study. Our results also demon-
strated that the same three soil factors contributed to overall
alterations in microbial diversity, with soil acidity being nega-
tively correlated with species richness (r = −0.85, P < 0.001) and
community similarity (r = −0.88, P < 0.001), while temperature
(r = 0.82, P < 0.001 and r = 0.67, P < 0.001, respectively) and
C/N ratio (r = 0.88, P < 0.001 and r = 0.74, P < 0.001) were posi-
tively correlated with the species richness and community simi-
larity, respectively (Fig. 5B). Similarly, these soil variables, which
in addition to sulfur, were estimated to have strongest correla-
tions with individual modules (Fig. S6, Supporting Information).

Potential functional interpretation of taxonomic data

Procrustes analyses showed that two different OTU-picking
algorithms, de novo vs closed-reference OTU lineages (M2 =
0.01, P < 0.01; Fig. S7A, Supporting Information), and PICRUSt-
predicted KO gene profiles vs de novo OTU lineages (M2 = 0.29, P <

0.01; Fig. S7B, Supporting Information) produced similar cluster-
ing patterns. The coordinates in both cases explained most of
the variances, estimated to be 78.9% and 87.07%, respectively.
Following this analysis, we tested the impact of alterations in
network membership between forest and pasture on specific
metabolic pathways using PICRUSt (Fig. S8A, Supporting Infor-
mation) and FAPROTAX (Fig. S8B, Supporting Information) based
functional annotations. While we observed different functional
categories being altered between forest and pasture soils, apply-
ing both approaches helped us gain information about pathways
related to the nitrogen cycle. For example, PICRUSt showed a
potential increase of genes associated with nitrogen metabolism
in the forest soils, whereas FAPROTAX indicated a potential
increase of nitrification and denitrification-related processes in
the forest and nitrogen fixation in pastures.

DISCUSSION

Soil microbial communities are known to have diverse composi-
tions and varied abundances, even when analyzed at local scales
that matter to microorganisms (Bailey et al. 2013; Kuzyakov
and Blagodatskaya 2015). These complex microbial patterns are
not entirely random distributions, but the outcome of mul-
tiple ecological associations at different spatial and temporal
scales (Lidicker 1979). In this study, we used a co-occurrence-
based network analysis to represent association across multiple
prokaryotic species, and identify alterations in potential rela-
tionships with forest-to-pasture conversion in the Amazon rain-
forest, the largest tropical ecosystem in the world. In addition,
we employed soil physicochemical variables to explore the influ-
ences of specific edaphic factors affecting the prokaryotic com-
position and diversity.

Our results indicate that the network has distinct compo-
nents of forest- and pasture-associated nodes, in which a major
connected component contains 626 nodes and several small
fragments of network, with nodes ranging 2 to 17 (Fig. S1, Sup-
porting Information). Higher taxonomic and phylogenetic dis-
similarity between forest and pasture communities probably
explains why a major portion of the nodes remains disconnected
(Rodrigues et al. 2013; Ranjan et al. 2015). These observations

imply that a network is not a random combination of nodes,
but rather organized as land use specific subnetworks (termed
‘module’) with unique functional significance in a complex web
of associations between biotic and abiotic components.

We examined topological features of the forest- and pasture-
associated nodes to inquire about the ecological traits of
prokaryotic communities (Fig. 2A–B). We observed a decreased
betweenness centrality score (P < 0.001) of forest component
of network. This result implies that prokaryotic communities
in forest tend to reside more in the interface between prokary-
otic community and environment, where soil biotic and abiotic
factors have a higher influence to prokaryotic community and
vice versa. The oligotrophic nature and poor quality of com-
plex organic substrates in the forest soils may require microbial
syntrophy from multiple species, such as the uptake and uti-
lization of these compounds would require more extracellular
hydrolysis using microbial enzymes. This is further supported
by higher tendency of forest nodes to tie together as indicated
by higher clustering coefficient observed in forest in compari-
son to pasture. It is well established that certain microorganisms
are functionally complementary to each other, such as microbial
consortia for anaerobic methane oxidation, thermodynamically
interdependent degradation and nutritional exchange, among
others (Morris et al. 2013). In contrast, conversion of tropical
forests to pastures containing only two grass species will reduce
the variety of resources, even if the total amount of resources,
specifically C-based compounds, increases in soil. There is evi-
dence that this is occurring in our study system as we detected
decreases in community dissimilarity at taxonomic, phyloge-
netic and functional gene levels (Mirza et al. 2014; Ranjan et al.
2015; Navarrete et al. 2015a; Hamaoui et al. 2016; Khan 2016) with
increased values of total C in pastures (Cenciani et al. 2009).

