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A�������: The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive
experiment searching for neutrinoless double-beta decay (0aVV) in 130Te. CUORE uses a cryogenic
array of 988 TeO2 calorimeters operated at ⇠ 10 mK with a total mass of 741 kg. To further increase
the sensitivity, the detector response must be well understood. Here, we present a non-linear
thermal model for the CUORE experiment on a detector-by-detector basis. We have examined
both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear
di�erential equations to the detector data of a subset of CUORE channels which are well characterized
and representative of all channels. We demonstrate that the hot-electron e�ect and electric-field
dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors’
energy-dependent pulse shapes. We introduce an empirical second-order correction factor in the
exponential temperature dependence of the thermistor, which produces excellent agreement with
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energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted
thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed
noise for our detectors.

K�������: Cryogenic detectors; Detector modelling and simulations I (interaction of radiation
with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Double-beta
decay detectors

A�X�� �P����: 2205.04549
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1 Introduction

Neutrino-less double beta decay (0aVV) is a second-order nuclear process which, if observed, will
violate the lepton number conservation in the Standard Model of particle physics. An observation
of 0aVV decay would imply that at least one neutrino is Majorana in nature [1], place constraints
on the neutrino masses [2], and will have fundamental implications for both neutrino and beyond
Standard Model physics [3]. A constraint on the 0aVV decay half-life, even if the process is not
directly observed, can still be converted into an inference on the e�ective neutrino mass [4]. The
process also provides insight on how the imbalance between matter and anti-matter was created in
early universe [5].

CUORE (Cryogenic Underground Observatory for Rare Events) is an ongoing tonne-scale
experiment [6] searching for 0aVV in 130Te. The detector contains a total 19 towers of TeO2 crystals,
each tower consisting of 52 5 ⇥ 5 ⇥ 5 cm3 cubic crystals. The low heat capacity of the crystals at
cryogenic temperatures ⇠10 mK provides measurable temperature changes for energy deposition
events. The TeO2 crystals are used as the source of double beta decays [7] coming from 130Te.

CUORE has placed a 90% Confidence Interval (CI) lower limit on the half life of 130Te 0aVV as
2.2 ⇥ 1025 yr, a world-leading one regarding the process in 130Te [8]. CUORE’s detection principle,
the calorimetric approach, takes advantage of the fact that the energy for each detected radioactive
event causes a sudden temperature increase in the TeO2 crystal (absorber). CUORE uses Neutron
Transmutation Doped (NTD) Germanium thermistors glued to the crystal to detect the subtle change
in temperature [9, 10].

If the energy deposited is small enough, the response of the detector system can be solved exactly
using a system of linear di�erential equations, with the signal pulse rise and decay time constants

– 1 –
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being a combination of di�erent eigenvalues of the coe�cient matrix. However, in CUORE there
have been observed changes in pulse shape for events across a wide range of energies [11], from
few tens of keV to 6 MeV. We ascribe such changes to a di�erent response of the whole system
beyond the small-signal limit for high energy depositions. Since the region of interest (ROI) for
CUORE is around [8] &VV = (2527.518 ± 0.013) keV, which is in the middle of our energy range,
it is imperative for us to better understand the behavior of the detector. Thus, we have developed
an energy-dependent thermal model with physical parameters. Furthermore, because the energy
interpreted for a generic calorimetric detectors depends on the pulse height, we find it advantageous
to build a generic mathematical model framework for these calorimetric detectors. For CUORE,
understanding the detector response is a prerequisite for pulse shape analysis (PSA). PSA enables
e�ective filtering of energy-dependent pulse shapes, discriminates energy deposition based on
particle type [12] and allows e�cient triggering at low energies. With a model for the detector
response, we can reproduce the pulses with higher fidelity and lower noise, potentially reducing
timing jitter for each event. In addition, a model that describes the pulse shapes will be beneficial for
machine learning algorithms for training and classification purposes.

The non-linear model is built on previous e�orts that studied NTD-Ge thermistors in the linear
(small-signal) regime, [10, 13–16], and is able to predict the energy-dependence of the pulse shape.
We adopt a combined model of both electrical field e�ect and hot electron e�ect to describe the
electro-thermal property of the NTD-Ge semiconductor. In the thermal circuit, we also account for
temperature-dependent heat capacities and thermal conductance. The simulated response is shown
to be in close agreement with the observed signals across an extensive energy range if we include an
additional second-order temperature correction to the NTD-Ge resistivity.

We conclude with a discussion on the noise response of the system based on the fitted model
parameters. We observe excess noise in the CUORE measured noise power spectrum compared
to the simulation. In our simulated noise model, a dominant contributor is the biasing resistor in
the electrical circuit. Assuming additional 1/ 5 and linear noise, the noise model can reproduce the
continuous noise power spectra. However, because the CUORE electronics was designed to mitigate
the 1/ 5 noise, we are investigating the sources of the additional noise terms.

2 Electro-thermal models

Thermal modeling for macrocalorimeters applies classical thermodynamics to the components
of the calorimeters: the readout device (e.g. a thermistor) and its electrical circuit. Previous
studies have extensively covered near-equilibrium calorimeters [13, 17–22]. These studies provide
comprehensive techniques of analyzing sensitive thermistors in small excursion from their equilibrium
states, resulting in a handful of useful linear theories. However, the linear thermal models have a
limitation that the response pulse shape is independent of event energy. We wish to find a non-linear
model so that the pair annihilation peak, fully-contained high-energy W events (around 1 to 2 MeV)
and U signals (around 6 MeV) can be reproduced with the same set of parameters, similar to one
of the previous studies [23] but in finer detail. We go to second order Taylor expansion near the
equilibrium point of the detector to study the energy-dependent response of the calorimeter.

