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Abstract

Geometrical Frameworks for Wireless Access in Large Scale Multi-Antenna Networks

Explosive growth of mobile networking and IoT demands efficient and reliable service for

massive wireless systems. With limited radio resources, multi-input-multi-output (MIMO)

technologies are successfully utilizing spatial diversity to substantially improve spectral effi-

ciency. When considering large scale deployments, managing radio resource is more impor-

tant than ever to service all these devices with appropriate quality of service. Moreover, in

the context of performance-constrained, low-complexity devices, there is a clear need for new

approaches that yield good performance with appropriate computational complexity. In this

dissertation, we study such large scale networks from a geometric perspective, in order to

better manage the networks’ limited resources and mitigate co-channel interference in two

key scenarios: when the multi-antenna servicing node is unaware of which devices are active

(uplink access control); and when it does know all active devices (user scheduling).

In the first part of this dissertation, we tackle the problem of uplink grant-based access

via blind signal recovery. Different from traditional grant-free access mechanisms that use

pilot signals for signal separation, we propose two blind approaches based on the Constant

Modulus Algorithm (CMA) for simultaneous multiple signal recovery: a regularized CMA

cost function, and a Riemannian manifold optimization framework. By characterizing the

underlying geometry of these formulations, we provide theoretical convergence guarantees

for CMA-based signal recovery with limited data samples. The resulting algorithms provide

successful signal recovery with high probability and reasonable computational load.

On the other hand, user scheduling is a combinatorial, NP-hard problem that has been

long eluded optimal solutions. In MIMO networks, users groups with low co-channel inter-

ference correspond to groups that show high spatial channel diversity. In the second part

of this dissertation, we propose a new two-step paradigm for MIMO user scheduling. First,
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unsupervised learning identifies which devices experience similar channel conditions (i.e., low

spatial diversity) and would incur high co-channel interference if they were to share resources.

By clustering in the Grassmannian manifold, spatial similarity is inherent to the geometry

and is easily computed in a global sense. We then leverage these learned features to assign

users into low CCI groups that avoid pairings of users from the same cluster. The resulting

similarity-assisted scheduling yields increased spectral efficiency and better user quality of

service across design parameters for large number of users, compared to a direct scheduling

mechanism.
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Chapter 1

Introduction

Recent advances in next generation networking technologies are poised to ubiquitously con-

nect the full spectrum of sensors, devices, and computers to facilitate future development

of smart cities and smart agriculture, among other applications [1]. These exciting de-

velopments, known collectively as Internet of Things (IoT), promise significant benefits in

a plethora of fields including health care, farming, environmental science, infrastructure,

energy efficiency, transportation, safety and sustainability. Such applications envision the

deployment of a massive number of wireless devices, with billions being connected globally

[2, 3], and demand ever higher spectrum efficiency over the limited bandwidth resources.

A typical IoT application involves sporadic communications between a significant number

of transceivers, triggered by external events, in order to save energy. This prompts the need

for low-latency communications and the ability to support these links with performance-

constrained transceivers, in particular in terms of bandwidth efficiency. Multiple-input-

multiple-output (MIMO) technologies have been playing a central role in achieving high

network throughput and spectrum efficiency [4] for both uplink and downlink links. In

uplink multiple access channel (MAC), classical multi-user detection (MUD) receivers such

as the maximum-likelihood, decorrelator, MMSE receivers and variants support simultaneous

recovery of multiple signals sharing the same physical resource [5–13]. Similarly, broadcast
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(BC) enables shared spectrum and high efficiency in downlink [14].

The rapid growth of data applications worldwide continues to fuel the tremendous growth

rate of wireless communication networks in areas such as transportation, environmental mon-

itoring, robotics, and smart cities. In the Internet-of-Things (IoT) era, tens of billion wireless

communication devices will be connected around the globe [2,3]. The massive deployment of

wireless devices and the accompanied data traffic eruption shall pose important technological

challenges, such as ubiquitous connectivity and ultra-high spectral utilization.

In this dissertation, we focus on the problem of servicing devices efficiently in such large

scale networks, tackling their inherent challenges. We consider centralized networks where

one base station (BS) with multiple antennas provides services to a large number of single-

antenna devices. Here, we recognize two scenarios depending on the activity level of the

devices.

In the case of low-activity devices, they attempt to communicate with the BS sporadically,

without a set timing, and thus the BS does not know which devices are active at any given

time. In this scenario, the BS attempts access control to detect and recover the unknown

transmitted signals. Conversely, when we consider very active devices, network coordination

is a must, and the BS is aware of all the active devices with grant-based access. Here, the

BS performs user scheduling to service the active devices with its limited resources.

1.1 Access Control

First and foremost, in order to transmit information to users (downlink), the BS would

“ping” the users to know which users are able to receive a message. Hence, in this operation

mode the BS is always aware of the active users, and there is no need for access control.

In other words, the problem of access control is only relevant in uplink operation, i.e., an

unknown number of users transmitting signals simultaneously to the BS.

Generally, access control in wireless networks is based on either random access (e.g.,
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WiFi) or centralized access (e.g., cellular). Contention based random access schemes, such

as the CSMA-CA protocol adopted in IEEE 802.11a/g/n/ac, possess the advantage of sim-

plicity but suffer from lower spectrum efficiency due to access collision when the number

of active devices is large. Centralized access can achieve high spectrum efficiency but re-

quires elaborate network-user interaction and higher energy consumption. As a typical IoT

application involves sporadic communications of small amounts of data between a signifi-

cant number of transceivers, triggered by external events, such systems are better served by

low-latency and grant-free communications.

In grant-free access, multiple unscheduled signal transmissions could collide at receivers

[15]. Traditional solutions use training or pilot sequences that allow the recovery of multiple

signals at the BS with minimal interference, by either exploiting spread-spectrum or joint

multi-user detection [16,17]. However, these approaches require accurate CSI to mitigate co-

channel interference, and thereby require significant pilot overhead for synchronization and

channel estimation. Such extra overhead can be significantly expensive in terms of energy

consumption and bandwidth resources when data packets are short, as in IoT applications.

Furthermore, as the number of devices increases, so does the pilot sequence length, exac-

erbating the pilot overhead problem. Clearly, for IoT applications involving large number

of devices in grant-free applications, the burden on both spectrum and power [18] strongly

motivates the investigation and deployment of blind signal receivers, which do not require

known pilot or pilots for channel probing and rather exploit high-order statistics and known

characteristics of source signals.

In the first part of this dissertation, we focus on the technical challenge of enabling

grant-free access in massive wireless networks via blind signal recovery. Usually posed as

(non-convex) optimization problems, we leverage recent advances in non-convex optimization

from a geometrical perspective and provide convergence guarantees for blind source recovery

in a finite-sample regime. Furthermore, we extend this approach to guarantee multiple sig-

nal recovery without regularization by means of redefining the search space as a Riemannian
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manifold. Our findings show that these problems enjoy a benign geometry and are mathe-

matically well-conditioned, and as such are an attractive option to enable grant-free access

in large-scale deployments.

1.2 User Scheduling

In a different scenario, now the BS is aware of the active users and knows their channel state

information (CSI). Hence, the BS will exploit CSI with MIMO techniques to improve spec-

trum efficiency. However, their performance depend critically on which users are allocated

into resource-sharing user groups (RSGs). The ultimate goal of user scheduling is to assign

users into RSGs such that more users can share resources with little mutual interference

[19] without sacrificing performance in terms of e.g., sum-rate, capacity, outage probabil-

ity, among others. In other words, user scheduling aims to identify co-channel users with

minimal or controlled co-channel interference (CCI).

In MIMO systems, CCI depends directly on spatial channel diversity among users [20,

21], i.e., on CSI similarities. In other words, the co-channel user CSI vectors must exhibit

sufficient linear independence [22,23]. To effectively mitigate CCI within MIMO user groups,

one needs to assess for each possible co-channel MIMO user group their spatial diversity based

on updated user CSIs. Given a large number of serviced devices N and increasingly large

number of base-station antennasM , the number of user scheduling options is of combinatorial

order and grows exponentially. Thus, to optimally schedule users in resource-sharing groups,

one needs to examine the CSIs of each possible user grouping among potentially very large

number of users in e.g., the thousands.

To this end, we develop a new dual-step approach based on unsupervised learning for

user scheduling. We first leverage unsupervised learning to identify users with highly similar

CSIs. To properly identify spatial CSIs that lead to large co-channel interference (CCI), we

map user CSIs to a complex Grassmannian manifold during learning. On this manifold,
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distances between CSIs relate directly to their spatial correlation, i.e. spatial diversity. We

can apply any solid clustering algorithm over this geometry to cluster users that can generate

high mutual interference. Our second step schedule co-channel diversity users in MAC or

BC systems by barring user groups with highly similar CSIs from Grassmannian manifold

clustering. Applicable to any well established performance metrics such as maximum sum-

rate or maximum signal-to-interference-and-noise ratio (SINR), our proposed MIMO user

scheduling can improve spatial diversity and effectively mitigate co-channel interference.

1.3 Notations

In the following, vectors and matrices will be denoted with small and capital boldface letters,

such as z and Z respectively. Sets are denoted with calligraphic capital letters. For a

complex scalar a, we use Re(a), Im(a), a, |a| and ∠(a) to denote its real part, imaginary part,

complex conjugate, magnitude and angle, respectively. The transpose, element-wise complex

conjugation and conjugate transpose are denoted by (·)T, (·) and (·)H, respectively. The

Hermitian and skew-Hermitian parts of a matrix Z are denoted as herm(Z) = 0.5(Z +ZH)

and skew(Z) = 0.5(Z−ZH). The Euclidean norm of vectors and spectral norm of matrices is

denoted by ∥·∥, and the Frobenius norm of matrices is denoted by ∥·∥F . diag(z) represents a

diagonal matrix that uses elements of vector z on its diagonal.The Kronecker product and the

Hadamard (element-wise) product are denoted as ⊗ and ◦, respectively. 0k and Ik represent

the zero vector and the identity matrix of size k, respectively. We use A ⪯ B and C ⪰ D to

denote that B −A and C −D are positive semidefinite matrices, respectively. |S| denotes

the size or cardinality of a set S. O(·) denotes the order of complexity of an algorithm or

problem. The abbreviation ”i.i.d.” stands for independent and identical distributed random

variables, and E{·} denotes expectation. Finally, 1[expr ] is the indicator function, that is

equal to 1 if expr is true, and 0 otherwise.
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Chapter 2

A General Model for Large-Scale

Networks

In this chapter, we develop the system model that will be used for the rest of this dissertation.

We first present a general framework describing large-scale networks in the context of our

investigation, and then address particular details and the state of the art for both access

control and user scheduling.

2.1 System Model

Figure 2.1 depicts a wireless system with a single BS with M receiver antennas and N

single-antenna users, that could be operating in either uplink (MAC) or downlink (BC).

In the context of large-scale MIMO networks, we assume N ≫ M . We further assume a

single-carrier system throughout this dissertation, although the extension to multi-carrier

systems is well-known and fairly straightforward.

Part of this chapter is reprinted, with permission, from [C. Feres and Z. Ding, “Wirtinger Flow Meets
Constant Modulus Algorithm: Revisiting Signal Recovery for Grant-Free Access” in IEEE Transactions on
Signal Processing (Early Access), Aug. 2021] and followup modifications for final publication. Notations
may have changed for consistency throughout this dissertation. Other parts have been previously submitted
in different works to IEEE Transactions on Signal Processing and IEEE Transactions on Wireless Commu-
nications.
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Figure 2.1: Illustration of a large-scale network. Devices deliver (MAC, blue) or receive (BC,
green) independent signals simultaneously on the same time-frequency resource.

Note that due to the very nature of spatial diversity, up to M users using the same

resource can be independently served in downlink or uplink. Although methods such as

successive interference cancellation (SIC) could help in servicing more users at a time, they

are constrained by operation conditions (such as a significant power gap between signals),

back-and-forth coordination and overhead (such as power control) and transceiver complexity

(which is limited in IoT devices), and hence will not be considered in this dissertation.

In the following, we shall denote the uplink wireless MIMO channel as a complex matrix

H of appropriate size, whose elements correspond to the transmitter-receiver antenna pairs

formed by active devices and the BS. We assume a flat-fading channel that has no inter-

symbol interference (ISI) during the link. As a single-carrier system, channel reciprocity

ensures that the corresponding downlink MIMO channel matrix is HT. The transmitted

signal corresponding to user u will be denoted by su[k], where k indicates the k-th symbol.

xm[k] denotes the k-th symbol of the received signal (at the m-th BS antenna in the case of

uplink), corresponding to the mixture of all transmitted signals through the MIMO channel.

Finally, we use y for the processed received signal, whose subindex will denote either the

user (in downlink) or the recovered signal stream (in uplink).
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2.2 Blind Grant-Free Access

In uplink grant-free access, multiple signals could collide at the BS. In IoT applications, the

energy and bandwidth consumption due to significant pilot overhead is undesirable, and we

opt instead for blind signal recovery techniques.

Blind equalization has been a staple idea in terms of achieving this goal by diminishing

the impact of pilots or preambles, aiming to reduce their impact in the overall bandwidth

efficiency. Among blind equalization algorithms, the Constant Modulus Algorithm (CMA)

presented by Godard [24] in the 1980s is often considered the most widespread technique

due to its computational simplicity and practical effectiveness [25, 26]. We shall introduce

the signal model for CMA-based signal recovery, and the current state of the art in solving

the CMA formulation.

2.2.1 CMA-based Blind Signal Recovery

We consider the signal recovery of multiple users in one access group in a grant-free access

system, as depicted in Figure 2.2. In particular, all potential uplink users in each access

group have acquired network timing such that their uplink transmission bursts would span

one given set of receiver time slots. Users in each designated access group may randomly

transmit within their shared channel in terms of allocated resources. Appropriate coding

and rate-matching is utilized by all source nodes to have equal number of data symbols K

within each access group and burst. Furthermore, we design systems such that with very

high probability or certainty the number of single-antenna active nodes L shall fall below the

number of diversity antennas M at the receiver node. In particular, the receiver node does

not necessarily know L. Since the BS recovers multiple user signals during blind demixing

without prior knowledge of their identities, the receiver can utilize user-ID scrambled CRC

to check which recovered user signal belongs to which user, similar to the blind detection of

PDCCH by users using RNTI-scrambled CRC in LTE or 5G [27,28].
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Figure 2.2: L active sources (shaded gray) share a common resource block and transmit
independent signals to the base station with M antennas through an unknown physical
channel.

To summarize, we define the received signal vector xk, the transmitted signal vector sk,

and the flat fading channel H , respectively, as

xk =


x1[k]

...

xM [k]

 , sk =


s1[k]

...

sL[k]

 , H =


h11 · · · h1L

...
. . .

...

hM1 · · · hML

 . (2.1)

Then the received signal vector at the BS can be written as

xk = Hsk + nk, (2.2)

where the (uplink) MIMO channel matrix H ∈ CM×L is assumed to have full column rank

L (with L ≤ M) and nk ∈ CM is the vector of additive white Gaussian noises (AWGN) in

that resource block, of the same size as xk in Eq.(2.1). Furthermore, and without loss of

generality, we assume that all sources transmit equal average symbol energy Es = E
{
|s[k]|2

}
.

This assumption can be made as the different symbol energies of the sources Es,ℓ can be

included in the channel as H = H ′D1/2, with H ′ modeling only the channel fading across

sources and receiver, and D = diag(Es,1/Es, . . . , Es,L/Es). Furthermore, note that although

this signal model considers non-fading channels, the same formulation can be used for blind

equalization by redefining the signal vectors and channel matrix [26].
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Note that the receiver has explicit knowledge on neither the unknown channels H nor

the number of active sources L, except for the statistical properties and the constellation of

each source signal.

Recovering a Single Source

When attempting to blindly recover one signal, the goal is to adaptively find a demixer such

that its output corresponds to one of the transmitted signals with minimal interference, i.e.

y[k] = wHxk ≈ ŝℓ[k], ℓ ∈ {1, . . . , L}. (2.3)

The problem of blind signal recovery has been extensively studied before. In particular,

Godard [24] proposed what was later known [25] as the constant modulus algorithm (CMA)

to find an optimum w ∈ CM by minimizing the mean CM cost for equalization:

E
{(

|yk|2 −R2

)2}
, R2 =

E{|sℓ[k]|4}
E{|sℓ[k]|2}

, (2.4)

where the constant R2 is computed from the high-order statistics of the source symbols s[k]

to match the input-output constellation scale [24]. It is known that CMA can be applied

to i.i.d. signals using QAM constellations of arbitrary size and magnitude [26]. Moreover,

R2 can be replaced by an arbitrary scalar, e.g. 1, scaling w accordingly, and CMA will still

converge such that its output recovers QAM source signals, without affecting signal integrity.

In batch implementation, the single-source CM cost can be rewritten as

f(w) =
1

2K

K∑
k=1

(
|xH

kw|2 −R2

)2
, (2.5)

which is a smooth real-valued nonconvex function of w. Note that f presents phase invari-

ance, i.e., if ŵ is a solution that minimizes f(ŵ), then the entire set W(ŵ) = {ejθŵ : θ ∈

[0, 2π]} contains equivalent solutions that achieve the same minimum f(ŵ).
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Simultaneous Multiple Signal Recovery

In a more general setting, we are interested in deriving J simultaneous demixers wℓ ∈ CM ,

ℓ ∈ {1, . . . , J} that allow the recovery of J sources with minimal interference, each tuned

to a distinct signal. Without loss of generality, we consider J ≤ L. We can also collect all

demixers as columns of the receiver blind demixing matrix W =
[
w1 w2 · · ·wℓ

]
, such that

yk =


wH

1

...

wH
ℓ

xk = W Hxk =


ŝν(1)[k]

...

ŝν(ℓ)[k]

 , ℓ ∈ {1, . . . , J}, ν(ℓ) ∈ {1, . . . , L}, (2.6)

where the permutation ν(·) highlights that the BS has no prior knowledge of the identities

of the transmitters.

CMA has been adapted in the past for simultaneous recovery of multiple independent

source signals. In these applications, the first step is to define a cumulative demixing cost

consisting of J copies of CM costs, each one using a different demixer:

f(W ) =
1

2K

J∑
ℓ=1

K∑
k=1

(
|xH

kwℓ|2 −R2

)2
. (2.7)

The joint blind demixing problem is to optimize multiple solution vectors Ŵ =
[
ŵ1 · · · ŵℓ

]
that jointly minimize the cumulative CM cost of (2.7). Note that this cumulative CM cost

by itself cannot guarantee that the recovered signals are indeed from different sources. In

fact, even if every one column vector of Ŵ captures the same signal source, the cumulative

CM cost of (2.7) is still minimized and cannot prevent such solutions. For this reason, it is

clear that the cumulative CM cost of (2.7) is non-convex and is in fact multi-modal. There-

fore, when considering simultaneous multiple signal recovery, additional constraints must be

enforced for demixers wℓ, ℓ ∈ {1, . . . , J} to recover different source signals.
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2.2.2 Constant Modulus Algorithm

Among blind equalization algorithms, CMA [24] is often considered the most widespread

blind technique due to its computational simplicity and practical effectiveness, as its inde-

pendence of carrier recovery [26]. It is also well-known that it enjoys global convergence

properties in noiseless scenarios under full rank channel conditions [29].

Traditionally, CMA is implemented using stochastic gradient descent and variations.

However, one of its major issues in its practical applications is the presence of local minima

in the constant modulus (CM) cost function as a result of additive channel noise [30, 31].

The convergence properties of such stochastic gradient descent algorithms have not been

fully understood under limited samples and additive channel noise [26,32,33]. Moreover, the

stochastic gradient descent approach has fundamental tradeoffs and requires finely tuning of

e.g., initialization, normalization and stepsize, for satisfactory convergence and decent speed.

Several works have proposed different approaches that try to overcome these inherent

shortcomings. One interesting approach is the transformation of CMA-based equalization

to a convex problem, via Semidefinite relaxation [34–36], which provides global convergent

solutions in a lifted higher dimensional parameter space that are further projected to the

original solution space. As with any relaxation approach, CMA based on convex relaxation

relies on the expectation that the convex problem yields solutions that can be projected to

near optimum CMA solutions. However, projecting back to the original parameter space

via rank 1 decomposition remains difficult and elusive [37]. Additionally, the problem size

grows polynomially with increasing parameter size of the linear system and multiple users,

and poses severe practical challenges in many scenarios.

Other line of works tries to solve CMA problems analytically [38, 39]. These solutions

and its variants [40,41], have no convergence issues as the solutions are found algebraically.

However, they are more complex in general, and usually require stricter assumptions, such

as constant modulus constellations, and cannot work with general QAM source signals such

as 16-QAM. There are also multistage schemes [42], that depend heavily on the estimation
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error being close to the MMSE estimate in earlier stages, or the error accumulates through

different stages [43].

Moreover, several CMA-based approaches have been proposed to enforce the recovery of

multiple signals at a time. One family of solutions is to consider regularization terms in the

cost function [44–46], which enforce the recovered signals to be uncorrelated. Other schemes

propose to modify the iterate after the gradient descent update, such as performing an

iterative orthogonality enforcement on the combiners [47]. In general, these approaches are

slow, as they require a rather large amount of samples and/or iterations to attain sufficient

interference rejection of all recovered sources.

A new line of research is delivering algorithms to directly solve nonconvex optimization

problems, and have been successfully applied in different domains, such as phase retrieval

[48, 49], matrix completion [50, 51], blind deconvolution [52], among others. These are at-

tractive solutions, as they do not require a prohibitive problem size or approximate relax-

ations, and provide good results with reasonable complexity and sample efficiency. Thus,

these techniques can be better suited for grant-free access in resource limited networks. In

Chapter 3, we adapt these results to the CMA-based signal recovery problem. By applying

the Wirtinger Flow [48], we provide theoretical convergence guarantees in the finite-sample

regime for both single and multiple source recovery, and demonstrate the efficiency of this

methods via numerical simulations.

In a separate line of work, Riemannian manifold optimization [53] has rapidly attracted

interest due to its ability to tackle non-convex problems with reasonable computational cost,

and has been successfully applied to several domains, such as low-rank matrix decomposition

[51], singular value decomposition [54], phase retrieval [55], blind signal demixing [56], dic-

tionary learning [57,58], among many others. In this framework, a constrained optimization

problem in Euclidean space is transformed into an unconstrained problem over a Rieman-

nian manifold, a subset of Euclidean space with nice properties. As the manifold contains

only the interesting search directions for the problem, this approach potentially reduces
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Figure 2.3: N active users (shaded gray) share a common resource block and transmit (MAC,
blue) or receive (BC, green) independent signals simultaneously through a known physical
channel.

computation. Moreover, it can avoid directions of invariance of the cost function, signifi-

cantly facilitating theoretical analysis and direct application of optimization techniques. We

show in Chapter 3 our application of the Riemannian manifold optimization framework to

CMA-based signal recovery. By defining an adequate Riemannian manifold, we provide a

non-regularized approach for multiple signal recovery that enjoys convergence guarantees

with second order methods. Our experiments show excellent signal recovery capabilities

with low sample complexity and computational complexity, and presents the Riemannian

framework as a promising direction to the improvement of grant-free communications.

2.3 User Scheduling

We now consider a user scheduling scenario as depicted in Figure 2.3. We assume that the

BS knows the CSI of all N active devices (also denoted users), and therefore the BS shall

manage user scheduling, in both uplink (MAC) and downlink (BC). We further assume that

the users only know their own CSI.

Without loss of generality, we consider MIMO systems that leverage spatial diversity to

accommodate spectrum-sharing user groups allocated into distinct resources in multiple ac-

cess strategies such as OFDMA and TDMA, among others. As stated before, we impose that

resource-sharing groups (RSGs) shall have at most M users, to ensure linear independence
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of user CSIs within each group.

In agreement with the general model of Section 2.1, hu ∈ CM and hT
u denote the uplink

and downlink CSI vector of the u-th user, respectively, with u ∈ {1, . . . , N}. We assume the

CSIs are random and independent from each other. We let su denote the u−th user data

symbol of zero mean and unit average power, i.e. E [|su|2] = 1. Let G the total number of

groups to be assigned, and let πg,u ∈ {0, 1} indicate whether the u-th user is scheduled in

group g ∈ {1, . . . , G} exclusively, i.e.

πg,u =

 1 the u-th user belongs to group g only,

0 otherwise,
(2.8)

and the set Sg = {u|πg,u = 1, u ∈ {1, . . . , N}} denotes the scheduled user set of the g-th

group with cardinality |Sg|. As the BS manages user scheduling, it also manages the transmit

power allocated to each user, denoted pu.

2.3.1 Uplink (MAC) Model

At the BS, the |Sg| user signals from the scheduled MAC user group g arrive at the BS

receiver through their respective channel responses {hu}u∈Sg , which are then decoded using

a linear receiver Wg such as the MRC, ZF and MMSE receivers [59], to generate the decoded

signal vector

yMAC
g = W H

g

(∑
u∈Sg

hu
√
pusu + ng

)
= W H

g

(∑N

n=1
hu

√
pusuπg,u + ng

)
(2.9)

where ng ∼ CN (0M , σ2IM) represents the AWGN vector corresponding to the resource block

assigned to group g.

15



2.3.2 Downlink (BC) Model

In the case of BC, we operate under equal assumptions. However, the signal model changes

as the single-antenna receivers will experience CCI but will not be aware of the CSI of other

users in the RSG. Furthermore, the received signal and noise are scalars, and the BS uses

a linear, unitary beamforming precoder zu for each user u, which can be selected as the

weighted MMSE [60], MRT [61] or ZF precoder [62] among others. For notational simplicity,

we abuse notation and we use g to also denote the group index of the group that contains

user u. Therefore, the signal model for the signal that user u receives in BC mode with

AWGN nu ∼ CN (0, σ2) corresponds to:

yBC
n = hT

u

∑
i∈Sg

zi
√
pisi + nu = hT

u

∑N

i=1
zi
√
pisiπg,i + nu. (2.10)

2.3.3 State of the Art

Given a large number of serviced devices N and increasing large number of base-station

antennas M , the number of user scheduling options is of order O(NM). Thus, to optimally

schedule users in resource-sharing groups, one needs to examine the CSIs of each possible user

grouping among potentially very large number of users in e.g., the thousands. However, since

MIMO user scheduling is a combinatorial, NP-hard problem, even for a moderate number of

users (e.g. hundreds), it is difficult to exhaustively evaluate all possible user combinations

as MIMO user groups against one or more objectives.

Therefore, algorithms typically rely on heuristics when the user number becomes very

large as in the case of IoT. For example, some recent methods take advantage of proportional

fairness (PF) and the determinant pairing algorithm (DPS) [63–65]. However, these schemes

rely on exhaustive computation of spatial cross-correlations for various possible user groups,

and as such still require heavy computational workload.

Other approaches exploit localized characteristics shared among small subsets of users.

One proposal examines N(N−1)/2 pairwise CSI correlations among all N users and proposes
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to form user groups by setting a maximum correlation threshold [66,67]. Other schemes such

as [68,69] directly group users of similar CSI covariance matrices. Nevertheless, information

on pairwise or small user subsets fail to capture broad comprehensive characteristics on

the entire user set. In the case of pairwise correlation, e.g., multiple users with low pairwise

correlation in an MIMO user group may still suffer from significant interference accumulation.

Localized approaches are also very sensitive to choices of manual parameter tuning and are

harder to scale, as different choices might lead to drastically different performance as the

user number changes or as the CSI models vary.

Recently, (machine) learning based approaches have been applied to a diverse array

of difficult networking problems, including MAC user scheduling [70–73]. In fact, both

supervised and unsupervised learning algorithms have found applications in wireless CSI

characterization [70] that could be utilized in MIMO user scheduling. Machine learning is

particularly attractive for large, NP-hard problems such as user scheduling that would require

very high complexity to solve directly. In the context of wireless networking, supervised

learning requires a rich labeled training set of diverse CSIs and correspondingly optimized

scheduled user groups that attain strong performance. Such labeled training set must account

for different system conditions such as number of antennas, number of users, wireless channel

characteristics, noise levels, different power constraints, among others. However, it is not

practically feasible to build such a huge set of optimum solutions. Ironically, supervised

learning itself cannot be trained to find such optimum solutions for training.

In contrast, unsupervised learning explores underlying data features and characteris-

tics without relying on labeled training set. Importantly in the context of large-scale user

scheduling, unsupervised learning can effectively identify users with highly similar CSIs, as

proposed for direct user grouping in downlink multi-cast [72, 73]. However, for the more

general multi-user MIMO systems operating in either uplink MAC or downlink BC (also

known as MU-MIMO), scheduling users with similar CSI leads to poor joint spatial diver-

sity. Such outcome deviates from the original goal of diversity-based user scheduling, aimed
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at scheduling users with highly dissimilar CSIs into MIMO co-channel groups to promote

spatial diversity and to mitigate mutual interference. Clearly, a direct application of tradi-

tional learning algorithms over CSI vectors is incompatible with the MIMO user scheduling

task. Additionally, unsupervised learning is often based in Euclidean space, but Euclidean

distance of CSI does not correspond to spatial diversity as the latter is related to subspace

span.