Given the taxonomic and phylogenetic changes between for-
est and established pasture, we asked which groups were more
susceptible to alterations. Our results indicate that the rela-
tive abundances of Alphaproteobacteria, Crenarchaeota, Acidobac-
teria and Nitrospirae were significantly decreased, while Firmi-
cutes and Betaproteobacteria increased (Fig. 3A). We found direct
support for these results with the use of qPCR (Fig. 3B). Our
results contrast from previous work, in which no observed differ-
ences were found for these dominant taxa after deforestation.
We attribute this difference to short-term impact of the defor-
estation (2–4 months, Navarrete et al. 2015b) in comparison to
our sampling site where grasses have been established for 38
years. Next, we used 22 different soil physicochemical properties
to identify potential reasons for our observed microbial commu-
nity differences. Our results showed that soil temperature, C/N
ratio and soil exchangeable acidity (H++Al3+) mostly predict the
overall community composition and therefore module compo-
sition, and diversity of prokaryotic community (Fig. 5, Fig. S6,
Supporting Inormation). The correlation between the prokary-
otic composition/diversity and soil nutrient composition might
actually be related to soil variables such as temperature and soil
acidity (H++Al3+), which co-varies with soil C/N ratio. Similar
correlation patterns of composition and diversity with soil acid-
ity are evident in tropical soils (Navarrete et al. 2015b), while
those correlational patterns associated with C/N ratio are fre-
quently observed in the Arctic and temperate ecosystems (Ge
et al. 2010; Chu et al. 2011) and in alkaline Tibetan permafrost
soils (Zhang et al. 2014).

Co-occurrence patterns do not allow mapping of micro-
bial interactions directly, but provide information on particular
groups sharing habitats or performing similar ecological func-
tions (Freilich et al. 2010). We then aimed at exploring the func-
tional attributes of nodes based on the current knowledge of
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biology with their betweenness centrality scores. In particu-
lar, we focused our investigations on the two most connected
modules, where one contains all forest-associated nodes and
another contains all pasture-associated nodes—serving as two
representative modules (or niches) of these contrasting ecosys-
tems. While most of the nodes were not identified to the genus
level, we noticed several nodes in the forest module are asso-
ciated with nitrification including Candidatus Nitrososphaera,
Cenarchaeales (an order of Thaumarchaeota), Nitrospira (Spang et al.
2002; Leininger et al. 2006; Stahl and de la Torre 2012; Daims
et al. 2015; van Kessel et al. 2015) and denitrification including
Rhodoplanes (Hiraishi and Imhoff 1994). In addition, Candidatus
Nitrososphaera is estimated to have high betweenness central-
ity values suggesting its high importance in the forest ecosys-
tem. (Fig. 4A). This observation is in agreement with our recently
published findings that only thaumarchaeal sequences in the
forest soils were retrieved for the gene amoA, encoding the α