– 2 –
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Crystal

PTFE Support

Thermistor

Heat-sink

Heat Flow

Heat-sink

Figure 1. Simplified block diagram for CUORE thermal model. The crystal is modeled as a single object
with heat capacity ⇠ coupled to the heat-sink (with constant temperature )0) through the PTFE support. When
there is an energy deposition ⇢0 the heat flows through the PTFE support (⌧1, ⌧2) and/or the NTD gold wires
(⌧4) and eventually to the heat-sink.

2.1 Electrical and thermal circuit

Each CUORE readout channel consists of a TeO2 crystal, an NTD-Ge thermistor for temperature
readout, a silicon-based heater for thermal gain stabilization, and several PTFE spacers for isolating
the crystal from the heat-sink. The NTD-Ge thermistors have a dimension of 3.0 ⇥ 2.9 ⇥ 0.9 mm3

(! ⇥, ⇥ �) [24]. Figure 1 provides a qualitative description of the energy deposition process: the
temperature of the crystal rises and so does the temperature of the thermistor system. The small heat
capacity of the thermistor ensures that it closely follows the crystal temperature. In a few seconds,
deposited energy flows out of the system through the thermal paths from the detector to the heat sink
(the PTFE support and/or the NTD gold wires).

We start from a common readout circuit for thermal detectors as shown in figure 2, where the
bias resistor, together with a biasing voltage, determines the operational resistance of the detector.
The bias resistor should be large compared to the thermistor so that the biasing circuit acts as a
quasi-constant current source. In the case of extra energy deposition, the thermistor’s resistance
decreases as its temperature increases. In this approximation, the current through the thermistor
is held constant, and the thermistor’s self-heating power decreases along with the decrease in
resistance, thus forming a negative thermal feedback that tends to stabilize the system. Realisitically,
in such systems, the parasitic capacitance is also seen as a load, inserting possible instabilities at the
frequency where the modulus of its impedance is equal to the thermistor impedance.

Additionally, the readout circuit, positioned outside the cryostat at 300 K, holds some residual
cable capacitance. The parasitic capacitance was measured and determined [25, 26] to be⇠p ⇡ 500 pF
between the detector cold stages at 10 mK and the front-end (FE) board. Therefore, we add the wire

– 3 –
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Figure 2. CUORE Detector electrical circuit. The two bias resistors before and after the NTD-Ge, labelled
'bol, can be combined into one equivalent resistor 'bias.

capacitance here in parallel with the thermistor in figure 2. The corresponding electrical equation is:

⇠p'bias §+bol(C) +
+bol(C)

'bol(C)
'bias ++bol(C) �+ = 0, (2.1)

where + is the constant voltage source bias. We note that the thermistor 'bol(+bol(C),) (C)) is
temperature and voltage dependent. This is our window to the thermal circuit.

Additionally, the output signal (NTD-Ge voltage +bol) is amplified and filtered through a 6-order
Bessel filter. The transfer function of the Bessel filter is [26, 27]:

� (f) =
10395

f
6 + 21f5 + 210f4 + 1260f3 + 4725f2 + 10395f + 10395

, (2.2)

with f = 2.703395061 9l/(2c 52) and 52 = 120 Hz. All our simulations producing +bol are digitally
amplified and filtered to match the true amplification and Bessel filter in the electronics readout chain.

The thermal power between materials of di�erent temperatures usually takes the form of:

%8� 9 =
π

)8

)9

3) ⌧8� 9 ()) = 68� 9 ()
08� 9

8
� )

08� 9

9
), (2.3)

with the power flowing from node 8 to node 9 in the above equation. We use ⌧ to denote the thermal
conductance at a certain temperature, and 6 to represent the thermal conductivity coe�cient.

Figure 3 shows the complete thermal circuit (top) and its simplified version (bottom) used in
this work. The illustrated nodes from left to right are: PTFE support for the crystal, the TeO2 crystal
absorber, the NTD-Ge lattice glued to the crystal surface, and the electron system in the NTD-Ge
lattice. There are gold wires connecting the NTD-Ge lattice to the copper frame (heat-sink) for
NTD-Ge biasing and read-out, and thus we represent the conductivity term by its coe�cient 6=�B.
Similarly, 6=�2 represents the glue conductivity term connecting the NTD-Ge and the TeO2 crystal,
and 64�= represents the electron-phonon thermal coupling coe�cient within the NTD-Ge sensor. We
have neglected the thermal coupling from the Ge electrons directly to the heat-sink, since its e�ect is
likely to be small compared to other thermal couplings, mainly the ones denoted by 6=�2 , 6=�B, and
64�= [27, 28]. We further simplify the model by absorbing the NTD-Ge lattice node into the TeO2

crystal node, as shown in the bottom part of figure 3, e�ectively assuming that both nodes will always

– 4 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
1
1
0
2
3

Absorber

Absorber

Complete

Simplied

Figure 3. Thermal circuit for a single CUORE unit. The top diagram shows the components: PTFE support,
the TeO2 crystal, the NTD-Ge lattice, and the Ge electrons. The bottom diagram shows the crystal node
simplified with the combination of the TeO2 and NTD-Ge lattice.

Table 1. Table of estimated heat capacities of di�erent components for CUORE crystals and NTD-Ges. The
tiny capacity of the NTD-Ge lattice compared to the crystal and the electron system justifies its assimilation
into the crystal node. The temperature dependence of the heat capacities are also revealed in the capacity
matrix ⇠ () + XH).