In the second part of this dissertation (Chapter 5), we propose a novel approach that

leverages unsupervised learning to indirectly allocate users into RSGs. We will show that

this strategy provides significant performance gains with modest computational cost, and

can be generalized to consider a variety of performance metrics and different algorithms to

further improve its results.
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Chapter 3

Grant-Free Access via Blind Signal

Recovery using Wirtinger Flow

In the first part of this dissertation, we focus on blind signal recovery methods to enable

grant-free access in large scale networks. We adopt recent results in non-convex optimization

and leverage a geometric analysis of the blind signal recovery problem with limited data

samples. This approach demonstrates that these non-convex problems enjoy a rather benign

geometry and can be solved with relative ease. Moreover, it also allows us to formulate

theoretical guarantees, ensuring convergence with high probability.

In this chapter, we consider a prominent non-convex algorithm known as Wirtinger Flow

(WF), which has shown strong results in related nonconvex problems in the literature. Due

to the strong similarity between CMA-based signal recovery and the phase retrieval problem

[48], we adopt the WF algorithm directly in CMA-based blind signal recovery, which we

denote WF-CMA. In light of the convergence properties of WF under limited data samples,

we leverage and generalize the original convergence analysis of WF in phase retrieval and

obtain theoretical convergence guarantees for CMA in a finite-sample regime, both for single

Part of this chapter is reprinted, with permission, from [C. Feres and Z. Ding, “Wirtinger Flow Meets
Constant Modulus Algorithm: Revisiting Signal Recovery for Grant-Free Access” in IEEE Transactions on
Signal Processing (Early Access), Aug. 2021] and followup modifications for final publication. Notations
may have changed for consistency throughout this dissertation.
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Figure 3.1: L sources share a common resource block and transmit independent signals to
a host station with M antennas through an unknown physical channel. The host receiver
aims to find multiple adaptive linear demixers w1, . . . ,wJ to recover J ≤ L sources with
little mutual interference.

and multiple source recovery [74].

3.1 CMA-based Blind Signal Recovery

Figure 3.1 depicts a blind signal recovery system at the base station. As presented in

Section 2.2.1, such a system attempts to find a demixerw that recovers one of the transmitted

signals with minimal interference, or more generally, to find J demixers wℓ, ℓ ∈ {1, · · · , J}

that recover J distinct source signals with minimal mutual interference.

3.1.1 Single Source Recovery

Recall from Section 2.2.1 the constant-modulus cost function proposed by Godard [24]:

f(w) =
1

2K

K∑
k=1

(
|xH

kw|2 −R2

)2
, (3.1)

where R2 is defined as in Eq.(2.4), but can be set to any value (e.g. R2 = 1) and will scale

the magnitude of the demixer w accordingly. As stated in Section 2.2.1, we assume that all
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sources have equal average energy, as different signal energies can be considered as a channel

effect. Additionally, recall that the base station does not know the active number of sources

L, and we only assume that L ≤ M to ensure a full-column rank channel.

The CM cost function 3.1 has been proven to converge in expectation under noiseless

scenarios and full-column rank channel [26, 29]. Nevertheless, to the best of our knowledge

there were no convergence guarantees under limited data samples in the literature previous

to this work. This is one of the main results we present later in this chapter, and we further

make use of this result to prove convergence in the multiple source recovery setting.

3.1.2 Regularization for Multiple Signal Recovery

As we assume that multiple devices may access the channel in a grant-free scenario, it is

desirable to recover multiple source signals at a time as described in Section 2.2.1. If we

attempt to simultaneously recover multiple sources by solving for multiple demixer vectors

wℓ ∈ {1 . . . , J}, we need to ensure that they do not restore the same source signal, possibly

with different phases or delays [26].

Therefore, additional adjustments must be considered. Now, given that the different

sources are independent, this is equivalent to force statistical uncorrelatedness of the signals

in the cost function. For the case of complex outputs yℓ, yi, their covariance is given by:

Cov{yi, yℓ} = E{yiy∗ℓ} = E{wH
i xk(w

H
ℓ xk)

∗} = wH
i E{xkx

H
k }wℓ. (3.2)

Thus, we propose to regularize the CMA cost function with the squared magnitude of

the pairwise covariances of the outputs, to obtain a smooth real-valued cost function. The

modified CMA cost function for multiple sources considers J copies of the CM cost function

(3.1), each one depending on a different demixer, and our proposed regularization:

g(w1, . . . ,wJ) =
J∑

ℓ=1

f(wℓ) + γ0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣wH
i Rxwℓ

∣∣2, (3.3)
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where γ0 > 0 is a constant and the sample covariance matrix

Rx =
1

K

K∑
k=1

xkx
H
k . (3.4)

This is related to the regularization proposed in [75] which uses joint cumulants for source

separation. The joint cumulants also consider the potential correlatedness of delayed versions

of the demixer outputs, but in the presented case of source recovery the channels have no

ISI, and the information from different delays of the outputs is not necessary. Other similar

regularized approaches have been proposed in [44,45].

3.2 WF-Based Constant Modulus Solutions

3.2.1 CMA meets Wirtinger Flow

A recent stream of nonconvex optimization procedures have been developed for solving

quadratic equations, in particular for the phase retrieval problem. The phase retrieval prob-

lem can be stated as the recovery of an unknown signal z using known sampling vectors ak

from magnitudes rk = |aH
k z|2 only for which the smooth cost function is

min
z∈CM

1

2K

K∑
k=1

(
|aH

k z|2 − rk
)2
. (3.5)

Note that in terms of the cost functions, phase retrieval is equivalent to the single-source

CMA problem in Eq.(3.1), by setting rk = R2 and ak = xk, k ∈ {1, . . . , K}, and using z

as the unknown variable. If the source signal has constant modulus, e.g., |sℓ[k]|2 = R2 for

PSK signals, then the CM cost is the same as in the phase retrieval. One the other hand, for

non-constant modulus source signals, e.g. 16-QAM, the CM cost is akin to phase retrieval

based on an “average magnitude”.

This similarity stimulates this study on the link between optimization methods for phase
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retrieval and the CMA problem. However, there are some fundamental differences: (A) In

phase retrieval, there is a known reference signal rk as ground truth which is fully exploited

in its convergence analysis. However, in CM-based demixing we only have a desired “average

magnitude” R2. (B) Phase retrieval has only one solution (up to common rotations), where

in blind demixing, there may be many ideal demixer vectors to recover multiple source

signals in different order (up to common rotations). (C) The sampling vectors ak are chosen

typically as Gaussian by users in phase retrieval. In CMA, xk is (noisy) channel output

that is not under user control and has a more complex distribution. (D) In phase retrieval,

the signal z typically does not have additional constraints, whereas in CMA, the parameter

vector w does not have other constraints but the source signals often do.

3.2.2 Wirtinger Flow in Phase Retrieval

For such a problem formulation, theWirtinger Flow (WF) presented in [48] has received con-

siderable attention as it guarantees convergence to a solution via gradient-descent with only

O(M logM) measurements with Gaussian sampling vectors, obtaining ε-accuracy within

O(KM2 log 1/ε) iterations. This algorithm has received significant research attention and

several works have improved WF for the phase retrieval problem [76–78] or adapted WF for

seemingly different and unrelated optimization problems [52,79].

In more depth, WF is a two stage approach consisting in spectral initialization and

gradient descent updates. The latter is characterized by the notion of Wirtinger calculus

(also known as CR-calculus [80]). The gradient of a real value function p(z) with respect to

a complex variable vector z = zr + izi can be simply viewed as a complex vector

∇zp(z) =
∂p(z)

∂zr

+ i
∂p(z)

∂zi

. (3.6)

The same principle applies when deriving Hessians.

Spectral initialization yields (with high probability) an initial iterate for gradient descent
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that is located within the basin of attraction of the ground truth, that is, a neighborhood of

the ground truth with defined convexity and smoothness. Defining

Ra =
1

K

K∑
k=1

rkaka
H
k , (3.7)

the initial iterate is a properly scaled eigenvector of Ra corresponding to its leading eigen-

value. This initial iterate is then highly correlated with ground truth, and has been proven

to be close to the ground truth with high probability [48].

3.2.3 Wirtinger Flow for Single Source Recovery (SSR)

We now reformulate WF for our CM-based source recovery problem. Using CR-calculus, the

gradient of the CMA objective function f can be defined as

∇wf(w) =
1

K

K∑
k=1

(
|xH

kw|2 −R2

)
xkx

H
kw, (3.8)

and the gradient descent rule is

wt+1 = wt − µ

K∥wt∥2
K∑
k=1

(
|xH

kw
t|2 −R2

)
xkx

H
kw

t, (3.9)

where the stepsize µ > 0 could be constant or vary, either as a predefined function of the

iteration t [48] or using an adaptive approach such as backtracking [81], among others.

This gradient rule, which notably shows a normalization factor, has in fact been previ-

ously introduced for the CM problem as Normalized CMA [82–84]. The idea is similar to

normalized LMS by adjusting the stepsize in to avoid parameter divergence. Nevertheless,

existing works have not thoroughly analyzed how to select the stepsize µ in NCMA, often

resorting to trial-and-error. By connecting CMA to WF, we aim to define the stepsize se-

lection according to the local geometry of CMA, thereby simplifying implementation and

improving the algorithm convergence rate. We call this new approach WF-based Constant
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Modulus Algorithm or WF-CMA.

Applying the spectral initialization of [48] for blind source recovery yields the covariance

matrix of the received signal vectors xk (corresponding to the known observations) scaled

by the constant R2 (corresponding to desired outcomes):

1

K

K∑
k=1

R2xkx
H
k = R2Rx. (3.10)

The initial iterate for gradient descent is then chosen as w0 = ηv̂1, where v̂1 is the

normalized eigenvector corresponding to the largest eigenvalue of R2Rx, and the magnitude

η is equal to

η =

√
M
∑

k R2∑
k ∥xk∥2

=

√
MKR2∑
k x

H
kxk

. (3.11)

Algorithm 3.1 summarizes the steps for WF-CMA single source recovery.

Algorithm 3.1 WF-CMA for Single Source Recovery

Given: xk ∈ CM , k ∈ {1, . . . , K}, number of iterations T and stepsize µ

A) Spectral Initialization:

1: Compute η =

√
MKR2∑
k ∥xk∥2

2: Let v̂1 be the normalized eigenvector corresponding to the largest eigenvalue of

R2

K

∑K
k=1 xkx

H
k

3: Set w0 = ηv̂1

B) Gradient Descent:

4: for t = 0, . . . , T − 1 do

5: wt+1 = wt − µ

K∥wt∥2
K∑
k=1

(
|xH

kw
t|2 −R2

)
xkx

H
kw

t

6: end for
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3.2.4 Wirtinger Flow for Multiple Signal Recovery (MSR)

In the case of multiple signal recovery, we can apply the same principles. Using the sample

covariance matrix in the cost function of (3.3), gradients with respect to each demixer vector

wℓ are

∇ℓg =
1

K

K∑
k=1

(
|xH

kwℓ|2 −R2

)
xkx

H
kwℓ + γ0

J∑
ℓ=1

J∑
i ̸=ℓ

Rxwiw
H
i Rxwℓ, (3.12)

where ∇ℓ denotes the gradient with respect to demixer wℓ, and the new update rule is

wt+1
ℓ = wt

ℓ −
µ

∥wt
ℓ∥2

∇ℓg(w
t
1, . . . ,w

t
J). (3.13)

Analogously, spectral initialization in this case is an extension of the single source case,

and considers the J unit eigenvectors corresponding to the J largest eigenvalues of Rx:

w0
ℓ =

√
λ−1
ℓ v̂ℓ, j ∈ {1, . . . , J}, (3.14)

where λℓ is the ℓ-th leading eigenvalue of Rx and v̂ℓ is its corresponding eigenvector, nor-

malized to unit magnitude.
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Algorithm 3.2 WF-CMA Multiple Source Recovery

Given: xk ∈ CM , k ∈ {1, . . . , K}, number of sources to recover J , number of iterations

T and stepsize µ

A) Spectral Initialization:

1: Compute the J leading eigenvalues λℓ and corresponding normalized eigenvectors v̂ℓ of

R2

K

∑K
k=1 xkx

H
k

2: Set w0
ℓ =

√
λ−1
ℓ v̂ℓ ∀j = {1, . . . , J}

B) Gradient Descent:

3: for t = 0, . . . , T − 1 do

4: for j = 1, . . . , J do

5: wt+1
ℓ = wt

ℓ −
µ

∥wt
ℓ∥2

∇ℓg(w
t
1, . . . ,w

t
J)

6: end for

7: end for

It is important to note that, depending on the data and channel, the initialization scheme

for MSR might be ill-defined as the data samples might lead to a degenerate case that it is

not possible to separate some sources [85]. Nevertheless, when considering the noiseless sce-

nario (i.e., removing AWGN noise from the received signal vectors), the received signals are

linear combinations of independent transmitted signals under independent Rayleigh chan-

nels. Thus, when K → ∞, Rx converges to the scaled expected value of xxH thanks to the

Central Limit Theorem. This implies that, when K is large enough, the leading eigenvectors

of Rx will align with the leading eigenvectors of E{xxH}, up to a scaling factor.
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3.3 Theoretical Convergence Analysis

3.3.1 Convergence Guarantee of CMA

The global convergence properties of CMA for PAM and QAM input signals in noiseless

scenarios are well known [26, Chapters 4, 7]. The presented CMA-based single source recov-

ery corresponds to a particular case of the MIMO-CMA blind equalizer, where the MIMO

channel has zero ISI and only multi-user interference is to be suppressed. Thus, the mean

CM cost of Eq.(2.4) has been shown to only possess global minima, each of which corre-

sponds to the successful recovery (demixing) of one source signal with a phase rotation in

the noiseless case if the channel matrix H has full column rank. In other words, if H has

full column rank, then the minimization of the mean CM cost leads to guaranteed global

convergence in noiseless scenarios, regardless of initial conditions [45]. Moreover, if H rank

deficient a solution of the mean CM cost is close to optimal Wiener solutions [86], which

further highlights the applicability of CMA-based blind signal recovery in the presence of

multiple sources. The resulting combiner will exhibit some bounded interference, which is

tolerable in most practical implementations. Nevertheless, we shall consider only the case

when H has full-column rank that guarantees global convergence for blind signal recovery.

We do not require the number of sources L to be known at any point. In the case that

the receiver tries to recover more sources than the existing ones, i.e. J ≥ L, the receiver

would obtain L demixers that recover signals and J − L demixers that only recover noise.

In any case, the receiver can perform a rank estimation procedure if it needs to estimate L

[87, 88].

When considering noisy channels, it is well known that channel noise introduces additional

local minima to the mean CM cost function [26]. Thus, even carefully selected stepsize (based

on trial and error) cannot guarantee convergence to global minima. Thus, new results that

can reveal better convergence properties in stepsize selection are of special interest.

Given the known properties of the mean CM cost, what remains unclear is the convergence
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of CMA under finite data samples and additive noise. In this scenario, we aim to determine

convergence properties for CM-based demixing by leveraging the convergence analysis of

WF.

3.3.2 Adapting Wirtinger Flow to CMA

The convergence properties of the Wirtinger Flow phase retrieval have been proven in [48]

for Eq.(3.5). However, the new WF-CMA exhibits two special characteristics different from

the original WF in phase retrieval:

� The spectral initialization proposed for WF in phase retrieval [48] yields an eigende-

composition of the sample covariance matrix that is highly correlated with the ground

truth in expectation, and the initial iterate is provably close to the ground truth to

guarantee convergence. However, the same initialization in CMA-based SSR does not

readily provide an initial estimate that is highly correlated with the problem solutions.

� The sampling vectors ak are assumed to either have a standard complex normal distri-

bution, i.e. ak ∼ CN (0, I), or be admissible distributions for coded diffraction patterns

(CDPs) [48]. However, the received signal vectors xk in CMA given by Eq.(2.2), are

linear mixtures of independent source signals by the channel matrix H , plus additive

white Gaussian channel noise. They do not correspond in general with these sam-

pling vector models, or even with those from recent work using subgaussian variables

[89]. Moreover, the elements of xk are linear mixtures of independent QAM signals

which are non-Gaussian, and are not mutually independent, a distinct issue that makes

convergence analysis difficult.

We first examine spectral initialization. Consider the noiseless case and assume all source

signals have equal symbol energy Es without loss of generality. Taking expectation on the
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scaled sample covariance matrix in Eq.(3.10) for initialization:

E{R2Rx} =
R2

K

K∑
k=1

HE{sksHk }HH = R2EsHHH, (3.15)

which depends on the channel but is not explicitly dependent on the solutions. From (2.6),

the global CMA solutions satisfy

ŵHHsk = ejφsℓ[k], ℓ ∈ {1, . . . , L}, θ ∈ [0, 2π]. (3.16)

Thus, the optimal demixers are not directly extractable from the sample covariance ma-

trix. Therefore, our work shall not analyze this initialization effect on WF-CMA. Neverthe-

less, we will show later in experiments that such initialization appears to benefit WF-CMA

convergence. Thus, we still include this spectral initialization for CMA in Algorithm 3.1.

With respect to the dependent elements of xk, recall that the fading channel matrix has

full column rank. Under this assumption, we can rewrite

y[k] = wHxk = wHHsk +wHnk = qHsk + n̆[k], (3.17)

where q = HHw is the combined (channel plus demixer) parameter vector, and n̆k is demixer

output noise. Given full column rank H , we can study the WF-CMA in the combined

parameter space q, which directly interacts with independent source signals. This parameter

transformation mitigates the challenge posed by dependent signals in the WF algorithm. We

now study the convergence of WF in the q domain since the q space can be fully spanned

by adjusting w.

Onwards, our approach to specifying the local convergence properties of WF is to char-

acterize the local behavior of the CM cost function in the q domain, in which we describe

the gradient and Hessian of the CM-cost in the neighborhood of a ground truth. We show

that the local geometry near each ground truth admits convergence to a global minimum
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using gradient-descent based WF algorithm.

3.3.3 Convergence of WF-CMA for single source recovery

In the following, and without loss of generality, we assume that all sources use the same square

QAM constellation of size Q with equally likely symbols. These correspond to discrete finite

sets, and as such, signals of each source at each time k are bounded random variables, and

by definition, subgaussian random variables [90, Definition 5.7]. In other words, the signal

vectors sk are supported on an exponentially large set of size QL, and thus are subgaussian

random vectors for the purposes of concentration of measure and non-asymptotic approaches

[91, Section 3.4.2]. We will use this fact to support our theoretical analysis.

We also denote the second moment, fourth moment, and kurtosis of the transmitted

signals as

m2 = E{|s[k]|2}, m4 = E{|s[k]|4}, κ = m4 − 2m2
2 < 0. (3.18)

Additionally, as QAM constellations are discrete and bounded, with probability 1 we

have ∀ k ∈ {1, . . . , K}

∣∣sℓ[k]∣∣ ≤√ 3m2

Q− 1
(
√

Q− 1) = B ⇒ ∥sk∥ ≤ B
√
L. (3.19)

We need some definitions. Let z be a solution to the CM cost in the q-domain, i.e. z

minimizes f(·). Also, note that as z is related only to the channel H as implied in Eqs.(3.16)

and (3.17), is independent of the signals sk. For any vector q ∈ CL we define

dist(q, z) = min
ϕ∈[0,2π]

∥q − ejϕz∥. (3.20)
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We define a set of solutions due to a rotation factor ϕ as

P := {ejϕz : ϕ ∈ [0, 2π]} (3.21)

and the set of vectors within ϵ distance from P is

E(ϵ) := {q ∈ CL : dist(q, P ) ≤ ϵ}. (3.22)

For any q ∈ CL, we define the alignment phase ϕ(q) as

ϕ(q) := argmin
ϕ∈[0,2π]

∥q − ejϕz∥ = ∠(zHq), (3.23)

such that

dist(q, z) = ∥q − ejϕ(q)z∥. (3.24)

By defining

A(q) =
1

K

K∑
k=1

|sHk q|2sksHk , B(q) =
1

K

K∑
k=1

(sHk q)
2sks

T
k , S =

1

K

K∑
k=1

sks
H
k , (3.25)

the Wirtinger Hessian of the cost function f is simply

∇2f(q) =

2A(q)−R2S B(q)

B(q) 2A(q)−R2S

 . (3.26)

We now present our main convergence result for single source recovery.

Theorem 1. Consider the signal vectors sk ∈ CL with i.i.d. elements from a square QAM

constellation of size Q. Let z be a solution of the CMA problem with cost function (3.1).

Additionally, let α ≥ 3+80·1[Q ̸= 4], β ≥ 235+724·1[Q ̸= 4], ϵ = (10B
√
L)−1 and δ = 0.01.

There exist C1 > 0 and c1 > 0 such that, if the number of measurements K ≥ C1L, then for
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all q ∈ E(ϵ), the cost function f(·) satisfies the generalized regularity condition

Re
(〈

∇f(q)−∇f(ejϕ(q)z), q − ejϕ(q)z
〉)

≥ 1

α
dist2(q, z) +

1

β

∥∥∇f(q)−∇f(ejϕ(q)z)
∥∥2
(3.27)

with probability of at least 1− 6e−c1K. Furthermore, by selecting a stepsize 0 < µ ≤ 2/β, if

qt ∈ E(ϵ), then the update of Algorithm 3.1

qt+1 = qt − µ∇f(qt) (3.28)

leads to qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (3.29)

The proof of Theorem 1 is an extension and modification of the original Wirtinger Flow

proof [48], but considering subgaussian signal vectors (QAM constellations) and an aver-

age modulus, as the actual magnitude samples are unknown. The steps of the proof are

summarized below:

(1) Establishing concentration of measure of the Hessian and deriving related

scalar inequalities. In Lemma 1, we show that with high probability, the WF-CMA

Hessian is close to its expectation given sufficient samples.

(2) Characterizing the local geometry of the CMA objective function. We show

that the cost function has strong convexity and smoothness in the ϵ-vicinity of the

ground truth, which are respectively proven in Lemmas 2 and 3 based on the concen-

tration of Hessian and the resulting inequalities. These results describe the geometry

of the cost function in the neighborhood of any local minimum, which are known to

correspond to global minima in noiseless CMA-based equalization.
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(3) Proving that the WF-CMA update rule is a contraction. In Lemma 4, we

finally show that the update rule is a contraction with geometric rate within the basin

of attraction E(ϵ).

We first tackle the concentration of measure of the Hessian of f(·) in the following lemma.

Lemma 1 (Concentration of the Hessian). Let z be a solution of (3.1) and independent of

the signal vectors sk under the setup of Theorem 1, and δ > 0. There exist C1(δ) > 0 and

c1(δ) > 0 such that, if K ≥ C1(δ)L, then

∥∥∇2f(z)− E{∇2f(z)}
∥∥ ≤ δ (3.30)

holds with probability of at least 1− 6e−c1(δ)K.

Proof. Refer to Appendix A.2 for details. ■

The local geometry of the cost function can be characterized using both lemmas below.

Combined, they yield inequality (3.27). In particular, Lemma 2 describes the strong con-

vexity of the cost function, and Lemma 3 proves the cost function is well behaved near local

optimizers.

Lemma 2 (Local Curvature Condition). Under the conditions of Lemma 1, let α ≥ 3 + 80 ·

1[Q ̸= 4], ϵ = (10B
√
L)−1 and δ = 0.01. Then, for all vectors q ∈ E(ϵ), the cost function

f(·) satisfies

Re
(〈

∇f(q)−∇f(ejϕ(q)z), q − ejϕ(q)z
〉)

≥
( 1
α
+

2m2
2 −R2m2 − δ

19

)
dist2(q, z)

+
1

20K

K∑
k=1

∣∣∣sHk (q − ejϕ(q)z)
∣∣∣4. (3.31)

Proof. See Appendix A.3. ■

Lemma 3 (Local Smoothness Condition). Under the conditions of Lemma 1, let β ≥ 235 +

724 · 1[Q ̸= 4], ϵ = (10B
√
L)−1 and δ = 0.01. Then, for all vectors q ∈ E(ϵ), the cost
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function f(·) satisfies

1

β

∥∥∇f(q)−∇f(ejϕ(q)z)
∥∥2 ≤ 2m2

2 −R2m2 − δ

19
dist2(q, z) +

1

20K

K∑
k=1

∣∣∣sHk (q − ejϕ(q)z)
∣∣∣4.
(3.32)

Proof. See Appendix A.4. ■

Finally, based on the local behavior of the cost function, we establish the contraction of

the iterative rule of Algorithm 3.1.

Lemma 4 (Contraction of Update Rule). Under the conditions of Theorem 1, consider

0 < µ ≤ 2/β and qt ∈ E(ϵ). Using the update rule of Algorithm 1,

qt+1 = qt − µ∇f(qt), (3.33)

we have that qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (3.34)

Proof. This proof follows [48, Lemma 7.10], as our problem also has non-unique global solu-

tions. ■

3.3.4 Convergence for Multiple Source Recovery

Recall that our cost function for MSR is a simpler version of the one in [45], which has been

shown to exhibit global convergence properties under noiseless full rank channel conditions.

Thus, in a way similar to the SSR case, we will describe the local geometry of the CM cost for

MSR and show how the WF algorithm recovers source signals with high probability. For full

column rank channel matrix, we can use the overall system parameter space as in Eq.(3.17)
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by introducing q = [qT
1 . . . qT

J ]
T as the aggregation of the J demixers:

yℓ[k] = wH
ℓ xk = qH

ℓ sk + n̆ℓ[k]. (3.35)

Thus, the cost function is

g(q) =
J∑

ℓ=1

f(qℓ) + γ0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣qH
i Sqℓ

∣∣2 (3.36)

where S is the sample covariance matrix defined in Eq.(3.25).

For the MSR proofs, we need to generalize the previous definitions. Let z = [zT
1 . . . zT

J ]
T ∈

CJL be a solution that minimizes g(·) and is independent of the signals sk. For any vector

q ∈ CJL,

dist(q, z) =

( J∑
ℓ=1

min
ϕ∈[0,2π]

∥qℓ − ejϕzℓ∥2
) 1

2

. (3.37)

We define the set of all vectors that differ from the solution by a rotation factor in each

demixer as

P :=
{
[ejϕ1zT

1 . . . ejϕJzT
J ]

T : ϕℓ ∈ [0, 2π] ∀ℓ ∈ {1, . . . , J}
}
. (3.38)

The sets of vectors close to P are

E(ϵ) := {q ∈ CJL : dist(q, P ) ≤ ϵ}, (3.39)

and, for any vector q ∈ CJL we define the phases ϕℓ(q) as

ϕℓ(q) := ϕ(qℓ) = argmin
ϕ∈[0,2π]

∥qℓ − ejϕzℓ∥ = ∠(zH
ℓ qℓ) (3.40)

such that

dist(q, z) =

( J∑
ℓ=1

∥qℓ − ejϕ(qℓ)zℓ∥2
) 1

2

. (3.41)
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The Wirtinger Hessian of the cost function g is

∇2g(q) = Bdiag
({

∇2f(qℓ)
}J
ℓ=1

)
+ γ0


G1(q) · · · H1J(q)

...
. . .

...

HJ1(q) · · · GJ(q)

 (3.42)

where Bdiag() constructs a block diagonal matrix out of the matrices

∇2f(qℓ) =

2A(qℓ)−R2S B(qℓ)

B(qℓ) 2A(qℓ)−R2S

 . (3.43)

A(qℓ), B(qℓ), and S have been defined in Eq.(3.25) and

Gℓ(q) =

Cℓ(q) 0

0 Cℓ(q)

 , Cℓ(q) =
J∑
i ̸=ℓ

Sqiq
H
i S. (3.44)

Furthermore, we have

Hℓi(q) =

Eℓi(q) Fℓi(q)

Fℓi(q) Eℓi(q)

 , Eℓi(q) = qH
i SqℓS, Fℓi(q) = Sqiq

T
ℓ S

T. (3.45)

We now introduce the convergence analysis of Algorithm 3.2.

Theorem 2. Consider signal vectors sk ∈ CL with i.i.d elements from a square QAM constel-

lation of size Q. Let J ≥ 2 and z be a solution to the MSR CMA problem with cost function

(3.3). Additionally, let α ≥ 4+223·1[Q ̸= 4], β ≥ 730+267(J−1)+
(
1234+127(J−1)

)
·1[Q ̸=

4], ϵ = (10JB
√
L)−1, γ0 = 1 and δ = 0.001. There exist C2 > 0 and c2 > 0 such that, if

the number of samples K ≥ C2L, then for all q ∈ E(ϵ), the cost function g(·) satisfies the
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generalized regularity condition

J∑
ℓ=1

Re
(〈

∇ℓg(q)−∇ℓg(e
jϕ(qℓ)z), qℓ − ejϕ(qℓ)zℓ

〉)
≥ 1

α
dist2(q, z) +

1

β

J∑
ℓ=1

∥∥∇ℓg(q)−∇ℓg(e
jϕ(qℓ)z)

∥∥2 (3.46)

with probability of at least 1 − 12e−c2K. Furthermore, by selecting a stepsize 0 < µ ≤ 2/β

and qt ∈ E(ϵ), the MSR WF-CMA updates from Algorithm 3.2

qt+1
ℓ = qt

ℓ − µ∇ℓg(q
t) (3.47)

will lead to qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (3.48)

The proof of Theorem 2 follows a similar approach as proof of Theorem 1, with requisite

modifications to account for the additional terms in the cost function g(·), i.e. the multi-

ple CM costs for each demixer and the pairwise covariances of demixers in Eq.(3.36). To

summarize:

(1) Establish concentration of measure for the MSR Hessian. Lemma 5 proves

that the MSR Hessian is also close to its expected value with high probability.

