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RESEARCH ARTICLE
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Abstract

In animals, gas exchange between blood and tissues occurs in narrow vessels, whose

diameter is comparable to that of a red blood cell. Red blood cells must deform to squeeze

through these narrow vessels, transiently blocking or occluding the vessels they pass

through. Although the dynamics of vessel occlusion have been studied extensively, it

remains an open question why microvessels need to be so narrow. We study occlusive

dynamics within a model microvascular network: the embryonic zebrafish trunk. We show

that pressure feedbacks created when red blood cells enter the finest vessels of the trunk

act together to uniformly partition red blood cells through the microvasculature. Using math-

ematical models as well as direct observation, we show that these occlusive feedbacks are

tuned throughout the trunk network to prevent the vessels closest to the heart from short-cir-

cuiting the network. Thus occlusion is linked with another open question of microvascular

function: how are red blood cells delivered at the same rate to each micro-vessel? Our anal-

ysis shows that tuning of occlusive feedbacks increase the total dissipation within the net-

work by a factor of 11, showing that uniformity of flows rather than minimization of transport

costs may be prioritized by the microvascular network.

Author summary

Arterial trees shuttle red blood cells from the heart to billions of capillaries distributed

throughout the body. These trees have long been thought to be organized to minimize

transport costs. Yet red blood cells are tightly squeezed within the finest vessels, meaning

that these vessels account for as much as half of the total transport costs within the arterial

network. It is unclear why vessel diameters and red blood cell diameters are so closely
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matched in a network that is presumed to optimize transport. Here, we use mathematical

modeling and direct observations of red blood cell movements in embryonic zebrafish to

show that occlusive feedbacks—the pressure feedbacks that alter the flows into a vessel

when it is nearly blocked by a red blood cell—can optimally distribute red blood cells

through microvessels. In addition to revealing an adaptive function for the matching of

vessel and red blood cell diameters, this work shows that uniformity of red blood cell

fluxes can be a unifying principle for understanding the elegant hydraulic organization of

microvascular networks.

Introduction

Vascular networks transport oxygen, carbon dioxide and sugars within animals. Exchange of

both nutrients and gases occurs primarily in narrow vessels (e.g. capillaries) that are typically

organized into reticulated networks. The narrowest vessels are comparable in diameter to red

blood cells, forcing cells to squeeze through the vessels. Accordingly, hereditary disorders or

diseases affecting the elasticity of cells and preventing them from contorting through narrow

vessels can disrupt microvascular circulation [1]. The cost of blood flow transport in the car-

diovascular system is thought to dominate the metabolic burden on animals [2]. The rate at

which energy must be expended to maintain a constant flow of blood through a vessel is

inversely proportional to the 4th power of the vessel radius. Red blood cells occlude the vessels

that they pass through, further increasing the resistance of those vessels [3]. Accordingly

capillaries and arterioles account for half of the total pressure drop within the network, and

thus half of its total dissipation [4]. Experiments in which cells are deformed using optical

tweezers, or by being pushed through synthetic micro-channels have shown that the extreme

deformability of mammalian red blood cells requires continous ATP powered-remodeling of

the connections between membrane and cytoskeleton. ATP released by deformed cells may

induce vasodilation facilitating passage of cells through the narrowest vessels [5]. Thus, chemi-

cal as well as hydraulic power inputs are needed to maintain flows through microvessels [6, 7].

Why do micro-vessels need to be so narrow? A textbook answer to this question is that

smaller, more numerous capillaries allow for more uniform vascularization of tissues—ensur-

ing that “no cell is ever very far from a capillary” [4]. If smaller vessels are favored physiologi-

cally and red blood cell diameter acts as a lower bound on capillary diameters, then networks

in which capillary diameters match those of red blood cells may be selected for. However, red

blood cell sizes do not seem to be stiffly constrained—for example measured red blood cell vol-

umes vary over almost an order of magnitude (19 to 160 femto-liters) between different mam-

mals [8]. Since for a fixed capillary diameter, a small decrease in red blood cell diameter would

greatly reduce rates of energy dissipation for red blood cells traveling through capillary beds

[9], the evolutionary forces maintaining red blood cells and capillary diameters remain unclear.

There is a natural analogy between occlusion of vessels by red blood cells, and the congestion

that occurs in data or road networks [10, 11]. Efforts to construct efficient transport networks

often focus on reducing congestion [10], yet although cardiovascular networks are thought to

be organized to minimize transport costs (i.e. the viscous dissipation occuring within the net-

work) [12, 13]; the presence of congestion at the finest scales seems at odds with minimizing

these costs. Could the extreme deformation of cells passing through capillaries be an adaptive

feature of the cardiovascular network? By directly stretching cells using optical tweezers Rao

et al. [14] showed that deforming red blood cells releases oxygen. But it remains an untested

hypothesis that squeezing cells so that they may pass through capillaries accelerates oxygen

Optimal occlusion and uniform partition of RBC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005892 December 15, 2017 2 / 22

Institutes of Health (NIH), under a Ruth L.

Kirschstein National Research Service Award (T32-

GM008185, http://www.biomath.ucla.edu/huang/

sibtp/). TKH received funding from National

Institute of Health (NIH) under grant numbers R01

HL083015, R01 HL129727, and R01 HL111437

(https://www.nih.gov/). SPLH received funding

from MOST (Ministry of Science and Technology,

Taiwan, under grant MOST 105-2313-B-005-MY3,

https://arspb.most.gov.tw/NSCWeb/wSite/mp?

mp=11&token=ZVj37+cQGrJIZINi/). VMS received

funding from the US National Science Foundation

(ID: 1254159, http://nsf.gov/). The contents of this

paper are solely the responsibility of the authors

and do not necessarily represent the official views

of the NIH. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005892
http://www.biomath.ucla.edu/huang/sibtp/
http://www.biomath.ucla.edu/huang/sibtp/
https://www.nih.gov/
https://arspb.most.gov.tw/NSCWeb/wSite/mp?mp=11&amp;token=ZVj37+cQGrJIZINi/
https://arspb.most.gov.tw/NSCWeb/wSite/mp?mp=11&amp;token=ZVj37+cQGrJIZINi/
http://nsf.gov/


release, and therefore contributes to the function of the network. Indeed, earlier models suggest

that alterations in the shape of the red blood cell surface decrease rates of oxygen exchange [15].

In this work we use mathematical modeling to reveal a previously unreported contribution

of occlusive dynamics to the efficient functioning of the cardiovascular network. Moreover we

link occlusive dynamics to a different open mystery of cardiovascular function. Specifically

given that microvessels are distributed throughout the body and at very different distances

from the heart, there is surprising consistency among measured flow rates in different capillar-

ies [16–18] (with some exceptions [19]). Indeed consistency in flow rates may be biophysically

necessary: if flow rate in a capillary is too low, the cells surrounding the capillary may not

receive enough oxygen, but if the flow rate is too high, then red blood cells may leave the capil-

lary bed before surrendering their oxygen to the surrounding cells. If the cardiovascular system

is treated as an idealized symmetric branching network (such as in [2]) then flows are automat-

ically uniformly partitioned at each level of the network, including among capillaries. But real

cardiovascular networks have complex topologies, and it is not clear how the uniform flow can

be achieved among billions of capillaries whose distances from the heart can range over several

orders of magnitude.