Component
Estimated Heat Capacity at

) = 10 mK [J/K]

Electrons [29, 30] 1 ⇥ 10�10
/ )

*

NTD-Ge Lattice [31, 32] 2.5 ⇥ 10�14
/ )

3

Crystal [32, 33] 2.2 ⇥ 10�9
/ )

3

PTFE Support [24, 34] 2.1 ⇥ 10�8
/ )

* We acknowledge the possibility of Schottky anomaly [32] ⇠4 ⇠

�)4 + �/)2
4

but in our fits we were not able to determine parameter �.

be at similar temperatures. We justify this by noting the tiny heat capacity of the NTD-Ge lattice,
compared to that of the TeO2 crystal, and the large thermal coupling between the Ge and the TeO2

due to the glue. We have tabulated the estimated heat capacities for the calorimetric components
in table 1. Similarly, the e�ect of glue conductance is absorded in 64�=, which now represents an
e�ective conductance between the sensor electron system and the main absorber crystal.

The combined node will have an additional thermal coupling to the heat-sink due to the gold
wires bond to the Ge lattice. For book-keeping purposes, this conductivity coe�cient is relabelled
as 62�B, and the electron-phonon coupling in the NTD-Ge lattice is relabelled as 64�2 . Apart from
keeping the number of free parameters to a minimum, there is another reason for using three thermal
nodes: in small signal limit, where the linear theory and solutions can be applied, the solution in the
frequency domain with four poles and one zero is able to describe the CUORE pulses [35, 36]. Our
choice of three thermal nodes plus one electrical read-out node fits comfortably in this picture.

– 5 –
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2.2 Circuit equations
We label the self-heating of the thermistor as %4 and the power deposited on the crystal as %2.
Reading from the circuit, we have the following set of equations:

⇠4
§)4 = %4 � 64�2

�
)
04�2
4

� )
04�2
2

�
, (2.4)

⇠2
§)2 = %2 + 64�2

�
)
04�2
4

� )
04�2
2

�
� 62�C

�
)
02�C
2

� )
02�C
C

�
� 62�B

�
)
02�B
2

� )
02�B
B

�
,

(2.5)

⇠C
§)C = 62�C

�
)
02�C
2

� )
02�C
C

�
� 6C�B

�
)
0C�B
C

� )
0C�B
B

�
.

(2.6)

If we expand eq. (2.1) near the equilibrium state (noted as “eq”), and denote:

'bol ! 'bol(eq) + XAbol(C),

+bol ! +bol(eq) + XEbol(C),

we obtain a dynamic equation describing the changes in the terms of interest 'bol and +bol:

⇠p'bias §XEbol +
XEbol'bol �+bolXAbol⇣
'bol + XAbol

⌘
'bol

'bias + XEbol = 0. (2.7)

We will present the thermistor’s dependence of )4 and +bol later in section 2.3.
Regarding the thermal circuits eqs. (2.4) to (2.6), we follow a similar expansion around

equilibrium to arrive at:
⇠ §XH = �% + X%8� 9 , (2.8)

with
X%8� 9 = 68� 9

h
() 8 + XC8)

08� 9 � () 9 + XC 9)
08� 9

i

� 68� 9

h
)

08� 9

8
� )

08� 9

9

i
,

(2.9)

where XC8 and XC 9 are the small changes in temperature from equilibrium ) 8 , ) 9 , and XH represents a
general vector of excursions from the equilibrium. The heat capacities⇠ are functions of temperature:
⇠ = ⇠ () (eq) + XH). The �% term specifically denotes the electro-thermal feedback from the Joule
heating of the NTD-Ge thermistor. This is the change in heating power of the thermistor when there
is a change in electron temperature or voltage across the thermistor. Quantitatively:

�% =
(+bol + (XEbol))

2

'bol + (XAbol)
�
+

2
bol

'bol

=
+

2
bol + 2+bol(XEbol) + (XEbol)

2

'bol + (XAbol)
� %.

In general we find a system of equations in the form:

⇠ () + XH) §XH = 5 (XH) + G, (2.10)

– 6 –
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with

XH =

266666664

XEbol

XC4

XC2

XCC

377777775
,⇠ =

266666664

⇠p

⇠4 ()4 + XC4)

⇠2 ()2 + XC2)

⇠C ()C + XCC )

377777775
. (2.11)

In eq. (2.10), G is some additional injected power vector, such as the power injection due to some
energy deposition in the crystal. The full form will be presented at the end of section 2.3.

2.3 NTD-Ge characteristics

NTD-Ge resistivity depends on its charge-carrier temperature ()4 = )4 + XC4) and applied voltage
(+bol = +bol+XEbol) across the chip. Since the temperature dependence of NTD-Ge is exponential, the
behavior of the thermistor is expected to make a large contribution to the non-linearity we aim to study.

Starting from the Shklovskii-Efros law [13, 37] we obtain thermistor resistivity under zero bias
voltage:

'()4) = '0 exp
✓
)0

)4

◆
W

. (2.12)

For low temperatures, W = 0.5 is the common value in literature [38]. It has also been observed
that for extremely low temperatures (such as 10 mK), even injected power as low as 10�14 W can
induce non-ohmic behavior (i.e. deviation from eq. (2.12)) on the thermistor’s voltage-current (V-I)
curve [32]. Usually such deviation at low temperature is attributed to electron-phonon thermal
decoupling between the electrons and the NTD-Ge lattice [10] when the electrical field is small.
That is, there exists a thermal resistance between the electrons and the NTD-Ge lattice, and their
temperatures are related by:

%4 = �bol+bol = 64�= ()0

4
� )

0

=
) = 64�2 ()0

4
� )

0

2
). (2.13)

We use the last equality when we combine the NTD-Ge lattice into the TeO2 crystal node. Typical
value for 0 is around 5 to 6 [14]. However, studies have found that considering an additional term
with E-field-induced hopping conduction often gives better agreement with data [15, 16]. We take
the most widely accepted form derived by Hill [16, 39] for the modified resistivity:1

'(+bol,)4) = '(0,)4) exp
✓
�4⇢!⌘

:⌫)4

◆

= '0 exp
✓
)0

)4

◆0.5

exp
✓
�4+bol_0

:⌫)
1.5
4
,

◆
.

