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a b s t r a c t 

Energy efficiency (EE) has long been recognized as a source of value to the electricity grid. Especially with 

increasing penetration of variable renewable generation, demand response (DR) can also provide system value 

and support the evolving needs of the grid. Yet there has been little study to date of interactions between EE 

and DR that may complicate their grid impacts. In this study we perform bottom-up modelling of the interactive 

effects between EE and DR in buildings for three representative regions of the United States electricity grid. 

Leveraging new simulation tools that enable detailed modelling of the building stock, we synthesize system- 

level demand profiles for several scenarios representing different portfolios of EE measures. In each scenario, we 

couple the underlying building models with a database of DR-enabling technologies to estimate building-level 

DR capabilities and compute a system-level supply curve for DR. We assess the resulting EE and DR interactive 

effects based on an existing conceptual framework. The results show a complex relationship between EE and 

DR, with interactive effects whose size and direction can vary widely depending on the grid system, type of DR, 

and the framework level being considered. Most often, the overall effect is competition between EE and DR, 

but significant complementarity can also occur, especially when the EE portfolio includes controls measures. Our 

results suggest that EE and DR programs developed without considering interactive effects may erode the benefits 

of both resources, whereas a more integrated approach may yield increased benefits. 
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1 Defined as a building’s capability to modify load in response to grid needs, 

i.e., to provide DR [19] . 
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. Introduction 

Energy efficiency (EE) and demand response (DR) are widely recog-

ized as important tools to reduce power-system costs [1–4] , improve

eliability of electrical service [5–7] , and support decarbonization goals

8 , 9] . Utilities regularly undertake detailed studies to assess the tech-

ical, economic, and market potential for DR that informs ratepayer-

unded DR program design [10] . Additionally, regulators consider the

ost-effectiveness of ratepayer-funded EE and DR programs based on

eferral or avoidance of utility investments and other utility costs [11] .

owever, increasing penetration of variable renewable energy (VRE) re-

ources, such as wind and solar, is driving changes in system net load

rofiles (i.e., system load less VRE generation) that complicate the tra-

itional valuation of EE and DR by increasing the hour-to-hour vari-

bility of grid costs and changing the timing and frequency of high-cost

eriods [12] . There has been a growing recognition that the value of

E depends crucially on the timing of the energy savings [13 , 14] and
Abbreviations: AMY, Actual meteorological year; EE, Energy efficiency; DF, Dema

atory; NREL, National Renewable Energy Laboratory; VRE, Variable renewable ener
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hat the most valuable strategy for DR is evolving from infrequent load

eductions during peak hours to more frequent shifting of the timing

f energy consumption to effectively utilize VRE resources [15 , 16] . As

 result, electric utilities and regulators are increasingly interested in

ntegrated EE and DR programs [17 , 18] and in the co-deployment of

uilding technologies and strategies that can provide both EE and de-

and flexibility 1 (DF) [20 , 21] . In some cases, EE regulations have been

odified to accommodate DR-enabling features: in the United States,

or instance, a 2015 statute modified minimum EE standards for certain

lectric water heaters intended for use in DR programs [22] , and the

NERGY STAR® program specifies “connected criteria ” that grant an

nergy-consumption allowance in exchange for DR-enabling communi-

ation features [23] . 
nd flexibility; DR, Demand response; LBNL, Lawrence Berkeley National Labo- 
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2 We also adopt the definition of DF used in the EE-DR framework, as a poten- 

tial, residing in buildings, that the utility can utilize to provide reliable service, 

rather than a resource in the traditional sense. 
Because EE and DR both address the same underlying load, inter-

ctive effects are likely when the two resources are considered in an

ntegrated manner. Satchwell et al. [19] developed a conceptual frame-

ork (referred to hereafter as the EE-DR framework ), describing the var-

ous ways in which EE and DR may compete with or complement each

ther. They identified a complex and layered set of potential interactions

hat could represent either competition or complementarity between EE

nd DR, depending on the specific set of resources being analysed and

n the perspective and the scale from which the issue is considered. To

ate, however, analyses of EE and DR interactions have been limited in

cope and confined to a single facet of the diverse set of possible inter-

ctions identified in the EE-DR framework. A study of DR potential in

alifornia [15] found a smaller DR resource in a scenario with increased

E, and recent national-scale studies have noted that EE can reduce the

mount [20] or the value [24] of DF in buildings, all of which are forms

f EE and DR competition. Another recent study considered the ways

n which DR-enabling capabilities can improve the cost-effectiveness of

ertain measures in the context of utility EE programs [25] , or how cer-

ain portfolios of EE measures and storage can increase DF in residential

uildings [26] , which are forms of complementarity. None of these stud-

es considered the full range of potential interactive effects identified in

he EE-DR framework, however. 

In this paper we present a thorough and detailed assessment of the

E and DR interactive effects that may occur as a result of EE-induced

hanges in load and in the characteristics of the building stock, con-

idering competitive and complementary effects occurring at the build-

ng level and at the level of the regional grid system. Leveraging ex-

sting modelling tools that focus on EE and DR individually, we con-

truct a novel framework to model EE-induced changes in load across

 range of scales and to assess resulting impacts on building-level DR

apability, system-level DR resource size and system-level need for DR,

cross a variety of dimensions. To our knowledge, this is the first study

o analyse EE and DR interactions at such a high level of detail and

cross the broad range of scales and perspectives identified in the EE-DR

ramework. 

In particular, we use the building simulation tools ResStock [27 , 28]

nd ComStock [29] to model electrical loads for a diverse population of

uildings in the residential and commercial sectors. Combining these

imulated building load shapes with real-world data on grid-system

oad, we develop a bottom-up model of the hourly load contributions

rom residential and commercial buildings, focusing on three U.S. grid

egions with varied power-system characteristics. We repeat the build-

ng simulations and system load modelling for several scenarios repre-

enting portfolios of EE measures that could be applied in the building

tock, selecting portfolios that would be expected to exhibit different in-

eractions with DR based on considerations from the EE-DR framework.

e then assess how the available DR resource changes in response to EE

pgrades using the modelling framework DR-Path [15 , 16] , which pairs

ndividual building end-use loads with DR-enabling measures. This ap-

roach allows us to analyse changes in the size and the cost of the DR

esource, both at the individual building level and in aggregate at the

rid-system level. To assess how the system-level need for DR changes,

e make use of a recently developed set of metrics [30] for quantifying

he change in system-level need for different types of DR in response to

hanges in the system load shape. The analysis in this paper builds on

nd extends the approach from an earlier study that presented a sim-

ler consideration of EE and DR interactive effects in residential-sector

uildings [31] . 

When considering EE and DR interactions, it is important to distin-

uish clearly between the two resources, since they can sometimes pro-

ide overlapping benefits (e.g. peak reduction). In this study, we adopt

efinitions of EE and DR from the EE-DR framework [19] : EE is defined

s a persistent and maintained reduction in the energy consumption re-

uired to provide a fixed level of service, whereas DR is an active mod-

fication in building energy demand or consumption on a limited-time

asis, in response to an incentive or control signal, which may result in a
2 
educed level of service. 2 Within the boundaries of those definitions, we

dopt a broad and inclusive representation of both EE and DR. Our EE

easure portfolios include equipment upgrades, building envelope up-

rades, and controls strategies that can save energy. Our consideration

f DR encompasses everything from episodic programs with infrequent

vents dispatched directly by the grid operator to time-of-use pricing

rograms that present a consistent price signal to customers on a daily

asis, to encourage changes in energy consumption patterns. We anal-

se interactive effects for traditional DR programs that focus on load

eductions during extreme system peaks, as well as emerging types of

rograms that focus on shifting the timing of energy consumption to

itigate steep ramps in demand and avoid curtailment of VRE genera-

ion. Following Alstone et al. [15] , we refer to these two broad classes

f DR as shed and shift , respectively. 

As the first analysis to focus directly on EE and DR interactions,

his study is subject to several boundaries and limitations. First, our

odelled building loads and EE measure impacts are based on building

imulations rather than real-world buildings, and our DR measure im-

acts are based on a set of data-informed assumptions about measure

erformance capabilities. Thus, our results, while illustrative, may not

erfectly represent real-world interactions. Our load modelling is also

imited to residential and commercial buildings and does not include

E and DR interactions in industrial-sector loads, which may also be

mportant in real-world applications. Also, the EE scenarios that we sim-

late represent extremely aggressive measure adoption, upgrading the

ntire building stock at once with a wide array of EE upgrades. These

ortfolios are not intended to be realistic, but rather they are used to

nsure that our model produces EE and DR interactions that are readily

pparent in our analysis. In practice, the EE and DR interactions that

ccur in real-world programs would be subtler than what we observe

ere. Also, our analysis of DR is limited to shed and shift resources in-

olving load modifications over a period of one or more hours; we do

ot consider more exotic types of “fast ” DR involving shorter-term load

odulation (e.g., for frequency regulation). In our consideration of EE

nd DR interactions, we only consider those interactions that are mani-

ested in changes in the building-level and system-level load shapes, or

n technology-cost reductions that could occur under an integrated ap-

roach to EE and DR. We do not consider changes in customer willing-

ess to participate in EE or DR programs or in grid-operator despatch

trategies or procurement patterns. We also analyse EE and DR inter-

ctions in the context of large, utility-scale power systems; we do not

onsider potential impacts in smaller-scale systems, such as microgrids,

here interactions may be more complex. Finally, we do not analyse

he impacts of EE or DR on system costs, or on the cost-effectiveness

f individual EE or DR measures, and we identify this as an important

pportunity for future research, which can be informed by the present

tudy of load-based interactions. 

Before proceeding, it is important to clarify the implications of com-

etition and complementarity between EE and DR as we use the terms

n this paper. If EE competes with DR in a particular grid system, this

oes not imply that EE has a negative overall impact on the grid. In-

eed, load reductions from EE are likely to have a substantial benefit to

he grid, in the form of reduced costs for capacity, infrastructure, and

eneration, even when EE is in competition with DR. However, since

he flexibility that DR provides is also of value to the grid, an interac-

ion that reduces demand-side flexibility will erode the benefits of EE

o some degree, compared to what would be estimated by analysing the

oad reductions in isolation. This is what we mean by competition. By

ontrast, if EE and DR are complementary, their joint benefits may be

reater than the sum of benefits from the two resources considered in

solation. 
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This paper is organized as follows. In Section 2 we describe our

ethods for simulating building and grid-system loads in several EE

cenarios, estimating DR resources, and analysing EE and DR interac-

ions. In Section 3 we present our findings on interactive effects across

he various levels of interaction identified in the EE-DR framework. We

iscuss implications of EE and DR interactions for utility system plan-

ers, grid operators, and EE and DR program implementers in Section 4 .

ection 5 summarizes our findings and offers considerations for driving

E and DR complementarity and avoiding unintended competition. Two

ppendices present the detailed assumptions and inputs we used for our

odelling of EE and DR measures in buildings, as well as detailed results

or certain EE and DR interactive effects. 