In this work we show that in the embryonic zebrafish, a model system for studying cardio-

vascular development [20], answers to these two questions may be closed linked. Tuned occlu-

sion—i.e. small differences in the resistance that vessels present to cells—ensures that red

blood cells are uniformly partitioned between the finest vessels within the zebrafish trunk.

Although zebrafish red blood cells have quite different morphologies from mammalian red

blood cells, the matching in sizes of red blood cell and narrow vessel means that occlusive

dynamics occur in the zebrafish network. Our experimental observations confirm previous

measurements that red blood cells are uniformly partitioned between fine vessels [18], yet in

the absence of tuned occlusion, we demonstrate that the vessels closest to the zebrafish heart

would receive 11-fold higher rates of flow that vessels furthest from the heart. In other words

these vessels would act as hydraulic short-circuits. In further support of the hypothesis that

occlusion is an adaptive feature of the network we calculate optimal occlusive dynamics—i.e.

the distribution of occlusive feedbacks (the negative feedbacks each cell exerts on cells trying

to enter the same vessel) that leads to the most uniform partitioning of red blood cells between

the smallest vessels. The occlusive feedbacks within the real zebrafish conform very closely to

this optimal distribution.

Microvascular networks have been postulated to be organized to minimize the cost of trans-

port (i.e. the total viscous dissipation associated with blood flow) [12, 21–23]. Certainly in

larger vessels within both the arterial and venous vascular network, vessel radii appear to be

organized to minimize dissipation [13, 24]. Yet, our results suggest that rather than eliminating

cellular congestion, fine vessels make use of it. As a direct demonstration of the tradeoff

between minimizing the cost of transport and tuning occlusion to route red blood cells uni-

formly, we show that the optimal distribution of occlusive feedbacks that uniformizes red

blood cell partitioning increases hydraulic dissipation in the network 11 fold compared with a

network in which the smallest measured occlusive feedbacks occur within each vessel. Thus,

taken together, our results advance a potential new optimization principle—uniform routing

of red blood cells—that may underlie the organization of microvascular networks generally.

Materials and methods

Ethics statement

All animal experiments performed at Academia Sinica were approved by the Animal Use

and Care Committee of Academia Sinica (protocol # 12-12-482). Zebrafish were bred and
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maintained at the UCLA Core Facility. Zebrafish experiments were performed in compliance

with the Institutional Animal Care and Use Committees (IACUC) at the University of Califor-

nia, Los Angeles (UCLA) (under animal welfare assurance number A3196-01)

Imaging zebrafish trunk vessels and red blood cell movements

To measure the red blood cell fluxes in zebrafish trunk vascular network we cultured double

transgenic Tg(fli1:GFP; gata1:ds-red) zebrafish embryos, in standard E3 medium supple-

mented with 0.05% methylene blue solution at 28.5˚C. In this transgenic fish line, fli1, a tran-

scription factor associated with blood vessel morphogenesis is tagged with green fluorescent

protein, causing the endothelial cells surrounding blood vessels to fluoresce green. Addition-

ally, GATA-1, a transcription factor associated with erythrogenesis is tagged with red fluores-

cent protein, so that the red blood cells traveling through the GFP-labelled network fluoresce

red. Zebrafish larvae were sedated with neutralized 0.02% tricaine solution(Sigma, MO) and

mounted in 1-2% low melting agarose (Sigma-Aldrich, MO) for imaging. Erythrocytes were

imaged at 4 day post fertilization (dpf) under a fluorescent microscope (Zeiss, Germany) with

50 ms exposure time. To measure detailed geometry and occlusive feedback of zebrafish trunk

network we re-imaged a single 4 dpf zebrafish. We measured vessel lengths and radii from

GFP-images taken under 10× magnification using a Zyla sCMOS camera on a Zeiss Axio

Imager A2 fluorescent microscope. To measure the flow velocity, the same scope was used to

take images in the DsRed channel at time intervals of 0.078 − 0.107 sec. Red blood cells were

manually tracked in image sequences using ImageJ [25].

Mathematical modeling of occlusion and parameter estimation

Flow is laminar within each zebrafish microvessel [26, 27]. The Womersley number [28] that

characterizes the importance of unsteadiness effects in time-dependent flow, which for a vessel

of diameter d, carrying blood with kinematic viscosity ν, and with heart rate f, is given by

Wo ¼
ffiffiffiffiffiffiffi
2pfd2

n

q

. Within the largest trunk vessels d� 12 μm, the viscosity of whole blood is

ν� 5 × 10−6 m2/s [29], and the heart-rate is approximately f = 2 s−1, so Wo = 1.9 × 10−2� 1,

meaning that we may neglect pulsatile effects. Flow is uniform along each vessel, except within

an entry region whose length is ℓ� Ud2/ν for a vessel of diameter d, through which blood

travels at a speed U [30]. Maximum blood velocities are on the order of 0.3 cm/s [31], so using

the diameter of the largest trunk vessels we obtain: ℓ� 0.3 μm. Since the entry region is much

smaller than the typical vessel length, we treat the flow in each vessel as being uniform along

its length. Putting these ingredients together, we find that the flow through each vessel is

inversely proportional to the resistance of the vessel, and the resistance may be calculated

using Stokes’ equations (i.e. the equations for slow-creeping flows [30]) from the geometry of

the vessel and from the number of red blood cells that it contains. Mechanistic models to pre-

dict the motions of red blood cells through micro-vessels or through microfluidic channels

with comparable diameters have been developed in previous works [3, 32, 33]. Throughout

this work we adopt a simple model for red blood cell occlusion in which the resistance of each

vessel increases linearly with the number of red blood cells present. That is, if the number of

red blood cells in a narrow vessel is given by n, then its resistance is given by an equation:

RðnÞ ¼ R0 þ nac : ð1Þ

where R0 is the resistance of the vessel in the absence of red blood cells, i.e. is given by the

Hagen-Poiseuille law relating the pressure drop and flow rate in a tube carrying viscous fluid,

so that for a vessel of length ℓ and radius r: R0 ¼
8mpl‘

pr4 , where μpl� 1cP is the viscosity of the
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non-red blood cell component of the flood. Here the parameter αc, which we call the occlusion

strength in this paper, gives the increase in vessel resistance per red blood cell. Eq (1) repre-

sents a form of non-Newtonian rheology, the deviation of resistance from simple viscous fluid.