(2.14)

Here !⌘ is the characteristic hopping length at a given temperature, which should, in theory scale
with [40] )�W = )�0.5. After changing the field strength ⇢ into +bol/, (, being the e�ective
thermistor width), we now describe the field correction term with a single unknown parameter _0.

1We note here that in original Hill paper the weak-field induced hopping conduction is characterized by a sinh(G)
function where G = �4⇢!

⌘
/:⌫)4. When converted to resistivity we should have d = 1/f = ⇢/� ⇠ d(G = 0) · G/sinh(G)

behavior. In contrast experiments claim the modification on resistivity in the G � 1 region to be d ⇠ d(G = 0) · 1/exp(G)
which drops the non-exponential G factor. We tested both models and found that the exponential correction factor agrees
better with our data.

– 7 –
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Expanding eq. (2.14) near equilibrium but keeping the exponential, we obtain:

'bol + XAbol = '0 exp
✓

)0

)4 + XC4

◆
W

exp

2666664
�⇠_

⇣
+bol + XEbol

⌘
⇣
)4 + XC4

⌘
W+1

3777775
(2.15)

= '0 exp
✓
)0

)4

◆
W
✓
1 � W

XC4

)4

+ . . .

◆�
(2.16)

⇥ exp

"
�⇠_

+bol

)

W+1
4

� ⇠_

XEbol

)

W+1
4

+ ⇠_(W + 1)
XC4+bol

)

W+2
4

+ . . .

#

= 'bol exp

"
�[

✓
XC4

)4

◆
+ ⇠_(W + 1)

+bol

)

W+1
4

✓
XC4

)4

◆
(2.17)

�⇠_

+bol

)

W+1
4

✓
XEbol

+bol

◆
+ O

⇣
XC

2
4
, XE

2
bol, XC4XEbol

⌘#

⌘ 'bol exp(�U), (2.18)

where [ = W
⇣
)0
)4

⌘
W

is the temperature sensitivity, and ⇠_ = 4_0/:⌫, . Substituting the above results
into eqs. (2.7) and (2.10), we have:

⇠p'bias §XEbol + XEbol
'bias

'bol
4
U

�+bol
'bias

'bol
(1 � 4

U

) + XEbol = 0.

The thermal equation regarding the electrons becomes:

⇠4
§XC4 = %4 (4

U

� 1) + 2XEbol
+bol

'bol
4
U

+
XE

2
bol

'bol
4
U

� X%4�2 . (2.19)

We now summarize the system below (the bars are dropped for clarity):

⇠ () + XH) §XH =

266666666666664

�XEbol

✓
4
U

'bol
+

1
'bias

◆
�
+bol

'bol
(4

U

� 1)

%4 (4
U

� 1) +
2XEbol+bol

'bol
4
U

+
XE

2
bol

'bol
4
U

� X%4�2

X%4�2 � X%2�C � X%2�B

X%2�C � X%C�B

377777777777775

+ G. (2.20)

Specifically, G = ⇢0X(C) is an event with energy ⇢0, with X(C) being the Dirac delta. We use the
SciPy �����_��� [41] numerical solver that takes in an initial condition such that the crystal node
starts with a change in temperature C2 = ⇢0/⇠2 ()2), with crystal heat capacity ⇠2 evaluated at
equilibrium temperature )2 .

Since our heat capacities are temperature dependent, and they are sensitive to the absolute
temperature of the nodes, fitting these capacities is a method to infer the absolute temperature of the
nodes at equilibrium. Linearization of the system around equilibrium can be simplified if we assume
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a constant capacity matrix at equilibrium ⇠ ()) (which easily holds in our system for the equilibrium
condition), and just taking the Jacobian of the right hand side 5 (XH), we get:

⇠ ()) §XH ⇡ 5 ()) +

✓
m 58

m (XH 9)

◆
)

(XH) 9 + G

⌘ ⌧ ()) (XH) + G.

(2.21)

Note 5 ()) = 0 by the fact that at equilibrium the deviation is 0. We will refer to this linear system in
the noise analysis in section 5.

3 Equilibrium model

In order to find an optimized operational resistance to achieve the best signal-to-noise (SNR) ratio
and stability at a given temperature, CUORE incrementally tests the biasing voltage + in eq. (2.1)
and records the NTD-Ge voltage and current.

For details of how the V-I curves are taken and how errors are propagated, we refer to the
work by Alfonso, et al. [36]. The errors on the data are limited by the 10% accuracy of the bias
resistor [35].

We use the equilibrium model to complement the dynamic model and to check the consistency
of our fitted parameters. We used the bottom diagram of figure 3 as the thermal circuit, and solve the
temperature of each node in the thermal circuits eqs. (2.4) to (2.6) by setting the left hand side to 0 so
that it is time independent. The electron temperature is then used to calculate the NTD-Ge resistance
along with the NTD-Ge biasing voltage recorded in the V-I curves. The calculated resistances are
fitted to the V-I curve resistances by minimizing the least squares between them.

During the CUORE optimization campaign, V-I curves at several temperatures (from 12 mK
to 27 mK) were acquired only for 78 of the 988 detectors, which were identified as representative
channels for the whole array. Our analyses in the rest of the paper apply to these 78 channels.
The NTD-Ge types in these towers cover all types used in CUORE (tower 8 — NTD 41C, tower
9 — NTD 39C, tower 10 — NTD 39D). As the NTD-Ge thermistors in the same tower are diced
from the same wafer, we make the assumption that NTD-Ge parameters obtained from the same
tower share common parameter distributions, and consequently they can be used on a tower basis to
characterize the same type of NTD-Ge thermistors in other towers. We summarize the fit results
by NTD batches in table 2. All NTD batches are nominally irradiated to the same neutron fluence
of about 3.4 ⇥ 1018 n/cm2 at MIT Nuclear Research Laboratory, but the position with respect to
the neutron beam and the number of irradiation passes are di�erent. The errors in the table are
standard deviations of the parameter spread in the same tower. We have observed that for the
electron-phonon coupling within the NTD-Ge thermistor, its thermal conductance G is much smaller

Table 2. Summary of NTD-Ge V-I curve fits by NTD-Ge batch.