. Methods 

This study models three regions of the US electricity grid corre-

ponding roughly to New England, Texas, and California, 3 using actual

eather and operational grid-system data from calendar year 2016. We

elected these regions to represent a variety of different climates, pro-

ortions of VRE generation, and building stock characteristics. New Eng-

and has a cold climate, limited VRE penetration, and space heating pri-

arily provided by oil and natural gas; its grid system has a moderate

ummer-daytime peak driven by cooling load, with a secondary winter

eak. Texas has a hot climate, high penetration of wind generation, and

 relatively high penetration of electric space heating; its grid system

as a strong cooling-driven summer peak, with the potential for demand

pikes during winter cold snaps, and day-to-day variability in net load

eak and ramp timing due to the high wind penetration. California has a

oderate-to-hot climate, high penetration of solar generation, and pri-

arily natural-gas space heating; its grid system has a cooling-driven

ummer peak, and diurnal solar variation shifts the net load peak into

he evening hours and creates steep daily net-load ramps that must be

et by flexible generation resources. 

For each region, we created a bottom-up model of the grid-system

ontribution of building loads, and we analysed how the available DR

esources changed between the baseline scenario and each of the EE

cenarios. Our modelling and analysis proceeded in four steps: 

1. We used advanced building simulation tools to model building-level

loads for a large number of building types, configurations, and loca-

tions, representing the diverse building stock in each region, and we

repeated; 

2. For each EE scenario, we aggregated the simulated building loads to

the grid-system level using a new aggregation methodology based on

real-world data on the building stock and system-level load in each

region; 

3. We used an existing model for estimating DR potential from building

load shapes to estimate the DR resource in each EE scenario and grid

region; and 

4. We analysed EE-induced changes in DR resources and needs, using

the EE-DR framework to structure our assessment and leveraging

a recently developed set of metrics for quantifying changes in the

system-level DR need. 

We describe these steps —and the underlying modelling tools, data,

nd metrics —in more detail in the rest of this section. 
3 Specifically, we modeled system-level loads within the following grid re- 

ions defined in the electricity market module (EMM) of the National Energy 

odeling System (NEMS) from the US Energy Information Administration [32] : 

SNE (corresponding to the footprint of the independent system operator for 

ew England, ISO 

–NE); TRE (corresponding to the footprint of the Electricity 

eliability Council of Texas, ERCOT); and the union of CANO and CASO (corre- 

ponding to the combined footprint in California of the California independent 

ystem operator, CAISO, the Balancing Authority of Northern California, the Los 

ngeles Department of Water and Power, and miscellaneous local grid opera- 

ors). 

w

F

A

t

w

t

c

C

3 
.1. Modelling EE scenarios for building load shapes 

We simulated representative building loads in each region and each

E scenario using the ResStock [27 , 28] and ComStock [29] simula-

ion platforms from the National Renewable Energy Laboratory (NREL).

hese tools model a large number of residential and commercial build-

ng prototypes (tens of thousands in each modelled region) represent-

ng the diversity of building types, sizes, configurations, and geograph-

cal locations 4 in the actual building stock. For this study we simulated

uilding loads using actual-meteorological-year (AMY) 2016 weather

ata. 5 We combined the individual building-simulation results to yield

n average building load shape for each unique combination of build-

ng type and location, disaggregated into individual electrical end uses.

he specific building types and end uses we modelled in this study are

resented in Appendix A . 

These simulations resulted in a baseline set of load shapes repre-

enting average buildings in the present-day building stock. We then

epeated the simulations for several EE scenarios, which upgraded the

odel buildings with particular portfolios of EE measures. In develop-

ng the portfolios, we considered the ways that different categories of EE

easures might interact with DR, drawing inspiration from the EE-DR

ramework. In each case we selected an extensive and aggressive set of

easures that was applied to all eligible buildings. These scenarios are

ot intended to reflect realistic real-world scenarios but rather to create

oticeable load impacts that will have readily distinguishable interac-

ions with DR. We modelled four EE scenarios, each of which we expect

o have different implications for EE and DR interactions: 

1. An equipment-only scenario, which upgraded equipment across a

broad spectrum of end-uses, including heating and cooling, appli-

ances, electronics, and lighting. Equipment upgrades have the po-

tential to reduce system-level need for DR, but they also tend to

reduce the amount of flexible load at the building level. 

2. A controls-only scenario, which added controls technologies and im-

plemented energy-saving operational strategies for various end-uses.

Controls-based EE measures can increase load flexibility at the build-

ing level, and they may also modify the need for DR at the system

level. 

3. An envelope-only scenario, which improved insulation, air sealing,

windows, and other building-shell properties across all building

types. Similar to equipment measures, envelope upgrades may re-

duce system-level DR need and reduce the overall amount of flexi-

ble load; however, because they increase buildings’ thermal stability,

they may increase the flexibility of the remaining demand. 

4. A controls-plus-envelope scenario, consisting of the union of the mea-

sure portfolios from the controls-only and envelope-only scenario.

We consider this combination of portfolios because it increases both

controllability and thermal inertia and therefore may have a partic-

ularly high potential for complementary EE and DR interactions. 

The specific measures making up each of these scenarios are pre-

ented in Appendix A . 

Fig. 1 shows example average daily building-level load shapes in

he residential and commercial sectors, for the baseline and each of the

E scenarios. The equipment-only and envelope-only scenarios tend to

educe loads across all hours of the day. The controls-only scenario tends
4 The geographical locations are defined by the locations of weather stations 

ithin each region, the data from which is used as input to the simulations. 

or each model, we chose a set of weather stations to represent the full set of 

SHRAE climate zones (defined as of 2013) in each region [33] . In a few cases, 

here were sparsely populated climate zones or counties that lacked a suitable 

eather station. In these cases, we used the geographically nearest weather sta- 

ion. 
5 We chose 2016 as our simulation year since it was the most recent year with 

omprehensive weather data that was available for use in both ResStock and 

omStock at the time of analysis 
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Fig. 1. Example building load shapes from ResStock and ComStock for an average simulated single-family home (left) and medium-sized commercial office building 

(right) in Dallas, TX. The panels show average daily load shapes in the summer and winter months (defined for these purposes as June-August and December-February, 

respectively), for each of the EE scenarios we modelled in this study. The different colors indicate the different end-use loads in each building, as indicated in the 

legend. 
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2

o reduce loads when buildings are idle: midday and overnight in the

esidential sector and overnight in the commercial sector. The controls-

lus-envelope scenario combines the effects of its constituent portfolios.

n every EE scenario, the impacts on the building load shape are readily

pparent to the eye, illustrating the aggressive nature of these measure

ortfolios. 

.2. Aggregating system-level loads by EE scenario 

To model the impacts of EE on load at the grid system level, we aggre-

ated the representative ResStock and ComStock building load shapes

sing a procedure presented schematically in Fig. 2 . First, we mapped

ach ZIP code in the region to the closest ResStock and ComStock ge-

graphic location within the same climate zone climate zone ( Fig. 2 a).

e then scaled up the simulated representative load shapes associated

ith each location by multiplying each load shape by a factor made up

f the product of two components: 

1. A scaling factor, specific to each location and building type, repre-

senting the total floor space of buildings of that type within the ZIP

codes mapped to that location ( Fig. 2 b), as derived from a commer-

cially available property parcel dataset 6 [34] , and 

2. An adjustment factor, specific to each sector, calculated to match the

total load in each sector to the actual sector-specific 2016 electricity
sales (in kWh) in each region [35] . 

6 Since the set of building types in the parcel data is not identical to the set of 

imulated building types, we map each building type found in the parcel data 

o the most similar building prototype modeled in ResStock and ComStock, so 

hat all buildings in the commercial data are mapped to a representative load 

hape and thus represented in the aggregate load. 

 

u  

o  

d

s

4 
This procedure yields the simulated system-level load contribution

rom each building type. 

To get an accurate model of overall system demand, the contribution

f non-building loads (e.g., agricultural and industrial loads) needs to be

epresented as well. Starting from the actual 2016 system-level demand

or each region [36] , we added the actual 2016 rooftop solar genera-

ion profile in each region [37] to the system load to obtain the total

ourly energy consumption in the system. This total was larger than the

imulated building contributions that we computed using the scaling

rocedure above; and we assumed that the difference represented the

on-building loads (labelled as “other ” in Fig. 2 c). 

Holding the non-building load component fixed, we then repeated

he building-load scaling procedure for the other EE scenarios, to con-

truct the system-level load that would have occurred in each EE sce-

ario. The scaled building-level and system-level hourly load shapes re-

ulting from this procedure for each EE scenario are available for public

ownload [45] . Given appropriate hourly system-level load data and

ector-specific electricity consumption data (both of which are often

ublic), as well as parcel-level building data (which is available from

ommercial sources), this procedure represents a general approach to

imulating the contribution to system load from buildings, which may

e applicable in future modelling efforts. 

.3. Estimating building-level and system-level DR resources 

To characterize the DR resources in each region and scenario, we

sed the DR-Path model, which was originally developed for studies

f the potential DR resource in California 7 [15 , 16] . We summarize the
7 Previous studies with DR-path were based on actual customer load shape 

ata in California. This study demonstrates the flexibility of DR-Path by using 

imulated building load shape data and modeling additional grid regions. 
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Fig. 2. Schematic diagram of our procedure for aggregating representative building loads to the grid-system level, using California as an example. (a) All ZIP codes 

in the state are assigned to the nearest modelled location that shares their climate, and the associated average building load shapes from ResStock and ComStock 

are used to represent buildings in the region. (b) The representative building load shapes are scaled up according to the total floor space of buildings, by ZIP code 

and summed to yield the hourly system-level contribution from buildings. (c) The resulting aggregate load from the various building end uses (coloured bands) is 

compared to the actual total system-level load that occurred in each hour in 2016, and the difference is attributed to other non-building loads (grey band). 
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odel in this section and refer the reader to those earlier studies for

ull details. DR-Path constructs a detailed, bottom-up picture of the DR

esource within a grid region. It takes three main datasets 8 as input: 

• Customer cluster load shapes. A set of hourly load shapes, disaggre-

gated into individual end uses, each representing the load from a

cluster of similar utility customers over one year. 
• System-level VRE generation. The hourly generation from VRE re-

sources in the grid system being analysed, over the analysis year. 
• DR-enabling measure data. A database of DR-enabling technologies

or strategies for specific building types and end uses, including instal-
8 In some applications, DR-Path also incorporates a model for customers’ 

ropensity to enroll in DR programs. We did not consider such a model for this 

tudy since we are focusing on load-based interactions, rather than behavioral 

ffects. 

t  

w  

2

5 
lation and operating cost data, as well as data characterizing mea-

sure performance in terms of the fraction of load that can be shed or

shifted over different DR event durations. 

In this study, the cluster load shape inputs were the average build-

ng load shapes from ResStock and ComStock, weighted by the total

uilding square footage represented by each weather location. The VRE

eneration was the actual 2016 wind and solar generation in each re-

ion [36] , 9 combined with the actual rooftop solar generation profile

37] . 