In particular, the apparent viscosity of blood, i.e. R(n)πr4/8μpl ℓ, increases with hematocrit, i.e.

with the concentration of red blood cells. Eq (1) can be derived from the micromechanical

model of [34]. Indeed any model in which the pressure drop across the red blood cell is pro-

portional to the velocity of the cell will produce a relationship like Eq (1), and so identical

equations are also used to model the traffic of droplets or particles through microfluidic chan-

nels [35, 36]. In all of these models, αc, which we may think of as the intrinsic resistance of a

single cell [34, 35, 37, 38], depends on the specific details of how the movements of cells, drop-

lets or particles along the walls of the capillary or channel are lubricated. αc therefore depends

on parameters that we can not measure experimentally, including the thickness and porosity

of the glyocalyx that coats the endothelial wall of the capillary, as well as being sensitive to

changes in vessel radius [33, 34] that are too small to be detected in light microscopy. It also

depends upon the elastohydrodynamic deformation of both the cells and the capillary wall

[32]. Accordingly we treat αc as a phenomenological constant, to be measured directly by fit-

ting Eq (1) to real flow data. Specifically for each micro-vessel, we can measure both the veloc-

ity of flow within the vessel and the number of red blood cells that it contains. We note that

due to the Fahraeus effect [36, 39] the velocity of red blood cells is in general larger than the

flow velocity. However in human vessels whose diameters are comparable relative to human

red blood cells to the diameter of the zebrafish vessel relative to the zebrafish’s red blood cells,

the ratio of red blood cell velocity to whole blood velocity is less than 1.09 [39]. Hence we

approximate the flow velocity by the velocity of the red blood cell in this measurement. The

pressure difference across each vessel varies in time due to the variable pressure within the

aorta, and also, less predictably because, since the resistance of all vessels changes from

moment to moment, there are pressure feedbacks across the entire network. But we assume

that there is an overall average pressure drop across each vessel that is constant in time but

changes from vessel to vessel. Under conditions of time-independent pressure drop, the veloc-

ity of cell movement, v, in each vessel will be inversely proportional to the vessel resistance

R(n). Thus Eq (1) predicts that a plot of 1/v against n will give a straight line, the slope of which

can be used to calculate αc. Here we used the modeled flows in the fine vessels where no red

blood cell is present to determine the intercepts, which can be calculated by using Hagen-Poi-

seuille formula (see Results, Absence of occlusion . . .). By regressing 1/v against n for each

micro-vessel we calculate the variation of occlusive effects through the network (see S1 Text

for more details of the regression).

Incorporating occlusion into transport models

To study how varying occlusive effects between different microvessels may affect distribution

of red blood cells, we incorporated Eq (1) into both continuum and discrete models of trans-

port through the network.

For continuum level modeling, we assumed that the concentration of red blood cells was a

constant, ρ, in each vessel. Phase separation of red blood cells can occur when flows divide at

vessel junctions—that is red blood cells may split in different proportions than whole blood

[40]—but separation was not seen in our data (i.e. all Se vessels had the same average red

blood cell concentration of number per volume), and cannot account for the uniformity of red

blood cell flows, as we discuss in the Results section. Thus if the constant concentration (num-

ber/volume) of red blood cells is ρ, then a vessel of volume V is expected to contain n = ρV
cells. Once each vessel in the network has been assigned a resistance, then we can solve for the
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flows in the entire network, by applying Kirchoff’s first law (conservation of flux) to calculate

the pressure at each branching and fusion point, and then using the pressure difference across

each vessel to calculate flows [12, 41, 42]. We discuss the geometry of the network and bound-

ary conditions in the Results section.

Since each micro-vessel is so small, typically each vessel contains no more than one or two

cells at a time (but occasionally 3-5 cells were present in a vessel, see S2 Fig). For this reason we

expected Poisson noise effects (i.e. fluctuations in the number of cells contained within each

vessel) to influence red blood cell fluxes. We therefore built a discrete model, in which the tra-

jectories of every single red blood cell traveling through the trunk network were directly simu-

lated. Our discrete model is based on the droplet traffic model of [35]. Initially 990 cells are

distributed uniformly through aorta according to measured zebrafish red blood cell concentra-

tions [43]. At each step we calculate the resistance for each capillary by Eq (1), and then use the

hydraulic resistor network model to calculate the whole blood flow rates within each vessel. We

then let cells travel according to the predicted whole blood velocity in their vessel. Again we

assume that the velocity of cell matches with flow velocity in Se vessels. The diameter of the dor-

sal aorta (DA) is larger and this mismatch may be significant in the DA. Since the cell velocity

depends linearly on the flow velocity we expect this effect to increase the cell fluxes in all Se ves-

sels equally and to therefore influence the partitioning of cells only weakly. While for precise

prediction of cell fluxes the inclusion of this velocity mismatch will be necessary, here we are

developing a minimal model that singles out the effect of occlusive feedbacks, and hence we

assume that the cell velocity is the same as flow velocity in all vessels. When a cell arrives at a

node of the network; i.e. at a point where a vessel branches into two, which vessel it enters is

determined randomly by a Bernoulli process; that is the probability of cell entering a vessel is

determined by the flow rate ratio of the two vessels. We therefore suppress the Zweifach-Fung

effect [44]. The Zweifach-Fung effect characterizes the uneven distribution of red blood cells at

a branching point, depending, amongst other factors, on stream lines at the branching point,

and exibility of the cell [45–47]. Here we use a minimal model that neglects the Zweifach-Fung

effect because we see that only occlusive feedbacks can account for uniform partitioning of

cells. Indeed, we found no difference between the red blood cell concentration concentration

(number / unit volume) of vessels in the rostral Se artery (2.88 × 10−4 ± 2.19 × 10−4 1/μm3) and

in the caudal Se artery (2.18 × 10−4 ± 2.72 × 10−4 1/μm3). Flows are then recomputed for the

new distribution of cells. Cells that leave the network, i.e. reach the end of one of the vessels

within the simulated part of the network are immediately reintroduced into the network via the

aorta. For each combination of parameters, we simulated 1000 s of red blood cell movement,

with a time step of 0.1 s. Using fluorescence microscopy to track red blood cells meant that our

measurement frame rate was too low to directly measure cell velocities within the aorta. So we

fit total inflow into the trunk via the aorta to match the mean flux across all fine vessels to the

experimentally measured mean flux.

Results

Geometry of the zebrafish trunk microvasculature

The 4 day post fertilization zebrafish trunk vasculature is topologically simple. Oxygenated red

blood cells (henceforth RBCs) flow into the zebrafish trunk via the dorsal aorta (DA) and

return the heart via the posterior cardinal vein (PCV). The microvasculature consists of a series

of parallel intersegmental vessels (Se) that, if the vasculature were laid flat, would span between

the aorta and cardinal vein like the rungs of a ladder (Fig 1A). Se are divided into intersegmen-

tal arteries (SeA) that connect to the aorta, and intersegmental veins (SeV) that connect to the

posterior cardinal vein. SeA and SeV connect via another vessel called the Dorsal Longitudinal
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Anastomotic Vessel (DLAV), and in different parts of the DLAV, red blood cells flow toward

the tail of the fish or toward its head. Red blood cells can enter the PCV by flowing along one

of the SeAs, through a section of the DLAV, and then along one of the SeVs. Significantly,

however, they can also flow directly from the DA into the PCV, since the two connect at the

far end of both vessels in the tail of the fish.