(2) Describe local geometry of the MSR cost function. We show that the MSR

cost function exhibits strong convexity and smoothness in the ϵ-vicinity of the ground

truth. These properties are proven in Lemmas 6 and 7 by way of Lemmas 1, 2, 3 and

5.

(3) Prove that the MSR update is a contraction. This is shown in Lemma 8 for

iteration within the basin of attraction E(ϵ).
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Lemma 5 (Concentration of the MSR Hessian). Let z be a solution to (3.3) independent of

the signal vectors sk, under the setup of Theorem 2. Then, there exists C2 > 0 and c2 > 0

such that, if K ≥ C2L, then

∥∥∇2g(z)− E{∇2g(z)}
∥∥ ≤ δ (3.49)

holds with probability of at least 1− 12e−c2K.

Proof. Refer to Appendix A.6 for details. ■

Lemma 6 (MSR Local Curvature Condition). Under the conditions of Lemma 5, let α ≥

4 + 223 · 1[Q ̸= 4], ϵ = (10JB
√
L)−1, γ0 = 1 and δ = 0.001. Then for all vectors q ∈ E(ϵ),

the cost function g(·) satisfies

J∑
ℓ=1

Re
(〈

∇ℓg(q)−∇ℓg(e
jϕ(qℓ)z), qℓ − ejϕ(qℓ)zℓ

〉)
≥ 1

α
dist2(q, z) +

2m2
2 −R2m2 − δ

19
dist2(q, z) +

1

20K

K∑
k=1

J∑
ℓ=1

∣∣∣sHk (qℓ − ejϕ(qℓ)zℓ)
∣∣∣4

+ γ2
0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣(qi − ejϕ(qi)zi)
HS(qℓ − ejϕ(qℓ)zℓ)

∣∣2. (3.50)

Proof. See Appendix A.7. ■

Lemma 7 (MSR Local Smoothness Condition). Under the conditions of Lemma 5, let β ≥

730 + 267(J − 1) +
(
1234 + 127(J − 1)

)
· 1[Q ̸= 4], ϵ = (10JB

√
L)−1, γ0 = 1 and δ = 0.001.

Then for all vectors q ∈ E(ϵ), the cost function g(·) satisfies

1

β

J∑
ℓ=1

∥∥∇ℓg(q)−∇ℓg(e
jϕ(qℓ)z)

∥∥2
≤ 2m2

2 −R2m2 − δ

19
dist2(q, z) +

1

20K

K∑
k=1

J∑
ℓ=1

∣∣∣sHk (qℓ − ejϕ(qℓ)zℓ)
∣∣∣4

+ γ2
0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣(qi − ejϕ(qi)zi)
HS(qℓ − ejϕ(qℓ)zℓ)

∣∣2. (3.51)
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Proof. See Appendix A.8. ■

Lemma 8 (Contraction of MSR Update Rule). Under the conditions of Theorem 2, consider

qt ∈ E(ϵ) and 0 < µ ≤ 2/β. Using the update rules of Algorithm 3.2,

qt+1
ℓ = qt

ℓ − µ∇ℓg(q
t), (3.52)

we have that qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (3.53)

Proof. Thanks to Lemmas 4, 6 and 7, this proof is an straightforward adaptation of [48,

Lemma 7.10]. ■

3.3.5 Computational Complexity

The complexity of our algorithm lies in its initialization, its iteration, and number of itera-

tions.

(1) The initialization step is dominated by the computation of sample covariance matrix

Rx, whose complexity is of O(M2K). Computing the largest eigenvector of Rx typi-

cally has a cost of O(M2) [48].

(2) The iteration cost is dominated by the products xkx
H
kw, whose complexity is of

O(M2K). Other operations including scalar multiplications and divisions are of O(M)

or O(MK) over sample-related quantities. Therefore, the iteration cost becomes dom-

inant over the initialization cost after a few iterations.

The same analysis applies to multiple signal recovery with J sources. Succinctly, each

operation repeats J times, as now there are J gradients. Therefore, the dominant cost of the

multiple signal recovery variations for both algorithms are increased by a factor of J , and
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the resulting total cost is J times than the single source recovery case. Table 3.1 summarizes

the complexity of both proposed algorithms, where T is the number of iterations in each

case.

Table 3.1: Computational complexity of proposed algorithms.

Iteration cost Total cost
WF-SSR O(M2K) O(M2KT )
WF-MSR O(JM2K) O(JM2KT )

3.4 Simulation Results

In our simulation tests, we consider a grant-free access scenario as described in Section 2.2.1,

in which there are L sources each sequentially transmitting K independent QAM symbols

with normalized average energy. The receiver has M antennas and aims to recover J distinct

sources. A stationary Rayleigh channel H has i.i.d. elements Hml ∼ N (0, 0.5) + iN (0, 0.5).

The channel noise vector nk has i.i.d. and circularly symmetric complex normal elements

nm[k] ∼ CN (0, σ2
w). To evaluate the recovery efficacy, we measure the total interference to

signal (power) ratio TISR for each recovered source [26], defined as

TISRℓ =

∑
i |qj,i|2 −maxi |qj,i|2

maxi |qj,i|2
, (3.54)

where qℓ = HHwℓ is the equalized channel at demixer j. In SSR tests, J = 1 and we can

drop the j index.

Our simulation uses MATLAB on a PC with an Intel Core i7-7700HQ CPU, 16GB of

RAM and 64-bit OS to implement the algorithms and run the simulations. We use T = 1000

iterations per run of the WF algorithm, and average 100 runs to obtain our results.
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(a) Success probability, M =
8, L = 4.

(b) QPSK, M = 8, L = 4. (c) 16-QAM, M = 8, L = 4.

(d) Success probability, M =
16, L = 9.

(e) QPSK, M = 16, L = 9. (f) 16-QAM, M = 16, L = 9.

Figure 3.2: Numerical results of WF-CMA for single source recovery.

3.4.1 Single source recovery

To test the convergence of WF-CMA in SSR, we first consider an adaptive demixer to recover

one source. We define a step-size µ = 5 · 10−4 < 2/β as determined according to Theorem 1.

Figure 3.2a presents the probability of successful recovery of a single source in a noiseless

system with L = 4 sources and M = 8 receiving antennas. We define “success” as the event

of TISR reaching below −20 dB after T = 1000 iterations. Two modulations (QPSK and

16-QAM) are tested. The results show that for QPSK, WF-CMA can actually converge to a

solution even with a very small number of samples. For the higher-order modulation of 16-

QAM, successful convergence requires about 10 times more data samples. More important,

our test results show that spectral initialization of WF achieves better convergence than the

traditional initialization that sets a random, unique tap of the demixer to 1 and others as 0.

The higher probability of success achieved by spectral initialization empirically justifies its

additional computational cost.
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Figure 3.2b illustrates the average TISR under QPSK modulation under different SNR

values. In this test, we used K = 400 samples, L = 4 sources and M = 8 receiver antennas.

The results demonstrate desirable convergence with increasing number of iterations. On the

other hand, Figure 3.2c shows the average TISR for 16-QAM modulation under the same test

settings. For QPSK, the total interference to signal ratio can drop below −27 dB even for

10 dB of SNR. For 16-QAM, the interference power remains several dB higher. Such results

are expected for a more complex modulation without constant modulus. Nevertheless, as

shown in our analytical results, the WF-CMA converges with the stepsize chosen according

to Theorem 1 and successfully suppresses multi-user interference.

We repeat the experiments for a larger problem size of L = 9 sources andM = 16 receiver

antennas. Under similar conditions, the success probability of the WF-CMA under different

sample sizes K are also clearly shown in Figure 3.2d. These results further demonstrate the

superior performance achieved using spectral initialization. Correspondingly, the average

TISR is shown in Figure 3.2e and Figure 3.2f for QPSK and 16-QAM, respectively. According

to our analysis, we lowered the stepsize to µ = 10−4 since the basin of attraction for size

ϵ (depending on B) decreases with the number of sources L. The resulting WF-CMA also

shows successful recovery of a single source with sufficiently high interference suppression in

for both QPSK and 16-QAM at different levels of SNR.

3.4.2 Multiple source recovery

We now replicate the experiments above, attempting to simultaneously recover J = 2 sources

at a time. We also set γ0 = 1 and µ = 1 · 10−3 < 2/β according to Theorem 2.

Figure 3.3a shows the probability of successful recovery of both sources given different

numbers of samples in a noiseless system. We considered L = 4 sources, M = 8 receiving

antennas for two different modulations of QPSK and 16-QAM. In the MSR case, success

is defined as achieving less than −20 dB TISR after T = 1000 iterations in each demixer,

both recovering distinct sources. Once again, the required number of samples for successful
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(a) Success probability, M =
8, L = 4.

(b) QPSK, M = 4, L = 8. (c) 16-QAM, M = 8, L = 4.

(d) Success probability, M =
16, L = 9.

(e) QPSK, M = 16, L = 9. (f) 16-QAM, M = 16, L = 9.

Figure 3.3: Numerical results of WF-CMA for multiple source recovery. We recover either
J = 2 or J = 3 signals in each setting.

QPSK recovery appears quite small, whereas the number of samples required for successful

16-QAM recovery is approximately 10 times higher.

In Figure 3.3b we show the average TISR of both demixers for QPSK signals under

different levels of SNR. We let K = 400 samples, L = 4 sources and M = 8 receiver

antennas. Figure 3.3c shows the achieved TISR for 16-QAM signals under the same setup.

For QPSK source signals, the average TISR drops below −30 dB for SNR of 20dB and 30dB

within 400 iterations. For 16-QAM source signals, the convergence rate is noticeably slower

as 16-QAM constellation exhibits variable moduli.

Next, we also consider the larger problem size with L = 9 sources and M = 16 receiver

antennas. We use a stepsize of µ = 10−4 for the same reasons explained in the single source

recovery case. Figure 3.3d shows the probability of successful recovery of both sources with

under −20 dB TISR after 1000 iterations. The number of samples required for recovery
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increases with a larger system size, but not significantly. Figure 3.3e and Figure 3.3f show

the achieved average TISR for QPSK and 16-QAM sources, respectively. Both figures show

that WF-CMA is able to recover two signals reliably at the same time.

3.5 Summary

In this chapter, we established a connection between Wirtinger Flow used in phase retrieval

and CMA-based blind signal recovery in grant-free access. We generalized the convergence

analysis of WF for our proposed algorithm by incorporating new conditions of subgaussian

signal sources and average modulus, demonstrating its global convergence for blind signal

recovery with high probability under limited data samples. We characterized the local ge-

ometry of the CM cost function in terms of local smoothness and convexity, which enables

parameter updates to remain within the basin of attraction for a defined stepsize. Further-

more, we presented theoretical convergence guarantees for both single and multiple source

recovery. Our numerical tests demonstrated that our proposed algorithm can solve CMA-

based blind signal recovery with a fast convergence rate and reasonable computational cost.
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Chapter 4

Grant-Free Access via Riemannian

Blind Signal Recovery

In the previous chapter, we proposed a CMA-based source recovery method that uses reg-

ularization to recover multiple distinct source signals. Even when theoretical analysis and

numerical simulations show satisfactory performance of WF-CMA, there are still aspects to

be addressed. First, there is still no theoretical guarantee that spectral initialization (or any

other initialization method) would yield an initial iterate within the basin of attraction of the

CMA cost function. In practical scenarios, the initialization could be inadequate in different

channel conditions or settings. Second, we assumed that the number of active sources was

known at the BS, which might not be true in practice and the BS would need to estimate the

number of sources. Finally and more importantly, regularization usually requires parameter

tuning for different realizations, and often increases computational complexity.

In this chapter, we explore a Riemannian optimization framework for blind multiple signal

recovery. We leverage Riemannian geometry and encode the orthogonality requirement of

recovered signals into a Riemannian manifold. This new search space transforms the original

signal recovery problem into an unconstrained, regularization-free optimization problem over

Part of this chapter has been previously submitted to IEEE Transactions on Signal Processing and is
currently under review.
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Figure 4.1: L sources share a common resource block and transmit independent signals to a
host station with M antennas through an unknown physical channel. The host receiver aims
to find an adaptive linear matrix demixer W to recover J ≤ L sources with little mutual
interference.

this Riemannian manifold. By exploiting efficient, low complexity solvers, this approach

demonstrates full recovery of distinct source signals without special initialization or tuning,

with high probability of success and modest sample complexity compared to traditional

gradient descent approaches.

4.1 Constrained Multiple Signal Recovery

Figure 4.1 depicts a blind signal recovery system, whose goal is to find multiple demixers that

recover distinct source signals with minimal interference. As stated in Section 2.2.1, CMA-

based multiple source recovery requires additional constraints to ensure that the process

actually accomplishes this task. Several works have proposed to add regularization term(s)

to the cost function (2.7) to penalize against the recovery of identical signals by more than

one solution vectors in Ŵ . For example, in [44, 45] the authors proposed adding a norm of

joint cumulants for such source separation objective. Other proposals such as [47] enforce

orthogonality of the combiners at each gradient descent iteration, either via orthogonal

projection or Gram-Schmidt orthogonalization.
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Despite their demonstrated successes, regularization approaches exhibit some drawbacks.

First, the regularizing term typically requires to tune a scalar weight, e.g. γ0 in Eq.(3.3),

often by trial and error, and there is no performance guarantee under various possible sce-

narios. Second, different regularization approaches might lead to different solutions and

performance, while no solution is consistently better than others. Additionally, regulariz-

ing terms often increase the computation complexity as regularized cost functions would

either require additional computations or delicate non-convex optimization steps. Finally,

regularizing terms proposed in the literature generally are limited to promote pairwise sig-

nal orthogonality instead of multi-lateral signal orthogonality, and also require more data

samples to successfully suppress mutual interference.

Therefore, we now reformulate the multiple signal recovery problem and enforce signal

orthogonality among demixer outputs by directly restricting the solution space. Recall the

definition of W as joint demixer matrix in Section 2.2.1. Owing to the phase invariance

of the CM cost function, the optimum solution satisfies Ŵ HH = P where P ∈ CJ×L a

generalized permutation matrix whose non-zero entries are all of the form ejϕ instead of

being restricted to 1. As a result, at the optimum solution we have PP H = I, with I the

identity matrix of appropriate size. We therefore write the joint signal recovery constraint

as

Ŵ HHHHŴ = I. (4.1)

However, the BS has no knowledge of the channel H . Therefore, we can leverage source

signal orthogonality and white noise property to estimate HHH from the sample covariance

matrix of the received data vectors xk (2.2):

RX =
1

K

K∑
k=1

xkx
H
k

K→∞−−−→ E{RX} = HHH + σ2I. (4.2)

Note that, in the absence of noise, the rank of matrix HHH ∈ CM×M is L (L ≤ M), i.e.,
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the rank of H . Thus, we formulate the optimization problem for multiple signal recovery as

orthogonal constant modulus algorithm (OCMA):

min f(W ) =
1

2K

K∑
k=1

∥∥(W HXkW ) ◦ I −R2I
∥∥2
F

(4.3a)

s.t. W HRXW = I, (4.3b)

where Xk = xkx
H
k . Hence, the Euclidean gradient of f(W ) is

∇W f(W ) =
1

K

K∑
k=1

XkW
(
(W HXkW ) ◦ I −R2I

)
, (4.4a)

and for a matrixG of the same size asW , the directional derivative of∇W f(W ) in direction

G is

D
(
∇W f(W )

)
[G]

=
1

K

K∑
k=1

(
XkW

(
I ◦ (W HXkG+GHXkW )

)
+XkG

(
(W HXkW ) ◦ I −R2I

))
.

(4.4b)

4.1.1 Estimating the Number of Active Sources for Demixing

Because of the number of active sources L may vary in practice, the literature has often

assumed that L is known. However, in grant-free access, such assumption would not be

practical, since, at best, we would only be able to limit the maximum number of simultaneous

users according to synchronization and slotted scheduling. Thus we shall first present an

approach to estimate the number of active sources.

Given that H has rank L ≤ M , the sample covariance matrix RX in restriction (4.3b) is

not strictly positive definite in the absence of noise. Thus, (4.3b) cannot be directly defined
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as a Riemannian manifold. In noisy scenarios and with several data samples, the sample

covariance matrix will likely be positive definite, but could be numerically ill-conditioned

with large condition number. However, in both cases we can extract a strictly positive

definite matrix from the sample covariance matrix from its rank-L approximation.

We first estimate the number of transmitted signals embedded in the received data via

Minka’s Laplace method [92], and let the result be L. Let the SVD of the channel matrix

H = UΣV H, with U ∈ U(M), and V ∈ U(L), i.e.,

H = [UL U⊥
L ]

 ΣL

0(M−L)×L

V H = ULΣLV
H ,

UL ∈ ST(M × L) ,U⊥
L ∈ ST(M ×M − L) ,

ΣL = diag(σ1, . . . , σL), (4.5)

where ST(M×L) = {A ∈ CM×L : AHA = IL} is the complex Stiefel manifold of orthonormal

L-frames in CM [54, 93].

First, consider the noiseless scenario, i.e. RX = E{RX} which equals to

HHH = UΣΣHUH = ULΣLΣ
H
LU

H
L = ULΛ

HUH
L . (4.6)

From the above decomposition, we can obtain U and Σ, but not V . Also, note that Λ =

ΣLΣ
H
L is diagonal with strictly positive entries because H has full-column rank. Both

UL,U
⊥
L are full-column rank.

In the noisy case with infinite samples, we have

HHH + σ2I = UΣΣHUH + σ2I = U
(
ΣΣH + σ2I

)H
UH = UΛ1U

H , (4.7)

and we form a diagonal matrix Λ using the L largest diagonal components of Λ1 − σ2I,

corresponding to eigenvector matrix UL. We further define ΣL = Λ1/2. Note that σ2 can be
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estimated by, e.g., averaging the M − L smallest diagonal elements of Λ1. This approach is

very similar to the so-called probabilistic PCA [94], which obtains the principal components

of data and a generative model. However, even though Minka’s Laplace method is known

for satisfactory performance in the limited sample regime, it relies on the assumption of

Gaussian signals and could introduce bias when estimating the number of discrete sources.

Nevertheless, all independent sources contribute with a significant component of the

sample covariance matrix, related to its significant eigenvalues, whereas noise will only have

minor contributions in other directions as their related eigenvalues are much smaller in

high SNR regimes. For an under-estimated L, the L-rank approximation of the sample

covariance matrix would likely fail to capture all relevant directions of the channel, leading

to mutual signal interference in signal recovery. Therefore, we compute the normalized

L-rank approximation error

∥∥RX −ULΛUH
L

∥∥
∥RX∥

(4.8)

for comparison against a preset threshold ϵr to decide whether L needs to be increased in a

update. We also update the L-rank approximation of the sample covariance matrix. Our test

results to be shown later demonstrate the general reliability of this rank estimation method

for demixing.

4.2 A Riemannian Manifold Optimization Framework

for CMA

The Riemannian framework for optimization on manifolds [53] has gained a lot of attention

owing to its capability to handle problems with a real-valued objective function defined on

a constrained space,

minimize
M∈Cm×n

f(M) s.t. M ∈ M. (4.9)
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Note that the (nonlinear) space M may not be well-defined in terms of addition, continu-

ity, and/or other properties that are typically exploited by regular optimization approaches

in Euclidean spaces. The main idea is to redefine a constrained optimization in Euclidean

space into an unconstrained optimization problem over a manifold. Manifolds are topological

spaces that, equipped with a metric, locally resemble Euclidean spaces of equal dimension

size, but may be quite different globally. Some manifold examples include spheres, the set of

rotations, the set of positive semidefinite matrices, the set of fixed-rank matrices, and Stiefel

manifolds, among many others.

In this section, we first obtain a suitable Riemannian manifold representation of the

CMA problem with orthogonality constraints (4.3), which we denote Riemannian Orthogonal

CMA, or ROCMA. Next, we further exploit the obtained Riemannian manifold to define a

quotient Riemannian manifold, with which we can tackle the phase invariance of the demixers

directly in the optimization process.

4.2.1 Redefining the Geometry of Signal Recovery

Our goal here is to find a suitable geometry that encodes the orthogonality condition of

demixers in the search space of Problem (4.3). Even with a method to estimate the number

of sources L, we derive a general version of the geometry where the receiver attempts to

recover J ≤ L sources. Considering Eq.(4.6) in restriction (4.3b), we have

IJ = Ŵ HHHHŴ = Ŵ HULΣLΣ
H
LU

H
L Ŵ . (4.10)

By introducing a new variable Y such that

W = ULΣ
−1
L Y , (4.11)

Eq.(4.10) yields Y HY = Iℓ, which defines the complex Stiefel manifold ST(L × J). Hence,

by means of the transformation (4.11), we obtain a Riemannian manifold representation of
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restriction (4.3b) as M = ST(L × J) that we can use for optimization purposes. From the

solution in terms of Y , we obtain the demixer matrix directly by a one-to-one scaling by

ULΣ
−1
L . The variable transformation (4.11) implies the need to rewrite the cost function,

Euclidean gradient, and directional derivatives of the gradient. Defining zk = Σ−1
L UH

Lxk and

Zk = zkz
H
k = Σ−1

L UH
LXkULΣ

−1
L , we have a new cost function

g(Y ) =
1

2K

K∑
k=1

∥∥(Y HZkY ) ◦ I −R2I
∥∥2
F
, (4.12)

whose Euclidean gradient is

∇Y g(Y ) =
1

K

K∑
k=1

ZkY
(
(Y HZkY ) ◦ I −R2I

)
, (4.13)

and the directional derivative of (4.13) in direction G is

D
(
∇Y g(Y )

)
[G] =

1

K

K∑
k=1

ZkY
(
(Y HZkG+GHZkY ) ◦ I

)
+ZkG

(
(Y HZkY ) ◦ I −R2I

)
.

(4.14)

To optimize Y over M, we need to first define the linear space that approximates the

manifold around a point Y , which is called the tangent space at Y and is denoted as TY M.

For M = ST(L× J), the tangent space is

TY M = {E ∈ CL×J : E = Y Ω+ Y⊥A, Ω = −ΩH ∈ CJ×J ,A ∈ C(L−J)×J}. (4.15)

In other words, Y HE = Ω is skew-Hermitian ∀E ∈ TY M. Its orthogonal complement is

known as normal space NY M and it is given by

NY M = {Y A, A = AH ∈ CJ×J}. (4.16)
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We can now define length in the tangent space with a Riemannian metric dY , which is a

smooth inner product defined at each element Y for elements of the tangent space TY M.

Here, we use the real-trace inner product, given by

dY (E,C) = Re
(
Tr(EHC)

)
, E,C ∈ TY M. (4.17)

We also define a projection to the tangent space, which allows us to restrict optimization

only in the directions of interest, which indeed belong to the tangent space. For G ∈ CL×J ,

the projection operator is

ProjTY (G) = G− Y herm
(
Y HG

)
∈ TY M , (4.18)

which enables us to define the Riemannian gradient and Riemannian Hessian from the Eu-

clidean gradient and its directional derivative, respectively.

For optimization purposes, the motion along the manifold from point Y in a given direc-

tion E is given by a retraction RSt
Y (E), which in our case we select as the polar retraction

for the complex Stiefel manifold [93]

RSt
Y (E) = (Y +E)

(
(Y +E)H(Y +E)

)−0.5
= (Y +E)

(
I +EHE

)−0.5
. (4.19)

4.2.2 Riemannian Quotient Geometry

In the context of Riemannian manifold optimization, quotient Riemannian manifolds are

used to define a manifold that presents invariance of the cost function or the representation

of the manifold itself [95]. It can be defined by equipping the original or ambient manifold

with an equivalence relation between its points to describe the aforementioned invariance.

Let ∼ be such an equivalence relation, i.e., Y ∼ Y0 denotes that Y and Y0 are equivalent

in terms of the invariance of interest. Thus, we can identify equivalent points to Y as one
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single set known as equivalence class, denoted as

[Y ] = {Y0 ∈ M : Y0 ∼ Y }. (4.20)

When the quotient space of the ambient manifold M under the equivalence relation ∼

satisfies certain conditions [53, Chapter 3], it is a Riemannian quotient manifold, which is

the set of equivalence classes:

M = M/∼=
{
[Y ] : Y ∈ M

}
. (4.21)

A quotient manifold is an abstract space whose elements are subsets of the ambient man-

ifold. However, the use of quotient manifolds in Riemannian optimization has additional

advantages, such as the ability of obtaining a strictly positive definite Hessian by neglecting

directions related to the cost function invariance, and potential reduction of problem dimen-

sionality by applying a simple representation of the elements in the space. Even in a case

when there is no such representation and the ambient manifold is used for computational

purposes, the quotient geometry is theoretically important to establish convergence prop-

erties of second-order methods that rely on the positive definiteness of the Hessian on the

manifold.

Now, recall that the cost function (4.3a) presents permutation invariance in the demixers,

and unimodular phase invariance in each demixer such that for each demixer wℓ, a rotated

demixer ejθwℓ, θ ∈ [0, 2π] yields the same cost value. However, the permutation group is

discrete, and thus is a Lie group of dimension 0. This means that in terms of local behavior,

the equivalence classes of permutations behaves exactly the same as the ambient manifold,

and thus we dismiss the permutations in our analysis and focus exclusively in the phase

invariance.

When considering multiple demixers in W , we want to describe unimodular phase in-

variance on each of the J demixers simultaneously. Let U(1)×J be the group of diagonal
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unitary matrices of size J , i.e.

U(1)×J =
{
D ∈ U(J) : D = diag

(
ejθ1 · · · ejθJ

)
, θℓ ∈ [0, 2π)∀ℓ ∈ {1, · · · , J}

}
.

Thus, the group action of U(1)×J defines an equivalence relation between demixer ma-

trices. The corresponding equivalence class is then

[W ] =
{
WD : D ∈ U(1)×J

}
,

and by means of (4.11), we have that WD = ULΣ
−1
L Y D, i.e. the equivalence class in terms

of Y is

[Y ] =
{
Y D : D ∈ U(1)×J

}
, (4.22)

and we obtain a quotient space that considers the cost function invariance as

M = M/U(1)×J (4.23)

with a canonical projection π : M → M : Y 7→ [Y ].

Furthermore, M is indeed a Riemannian quotient manifold (which ensures π is smooth).

This follows from the fact that the group action of diagonal unitary matrices is smooth, free

and proper [95, Section 9.2]: (a) it is smooth because it is a matrix multiplication; (b) it

is free because Y D = Y implies D = I by left multiplication of Y H; and (c) it is proper

because U(1)×J is the maximal torus of the unitary group (a compact group), and thus

is compact. Hence, the equivalence classes all have dimension J and are closed embedded

submanifolds of M. This quotient manifold has been introduced before in the context of

subspace estimation [96], but to the best of our knowledge it has not been developed or used

in Riemannian optimization.
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The quotient manifold M is an abstract space, and requires matrix representations in the

computational space M. Fortunately, an (abstract) element Yq on the quotient manifold can

be represented by an element Y in the computational space. Thus, every geometry-related

operation over the quotient manifold can be defined in terms of elements and operations in

the computational space.

In particular, we look for a representation of the tangent space of the quotient manifold

TY M using tangent vectors of the ambient manifold M. We accomplish this by charac-

terizing the tangent space TY M as the direct sum of two orthogonal spaces: the vertical

space VY , which contains the directions tangent to the equivalence classes, and the hor-

izontal space HY , which contains the tangent directions orthogonal to the vertical space.

That is, the horizontal space contains the directions of interest in terms of optimization.

Hence, an (abstract) tangent vector of the quotient manifold η[Y ] can be represented as an

horizontal vector ηHY
of the ambient manifold, which is called the horizontal lift, defined as

ηHY
= liftY (η[Y ]). When M is endowed with the Riemannian metric inherited from M,

d[Y ](η, ξ) = dY
(
liftY (η), liftY (ξ)

)
, η, ξ ∈ T[Y ]M,

the canonical projection π forms a Riemannian submersion from the quotient manifold to

the computational space, thereby defining a correspondence between elements of M and

elements of M [53]. Figure 4.2 shows a depiction of the quotient manifold geometry and its

relation to the ambient manifold.

We now define the vertical and horizontal spaces. Let D : R → U(1)×J be a path in the

equivalence class such that D(0) = I. The vertical space is given by vectors of the form

Y D′(0) where vectors D′(t) are tangent to U(1)×J , whose tangent set corresponds to the

Lie algebra of unitary diagonal matrices t(J), consisting of diagonal imaginary matrices of

57



Figure 4.2: Representation of the ambient manifold M and quotient manifold M. The
tangent space TY M is divided into a vertical space VY (in green) and a horizontal space
HY (in red), which contains the relevant search directions ηHY

. These directions correspond
to tangent directions η[Y ] at the point [Y ] in the quotient manifold.

size J × J . Therefore,

VY =
{
Y T : T ∈ t(J)

}
= {Y T : T ∈ CJ×J diagonal imaginary}, (4.24)

and the horizontal space is then given by

HY =
(
VY

)⊥
= {E ∈ TY M : ⟨E,F ⟩ = 0 ∀F ∈ VY }

= {E ∈ TY M : ⟨E,Y T ⟩ = 0 ∀T ∈ t(J)}

= {E ∈ TY M : Re
(
Tr(EHY T )

)
= 0 ∀T ∈ t(J)} (4.25)

and thus Y HE is skew-Hermitian with zero diagonal, to be orthogonal to any T ∈ t(J).