Detailed cost and performance data, sources, and assumptions for

he DR-enabling measures are presented in Appendix A . Importantly,

e included several assumptions about how EE upgrades can impact
9 Public data was extracted using ABB Ventyx (last accessed September 20, 

021) 



B.F. Gerke, C. Zhang, S. Murthy et al. Advances in Applied Energy 6 (2022) 100092 

D  

a  

s  

s  

t  

i  

i  

s  

c  

v  

b  

w

 

p  

d  

t  

i  

q  

t  

t  

t  

r  

c  

p  

t  

i  

a  

l  

o  

m  

s  

s  

a

2

 

e  

o  

o  

i  

i  

i  

l  

i  

s  

p

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

n  

i

 

t  

1  

t  

s  

d  

r  

a  

w  

l

D  

s  

n  

r  

a  

a  

i  

s  

T  

d

3

 

s  

m  

m  

a  

s  

e  

o  

a  

i  

d  

c  

t  

s  

b  

t  

i  

t  

i  

q  

b  

e  

a

3

 

o  

10 The level-2a metrics associate shed DR specifically with peak reduction and 

shift DR with mitigation of steep ramps. While it is true that shift DR can also 

provide peak reduction and that shed DR can mitigate ramps, the association 

used in the metrics identifies the most directly relevant use case for each type 

of DR. For instance, if a grid system has a need for peak reduction with no 

strong preference about the timing of offsetting load increases, this is a use case 

for shed DR, whereas demand ramps are most effectively mitigated by shifting 

energy consumption from one time to another, i.e., by an appropriately timed 

combination of load reduction and offsetting load increase. 
11 For the purposes of these metrics, extreme peak and ramp events are defined 

as the 100 highest load hours and 25 highest daily ramping events in the year, 

based on an assessment of the frequency of rare, extreme events in load duration 

and ramping duration curves, as discussed in more detail in Murthy et al. [30] . 
R measure costs and performance. A subset of our DR measures are

lso EE measures, or can be installed as simple add-ons to an EE mea-

ure. For such measures we assumed a reduced DR measure cost in EE

cenarios that included the corresponding EE measure. For example, in

he controls-only scenario, programmable thermostats (PTs) are already

nstalled in residential buildings as an EE measure, so we assumed that

nstalling a programmable communicating thermostat (PCT) as a DR mea-

ure would only incur the incremental cost of upgrading to a communi-

ating thermostat at the time of installation. We also assumed that en-

elope upgrades could improve the performance of certain DR measures

ecause a better-insulated building would allow greater load response

hile maintaining occupant comfort. 

Based on the hourly system-level net load, DR-Path estimates the

robability of DR despatch in any given hour, using statistical models

eveloped in earlier work for shed [15] and shift [16] DR. DR Path mul-

iplies each cluster end-use load shape by the hourly despatch probabil-

ty for each type of DR and sums the result to yield the weighted average

uantity of DR (kW of sheddable load or kWh of shiftable energy) that

he cluster end use could provide in total, at times when DR is most likely

o be dispatched. This quantity represents the DR technical potential for

hat cluster end use. The model then pairs the technical potentials with

elevant technologies from the database of DR-enabling measures and

omputes the fraction of the technical potential that each technology

airing could deliver, along with the associated cost of installing the

echnology and operating it in the context of a DR program. The result

s a large number of DR technological pathways, each of which has an

ssociated DR resource size (kW of shed or kWh of shift DR) and total

evelized cost ($/yr/kW of shed or $/yr/kWh of shift DR). At an array

f different resource cost levels, DR-Path then selects the pathways that

aximize the DR resource for each cluster end use. Summing the re-

ource from these pathways at each cost level yields a system-level DR

upply curve, representing the total quantity of DR that can be procured

s a system resource at a given levelized marginal procurement cost. 

.4. Measuring EE and DR interactive effects 

Interactions between EE and DR may be complex and occur on a vari-

ty of scales. To organize our consideration of these interactions, we rely

n the EE-DR framework [19] , which considers the impacts of a change

n the demand side of the grid that is incurred by a particular EE or DR

nvestment. The framework consists of two levels, representing different

nteraction scales: level 1 considers EE and DR interactions at the build-

ng level, and level 2 considers interactions at the grid-system level. Each

evel is further divided into two sublevels that explore distinct kinds of

nteractions, as described below. Importantly, a single change in the

ystem may have different interactive effects (complementarity or com-

etition) at different framework levels. 

• Level 1a considers changes in DF at the individual building level. EE

and DR competition occurs at this level if there is less flexible load

available, whereas complementarity occurs when the amount of DF

is increased. 
• Level 1b considers changes in the proportion of building-level DF

that is actually participating in DR. EE and DR competition occurs

at this level if a smaller fraction of the DF is participating, and com-

plementarity occurs when participation is increased. 
• Level 2a considers changes in the need for DR at the grid-system

level. EE and DR complementarity occurs at this level if EE reduces

the need for DR at the system level, whereas competition occurs

when the need increases. 
• Level 2b considers changes in the availability of DR resources within

the grid system. EE and DR competition occurs at this level if EE

reduces the DR resource, while complementarity occurs if the DR

resource is increased. 

Because this work is focused on load-based interactions between EE

nd DR, we focus on levels 1a, 2a, and 2b of the framework. We do
6 
ot consider level 1b, since it primarily focuses on behaviour-driven

nteractions. 

At each level of the EE-DR framework we consider, it is important

o define a clear set of metrics to assess EE and DR interactions. At level

a, we consider changes in the building’s technical DR potential, as es-

imated by DR-Path. At level 2b we examine changes in the DR-Path

ystem-level supply curve, considering both the quantity and the cost

imensions of the curve, to assess changes in both the size of the DR

esource and its potential cost-effectiveness. To assess EE and DR inter-

ctions at level 2a of the framework, we rely on a set of metrics that

ere recently developed by Murthy et al. [30] , that provide various

enses to assess changes in the system-level need for shift and shed 10 

R. In particular, the level 2a metrics consider changes in the absolute

ize of extreme 11 net load peaks and ramps, which affects the short-term

eed for DR, as well as changes in the amount of excess peak load and

amping that shed and shift DR despatch would be expected to man-

ge during those extreme events in lieu of supply-side resources, which

ffects the need for DR in the longer term; they also consider changes

n the timing and seasonality of DR need, since these may impact deci-

ions about DR program design. The level 2a metrics are summarized in

able 1 , we refer readers to Murthy et al. [30] for more details on the

evelopment of these metrics and their rationale. 

. Results 

To understand EE and DR interactions, it is helpful to first under-

tand the impacts of EE in isolation. As we saw previously ( Fig. 1 ), the EE

easures generally reduce building loads, except that controls measures

ay yield increases in certain end uses (especially heating and cooling)

t certain times of day. Fig. 3 shows the impacts of each modelled EE

cenario on the system-level load shape, broken out by end use, for the

xample of ERCOT on the day of the 2016 system peak. The equipment-

nly scenario yields savings for all affected end uses in all hours, across

 variety of end uses. The envelope-only savings are restricted to cool-

ng and other HVAC loads and are concentrated in the middle of the

ay when the indoor-outdoor temperature differential is greatest. In the

ontrols-only and controls-plus-envelope scenarios, the impacts vary by

ime of day and end use and even include overall increases in residential

pace cooling loads at certain times of day. These increases are driven

y the thermostat strategy assumed for the residential sector, which uses

emperature setbacks in the midday and overnight hours and temporar-

ly increases cooling loads in the morning and evening to recover from

emperature setbacks. Although there are package-specific differences

n CAISO and ISO 

–NE compared to ERCOT, the EE packages result in

ualitatively similar load shape impacts in all three regions. Informed

y this understanding of the EE load shape impacts, in this section we

xamine the EE and DR interactive effects that occur in each scenario,

t the various levels and sublevels of the EE-DR framework. 

.1. Level 1a: changes in responsive load at the building level 

Level 1a of the EE-DR framework considers changes in the amount

f DF that is available at the individual building level. As described in
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Table 1 

Metrics to assess EE and DR interactions at level 2a of the EE-DR framework, which addresses changes in the need for DR at the grid-system level. For details on 

these metrics and their rationale, see Murthy et al. [30] . 

Application Metric Definition Implications of changes in metric 

Shed DR need Peak demand Peak system-level net load (gross demand less VRE generation), in MW Changes in the short-term need for shed DR 

Peakiness Amount of system net load, in MW, that only occurs in the top 100 net-load 

hours of the year 

Changes in the long-term need for shed DR 

Shift DR need Routine ramping need Maximum 3-hour net-load ramp, in MW, on the day with the 25th highest 

such ramp 

Changes in the need for load-modifying shift DR 

Extreme ramping need Amount of 3-hour ramping, in MW, that only occurs in the top 25 net-load 

ramping days of the year, in excess of the extreme ramping need 

Changes in the need for dispatchable shift DR 

Shed DR program design Shed event days Number of unique days represented in the top 100 net-load hours of the year Changes in the duration and annual number of 

events expected in a shed DR program 

Shed season duration Duration (in days) of the shortest period containing 80 of the top 100 

net-load hours of the year 

Changes in the seasonality of events expected in 

a shed DR program 

Shift DR program design Shift season duration Duration (in days) of the shortest period containing 20 of the 25 highest 

net-load ramping days of the year 

Changes in the seasonality of events expected in 

a shift DR program 

Fig. 3. Changes in the hourly system load shape induced by each EE measure portfolio, disaggregated by end use, for the example of ERCOT on the 2016 system 

peak day. Solid curves show the baseline system load shape, while dotted lines show the modified load shape that occurs in each EE scenario. Filled bars show the 

impact of EE savings from individual end uses. Bars that lie below the solid line in each panel are energy savings, while bars that lie above the solid line represent 

increases in consumption for that end use. The load shapes are presented in a stair step pattern to allow changes in individual end uses to be shown clearly as filled 

bars. 
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12 Although these figures are for the example of Texas, qualitatively simi- 

lar load shape impacts occur in the other regions as well, with increases in 
ection 2.2 , DR-Path computes a large number of technological path-

ays to obtaining shed and shift DR from specific building end uses

sing particular technologies. For each representative building, we can

elect the pathways that maximize the building’s DR resource; this rep-

esents the available building DF in each scenario. Changes to these DF

alues in the different EE scenarios represent EE and DR interactions at

evel 1a of the framework. Most often, we find that EE reduces DF at the

uilding level, since EE reduces the overall demand that is present to

rovide flexibility. There are some important exceptions to this trend,

owever, and we observe wide variability in the scale of the interactive

ffects, driven largely by the coincidence of individual buildings’ load

hapes with times of system need for DR. 