subunit of the ammonia monooxygenase enzyme, and consis-
tent with our failed attempts to amplify amoA gene sequences
associated with bacterial ammonia oxidizing microorganisms
(Hamaoui et al. 2016). On the other hand, Rhodoplanes has
betweenness centrality value of zero, which is categorized as
a peripheral node implying its involvement in the initiation
or termination processes according to Greenblum et al. (2013).
Being denitrifier, the ability to produce atmospheric nitroge-
nous gases including nitrous oxide as byproducts justifies its role
in the nitrogen cycle. Alternatively, the different set of micro-
bial taxa in the pasture module may determine a change in
ecosystem processes (Fig. 4B). A node with highest between-
ness centrality value in the pasture module is related to Candi-
datus Solibacter, which has the genetic potential for the nitrate
and nitrite reduction (Pearce et al. 2012). Two other nodes with
low beweenness centrality values are associated with Paenibacil-
lus and Ammoniphilus, of which the former is known to have at
least 10 representative species for nitrogen fixation (Xie et al.
2012), and the latter is an ammonia dependent genus but does
not have known representative for nitrification (Zaitsev et al.
1998). There are two important implications associated with our
findings. At the compositional level, the network theory pre-
dicts that the nodes with high betweenness centrality values
should be more vulnerable to disturbance (Solé and Montoya
2001), which might set the stage for other taxa to dominate in
an altered microbial community. There is evidence for both the
loss of Candidatus Nitrososphaera and Nitrospira (Fig. S2, Sup-
porting Information), and the change of dominant prokaryotic
taxa with forest-to-pasture conversion (Fig. S2, Supporting Infor-
mation). At the functional level, ecological theory predicts that
losses of important species, identified as hub nodes in the net-
work theory, can have a large impact on ecosystem function-
ing (Chapin et al. 2000). There is evidence for the loss of nitri-
fication potential in our study site as previous biogeochemical
studies at Fazenda Nova Vida observed higher net nitrification
rates in forest soils (1.32 to 3.51 μg N g−1 dry soil day−1) in com-
parison to pastures (0.02 to 0.77 μg N g−1 dry soil day−1) (Neill
et al. 1995; Neill et al. 1997). These studies have hypothesized
that a direct consequence of the change in net N mineralization
is the decrease of NO and N2O emissions from pastures (Melillo
et al. 2001), but the reasons for these alterations were not estab-
lished. Therefore, higher nitrification and denitrification rates
measured by others in our study site along with a lower nitro-
gen fixation in the forest soils compared to the pasture (Melillo
et al. 2001) can be explained, at least partially, by the altered
inter-taxa relationships represented by specific nodes and edges
in co-occurrence networks. Predictive functional profiling using

the PICRUSt and FAPROTAX further supports this observation
(Fig. S8A–B, Supporting Information). Conversely, a recent study
shows that land use change to agriculture (oil palm planta-
tion) following deforestation-altered community composition
but the central roles of Nitrospirae in the co-occurrence networks
structure remain unaltered (Wood et al. 2017). This observation
indicates that deforestation causes a substantial variation in
soil physicochemical properties that depend on land use type,
time since conversion, soil treatment and amendments and
subsequent land use, which subsequently determine the func-
tional predominance in the microbial communities. For exam-
ple, newly deforested soils (2–4 months old) contained increased
abundance of microbial functional genes that are related to the
survival and adaptation in a changing environment (Navarrete
et al. 2015b). On the other hand, previous reports and predictive
functional profiling showed increased capacity for nitrogen fix-
ation in established pastures (38-year old) (Mirza and Rodrigues
2012; Paula et al. 2014), implying that there is likely selective
pressure on soil microbes to fix atmospheric nitrogen.

There is direct evidence that soil physicochemical proper-
ties not only influence the microbial structure, but also the
rate of biogeochemical processes (Rastetter et al. 2005; Borken
et al. 2006). Several studies reported that temperature is a key
factor that regulates many terrestrial processes including soil
respiration (Raich and Schlesinger 1992), N mineralization and
nitrification (MacDonald, Zak and Pregitzer 1995), denitrification
(Malhi, McGill and Nyborg 1990) and CH4 emission (Crill et al.
1988). In addition, C/N ratio has substantial impacts on nitro-
gen mineralization and nitrification rates (Strauss and Lamberti
2000; Knoepp and Swank 2002; Paul et al. 2003), and therefore
on denitrification. Our report is in line with these observations.
A study in stream sediments reported that heterotrophs out-
compete nitrifiers for the available nitrogen under higher C/N
and labile organic carbon conditions, and therefore nitrifica-
tion rate declines (Strauss and Lamberti 2000). The higher C/N
and availability of more easily degradable carbon sources in
the pastureland are suggestive of a reduced nitrification rate
(Neill et al. 1995; Neill et al. 1997). Strong negative correlations of
nitrifiers Crenarchaeota and Nitrospirae with the C/N (r = −0.72,
P < 0.01 and r = −0.65, P < 0.05, respectively) further sug-
gest similar phenomenon in the pastureland compared to for-
est soils. On the other hand, a meta-analysis of experimen-
tal warming experiments at 32 sites reported that warming in
the range 0.3–6.0◦C resulted in an increase of soil respiration
rates by 20% and net N mineralization rates by 46% (Rustad
et al. 2001). Denitrification is also extremely sensitive to rising
temperatures (Butterbach-Bahl et al. 2013). Here, temperature
induced increased respiration would lead to a depletion of oxy-
gen in the terrestrial ecosystem, which triggers soil anaerobio-
sis such as denitrification (Schaufler et al. 2010; Butterbach-Bahl
et al. 2013). Particularly, the emission of greenhouse gas nitrous
oxide responds more uniformly to temperature (Schindlbacher,
Zechmeister-Boltenstern and Butterbach-Bahl 2004), which may
be aided at low C/N. While temperature has a strong nega-
tive impact on the abovementioned nitrifiers (r = −0.9, P <