This is equivalent to state that the projection to horizontal space is given by

ProjHY (G) = ProjTY (G)− Y
(
I ◦
(
Y HProjTY (G)

))
= G− Y herm

(
Y HG

)
− Y

(
I ◦ skew(Y HG)

)
. (4.26)
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Finally, we can inherit the retraction from the ambient manifold via lifting and enforcing

the equivalence class. Indeed, for E = liftY (η), we can see that the polar retraction depends

only on the equivalence class:

R[Y ](η) = RSt
Y D(E) = (Y D +ED)

(
I + (ED)HED

)−0.5
= RSt

Y (E)D =
[
RSt

Y (E)
]
. (4.27)

Consequently, we can effectively optimize over the quotient manifold M using represen-

tatives from the ambient manifold M. Moreover, as M is an embedded submanifold of

Euclidean space, we can obtain the Riemannian gradient and Hessian in terms of objects in

Euclidean space, which is convenient as we already know the cost function g in Euclidean

space given by (4.12) with corresponding derivatives (4.13) and (4.14). We denote g = g
∣∣
M

the restriction of the Euclidean cost function to the ambient manifold. As g is invariant un-

der ∼, the cost function g defined in M is smooth and g([Y ]) = g(Y ). Hence, by definition,

the Riemannian gradient of g is zero for vertical vectors (as they are invariance directions),

and we have

liftY
(
grad[Y ]g([Y ])

)
= gradY g(Y ) = ProjHY

(
∇Y g(Y )

)
= ProjTY

(
∇Y g(Y )

)
, (4.28)

where we can choose the most convenient projection to obtain the lifted gradient, thus we

use the projection to tangent space:

liftY
(
grad[Y ]g([Y ]

)
= ProjTY

(
∇Y g(Y )

)
= ∇Y g(Y )− Y herm

(
Y H∇Y g(Y )

)
=

1

K

K∑
k=1

ZkY
(
(Y HZkY ) ◦ I −R2I

)
− Y herm

(
Y HZkY

(
(Y HZkY ) ◦ I −R2I

))
.

(4.29)

The horizontal lift of the Riemannian Hessian of g in terms of g is given by

liftY
(
Hess[Y ]g([Y ])[η]

)
= ProjHY

(
HessY g(Y )[E]

)
ProjHY

(
Dr(Y )[E]

)
, (4.30)
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with E = liftY (η) and r a smooth extension of gradY g to a neighborhood of M in Euclidean

space CL×J . An obvious choice is

r(Y ) = ∇Y g(Y )− Y herm
(
Y H∇Y g(Y )

)
=

1

K

K∑
k=1

ZkY
(
(Y HZkY ) ◦ I −R2I

)
− Y herm

(
Y HZkY

(
(Y HZkY ) ◦ I −R2I

))
,

with directional derivatives

Dr(Y )[G] = D
(
∇Y g(Y )

)
[G]−Gherm

(
Y H∇Y g(Y )

)
− Y herm

(
D
(
Y H∇Y g(Y )

)
[G]
)
,

and the lifted Riemannian Hessian is

liftY
(
Hess[Y ]g

(
[Y ]
)
[η]
)

= ProjHY

(
D
(
∇Y g(Y )

)
[E]−Eherm

(
Y H∇Y g(Y )

)
− Y herm

(
D
(
Y H∇Y g(Y )

)
[E]
))

= ProjHY

(
D
(
∇Y g(Y )

)
[E]−Eherm

(
Y H∇Y g(Y )

))
, (4.31)

where the last term of the first equality vanishes through the horizontal projection, because

the term belongs to the normal space and HY ⊂ TY M ⊥ NY M.

Table 4.1 summarizes the geometric definitions of the quotient manifold M (using rep-

resentatives in M) for ROCMA. Readers interested in additional details of the quotient

manifold discussions may refer to [95, Chapter 9].

4.2.3 Riemannian Optimization for Blind Signal Recovery

We use a Riemannian Trust-Region (RTR) algorithm, which is a second-order optimization

approach with superlinear convergence rate [97]. At each iteration, to search a direction E
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in the horizontal space HY of iterate Y ∈ M, RTR solves the trust-region subproblem

T : minimize
E∈HY

qY (E)

s.t. dY (E,E) ≤ ε2 (4.32)

in the ambient manifold, where qY is a quadratic model of the cost function at Y ∈ M, and

ε denotes the trust region radius. The model is given by

qY (E) = g(Y ) + dY

(
E, gradY g(Y )

)
+

1

2
dY

(
E,ProjHY

(
HessY g(Y )[E]

))
,

using the horizontal lifts of both Riemannian gradient and Hessian derived in Eqs.(4.28)-

(4.31). In its general formulation, RTR uses a self-adjoint linear operator instead of the

Riemannian Hessian for ease of computation, but can obtain a better performance match

using the Hessian.

Table 4.1: Riemannian geometry definitions required for manifold optimization of ROCMA.

Name Definition

Computational space M ST(L× J)

Quotient space M = M/∼ ST(L× J)/U(1)×J

Horizontal space HY HY = {E ∈ TY M : Re
(
Tr(EHY T )

)
= 0 ∀T ∈ t(J)}

Horizontal space projection ProjHY ProjHY (G) = G− Y herm
(
Y HG

)
− Y

(
I ◦ skew(Y HG)

)
Riemannian metric dY dY (E,C) = Re

(
Tr(EHC)

)
, E,C ∈ HY

Retraction RSt
Y RSt

Y (E) = (Y +E)
(
I +EHE

)−0.5

Riemannian gradient grad[Y ]g liftY
(
grad[Y ]g([Y ]

)
= ProjTY

(
∇Y g(Y )

)
Riemannian Hessian Hess[Y ]g liftY

(
Hess[Y ]g(Y )[E]

)
= ProjHY

(
D
(
∇Y g(Y )

)
[E]−Eherm

(
Y H∇Y g(Y )

))

We can now define the ROCMA algorithm as summarized in Algorithm 4.1. Succinctly,

we first initialize by estimating the number of sources L, perform an L-rank eigendecompo-

sition that removes noise contribution in eigenvalues, and by corroborating that the L-rank

approximation is close to the sample covariance matrix to adjust L if needed. After scal-

ing the data vectors, we define cost function, quotient Riemannian manifold, and geometry

operations. Thereafter, we determine Riemannian Trust Regions: in each iteration we solve
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the trust-regions subproblem T in the horizontal space of the current iterate, obtaining a

descent direction E in the horizontal space HY , whose magnitude is given by the size of the

accepted trust region [53]. The subsequent solution iterate is computed using the retrac-

tion of E, which brings the result back to the manifold. Once the algorithm converges, we

compute the demixer matrix by scaling the obtained solution with ULΣ
−1
L .

Algorithm 4.1 Riemannian Orthogonal CMA (ROCMA)

Given: xk ∈ CM , k ∈ {1, . . . , K}, trust region radius ε, low-rank approximation toler-
ance ϵr
A) Source estimation:

1: Estimate number of independent sources L with Minka’s Laplace method
2: Obtain L largest eigenvalues and corresponding eigenvectors of sample covariance matrix

RX to construct L-rank approximation RX =
∑

k xkx
H
k ≈ ULΣ

2
LU

H
L

3: while ∥RX −ULΣ
2
LU

H
L ∥ > ϵr∥RX∥ do

4: L = L+ 1
5: Update ΣL, ΣL and UL with new components
6: end while

B) Initialization:
7: Define zk = Σ−1

L UH
Lxk and objective function g

8: Define geometry ingredients of M with representatives in M according to Table 4.1
C) Riemannian Trust Regions:

9: while not converged do
10: Obtain descent direction Et by solving T in HYt

11: Yt+1 = RSt
Yt

(
Et

)
12: end while
13: Wfinal = ULΣ

−1
L Yfinal

A known algorithm to solve the trust-region subproblem Q based in a truncated Con-

jugate Gradient approach is available as Algorithm 11 in [53, Section 7.3]. The manifold

optimization toolbox Manopt [98] implements a variation of this algorithm. We use this

open-source toolbox Manopt in our implementation of Algorithm 4.1 by leveraging its flexi-

bility for selectable choices of stopping criteria, tolerances, and other parameters.
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4.3 Convergence and Analysis

4.3.1 Convergence Conditions and Properties of CMA

The global convergence properties of CMA for a single PAM or QAM source recovery in noise-

less scenarios are well known [26, Chapters 4-7]. The case of SIMO-CMA blind equalizers,

also known as fractionally-spaced CMA or CMA-FSE (when applied to blind equalization

scenarios), correspond to the case of recovering one transmitted signal in a grant-free sce-

nario. The CMA-FSE equalizer has guaranteed global convergence so long as the channel

matrix H has full column rank [29]. Additionally, in [99] the authors show that in the

asymptotic regime and under the aforementioned assumptions, for all stable critical points

(desirable or not) the only direction of invariance of the CMA cost function corresponds to

the 1-dimensional manifold of rotations of the combiner, or U(1) using our notation in this

chapter. This invariance result is exploited in [100] to further establish conditions for conver-

gence of CMA and adapt a Newton method, discarding search directions in the equivalence

class of rotations.

Multi-channel CMA equalizers are an extension of CMA-FSE, where multiple transmit-

ters simultaneously send independent source signals on a set of shared channels. Targeting

one source signal, we can apply CMA to update a receiver equalizer that recovers the sig-

nal with minimal co-channel multi-user interference and minimum inter-symbol interference

(ISI) [45, 101]. Global convergence of MIMO-CMA equalizers have similar requirements as

the case of CMA-FSE equalizers, which in turn is equivalent to have the channel convolution

matrix H with full column rank. Thus, channel matrix H of full-column rank provides

guaranteed global convergence in noiseless scenarios. Multiple source recovery as presented

here is a special case of the multiple source recovery scheme presented in [45] with zero-ISI

subchannels. Thus, global convergence is also guaranteed under similar conditions. The

effect of moderate channel noises on CMA has been shown to be mild by introducing addi-

tional local minima in the vicinity of the global solution [102, 103]. Hence, in the following
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we will always assume that the channel matrix H has full-column rank.

However, most of these works focus in the asymptotic behavior of the CMA cost function

and its geometry. Under finite data sample, our recent work [104] provides the first analysis

for CMA-based source recovery. Our findings in [104] show that despite being non-convex, the

CMA cost function is geometrically well-behaved in terms of strong convexity and bounded

curvature in a neighborhood of the optimal solutions. The CMA convergence is therefore

tractable in the non-asymptotic case. In the remainder of this section, we shall utilize some

of the recent results to bound the minimum eigenvalue of the Euclidean Hessian, in order to

provide convergence guarantee for RTR.

4.3.2 Known Results in Relation to ROCMA

Riemannian manifold optimization with different solvers, such as Riemannian Trust-Regions,

has well-known convergence guarantees [97] over several classical manifolds, such as the

Stiefel manifold and the generalized Stiefel manifold, [93], the Grassmannian manifold [53],

and many others. These properties also apply to the quotient Riemannian manifolds, as

the computational space is still the ambient manifold [53]. In particular, Riemannian Trust

regions will converge superlinearly [97].

Previous works have analyzed some particular cases of cost functions that are mathe-

matically similar to Eq.(4.12). These works present scenarios closely related to the constant

modulus portion of the OCMA problem, but did not exploit the (scaled) orthogonality of

several solutions in the problem geometry. In [105] the authors optimize over the Stiefel man-

ifold to maximize the diagonal terms of a matrix quadratic form for joint diagonalization,

which is similar to the CMA cost function by setting R2 = 0. Another work [106] tackles

the phase retrieval problem by defining a manifold geometry with the so-called fixed-norms

manifold.

We now adopt and extend existing analysis to investigate the convergence properties of

ROCMA.
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4.3.3 Convergence of ROCMA

We first make slight modifications to simplify analysis. Recall the SVD of the full rank

channel matrix H from Section 4.1.1. we can rewrite

W Hxk = Y Hzk = Y HV Hsk + Y Hnk = QHsk + n̆k,

where we use n̆k = Y Hnk to denote the demixer output noise vector. Note that here we

use Q = V Y = HHW ∈ CL×J to denote the matrix of combined (channel plus demixer)

parameter vectors. This linear variable transformation betweenQ and Y is bijective sinceH

is full-column rank and V is orthonormal. Hence, our analysis will equivalently be performed

in Q-space and Y -space. Without loss of generality, we consider noiseless scenario for ease

of exposition.

As Q interacts with independent source signals directly, it is straightforward to check

whether CMA converges to a joint demixer of the form Q̂ = PD, in which P ∈ CL×J is a

tall permutation matrix, and D a diagonal unitary matrix. Hence, any optimum solution

of ROCMA in the quotient manifold M = ST(L × J)/U(1)×J has to be of the form [Ŷ ] =

[V HP ]. Equivalently, in the ambient manifold, the horizontal lift of the optimum is Ŷ =

lift[Ŷ ]([Ŷ ]). In the following, we adopt all these representations equivalently.

Recall that the second order moment, fourth order moment, and kurtosis of QAM source

signals are defined [26] by

m2 = E{|s[k]|2}, m4 = E{|s[k]|4}, κ = m4 − 2m2
2 < 0.

We note here that for QAM signals, 4m2
2 + 3κ ≥ m2

2 holds. We now present the two main

theorems that ensure convergence guarantees for ROCMA using RTR.

Theorem 9 (Positive Definiteness of Riemannian Hessian). Consider signal vector sk ∈ CL

with i.i.d. elements from a square QAM constellation of size Q. Additionally, let the channel
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matrix H be full-column rank. Let [Ŷ ] be a solution of the ROCMA problem on the quotient

manifold M = ST(L×J)/U(1)×J . There exist C1 > 0 and c1 > 0 such that, if the number of

measurements K ≥ C1L, the Riemannian Hessian of the cost function g(·) in M is positive

definite in the neighborhood of [Ŷ ] with probability of at least 1− 6e−c1K.

Proof. We begin our proof from the case of single-source recovery (J = 1) before generalizing

to multiple sources J > 1.

As the cost function is a sample average, we study the expectation of its Hessian and

invoke concentration of measure to approximate the behavior of the Hessian with that of its

mean with high probability. Let Q̂ ∈ CL be an ROCMA minimum in combined parameter

space. Specifically, Q̂ = ejθei which denotes arbitrary θ rotation of a canonical vector ei.

Invoking [104, Lemma 1], for δ > 0 there exist C1(δ) > 0 and c1(δ) > 0 such that for

K ≥ C1(δ)L, the single-source sample Euclidean Hessian is concentrated around its mean,

i.e.,
∥∥∇2g(Q̂)− E

{
∇2g(Q̂)}

∥∥ ≤ δ with probability at least 1− 6e−c1(δ)K .

Let U ∈ CL a nonzero vector , and let Ũ = [UT UH]T. From [74], the quadratic form of

the mean single-source Euclidean Hessian at Q̂ (using Wirtinger derivatives as in [100]) is

1

2
ŨHE

{
∇2g(Q̂)

}
Ũ

= (2m2
2 −R2m2)∥U∥2 + (3m2

2 + 2κ)Re(UHQ̂)2 −m2
2Im(UHQ̂)2 + (m2

2 + κ)|UHQ̂|2

= |κ| · ∥U∥2 + (4m2
2 + 3κ)Re(UHQ̂)2 + κIm(UHQ̂)2. (4.33)

Additionally, knowing that 4m2
2 + 3κ ≥ m2

2 and

Im(UHQ̂)2 ≤ max |Ui|2 ≤
L∑
i=1

|Ui|2 = ∥U∥2, (4.34)

we see that U is a zero solution of Eq.(4.33) if and only if U has one nonzero element

corresponding to the nonzero element of Q̂, and UHQ is purely imaginary, i.e. ∥U∥2 =

Im(UHQ̂)2. Let Ŷ ∈ M = ST(L× 1) be the horizontal lift of the optimum [Ŷ ]. Recall that
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Ŷ HŶ = 1. From the relationship between M and combined parameter space, i.e. Q = V Y

with the matrix V formed by right singular vectors of H , we have that the optimum in

combined parameter space is Q̂ = V Ŷ . Now let G = V HU , which we decompose in three

orthogonal components: a vertical direction E = Ŷ T ∈ VŶ with T imaginary diagonal (i.e.,

a scalar), a horizontal direction F ∈ HŶ and a normal direction C = Ŷ A ∈ NŶ M, where

A is Hermitian (i.e., a real scalar). Hence,

UHQ̂ = GHŶ = EHŶ + F HŶ +CHŶ = T H +A, (4.35)

where we use that F HŶ = 0 because it is skew-Hermitian with zero diagonal and a scalar.

Now, givenU for whichUHQ̂ is purely imaginary, the HermitianAmust be 0. In conclusion,

the only directions in the nullspace of the Euclidean Hessian at Q̂ in combined parameter

space correspond only to vertical directions at Ŷ in Y -space, i.e., VŶ corresponds to the

nullspace of the Hessian. Therefore, in the quotient manifoldM, where the vertical directions

are eliminated, the mean Hessian must be positive definite on the manifold.

Now, according to [104, Lemma 1], K > C1(δ)L implies that ∇2g(Q̂) ⪰ E{∇2g(Q̂)}−δI

with probability of at least 1− 6e−c1K . From Eq.(4.33) we have

1

2
ŨH∇2g(Q̂)Ũ ≥ 1

2
ŨHE

{
∇2g(Q̂)

}
Ũ − δ

2
ŨHŨ

≥ (|κ| − δ)∥U∥2 + (4m2
2 + 3κ)Re(UHQ̂)2 + κIm(UHQ̂)2,

which is strictly positive for δ < |κ|
(
∥U∥2− Im(UHQ̂)2

)
, where Im(UHQ̂)2 < ∥U∥2 because

G = V HU does not belong to the vertical space VŶ .

We now generalize to the multiple source recovery case (J > 1). Let Q̂ be an optimum,

that is, Q̂ = PD, with Q̂ℓ = ejθℓeiℓ its ℓ-th column corresponding to the ℓ-th optimum

demixer. The Euclidean cost function g, written in terms of each demixer similar to Eq.(2.7)

contains no cross-product between demixing combiners. Through vectorization of Q̂ and

permutations of columns and rows, we obtain a Wirtinger Hessian matrix such that its
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elements are ordered for each combiner as in [100, 104]. Thus, the Hessian matrix is block

diagonal, with each block being the single-source Euclidean Hessian evaluated at the ℓ-th

combiner, i.e. ∇2g(Qℓ), ℓ ∈ {1, · · · , J}.

Let U ∈ CL×J a nonzero matrix, and Uℓ its ℓ-th column , and let Ũℓ = [UT
ℓ UH

ℓ ]
T. In

quadratic form, the mean Euclidean Hessian at Q̂ can be rewritten as

J∑
ℓ=1

1

2
ŨH

ℓ E
{
∇2g(Q̂ℓ)

}
Ũℓ, (4.36)

where each summand is derived from Eq.(4.33). Following the same reasoning as in the

single-source case, Uℓ is a zero solution of the ℓ-th summand of Eq.(4.36) if and only if

∥Uℓ∥2 = Im(UH
ℓ Q̂ℓ)

2. Furthermore, Uℓ has to correspond to the ℓ-th column of a vertical

direction at Ŷ in Y -space.

Hence, U = V Ŷ T with T imaginary diagonal. Noting that Ŷ has orthogonal columns

by definition, and that T has J free parameters, the nullspace of the Hessian has dimension J .

Again we conclude that the only directions in the nullspace of the Hessian at Q̂ correspond to

vertical directions at Ŷ . As we ignore vertical directions when g is restricted to the quotient

manifold M, the mean Hessian must be positive definite.

Now, due to the block diagonal structure of the Hessian, it is straightforward to bound

the quadratic form of the sample Hessian as follows:

J∑
ℓ=1

1

2
ŨH

ℓ ∇2g(q̂ℓ)Ũℓ ≥
J∑

ℓ=1

(|κ| − δ)∥Uℓ∥2 + κIm(Y H
ℓ Q̂ℓ)

2 + (4m2
2 + 3κ)Re(UH

ℓ Q̂ℓ)
2,

which again is strictly positive for δ small enough with high probability, following the same

procedure as above. ■

Theorem 10 (Convergence of RTR). Under the conditions of Theorem 9, ROCMA is glob-

ally and locally convergent in M with high probability using Riemannian Trust Regions as

defined in Algorithm 4.1.
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Proof. First, we prove global convergence. The Riemannian quotient manifold M is smooth

and it is compact since it is a quotient space of ST(L×J), which itself is compact. The cost

function g is smooth because its lifted version is a (smooth) matrix polynomial. Invoking

[97, Corollary 4.6], ROCMA satisfies all conditions for global convergence.

For local convergence, we prove that [97, Theorem 4.12] holds for ROCMA. In particular,

ROCMA needs to meet the following requirements:

� All conditions of [97, Theorem 4.2], which are satisfied owing to global convergence.

� The retraction needs to satisfy the bound [97, Eq.(18)], which holds because: (a) M

is compact, and (b) the retraction from lifting is smooth.

� The norm of the inverse Hessian operator needs to be bounded in a neighborhood of

an optimum. Invoking Theorem 9, the Riemannian Hessian in M is strictly positive

definite in M with minimum eigenvalue λmin > 0. Since the Hessian is also continuous,

its inverse is bounded by λ−1
min in a neighborhood of any optimum.

Hence, with high probability, ROCMA enjoys global and local convergence guarantees using

RTR. ■

4.3.4 Computational Complexity

We can estimate the computational complexity of the ROCMA algorithm by analyzing each

step of Algorithm 4.1. In particular, the Riemannian Trust-Region step includes iterations

needed for convergence and also iterations of each call to the trust-region subproblem al-

gorithm. Henceforth, we refer to the former as outer iterations, and the latter as inner

iterations.

(1) The source estimation step is dominated by the computation of Minka’s Laplace

method, with complexity of O(ML), and a number of eigendecompositions, to be

obtained iteratively with a cost of O(M3).
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(2) The initialization is dominated by obtaining zk via scaling, with a complexity level

of O(MLK). Other computations have relatively insignificant, mainly for defining

geometry operations.

(3) Each inner iteration is dominated by the computation of Riemannian Hessian, at com-

plexity O(L2K). Other operations are linear over the samples with a cost of O(LK).

(4) Each outer iteration is dominated by the total inner iterations required in the particular

outer iteration It. Thus, this amounts to complexity of O(L2KIt). The Riemannian

retraction RY requires O(L3), whereas other operations are linear over scalars and of

O(1). The final scaling by ULΣ
−1
L has a cost of O(ML2).

Based on the aforementioned steps, Table 4.2 summarizes the complexity of ROCMA in each

step.

Table 4.2: Computational complexity of ROCMA.

ROCMA Steps Total cost
Estimate L O(ML)
Iterative eigendecomposition RY O(M3)
Define zk O(MLK)
RTR outer iteration O(L3 + L2KIt)
Final scaling O(ML2)

In comparison, the computational complexity of a typical gradient-descent scheme in

Euclidean space is of O(M2LK) per iteration [104], which is lower than the cost of RTR

iterations for a moderate number of inner iterations. The iteration complexity of RTR can

be found in [95, Theorem 6.10]. In our numerical results, we shall consider some benchmark

applications and provide a computation comparison of RTR with other Riemannian and

traditional CMA algorithms.
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4.4 Simulation Results

4.4.1 Definitions

For performance illustration and comparison. We consider a multi-user signal recovery sce-

nario consisting of L source nodes, each transmitting K independent symbols from a typical

QAM (QPSK or 16-QAM) constellation with normalized average power. The serving node

has M receive antennas whereas each low cost source node has a single antenna. We model

wireless channels H as stationary Rayleigh with i.i.d. entries Hml ∼ N (0, 1
2
) + iN (0, 1

2
), in

addition to additive white Gaussian noise vector nk with i.i.d. entries and variance (power)

σ2 consistent with receiver SNR of 20dB. To measure signal recovery performance, we eval-

uate normalized total interference (NTI) for each recovered source, defined by

NTIℓ =

∑
i |Cℓi|2 −maxi |Cℓi|2

maxi |Cℓi|2
(4.37)

where Cℓi are the entries of the final mixing matrix C = W HH after demixing, with its rows

corresponding to each equalized channel-demixer pair. Unless otherwise stated, we average

100 runs per setting.

4.4.2 Signal Recovery Efficacy

We test and compare the power of source recovery capabilities under different system sizes,

different number of samples, and different QAM constellations.

Figure 4.3 presents the probability of successful recovery of multiple sources based on

different numbers of received data samples, under 20dB SNR. We test both QPSK and 16-

QAM modulations for system sizes of M × L = 8× 4 and 16× 8. We define success as the

event that all source signals are recovered with NTI below -20dB.

Figure 4.3a shows a 8 × 4 system using QPSK source modulation. Our proposed RTR

and RGD exhibit nearly the same probability of success for various sample size K, both
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successfully achieving 100% success for K ≥ 300 samples. In comparison, the existing WF

algorithm exhibits similar or slightly higher recovery success rate at first, but stagnates and

fails to achieve 100% of success with increasing data size. Unlike RTR and RGD, the WF

receiver requires at least 900 data samples to achieve a probability of success above 98%.

Applying sequential Gram-Schmidt orthogonalization, GS-CMA requires even more samples

to achieve higher probability of success. In fact, our test fails to reach above 96% success

probability despite utilizing thousands of data samples.

(a) QPSK, M × L = 8× 4. (b) QPSK, M × L = 16× 8.

(c) 16-QAM, M × L = 8× 4. (d) 16-QAM, M × L = 16× 8.

Figure 4.3: Probability of successful recovery of all detected demixers vs. number of samples.

Testing a larger system using QPSK, results from Figure 4.3b demonstrate similar relative

performance by RTR, RGD and WF, requiring 500 and 1000 samples to achieve over 99%

probability of success. The GS-CMA demixer, however, is much more sensitive to problem
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size, and struggles to jointly recover all signals even with 5000 received data samples.

We now consider the more challenging case of 16-QAM source signals. Figures 4.3c

and 4.3d respectively provide the results for problem size of 8 × 4 and 16 × 8. The test

results show that the two Riemann methods (RTR and RGD) again achieve high probability

of successful signal recovery, now requiring only 600 and 2000 samples, respectively for near

100% success rate. The WF algorithm is less successful in comparison, requiring at least

2000 samples to achieve more than 95% of success probability. On other other hand, GS-

CMA only achieves 60% probability of success for 16-QAM for the smaller 8 × 4 system

size. For the more complex system of size 16 × 8, GS-CMA in fact is unable to recover

all 8 detected sources under the stated simulation settings. Indeed, this phenomenon was

anticipated by [47]. Since GS-CMA relies on sequential Gram-Schmidt orthogonalization

for signal separation, error propagation can lead to weaker interference suppression. As the

ℓ-th demixer relies on all previous demixers in order to isolate a different signal, GS-CMA

becomes increasingly more vulnerable to error propagation with increasing number of signals.

Overall, both proposed Riemann algorithms (RTR and RGD) demonstrate strong per-

formance across different modulations and system sizes under test than their Euclidean

counterparts. WF-CMA still shows high probability of successful recovery, albeit at the

cost of more samples than RTR or RGD. GS-CMA, on the other hand, struggles against

moderately large system sizes or higher-order modulations.

4.4.3 Computation and Interference Rejection

For the purposes of signal recovery, computation complexity must be jointly analyzed with

respect to the achieved level of interference rejection in recovered signals. For this reason, in

the following presentation we show how well our proposed methods (RTR and RGD) work

in terms of both interference rejection and computational load. We also provide benchmark

comparison with the two algorithms (WF and GS).

We first investigate algorithm runtime (“wall-clock” time). Runtime depends on com-
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puter, platform and code implementation. Thus, runtime comparison alone may not fully

capture true algorithm runtime. To mitigate this possible bias, we let all source codes for

RTR, RGD and WF utilize the same Manopt structure and libraries. GS-CMA, on the other

hand, uses a direct implementation using the fastest routines available (matrix products, etc.)

for each iteration.

Figure 4.4 depicts the average interference rejection over all runs of the algorithms with

respect to their runtime, for a fixed number of samples K = 2000. From the results of all

tested modulation schemes and system sizes, both RGD and RTR, by exploiting the proposed

geometry, are faster than GS by at least 4 times, and are faster than WF by an order of

magnitude. Such advantage is consistent across nearly all tested modulation schemes and

system sizes. Moreover, RTR and RGD exhibit similar runtime across modulations, and

require about double the time to converge in the larger system of 16 × 8, which contains 2

times more sources and antennas (Figures 4.4b and 4.4d). There are some modest differences

between the two Riemann solvers. In particular, RGD converges slightly faster initially to

achieve moderate interference mitigation of approximately -15dB. For higher interference

rejection, both RGD and RTR show similar runtime complexity.