%os [W] '0 [⌦] )0 [K] 04�2 64�2 [W/Kae�c ] _0 [nm · K0.5
] NTD batch

(7.70 ± 0.62) ⇥ 10�13 0.474 ± 0.035 7.04 ± 0.19 5.36 ± 0.13 0.0154 ± 0.0082 13.8 ± 2.6 39C
(7.8 ± 1.5) ⇥ 10�13 0.58 ± 0.15 7.58 ± 0.15 5.81 ± 0.42 0.11 ± 0.15 7.9 ± 7.6 39D
(6.90 ± 0.80) ⇥ 10�13 0.622 ± 0.053 6.78 ± 0.16 5.70 ± 0.18 0.042 ± 0.020 3.8 ± 4.3 41C
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(a) Channel 367 from tower 8. (b) Channel 419 from tower 9. (c) Channel 487 from tower 10.

Figure 4. V-I fits for three sample channels from tower 8, 9, and 10 of CUORE. Each tower represents a
di�erent batch of produced NTD-Ge. Each V-I curve was taken at di�erent heat-sink temperatures. The
electron-phonon coupling within the NTD-Ge thermistor is much weaker than other couplings between the
calorimeter components.

than the thermal conductances for coupling between the TeO2 crystal and the heat-sink, and general
coupling between the PTFE support and the heat-sink. This observation implies that the V-I data
alone could not determine the power law of thermal coupling beyond that of the electron-phonon
coupling. The fitting is not sensitive to changes in initial values for coupling between the TeO2

crystal and the heat-sink or the coupling between the PTFE support and the heat-sink. We plot the
fits on sample channels in figure 4.

We also note that the )0 values, as appearing in eq. (2.12), are about one to two Kelvins
higher than previously reported measurements [42], while the '0 values are lower than previous
characterizations. The '0 parameter is highly anti-correlated with )0 by the nature of the eq. (2.12),
which should explain the fits’ underestimation. The electron-phonon coupling power law coe�cient
04�2 , and _0 are close to expectation: 04�2 values are between 5 and 6, while _0 parameters [16] are
on the order of 10 nm · K0.5.

4 Dynamic model

The dynamic model aims to explain the energy dependence of calorimeter signal pulses. A linear
system has a constant conductivity matrix⌧ ()) and a constant capacity matrix⇠ ()) in eq. (2.21), and
thus it does not predict any change in pulse shape regardless of the input energy because eigenvalues
of the these two matrices are fixed. This is not true for CUORE pulses, and we seek to model the
detector response using eq. (2.20) for pulses up to the alpha region (< 6 MeV) in this section.

We use the same model as we have verified using the V-I curves in section 3. For a given base
temperature and NTD working point, we group a set of 5 pulses with di�erent energies together and
perform a simultaneous fit on each group of 5 pulses to increase our model sensitivity towards energy
dependence of the pulse shape. Each group includes energies ranging from 511 keV to 5407 keV,
which are chosen from the energy spectrum peaks of the dataset. We input these energies as the initial
condition for the simulations, and fit by minimizing the squared di�erence between the raw pulses and
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simulations. We are also fitting the heat-sink temperature, assuming that the heat-sink temperatures
for all of the pulses are close enough so that the five pulses can be described by the same heat-sink
temperature. The model is tested on the same 78 channels as introduced in section 3. Each channel has
40 “groups” of simultaneous fits. To correct for signal baseline drifts, we have added two corrections
for each pulse: a linear correction parametrized by +lin = <(C � 1), where < is the slope and 1 is the
intercept; and an exponential tail correction parametrized by +exp = �4�C/g , where � is the initial
amplitude at time 0 and g is the characteristic decay time. The linear correction is often caused by ther-
mal drifts of the detector or changes of the cryostat’s noise environment, especially vibration noises at
low frequencies, whereas the exponential correction usually results from the decay of a previous event
su�ciently close to the examined one. The fit results for key model parameters are listed in table 3.

Table 3. Table of key parameter initial values used in the fit. If the parameter has an error estimation in the
table, then a parameter is given a prior. The prior is assumed to be gaussian and given a boosted weighting of
100, as otherwise we find it hard for the priors to be e�ective in constraining the fit parameters. The parameter
expectation values are confined by previous measurements [11, 23, 27, 28].

Parameter Name Symbol Unit Value

Pulse Time Cp s 3
Parasitic Capacitance 2p pF 500 ± 100
Electron Heat Capacity [24, 35] 24 J/K 8.6 ⇥ 10�11

TeO2 Crystal Heat Capacity 22 J/K4
(2.2 ± 0.2) ⇥ 10�3

PTFE Support Heat Capacity 2C J/K2
(2.1 ± 0.2) ⇥ 10�6

Electron-Phonon Thermal Conductivity 64�2 W/Kae�c From table 2 (NTD-dependent)
Crystal-PTFE Thermal Conductivity 62�C W/Kac�tef 1 ⇥ 10�8

PTFE-heat-sink Thermal Conductivity 6C�B W/Katef�s 1 ⇥ 10�8

Electron-Phonon Conductivity Power Exponent 04�2 N/A From table 2 (NTD-dependent)
Absorber-PTFE Conductivity Power Exponent 02�C N/A 1 (Fixed)*

PTFE-hea-sink Conductivity Power Exponent 0C�B N/A 1 (Fixed)*

NTD-Ge Characteristic Temperature )0 K From table 2 (NTD-dependent)
NTD-Ge Characteristic Hopping Length _0 nm · K0.5 From table 2 (NTD-dependent)
Heat-sink Temperature )base K 0.010 ⇠ 0.015

* We have tested floating the power exponent around 3 in the fit: it does not impact the least square loss. Thus we have
fixed the exponential to 1 to demonstrate that the pulse shape is not sensitive to these thermal couplings.