The positions of SeAs and SeVs vary from embryo to embryo [48]. In particular, SeVs and

SeAs do not strictly alternate their connections with the DLAV. To form a model that does not

depend on any specific A-V pattern we choose to connect SeAs and SeVs directly in a pairwise

Fig 1. The embryonic zebrafish trunk is perfused by a series of parallel intersegmental arteries (SeAs). Hydraulic models for

the network predict that the first of these SeA will short circuit flow through the trunk. (A) 4 day post-fertilization zebrafish embryo trunk

network and wiring diagram showing PCV, DA and Se vessels in which SeA connect directly to SeV. (B) Representation of the same

network as a set of hydraulic resistors. (C) A resistor network model predicts that cell fluxes decrease exponentially with distance from

the heart (Black curve: numerical solution using real geometric parameters, Gray line: asymptotic model. For these two curves flow

rates are multiplied by the concentration of red blood cell ρ = 0.003 μm−3 measured in [43]). By contrast an occlusive feedback model

incorporating uniform occlusion strength αc = 1.01 × 10−6 g/μm4 s did not lead to more uniform distribution of red blood cell fluxes

between vessels (Gray stars). (D) Anisotropic fluxes produce uneven oxygen perfusion within the trunk. Simulation results are

superimposed on a zebrafish CT image reproduced from [53].

https://doi.org/10.1371/journal.pcbi.1005892.g001
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manner (Fig 1B), reducing the model to a bilaterally symmetric network in which no flow

occurs in the DLAV (which can therefore be suppressed). Then we assign the same conduc-

tances for directly connected SeAs and SeVs and the same conductances for sections of DA as

for the symmetric matching segments of PCV. Under these symmetry assumptions the pres-

sures at the intersection of SeA and SeV is the same for each SeA/SeV pair, and we can shift

this pressure to zero without affecting the calculations. Solving flows in this network reduces

to solving flows in the lower half of Fig 1B with fixed inflow in the beginning of the aorta and

zero pressures at the intersections between SeAs and SeVs, and between DA and PCV at the

tail.

Absence of occlusion produces uneven fluxes within the SeA

As a first step we calculated the RBC flux in intersegmental arteries (SeA) with no occlusion or

untuned occlusive effects and compared to experimental measurements. That is we approxi-

mated the resistance of each vessel using (1) with αc = 0 and treating the blood as a continuous

phase, so that μpl replaced by μwb, the viscosity of whole blood (μwb� 5 cP in zebrafish [29]).

This reduced model serves as a motivation and readers interested in the full model may skip to

Results, Occlusive feedbacks with . . .. We measured the lengths of each vessel directly from

fli1a-EGFP images. SeAs were all assigned the same radius (2.9 μm), while because the DA

tapers from the head to the tail, we independently measured DA radii between each SeA (see

S1 Table). Although ultimately tuned variation in SeA radii will be one way to explain changes

in occlusive feedbacks, these variations strongly affect the parameter αc in Eq (1) but have little

effect on R0. To model flows without feedbacks we can therefore neglect SeA radius variations.

We focus on the arterial half of the network made up of SeA and DA vessels. We identify the

vertices in this network, i.e. the points at which vessel branch or fuse, as points i = 1, 2, . . . n,

with respective pressures pi (Fig 1B). The number of SeAs, n, increases as the fish grows: for

the 4 dpf zebrafish in our experiments n ranges from 9 to 13. For definiteness in modeling, we

assume n = 12. If vertices i and j are connected by a vessel, with resistance Rij, then the total

flow of blood along this vessel will be (pi − pj)/Rij. Solving for the flows in the network is equiv-

alent to finding the pressures {pi}. For the zebrafish cardiovascular network we labeled vertices

along the DA as i = 1, 2, . . ., n. A vertex, i = n + 1, represents the end of the DA in the tail of

the zebrafish, where it connects directly to the PCV, and we label the vertices where the SeA

meet the DLAV as i = n + 2, n + 3, . . . 2n + 1. At vertices i = n + 1, . . . 2n + 1, our symmetry

boundary conditions require that pi = const., and we set arbitrarily the value of this constant to

be 0. Thus only the pressures {pi ∶ i = 1, . . . n} need to be determined. We find these pressures

by applying Kirchoff’s First Law (conservation of flux), at each point where the pressure is

determined, i.e. ∑j 2 n(i)(pi − pj)/Rij = 0, except at i = 1 (the vertex closest to the heart). At this

vertex, ∑j 2 n(1)(p1 − pj)/R1j = F, where F is the total supply of blood to the trunk which is fit to

real data (see Materials and methods). All summations are taken over the neighbor set, n(i),
i.e. over all vertices that are linked to i.

The model of the zebrafish trunk microvasculature as an hydraulic resistor network

(neglecting occlusive effects) follows many previous capillary network models (see e.g. [12, 41,

42]). The equations are formally identical to those for an electrical resistor network, with pres-

sures replacing voltages, and flow rates replacing currents. Just as placing a wire across the ter-

minals of a battery in an electrical resistor network will short circuit the network (i.e. divert

current from higher resistance paths), the first SeA is predicted to receive a larger-than-even

share of the blood flow from the zebrafish trunk, with flow rates decreasing exponentially rap-

idly with distance from the heart. In total there is a predicted 11-fold difference between the

flows through the first and last SeA (Fig 1C).
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A simplified resistor network model that treats each SeA as having the same resistance, and

assigns same resistances to each segment of DA between SeAs (i.e. ignores DA taper) quantita-

tively reproduces the exponential decay. To build the simplified model we assume that each

segment of the DA has the same hydraulic resistance, and that each SeA has the same resis-

tance. Using the measured mean radii and lengths, each DA has the same conductance, written

as: κ1 = 1/R1 = 9.4 × 105 μm4 s/g, while all Se vessels have the same conductance, written as:

κ2 = 1/R2 = 3.9×104 μm4 s/g. Then conservation of flow at vertex i = 2, . . ., n gives:

� k1pi� 1 þ ð2k1 þ k2Þpi � k1piþ1 ¼ 0 ; ð2Þ

This is a second order recurrence equation with constant coefficients. Its general solution is:

pi ¼ Cþx
i
þ
þ C� x

i
�
; ð3Þ

where ξ± are the roots of the auxiliary polynomial ξ2 − (2 + λ)ξ + 1 = 0, in which there is a

single dimensionless parameter: l ¼
k2

k1
¼ 0:04. This equation has two roots, with ξ+ > 1

and ξ−< 1. In general C+ and C− must both be non-zero to satisfy our boundary conditions

(namely pn+1 = 0 and F = κ2 p1 + κ1(p1 − p2)). However the two components give rise to expo-

nentially growing and decaying pressures respectively. Typically the first term will negligible,

except potentially in a small boundary layer region consisting of the vertices in the tail. There-

fore over most vertices pi � C� x
i
�

, i.e. the pressure decays exponentially with distance from

the heart, causing flows in the SeAs to decay exponentially as a result. For the real zebrafish

network: ξ− = 0.81. Despite the simplification in geometry, the analytic formula agrees quite

well with the solution to the full system of linear equations (compare gray and black curves in

Fig 1C). Additionally, we note that for any λ> 0, it is impossible to organize an auxiliary poly-

nomial without having one root ξ−< 1, so exponential decay in fluxes is an inescapable feature

of the ladder-like geometry of the trunk vasculature.