Fig. 4 shows how differences in load shape coincidence can yield

ariation in interactive effects at level 1a, for both shed and shift DR. The

gure shows interactions for residential single-family detached homes

t several locations in California. The EE measures reduce the building-

evel shift potential in all scenarios and the shed potential in most sce-

arios. The exception is the controls-only scenario, which slightly in-

reases the shed DR potential for all buildings shown. This increase oc-

r

7 
urs because the temperature-setback EE strategy we modelled for resi-

ential programmable thermostats tends to increase cooling loads dur-

ng the evening hours (see Fig. 1 and Fig. 3 12 ), coincident with Califor-

ia’s net load peak. Fig. 4 also reveals significant geographic variability

n the level-1a interactions, both in the overall size of the interactions,

nd in the relative impact of different EE scenarios. This variability is

aused by climate-driven differences in the coincidence between build-

ng loads and system DR need, with hot inland locations (Bakersfield,

acramento) generally having larger interactions than more moderate

oastal climates (San Francisco, Los Angeles). 

Fig. 5 shows how differences in coincidence can also yield significant

ariation in interactions by building type at level 1a. The figure shows

nteractions for an example set of commercial buildings, this time hold-

ng the geographic location fixed. Again, the most common interaction

s competition, owing to the overall reduction in load, though there are
esidential-sector load during summer evening hours. 
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Fig. 4. Changes in the size of the building-level DR technical poten- 

tial, for each EE scenario compared to the baseline, for individual 

single-family detached homes in several California weather locations. 

The top panel shows the change in the kW of load reduction a build- 

ing could provide in a shed DR event, and the bottom panel shows 

the change in the average kWh of shifted energy consumption that 

the building could provide in a shift DR event. 

Fig. 5. Changes in the size of the building-level DR technical poten- 

tial, for each EE scenario compared to the baseline, for different types 

of commercial buildings in an example ComStock geographic location 

(Los Angeles, CA). As in Fig. 4 , the top panel shows changes in shed DR 

potential and the bottom panel shows changes in shift DR potential. 

8 
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Fig. 6. Fractional changes in the metrics for system-level need for 

shed and shift DR resources (relative to the baseline scenario), for 

each region and EE scenario modelled in this study. Each dot repre- 

sents the change in the relevant metric in a given EE scenario, relative 

to the baseline-scenario metric for the same region. In each case, a 

decrease in the metric indicates complementarity at level 2a of the 

EE-DR framework (EE reduces DR need), while an increase reflects 

competition. 
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D  
nteresting exceptions. Building types that have operations coincident

ith the evening system peak (e.g., quick-service restaurants) can have

omplementary EE and DR interactions in the case of controls-based EE

easures that slightly increase loads during occupancy hours. Envelope

E measures can also complement shift DR in some cases (e.g., medium

ffices) because they limit passive cooling and yield a slight increase in

vening cooling load during spring and fall, when steep net-load ramp-

ng is most acute in California. Notably, in all building types and sectors

onsidered, the equipment-only EE scenario always yields competition

ith DR at level 1a of the framework, since it reduces loads across all

ours and does not significantly alter coincidence with system load. 

.2. Level 2a: changes in the system-level DR need 

Level 2a of the EE-DR framework considers changes in the need for

R at the grid-system level, which we assess using the metrics proposed

y Murthy et al. [30] , summarized in Section 2.3 . The metrics can be

ategorized into those that consider changes in the system-level need

or shed and shift DR and those that consider changes that might affect

he design of DR programs. We consider each of these categories in turn

n this section. 

Fig. 6 presents the fractional changes in the metrics for shed and

hift resource needs, relative to the baseline scenario, for each of our

odelled regions and scenarios. Both the size and the direction of the

nteractions can vary widely amongst the metrics, regions, and scenar-

os. Considering the shed DR metrics, the EE scenarios always yield a

eduction in the system peak demand, indicating a reduced short-run

eed for shed DR. In most cases, the peakiness metric is also reduced,

ndicating that the reduction in need for shed DR will persist in the long

un, since there is a smaller total amount of load that needs to be carried

n only the top 100 hours of the year. In particular, the scenarios that

nclude envelope measures consistently reduce the peakiness because

hey tend to preferentially reduce on-peak summertime cooling load. 

In a few other cases, however, the peakiness metric shows a small

ncrease when EE measures are introduced, indicating competition be-

ween EE and shed DR in the long run. This occurs when the load is

educed across all hours, but the reduction is larger in the 100th-highest

our than in the peak hour, yielding an increase in the peakiness (for

 more detailed discussion of this effect, see Appendix B ). Such an in-

rease in the amount of load that is only present infrequently would
9 
ikely result in a more acute need for shed DR over the long run, since

xisting dispatchable supply-side resources would experience reduced

apacity factors and correspondingly less revenue from generation, ren-

ering them less economical to maintain and operate and more likely to

e retired. 

For shift DR, the level 2a interactions in Fig. 6 are more variable

han they were for shed. In most cases, EE reduces routine ramping

eed, or leaves it largely unchanged, indicating a complementary or

eutral interaction; this occurs because the EE savings are generally co-

ncident with the daily system peaks and thus reduce the associated

amps, which also means that the interactive effects scale with the size of

he energy savings produced in each scenario (i.e., the equipment-only

cenario yields the largest interaction in each region). There are notable

xceptions to this result for the controls-only scenario in Texas and, to

 lesser extent, New England: the assumed residential controls strategy

reates steep increase in residential heating load on winter mornings

see Fig. 1 ), which creates an entirely new type of steep ramping event,

hereby increasing the amount of ramping that occurs on a frequent ba-

is. It is important to note that different energy-saving controls strategies

re possible, and an approach more carefully attuned to overall grid im-

acts might yield reduced competition. 

The effects of EE on extreme ramping need are more complex and

ess orderly. In most cases, the extreme ramping need increases, indi-

ating EE and DR competition, and in some cases the competition is

uite severe, especially for the scenarios involving controls in Texas. (As

oted above, different controls strategies may be able to mitigate this

ompetition.) However, there is little consistency in the relative size or

irection of the interaction for individual EE scenarios; for instance, the

quipment-only scenario has the strongest competition in New England

ut the largest complementary effect in California. The significant re-

ional differences and lack of consistent ordering by EE package from

ost to least complementary suggests that the details of system gross

emand and VRE penetration are an important determinant of EE and

R interactions when considering extreme ramping need. The large and

rratic effects observed for this metric suggest that a careful consider-

tion of load shape impacts (including thoughtful development of con-

rols strategies) is important when assessing EE and DR in a grid system

hat experiences significant challenges related to extreme ramping. 

Fig. 7 shows interactive effects for the level 2a metrics related to

R program design. In all cases, EE increases (or leaves unchanged) the
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Fig. 7. Fractional changes in the metrics for impacts on DR program- 

design considerations (relative to the baseline scenario), for each re- 

gion and EE scenario modelled in this study. 
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2  

a  

15 Costs in the DR-Path supply curves are the annualized marginal cost of 

procuring an additional kW of shed DR or kWh of shift DR, discounted assum- 
umber of shed event days, suggesting that DR programs may need to

all more frequent, though shorter-duration, 13 events in a more efficient

ystem. The EE upgrades also increase the duration of the shed season

n most cases (see Appendix B for a more detailed explanation of these

ffects). To the extent that these changes make DR participation less

ttractive to customers, they would represent competition between EE

nd DR, whereas they may be complementarity if customers are will-

ng to endure shorter-duration events over a longer fraction of the year.

or shift DR, the effects are, once again, more varied. More often than

ot, the shift season duration increases–sometimes dramatically–when

E measures are applied, implying competition between EE and DR

n this metric. Notably, the envelope-only and controls-plus-envelope

ortfolios always increase the shift season duration, since they reduce

ooling-driven summertime ramps, thus shifting some of the more ex-

reme ramps into the spring and fall. 

.3. Level 2b: changes in DR availability at the system level 

Level 2b of the EE-DR framework considers changes in the availabil-

ty of DR at the system level. To assess changes at this level we consider

he DR supply curves generated by DR-Path, which are strictly increas-

ng two-dimensional curves that display the quantity of DR 

14 that is

vailable at times of system need, for a given marginal cost. It is im-

ortant to consider changes along both dimensions of the supply curve

ecause both cost and quantity determine the amount of economic DR

o procure in a given system. The supply curve depends on four factors

hat can be influenced by EE: the size of the load, its coincidence with

imes of system need, the cost of DR-enabling technologies, and the ca-

ability of those technologies to shed or shift load. Appendix B presents

xamples of how EE impacts can play out along the supply curve for

ndividual end uses. At any point on the supply curve, EE can increase

r decrease both the cost and the quantity of DR, and the size and di-

ection of the changes may differ for different end uses. This dynamic

eans that EE and DR interactions at level 2b can vary in complex ways

t different points along the supply curve. 

To focus on the interactions that are most likely to be important in

ractice, we developed real-world cost benchmarks for shift and shed

R. In general, a useful cost referent for DR is the marginal procure-

ent cost of a traditional generation or storage resource that can pro-

ide the same grid service; a DR resource would typically need to be

ess costly than this to be cost-effective. A natural supply-side analogue
13 To the extent that both the peak and peakiness metrics are reduced, these 

vents may also be smaller in magnitude. 
14 I.e., the GW of available demand that can be reduced on average in a shed 

vent, or the GWh of energy consumption that can be moved temporally on 

verage in a shift event. 
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10 
or shed DR is a natural gas combustion turbine peaker plant, and for

hift DR the closest equivalent is a behind-the-metre battery. Using cost

stimates from the literature for generation and storage technologies

38 , 39] , we estimated approximate levelized costs 15 of $100/yr/kW for

he peaker plant, and $100/yr/kWh for the battery, with an uncertainty

f around a factor of two in each case. To focus on DR resources that

re likely to be cost effective compared to comparable physical infras-

ructure, for the remainder of this paper we will examine EE and DR

nteractions for “low-cost ” DR resources, at a cost of $50/yr/kW for

hed and $50/yr/kWh for shift DR. 

Fig. 8 shows the change in low-cost shed and shift DR potential, in

ach grid region and EE scenario relative to the baseline. The equipment-

nly and envelope-only scenarios yield a reduction in DR resource in all

ases, indicating competition at level 2b, because these EE portfolios

educe loads without increasing their controllability. By contrast, the

ontrols scenarios always increase the low-cost DR resource–more than

ripling it in the case of shift DR in California–indicating EE and DR

omplementarity. This occurs in part because controls-based EE mea-

ures increase building-level DF by increasing controllability. This effect

anifests in the DR supply curve as a reduction in DR cost: as discussed

n Section 2.2 , the controllability costs are included in the EE upgrades,

nd the cost of enabling DR is limited to the incremental cost of adding

ommunication technology. The envelope-plus-controls portfolio is in-

ermediate between the two extremes, with a more muted competitive

ffect in most cases but a strong complementary effect for shift DR in

alifornia. This is driven both by reduced DR enablement cost stemming

rom the controls measures, as well as by an augmented DR capability

t the building level owing to the envelope upgrades. 16 Every interac-

ion shown in Fig. 8 is driven by underlying changes at the end-use level

hat offset or augment each other in complex ways; Appendix B presents

hese interactions in more detail. 