During the fitting process, we find that despite the use of simultaneous fit, the least square loss
converges slowly if too many input parameters are provided. Therefore, we set the thermal coupling
between the TeO2 crystal and the heat-sink to zero, and have also fixed both power exponents of the
coupling between the crystal and its PTFE support and the coupling between the PTFE support and the
heat-sink to 1 so that the heat conductance becomes independent of temperature. Both changes have
no noticeable e�ects on the fit results. The equivalent thermal circuit diagram is shown in figure 5.

Figure 6 (for data-set I, 15.3 mK) and figure 7 (for data-set II, 11.9 mK) both show one of the
sample group fits. To compare with the equilibrium model, we tabulate the mean and the standard
deviation of key fit parameters in table 4. We note that almost all key parameters from the V-I curve
model are close to the fitting results from the dynamic model, suggesting that the dynamic model is
consistent with the earlier equilibrium model.

– 11 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
1
1
0
2
3

Absorber

Figure 5. The thermal circuit used in the dynamic model. The direct coupling between the crystal and
heat-sink has been removed because the fit is not sensitive to this parameter.
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Figure 6. Grouped pulse fit for sample channel 487 for data-set I (15.3 mK). The residual normalized with
the standard deviation of the first 2 seconds of the waveform is plotted at the bottom. The inset shows a
zoomed portion of the peak.

Table 4. Principal fit parameters of the dynamic model, grouped by NTD-Ge batch. The Roman numeral
subscript after )B denotes the data-set number. The parameter fit values for both data-sets are compatible with
each other and thus combined.

2p [pF] 64�2 [W/Kae�c ] 04�2 )0 [K] _0 [nm · K0.5
] )B,� [mK] )B,� � [mK] NTD batch

511 ± 17 0.026 ± 0.002 5.07 ± 0.07 7.039 ± 0.009 12.3 ± 0.9 13.1 ± 0.8 12.2 ± 1.4 39C
501 ± 9 0.17 ± 0.02 5.52 ± 0.10 7.576 ± 0.004 8.6 ± 4.2 13.0 ± 0.9 11.3 ± 0.6 39D
514 ± 14 0.058 ± 0.002 5.34 ± 0.06 6.771 ± 0.007 2.0 ± 1.3 13.3 ± 0.4 11.3 ± 0.6 41C

Table 5. Principal fit parameters of the dynamic model with @ factor, grouped by NTD batch.

2p [pF] 64�2 [W/Kae�c ] 04�2 )0 [K] _0 [nm · K0.5
] @ )B,� [mK] )B,� � [mK] NTD batch

513 ± 18 0.026 ± 0.002 5.05 ± 0.07 7.039 ± 0.008 12.4 ± 0.9 �34 ± 15 12.8 ± 0.9 10.7 ± 1.2 39C
507 ± 10 0.17 ± 0.02 5.48 ± 0.10 7.577 ± 0.004 10.5 ± 3.8 �32 ± 11 12.7 ± 1.0 10.6 ± 1.2 39D
523 ± 15 0.059 ± 0.002 5.34 ± 0.06 6.770 ± 0.007 2.7 ± 1.4 �32 ± 10 13.2 ± 0.4 11.1 ± 0.7 41C
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Figure 7. Grouped pulse fit for sample channel 487 for data-set II (11.9 mK). The normalized residuals are
large near the peak of the signal pulses. This means the model pulse is over-shooting the peak in the highest
energy, while the other pulses are underestimating the peak. The model without the @ factor cannot address
this deviation.

However, the residuals stray away from zero near the peak of the pulses. We find that introducing
an empirical second-order correction term to the NTD-Ge resistivity expansion, defined in eq. (2.15),
produces better fitting results. To test if the additional second-order correction can be explained by
the standard law, i.e. eq. (2.14), we separate its expansion to the second order so that:

U ! U �
3
4
[

✓
XC4

)4

◆2

+
15
8
⇠_

+bol

)
1.5
4

✓
XC4

)4

◆2

�
3
2
⇠_

+bol

)
1.5
4

✓
XC4

)4

◆ ✓
XEbol

+bol

◆
+ @

✓
XC4

)4

◆2

.

(4.1)

Our null hypothesis is that the additional @ factor is 0. Fit results on data-sets I and II with the
inclusion of the @ factor have notably improved, as can be inferred from the comparison of the
histograms of reduced j2 figure-of-merit in figure 8. Figure 9 showing the fitting of the same group
of pulses as those in figure 7 confirms this observation.

The parameters in the modified dynamic model are summarized in table 5, where we have
applied a reduced j2 cut of 5 in the fitting results for filtering out spurious pulses when calculating
the statistics. Pulses with high reduced j2 could be caused by unstable baseline or pileups. The
cuto� is supposed to exclude these not well-fitted pulses so that the fit parameters are more credible.