Although embryonic tissues receive oxygen primarily by diffusion through the skin [49,

50], vascular transport of oxygen becomes essential to embryo development after 2.5 weeks

[51]. So we expect that a zebrafish with the large predicted difference in fluxes between trunk

vessels would be disadvantaged. But because oxygen can diffuse through the zebrafish tissues,

we first verified that the differences in fluxes predicted by the model lacking occlusive feed-

backs would actually lead to differences in oxygenation in the trunk tissues. To do this, we

modeled oxygen diffusion through the trunk by a reaction-diffusion equation, using the for-

mulation and oxygen consumption coefficients derived by [52], and treating the vessels as oxy-

gen sources (Fig 1D, and see S1 Text for details of the model). Note that our model includes

only the contribution of oxygen perfusion from the blood to trunk oxygenation. For a real zeb-

rafish at 4 dpf, these uneven oxygen levels would be compensated for by diffusion through the

skin. However, our model shows that diffusion of oxygen within the zebrafish trunk can not

compensate even at 4 dpf for uneven flows within the Se vessels.

Red blood cell flows are uniform among trunk vessels

In contrast with the resistor network model, which predicts that the first Se vessel short circuits

the network, measured RBC fluxes are nearly uniform between Se-vessels in living zebrafish.

We tracked fluorescently tagged red blood cells moving through each of the 9*13 SeAs within

6 living, sedated, zebrafish (see Materials and methods), over a total time interval of 26s per

SeA. Fluxes in individual vessels varied greatly in time, due to the rapid change of blood pres-

sures within the DA over the zebrafish cardiac cycle [31] and likely also due to nonlinear

dynamics of the cells themselves within vessels [54], so the variability of flow rates was large

for each vessel. However, mean fluxes varied little from vessel to vessel (Fig 2A). Each embryo
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exhibited variable RBC fluxes throughout the trunk. However the envelope of the lines of

best fit for all six fish showed no consistent differences in RBC fluxes between first and last

Se. Specifically from the six sets of zebrafish data we used bootstrapping method (generating

replicate measurements for each Se vessel from the measured mean and standard deviation

over all six fish) to estimate regression statistics. The gray envelope in Fig 2A shows the 95%

confidence interval on all regressions thereby generated. We found that over all regressions

m = 0.012 ± 0.032 (mean ± standard deviation), showing no statistically changes in RBC flux

from vessel to vessel.

Occlusive feedbacks with variable strengths determine red blood cell

fluxes

There are two major ingredients missing from the hydraulic resistor network model that could

explain the anomalies between the predictions of that model and the real zebrafish flow rate

data: phase separation of red blood cells and occlusive feedbacks effects [40, 55]. Separation

occurs because red blood cells do not divide in the same ratios as whole blood when blood ves-

sels branch: When a red blood cell passes through a junction at which a vessel branches into

two daughter vessels of different sizes, it is more likely to enter the larger daughter vessel than

would be expected based on the ratio of fluxes in the two daughter vessels. Phase separation

cannot explain the uniform distribution of red blood cells seen across real zebrafish microves-

sels: to correct for an 11-fold difference in flow rates between first and last Se vessels, there

would need to be an 11-fold increase in hematocrit between these vessels, in the absence of

occlusive effects (since then hematocrit must increase exponentially to compensate for expo-

nentially decreasing flow rates). This was not observed in our experiments. Indeed Pries et al.

[33] explicitly fit measurements of red blood cell fluxes at the branch points of blood vessels,

and parameterized the amount of phase separation that occurred. When we applied their

model to the zebrafish microvasculature, only minute variations in hematocrit were predicted

between different SeAs (see S1 Text and S1 Fig).

Fig 2. Measured cell fluxes in real zebrafish embryos are almost uniform across all microvessels. (A) Measured fluxes in 6 4dpf

zebrafish. Box-and-whisker plots show the mean measured fluxes for all 6 zebrafish, while the gray region is the envelope produced by

bootstrapped regressions of flux against Se No., which is a numbering of Se vessels starting from the rostral trunk. (B) A model

incorporating tuned occlusion strength (black curve) agrees well with the data from a single 4dpf zebrafish (black circles), see Results,

Tuning occlusive effects . . .. Bars: standard deviation on flux.

https://doi.org/10.1371/journal.pcbi.1005892.g002
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By contrast, we observed large feedback effects within the SeA, i.e. the presence of a red

blood cell reduces the flow in the vessel and hence the entering probability of the next cell. We

individually tracked red blood cells in a single 4dpf zebrafish, and plotted the inter-entry inter-

vals, i.e. the times between consecutive red blood cells entering each vessel, condensing data

from all SeAs since all vessels have the same approximate rate of blood cell entry (see Fig 3). In

the absence of feedbacks, we would expect the inter-entry times to be distributed randomly,

i.e. as an exponential random variable. Our red blood cell tracking shows that a single red

blood cell passes through an SeA in a mean time of 0.3s. Inter-cell entry intervals larger than

0.3s (i.e. cell entries into unoccupied SeAs) were distributed exponentially (see the inset to Fig

3). However, inter-entry intervals less than 0.3s were not exponentially distributed, and we saw

far fewer cells entering vessels less than 0.3s apart (i.e. while the vessels were already occupied

by other cells) than would be expected based on the exponential distribution (Fig 3, main

panel). In fact we found that inter-entry intervals less than 0.3s were approximately uniformly

distributed. These observations are suggestive of a negative feedback mechanism, whereby

entry of a red blood cell into an SeA reduces for some time afterward the probability of another

red blood cell entering the same SeA.

We tested for statistical support for the presence of negative feedback by two methods.

First, we extrapolated the exponential fit for time intervals greater than 0.3s to estimate the

number of cells that should enter the SeA between 0 and 0.3s, if cell entries into SeA were inde-

pendent events. For the zebrafish trunk data this amounted to 533 cell entries, compared to

the 261 actually observed, and the difference in statistically significant by the Fisher’s exact test

Fig 3. Red flood cell flows in the real intersegmental artery network are affected by feedbacks, as

shown by a significantly lower fraction of red blood cells entering the same vessel within 0.3s of each

other. Shown: Distribution of inter-entry times for cells entering all 12 SeAs. In the absence of feedbacks,

inter-entry times will be exponentially distributed (black curve), while real inter-entry times follow an

exponential distribution only when cells enter the vessel more than 0.3s apart, and have uniform distribution

when cells enter the vessel within 0.3s of each other (black star curve). Inset: The semi-log plot of the linear-

exponential distribution (black curve) fits well to the data (gray dots) above 0.3s, showing the exponential

distribution when the inter-entry time is long enough for the first cell to leave the vessel. We bin the inter-entry

time intervals into 0.1s bins which is the typical time resolution of our videos.

https://doi.org/10.1371/journal.pcbi.1005892.g003
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(p = 3.9 × 10−22 against independence). Secondly, we fit the distribution of cell entry times

directly, to compare an independent model with an exponential probability density function

(pdf), with a model in which the feedbacks were modeled by a composite pdf, with uniform

probabilities for inter-cell entry intervals less than 0.3s, and an exponential pdf for cell entry

intervals greater than 0.3s. The Akaike Information Criterion score corrected for small samples

(AICc) [56] for the composite pdf was 4.02 × 103, whereas the AICc for the pdf assuming inde-

pendence was 4.07 × 103, supporting the inclusion of feedback effects.