0.001 and r = −0.86, P < 0.01, respectively) (Fig. 5A), it has a
strong positive impact on nitrogen mineralization (Rustad et al.
2001). The succession of temperature-sensitive microbial pro-
cesses within the nitrogen cycle including nitrogen mineraliza-
tion provide substrates for denitrification, suggesting multiply-
ing effect of warming temperature on N2O fluxes from Ama-
zon forest soil. This observation has an important implication.
Our study in two adjacent land use types along the gradients
of physicochemical factors provide an opportunity to explore
the long-term impact of climate-driven variation in temperature
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on microbial structure and ecosystem processes in the Amazon.
The variation in temperatures between our study sites (24.86◦C
in forest versus 27.14◦C in pasture; Table S4, Supporting Infor-
mation) is similar to what is predicted by 2050 in the Ama-
zon (Nobre et al. 2016), with potential for increased emissions
of greenhouse gases (nitrous oxide, nitric oxide) from the pris-
tine forest. An implementation of these observations into global
climate-change models may substantially alter predictions of
greenhouse gas emissions and the severity of climate change.

Traditionally, biodiversity studies have relied on species rich-
ness and turnover, but ignore co-occurrence patterns, which are
important for understanding how communities assemble and
respond to changes. We identified prokaryotic groups serving
as network hubs by their topological feature and predicted their
functional profiles, coupling the role of prokaryotic taxa to the
observed patterns of nitrogen dynamics, providing novel infor-
mation regarding changes to biogeochemical processes follow-
ing forest-to-pasture conversion. Importantly, the incorporation
of the soil physicochemical properties in our study allowed us
to identify the predominant factors (temperature, exchangeable
acidity and C/N) affecting the microbial composition and diversi-
ties at the local scale, which differ from what was observed pre-
viously at continental scale. Despite the usefulness and strength
of our current study, here we acknowledge few caveats. First, low
sample size may hamper complete exploration of spatial vari-
ability in microbial profiles. However, previous studies at broader
spatial scales in the pristine Amazon and deforested areas are
consistent to our current reports, implying that higher sample
sizes will further confirm the observed differences between for-
est and pasture. Second, samples were only collected at 0–10
cm depth, which may not capture the ‘true’ impact on micro-
bial communities and therefore network structure by this study
given that community patterns could be quite different with
depth, depending on differences in rooting depth, architecture,
leaching of dissolved organic carbon, etc. While the effect of
sampling depth would be more pronounced in forest soils, this
sampling depth contains majority of the root system of tropi-
cal grasses in the pastureland. For the purpose of comparison,
we chose to collect samples with identical depth from both ter-
restrial ecosystems. Third, networks described here provide a
snapshot of the co-occurring microbial communities at a given
time, which may not explain some important phenomena, for
example, responses to perturbation, succession, etc. Although
the microbial communities are likely to change over time in
their ecosystems, previous works reported that temporal vari-
ation is much lower than the spatial variability in modulating
the composition of microbial community in terrestrial ecosys-
tem (Krave et al. 2002; Fierer and Jackson 2006). Fourth, lateral
gene transfer allows microbes to gain and lose genes rapidly,
and it is common in microbial lineages that share similar ecolo-
gies (Smillie et al. 2011), therefore we have to be very cautious in
coupling functional attributes and taxonomy. Nevertheless, the
co-occurrence patterns described in our study provide guidance
for isolation efforts for poorly characterized microbial species
that share the same or complementary physiological traits with
known species, and increase our limited understanding of asso-
ciations involved in processes of community assembly, compe-
tition and habitat filtering.

Data Accessibility

The 16S rRNA gene sequence data has been deposited to
Sequence Read Archive (SRA) under BioProject PRJNA490051.

The sequence data (SRR7816680-SRR7816689) are available at
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP160516.
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