As listed in the table, the @ factors have distributions not compatible with the null hypothesis
and are negative. This result suggests possible unaccounted correction terms in the NTD-Ge
characteristic function. It is not likely that such factor arises from subtleties in the thermal couplings
between the crystal and the PTFE support or the heat-sink, as they a�ect the long pulse decay time
constant. Since a negative @ factor means that the expansion U is more concave down, it could imply
a larger W value in eq. (2.12). More experimental e�orts are necessary in the future to determine the
origin of this correction.
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Figure 8. Comparison between the histograms of the reduced j2 values for the simultaneous fits performed
on data-sets I and II. The higher reduced j2 peak in the “double-bump” feature corresponds to channels in the
NTD batches 41C and 39C, which in general show a poorer quality of fit even without the @ factor.
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Figure 9. Grouped pulse fit for sample channel 487 for data-set II with @ factor. Cf. figure 7. The normalized
residuals for all the pulses are closer to being evenly distributed around 0.

At the end of this section, by comparing to the equilibrium model results in table 2, we note
that most values we obtain in table 5 are consistent. The heat-sink temperature fitting results have
systematic deviations of around �1 to �2.5 mK. Another di�erence is that the power law exponents
04�2 are universally lower in the dynamic model than in the equilibrium model. This implies that
other thermal couplings with smaller power exponents may be present in the system.

– 14 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
1
1
0
2
3

5 Noise

Obtaining the physical parameters allows us to analyze major noise contributions from both thermal
and electrical circuits. The numerical simulation can be carried out in the frequency domain. We
begin by performing a Fourier transformation on the linear system eq. (2.21):

(8l⇠ � ⌧). (l) = - (l). (5.1)

The right hand side of the equation represents the noise input, and with appropriate input vector the
output vector . simulates the detector response.

There are two major kinds of noises: Thermal Fluctuation Noise (TFN) and Johnson noise
from the readout circuit. Both have frequency-independent power spectra, but TFN has a stronger
temperature dependency. We can use the TFN between charge carriers and NTD-Ge lattice as an
example of incorporating TFN. The noise source features the following spectrum [13]:

?
2
) �4�=

= 4:)2
⌧�link, (5.2)

where

�link =
()4/)=)

V+2
+ 1

2
, (5.3)

and where V is the temperature dependence of⌧ and we note here that % ⇠ 6)
V+1. For TFN between

two nodes at equilibrium with each other, the link term �link = 1. In our system (radiative limit), the
link term accounts for the temperature gradient at the two ends.

Then our input vector is:

- (l) =

266666664

0
?) �4�2

�?) �4�2

0

377777775
. (5.4)

We note that an increase of power for the charge carriers in the context of noise indicates a decrease
of power on the opposite side, and hence the minus sign before ?) �4�2. The absolute value of the
output vector is the average noise power due to electron-phonon TFN.

To evaluate the contribution of the Johnson noise, there are two parts: the bias resistor and
the thermistor. We refer to a similar study on transition-edge sensors (TES) for the derivation [18].
Noise from the bias resistor can be expressed as an external voltage source, as shown in figure 10.

We emphasize that the physical dimension of the input - is equivalent to ⌧. and is in A/
p

Hz
for the electrical node, so we need to use the noise current (the voltage divided by resistance) instead
of voltage:

8��! =
4��!

'bias
. (5.5)

In general the linearized system takes care of the electro-thermal feedback through the matrix ⌧,
and thus the input is:

- (l) =

266666664

8��!

0
0
0

377777775
. (5.6)
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Figure 10. Equivalent Johnson noise generation circuits for the bias resistor 'bias and NTD-Ge thermistor
'bol.

Regarding the Johnson noise for NTD-Ge, we refer to the right plot of figure 10 for the noise
circuit. The e�ective input on the electrical node is still current input, but this time there is
an additional power correction ��1E��1 as the measured voltage includes the voltage across the
thermistor (responsible for electro-thermal feedback) plus the voltage noise. The input vector is then:

- (l) =

266666664

8��1

��1E��1

0
0

377777775
. (5.7)

Incorporating other thermal fluctuation noises, we find the noise input vector as the following:

- (l) =

266666664

8��! + 8��1

��1E��1 + ?) �4�2

�?) �4�2 + �?) �2�C4 5

?) �2�C4 5 + ?) �C4 5 �B

377777775
. (5.8)

Figure 11a and figure 11b show the total noise simulation along with the measured noise power
spectrum (NPS) for both data-sets, before the amplifier gain but with the Bessel filter. The system
noise floor is set by the digitizer ADC range and thus changes with di�erent system gains for the two
data-sets. To give a better sense of the noise level, we also include the NPS plot of channel 474 in
figure 11c, which is more representative of the CUORE channels. In table 6, we have also listed the
bias circuit settings and digitization system (i.e. the front-end board) data, such as the resistance of
the NTD-Ge thermistor at the biasing point, the system gain, and total root-mean-square (RMS)
voltage when there are no pulses for the sample channel. The sample channel is selected as the same
one in section 4. We can observe that the Johnson noise from the bias resistor is the major noise
source. However, the considered total noise only account for approximately 1/10 of the measured
NPS. The figures also show that the continuous power spectrum contains a 1/ 5 component. This
component cannot arise from the white Johnson noise alone because with the capacitance matrix in
eq. (5.1), white noise input spectrum always outputs 1/ 5 2 power spectrum. We thus add two extra
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(a) Channel 487, data-set I. (b) Channel 487, data-set II. (c) Channel 474, data-set II.

Figure 11. Left and Middle: simulated NPS for channel 487 overlaid with measured NPS from data-set I and
II. Right: NPS for channel 474 from data-set II. We include this channel because it is more representative of
an average CUORE channel. Spectra are divided by the gain of the amplification chain and multiplied with
the Bessel filter transfer function.

Table 6. Bias circuit settings and digitization system data of channel 487 used in the NPS plots. The +
column lists the total biasing voltage of the electrical circuit in figure 2. The gain column denotes the gain of
the front-end amlification stage. The scaled baseline RMS is the raw baseline RMS scaled by the system gain.