In mammals red blood cells must squeeze through narrow capillaries. Passage through

these narrow vessels is facilitated by specific cellular adaptations—cells are un-nucleated, and

have a biconcave shape, assisting cell deformation. By contrast zebrafish red blood cells are

almost spherical and are nucleated. However, since the diameters of SeAs are closely compara-

ble to red blood cell diameters (both 6 μm), we speculated that zebrafish red blood cells may

also fit tightly within the SeAs. We directly measured these dynamics by measuring the depen-

dence of the velocity within a SeA upon the number of red blood cells contained in the vessel

(see Materials and methods). Velocities within each SeA are affected by the phase of the cardiac

cycle as well as by nonlinear cell-cell and cell-wall dynamics [57, 58], so there is large variability

in these velocities, and pressures are also affected by changes in conductances throughout the

network (Fig 4A). However, in each vessel we found that 1/v increased linearly with the num-

ber of cells, n, consistent with the model for occlusion in Eq (1). In physical terms, when a cell

travels through a vessel, it almost blocks the vessel. Because a large pressure difference must be

maintained over the cell to push it forward through the SeA, flow within the vessel slows, so

that fewer red blood cells enter a vessel once it contains a cell.

We measured the occlusive effect within each SeA, i.e. the parameter αc in Eq (1) by fitting

the slope of the graph of 1/v against n (see Fig 4A). The intercept of the graph is given by the

speed within the SeA when it contains no red blood cells. We get that speed from the model of

flow without occlusive feedbacks, described above, so there is only one free parameter to be

estimated for each SeA. Eq (1) represents a form of non-Newtonian rheology, since it gives

that the resistance of each vessel increases as hematocrit (i.e. n) increases. The parameter αc

Fig 4. Occlusion of SeAs by cells feeds back onto the flow through the SeA. (A) Eq 1 predicts that the reciprocal of cell

velocity increases linearly with the number of cells in each Se vessel. Displayed: data from the 9th Se artery (Boxplot) and

regression to determine feedback per cell, αc (curve). The y-intercept is determined from the theoretical plasma velocity in a

network with no cells. For data from other Se arteries see S1 Text and S2 Fig. (B) Measured αc values decrease from first to

last Se artery. Gray line: linear regression of αc against Se vessel index. Bars: 95% confidence intervals calculated by those

of linear regressions.

https://doi.org/10.1371/journal.pcbi.1005892.g004
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represents the intrinsic resistance per cell [34, 35, 37, 38], and it depends on the relative size of

the cell and SeA (i.e. how tightly the red blood cell must be squeezed to travel along the vessel),

cellular deformation due to elastohydrodynamic effects [32], as well as upon the surface chem-

istry of both. In particular, [34] built a physically informed model of cells moving through a

narrow vessel, including both cell deformation, and interactions between the cell and the vessel

glycocalyx: a polymer brush that covers and lubricates the endothelial lining of the vessel. They

found that αc is highly sensitive to biophysical parameters: the thickness of the glycocalyx layer

and its porosity (i.e. to the concentration of polymer), as well as to small changes in vessel

radius.

To assay the potential for controllability for the occlusive effect, αc, we measured αc inde-

pendently in each of the twelve SeAs, in all cases by fitting the data for the dependence of 1/v
upon n (see S1 Text for more details of the fit). The experimentally measured occlusion

strength decreased from first to last SeA (Fig 4B), over a range of αc = 3.0 × 10−7 * 2.8 × 10−5

g/μm4 s. In physical terms, red blood cells occlude closer vessels to the heart more than distal

vessels. These values are consistent with the range given in Secomb et al.’s model [34] in

which αc could range from αc = 1.8 × 10−7 to 1.6 × 10−5 g/μm4 s. Our measurement of αc also

agrees with an earlier theoretical model of Secomb et al.’s which did not consider glycocalyx

(αc = 4.7 × 10−7 * 3.8 × 10−6 g/μm4 s [37]), a numerical model of Pozrikidis’ which simulated

the time course of cell deformation (αc = 2.4 × 10−7 * 1.1 × 10−6 g/μm4 s [38], as well as an

experimental fit to earlier data (αc = 1.4 × 10−7 g/μm4 s [36])). Note however, that the micro-

mechanical and numerical models of [34, 37, 38] was created for mammalian red blood cells

in capillaries and must be applied with caution here; indeed glycocalyx parameters have not

been measured in zebrafish. Although the differences between zebrafish and mammalian

RBCs mean that we must allow that the parameters controlling occlusive feedback αc may be

different in zebrafish than in mammalian vessels, the mammalian data generally support the

possibility of tuning feedbacks over a large range of values. The intrinsic resistance αc depends

on many factors, including cell velocity, thickness of glycocalyx layer, and the deformation of

the cell. Here we focus on the effect of αc on the partitioning of the cells rather than the

detailed mechanism that causes the variation.

Tuning occlusive effects between different micro-vessels uniformly

partitions red blood cells

We simulated around 17 min of red blood cell flow through the zebrafish vascular network,

assuming the same occlusive effect for every microvessel, using a discrete model in which

every red blood cell trajectory was tracked and in which vessel resistances were modeled

using Eq (1) (see Materials and methods) using the same occlusive feedback parameter

(αc = 1.01 × 10−6 g/μm4 s) for each vessel. The model continued to predict that red blood cell

fluxes within vessels decrease exponentially with distance from the heart (Fig 1C). This can be

rationalized as follows: If αc is identical between intersegmental vessels, and phase separation

is assumed to be negligible, then the model predicts that the resistance of each vessel will

increase on average from the value given by the Hagen-Poiseuille law by αc �Hct � V/Vc, where

V is the volume of the vessel, Vc is the volume of a single cell and Hct is the hematocrit. The

approximate model derived in Results, Absence of occlusion . . . demonstrates that variation in

SeA length from head to tail of the zebrafish contribute very little to partitioning of red blood

cell fluxes between SeAs, so changing the resistance of each vessel by an amount simply pro-

portional to its length, will similarly not prevent exponential decay of red blood cell fluxes.

The potential effect size of including occlusive feedbacks is much larger than the effect of

phase separation: predicted red blood cell flux decreased by a factor of more than 7 in the
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phase separation model (see S1 Text). We therefore hypothesized that varying occlusive effects

between different SeAs may uniformly distribute red blood cells through the network. To

probe how variations in occlusive feedback could be used to control the distribution of red

blood cells, we studied a reduced model of the vascular network (readers who are mainly inter-

ested in simulation results may skip this analysis by going straight to Observed variation
in . . .). Specifically, we built a mean field model for the flows in a model network including

only the first and last SeAs, as well as the direct connection between the DA and PCVs (the

labeling of vessels and branching points is shown in Fig 5A). In each vessel the cells were

assumed to be well-mixed and cell fluxes are divided in proportion to flow rates at all nodes.