.4. Overall level 2 interactions 

EE and DR are either competitive or complementary at levels 2a and

b of the EE-DR framework, depending on the details of the grid system

nd EE measure portfolio. From a planning and procurement perspec-
ng a 7% cost of capital. We present the costs in units of $/yr/kW for shed and 

/yr/kWh for shift to emphasize the annualized, per-unit nature of the costs. 

hese units can also be written equivalently as $/kW-yr and $/kWh-yr respec- 

ively. See Appendix B for further discussion of the cost units. 
16 As discussed in Appendix A , our assumptions about this increase in DR capa- 

ility are fairly conservative, so the complementary effects may be even larger 

han shown here in certain contexts. 
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Fig. 8. Fractional changes in the low-cost resource size for shed (top) 

and shift (bottom) DR (relative to the baseline scenario), for each re- 

gion and EE scenario. In each case, an increase in the metric indicates 

complementarity at level 2b of the EE-DR framework (EE increases the 

DR resource), while a reduction in the metric indicates competition. 

Fig. 9. Plots showing the overall EE and DR in- 

teractive effects at level 2 of the EE-DR concep- 

tual framework, for all combinations of shed 

and shift metrics at level 2a (horizontal axes) 

and level 2b (vertical axes). Points show the 

fractional change in the metric (relative to the 

baseline scenario) along each axis. Solid diago- 

nal lines show the locus of neutral interactions. 

Points above this line exhibit overall comple- 

mentarity at level 2, and points below it display 

overall competition. 
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17 In competitive cases that lie near the line of neutrality, slight changes to the 
ive, it is important to consider the net effect of these interactions, since

dentifying and securing the economic DR resource in a grid system

equires understanding both how much DR is needed and how much

s available. To explore this interplay, Fig. 9 plots the level 2a effects

 Fig. 7 ) against the level 2b effects ( Fig. 8 ) on a two-dimensional plane,

or each combination of shift and shed metrics. In each panel, a solid

iagonal line indicates the locus of EE and DR neutrality, where there is

o overall impact at level 2 because any competitive effects at one level

re exactly offset by complementarity at the other (e.g., the need for

R is reduced by the same factor as the available resource). The region

bove the solid line represents overall EE and DR complementarity at

he grid-system level, while the region below the line represents overall

ompetition. 

Competition is the most common outcome at level 2 for the re-

ions and scenarios modelled in this study, and it always occurs for

he equipment-only and envelope-only scenarios, regardless of region

s

11 
r DR type. Complementary or near-neutral 17 effects are apparent in

lmost every case, however, for the controls-only portfolio and in sev-

ral cases for the controls-plus-envelope portfolio. In addition, adding

ontrols to the envelope-only portfolio can mitigate EE and DR competi-

ion: in most cases the controls-plus-envelope scenario sits closer to (or

n the opposite side of) the line of neutrality than the corresponding

nvelope-only scenario. 

To understand the drivers of net interactions at level 2, it is helpful to

onsider the four quadrants demarcated by the dotted lines in each panel

f Fig. 9. The upper left quadrant indicates portfolios that increase the

R resource and reduce the need. Such robust complementarity is rare

nd limited to the controls-only scenarios. Conversely, the lower right
pecific EE portfolio we modeled could potentially mitigate the competition. 
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18 One may also notice that the relative size of the impact from EE measure 

portfolios also always comes in the same order, with equipment-only measures 

always having the largest impact and controls-only measures the smallest. How- 

ever, this is primarily because of variation in the scope of the different portfolios: 

the equipment-only portfolio is the most extensive portfolio we model, with the 

largest overall energy savings, while the controls-only portfolio has the most 

limited scope and savings. A different set of portfolios might yield interactions 

with different relative sizes. 
uadrant indicates competition at both sublevels. Such robust compe-

ition is also relatively rare, except in the case of shift DR to mitigate

xtreme ramping, suggesting that a careful and integrated approach EE

nd DR program development is particularly important when there is

n acute need to address extreme ramps. Most scenarios fall in the up-

er right and lower left quadrants, where competition at one sublevel

utweighs complementarity at the other, or vice-versa. In these cases,

here may be an opportunity to mitigate or eliminate competition with

 careful approach to planning EE portfolios and DR programs. 

Finally, although portfolios incorporating controls generally yield

omplementarity at level 2, a significant exception is evident for shift

R to meet extreme ramping need (bottom right panel of Fig. 9 ). There,

he scenarios including controls in Texas show the largest overall com-

etition of all the scenarios considered, in dramatic contrast to the case

f California, where controls drive extreme complementarity. This out-

ome illustrates that the specifics of a particular grid system and build-

ng population can have a strong influence on EE and DR interactive

ffects. 

. Discussion 

Our findings indicate a complex interactive relationship between EE

nd DR, which depends on the details of the grid system, building stock,

nd portfolio of EE and DR measures employed. We find no fixed overall

elationship between EE and DR: EE and DR competition and comple-

entarity are both possible at every level of the EE-DR framework. We

lso find that the details matter considerably. Interactive effects vary

ignificantly amongst different EE portfolios, and for a given portfolio

he interactions can vary substantially, in size and sometimes in direc-

ion, depending on climate, building type, and the grid system being

onsidered. Because of this variability, a thorough assessment of EE and

R interactions in a real-world grid system would require granular mod-

lling of the building stock, similar to what we have undertaken here,

hich is a substantial task. Moreover, the results we present in this study

re dependant on specific assumptions we made when characterizing EE

nd DR measures, and measure portfolios with different characteristics

ay yield qualitatively different interactions. 

Nevertheless, it is possible to distil from our analysis some general

rinciples to guide grid-system planners, utility program designers, and

egulators in considering EE and DR interactions when planning future

E and DR resource portfolios. Although our modelling in this study

ocuses on three specific regions of the US grid, we expect the broader

rinciples we discuss here will be applicable in other regions both within

nd outside the US. As elsewhere, it is helpful to use the EE-DR frame-

ork as an organizing structure, so we will discuss each analysed level

f the framework in turn before summarizing the broader implications

or utility resource planning and program design. 

At level 1a of the framework, we saw that the interaction between

E and DR at the building level can vary dramatically with climate and

uilding type, with the same EE portfolio sometimes yielding opposite

esults in different contexts (see Fig. 4 and Fig. 5 ). Broadly speaking,

owever, EE and DR competition is the most commonly observed in-

eraction at the building level, and exceptions to this trend are limited.

pecifically, the equipment-only EE portfolio we modelled always com-

etes with DR at level 1a, whereas portfolios that include controls or

nvelope measures can sometimes complement DR in certain contexts.

he central driver of these interactions is the coincidence of the EE load

mpacts with times of system need for DR. As seen in Fig. 1 , equipment-

ased measures tend to reduce building load in all hours of the day,

hich necessarily reduces the load available to provide DR. By contrast,

easures involving envelope improvements and controls can shift the

iming of certain end-uses, which may increase building load in certain

ours (this is especially evident for the residential controls strategies

e modelled here). Depending on the particulars of a building’s oper-

tion schedule, these load increases may coincide with times when DR

s likely to be dispatched, thus increasing the building’s overall DR re-
12 
ource. These observations underscore that a detailed understanding of

he building stock is essential to a thorough understanding of EE and DR

nteractions. Absent such detailed knowledge, EE and DR competition

an be presumed to occur at the building level, since this is the most

ommon outcome. 

At level 2a of the EE-DR framework, we found that EE can also in-

eract with the system-level need for DR in complex and varied ways. In

 few cases, the interactions are straightforward and consistent. For in-

tance, all modelled EE scenarios reduce the system-level need for shed

R to reduce system peak load (see Fig. 6 ). 18 This is a manifestation

f the system benefit that EE provides by reducing system peak load

n addition to overall energy consumption, which is a long-recognized

orm of EE and DR complementarity [40] . The EE scenarios also all in-

rease the number of shed event days ( Fig. 7 ), indicating a need for

rograms to target customers who can tolerate more frequent (though

horter duration) events. For all other metrics at level 2a, however, we

nd that EE can either compete with or complement DR, depending on

he specific metric, EE portfolio, and grid system in question; and the

nteractions can vary significantly in both size and direction. The im-

ortance of these interactive effects for a given grid system depends on

he existing DR needs and program designs within the system. Thus, it is

mportant to have a firm understanding of present and expected future

R needs and programs when embarking on an integrated approach to

E and DR program design. 

The cases of extreme ramping need in California and Texas illustrate

he importance of considering grid-system specifics when assessing EE

nd DR interactions at level 2a. With its large and growing solar gen-

ration resource, California has a growing need for shift DR [16] , but

xisting DR programs are focused primarily on shed. Our results at level

a show that EE always complements shed DR in California, by reduc-

ng both peak and peakiness; however, most EE scenarios yield an in-

reased need for shift DR to manage extreme ramps, and all scenarios

xtend the duration of the shift season. Focusing on interactions of EE

ith the present (shed) DR resource instead of the future (shift) DR need

ould yield unintended negative consequences in this case. In Texas, the

esidential thermostat setback strategies we modelled in the EE portfo-

ios involving controls create new extreme ramping events on cold win-

er mornings; this may be a significant unintended drawback for grid

anagement. A controls strategy that accounted more carefully for the

ggregate load shape impacts might reduce these outcomes while still

aving energy. By contrast to California and Texas, New England, with

ts low VRE penetration, has a limited need for shift DR in our model,

o significant EE competition with shift DR at level 2a may be tolerable

n exchange for the benefits that EE provides. 

At level 2b of the framework, we consider the system level availabil-

ty of DR as represented by the DR supply curve. EE can drive changes

n both the quantity and the cost of DR, and the size and direction of

hese effects may be different for different end uses. At cost levels that

re likely to be relevant in real-world scenarios, the aggregate effect is

ost often EE and DR competition at level 2b ( Fig. 8 ), with the notable

xception of EE scenarios involving controls, where complementarity is

ossible. In the specific case of shift DR in California, portfolios incor-

orating controls drastically increase the system-level resource, owing

rimarily to a reduction in DR enablement cost, which offsets any reduc-

ions in available load. As this example illustrates, in any assessment of

E and DR interactions at level 2b of the EE-DR framework it is impor-

ant to consider impacts along both the quantity and the cost dimensions
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f the supply curve, rather than focusing only on reductions in the total

esponsive load. 

Because many measure portfolios exhibit complementarity at level

a of the framework but competition at level 2b (or vice-versa), we also

xamined the net interactive effects at level 2 of the framework. We

ound that the most common outcome was EE and DR competition at

evel 2, but EE measure portfolios involving controls could yield com-

lementarity in many cases ( Fig. 9 ). We also found that adding controls

o a static EE portfolio could substantially mitigate EE and DR competi-

ion, although the effect varied considerably by grid region and DR type.

hese results suggest that the judicious use of controls measures will be

n important part of developing EE portfolios that minimize competition

r are complementary with DR. 