WF-CMA exhibits a similar efficacy in terms of interference rejection, but it does require

longer runtime to achieve a particular level of interference rejection. On the other hand,

GS-CMA requires more runtime to converge than the Riemannian methods across all tested

scenarios. Moreover, GS-CMA is less effective in interference mitigation, particularly for

more complex source signals of 16-QAM, as shown in Figure 4.4c and Figure 4.4d. From the

test results, it is evident that GS-CMA stalls in terms of interference rejection and additional

iterations do not improve the performance of interference rejection. This phenomenon is

consistent with the discussion of error propagation in sequential orthogonalization of the

GS-CMA approach. The performance loss of GS-CMA becomes more severe with increasing

modulation and system size, e.g. is about -30dB of interference for QPSK signals and a 8×4

system (Figure 4.4a), but is less than -10dB for 16QAM and 16× 8 system (Figure 4.4d).

74



(a) QPSK, M × L = 8× 4. (b) QPSK, M × L = 16× 8.

(c) 16-QAM, M × L = 8× 4. (d) 16-QAM, M × L = 16× 8.

Figure 4.4: Average total interference for all detected demixers vs. runtime.

To address the potential bias of over-reliance on runtime when analyzing computation

complexity, we also compare the algorithm behavior respect to oracle calls, that is, the total

number of cost function, gradient, Hessian and GS orthogonalization calls/evaluations of each

algorithm. These operations are dominant contributors to total computational complexity,

they act as a proxy for platform-independent computational load assessment. Recall that GS-

CMA uses only one sample per gradient update and its orthogonalization does not increase

with the number of samples, we normalize the number of oracles calls by K in order to

provide a fair comparison with the other methods, that use sample averages in all its oracle

calls.

Figure 4.5 shows the average achieved NTI of each algorithm with respect to their oracle
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calls, for a fixed number of samples K = 2000. As seen in previous comparisons, RTR

and RGD have similar computational cost. Across the tested modulations and system sizes,

both RGD and RTR require at least an order of magnitude fewer function computations than

WF-CMA to achieve 20dB of interference mitigation. Even if we account for their larger

computational complexity per iteration than WF or GS, the total cost of every algorithm is

dominated by the number of iterations, and RTR and RGD incur significantly lower total

computational load than WF-CMA. WF-CMA shows good interference rejection power,

but requires about 10-20 times more oracle computations than the Riemannian methods to

achieve equal levels of interference mitigation.

(a) QPSK, M × L = 8× 4. (b) QPSK, M × L = 16× 8.

(c) 16-QAM, M × L = 8× 4. (d) 16-QAM, M × L = 16× 8.

Figure 4.5: Average total interference for all detected demixers vs. oracle calls.

As expected, GS is the least complex algorithm owing to its simply stochastic gradient
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update using only one sample in each iteration. At an average interference suppression of

20dB, the computational cost of GS is about 5-8 times lower than the Riemannian methods,

as seen in Figs 4.5a-4.5c. However, the sequential nature of the GS-CMA leads to poorer

interference rejection, particularly for higher-dimensional QAM constellation and/or larger

system sizes. In comparison, the proposed Riemann algorithms can achieve substantially

better performance of signal recovery with only a modest increase of computation complexity.

Exploiting Riemannian geometry provides a good complexity-efficacy tradeoff.

4.5 Summary

In this chapter, we investigated an alternative formulation for CMA-based signal recovery

based on Riemannian manifolds. We avoided regularization by imposing constraints in the

original optimization problem. Then, we developed a Riemannian geometry that encodes the

orthogonality requirement of distinct source signals, and thus we rewrite the CMA problem as

an unconstrained optimization problem over our proposed manifold geometry. We leveraged

Riemannian optimization techniques to solve this problem without the need for parameter

tuning or special initialization, and furthermore, provided theoretical convergence guarantees

with high probability under mild conditions. Our numerical test corroborated these claims

when compared with traditional CMA solutions, showing lower requirement of sample size,

computations and runtime.
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Chapter 5

An Unsupervised Learning Paradigm

for MIMO User Scheduling

In this chapter, we propose an effective and scalable user scheduling based on unsupervised

learning. Given channel state information (CSI) of users, we first apply unsupervised learning

to identify mobile users with highly similar CSI. We develop a new scheduling principle to

enhance spatial diversity by dispersing users of high CSI similarity into different MIMO

access groups. We formulate a user clustering problem over Grassmannian manifold to

identify users that can pose strong co-channel interference. We consider downlink MIMO

and uplink MIMO, with or without power control for simple implementation. Our new

scheduling approach is generalizable to a variety of different simple and scalable unsupervised

learning tools and different diversity optimization criteria. Numerical tests demonstrate

the substantial gain in terms of spectrum efficiency and interference suppression at modest

computation complexity.

Part of this chapter has been previously submitted to IEEE Transactions on Wireless Communications
and is currently under review.
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5.1 The Scheduling Problem

Previous works on resource-sharing MIMO systems have studied optimal decoder (MAC)

and precoder (BC) designs that achieve channel capacity for a given resource-sharing group,

such as the MMSE-SIC receiver [59] for MAC or dirty-paper precoding [107] with MMSE

filters for BC. However, these designs were proposed with the premise that users have already

been scheduled in MIMO user groups. To benefit from these exciting works in the literature,

we investigate the scheduling problem that is a foundation step to MIMO precoding and

rate maximization.

In the following, we adopt the system model developed in Section 2.3. We assume similar

data rate requirements for all users, and thus we use spectrum efficiency as performance

metric. Hence, we first obtain the spectrum efficiency in terms of co-channel interference

and user rates. Note that because the system model assumes single-carrier systems, we use

normalized bandwidth.

5.1.1 Co-Channel Interference and Sum-Rate

The interference that user u ∈ Sg experiences is measured by their signal-to-interference-

and-noise ratio or SINR. In the case of MAC, the SINR of user u is

SINRMAC
u =

pu|W H
g hu|2

σ2 +
∑

i∈Sg ,i ̸=u pi|W H
g hi|2

. (5.1)

Among several receiver designs, without loss of generality we adopt the MMSE receivers

[59] for their straightforward implementation and to fully leverage spatial diversity. In the g-

th group, the MMSE design defines the column of the g-th decoder matrix Wg corresponding

to user u ∈ Sg as

Wg =

(
σ2IM +

∑
i∈Sg ,i ̸=u

pihih
H
i

)−1

hu, (5.2)
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with a resulting SINR of

SINRMAC
u = puh

H
u

(
σ2IM +

∑
i∈Sg ,i ̸=u

pihih
H
i

)−1

hu. (5.3)

For BC, the SINR of user u corresponds to

SINRBC
u =

pu|hT
uzu|2

σ2 +
∑

i∈Sg ,i ̸=u pi|hT
uzi|2

, (5.4)

and, without loss of generality and for the sake of simplicity, we use the MRT precoders [61]

zu =
hu

∥hu∥
, ∀u ∈ {1, . . . , N}, (5.5)

which yield a resulting SINR for user u of

SINRBC
u =

pu∥hu∥2

σ2 +
∑

i∈Sg ,i ̸=u pi|hT
uhi|2/∥hi∥2

. (5.6)

The normalized sum-rate of the g-th group is given by

Rg =
∑
u∈Sg

log2
(
1 + SINRu

)
, (5.7)

with RMAC
g and RBC

g denoting the sum-rates for uplink and downlink, respectively, using the

corresponding expressions for SINR.

5.1.2 Problem Formulation

Ideally, we aim to optimize the design of the indicator variables πg,u and user power allocation

pu to maximize the efficiency of resource usage in terms of sum rate, that is, maximizing the

sum-rate of each RSG and minimizing the number of groups simultaneously. A mathematical
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formulation of this approach, valid for either MAC or BC scheduling, is

P : max
G, πg,u, pu

1

G

∑G

g=1
Rg (5.8a)

s.t.
∑N

u=1
πg,u ≤ M, ∀g , (5.8b)

πg,u ∈ {0, 1}, ∀g , ∀u , (5.8c)∑N

n=1
puπg,u ≤ pmax

BS , ∀g (BC), (5.8d)

0 ≤ pu ≤ pmax
UE , ∀n (MAC). (5.8e)

In Problem P , constraint (5.8b) limits the number of MAC/BC users up to the number

of BS antennas M without requiring further non-orthogonal multiple access. By design,

each user belongs to one group only (5.8c). Additionally, in practical BC systems the BS

transmission power is limited by pmax
BS in every time slot and needs to be properly allocated

(5.8d), whereas in MAC each user has a maximum transmission power pmax
UE (5.8e). In order to

further mitigate CCI, additional constraints can be considered when more design parameters

are available, such as resource availability, cooperation in BC, individual rate requirements,

among other criteria. Note that our formulation of problem P for maximizing spectrum

efficiency can be modified as required to attain different objectives, and as such is without

loss of generality. Other tractable performance metrics for MAC/BC user scheduling include

the minimization of MSE [108, 109], weighted MSE [110], maximization of SINR [111], or

minimization of BER [112], among others.

Regardless of the selected objective, P is NP-hard and shares similar complexity as

general nonlinear mixed integer programming. To find the optimum MAC/BC user grouping

π⋆
g,u, a direct exhaustive search method would need to evaluate all possible πg,u in terms

of mean sum-rate (5.8a) to determine the optimum MAC/BC user grouping solution that

achieves the best spectrum efficiency. However, the resulting search space is combinatorial

even with a modest number of users and fixed G and pu, and as such requires very high

computational load.
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Therefore, the challenge in MIMO user scheduling for massive wireless systems is to

develop a low complexity and effective algorithm that can achieve high spectrum efficiency

and low CCI with relative independence of system parameters such as the total number of

users, number of users within a group, BS antennas, channel realizations, etc.

5.1.3 Proposed Novel Solution Paradigm

Any solution to the scheduling challenge will essentially try to find MAC or BC groups

such that all users in each group enjoy low CCI, or in other words, their CSIs are distinct

enough in the spatial sense, while still incurring in reasonable computational cost. To attain

this goal, such solution has to study the whole dataset, instead of looking at portions of

it (such as pairwise relationships). Even then, the solution needs to measure dissimilarity,

which is not well-defined in a general form and instead is variable, highly dependant on

the particular realization of CSIs and the system itself. This leads to either trial-and-error

approaches to define dissimilarity in particular scenarios, or the need to design a dynamic

metric of dissimilarity that accounts for system parameters and CSI variability in several

different scenarios, which is both hard and impractical.

Nevertheless, the fast development of scalable solutions of challenging problems in the

field of machine learning techniques offer hope in tackling the scheduling problem. These

techniques analyze all data points and are able to adapt to several changes in the dataset,

known or not. Moreover, machine learning techniques have been thoroughly used across

a large variety of computationally difficult problems with the goal of reducing complexity

and/or runtime, and has offered novel perspectives and approaches in different aspects of

wireless systems [70–73,113].

Regrettably, both supervised and unsupervised learning cannot be directly applied to

the scheduling problem. On one hand, supervised learning (which usually enjoys better

performance) requires a rich labeled dataset or near-optimum solutions for training, which

in the context of CSI scheduling is nearly unfeasible to obtain. First, the large number
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of system parameters and possible channel characteristics demands for an incredibly large

dataset to avoid sampling biases. Moreover, such ground-truth labels are not known even in

simulations, as the optimum scheduling solution of a particular system is unknown due to

the very nature of the scheduling problem.

On the other hand, unsupervised learning cannot be directly applied in user scheduling:

a proper scheduling scheme will avoid grouping users with similar CSI, which diminishes

performance and channel capacity, and conversely assigns users with dissimilar CSIs in RSGs

to reduce CCI.

However, unsupervised learning techniques excel at finding common features in a dataset

in an efficient manner among data points, such as user CSI, without having to know be-

forehand which features to study and without the need of labeled datasets. This realization

leads to the main contribution of this chapter: a general and scalable two-step strategy that

uses unsupervised learning techniques to first identify in a global manner which users share

similar CSI, to then exploit that information and define MAC/BC RSGs such that their

users do not share spatial similarities.

In the following section, we present the details of our scheduling approach, valid for

both MAC and BC systems, that tackles the inherent complexity of the scheduling problem

without sacrificing performance.

5.2 Principled User Scheduling Through Unsupervised

Learning

To accomplish our goal, we first examine CSI similarity and introduce a corresponding

transformation to a geometric manifold that contains CSI vectors. Using this similarity

measure, we directly apply unsupervised learning on active users to identify similar CSIs in

terms of subspace span and form clusters of similar CSIs. Thus, users within each similarity

cluster tend to exhibit strong CCI due to low CSI diversity (high similarity) such that no
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two users from a particular cluster should be jointly scheduled in an RSG. Based on the

outcomes of unsupervised learning, we define a scheduling algorithm to group users from

different CSI clusters into RSGs, thereby achieving high CSI diversity within a group to

generate lower mutual interference and higher spectrum efficiency. Figure 5.1 illustrates our

two-step strategy, and we further summarize our scheduling approach in Algorithm 5.1.

Algorithm 5.1 Scalable User Scheduling Strategy

Input: hu ∈ CM , u ∈ {1, . . . , N}
Learning-based CSI Clustering:

1: Identify user CSI with high similarity (subspace span) through unsupervised learning;
Similarity-Assisted User Grouping:

2: Assign users from different clusters in RSGs for MAC/BC operation, such that no two
users from the same CSI cluster are in any scheduled group, and further exploit clustering
results in user selection.

Figure 5.1: Illustration of the proposed user scheduling strategy based on unsupervised
learning. In the first step, we employ unsupervised learning to classify user CSIs into clusters
with strong similarity in the sense of subspace span. In the second step, we allocate users
into resource-sharing groups that exploit the CSI similarity such that not 2 users of the same
cluster share resources.

5.2.1 Geometric Perspective of CSI Similarity

In our setting, channel similarity is directly related to the colinearity of user CSIs in spatial

domain, or equivalent in subspace span. Hence, we start by examining the pairwise CSI

correlation coefficient

ρ (hu,hi) =
|hH

uhi|
∥hu∥ ∥hi∥

, (5.9)
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which determines the amount of CCI between two co-channel users. In particular, if two user

CCIs are orthogonal, then there is zero CCI when scheduled in the same RSG. In practice,

full CSI orthogonality is rare. One practical solution is to set an upper threshold to limit

the norm of the pairwise CSI correlation coefficient within each RSG. The challenge is that

setting such a threshold cannot guarantee the level of co-channel interference (CCI) among

users in an RSG. First, the CCI among users in an RSG would vary depending on the

magnitude of user CSIs, and on multi-lateral geometric relationship among CSIs. Second,

direct user scheduling also depend on the user selection order considered for scheduling,

whose optimization involves a combinatorial and computationally intensive process. To

ensure overall system efficiency (5.8a), consistency, and fairness for both MAC and BC, we

need to develop a consistent, simple, and scalable scheduling method to effectively limit CCI

among users in a RSG for both BC and MAC scenarios.

Note that traditional unsupervised learning in Euclidean space is incompatible with iden-

tifying similar/dissimilar CSI vectors, as the Euclidean distance does not measure spatial

correlation/diversity. Instead of using Euclidean distance, Eq.(5.9) shows that the spatial

similarity or dissimilarity of CSI vectors is insensitive to phase rotations and/or magnitude

variation of the individual CSI vectors, as

ρ
(
hu, αe

iθhi

)
= ρ (hu,hi) ∀α ∈ R/0, θ ∈ [0, 2π).

To account for CCI invariance in a global manner, we can redefine the geometry of the space

when analyzing CSIs, transforming from Euclidean space to a manifold geometry. Such

transformation in unsupervised learning has been used to characterize the underlying low-

dimension space of data [114]. However, by analyzing and clustering CSIs on a manifold

that naturally measures the desired notion of diversity, the resulting clusters will effectively

identify users that have highly similar CSIs and consequently strong CCI.

As explained, CSI correlation disregards the common phase and magnitude of each vector.
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Therefore, we need a manifold geometry invariant to magnitude and/or phase variations.

Formally, we define an equivalence relation

hu ∼ hi if hi = aeiθhu, a ∈ R/{0}, θ ∈ [0, 2π), (5.10)

which states that any two vectors that differ in magnitude and/or phase are considered the

same. With Eq. (5.10) we can define an equivalence class for each CSI vector

[hu] =
{
aejθhu : θ ∈ [0, 2π], a ∈ R/{0}

}
=
{
αhu : α ∈ C/{0}

}
. (5.11)

In other words, the equivalence class [hu] is the complex line that passes through hi and

the origin. The set of all such lines is known as the complex Grassmannian manifold of

complex lines in CM , or Grassmannian, which we denote by GR(M, 1). This is a well-known

geometry that has been extensively studied for both clustering and optimization [93,115,116].

For computation purposes, every equivalence class [hu] ∈ GR(M, 1) is represented by its unit

vector hu∥hu∥−1 on behalf of all the points contained in the class.

To cluster data points in a manifold, we need to define: (1) a Riemannian distance that

measures the space; (2) the tangent spaces, which are linear spaces that approximate the

manifold in a neighborhood of a particular point; and (3) geodesics, which are the minimal

smooth curves in the manifold that connect two of its points. The complex Grassmannian

GR(M, 1) can be endowed with the following distance function:

dist
(
[hu], [hi]

)
= arccos

( |hH
uhi|

∥hu∥∥hi∥

)
= arccos

(
ρ(hu,hi)

)
.

Note that this distance is a function of the CSI correlation, and as such, is invariant to scale

and phase variations as intended.

The tangent space T[hu]GR(M, 1) is a linear space that contains the tangent directions

of all 1-dimensional curves on the manifold passing through [hu]. In the case of GR(M, 1),
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we have

T[hu]GR(M, 1) = {v ∈ CM : hH
uv = 0}. (5.12)

We define a Riemannian metric for the linear T[hu]GR(M, 1):

⟨u,v⟩[hu] = Re
(
uHv

)
, u,v ∈ T[hu]GR(M, 1) (5.13)

that induces a norm ∥v∥[hu] =
√

⟨v,v⟩[hu] for tangent vectors v ∈ T[hu]GR(M, 1).

Finally, we characterize geodesics connecting two points in GR(M, 1). Formally, we define

γ(t) as the geodesic from the starting point [hu] = γ(0) reaching the point [hi] at γ(1) at

t = 1. This scaling implies that the geodesic has a defined initial velocity v = γ′(0). By

construction, v ∈ T[hu]GR(M, 1), which can be computed with the logarithm map:

Log[hu]

(
[hi]
)
=

u

∥u∥
arctan

(
∥u∥

)
, u =

∥hu∥hi

hH
uhi

− hu

∥hu∥
.

Conversely, for a geodesic γv(t) starting at [hu] and with initial velocity v ∈ T[hu]GR(M, 1),

the exponential map yields the point γv(1), and is given by

Exp[hu]

(
v
)
=

hu

∥hu∥
cos
(
∥v∥[hu]

)
+

v

∥v∥[hu]

sin
(
∥v∥[hu]

)
.

We therefore have [hi] = Exp[hu]

(
Log[hu]

(
[hi]
))
. We can use both maps above to move

on the manifold. Note that these expressions are equivalent to the general expressions of

logarithm and exponential maps for general Grassmannians GR(M, p) based on singular

value decompositions, but simplified for the particular case of GR(M, 1) [53]. Figure 5.2

visually depicts the Grassmannian manifold discussed above and the relationship among

tangent space, geodesic, logarithm and exponential map.
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Figure 5.2: Depiction of Grassmannian manifold: we show the tangent space at [hu], the
geodesic connecting [hu] and [hi], the corresponding exponential and logarithm maps, and
their relationships.

5.2.2 Unsupervised CSI Clustering

Among the plethora of unsupervised learning algorithms, e.g., [117], that are generally all

useful in our user scheduling paradigm, we consider two simple and well-known data cluster-

ing methods: K-means clustering and agglomerative hierarchical clustering [118]. We adapt

both unsupervised learning algorithms in the first step of manifold CSI clustering. Our

goal is to classify N users into K clusters {C1, · · · , CK} based on the available CSI {hu}Nu=1

at the scheduling server such that users in each cluster exhibit high CSI similarity in the

Grassmannian GR(M, 1).

Grassmannian K-means (GKM) Clustering

The basic K-means algorithm applies a greedy iterative approach to find a data partition

that minimizes the distance between cluster members and their respective cluster centers.

At the t-th iteration, the center of the k-th cluster Ct
k is defined by ut

k ∈ CM , which in

Euclidean space is given by

µt
k =

1

|Ct
k|
∑
n∈Ct

k

hu. (5.14)
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In case of manifolds, the cluster centers are given by the intrinsic mean of cluster members,

µt
k = argmin

[u]∈GR(M,1)

∑
n∈Ct

k

dist
(
[hu], [u]

)
, (5.15)

which has no closed-form solution as it depends on reference points, which are not fixed. The

computation of the intrinsic mean is shown in Algorithm 5.2, where we use the unit-vector

representatives of the equivalence classes for computation.

Algorithm 5.2 Intrinsic Mean for Cluster k in GR(M, 1)

Input: [hu] ∈ Ct
k, threshold ϵ, maximum number of iterations Tim

1: Initialize t = 1, [u] = [hi] for a random i in the cluster
2: while t ≤ Tim or ∥v∥u ≥ ϵ do
3: Compute tangent vector v = |Ct

k|−1
∑

u Log[u]
(
[hu]

)
4: Update [u] = Exp[u](v)
5: Set t = t+ 1
6: end while
7: Return [µt

k] = [u]

For the initial centers for K-means clustering, namely µ0
k, k ∈ {1, . . . , K}, we can ran-

domly select K users out of the M users. However, performance of K-means could suffer

due to poor initialization, and instead we initialize using K-means++ to mitigate this effect

[119].

At the t-th iteration, each user is assigned to a cluster Ck⋆ based on the center that is

closest to the user, that is,

k⋆ = argmin
k

dist
(
[hu], [µ

t
k]
)
. (5.16)

The K cluster centers are updated. The clustering and center update steps continue until all

clusters stay the same (or any other stopping criteria). Our implementation of Grassmannian

K-means is summarized in Algorithm 5.3.
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Algorithm 5.3 Grassmannian K-means

Input: hu ∈ CM , n ∈ {1, . . . , N}, intrinsic mean parameters ϵ and Tim

1: Normalize CSIs to obtain Grassmannian representatives.
2: Set t = 0 and C0

k = ∅ ∀k
3: Select initial cluster centers according to K-means++ using the Grassmannian distance.
4: while Ct

k ̸= Ct−1
k for any k do

5: Set t = t+ 1 and Ct
k = ∅ ∀k

6: for each user u do
7: Find the center [µk] closest to [hu]
8: Assign user u to Ct

k

9: end for
10: for each cluster k do
11: Update cluster center [µk] using Algorithm 5.2.
12: end for
13: end while

Agglomerative Hierarchical Clustering (AHP)

This bottom-up hierarchical clustering approach begins by treating each data point as a

single point cluster. It proceeds to successively merge the most similar cluster pairs until

reaching the target number of clusters using a “linkage” rule to define the distances among

merged pairs. Here, we use the complete linkage rule [72], i.e., at the t-th agglomeration,

the similarity measure between clusters Ct
k and Ct

j is

d
(
Ct
k, Ct

j

)
= max

hm∈Ct
k,hu∈Ct

j

dist
(
[hm], [hu]

)
. (5.17)

In particular, the linkage between two single-user clusters is d (Ct
m, Ct

u) = dist
(
[hm], [hu]

)
.

Given a set of clusters {Ct
1, · · · , Ct

K′}, where K ′ ≥ K, at each iteration, we determine the

most similar pairs of clusters according to the linkage rule (5.17). After merging the two

closest clusters, the process is repeated on the new set of clusters until the target number of

clusters K is reached.

Note that in the context of Grassmannian manifold framework, any effective clustering

approach is a valid option. We only focus on the two simpler approaches for their low

complexity and ease of exposition.
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5.2.3 CSI-Based User Scheduling

Direct Greedy Scheduling

One way to control CCI among users scheduled in the same group is to apply a simple

greedy algorithm to form RSGs. This direct greedy method can be used a basic benchmark.

Starting from a user group of one random user, we can consider each new user by examining

its pairwise CSI correlation with all users in the group against a set threshold β, and only

add the new user if each pairwise correlation is below β until the group size reaches M . We

can then continue to schedule additional groups. This direct greedy scheduling, which

we denote DS, does not rely on any supervised learning. Its scheduling results would vary

significantly according to the order of the users being considered during scheduling.

User Scheduling with Unsupervised Learning

MIMO user scheduling optimization can consider different performance criteria. However, co-

channel interference (CCI) among users scheduled for the same RSG should always reduced

for any sensible performance metric. Based on the outcomes of CSI clustering, users within

the same cluster have highly similar CSIs in terms of strong pairwise correlation coefficient,

which can lead to strong CCI and challenge the receiving accuracy. From this perspective,

users from different clusters are dissimilar and should induce low CCI, and thus are good

candidates to be scheduled for MIMO resource sharing.

Our proposed GKM and AHP algorithms exploit the outcomes from CSI learning in the

form of CSI clusters. Since there are multiple CSI clusters, our proposed GKM scheduling

would compute the inter-cluster distances and sort clusters in descending order of minimum

inter-cluster distance. We can then start GKM scheduling by forming user scheduling groups

by considering clusters that are as far apart as possible to contain CCI. In the case of AHP,

we apply cluster merging from the smallest cluster sizes.
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5.2.4 Power Control in MAC Scheduling

CSI gains and power control must be considered differently in MAC and BC scheduling

systems. In MAC, different receiver designs will benefit from different strategies: joint

MMSE receiver benefits from CSIs with similar gains, whereas interference cancellation (e.g.

SIC) receiver thrives when CSIs have large gain differences. In practice, power control in

MAC plays an important role to mitigate the near-far problem. It is well known that optimal

power control is achieved by waterfilling with respect to a target interference and noise level

[59]. However, it can be hard to accurately apply power control at the scheduling stage for

a large number of distinct groups. Thus, we can consider two scenarios: (a) equal power

transmission, where maximum user transmit power pu = pmax
UE is used for all u without power

control, despite having different channel gains ∥hu∥ (MAC-U); (b) effective power control

such that pu∥hu∥2 is nearly constant at the receiver (MAC-P).

Consider each user signal quality in MAC. Note that using an MMSE receiver with σ2

being the noise power, the resulting user SINR is

SINRMAC
u =

hH
u

∥hu∥2

(
σ2I

pu∥hu∥2
+

∑
i∈Sg ,i ̸=n

pihih
H
i

pu∥hu∥2

)−1

hu,

which means that SINR depends on all pairwise correlations of users within a group and the

ratio of their received powers. Hence, the MMSE receiver benefits when the users within a

group have similar received power pu∥hu∥2, and thus the received power ratios are close to

1. Such power ratios have minimum near-far effect and more consistent performance. These

power ratios are often achieved under power control. Hence, we define the following grouping

rule for MAC-P:

φMAC
P (hu,Sg) =

 1 ρ(hu,hℓ) ≤ β ∀ℓ ∈ Sg ∧ |Sg| < M,

0 otherwise.
(5.18)
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5.2.5 MAC Scheduling without Power Control

In large scale systems such as IoT deployment, power control may not be practical. Without

power control (MAC-U), our proposed scheduling algorithm shall attempt to reduce CCI by

forming RSGs of similar channel gain and low similarity.

Specifically, we partition CSI gains of all N users into B levels. Users scheduled in group

Sg must have CSI belonging to the same partition. Hence, we modify the grouping rule

φMAC
P to include this additional criteria:

φMAC
U (hu,Sg) =

 1 ρ(hu,hℓ) ≤ β ∀ℓ ∈ Sg ∧ |Sg| < M ∧ ∥hu∥ ∈ b(Sg),

0 otherwise.
(5.19)

5.2.6 BC Scheduling for Low Complexity Transceivers

Practical individual receivers in BC systems do not share CSI information. For massive de-

ployment, dirty paper coding (DPC) [120] is also challenging to implement practically. Our

user scheduling will target low complexity transceivers that only utilize local CSI. Therefore,

power control for scheduled user groups could prove useful. We consider a simple power con-

trol by allocating uniform transmit power among BC group members, i.e. pu = pmax
BS |Sg|−1.

Other simple schemes could be applied, e.g. allocating power such that users within a group

exhibit close to identical received signal power pu∥hi∥2.

Furthermore, users with weaker CSI gain experience lower SNR. To compensate, our BC

scheduling algorithm considers the CSI gain and allocate fewer users of similarly low CSI

gain into an RSG to maintain sufficiently high SINR. As a simple two-tier implementation

example, we shall partition downlink CSI gains into two levels with a threshold δ. We assign

users with weaker CSI gains below δ into weaker CSI groups, up to a maximum of E users

in such groups. Conversely, we assign users with stronger CSI gains above δ into stronger

CSI groups, up to a maximum of D users in such groups where D ≥ E.
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Figure 5.3: Flowchart of a greedy algorithm under the proposed scheduling principle, using
rule (5.18) for MAC-P, (5.19) for MAC-U and (5.20) for BC.