Then the hematocrit will be the same in all vessels. For simplicity we express our equations in

terms of the concentration of red blood cells (number / volume), ρ, rather than the hematocrit.

ρ and hematocrit (Hct) are simply related by ρ = Hct/Vc where Vc is the volume of a cell. Let Ri
be the modified resistance of the ith vessel according to Eq (1). Then by applying Kirchoff’s

first law at the branching points at which first and second Se vessel branch off from the aorta,

we obtain the pressures at these points, i.e. p1 and p2:

F ¼
p1 � p2

R1

þ
p1

R2

;
p1 � p2

R1

¼
p2

R3

þ
p2

R4

; ð4Þ

Here F is the total flux of blood into the network, and we can solve Eq (4) by linear algebra (see

S1 Text). Of particular interest is is the ratio of fluxes in the two Se, which measures how uni-

formly the different vessels are kept supplied with cells:

Q4

Q2

¼
R20
þ V2ra2

R40
þ V4ra4

1þ
R1

R3

þ
R1

R4 þ V4ra4

� �� 1

ð5Þ

Here α2, α4 are respectively the values of αc in the first and last SeA, R20
, R40

are the resistances

of the two SeAs in the absence of red blood cell occlusion, and Vi is the volume of vessel i.

Fig 5. A reduced vascular network model shows that occlusive effects need to be varied between SeAs, and exposes

trade-offs between flow uniformity and transport efficiency. (A) Diagram of the reduced model of the network showing vessel

lengths li, fluxes Qi, and radii ri. (B) Increasing the occlusion strength α2 increases flux uniformity, measured by the ratio of fluxes in

the last and the first Se (black curve), but also increases dissipation (gray curve), if the total flux through both Se vessels is

maintained.

https://doi.org/10.1371/journal.pcbi.1005892.g005

Optimal occlusion and uniform partition of RBC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005892 December 15, 2017 14 / 22

https://doi.org/10.1371/journal.pcbi.1005892.g005
https://doi.org/10.1371/journal.pcbi.1005892


Most of the parameters in Eq (5) are tightly constrained: the dimensions of the two Se vessels

are similar (in fact R20
� 2R40

and V2� 2V4), moreover, since the vessel network extends dur-

ing development and supplies the tail fin in adult zebrafish [59, 60], the aorta must maintain

approximately the same radius along its length, leading to R1� 11R3. Thus the second factor

of Eq (5) 1þ
R1

R3
þ

R1

R4þV4ra4

� �� 1

has an upper bound 1

12
. Therefore the only parameters that can

be used to increase Q4/Q2 (i.e. eliminate short-circuiting of the network by the first SeA) are

the relative sizes of α2 and α4. Q4/Q2 is largest if α2� α4, i.e. if occlusion effects are stronger in

the first SeA. Thus uniform flow requires stronger occlusion in vessels close to the heart, con-

sistent with experimental observations in real zebrafish (Fig 4B).

However our reduced model also shows that varying occlusion strengths between vessels

creates trade-offs between uniformity and the transport efficiency, measured by the dissipa-

tion:

Dnetwork ¼
8mwb

pr4
a

ð‘1Q
2

1
þ ‘3Q

2

3
Þ þ

8mpl

pr4
c

ð‘2Q
2

2
þ ‘4Q

2

4
Þ

þrðQ2
2
V2a2 þ Q2

4
V4a4Þ:

ð6Þ

(See S1 Text for derivation). Here ℓi is the length of the ith vessel, ra is the radius of the DA,

and rc is the radius of the Se vessels. To compare equivalent networks as we vary α2 we also

vary F, the total flow into the trunk, to keep the total flux through the pair of Se vessels

(Q2 + Q4) constant. Dissipation in the thin layers of fluid surrounding each RBC dominates

Dnetwork, so as α2 increases Dnetwork increases. The highest ratios of Q4/Q2 are therefore also the

most dissipative networks (Fig 5B).

Observed variation in occlusive effects optimizes uniform distribution of

red blood cells

We modified our simulation from Results, Tuning occlusive effects . . . to incorporate the

observed variations in occlusive effects; i.e. using the different measured values of αc in each

vessel. We used the regressed data (gray line in Fig 4B) to capture the decreasing trend of αc
from head to tail. When vessels were assigned the experimentally measured values of αc, red

blood cells became uniformly distributed between SeAs, and matched closely to the real flow

observations (see Fig 2A and 2B).

Are the measured variations in occlusive effects really evidence of adaptive tuning of the

zebrafish cardiovascular network, or could they arise from incidental changes caused for

example by the different ages of vessels at different distances along the trunk? New SeAs are

progressively added to the trunk at the tail of the zebrafish as the trunk elongates, and we

wanted to evaluate the alternate hypothesis that the younger vessels farther from the heart had

lower occlusive effects simply because they have a thinner glycocalyx coating, or else because

structural adaptation of vessels to the flows through them may tend to reduce vessel radii over

time [61]. Although neither alternate explanation can be totally ruled out, we were able to test

how close the observed distribution of occlusive effects is to one that optimizes the uniform

partitioning of red blood cell flows between vessels. Specifically, we ran discrete cell simula-

tions of flow within the network for different distributions of occlusive effects: that is, we var-

ied Δαc, defined to be the difference in αc between the first and last SeAs, assuming a linear

variation of αc in the intermediate vessels. For each model network, we calculated the coeffi-

cient of variation (CV) in the red blood cell flux, i.e. the standard deviation in red blood cell

flow rate over all vessels, normalized by the mean flow rate. Smaller values of CV correspond

to a more uniform distribution of red blood cell flows. Using discrete cell simulations, i.e.
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tracking every cell trajectory, produces more accurate estimates of red blood cell fluxes in prin-

ciple than the continuum modeling from Results, Tuning occlusive effects . . ., because cell

number fluctuations within each SeA are comparable to the mean number of cells. Since the

change in resistance of a vessel depends on the number of cells in the vessel according to Eq

(1), the distribution of red blood cell flows for a given distribution of occlusive effects depends

on hematocrit. Accordingly, we varied both hematocrit and occlusive effect distributions inde-

pendently in our simulations. We found for any fixed hematocrit, near uniform flux (CV close

to 0) can be achieved only over a narrow range of Δαc (Fig 6A). Too little difference in intrinsic

resistance between first and last SeAs, and the first SeA short-circuits the network, as discussed

in Results, Absence of occlusion . . .. But too large a difference in occlusive effects can have the

opposite effect, leading to the vessels furthest from the heart receiving more flow than vessels

closest to the heart. The optimal distribution the occlusive effects is realized along a single

curve in (Δαc, ρ) space. We found that the observed occlusion effect distribution is close to the

optimal value for the real zebrafish hematocrit [43] (Fig 6A).