Taken as a whole, our results suggest some important principles that

an aid grid planners, utility program designers, and regulators in de-

igning future EE and DR portfolios in the context of a given grid system.

irst, to properly assess the significance of EE and DR interactions, it is

mportant to have a clear understanding of the present and expected

uture need for DR within the system, as well as of the evolution of

oads that may be able to provide DR. For example, if shift DR is un-

ikely to be heavily used in the future, then strong competition of EE

ith shift DR may be tolerable in exchange for the EE benefits; whereas

uch interactions may be unacceptable in a system with a high need for

exibility, pointing to a need for a more appropriately tailored EE port-

olio. Next, to develop EE and DR portfolios in a way that avoids signif-

cant competition–or even drives complementarity–it is helpful to have

 fine-grained model of the underlying building end-use loads and the

otential load shape impacts of different EE measures. Such modelling

s increasingly available to planners and program designers using either

dvanced building simulation tools, as utilized in this study, or advanced

tility metre data, as pioneered in studies of the DR resource in Califor-

ia [15 , 16 , 41] . Even absent such a detailed building-stock model, how-

ver, our results illustrate that an emphasis on dynamic EE measures,

uch as controls technologies, is an important aspect of EE portfolios

an avoid competition with DR and promote complementarity, whereas

ortfolios that focus solely on static EE measures, such as equipment up-

rades, may compete with DR and yield reduced value or sharpen grid

anagement challenges in systems with a high need for flexibility. 

Understanding future changes in the building stock and the system

eed for DR is especially important in the context of efforts to decar-

onize buildings and the grid. Historically, EE has been a central policy

ool for reducing emissions from buildings, and it also has an important

ole to play in decarbonizing power-grid emissions when deployed in

oncert with renewable generation [8] . Meanwhile, the growing pene-

ration of VRE in generation portfolios is driving changing the nature of

he DR resources that are needed to support grid operations [12] . Our

esults indicate that there may be significant interactive effects between

E and DR, and they suggest that the size, direction, and importance

f such effects may evolve dramatically as VRE penetration grows. In

ddition, thorough decarbonization of the building sector will require

idespread electrification of present-day fossil-fuel end uses. This will

ave substantial impacts on system-level load shapes and may lead to

rofound changes the nature and the timing of DR need, as well as

he customers and loads that can provide DR. Although the impacts

f future VRE growth and electrification are beyond the scope of the

resent study, the interactive effects between these decarbonization ef-

orts and DR can be analysed using the same conceptual and analytical

pproaches we developed here, and this will be an important topic for

uture research. 

Finally, it is important to recognize that the presence of EE and DR

ompetition does not necessarily imply that a grid system is worse off on

 cost, emissions, or reliability basis. Both load reductions and increased

emand-side flexibility are likely to provide value to the grid; however,

he consideration is whether the benefits of EE and DR in combination

re smaller (i.e., competition) or greater (i.e., complement) than the

um of each in isolation. At the same time, we saw that it is important
13 
o consider interactions between EE and DR along the dimension of cost

s well as resource size, since EE may increase the DR resource at low

osts, even if it reduces the overall technical potential. This interplay of

enefits and costs has important implications for approaches to calcu-

ating the cost-effectiveness of EE and DR programs. EE has historically

een found to be a highly cost-effective grid resource [42] , but if EE

enefits are eroded through competition with DR, the cost-effectiveness

f EE may be tempered somewhat. By contrast, if EE and DR are comple-

entary, then an integrated analysis may indicate larger cost-effective

E and DR resources than would be recognized in a framework that val-

es each resource individually. Regulators and utility program admin-

strators should thus aim to employ cost-effectiveness frameworks that

ccount for both the EE and the DR benefits accruing from measures

hat can enable both resources. 

. Conclusion 

We investigated interactions between EE and DR that are driven by

hanges in load at the building level or the power-system level. Using an

xtensive set of building simulations coupled with real-world building-

tock and power-system data, we constructed a detailed, bottom-up

odel of residential and commercial building loads in three regional

rid systems. In addition to a baseline scenario representing the present-

ay building stock, we modelled four illustrative scenarios represent-

ng different portfolios of EE measures applied to the building stock. In

ach scenario, we examined the ways in which the EE upgrades com-

ete with or complement various aspects of shed and shift DR in each

ystem. Using a previously developed EE-DR conceptual framework to

rganize our assessment, we considered EE and DR interactions at the

ndividual-building scale and the power-system scale. 

Overall, we found no fixed relationship between EE and DR: depend-

ng on the details of the EE portfolio, the grid system, and the type of

R being considered, EE and DR can compete with or complement each

ther at every level of interaction we considered. Across all levels of

he framework, EE and DR competition was the most commonly ob-

erved interaction, with especially strong competition observed for EE

ortfolios that focus only on upgrading equipment. However, significant

verall complementarity is also possible in certain scenarios, particu-

arly for EE portfolios that include controls technologies. Similarly, EE

easures that reduce DR enablement costs (e.g., programmable commu-

icating thermostats) can increase complementarity in many instances.

inally, in the case of controls measures, it may be possible to develop

nergy-saving operational strategies that avoid the kind of unintended

ompetition with DR we observed in some cases (e.g., for the residen-

ial thermostat strategies we modelled in Texas), and potentially drive

urther complementarity, by taking into account the coincidence with

R potential at the building and system levels. 

Our findings suggest certain key considerations for regulators, grid

lanners, and utility program designers when developing demand-side

esource portfolios. It is important for utilities and regulators to have

 thorough understanding of the grid-system need for DR, as well as

etailed knowledge of the particular end uses and technologies in the

uilding stock that can provide DR, as well as how both of these are

ikely to evolve in the future, in order to develop complementary EE and

R resources. As a general rule, however, EE portfolios that incorporate

E controls-based measures may avoid excessive EE and DR competi-

ion and encourage complementarity. We emphasize that the presence

f EE and DR competition does not imply that a grid system would be

armed by implementing EE or DR. In fact, EE and DR may have signifi-

ant benefits, even when in competition, although the competition may

educe those benefits compared to what each resource would provide

n its own. Developing an integrated approach to assessing the costs

nd benefits of EE and DR can help ensure that interactive effects are

roperly accounted for. 

We presented a detailed consideration of EE and DR interactions that

ay be driven by EE induced changes in the load shape of residential
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commercial sector. Load from such buildings was included in our model among 

the undifferentiated “other ” load described in the scaling methodology below. 

Table 2 

The list of building types simulated in ResStock 

and ComStock for this study. 

Sector Building Type 

Residential Single-family detached 

Single-family attached 

Multi-family with 2–4 units 

Multi-family with 5 or more units 

Mobile home 

Commercial Small office 

Medium office 

Large office 

Retail stand-alone 

Retail strip-mall 

Quick-service restaurant 

Full-service restaurant 

Small hotel 

Large hotel 

Hospital 
nd commercial buildings, considering the problem across various scales

rom the building level to the grid system level. Although this repre-

ents the most detailed analysis of EE and DR interactions to date, there

re several additional facets of the problem that warrant further study.

irst, our study is limited to residential and commercial buildings with

resent-day load profiles and generation resources. Study of EE and DR

nteractions in the context of industrial-sector loads, electrified building

oads, and increased renewable generation would provide important ad-

itional understanding. Second, we have not considered how EE and DR

nteract in terms of customers’ willingness to participate in utility pro-

rams or to adopt EE and DR technologies; behavioural research into

oint customer decision making regarding EE and DR may reveal im-

ortant new interactions. Finally, the question of whether and to what

egree EE and DR interactions matter for system costs and emissions

s best addressed by detailed modelling of grid despatch and capacity

xpansion, which are a critical input in regulatory cost-effectiveness

rameworks. While modelling such effects is beyond the scope of this

tudy, they will be important components of future work in this area. 
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The modelled building-level and system-level load shapes developed
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ppendix A. Details of the building modelling 

This appendix presents the details of the building types, electrical

nd uses, and EE and DR measures that we used in our modelling in

his study Table 2 . lists the set of building types that we simulated in

esStock and ComStock, 19 and Table 3 lists the specific electrical end-

ses that were included in the simulations. 
19 Owing to some limitations in the ComStock model at the time this work 

as completed, we were unable to model a supermarket building type in the 

14 
Table 4 and Table 5 detail the EE measure portfolios used to

odel our various EE scenarios in ResStock and ComStock, respectively.

he equipment and envelope portfolios are made up of static energy-

onserving measures that reduce either equipment energy consumption

r heating and cooling losses. The controls portfolio, by contrast, is

ade up of operational strategies that use controls to reduce electric-

ty consumption during certain pre-set hours (e.g., when the building is

ot occupied). The controls measures significantly modify the underly-

ng load shapes, which gives them a strong conceptual similarity to DR

easures. As discussed in the Introduction, however, we define EE as a

ersistent and sustained reduction in energy consumption, while DR is

 short-term change in energy consumption in response to a signal or

ncentive. The controls-based EE measures are thus distinguished from

R measures by the fact that they employ energy-conserving strategies

hat are the same from day to day, focusing on energy conservation, not

trategies that respond dynamically to despatch or price signals to sup-

ort short-term grid needs (indeed, they may conflict with certain grid

eeds, as seen in Fig. 6 ). However, as noted in Section 2.2 , the presence

f controls-based EE measures can reduce the cost of DR enablement,

ince deploying a DR measure then requires only a change in strategy

n the existing controls technology. 

Table 6 and Table 7 present cost and performance assumptions for

he DR measures used as inputs to the DR-Path model for the residential

nd commercial sectors, respectively. The measures are characterized

ccording to their cost to the DR program administrator (e.g., utility or

ggregator) and their capability to shed and shift load over various time

eriods. We developed these assumptions based on a recent study of

emand-flexibility technologies [43] , and certain product-specific spec-

fications contained in the EPA ENERGY STAR connected criteria [23] ,

ugmented where necessary by data from the most recent CPUC DR

otential Study [16] . The specific cost and performance inputs are as

ollows: 

• Fixed costs are constant up-front costs for purchase and installation

that apply at the level of an individual building regardless of the

overall size of the load. For instance, the cost of purchasing a new

appliance to install in a home would be a fixed cost per home. 
• Variable costs are up-front costs that vary with the size of the load

(measured in terms of the peak kW of demand). For instance, the
Outpatient health-care 

Primary school 

Secondary school 

Warehouse 
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Table 3 

The list of electrical end uses simulated in ResStock and ComStock for this study. In some cases, the models provide a finer level of 

detail that has been aggregated here. Some of these end uses are further aggregated into groups in certain contexts; where applicable 

these groupings are specified in the table notes. 