The corresponding grouping rule is:

φBC(hu,Sg) =


1 ρ(hu,hℓ) ≤ β ∧ |Sg| < E ∧ ∥hu∥, ∥hℓ∥ ≤ δ, ∀ℓ ∈ Sg,

1 ρ(hu,hℓ) ≤ β ∧ |Sg| < D ∧ ∥hu∥, ∥hℓ∥ > δ, ∀ℓ ∈ Sg

0 otherwise.

(5.20)

To summarize, Figure 5.3 depicts a flowchart of a greedy algorithm under our proposed

user scheduling principle based on unsupervised learning outcomes. The application for

uplink MAC-P, MAC-U or downlink BC depends on the choice of the selection rule φ(hu,Sg)

according to (5.18), (5.19) or (5.20), respectively. Moreover, DS uses the same grouping rules

for benchmarking purposes.

More generally, variants of the proposed scheduling algorithm can exploit both the knowl-

edge of CSI similarity and CSI gains in different ways without changing significantly the
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underlying methodology supporting our proposed strategy. Even more broadly, the unsu-

pervised learning paradigm can also accommodate CSI features based on system performance

and design choices.

5.2.7 Complexity Analysis

Clustering

First, we determine the complexity of Grassmannian K-means as follows:

� The CSI normalization step has a cost of O(MN).

� The Grassmannian distance has a cost of O(M), and thus the k-means++ initialization

has a cost of O(KMN).

� Each iteration of the algorithm consists on two steps. First, assigning N users to K

clusters, with a total cost of O(KMN). Then, the cluster center update for K clusters,

which requires the computation of N logarithm maps and K exponential maps, both

operations with a cost of O(M). This process is iterative, but in practice takes only a

few intrinsic mean iterations and the cost of center updates is O(KMN).

Accordingly, the total cost for t iterations of Grassmannian K-means is O(tKMN).

In the case of Agglomerative Hierarchical Clustering, optimal implementations depend

on the linkage criteria [121]. When considering complete linkage, it is known that the opti-

mal algorithm has complexity O(N2) with respect to similarity comparisons. Furthermore,

the pairwise CSI correlation has a total cost of O(MN2) as there are N(N − 1) pairwise

computations, and thus the complexity of this clustering approach is O(MN2).

User Grouping

All user grouping approaches (similarity-assisted and DS) exploit pairwise correlation in-

formation, which has cost O(M). For the similarity-assisted approaches (GKM and AHP),

95



the algorithm checks K − 1 clusters with a total of N ′ = N − |C∗
k | users, which we can

approximate in average with an uniform partition as N ′ = N − N/K = N(K − 1)/K. In

the case of DS, there is no clustering information, and hence N − 1 users need to be tested

for assignment. Hence, the computation complexity of similarity-assisted methods and DS

is of order O(MN). Of course, in average we expect to observe some computational gains

in similarity-assisted grouping, depending on system parameters and selected threshold, but

cannot guarantee that they are going to be dramatically significant.

5.3 Numerical Experiments

In this section we test our proposed scheduling principle based on unsupervised learning.

Considering a variety of user service needs and CSI properties, we provide a simple MIMO

system model for both uplink and downlink applications.

We examined one BS equipped with M = 8 antennas, serving N single-antenna users.

The mobile user CSI in uplink/downlink is modeled as random vectors that incorporate both

shadowing and Rayleigh fading. A circularly complex normal vector of size M represents

MIMO Rayleigh fading. The shadowing effect is modeled as a power gain that follows a

lognormal distribution, with zero mean and standard deviation σL of 3dB in logarithmic

scale. Additive channel noise is included in both uplink/downlink directions, corresponding

to 20dB of average SNR.

We generate 100 different channels and perform 10 runs per channel realization in our

Monte-Carlo simulations. All tests are performed in MATLAB using a 64-bit Windows PC

with an i7-7700K processor and 32GB RAM.
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5.3.1 Performance Metrics

Clustering

Though our scheduling method is compatible with any clustering algorithm, we adopt the

well known and simple K-means clustering algorithms, though other clustering algorithms

would have been equally applicable.

Recall that K-means clustering begins a pre-determined cluster number K. However,

choosing the best K is a non-trivial problem which is problem dependent and does not

have a best consensus solution [122]. Still there are several metrics that can help determine

the number of clusters, such as the Silhouette value [123], the Krzanowski-Lai index [124],

and the Hartigan index [125]. Regardless, we know that the nature of the MAC and BC

systems imply that RSGs cannot have more than M users, since more users necessarily lead

to more ill-conditioned group CSI matrix, impacting performance significantly. Hence, we

set the number of clusters to be K ≤ M depending on the scenario, and show the pairwise

correlation matrices obtained with both clustering methods.

CCI Evaluation

CCI leads a loss of signal-to-interference and noise ratio (SINR) in reference to SNR. To

evaluate the efficacy of user scheduling, we compute the loss in SINR that each user expe-

riences. In other words, we normalize the SINR of user u by its SNR if it were scheduled

without co-channel users (a singleton group), such that it does not share resources and is

only hampered by noise. Let pu be the transmit power of the u-th user and σ2 be the additive

channel noise variance. This SINR loss is given by

10 log10

(
SINRu

pu∥hu∥2/σ2

)
dB. (5.21)

Thus, 0dB SINR loss corresponds fully orthogonal CSIs among co-channel users and zero

CCI.
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Resource Efficiency

To compare how well each scheduling method utilizes limited spectrum resources, we consider

the overall MIMO spectrum efficiency by assuming that each scheduled MIMO user group

is allocated the same bandwidth (or same amount of spectrum resource). In such case, the

spectrum efficiency of the scheduling can be measured by averaging the achieved sum-rate

of all groups over G total RSGs: 1
G

∑G
g=1 Rg.

Runtime

As a proxy for computational complexity, in all simulations we store the “wall-clock” time

for successful execution of the algorithms under test. Naturally, runtime often depends on

computer, platform and code implementation. Thus, runtime by itself it may not fully cap-

ture the complexity of scheduling algorithms. Hence, we apply the same built-in functions,

establish similar program structure and implementation for all algorithms under test to mit-

igate platform biases. Additionally, we also test scheduling for different number of users N

to compare the scalability of the algorithms.

5.3.2 Uplink MAC MIMO Performance

In MAC, we set the number of clusters to K = 8 and we adopt linear MMSE receiver based

on CSI of all received user signals in an RSG. This choice of K ensures that the scheduling

process will attempt to utilize all spatial degrees of freedom for high spectrum efficiency.

Clustering Outcomes

Figure 5.4 shows the pairwise correlation matrix of N = 800 user CSIs after GKM and

AHP clustering. Using grayscale of [0, 1], larger values correspond to darker colors. An ideal

clustering outcome should show 8 blocks of darker squares along the diagonal. GKM yields

user clusters that show strong within-cluster similarity to be used later in scheduling. All

8 clusters contain many pairs that exhibit high spatial correlation. AHP shows less defined
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(a) GKM. (b) AHP.

Figure 5.4: Example of pairwise CSI correlation coefficient matrices after clustering N = 800
users with K = 8 clusters. Larger correlation values are darker. (a) Grassmannian K-means.
(b) Hierarchical Clustering.

clusters: each cluster exhibits less highly correlated pairs, or in other words, users have

weaker CSI correlation (i.e. weaker similarity) within each cluster.

Scheduling Performance

To systematically evaluate the the effect of exploiting similarity identified during clustering,

we analyze our approach in MAC by considering the two scenarios described in the previous

section:

(1) perfect power control, where each received user signal has unit power, i.e. pu∥hu∥2 =

1∀n ∈ {1, . . . , N}, denoted as MAC-P;

(2) no power control, where user CSI powers follow a log-normal distribution with param-

eter 3 dB, and pu = pmax
UE = 1 for all u, denoted as MAC-U.

We first test the MAC-P scenario, which helps isolate the benefits of unsupervised learn-

ing without the effect of variable receive powers. We consider three scheduling algorithms:

the proposed GKM scheduling, AHP scheduling, and DS scheduling. For these three meth-

ods, Figure 5.5a shows the comparison of SINR mean and SINR distribution (10% to 90%
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(a) Average user SINR loss. (b) Average efficiency.

Figure 5.5: Performance of all scheduling algorithms in MAC with perfect power control
(MAC-P). Here, M = K = 8 and N = 800. Solid lines represent the average over channel
realizations, and shaded areas show all values within the 10th and 90th percentiles.

percentiles) of the resulting user SINR loss. The corresponding spectral efficiency is shown

in Figure 5.5b.

From our test results, when β is set low, only very small amount of CCI is tolerated. In

such cases, scheduling performance continues to be dominated by channel noise (i.e., SNR)

and allowing little if any resource-sharing. Thus it is natural that, for β < 0.25, all three

scheduling algorithms exhibit little SINR loss and relatively low spectrum efficiency. As we

increase β, the spectrum efficiency starts go grow for all algorithms, as shown in Figure 5.5b.

Eventually, spectrum efficiency of both GKM and AHP saturate. More specifically, GKM

achieves higher spectrum efficiency but also larger SINR loss. AHP on the other hand,

achieves lower spectrum efficiency but also lower SINR loss. In terms of SINR loss, both

GKM and AHP exhibit very modest amount of SINR loss that saturates at 2dB and 1dB on

average, respectively. These tests show that MIMO user scheduling can achieve spectrum

efficiency and SINR loss tradeoff, with GKM being more efficient in spectrum utilization.

For DS, spectrum efficiency would peak at β = 0.35 before decreasing with increasing β.

The spread of SINR is also large for DS, with some users experimenting more than -12dB

of SINR loss. Both GKM and AHP have a tighter spread, which means most of the users

will only experience 5dB of loss at most for GKM, and 2dB for AHP. This demonstrates the
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(a) Average user SINR loss. (b) Average efficiency.

Figure 5.6: Performance of all scheduling algorithms in MAC without power control (MAC-
U). Here, M = K = 8 and N = 800. Solid lines represent the average over channel
realizations, and shaded areas show all values within the 10th and 90th percentiles.

failure of DS in grouping users of low mutual CCI to achieve good tradeoff between spectrum

efficiency and SINR loss.

We next test the more practical case of unequal CSI gains in a network without power

control, MAC-U. Against users of unequal CSI gain, for the scheduling rule φMAC
U we partition

users according to their CSI powers uniformly with power interval of 3 dB such that users are

divided according to power level boundaries of . . . ,−4.5,−1.5, 1.5, 4.5, . . . in dB. Figs.5.6a

and 5.6b show the SINR loss and average efficiency of all methods in MAC-U.

Again we observe that for smaller β, channel noise dominates the scheduling performance

and all algorithms attain similar performance. With increasing β, users experience more

SINR losses as more of them share resources, while the system enjoys the corresponding

improvement in spectrum efficiency. The efficiency of GKM and AHP saturate for large

β, with a modest increase of 1dB of SINR loss in average compared to MAC-U. Again,

GKM achieves better performance with a small tradeoff in user SINR, compared to AHP

that grants better user SINR at the expense of reduced efficiency. These tests confirm that

similarity-assisted methods improve MIMO user scheduling, even when considering random

channel gains and uniform power allocation.

In contrast, DS achieves peak efficiency at β = 0.35 and decreases steadily for larger β.
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It also incurs greater SINR losses without any benefit in spectrum efficiency, being smaller

than the efficiency of GKM and AHP in almost all cases. In average, users experience 7dB

of SINR loss, and even more, the users that experience the largest losses are at least 4dB

worse than with GKM or AHP. It is clear that DS offers no reasonable tradeoff between user

SINR and spectral efficiency.

Additionally, note that the performance of MAC-P is naturally better than MAC-U, as

the former enjoys perfect power control and can effectively deal with CSI power variability.

Nevertheless, our proposed algorithms still attain good performance under the simpler setup

of MAC-U, with only minor performance loss.

In both MAC-U and MAC-P tests, GKM and AHP scheduling deliver much better spec-

trum efficiency and lower SINR loss. Compared with DS, our tests strongly support the

efficacy of the proposed MIMO user scheduling principle based on unsupervised learning on

the Grassmannian manifold.

5.3.3 Performance for Downlink (BC)

In BC, we set the number of clusters toK = 4. Recall that the MRT precoders do not exploit

the CSI of users in an RSG, and hence a smaller K better controls the SINR experienced by

each user without incurring in severe degradation, due to oversharing resources.

Clustering Outcomes

We first analyze the CSI correlation matrices for GKM and AHP in Figure 5.7, where darker

colors in grayscale denote larger correlation coefficient. Even for a low number of clusters,

GKM is able to produce discriminative clusters that contain several user pairs with relatively

high correlation compared to the members of other clusters. In this case, however, AHP

produces clusters with fairly lower correlation, hinting that users within a cluster are not

highly similar. This can also be explained by the bottom-up nature of hierarchical clustering

of large datasets, as the last steps (merging large subclusters) are not very discriminative.
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(a) GKM. (b) AHP.

Figure 5.7: Example of pairwise CSI correlation coefficient matrices after clustering N = 800
users with K = 4 clusters. Larger correlation values are darker. (a) Grassmannian K-means.
(b) Hierarchical Clustering.

Scheduling Performance

For BC systems, we only consider the case where all users have random log-normal distributed

CSI power, as the SINR of each user does not depend on the power of the rest of the co-

channel users. Here, for the BC grouping rule φBC we consider a maximum number of users

D = K = 4, a gain threshold for weak users δ = 0.5 corresponding to -6dB of CSI power

with respect to the average channel power, and a maximum number of weak users in an

exclusive group E = 2. We also set pmax
BS = M and use uniform power allocation within

scheduled groups, although a different scheme can also apply.

Figs. 5.6a and 5.6b depict the SINR loss distribution and corresponding spectrum effi-

ciency of all tested scheduling methods in BC. We first observe higher achieved SINR loss

for BC than for MAC. Such outcome is expected since the selected UE receiver cannot uti-

lize CSI of other users in its co-channel MIMO group. Correspondingly, the BC spectrum

efficiency is lower. Similar to MAC systems, all three methods under comparison show com-

parable performance in terms of efficiency and SINR loss for β ≤ 0.15. For larger β, AHP

stalls and GKM offers a modest growth in efficiency, reaching 13% higher efficiency than

AHP for β > 0.3. By comparison, AHP scheduling shows the best SINR losses, whereas
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GKM offers a good tradeoff and outperforms AHP in spectral efficiency over all values of β.

In BC, the efficiency of DS peaks at at β = 0.2 before dropping by 58% from its peak.

Both the proposed GKM and AHP out-perform DS for β ≥ 0.25. DS also suffers the worst

losses for all users, with an average SINR loss of up to 12dB, and 18dB SINR loss for the 10%

of users that experience the worst conditions. Moreover, most users experience significantly

worse SINR conditions on DS than GKM or AHP. Clearly, our test results in BC show

that our proposed scheduling strategy, by exploiting similarity obtained via unsupervised

learning, provides better SINR for the UE receivers and achieve higher spectrum efficiency

than a direct approach.

(a) Average user SINR loss. (b) Average efficiency.

Figure 5.8: Performance of all scheduling algorithms in BC. Here, M = 8, N = 800, K =
D = 4, E = 2 and δ = 0.5. Solid lines represent the average over channel realizations, and
shaded areas show all values within the 10th and 90th percentiles.

5.3.4 Runtime and Scalability

Table 5.1 summarizes the average runtime of all 3 algorithms under test for various number

of users N under the same test settings specified earlier. In particular, we set a correlation

threshold of β = 0.8, where there is significant performance difference between DS and the

two proposed methods based on learning. As expected, the runtime grows with increasing N

in both uplink and downlink. The runtime is not affected by different channel gains (MAC-
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P vs. MAC-U). Because of its clustering complexity, AHP requires the largest runtime,

whereas DS can be faster without clustering for smaller number of users. On the other hand,

the proposed GKM only requires a modest level of computation, in view of the performance

benefits shown in terms of SINR loss and spectrum efficiency. For example, GKM scheduling

under uplink MAC only requires a modest increase of computation to provide significant

performance improvement with respect to DS. For larger number of nodes N , the runtime

of GKM scheduling scales mildly, as opposed to the sharper rise of runtime for AHP. In BC

downlink, we observe similar results, in which the complexity gap between GKM scheduling

and DS is less significant. The BC runtime comparison shows that for large N deployment

smart scheduling methods based on unsupervised learning offer improved performance with

little or no increase in computation complexity.

Table 5.1: Average runtime of all algorithms, in seconds, for β = 0.8.

Mode MAC-P MAC-U BC
Method GKM AHP DS GKM AHP DS GKM AHP DS

N

800 0.41 0.77 0.11 0.42 0.78 0.11 0.76 1.22 0.38
1600 1.97 4.05 0.96 2.03 4.12 1.00 2.96 6.29 3.03
2400 5.95 11.02 2.85 6.05 10.99 2.87 8.41 13.78 8.93
3200 11.20 25.28 8.37 11.47 25.69 8.08 19.30 32.45 22.93
4000 20.25 42.56 14.29 20.29 41.98 14.27 36.21 54.12 40.74

5.4 Summary

In this chapter, we investigated the NP-hard problem of MIMO user scheduling in a gen-

eral setting for large scale networks. We considered both uplink (MAC) and downlink (BC)

operation. Recognizing the computational complexity of of traditional solutions due to net-

work size, and the difficulties inherent to direct application of machine learning schemes, we

proposed a new two-step paradigm for scalable MIMO user scheduling. In the first step, our

method implemented unsupervised learning to identify users with highly similar CSI. This

goal is achieved by clustering CSIs in the complex Grassmannian manifold, where distances
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are directly related to spatial diversity. In the second step, a simple greedy scheduling scheme

exploited the learned similarities to schedule user groups with high CSI diversity, minimiz-

ing co-channel interference. Our numerical tests demonstrated substantial performance gains

and robustness of similarity-assisted scheduling when compared to direct scheduling, both in

terms of user SINR and spectrum efficiency, with a modest increase in computational effort.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize the contributions of this dissertation and discuss possible

future research directions.

6.1 Summary

The goal of this dissertation is to explore geometrical approaches that enable efficient wire-

less service in large scale networks. These approaches identify key characteristics of the

underlying geometry to better manage the radio resources in different network settings.

In Chapter 2, we lay the foundation for a general system model that allows the study

of massive wireless networks with a multi-antenna base station (BS) and multiple single-

antenna devices, in both uplink (MAC) and downlink (BC) scenarios. This model is then

developed for two distinct operating regimes, depending on the activity level of the devices.

In the case of low-activity devices, with sporadic and non-timed links, an unknown num-

ber of devices transmit to the BS in uplink operation at any given time. To service the

devices, the BS attempts to provide access control, without knowing which devices are ac-

tive. Due to the limitations of traditional approaches for providing access to those users,

we propose the adoption of grant-free access via use blind signal recovery methods, and in

particular, using the Constant Modulus Algorithm (CMA). In the first part of this disserta-
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tion (Chapters 3 and 4), we formulate two CMA-based approaches for blind signal recovery

under different optimization perspectives.

In Chapter 3, we develop a regularized CMA-based cost function for multiple source

recovery. The regularization term forces recovered signals to be uncorrelated, recovering

distinct sources. To solve the optimization problem, we adopt the promising Wirtinger Flow

(WF) algorithm. As WF provides theoretical guarantees for similar nonconvex problems

under mild conditions and limited data samples, we leverage the convergence analysis of

WF and generalize to consider the statistical characteristics of the signals in CMA. By

characterizing the local geometry of CMA, we obtain convergence guarantees for CMA in

the finite-sample scenario and general QAMmodulations, both for simple and multiple source

recovery. Furthermore, these results facilitate the selection of a more aggressive stepsize than

commonly used in traditional gradient-descent methods, tackling slow convergence with no

significant increase in computational cost.

In Chapter 4 we dismiss regularization and instead opt for a constrained optimization

of CMA-based multiple source recovery, where the search space forces multi-lateral orthogo-

nality of recovered signals. We characterize and redefine the constraint set as a Riemannian

manifold, which we further develop to remove search directions corresponding to rotations

of the demixers. This steps ensures that the cost function, restricted to the manifold, has

a positive definite Riemannian Hessian in optimum solutions. Using this fact, we provide

global convergence guarantees with high probability and limited data samples, regardless of

initialization or parameter tuning. Numerical tests show successful recovery of all detected

sources with a reasonable number of samples, for practical system sizes and different mod-

ulation schemes. Furthermore, the proposed Riemannian approach offers a good tradeoff

between computation complexity and interference suppression.

In the second part of this dissertation, we turn to the problem of servicing a large number

of very active users known to the base station, both in uplink and downlink scenarios. In this

operation mode, the base station needs to attempt efficient user scheduling to service most
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or all users with reasonable quality of service and using limited resources, i.e., it needs to

allocate users in groups with low co-channel interference (CCI). In Chapter 5, we investigate

the user scheduling problem by exploiting spatial diversity in MIMO systems. To mitigate

CCI, instead of directly scheduling users with high channel dissimilarity, we propose a new

unsupervised learning paradigm for MIMO user scheduling. This two-step strategy leverages

the strengths of unsupervised learning with domain knowledge for the specific characteriza-

tion of spatial diversity for low CCI. In a first step, we identify users whose channel state

information (CSI) are highly similar in the sense of spatial correlation. This is possible by

clustering CSI vectors in the Grassmannian manifold, which encodes subspace span in the

geometry itself. After clustering, a greedy scheduling scheme exploits learning outcomes

and determines user groups with low CCI. Our numerical test indicate that a combination of

learning-enabled channel clustering can exploit the spatial compatibility effectively to reduce

inter-group interference when compared with other benchmarks. Furthermore, this paradigm

is generalizable to different learning schemes and scheduling metrics.

6.2 Extensions

� Stronger convergence guarantees for Blind Signal Recovery: Our convergence

guarantees are formulated in noiseless scenarios. Reformulations of WF in phase re-

trieval have shown robustness against arbitrary corruptions [126] or random noise

[127, 128] under mild assumptions, and these results could be leveraged in the con-

text of blind signal recovery. Another interesting possibility is to consider stronger

initialization methods with provable convergence improvement, and the study of our

proposed methods in the more practical scenario of blind recovery under MIMO ISI

fading channels

� Exploiting additional information in Blind Signal Recovery: Practical wireless

systems consist of sophisticated protocols, and even in the case of IoT deployments,
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the transceivers will commonly have access to more information than just the received

(incoming) signal samples. For example, the devices will use forward error correction

codes and channel coding, and the algorithm could verify if the recovered signal be-

longs to the set of valid codewords. Signals can also change constellation size over

the duration of the data packet, e.g. WiFi, which has QPSK preambles and M -QAM

payloads. Overall, our proposed signal recovery process could be enhanced if we con-

sider and exploit these characteristics, be it by modifying the underlying geometry,

leverage other non-convex optimization techniques such as proximal gradients, among

other options.

� Complexity reduction for Blind Signal Recovery: Different families of cost func-

tions have been proposed for blind equalization and beamforming [129–131], which are

either nonconvex or nonsmooth. Moreover, similar cost functions have been studied

in WF-like extensions for phase retrieval [126–128], which enjoy reduced computa-

tional and iteration complexity. These recent works use different approaches for their

analysis, which could be leveraged to improve our theoretical results. Nonconvex and

non-smooth cost functions can also be adopted in Riemannian optimization [132,133].

Additionally, the proposed algorithms could be reformulated to consider stochastic

or mini-batch implementations, further reducing computational complexity without

incurring in performance loss.

� Generalizations of MIMO User Scheduling: Our results of unsupervised user

scheduling are promising, although the system model is rather simple and could in-

clude common practical considerations. One clear example is systems with both time-

and frequency-division multiple access (TDMA/FDMA), which are now commonplace

in commercial applications. New geometries can leverage the similarity of users in

multiple bands within a time slot, providing further insights to be considered in the

scheduling problem. Other example is to consider users with different rate requirements
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that could utilize multiple resource blocks in a given frame, and how to leverage CSI

similarity with unequal rates. Moreover, the design of similarity-assisted scheduling

algorithms can further exploit additional information and consider other performance

metrics such as user data rate and fairness.
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Appendix A

Proofs for CMA Convergence under

Wirtinger Flow

A.1 Technical Lemmas and Corollaries for Single Source

Recovery

Here, we establish several useful results to prove Theorem 1.

Lemma 11 (Concentration of sample covariance). Consider independent subgaussian vectors

ak ∈ CL. For every δ > 0, there exist C(δ) > 0 and c(δ) > 0 such that for K ≥ C(δ)L,

∥∥∥∥ 1

K

K∑
k=1

aka
H
k − E{aka

H
k }
∥∥∥∥ ≤ δ,

holds with probability of at least 1− 2e−c(δ)K.

Proof. Subgaussian vectors ak can be defined as the independent rows of a K×L matrix A.

Hence, Lemma 11 is a direct consequence of [90, Theorem 5.39]. ■

Part of this chapter is reprinted, with permission, from [C. Feres and Z. Ding, “Wirtinger Flow Meets
Constant Modulus Algorithm: Revisiting Signal Recovery for Grant-Free Access” in IEEE Transactions on
Signal Processing (Early Access), Aug. 2021], its supplemental material, and followup modifications for final
publication. Notations may have changed for consistency throughout this dissertation.
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Corollary 12. Under the conditions of Lemma 11, for K ≥ C(δ)L and h ∈ CL, with

probability at least 1− 2e−c(δ)K,

− δ∥h∥2 ≤ 1

K

K∑
k=1

|aH
kh|2 − hHE{aka

H
k }h ≤ δ∥h∥2.

The expectation of matrices A(q) and B(q) are:

E{A(q)} = m2
2(∥q∥2I + qqH) + κI ◦ (qqH),

E{B(q)} = 2m2
2qq

T + κI ◦ (qqT).

The solutions of the CMA problem of Eq.(3.1) are of the form z = ejθeℓj , with ℓj ∈

{1, . . . , L}, θ ∈ [0, 2π].

Two corollaries are helpful to prove Lemmas 2 and 3:

Corollary 13. Let K ≥ C1(δ)L. Then, with probability of at least 1 − 6e−c1(δ)K, for all

h ∈ CL such that ∥h∥ = 1, we have

(m2
2 − δ)∥h∥2 + (m2

2 + κ)|hHz|2 ≤ 1

K

K∑
k=1

|sHk z|2|sHkh|2 ≤ (m2
2 + δ)∥h∥2 + (m2

2 + κ)|hHz|2.

Proof. Note that 1
K

∑K
k=1 |sHk z|2|sHkh|2 = hHA(z)h and from Lemma 1 it follows that −δI ⪯

A(z)− E{A(z)} ⪯ δI. For the lower bound, we obtain

hHA(z)h ≥ m2
2(∥h∥2 + |hHz|2)− δ∥h∥2 + κhH

(
I ◦ (zzH)

)
h,

and knowing that z = eθeℓ, we have

κhH
(
I ◦ (zzH)

)
h = κ

L∑
a=1

|haza|2 = κ|hHz|2.

The upper bound is obtained similarly. ■

113



Corollary 14. Let K ≥ C1(δ)L. Then, with probability of at least 1 − 6e−c1(δ)K, for all

h ∈ CL such that ∥h∥ = 1, we have

m2
2 − δ

2
∥h∥2 + 3m2

2 + 2κ

2
Re(hHz)2 − m2

2

2
Im(hHz)2

≤ 1

K

K∑
k=1

Re
(
hHsks

H
k z
)2

≤ m2
2 + δ

2
∥h∥2 + 3m2

2 + 2κ

2
Re(hHz)2 − m2

2

2
Im(hHz)2.

Proof. Lemma 1 states that δI ⪯ U(z)− E{U(z)} ⪯ δI. For the lower bound, recall that

2Re(c)2 = |c|2 +Re(c2) for c ∈ C, and

1

K

K∑
k=1

Re
(
hHsks

H
k z
)2

=
1

4

h
h


H A(z) B(z)

B(z) A(z)


h
h


≥ m2

2 − δ

2
∥h∥2 + 3m2

2

2
Re(hHz)2 − m2

2

2
Im(hHz)2

+
κ

2
Re
(
hH
(
I ◦ (zzH)

)
h+ hH

(
I ◦ (zzT)

)
h
)
.

Knowing that z = eθeℓ, the last term is equal to

κ

2
Re
(
hH
(
I ◦ (zzH)

)
h+ hH

(
I ◦ (zzT)

)
h
)
= κ

L∑
a=1

Re(haza)
2 = κRe(hHz)2.

The upper bound is obtained similarly. ■

114



A.2 Proof of Lemma 1

Rewrite the Hessian

∇2f(z) =

A(z) B(z)

B(z) A(z)

+

A(z) 0

0 A(z)

−R2

S 0

0 S


= U(z) +A′(z)−R2S

′.

Observe that U(z) corresponds to the Hessian of the Phase Retrieval problem, which

differs from the CMA Hessian due to the use of a desired average magnitude instead of

known sampled amplitudes. Using the triangle inequality, to prove the lemma we show that

∥∥S − E{S}
∥∥ ≤ δS = δ/(8R2), (A.1)∥∥A(z)− E{A(z)}
∥∥ ≤ δA = δ/8, (A.2)

∥U(z)− E{U(z)}∥ ≤ δU = δ/2. (A.3)

Recall that the signal vectors are independent for k ∈ {1, . . . , K}. Moreover, QAM

constellations are bounded. Thus, the signal vectors are subgaussian. Hence, via Lemma 11,

Eq.(A.1) holds with probability of at least 1− 2e−c3(δS)K by choosing K ≥ C3(δS)L.