'bias ('L) [G⌦] + [V] 'bol [M⌦] Raw Baseline RMS [µV] Gain Scaled Baseline RMS [mV]

Data-set I 60 4.71 250.3 1.5 5150 7.9
Data-set II 60 1.79 906.2 1.3 2060 2.8

input current noise terms:

8
2
ext = ⇠1 5 +

⇠2

5

. (5.9)

As shown in figure 12, if we were to match the noise with the measured NPS, the coe�cient values
are around ⇠1 = 7.1 ⇥ 10�31 A2

/Hz2 and ⇠2 = 1.4 ⇥ 10�30 A2. These values are specific for this
channel, but we have taken observations on other fitted channels and they behave in a similar way:
the ⇠1 and ⇠2 values are around the same order of magnitude as channel 487. We also observe that
the same set of parameters for one channel would produce good agreement with the measurements
from both data-sets.

Others [43] have shown similar additional 1/ 5 and 5 noise components that have to be considered
in the input spectrum in large resistors:

4
2
��!

= 4:)'bias +  5|{z}
'

2
bias⇠1

5 + V+
2
bias'bias|      {z      }
'

2
bias⇠2

1
5

. (5.10)

Specifically, the '2
bias⇠2 term is voltage and resistance dependent. The bias resistors of CUORE

are custom designed to minimize noise and for them,  5 and V parameters are [43]:  5 =
5 ⇥ 10�13 V2

/Hz2 and V = 1.96 ⇥ 10�11 ⌦�1. We have found little change in the noise power
spectrum with these values. Moreover, we changed the bias resistors to higher values (from 60 G⌦
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(a) Channel 487, data-set I. (b) Channel 487, data-set II.

Figure 12. Left: simulated NPS with estimated ⇠1 and ⇠2 coe�cients for the sample channel 487, compared
to measured NPS from data-set I. Right: simulated NPS with the same estimated ⇠1 and ⇠2 coe�cients,
compared to measured NPS from data-set II. We note that the same set of coe�cients both produce good
agreement with the measurement.

Figure 13. The simulated and measured NPS for channel 487’s 4 M⌦ dummy resistor, along with 'bias =
240 G⌦ (labelled 'L) and a total biasing voltage of 10 V. The white noise behavior with the Bessel filter
roll-o� agrees well with the data.

to 240 G⌦) in a few channels and saw no appreciable change in the NPS. We have also measured
the noise on channel 487’s dummy resistor at room temperature substituting the NTD-Ge. The
dummy resistor is 4 M⌦ and is under similar bias conditions of the NTD-Ges. The result showed
only white noise behavior for the dummy resistor, as shown in figure 13. These tests suggest that the
frequency-dependent noise sources mentioned in eq. (5.9) do not have resistance dependence.

We should mention that a hypothetical source of excess noise could be vibration heating, as
studied in another manuscript [44]. Although the cryogenic set-up of CUORE is very di�erent from
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                   Integrated Residual NPS over Frequency vs. Floor Level for Data-set I

Figure 14. Residual noise power for the sample channels versus detector floor level. Higher floor level
corresponds to positions closer to the mixing chamber plate. We note the trend that the closer the channels are
to the mixing chamber plate, the more noisy they tend to become. The dots represent outlier channels with
excessive integrated noise power.

the above work, vibrations are known sources of excess noise for low temperature detectors [45].
We integrated the residual noise power in the following frequency bands: 0 to 1 Hz, 1 to 20 Hz, 20 to
250 Hz (excluding 50 Hz and corresponding harmonics) and 250 to 500 Hz. The residual power for
sample channels of data-set I is plotted against the floor level in figure 14. As the plot shows, the
residual power increases with floor level in the detector, which increases when the crystal is closer to
cryostat thermal stages. Similar trend is also observed for data-set II. The residual noise in the 20 to
250 Hz band have almost no floor level dependence, suggesting that other noise sources besides the
vibrations may have contributed in the band.

It is di�cult to ascertain 1/ 5 component of the vibration noise from flicker noise (1/ 5 �W)
because they are both non-stationary and extremely correlated in nature. A detailed analysis of
1/ 5 �W noise in our experiment is out of scope for this paper and will be covered in future studies.

6 Conclusion

We have studied both the equilibrium and dynamic states of a macroscopic calorimeter, and have ana-
lyzed our model’s consistency from both perspectives. We have confirmed that our three-node thermal
model is able to describe the equilibrium state of the detector, and that for the NTD-Ge thermistors
used by the CUORE experiment the thermistor resistivity is a function of both the electron tempera-
ture and applied bias voltage. We have found that the thermal coupling between the electron gas and
the Ge lattice is weaker than expected and dominates the electro-thermal response of the calorimeter.

The dynamic model is able to predict the energy-dependent pulse shape up to at least 5407 keV
with an additional second-order temperature dependence correction term denoted as the @ factor.
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This correction is approximately a few percent when compared to the first order terms. We have
made several trials with di�erent models, including ones with more nodes and thermal couplings,
and come to the conclusion that the correction term is most likely the e�ect of a slight change in the
NTD-Ge resistivity law, for example an increase of the W factor in eq. (2.12) from the standard value
of 0.5. The fit parameters for each channel are close even at two di�erent heat-sink temperatures,
indicating that the dynamic model is consistent with the equilibrium model.

As an application of the physical parameters obtained by the model, we have also studied the
noise power spectrum for the macro-calorimeters. In the noise analysis, we find excess noise power
present in the measurements than expected, and modelled it. Further study is necessary to determine
the origin. We, now, have verified that the residual noise power increases with proximity to the mixing
chamber and the pulse tubes. Further usage of this model could include the generation of simulated
pulses for CUORE to implement a machine-learning pulse energy identifier, and the potential to
optimize the detector response in the CUORE Upgrade with Particle ID (CUPID) experiment.
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