Sector End use Description 

Residential Cooling Central air conditioners (ACs), mini-split ACs, room ACs, and associated air handler fan electricity 

Heating Electric-resistance heaters and heat pumps, and associated air handler fan and boiler pump electricity 

Lighting Interior and exterior lighting 

Water Heating Residential electric-resistance and heat-pump water heaters 

Clothes Dryer ∗ Residential electric clothes dryers (and electricity used by gas clothes dryers) 

Clothes Washer ∗ Residential clothes washers 

Dishwasher ∗ Residential dishwashers 

Cooking ∗ Electric ranges and range hoods 

Refrigeration ∗ Residential refrigerators and freezers 

Pool Pump † Residential pool pumps and spa pumps 

Plug Loads † Electronics and miscellaneous electrical plug loads 

Other † Miscellaneous loads not otherwise specified (e.g., ceiling fans, bathroom fans, pool heaters) 

Commercial Cooling Space cooling equipment (e.g., rooftop ACs, package terminal ACs, chillers) 

Heating Space heating equipment (e.g., electric resistance, heat pumps) 

HVAC system Ventilation fans, heat rejection and recovery systems, HVAC pumps, humidification, etc. 

Lighting Interior and exterior lighting 

Refrigeration Commercial refrigerators and freezers 

Interior Equipment Electronics and miscellaneous loads not otherwise specified 

Water Heating Commercial electric water heaters 

∗ Sometimes grouped together as “appliances ” for display purposes. 
† Sometimes grouped together as “miscellaneous ” for display purposes. 

Table 4 

Summary of detailed measures used to model the EE measure portfolios in the residential sector. In each case, measures are applied to all 

buildings that have less efficient building elements in place in the baseline scenario. EE metric acronyms are defined in a note at bottom. 

Portfolio Affected building element Upgrade 

Equipment only Central air conditioner Replace with efficient two-speed air conditioner (SEER 18) 

Electric furnace or air source heat pump Replace with efficient air source heat pump (SEER 22, HSPF 10) 

Electric baseboard heating Replace with efficient mini-split heat pump (SEER 29.3, HSPF 14) 

Electric water heater Replace with electric heat pump water heater (EF 2.3) 

Pool pump 25% reduction in energy consumption 

Dishwasher Replace with efficient unit (199 kWh/yr) 

Clothes washer Replace with efficient unit (IMEF 2.92) 

Electric clothes dryer Replace with ventless heat pump unit (CEF 4.5) 

Lighting Upgrade to 100% LED lighting 

Refrigerator Replace with efficient unit (EF 22.2) 

Electronics 50% reduction in energy consumption 

Controls only Thermostat settings (for homes with no 

existing thermostat offsets) 

All homes with no existing offsets: 

Cooling nighttime setup: 4°F, 10 PM to 6 AM, 

Heating nighttime setback: 8°F, 10 PM to 6 AM 

Homes with no existing offsets AND unoccupied on weekdays: 

Cooling daytime setup: 7°F, 8 AM to 6 PM (weekdays only) 

Heating daytime setback: 8°F, 8 AM to 6 PM (weekdays only) 

(offsets based on ENERGY STAR recommendations) 

Envelope only Wall insulation Upgrade all walls to R-33 (R-13 cavity plus R-20 external XPS) 

Attic insulation Upgrade unfinished attic/ceiling insulation to R-49 

Air sealing 25% reduction in ACH 50 

Windows Upgrade windows to U-0.17 (R-5.9), SHGC 0.25 to 0.49 (climate dependant) 

Basement/crawlspace insulation Upgrade insulation (R-13 to R-30 depending on climate and construction) 

Acronyms —SEER: seasonal energy efficiency ratio; HSPF: heating seasonal performance factor; EF: energy factor; IMEF: integrated 

modified energy factor; CEF: combined energy factor; ACH 50 : air changes per hour at 50 Pascals; SHGC: solar heat gain coefficient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to increase load at specific times). 
cost of a thermal energy storage system scales with the size of the

cooling load that it would be used to manage. 
• Operating costs are the annual costs of operating a DR-enabling mea-

sure to provide DR. For most measures these costs represent costs for

software licensing or subscriptions to provide automated controlla-

bility in response to a despatch signal. 
• The co-benefit fraction represents the fraction of the costs that would

be expected to be borne by the customer because the measure pro-

vides some co-benefit at the site. For example, many measures also

provide energy savings or improved automation of site operations.

This parameter can also be thought of as an assumption about the

typical fraction of the total cost that would be provided as a rebate

from the DR program. 
• The instantaneous shed fraction is the fraction by which the measure

could reduce the controlled load instantaneously in response to a
15 
despatch signal. This is used to scale the variable costs in computing

the cost of installing a particular measure at a site. 
• The 1, 2, and 4-hour shed fractions are the fractions by which the

measures could reduce the controlled load in response to a DR event

having a particular duration (corresponding to either the entirety of

a shed event or the load-reduction portion of a shift event), while

maintaining a minimum acceptable level of service. 
• The shift window is the maximum period of time over which the mea-

sure could execute a load shift. For instance, an eight-hour shift win-

dow represents a load shift consisting of four hours of load reduc-

tion adjacent (in either direction) to four hours of load increase. The

shift window is set to zero for technologies that cannot execute a

controlled shift (i.e., that cannot be dispatched both to reduce and
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Table 5 

Summary of detailed measures used to model the EE measure portfolios in the commercial sector. In each case, measures are applied to all buildings that have 

less efficient building elements in place in the baseline scenario. EE metric and technology acronyms are defined in a note at bottom. 

Portfolio Affected building element Upgrade 

Equipment only Air conditioners (AC) and 

air-source heat pump (HP) units 

Rooftop AC: Replace with efficient unit (IEER 17) 

Rooftop HP: Replace with efficient unit (IEER 16.5) 

Split-system AC: replace with efficient unit (SEER 18) 

Packaged terminal AC/HP: Replace with efficient unit (EER 10.45–13.1 depending on capacity) 

Chillers Replace with efficient unit compliant with anticipated 2035 building code (min. full load efficiency 

0.53–1.16 kW/ton, depending on compressor type and capacity) 

HVAC system Add or upgrade components to conserve energy: 

Add air-side economizer for AC systems having non-DOAS outside air intake in appropriate climate zones 

Add water-side economizer for chiller systems 

Add heat recovery equipment for AC and HP systems 

Replace existing cooling towers with variable-speed units 

Motors Replace existing motors with ECMs (except those used for service water heating or refrigeration) 

Pumps Add VFD to existing pumps 

Lighting Upgrade compact, linear, high-bay, speciality, and outdoor lighting to LED lighting 

Computers Replace 50% of desktop computers in office spaces with laptops 

Electric water heater Upgrade all small ( < 50 gal.) electric water heaters to heat pump water heaters (EF 3.5) 

Controls only HVAC system Add controls and implement strategies to conserve energy: 

Enable DCV to adjust outdoor air intake based on occupancy 

Close outdoor air damper during < 5% occupancy 

Interlock exhaust fan with supply fan to reduce outdoor air need 

Supply temperature reset: raise supply air temperature as outdoor air temperature drops 

Reduce VAV box minimum airflow to 0.4 cfm/sf 

Packaged terminal AC/HP Adjust operating schedules based on occupancy 

Thermostat Upgrade all zones with thermostats to predictive thermostat control, which adjusts set points during low-occupancy 

( < 10%) periods 

Chilled/hot water loops Supply temperature reset: lower supply temperature setpoint as outdoor air temperature rises, and vice-versa 

Kitchen exhaust fan Enable DCV to reduce exhaust fan speed during low occupancy 

Lighting Add occupancy controls to all spaces 

Add daylighting controls to selected perimeter zones 

Computers Eliminate computer energy consumption when not in use during unoccupied periods 

Plug loads Add advanced power strips, which reduce electric equipment energy use during unoccupied periods 

Envelope only Roof insulation Upgrade all roofs with lower insulation levels to R-30 

Wall insulation Upgrade all walls with lower insulation levels to R-13 

Windows Upgrade all exterior windows with current U-factor > 1.77 to windows with U-factor 0.31, SHGC 0.58, and VLT 0.70 

Roof Upgrade all roof surfaces with current thermal emittance < 0.75 to cool roof material with thermal emittance 0.75 

and reflectance 0.45 

Acronyms —EER: energy efficiency ratio; SEER: seasonal energy efficiency ratio; IEER: integrated energy efficiency ratio; DOAS: dedicated outdoor air system; 

ECM: electronically commutated motor; VFD: variable frequency drive; EF: energy factor; DCV: demand-controlled ventilation; VAV: variable air volume; SHGC: 

solar heat gain coefficient; VLT: visible light transmittance. 
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In the commercial sector, some DR measures are only applied to cer-

ain building types and sizes where the measure would be appropriate:

or instance, PCTs are only applied to small commercial buildings, since

nergy management systems would be more appropriate in medium and

arge buildings. In some EE scenarios, we adjusted the fixed and variable

p-front costs for certain measures to reflect that some of the cost would

e accounted for when installing the EE measure, so that a DR program

ould only need to pay the incremental cost for DR-enablement. We

lso assumed that envelope EE measures could improve the performance

f certain DR measures related to controlling HVAC loads because im-

roved thermal stability can permit deeper load shedding. To estimate

he size of this effect we relied on a study of pre-cooling as a DR strat-

gy in real buildings, which found a roughly 10% increase 20 in load

hedding capability for well-insulated buildings [44] . 

ppendix B. Detailed example interactions at framework levels 

a and 2b 

In Sections 3.2 and 3.3 we saw several interactive effects at levels

a and 2b of the EE-DR framework that may be difficult to understand

ntuitively. This appendix presents illustrative examples of these inter-

ctions in more detail. First, we show how changes in the load shape
20 We also performed building simulations that indicated that envelope im- 

rovements increased the load-reduction capability of a PCT by between 0% 

nd 80%, depending on the details of the building and DR event day; thus, our 

dopted assumption of a 10% increase may be conservative. 

l

v

16 
ead to the observed changes in certain level 2a metrics. Then we show

xamples of EE-induced changes in the DR supply curve at level 2b and

iscuss the various effects in detail. Finally, we discuss the detailed end-

se-level interactions that underlie the level 2b interactions we observed

or low-cost DR. 

.1. Detailed examples of level 2a interactions 

In Section 3.2 we considered how EE can effect changes in certain

etrics for system-level DR need that are detailed in Murthy et al. [30] .

n a few scenarios, we saw the peakiness metric increase even as the

eak load decreased (see Fig. 6 ). To illustrate how this can occur, Fig. 10

hows a portion of the modelled system-level net load for Texas in the

aseline and equipment-only EE scenarios. There is a large reduction in

he peak hourly demand 21 (red cross), but the top 100 hours of the year

blue points) span a wider vertical range in the equipment-only scenario

han in the baseline Fig. 10 . also shows how EE upgrades can increase

oth the number of event days and the duration of the season for shed

R: with the overall reduction in summer peak load, some of the top 100

oad hours are shifted into the shoulder months, increasing the number

f days with a potential shed event, and dramatically increasing the

ength of the season in which shed DR is likely to be called upon. 
21 As with all of our EE scenarios, we reiterate that this scenario is intentionally 

ery aggressive and unlikely to occur in practice. 
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Table 6 

Measure characterization data for residential sector DR measures used as inputs to the DR-Path model. 