Let ak =
(
sHk z

)
sk, which are independent for k ∈ {1, . . . , K}. Note that sHk z =

√
m2 e

jφsℓj [k]. Therefore, vectors ak have bounded, discrete elements over an exponentially

large set, and as such they are subgaussian [91]. Additionally, we have

A(z) =
1

K

K∑
k=1

aka
H
k .

Therefore, by invoking Lemma 11, Eq.(A.2) holds with probability of at least 1 −

2e−c4(δA)K for K ≥ C4(δA)L.

Now define uH
k = [aH

k aT
k ]. Using a similar reasoning as above, uk are also subgaussian
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and independent for k ∈ {1, . . . , K}, and

U(z) =
1

K

K∑
k=1

uku
H
k .

Lemma 11 then states that Eq.(A.3) holds with probability of at least 1− 2e−c5(δ/2)K by

choosing K ≥ C5(δU)L.

Finally, set C1(δ) ≥ max{C3(δS), C4(δA), C5(δU)}. By selecting K ≥ C1(δ)L, Lemma 1

holds with probability of at least 1− 6e−c1(δ)K , where c1(δ) = min{c3(δS), c4(δA), c5(δU)}.

A.3 Proof of Lemma 2

Let q ∈ E(ϵ) and h = e−iϕ(q)q − z. Hence ∥h∥ ≤ ϵ and Im(hHz) = 0, as h and z are

geometrically aligned:

hHz = e−i∠(qHz)qHz − zHz = |qHz| − ∥z∥2 ∈ R. (A.4)

The proof is equivalent to proving

Re
(〈

∇f(q)−∇f(ejϕ(q)z), q − ejϕ(q)z
〉)

=
1

K

K∑
k=1

(
2Re(hHsks

H
k z)

2 + 3Re(hHsks
H
k z)|sHkh|2 +

19

20
|sHkh|4 +

(
|sHk z|2 −R2

)
|sHkh|2

)
≥
( 1
α
+

2m2
2 −R2m2 − δ

19

)
∥h∥2

for all h satisfying Im(hHz) = 0 and ∥h∥ ≤ ϵ. It suffices to show that for all h such that

Im(hHz) = 0 and ∥h∥ = 1, and for all ξ with 0 ≤ ξ ≤ ϵ, the following inequality holds

1

K

K∑
k=1

(
2Re(hHsks

H
k z)

2 + 3ξRe(hHsks
H
k z)|sHkh|2 +

19

20
ξ2|sHkh|4 +

(
|sHk z|2 −R2

)
|sHkh|2

)
≥ 1

α
+

2m2
2 −R2m2 − δ

19
.
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Invoking Corollary 14, we show that for all h such that Im(hHz) = 0 and ∥h∥ = 1, and

for all ξ with 0 ≤ ξ ≤ ϵ,

1

K

K∑
k=1

(45
19

Re(hHsks
H
k z)

2 + 3ξRe(hHsks
H
k z)|sHkh|2 +

19

20
ξ2|sHkh|4 +

(
|sHk z|2 −R2

)
|sHkh|2

)
≥ 1

α
+

11m2
2 − 2R2m2 + 5δ

38
+

21m2
2 + 14κ

38
Re(hHz)2. (A.5)

For constant modulus signals, the last averaging term of the LHS of Eq.(A.5) is zero. For

non-constant modulus QAM signals, the term is bounded by Corollaries 12 and 13:

1

K

K∑
k=1

(
|sHkh|2|sHk z|2 −R2|sHkh|2

)
≥
(
m2

2 −R2m2 − (1 +R2)δ + (m2
2 + κ)|hHz|2

)
.

Let

Y (h, ξ) =
1

K

K∑
k=1

(45
19

Re(hHsks
H
k z)

2 + 3ξRe(hHsks
H
k z)|sHkh|2 +

19ξ2

20
|sHkh|4

)
.

Since (a− b)2 ≥ a2

2
− b2, we have that

Y (h, ξ) ≥

(√√√√ 45

19K

K∑
k=1

Re(hHsksHk z)
2 −

√√√√19ξ2

20K

K∑
k=1

|sHkh|4
)2

≥ 45

38K

K∑
k=1

Re(hHsks
H
k z)

2 − 19ξ2

20K

K∑
k=1

|sHkh|4.

By means of Corollary 12, with high probability we have

1

K

K∑
k=1

|sHkh|4 ≤ max
k

∥sk∥2
( 1

K

K∑
k=1

|sHkh|2
)
≤ B2L(m2 + δ).

Using this result and the first inequality of Corollary 14, for ∥h∥ = 1, it holds with high
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probability that

Y (h, ξ) ≥ 135m2
2 + 90κ

76
Re(hHz)2 +

45

76
(m2

2 − δ)− 19B2L

20
ξ2(m2 + δ).

Hence, Lemma 2 holds under the following condition:

135m2
2 + 90κ

76
Re(hHz)2 +

45

76
(m2

2 − δ)− 19B2L

20
ξ2(m2 + δ)

+
(
m2

2 −R2m2 − (1 +R2)δ + (m2
2 + κ)|hHz|2

)
· 1[Q ̸= 4]

≥ 1

α
+

11m2
2 − 2R2m2 + 5δ

38
+

21m2
2 + 14κ

38
Re(hHz)2. (A.6)

With ξ ≤ ϵ = (10B
√
L)−1 and δ ≤ 0.01, Eq.(A.6) holds for

α ≥ 3 for Q = 4,

α ≥ 83 for Q ̸= 4.
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A.4 Proof of Lemma 3

Let q ∈ E(ϵ) and h = e−iϕ(q)q − z. For any u ∈ CL such that ∥u∥ = 1, let v = e−iϕ(q)u.

Therefore, it suffices to show that

∣∣∣uH
(
∇f(q)−∇f(ejϕ(q)z)

)∣∣∣2
=

∣∣∣∣ 1K
K∑
k=1

vHsks
H
k z
(
|sHkh|2 + 2Re(hHsks

H
k z)
)

+
(
|sHkh|2 + 2Re(hHsks

H
k z) + |sHk z|2 −R2

)
vHsks

H
kh

∣∣∣∣2
≤
(

1

K

K∑
k=1

2|sHk z|2|sHk v||sHkh|+ 3|sHk z||sHk v||sHkh|2 + |sHkh|3|sHk v|

+
(
|sHk z|2 −R2

)
vHsks

H
kh

)2

≤ β
(2m2

2 −R2m2 − δ

19
∥h∥2 + 1

20K

K∑
k=1

|sHkh|4
)

holds for all h and v such that Im(hHz) = 0, ∥h∥ ≤ ϵ, and ∥v∥ = 1. Equivalently, we prove

that for all h and v such that Im(hHz) = 0, ∥h∥ = ∥v∥ = 1 and for all ξ with 0 ≤ ξ ≤ ϵ,

the following inequality holds

(
1

K

K∑
k=1

2|sHk z|2|sHk v||sHkh|+ 3ξ|sHk z||sHk v||sHkh|2 + ξ2|sHkh|3|sHk v|

+
(
|sHk z|2 −R2

)
vHsks

H
kh

)2

≤ β
(2m2

2 −R2m2 + δ

19
+

ξ2

20K

K∑
k=1

|sHkh|4
)
.

Note that |sHk z|2 = m2 = R2 for constant-modulus signals, and thus the last term in the

LHS is zero if Q = 4, and non-zero otherwise. Let D = 3 + 1[Q ̸= 4], and knowing that
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(∑n
i=1 ai

)2 ≤ n
∑n

i=1 a
2
i , we have

∣∣∣uH
(
∇f(q)−∇f(ejϕ(q)z)

)∣∣∣2
≤ 4D

( 1

K

K∑
k=1

|sHk z|2|sHk v||sHkh|
)2

+ 9Dξ2
( 1

K

K∑
k=1

|sHk z||sHk v||sHkh|2
)2

+Dξ4
( 1

K

K∑
k=1

|sHkh|3|sHk v|
)2

+
∣∣∣ 1
K

K∑
k=1

(
|sHk z|2 −R2

)
vHsks

H
kh
∣∣∣2 · 1[Q ̸= 4]

≤ 4DI1 + 9Dξ2I2 +Dξ4I3 + I4 · 1[Q ̸= 4].

We now bound these terms on the right-hand side. By means of the Cauchy-Schwarz

inequality and Corollary 13,

I1 ≤
( 1

K

K∑
k=1

|sHk z|2|sHk v|2
)( 1

K

K∑
k=1

|sHk z|2|sHkh|2
)
≤ (2m2

2 + κ+ δ)2,

and

I2 ≤
( 1

K

K∑
k=1

|sHkh|4
)( 1

K

K∑
k=1

|sHk v|2|sHk z|2
)
≤ 2m2

2 + κ+ δ

K

K∑
k=1

|sHkh|4.

Invoking Corollary 12, the bounded norm ∥sk∥ ≤ B
√
L, and the Cauchy-Schwarz in-

equality, we obtain

I3 ≤
( 1

K

K∑
k=1

|sHkh|3max
k

∥sk∥
)2

≤ B2L(m2 + δ)

K

K∑
k=1

|sHkh|4.

For non-constant modulus QAM signals, we can bound I4 by invoking Corollaries 12

and 13:

I4 =
∣∣∣hH
(
A(z)−R2S

)
h
∣∣∣2 ≤ ∣∣∣m2

2 −R2m2 − (1 +R2)δ
∣∣2 = (m2

2 + κ+ (1 +R2)δ
)2
.
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Therefore, we obtain

∥∥∇f(q)
∥∥2 = max

∥u∥=1

∣∣∣uH
(
∇f(q)−∇f(ejϕ(q)z)

)∣∣∣2
≤ 4D(2m2

2 + κ+ δ)2 +
9Dξ2(2m2

2 + κ+ δ)

K

K∑
k=1

|sHkh|4

+
DB2Lξ4(m2 + δ)

K

K∑
k=1

|sHkh|4 +
(
m2

2 + κ+ (1 +R2)δ
)2 · 1[Q ̸= 4]

≤ β
(2m2

2 −R2m2 − δ

19
+

ξ2

20K

K∑
k=1

|sHkh|4
)
.

Hence, Lemma 3 holds under the following condition:

β ≥max
{76D(2m2

2 + κ+ δ)2

2m2
2 −R2m2 − δ

+
19(m2

2 + κ+ (1 +R2)δ
)2

2m2
2 −R2m2 − δ

· 1[Q ̸= 4],

180D(2m2
2 + κ+ δ) + 20DB2Lϵ2(m2 + δ)

}
. (A.7)

With ϵ = (10B
√
L)−1 and δ ≤ 0.01, Eq.(A.7) holds for

β ≥ 235 for Q = 4,

β ≥ 959 for Q ̸= 4.

A.5 Technical Lemmas and Corollaries for Multiple

Source Recovery

We first introduce additional notations to aid exposition. Using the overall system parameter

space q, we rewrite the cost function for MSR as

g(q) =
J∑

ℓ=1

f(qℓ) + γ0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣qiSqℓ

∣∣2 = J∑
ℓ=1

f(qℓ) + γ0r(q), (A.8)
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where q =
[
qT
1 . . . qT

J

]T
is the aggregation of the J demixers, f is the CMA cost function

for single source recovery, and S is the sample covariance matrix of source signals. The

gradient of g, using Wirtinger calculus, is given by

∇ℓg =
1

K

K∑
k=1

(
|sHk qℓ|2 −R2

)
sks

H
k qℓ + γ0

J∑
i ̸=ℓ

Sqiq
H
i Sqℓ = ∇f(qℓ) + γ0∇ℓr(q), (A.9)

and the Wirtinger Hessian of the cost function g is

∇2g(q) = Bdiag
({

∇2f(qℓ)
}J
ℓ=1

)
+ γ0


G1(q) · · · H1J(q)

...
. . .

...

HJ1(q) · · · GJ(q)


= Bdiag

({
∇2f(qℓ)

}J
ℓ=1

)
+ γ0∇2r(q). (A.10)

The expectation of matrices A(q) and B(q) are defined in Section A.1, and the matrices

Cℓ(q), Eℓi(q) and Fℓi(q) of the MSR Hessian satisfy

E{Cℓ(q)} =
J∑
i ̸=ℓ

(
m2

2qiq
H
i +

m2
2

K
∥qi∥2I +

κ

K

(
I ◦ (qiq

H
i )
))

,

E{Eℓi(q)} = m2
2(q

H
i qℓ)I +

m2
2

K
qℓq

H
i +

κ

K

(
I ◦ (qℓq

H
i )
)
,

E{Fℓi(q)} = m2
2qiq

T
ℓ +

m2
2

K
qℓq

T
i +

κ

K

(
I ◦ (qℓq

T
i )
)
,

and thus, the expectation of the ℓ-th gradient of the regularizing term is

E{∇ℓr(q)} = E
{
Cℓ(q)

}
qℓ =

J∑
i ̸=ℓ

(
m2

2qiq
H
i qℓ +

m2
2

K
∥qi∥2qℓ +

κ

K

(
I ◦ (qiq

H
i )
)
qℓ. (A.11)

Note that at a MSR CMA solution z =
[
ejθℓ1eT

ℓ1
. . . ejθℓJ eT

ℓJ

]T
, we have zH

i zℓ = 0 for all
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i ̸= ℓ. Hence,

E{∇ℓr(z)} =
J∑
i ̸=ℓ

(
m2

2ziz
H
i zℓ +

m2
2

K
∥zi∥2zℓ +

κ

K
I ◦ (ziz

H
i )zℓ

)
=

J∑
i ̸=ℓ

(m2
2

K
zℓ +

κ

K
eie

T
i zℓ

)
=

(J − 1)m2
2

K
zℓ,

which is non-zero, but decreases with the number of samples K and is aligned with the

ℓ-th component of the solution. Therefore, for large K, the CMA solution corresponds to

an approximate stationary point in gradient-descent schemes, which often yields satisfactory

numerical solutions. In particular, we have the following result that defines the CMA solution

in multiple source recovery as a approximate stationary point.

Corollary 15. Let K ≥ C2(δ)L. Then, with probability at least 1− 12e−c2(δ)K,

∥∥∥∇ℓg(z)− E
{
∇ℓg(z)

}∥∥∥ ≤ (1 +R2 + γ0)δ.

Proof. By definition and the triangular inequality,

∥∥∥∇ℓg(z)− E
{
∇ℓg(z)

}∥∥∥ = max
v∈CL, ∥v∥=1

∣∣∣vH
(
∇ℓg(z)− E

{
∇ℓg(z)

})∣∣∣
≤ max

v∈CL, ∥v∥=1

∣∣∣vH
(
∇f(zℓ)− E

{
∇f(zℓ)

})∣∣∣
+ γ0 max

v∈CL, ∥v∥=1

∣∣∣vH
(
∇ℓr(z)− E

{
∇ℓr(z)

})∣∣∣.
Note that ∇f(zℓ) = A(zℓ)zℓ − R2Szℓ and ∇ℓr(z) = Cℓ(z)zℓ. Invoking Lemma 5 and the

triangular inequality, we have that for all v ∈ CL such that ∥v∥ = 1,

∣∣∣vH
(
∇f(zℓ)− E

{
∇f(zℓ)

})∣∣∣ ≤ (∥∥A(zℓ)− E
{
A(zℓ)

}∥∥+R2

∥∥S − E
{
S
}∥∥)∥zℓ∥∥v∥

≤ (1 +R2)δ,∣∣∣vH
(
∇ℓr(z)− E

{
∇ℓr(z)

})∣∣∣ ≤ ∥∥∥Cℓ(z)− E
{
Cℓ(z)

}∥∥∥∥zℓ∥∥v∥ ≤ δ. ■
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We now define corollaries that will be useful to prove Lemmas 6 and 7:

Corollary 16. Let K ≥ C2(δ)L. Then, with probability at least 1−12e−c2(δ)K, for all v ∈ CL

such that ∥v∥ = 1, we have

(J − 1

K
m2

2 − δ
)
∥v∥2 ≤ vHCℓ(z)v ≤

(K + J − 1

K
m2

2 +
κ

K
+ δ
)
∥v∥2.

Proof. From Lemma 5, we have that −δI ⪯ Cℓ(z) − E{Cℓ(z)} ⪯ δI. Hence, the lower

bound is

vHCℓ(z)v ≥
J∑
i ̸=ℓ

(
m2

2|vHzi|2 +
m2

2

K
∥zi∥2∥v∥2 +

κ

K
vH
(
I ◦ (ziz

H
i )v
))

− δ∥v∥2

≥ (J − 1)
m2

2

K
∥v∥2 +

J∑
i ̸=ℓ

(
m2

2|vHzi|2 +
κ

K
vH
(
I ◦ (ziz

H
i )v
))

− δ∥v∥2.

Note that Km2
2 + κ > 0 for all K > 1 and all QAM modulations. Additionally, knowing

that zℓ = eθℓjeℓj for all ℓj ∈ {1, . . . , J}, we have that

0 ≤
J∑
i ̸=ℓ

|vHzi|2 =
J∑
i ̸=ℓ

vH
(
I ◦ (ziz

H
i )
)
v =

J∑
i ̸=ℓ

|vℓ,i|2 ≤ ∥v∥2.

The upper bound is obtained similarly. ■

Corollary 17. Let K ≥ C2(δ)L. Then, with probability at least 1− 12e−c2(δ)K, we have

∣∣zℓSzi

∣∣2 ≤ δ.

Proof. From Lemma 1, we have that −δI ⪯ S −m2I ⪯ δI. Then, we have that for all u

and v such that ∥u∥ = ∥v∥ = 1,

∣∣uHSv
∣∣2 ≤ m2

∣∣uHv
∣∣+ ∣∣∣uH

(
S −m2I

)
v
∣∣∣2 ≤ m2

∣∣uHv
∣∣+ ∥∥S −m2I

∥∥∥u∥∥v∥
≤ m2

∣∣uHv
∣∣+ δ∥u∥∥v∥.
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Knowing that zℓ = eθℓjeℓj for all ℓj ∈ {1, . . . , J}, we have that |zH
ℓ zi| = 0 for all i ̸= ℓ, and

we obtain the bound. ■

Corollary 18. Let K ≥ C2(δ)L. Then, with probability at least 1− 12e−c2(δ)K, we have

∥∥Fℓi(z)
∥∥ ≤ m2

2 + δ.

Proof. From Lemma 5, we have that −δI ⪯ Fℓi(z)− E
{
Fℓi(z)

}
⪯ δI, or equivalently,

∥∥Fℓi(z)− E
{
Fℓi(z)

}∥∥ ≤ δ.

Furthermore, using [134, Corollary 8.6.2] for the largest singular value (i.e. the operator

norm), we have

∥∥Fℓi(z)
∥∥ ≤

∥∥E{Fℓi(z)
}∥∥+ δ.

Knowing that zℓ = eθℓjeℓj for all ℓj ∈ {1, . . . , J}, we also have that

E
{
Fℓi(z)

}
= m2

2ziz
T
ℓ +

m2
2

K
zℓz

T
i +

κ

K
I ◦
(
zℓz

T
i

)
= m2

2e
j(θℓℓ+θℓi )eie

T
ℓ +

m2
2

K
ej(θℓj+θℓi )eℓe

T
i ,

which means that E
{
Fℓi(z)

}
has only two non-zero elements in positions (ℓ, i) and (i, ℓ) with

i ̸= ℓ. Hence, its non-zero columns are independent, and its norm is the largest absolute

value of the non-zero elements, i.e.

∥∥E{Fℓi(z)
}
∥ = max

{∣∣∣ej(θℓj+θℓi )m2
2

∣∣∣, ∣∣∣ej(θℓj+θℓi )
m2

2

K

∣∣∣} = m2
2. ■

Corollary 19. Let K ≥ C2(δ)L. Then, with probability at least 1 − 12e−c2(δ)K, for all

125



h ∈ CJL such that its J components have unit norm, i.e., ∥hℓ∥ = 1, we have

J∑
ℓ=1

J∑
i ̸=ℓ

|hH
ℓ Szi

∣∣2 +Re
(
hH

ℓ Shiz
H
i Szℓ

)
+Re

(
hH

ℓ Szih
H
i Szℓ

)
≥ −

(m2
2

K
+ δ
)∥∥h∥∥2. (A.12)

Proof. Recall ∇2r(z) as defined in Eq.(A.10). Now, notice that

J∑
ℓ=1

J∑
i ̸=ℓ

|hH
ℓ Szi

∣∣2 +Re
(
hH

ℓ Shiz
H
i Szℓ

)
+Re

(
hH

ℓ Szih
H
i Szℓ

)
=

J∑
ℓ=1

J∑
i<ℓ

|hH
ℓ Szi

∣∣2 + |hH
i Szℓ

∣∣2 + 2Re
(
hH

ℓ Shiz
H
i Szℓ

)
+ 2Re

(
hH

ℓ Szih
H
i Szℓ

)
=

1

2
h̃H∇2r(z)h̃,

where in the second equality we collect pairs (i, ℓ) and (ℓ, i) in one summation, and h̃ is the

stacked version of all hℓ and their complex conjugates, i.e. h̃ =
[
hT

1 hH
1 · · · hT

J hH
J

]T
. From

Lemma 5, we have that −δI ⪯ ∇2r(z)− E{∇2r(z)} ⪯ δI. Hence, we have that

1

2
h̃H∇2r(z)h̃ ≥ 1

2
h̃HE

{
∇2r(z)

}
h̃− δ

2
∥h̃∥2

=
J∑

ℓ=1

(
Re
(
hH

ℓ E
{
Cℓ(z)

}
hℓ

)
+

J∑
i ̸=ℓ

Re
(
hH

ℓ E
{
Eℓi(z)

}
hi

)
+

J∑
i ̸=ℓ

Re
(
hH

ℓ E
{
Fℓi(z)

}
hi

))
− δ∥h∥2

=
J∑

ℓ=1

J∑
i ̸=ℓ

(
Re
(
hH

ℓ

(
m2

2ziz
H
i +

m2
2

K
∥zi∥2I +

κ

K
I ◦ (ziz

H
i )
)
hℓ

)
+Re

(
hH

ℓ

(
m2

2(z
H
i zℓ)I +

m2
2

K
zℓz

H
i +

κ

K
I ◦ (zℓz

H
i )
)
hi

)
+Re

(
hH

ℓ

(
m2

2ziz
T
ℓ +

m2
2

K
zℓz

T
i +

κ

K
I ◦ (zℓz

T
i )
)
hi

))
− δ∥h∥2.

Knowing that zℓ = eθℓjeℓj for all ℓj ∈ {1, . . . , J}, we have that |hℓ,i| = |hH
ℓ zi|, and
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I ◦ (zℓz
H
i ) = I ◦ (ziz

H
ℓ ) = 0 and (zH

ℓ zi) = 0 for all i ̸= ℓ. Hence,

1

2
h̃H∇2r(z)h̃ ≥

J∑
ℓ=1

J∑
i ̸=ℓ

(
m2

2

∣∣hH
ℓ zi

∣∣2 + m2
2

K
∥zi∥2

∥∥hℓ

∥∥2 + κ

K
+

m2
2

K
Re
(
hH

ℓ zℓz
H
i hi

)
+m2

2Re
(
hH

ℓ ziz
T
ℓ hi

)
+

m2
2

K
Re(hH

ℓ zℓz
T
i hi

))
− δ∥h∥2

=
J∑

ℓ=1

J∑
i ̸=ℓ

((
m2

2 +
κ

K

)∣∣hH
ℓ zi

∣∣2 + m2
2

K

∥∥hℓ

∥∥2
+

2m2
2

K
Re
(
hH

ℓ zℓ

)
Re
(
hH

i zi

)
+m2

2Re
(
hH

ℓ zih
H
i zℓ

))
− δ∥h∥2

= m2
2

J∑
ℓ=1

J∑
i<ℓ

(∣∣hH
ℓ zi

∣∣2 + ∣∣hH
i zℓ

∣∣2 + 2Re
(
hH

ℓ zih
H
i zℓ

))

+
1

K

J∑
ℓ=1

J∑
i ̸=ℓ

(
κ
∣∣hH

ℓ zi

∣∣2 +m2
2

∥∥hℓ

∥∥2 + 2m2
2Re
(
hH

ℓ zℓ

)
Re
(
hH

i zi

))
− δ∥h∥2.

(A.13)

The first term in the RHS of Eq.(A.13) is a perfect square, and is bounded below by 0.

Rewriting ∥hℓ∥ =
∑L

a=1 |hℓ,a|2 in the second term in the RHS, we have

1

2
h̃H∇2r(z)h̃ ≥ 1

K

J∑
ℓ=1

J∑
i ̸=ℓ

(
(m2

2 + κ)
∣∣hH

ℓ zi

∣∣2 +m2
2

L∑
a̸=i

|hℓ,a|2

+ 2m2
2Re
(
hH

ℓ zℓ

)
Re
(
hH

i zi

))
− δ∥h∥2

=
m2

2 + κ

K

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣hH
ℓ zi

∣∣2 + m2
2

K

J∑
ℓ=1

J∑
i ̸=ℓ

L∑
a̸=i,ℓ

|hℓ,a|2

+
m2

2

K

J∑
ℓ=1

J∑
i<ℓ

(
|hH

ℓ zℓ|2 + |hH
i zi|2 + 2Re

(
hH

ℓ zℓ

)
Re
(
hH

i zi

))

+
2m2

2

K

J∑
ℓ=1

J∑
i<ℓ

Re
(
hH

ℓ zℓ

)
Re
(
hH

i zi

)
− δ∥h∥2. (A.14)

Knowing that in square QAM modulations |κ| ≤ m2
2, we have that the first term of

the RHS is bounded below by zero. Furthermore, the second and third terms in the RHS

of Eq.(A.14) are perfect squares, and are also bounded below by zero. We now focus on
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bounding the remaining term

2m2
2

K

J∑
ℓ=1

J∑
i<ℓ

Re
(
hH

ℓ zℓ

)
Re
(
hH

i zi

)
. (A.15)

For each (ℓ, i) pair, the summands can be negative. However, note that for J > 2, it is not

possible that all summands are negative, i.e., for all pairs (ℓ, i) with i < ℓ: some summands

will be positive, as they are composed of pairwise products. Moreover, every hH
aza can have

at most magnitude equal to 1 by construction, and we also have that ∥h∥ = J . We then

count the number of negative summands to obtain the worst-case scenario. There is a total

of J(J − 1)/2 summands, and the maximum number of negative summands is equal to all

combinations of half of summands with one sign and the other with the opposite sign:

(
⌊J/2⌋
1

)(
⌈J/2⌉
1

)
=

⌊
J

2

⌋⌈
J

2

⌉
=


J2/4 J even,

(J2 − 1)/4 J odd.

(A.16)

Thus, the worst sum (with each term of the form hH
ℓ zℓ having a magnitude of 1) cor-

responds to the maximum amount of negative summands with a negative sign, plus the

remaining positive summands, i.e.,

−
⌊
J

2

⌋⌈
J

2

⌉
+

(
J(J − 1)

2
−
⌊
J

2

⌋⌈
J

2

⌉)
≥ −2max

{
J2

4
,
J2 − 1

4

}
+

J2

2
− J

2
= −J

2
.

(A.17)

Replacing in (A.15), we have

2m2
2

K

J∑
ℓ=1

J∑
i<ℓ

Re
(
hH

ℓ zℓ

)
Re
(
hH

i zi

)
≥ −m2

2

K
J = −m2

2

K
∥h∥2, (A.18)

which completes the proof. ■
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Finally, we describe the generalized regularity condition of WFCMA-based multiple

source recovery as stated throughout Section 3.3.4. Let ∇G(q) =
[
∇1g(q)

T · · · ∇Jg(q)
T
]T

be the total gradient of the MSR function, stacking the gradients with respect to each CMA

solution. Let D(q) = diag(ejϕ1(q), . . . , ejϕJ (q)) ⊗ IL be the diagonal matrix that aligns the

demixers qℓ with their respective ground truths zℓ using their optimal rotations with phases

ϕℓ(q). Thus, D(q)z =
[
ejϕ(q1)zT

1 · · · ejϕ(qJ )zT
J

]T
. Moreover, for all ℓ ∈ {1, . . . , J}, simple

algebra reveals that

∇ℓg
(
D(q)z

)
= ∇f(ejϕ(qℓ)zℓ) + γ0

J∑
i ̸=ℓ

S
(
ejϕ(qi)zi

)(
ejϕ(qi)zi

)H
Sejϕ(qℓ)zℓ

= ejϕ(qℓ)∇f(zℓ) + γ0e
jϕ(qℓ)

J∑
i ̸=ℓ

Sziz
H
i Szℓ

= ejϕ(qℓ)∇ℓg(z) = ∇ℓg(e
jϕ(qℓ)z),

and therefore we can obtain the generalized regularity condition (3.46) of Theorem 2 as

follows:

J∑
ℓ=1

Re
(
⟨∇ℓg(q)−∇ℓg(e

jϕ(qℓ)z), qℓ − ejϕ(qℓ)zℓ⟩
)

=
J∑

ℓ=1

Re
(
⟨∇ℓg(q)−∇ℓg

(
D(q)z

)
, qℓ − ejϕ(qℓ)zℓ⟩

)
= Re

(
⟨∇G(q)−∇G(D(q)z), q −D(q)z⟩

)
≥ 1

α
dist2(q, z) +

1

β

∥∥∇G(q)−∇G(D(q)z)
∥∥2

=
1

α
dist2(q, z) +

1

β

J∑
ℓ=1

∥∥∇ℓg(q)−∇ℓg
(
D(q)z

)∥∥2.
=

1

α
dist2(q, z) +

1

β

J∑
ℓ=1

∥∥∇ℓg(q)−∇ℓg(e
jϕ(qℓ)z)

∥∥2.
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A.6 Proof of Lemma 5

Using the triangle inequality and Eq.(A.10), to prove the lemma we show that ∀ℓ ∈ {1, . . . , J}

and ∀i ̸= ℓ,

∥∥∥∇2f(zℓ)− E
{
∇2f(zℓ)

}∥∥∥ ≤ δf =
δ

2J
, (A.19)

∥Cℓ(z)− E{Cℓ(z)}∥ ≤ δC =
δ

8γ0J
. (A.20)

∥Eℓi(z)− E{Eℓi(z)}∥ ≤ δE =
δ

8γ0J(J − 1)
, (A.21)

∥Fℓi(z)− E{Fℓi(z)}∥ ≤ δF =
δ

8γ0J(J − 1)
. (A.22)

Eq.(A.19) corresponds to the concentration inequality of J Hessians of the single source

recovery cost function. Thus, Lemma 1 states that Eq.(A.19) holds with probability at least

1− 6e−c1(δf )K by choosing K ≥ C1(δf )L.