Discussion

Our work shows that feedbacks associated with the occlusion of fine vessels by the red blood

cells that pass through may be associated with previously unreported adaptive benefits for con-

trol of blood flows within the microvasculature. Although the existence of occlusive feedbacks

is well known [54, 58, 62, 63], to our knowledge they have not previously been shown to be

associated with adaptive benefits for oxygen perfusion. Although our experimental observa-

tions and modeling are focused on zebrafish, which are a model for vascular development, it is

likely that similar feedbacks are significant within mammalian microcirculatory systems,

where the deformation of cells to pass through capillaries is, if anything, even more extreme

Fig 6. Tuned occlusion strengths uniformly distribute flow across different Se vessels. (A) Dependence of flux uniformity upon

controllable parameters is explored by allowing blood cell concentration, ρ, and difference in occlusive effects between first and last Se

vessel, Δαc, to vary independently and computing the coefficient of variation (CV) for flow through all Se vessels. Flux uniformity is achieved

only within a narrow manifold of values of blood cell concentrations and occlusive effect differences. The empirical values (red dot) lie close to

this optimal manifold. (B) Higher uniformity can be achieved if blood cell concentration is decreased (moving leftward from the red dot) but at

the cost of increasing dissipation. Transport costs are reduced if Δαc is decreased (moving downward), and can be reduced by 11-fold if there

is no difference occlusive effect between different Se arteries but at the cost of reducing uniformity of RBC fluxes. Colors show CV values

from (A) and white curves show level sets of dissipation; the dissipation is normalized by its value in the real zebrafish.

https://doi.org/10.1371/journal.pcbi.1005892.g006
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than in the zebrafish. Indeed the apparent intrinsic resistance of cells in human blood vessels

has a wide range of variability [34, 37], and precise tuning of blood flows is already known to

be vital e.g. to maintain perfusion-ventilation balance in the lungs [64–66]. The proposed

occlusion feedback mechanism may be able to explain the variation of capillary blood flow and

how it affects the ventilation-perfusion ratio, as well as blood flows in other vascular systems

such as brain capillary network.

Capillary networks have been hypothesized to be organized to minimize the cost of blood

transport [12, 13]. Although large vessels seem to conform very closely to this organizing prin-

ciple [13, 24], the tuning of occlusive effects to uniformly distribute red blood cell flows takes

the zebrafish vascular network far from the configuration that minimizes transport costs. In

particular, at the physiological hematocrit, if the same (smallest) occlusive effect, αc, is assigned

to each vessel then the dissipation in the network could be reduced by a factor of 11 (Fig 6B).

At the same time, more uniform partitioning of cell fluxes between different SeAs (i.e. a lower

value of the Coefficient of Variation of red blood cell flow rates) is possible but altering physio-

logical parameters further decreases the transport efficiency. For example decreasing blood

cell concentration, ρ, increases uniformity of flux, but at the cost of increasing dissipation if

the total cell supply to all Se vessels is to kept fixed (Fig 6B).

The ability of SeAs to vary the occlusive effect αc over three orders of magnitude is consis-

tent with previous modeling of red blood cell and microvessel mechanics, and endows the net-

work with tremendous control over red blood cell flow rates. It is natural to ask whether and

how uniform red blood cell flux partitioning can be maintained against the numerous sources

of perturbation that occur in real cardiovascular networks. Microvascular networks may be

disrupted by trauma, micro-anneurysms, or by systemic conditions like diabetes mellitus [67–

70]. As a first step toward answering this question, we considered the effect of well-character-

ized natural variability in SeA spacing [48], and of the notch mutation which alters the trunk

network connectivity [71] upon the ability of the network to uniformly distribute red blood

cell fluxes. We found that under a wide range of vessel spacing variability, red blood cell fluxes

remained uniform across all SeAs (see S1 Text and S3 Fig). Indeed vessel spacing variability

has no detectable effect on zebrafish growth and maturation. By contrast, in notch mutant zeb-

rafish the cardiovascular network is malformed, with a shunt connection forming between

aorta and principal cardinal vein (S4 Fig). Since the diameter of the shunt is much larger than

the cell diameter, there is negligible occlusive feedback within the shunt, causing it to irrepara-

bly short-circuit the vascular network. Shunt formation is lethal in embryos, and our model

shows that it creates conditions under which uniform perfusion of the trunk is impossible.

Note however that mechanisms not described in the model can still play significant roles in

both developmental process and mutant network phenotypes. For example in the gridlock
mutant [51] the blood flow to the tail is impeded by a localized vascular defect, but the collat-

eral vessels not present at 4dpf was observed to redirect the flow around the blockade and res-

cue the embryo. During the development process both the number of vessels and size of

zebrafish embryo change dramatically. Therefore we expect an observable change in occlusive

feedbacks to maintain uniform cell partition throughout the developmental stages. Extending

our analysis to include the topological changes observed as embryonic zebrafish develop [51]

is an ongoing effort.

Although we are able to directly demonstrate that occlusive feedbacks vary between differ-

ent the SeAs, and this variation is consistent with optimization of feedback strengths to ensure

uniform distribution of red blood cells across trunk vessels, our model cannot reveal what

physical changes within vessels are used with the zebrafish network to modulate the occlusive

effect. In our experiments we cannot visualize the glycocalyx lining of the SeAs, and in fact

we are aware of no previous works in which glycocalyx was measured in blood vessels
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simultaneously with flow. However, previous studies have reported large variations in glycoca-

lyx porosity and thickness between different vessels [32, 72]. Since cells must squeeze into

SeAs, variations in vessel radius below the resolution limit of our microscopy method could

also account for the variation in occlusive effect. Finally elastohydrodynamic effects associated

e.g. with changes in the speed of cells, [32], may affect feedback models. The analysis is also

silent on the mechanisms for coordinating occlusive effects across the network. Recent works

have dissected structural adaptations in microvascular networks [61], as well as in biological

transport networks generally [73–75]. These works have focused on the question of how a set

of vascular elements that have information only about their own flows can alter their resis-

tances in response to these cues to minimize dissipation within the network. This question is

directly relevant to other objective functions i.e. to networks that maximize uniformity rather

than maximizing hydraulic efficiency—can vessels adapt their occlusive effects to the their

flow to achieve uniform red blood cell transport?

The use of tuned occlusive effects creates uniform distribution of red blood cell fluxes

through the zebrafish vascular network, but at the cost of increasing transport costs. Indeed if

the network simply used the same value of αc in every SeA we found that an 11 fold decrease in

transport costs would be possible within the zebrafish trunk vasculature (Fig 6B). Physically

feedbacks from occlusion represent a form of congestion, and efficient transport networks,

both natural [76] and artificial [10, 11], are often organized to avoid congestion. Previous

works have provided algorithms for constructing minimally dissipative networks given a pre-

scribed set of sources and sinks [22, 23]. Our work suggests that other optimizing principles

may govern microvascular network organization. Extending network optimization algorithms

to include flow uniformity is likely to further reveal the tradeoffs between uniformity and

efficiency.
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