Let ci,k = sk(s
H
k zi), which are independent for k ∈ {1, . . . , K}, and in particular, ci,k is

independent of ci,m for m ̸= k. Note that sHk zi =
√
m2 e

jφsℓi [k], and therefore the vectors

ci,k have bounded, discrete elements over an exponentially large set, and as such they are

subgaussian [91]. Moreover, the sum of these vectors over index i is also subgaussian. Thus,

we have

Cℓ(z) =
1

K2

J∑
i ̸=ℓ

K∑
k=1

K∑
m=1

ci,kc
H
i,m =

1

K2

J∑
i ̸=ℓ

K∑
k=1

ci,kc
H
i,k +

1

K2

J∑
i ̸=ℓ

K∑
k=1

K∑
m ̸=k

ci,kc
H
i,m, (A.23)

and invoking Lemma 9 for each i ̸= ℓ and results of concentration of quadratic forms [91,

Chapter 6], Eq.(A.20) holds with probability at least 1−2e−c6(δC)K by choosingK ≥ C6(δC)L.

In a similar fashion, note that

Fℓi(z) =
1

K2

K∑
k=1

K∑
m=1

ci,kc
T
ℓ,m =

1

K2

K∑
k=1

ci,kc
T
ℓ,k +

1

K2

K∑
k=1

K∑
m̸=k

ci,kc
T
ℓ,m, (A.24)

where we leverage the reasoning of the previous result, the fact that ci,k is independent of
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cℓ,m for m ̸= k and i ̸= ℓ, and the concentration of measure of U(z) in Lemma 1 of the

main text (for the transposition instead of conjugate transpose). Hence, Eq.(A.22) holds

with probability 1− 2e−c7(δF )K by choosing K ≥ C7(δF )L.

Now define eℓ,k,m = (sHk zℓ)sm. The vectors eℓ,k,k are independent for k ∈ {1, . . . , K},

and eℓ,k,m is independent of ei,k,m for m ̸= k and i ̸= ℓ . Following a similar reasoning as

above, the eℓ,k,m are subgaussian, and we obtain

Eℓi(z) =
1

K2

K∑
k=1

K∑
m=1

eℓ,k,me
H
i,k,m =

1

K2

K∑
k=1

eℓ,k,ke
H
i,k,k +

1

K2

K∑
k=1

K∑
m ̸=k

eℓ,k,me
H
i,k,m, (A.25)

thus Eq.(A.21) holds with probability 1− 2e−c8(δE)K by choosing K ≥ C8(δE)L.

Finally, set C2(δ) ≥ max{C1(δf ), C6(δC), C7(δF ), C8(δE)}. By selecting K ≥ C2(δ)L and

letting c2(δ) = min{c5(δf ), c6(δC), c7(δF ), c8(δE)}, Lemma 5 holds with probability at least

1− 12e−c2(δ)K .

A.7 Proof of Lemma 6

Let q ∈ E(ϵ), D(q) as defined in Section A.5, and h = D(q)Hq − z. Hence, ∥h∥ ≤ ϵ,

hℓ = e−iϕ(qℓ)qℓ − zℓ, and Im(hH
ℓ zℓ) = 0, as hℓ and zℓ are geometrically aligned for all

ℓ ∈ {1, . . . , J}. To prove Lemma 6, we prove that

J∑
ℓ=1

Re
(〈

∇ℓg(q)−∇ℓg
(
D(q)z

)
, qℓ − ejϕ(qℓ)zℓ

〉)
=

J∑
ℓ=1

Re
(〈

∇f(qℓ)−∇f(ejϕ(qℓ)zℓ), qℓ − ejϕ(qℓ)zℓ

〉)
+ γ0

J∑
ℓ=1

J∑
i ̸=ℓ

Re
(〈

Sqiq
H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ, qℓ − ejϕ(qℓ)zℓ

〉)
≥

J∑
ℓ=1

( 1
α
+

2m2
2 −R2m2 − δ

19

)
∥hℓ∥2 +

1

20K

J∑
ℓ=1

K∑
k=1

∣∣sHkhℓ

∣∣4 + γ2
0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2
(A.26)
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for all h satisfying Im(hH
ℓ zℓ) = 0 and ∥h∥ ≤ ϵ. In the following, we set γ0 = 1, and

for simplicity, we now assume that ∥hℓ∥ ≤ ϵ/
√
J for all ℓ ∈ {1, . . . , J}. In Lemma 2 we

establish that the inner product of the CMA portion of the gradient, i.e., the terms with

∇f , are bounded below by the two first terms of the right-hand side of Eq.(A.26). Therefore,

we focus on the regularizing term, which is

J∑
ℓ=1

J∑
i ̸=ℓ

Re
(〈

Sqiq
H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ, qℓ − ejϕ(qℓ)zℓ

〉)
=

J∑
ℓ=1

J∑
i ̸=ℓ

(∣∣zH
i Shℓ

∣∣2 + ∣∣hH
i Shℓ

∣∣2 +Re
(
hH

ℓ Shih
H
i Szℓ

)
+Re

(
hH

ℓ Szih
H
i Shℓ

)
+Re

(
hH

ℓ Shiz
H
i Shℓ

)
+Re

(
hH

ℓ Szih
H
i Szℓ

)
+Re

(
hH

ℓ Shiz
H
i Szℓ

))
=

J∑
ℓ=1

J∑
i<ℓ

(∣∣zH
i Shℓ

∣∣2 + ∣∣hH
i Szℓ

∣∣2 + 2
∣∣hH

i Shℓ

∣∣2 + 3Re
(
hH

ℓ Shih
H
i Szℓ

)
+ 3Re

(
hH

ℓ Shiz
H
i Shℓ

)
+ 2Re

(
hH

ℓ Szih
H
i Szℓ

)
+ 2Re

(
hH

ℓ Shiz
H
i Szℓ

))
≤

J∑
ℓ=1

J∑
i<ℓ

(
2
∣∣hH

i Shℓ

∣∣2 + 3Re
(
hH

ℓ Shih
H
i Szℓ

)
+ 3Re

(
hH

ℓ Shiz
H
i Shℓ

))
−
(m2

2

K
+ δ
)
∥h∥2,

where the second equality comes from realizing that the terms of pairs (i, ℓ) and (ℓ, i) are

related through complex conjugation, and the last inequality comes from Corollary 19. Sub-

stituting in Eq.(A.26), and invoking Lemma 2, we have that

J∑
ℓ=1

Re
(〈

∇ℓg(q)−∇ℓg(D(q)z), qℓ − ejϕ(qℓ)zℓ

〉)
≥ 1

K

K∑
k=1

(
2Re(hHsks

H
k z)

2 + 3Re(hHsks
H
k z)|sHkh|2 + |sHkh|4 +

(
|sHk z|2 −R2

)
|sHkh|2

)
+

J∑
ℓ=1

J∑
i<ℓ

(
2
∣∣hH

i Shℓ

∣∣2 + 3Re
(
hH

ℓ Shih
H
i Szℓ

)
+ 3Re

(
hH

ℓ Shiz
H
i Shℓ

))
−
(m2

2

K
+ δ
)
∥h∥2

≥
J∑

ℓ=1

( 1
α
+

2m2
2 −R2m2 − δ

19

)
∥hℓ∥2 +

1

20K

J∑
ℓ=1

K∑
k=1

∣∣sHkhℓ

∣∣4 + J∑
ℓ=1

J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2. (A.27)
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Equivalently, we prove that for all hℓ such that Im(hH
ℓ zℓ) = 0 and ∥hℓ∥ = 1, and for all

ξ with 0 ≤ ξ ≤ ϵ/
√
J ,

1

K

J∑
ℓ=1

K∑
k=1

(
2Re(hHsks

H
k z)

2 + 3ξRe(hHsks
H
k z)|sHkh|2 +

19ξ2

20
|sHkh|4 +

(
|sHk z|2 −R2

)
|sHkh|2

)
+

J∑
ℓ=1

J∑
i<ℓ

(
3ξRe

(
hH

ℓ Shih
H
i Szℓ

)
+ 3ξRe

(
hH

ℓ Shiz
H
i Shℓ

))
− J

(m2
2

K
+ δ
)

≥ J
( 1
α
+

2m2
2 −R2m2 − δ

19

)
. (A.28)

Invoking Lemma 1 and Corollary 10, we have that

Re
(
hH

ℓ Shih
H
i Szℓ

)
≥ −

∣∣hH
ℓ Shi

∣∣∣∣hH
i Szℓ

∣∣ ≥ −(m2 + δ)2,

Re
(
hH

ℓ Shiz
H
i Shℓ

)
≥ −

∣∣hH
ℓ Shi

∣∣∣∣zH
i Shℓ

∣∣ ≥ −(m2 + δ)2, (A.29)

and replacing in Eq.(A.28), we obtain

1

K

K∑
k=1

(
2Re(hHsks

H
k z)

2 + 3ξRe(hHsks
H
k z)|sHkh|2 +

19ξ2

20
|sHkh|4 +

(
|sHk z|2 −R2

)
|sHkh|2

)
− 3(J − 1)ξ(m2 + δ)2 − m2

2

K
− δ

≥
( 1
α
+

2m2
2 −R2m2 − δ

19

)
(A.30)

Now, following the procedure in Lemma 2, to bound the sum in the LHS, we obtain that

Lemma 6 holds under the following condition:

135m2
2 + 90κ

76
Re(hHz)2 +

45

76
(m2

2 − δ)− 19B2L

20
ξ2(m2 + δ)

+
(
m2

2 −R2m2 − (1 +R2)δ + (m2
2 + κ)|hHz|2

)
· 1[Q ̸= 4]

− 3(J − 1)ξ(m2 + δ)2 − m2
2

K
− δ

≥ 1

α
+

11m2
2 − 2R2m2 + 5δ

19
+

21m2
2 + 14κ

38
Re(hHz)2. (A.31)
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With J ≥ 2, ϵ = (10JB
√
LJ)−1 and δ ≤ 0.001, Eq.(A.31) holds for

α ≥ 4 for Q = 4,

α ≥ 227 for Q ̸= 4.

A.8 Proof of Lemma 7

Let q ∈ E(ϵ) and D(q) as defined in Section A.5. Let h = D(q)Hq − z. Hence, ∥h∥ ≤ ϵ,

hℓ = e−iϕ(qℓ)qℓ − zℓ and Im(hH
ℓ zℓ) = 0. We aim to prove that

∥∥∇G(q)−∇G(D(q)z)
∥∥2

≤ β

(
2m2

2 −R2m2 − δ

19

∥∥h∥∥2 + 1

20K

J∑
ℓ=1

K∑
k=1

|sHkhℓ|4 + γ2
0

J∑
ℓ=1

J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2),
We first notice that

∥∥∇G(q)−∇G(D(q)z)
∥∥2 = J∑

ℓ=1

∥∥∇ℓg(q)−∇ℓg
(
D(q)z

)∥∥2, (A.32)

where

∥∥∥∇ℓg(q)−∇ℓg
(
D(q)z

)∥∥∥2 = max
u∈CL, ∥u∥=1

∣∣∣uH
(
∇ℓg(q)−∇ℓg

(
D(q)z

))∣∣∣2, (A.33)

and therefore we bound each of the J gradients. By means of the triangle inequality, we
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have that

∣∣∣uH
(
∇ℓg(q)− ejϕ(qℓ)∇ℓg

(
D(q)z

))∣∣∣2
=

∣∣∣∣∣uH∇f(qℓ) + 2γ0u
H
( J∑

i ̸=ℓ

Sqiq
H
i Sqℓ

)

− uH∇f(ejϕ(qℓ)zℓ)− γ0e
jϕ(qℓ)uH

( J∑
i ̸=ℓ

Sziz
H
i Szℓ

)∣∣∣∣∣
2

≤ 2
∣∣∣uH∇f(qℓ)− ejϕ(qℓ)∇f(zℓ)

∣∣∣2 + 2γ2
0

∣∣∣∣∣
J∑
i ̸=ℓ

uH
(
Sqiq

H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ

)∣∣∣∣∣
2

. (A.34)

Let D = 3 + 1[Q ̸= 4]. From the proof of Lemma 3, we know for all hℓ such that

Im(hH
ℓ zℓ) = 0 and ∥hℓ∥ = 1, and for all ξ with 0 ≤ ξ ≤ ϵ/sqrtJ , that

∣∣∣uH∇f(qℓ)− ejϕ(qℓ)∇f(zℓ)
∣∣∣2 ≤ 4Dξ2I1 + 9Dξ4I2 +Dξ6I3 + 4ξ2I4 · 1[Q ̸= 4]

≤ 4ξ2D(2m2
2 + κ+ δ)2 + ξ2

(
m2

2 + κ+ (1 +R2)δ
)2 · 1[Q ̸= 4]

+
9Dξ4(2m2

2 + κ+ δ) +DB2Lξ6(m2 + δ)

K

K∑
k=1

|sHkhℓ|4,

(A.35)

thus we only need to bound the second term in Eq.(A.34). For any u ∈ CL such that
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∥u∥ = 1, let v = e−iϕ(qℓ)u. Thus,

∣∣∣∣∣
J∑
i ̸=ℓ

uH
(
Sqiq

H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ

)∣∣∣∣∣
2

=

∣∣∣∣∣
J∑
i ̸=ℓ

vHS(hi + zi)(hi + zi)
HS(hℓ + zℓ)− vHSziz

H
i Szℓ

∣∣∣∣∣
2

=

∣∣∣∣∣vHCℓ(z)hℓ + vHCℓ(h)zℓ + vHCℓ(h)hℓ +
J∑
i ̸=ℓ

(
vHShiz

H
i Shℓ + vHSzih

H
i Shℓ

+ vHShiz
H
i Szℓ + vHSzih

H
i Szℓ

)∣∣∣∣∣
2

≤

(∣∣vHCℓ(z)hℓ

∣∣+ ∣∣vHCℓ(h)zℓ

∣∣+ ∣∣vHCℓ(h)hℓ

∣∣+ J∑
i ̸=ℓ

∣∣vHShiz
H
i Shℓ

∣∣
+
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∣∣vHSzih
H
i Shℓ
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∣∣vHShiz
H
i Szℓ

∣∣+ J∑
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∣∣vHSzih
H
i Szℓ

∣∣)2

.

Equivalently, for all hℓ and v such that Im(hH
ℓ zℓ) = 0, ∥hℓ∥ = ∥v∥ = 1 and for all ξ with

0 ≤ ξ ≤ ϵ/
√
J ,

∣∣∣∣∣
J∑
i ̸=ℓ

uH
(
Sqiq

H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ

)∣∣∣∣∣
2

≤

(
ξ
∣∣vHCℓ(z)hℓ

∣∣+ ξ2
∣∣vHCℓ(h)zℓ

∣∣+ ξ3
∣∣vHCℓ(h)hℓ

∣∣+ ξ2
J∑
i ̸=ℓ

∣∣vHShiz
H
i Shℓ

∣∣
+ ξ2

J∑
i ̸=ℓ

∣∣vHSzih
H
i Shℓ

∣∣+ ξ
J∑
i ̸=ℓ

∣∣vHShiz
H
i Szℓ

∣∣+ ξ
J∑
i ̸=ℓ

∣∣vHSzih
H
i Szℓ
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.
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Knowing that
(∑n

i=1 ai
)2 ≤ n

∑n
i=1 a

2
i ,

∣∣∣∣∣
J∑
i ̸=ℓ

uH
(
Sqiq

H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ

)∣∣∣∣∣
2

≤ 7ξ2
∣∣vHCℓ(z)hℓ

∣∣2 + 7ξ4
∣∣vHCℓ(h)zℓ

∣∣2 + 7ξ6
∣∣vHCℓ(h)hℓ

∣∣2 + 7ξ4
( J∑

i ̸=ℓ

∣∣vHShiz
H
i Shℓ

∣∣)2
+ 7ξ4

( J∑
i ̸=ℓ

∣∣vHSzih
H
i Shℓ

∣∣)2 + 7ξ2
( J∑

i ̸=ℓ

∣∣vHShiz
H
i Szℓ

∣∣)2 + 7ξ2
( J∑

i ̸=ℓ

∣∣vHSzih
H
i Szℓ

∣∣)2
= 7ξ2I5 + 7ξ4I6 + 7ξ6I7 + 7ξ4I8 + 7ξ4I9 + 7ξ2I10 + 7ξ2I11.

We now bound the terms on the right-hand side. By means of Corollary 16 and large

enough K,

I5 =
∣∣vH

ℓ Cℓ(z)hℓ

∣∣2 ≤ (∥∥Cℓ(z)
∥∥∥∥hℓ

∥∥∥v∥)2 ≤ (K + J − 1

K
m2

2 +
κ

K
+ δ
)2
.

Additionally, knowing that maxk ∥sk∥ = B
√
L ≥ 1 for all k ∈ {1, . . . , K}, and by means of

Corollaries 10 and 11 and the Cauchy-Schwarz inequality, we have

I6 =

∣∣∣∣ J∑
i ̸=ℓ

vHShih
H
i Szℓ

∣∣∣∣2 ≤ J∑
i ̸=ℓ

∣∣vHShi

∣∣2∣∣hH
i Szℓ

∣∣2 ≤ (J − 1)(m2 + δ)4. (A.36)

We also have that

I7 =

∣∣∣∣ J∑
i ̸=ℓ

vHShih
H
i Shℓ

∣∣∣∣2 ≤ J∑
i ̸=ℓ

∣∣vHShi

∣∣2∣∣hH
i Shℓ

∣∣2 ≤ ∥S∥2
J∑
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∣∣hH
i Shℓ

∣∣2
≤ (m2 + δ)2
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∣∣hH
i Shℓ

∣∣2.
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By inkoving the same tools, we also have

I8 =
( J∑
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∣∣vHShiz
H
i Shℓ

∣∣)2 ≤ J∑
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i Shℓ
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∣∣vHSzih
H
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∣∣)2 ≤ J∑
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∣∣2∣∣hH
i Shℓ
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i Shℓ
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∣∣hH
i Shℓ
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Thanks to the Cauchy-Schwarz inequality and Corollary 17,
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( J∑
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∣∣vHShiz
H
i Szℓ

∣∣)2 ≤ J∑
i ̸=ℓ

∣∣vHShi

∣∣2∣∣zH
i Szℓ

∣∣2 ≤ (J − 1)(m2 + δ)2δ2.

Finally, via Cauchy-Schwarz inequality and Corollary 18,

I11 ≤
( J∑

i ̸=ℓ

∣∣vHSzih
H
i Szℓ

∣∣)2 ≤ J∑
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∣∣vHSziz
T
ℓ S

Thi

∣∣2 ≤ J∑
i ̸=ℓ

∥∥Fℓi(z)
∥∥2 ≤ (J − 1)(m2 + δ)2.

Therefore, we obtain

∣∣∣∣∣
J∑
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Sqiq

H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ

)∣∣∣∣∣
2

≤ 7ξ2
(K + J − 1

K
m2

2 +
κ

K
+ δ
)2

+ 7ξ4(J − 1)(m2 + δ)4

+ 7ξ6(m2 + δ)2
J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2 + 7ξ4(J − 1)(m2 + δ)4

+ 7ξ4(m2 + δ)2
J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2 + 7ξ2(J − 1)(m2 + δ)2δ2 + 7ξ2(J − 1)(m2 + δ)2. (A.37)
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By substituting Eqs.(A.37) and (A.35) into Eq.(A.34), we have that

1

β

∣∣∣uH
(
∇ℓg(q)− ejϕ(qℓ)∇ℓg(z)

)∣∣∣2
≤ 2
∣∣∣uH∇f(qℓ)− ejϕ(qℓ)∇f(zℓ)

∣∣∣2 + 2γ2
0

∣∣∣∣∣
J∑
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uH
(
Sqiq

H
i Sqℓ − ejϕ(qℓ)Sziz

H
i Szℓ

)∣∣∣∣∣
2

≤ 2

(
4D(2m2

2 + κ+ δ)2 +
(
m2

2 + κ+ (1 +R2)δ
)2 · 1[Q ̸= 4]

+
9Dξ2(2m2

2 + κ+ δ) +DB2Lξ4(m2 + δ)

K

K∑
k=1

|sHkhℓ|4
)

+ 14γ2
0ξ

2

((K + J − 1

K
m2

2 +
κ

K
+ δ
)2

+ 2ξ2(J − 1)(m2 + δ)4

+ ξ2(1 + ξ2)(m2 + δ)2
J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2 + (J − 1)(m2 + δ)2(1 + δ2)

)

≤ β

(
2m2

2 −R2m2 − δ

19
+

ξ2

20K

K∑
k=1

|sHkhℓ|4 + γ2
0r1 + γ2

0R2ξ
2

J∑
i ̸=ℓ

∣∣hH
i Shℓ

∣∣2).
Hence, Lemma 7 holds under the following condition:

β ≥max
{152D(2m2

2 + κ+ δ)2

2m2
2 −R2m2 − δ

+
38(m2

2 + κ+ (1 +R2)δ
)2

2m2
2 −R2m2 − δ

· 1[Q ̸= 4]

+
266γ2

0

2m2
2 −R2m2 − δ

((K + J − 1

K
m2

2 +
κ

K
+ δ
)2

+ 2ϵ2(J − 1)(m2 + δ)4 + (J − 1)(m2 + δ)2(1 + δ2)

)
,

360D(2m2
2 + κ+ δ) + 40DB2Lϵ2(m2 + δ), 14γ2

0(1 + ϵ2)(m2 + δ)2
}
. (A.38)

With ϵ = (10B
√
JL)−1, γ0 = 1 and δ ≤ 0.001, Eq.(A.38) holds for

β ≥ 730 + 267(J − 1) for Q = 4,

β ≥ 1964 + 394(J − 1) for Q ̸= 4.
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Appendix B

Alternative Proofs for Riemannian

Orthogonal CMA

Here, we use an alternative approach to prove that the mean Riemannian Hessian of the

CMA cost function (4.3a) is strictly positive definite in a neighborhood of an optimum.

Equivalently, we prove that the quadratic form of the Riemannian Hessian is strictly positive

at an optimum, and thanks to its continuity, we conclude that the Riemannian Hessian

is strictly positive definite in a neighborhood of such optimum. By using concentration

of measure inequalities (such as the ones used for theoretical convergence guarantees of

WFCMA), we expect to translate this result to the finite-sample Riemannian Hessian of

ROCMA in future work.

In the following, we assume the conditions of Theorem 9 hold. Recall that the Riemannian

Hessian can be lifted to the ambient manifold as follows:

liftY
(
HessY g

(
[Y ]
)
[ξ]
)
= ProjHY

(
Dr(Y )[E]

)
= ProjHY

(
D
(
∇Y g(Y )

)
[E]−Uherm

(
Y H∇Y g(Y )

)
− Y herm

(
D
(
Y H∇Y g(Y )

)
[E]
))

= ProjHY

(
D
(
∇Y g(Y )

)
[E]−Eherm

(
Y H∇Y g(Y )

))
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where the last term in the RHS of the first equality vanishes through the projection, as it

belongs to normal space.

Let

Ak =
(
I ◦ (Y HZkY )−R2I

)
,

Bk =
(
I ◦ (Y HZkE +EHZkY )

)
which are real, diagonal matrices. Hence,

liftY
(
HessY g

(
[Y ]
)
[ξ]
)
= ProjHY

(
D
(
∇Y g(Y )

)
[E]

)
− ProjHY

(
Eherm

(
Y H∇Y g(Y )

))
= ProjHY

(
1

K

K∑
k=1

ZkY B +ZkEA

)
− ProjHY

(
Eherm

( 1

K

K∑
k=1

Y HZkY A
))

=
1

K

K∑
k=1

(
ZkY B +ZkEA− Y herm(Y HZkY B + Y HZkEA)

− Y
(
I ◦ skew(Y HZkY B + Y HZkEA)

)
− 1

K

K∑
k=1

(
EY HZkY A− Y herm

(
Y HEY HZkY A

)
− Y

(
I ◦ skew

(
Y HEY HZkY A

))
. (B.1)

To verify whether the Hessian is positive definite, we compute its quadratic form with

E a unit vector in horizontal space, i.e. EHY is skew-Hermitian with zero diagonal, and

∥E∥Y = Tr(EHE) = ∥E∥2F = 1. Using the real trace inner product ⟨U ,V ⟩Y = ReTr(UHV )
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for U ,V ∈ HY M, we have

〈
ξ,HessY g

(
[Y ]
)
[ξ]
〉
[Y ]

=
〈
E, liftY

(
HessY g

(
[Y ]
)
[ξ]
)〉

Y

=
1

K

K∑
k=1

ReTr

(
EHZkY B +EHZkEA−EHY herm(Y HZkY B + Y HZkEA)

−EHY
(
I ◦ skew(Y HZkY B + Y HZkEA)

−
(
EHEY HZkY A−EHY herm

(
Y HEY HZkY A

)
−EHY

(
I ◦ skew

(
Y HEY HZkY A

)))

=
1

K

K∑
k=1

ReTr

(
EHZkY B +EHZkEA−EHEY HZkY A

−EHY herm(Y HZkY B + Y HZkEA) +EHY herm
(
Y HEY HZkY A

)
−EHY

(
I ◦ skew(Y HZkY B + Y HZkEA) +EHY

(
I ◦ skew

(
Y HEY HZkY A

))

=
1

K

K∑
k=1

ReTr
(
EHZkY B +EHZkEA−EHEY HZkY A

)
, (B.2)

where:

� the terms of the form ReTr(EHY herm(·)) vanish because EHY is skew-Hermitian,

which are orthogonal to Hermitian matrices; and

� the terms of the form ReTr
(
EHY (I ◦ ·)

)
vanish because EHY has zero diagonal, and

its product with a diagonal matrix has zero diagonal as well.

We now take expectation in Eq.(B.2). Recall that the optimum demixers in combined

parameter space are Q̂ = PD, with P ∈ RL×J a tall permutation matrix and D ∈ CJ×J

a diagonal unitary matrix, and thus Q̂HQ̂ = I. Using the right singular vectors of the

channel matrix H , collected in matrix V , we have that Y = V Q, and we also have that
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Zk = V Hsks
H
kV . Let C = V E, and thus ∥C∥2F = ∥E∥2F = 1. Moreover, we have that

EHŶ = CHQ̂ = CHPD (B.3)

also is skew-Hermitian with zero diagonal, i.e., (CHP ) ◦ I = 0. Note that if P follows the

permutation ν : ℓ → ν(ℓ) ∈ {1, · · · , L}, then

P =
[
eν(1) · · · eν(L)

]
IL,J (B.4)

where IL,J contains the first J columns of the identity matrix of size L. Hence, the diagonal

elements of CHP (equal to zero) correspond to

[
CHP

]
ℓℓ
=
[
CH
[
eν(1) · · · eν(L)

]
IL,J

]
ℓℓ
=
[
C
]
ν(ℓ),ℓ

= cν(ℓ),ℓ = 0. (B.5)

Without loss of generality, we let P = IL,J , i.e. ν(ℓ) = ℓ, and thus cℓℓ = 0 for all ℓ. Then,

we have that

E
{〈

ξ,HessY g
(
[Y ]
)
[ξ]
〉
[Y ]

}
= ReTrE

{
EHZkY B +EHZkEA−EHEY HZkY A

}
= ReTrE

{
EHZkY B
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. (B.6)

Now we develop each expectation in the RHS of Eq.(B.6). The first term is
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}
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where, because of the product with a diagonal matrix, each element is
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The second term develops as follows:
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yielding
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(B.8)

For the last term, we have
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Replacing Eqs.(B.7), (B.8) and (B.9) in Eq.(B.6), we have
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which is strictly larger than zero for all regular QAM modulations.
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