Name End use 

Fixed 

cost 

($/site) 

EE-adjusted 

fixed cost 

($/site) 

Variable 

cost 

($/kW) 

EE-adjusted 

variable cost 

($/kW) 

Operating 

cost 

($/yr/site) 

Co-benefit 

fraction 

Instantaneous 

shed fraction 

1-hr 

shed 

fraction 

2-hr 

shed 

fraction 

4-hr 

shed 

fraction 

Shift 

duration 

Direct load control, air 

conditioner or heat pump 

Heating, Cooling 160 – – – 6 – 0.85 0.7 0.7 0.65 0 

Programmable 

communicating 

thermostat 

Heating, Cooling 215 45 2 – – 15.22 0.3 0.85 3 0.85 3 0.75 3 0.65 3 4 

Direct Load Control, pool 

pump 1 
Pool Pump 141 – – 4 – 0.79 0.7 0.7 0.7 12 

Connected dishwasher Dishwasher 1106 187 4 – – 15.22 – 0.78 1 1 1 8 

Connected clothes 

washer 

Clothes Washer 1212 275.5 4 – – 7.61 – 0.9 1 1 1 8 

Connected clothes dryer Clothes Dryer 936 179 4 – – 7.61 – 0.8 1 1 0.75 4 

Connected refrigerator Refrigeration 3170 533 4 – – 15.22 – 0.5 0.15 0.15 0.15 8 

Smart power strips Plug Loads – 60 – – 1 0.5 0.25 0.25 0 

Direct load control, 

water heater 

Water Heating 160 – – – 6 – 1 1 0.8 0.4 0 

Connected water 

heater + thermostatic 

mixing valve 

Water Heating 903 273 4 – – 15.22 0.5 1 0.95 0.8 0.4 4 

Communicating 

controls + thermostatic 

mixing valve 

Water Heating 273 – – – 15.22 0.5 1 0.95 0.8 0.4 4 

Connected light bulb Lighting – – 1200 500 4 15.22 – 1 0.2 0.2 0.2 0 

1 Connected pool pumps were not included because their incremental cost was higher than the cost of direct load control, so that the DR-Path model would never 

select them in practice. 
2 This price represents the incremental cost of a programmable communicating thermostat over that of a non-communicating programmable thermostat. It was 

applied in the controls-only and controls-plus-envelope scenarios. 
3 In the envelope-only and envelope-plus-controls scenarios, these fractions are increased by a factor of 1.1 to represent the increased thermal stability of a more 

well-insulated building [44] . 
4 These prices represent the incremental cost of a communicating appliance over a non-communicating appliance. They were applied in the equipment-only 

scenario. 

Table 7 

Measure characterization data for commercial sector DR measures used as inputs to the DR-Path model. 

Name End use 

Fixed 

cost 

($/site) 

EE-adjusted 

fixed cost 

($/site) 

Variable 

cost 

($/kW) 

EE-adjusted 

variable cost 

($/kW) 

Operating 

cost 

($/yr/site) 

Co-benefit 

fraction 

Instantaneous 

shed fraction 

1-hr 

shed 

fraction 

2-hr 

shed 

fraction 

4-hr 

shed 

fraction 

Shift 

duration 

Direct load control, air 

conditioner or heat pump 

Heating, Cooling 100 – 60 – 6 – 0.5 0.4 0.4 0.35 0 

Programmable 

communicating thermostat 

Heating, Cooling – – 105 15 1 15.22 0.3 0.8 2 0.7 2 0.7 2 0.6 2 4 

Energy management 

system with manual 

control 

Heating, Cooling 800 – 20 – – 0.3 0.6 2 0.5 2 0.45 2 0.35 2 8 

Energy management 

system with automated DR 

Heating, Cooling – – 293 – – 0.3 0.8 2 0.7 2 0.7 2 0.6 2 8 

Space cooling thermal 

energy storage with 

automated DR 

Cooling – – 640 – – 0.3 1 1 1 1 8 

Refrigeration thermal 

energy storage with 

automated DR 

Refrigeration – – 756.35 – 0.3 0.3 1 1 1 1 8 

Smart power strips Interior 

Equipment 3 
– – 60 43.33 1 15.22 – 0.5 0.25 0.125 0.125 0 

Direct load control, water 

heating 

Water Heating 160 – – – 6 – 1 1 0.8 0.4 0 

Connected water heater Water Heating 903 273 1 – – 15.22 0.5 1 0.95 0.8 0.4 4 

Communicating 

controls + thermostatic 

mixing valve 

Water Heating 273 – – – 15.22 0.5 1 0.95 0.8 0.4 4 

Networked lighting 

controls 

Lighting – – 1760 2882 4 – 0.75 0.8 0.65 0.5 0.5 0 

1 These prices represent the incremental cost of a communicating device over a non-communicating device. They are applied in the controls-only and the controls- 

plus-envelope scenarios. 
2 In the envelope-only and envelope-plus-controls scenarios, these fractions are increased by a factor of 1.1 to represent the increased thermal stability of a more 

well-insulated building [44] . 
3 This measure applies in office buildings only. We assume that 50% of interior equipment could be controlled with smart power strips. 
4 This price represents the increased cost per kW of installing lighting controls when the load under control is smaller due to EE improvements. It is applied in the 

equipment-only scenario. 

17 
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Fig. 10. System level load shapes for a portion of the year in 

Texas, for the baseline and the equipment-only EE scenarios. 

In each case, blue points indicate the top 100 hours of the 

year, and the absolute system peak is denoted by a red cross. 

The peakiness in each case is indicated by arrows, and the size 

of the baseline peakiness is also shown in the bottom panel for 

comparison. Shaded regions denote the shed season in each 

scenario, defined as the shortest period that contains 80 of 

the top 100 hours. 
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Fig. 11. Shift DR supply curves for the baseline and two example EE supply 

curves in California. Solid curves show the total shift DR resource, in GWh of 

shiftable energy consumption as a function of the annualized cost of procure- 

ment, per unit of DR procured. Horizontal bars show the size of the DR resource 

that is contributed by individual end uses at each procurement level. 

w  

o  

p  

t  

r  

22 For instance, residential water heating is available at a minimum cost of 

$200/yr/kWh in the baseline scenario, but this rises to $400/yr/kWh in the 

equipment-only scenario. 
.2. Example supply-curve interactions at level 2b 

At level 2b of the EE-DR framework, we assess changes in system-

evel DR availability using the shed and shift DR supply curves produced

y DR-Path, which tabulate the total quantity of DR that is available at

 given marginal procurement cost. In Section 3.3 , we examined the in-

eractions that occur at a fixed cost level below some cost benchmarks

hat we established for shed and shift DR. Here we consider the interac-

ions that can occur along the supply curve in more detail by considering

pecific examples for selected set of EE scenarios and end uses. 

The quantity of DR presented in the DR-Path supply curve is either

he kW of load reduction that is available on average in a shed event,

r the kWh of load that can be shifted on average in a shift event. Costs

n the supply curves are the annualized cost of procuring an additional

nit of DR resource (kW of shed DR or kWh of shift DR). These can also

e thought of as the utility’s cost to procure a contract for one kW of

hed capacity or one kWh of shift capacity for a period of one year. We

resent the costs in units of $/yr/kW and $/yr/kWh (for shed and shift,

espectively) to emphasize that they are annualized costs. These same

nits are also often written as $/kW-yr or $/kWh-yr, which emphasizes

he contracting-period perspective. For more on the units used in the

R-Path supply curves, see Gerke et al. [16] . 

The DR supply curves depend on four factors that may be affected

y EE adoption in the building stock: 

• The quantity of load available to provide DR, 
• The coincidence of the load with times system need for DR 

• The cost of installing DR-enabling technology in the building stock,

and 
• The capability of the DR-enabling technology to shed or shift load. 

Fig. 11 shows example shift DR supply curves in California for the

aseline, controls-plus-envelope, and equipment-only EE scenarios. EE

nd DR interactions at level 2b can have several effects that can occur

long both dimensions of the DR supply curve: 

• Reduction in size of the DR resource from a particular end use at a

given cost, 
• Increase in cost to enable a particular end use as a DR resource, 
• Reduction in cost to enable a particular end use as a DR resource, or 
• Increase in size of the DR resource from a particular end use at a given

cost. 

Reduction in resource size occurs when EE reduces the total amount

f load. This is clearly apparent in Fig. 11 , where the DR resource is re-

uced at the highest cost levels in both EE scenarios. (In effect, this is an

ggregation to the system level of the building-level competition we ob-

erved at level 1a.) Increase in resource cost occurs when an end use load

hrinks but the DR enablement cost remains fixed, increasing the enable-

ent cost per unit of DR. This effect is apparent for residential space and
18 
ater heating in the equipment-only scenario: for both end uses, the size

f the available DR resource is smaller, and becomes available at higher

rices, 22 than in the baseline scenario. This occurs because the enabling

echnology in both cases is an add-on control technology whose price

emains constant while the EE upgrade reduces load, yielding a higher
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Fig. 12. Absolute changes in the low-cost shed (top) and shift (bottom) potential, for each region and EE scenario modelled in this study, disaggregated by end use. 
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ost per unit of consumption. Reduced resource cost occurs when the EE

easure defrays the cost of installing a DR measure. This can be seen

or residential clothes dryers in the equipment-only scenario: the end

se becomes available at a lower cost 23 because a more efficient dryer

s already being installed as an EE measure, so the DR enablement cost

s limited to the incremental cost of upgrading to a connected appliance

For more on our DR measure cost assumptions, see Appendix A ). 

The final effect, increased resource size, occurs when EE measures

ncrease the capability to control a particular load. This effect becomes

pparent when examining the change in the residential space cooling

esource at costs below $100/yr/kWh in the controls-plus-envelope sce-

ario. At these low costs we see a dramatic increase in the resource size

ompared to the baseline scenario–more than doubling the resource that

s available at a $50/yr/kWh procurement cost. This effect is, in fact, a

ombination of an increase in resource size and a reduction in resource

ost. The envelope upgrades increase the amount of load that can be

hifted via pre-cooling while maintaining occupant comfort, yielding an

ncreased total resource. The resource is enabled by PCTs, whose cost is

efrayed by the installation of PTs as EE measures, reducing the over-

ll cost of the resource. This effect is noteworthy since it means that

here is a substantially larger low-cost DR resource, even as the size of

he high-cost resource shrinks, which may mean that there is a larger

ost-effective resource available to the grid operator in practice; we saw

t clearly in Section 3.3 ( Fig. 8 ) as a dramatic increase in shift DR po-

ential for California. Importantly, the size of this effect is dependant

n our assumptions about the incremental cost of a PCT, relative to a

T, and about how envelope improvements improve pre-cooling perfor-

ance. As discussed in Appendix A , we have made fairly conservative

ssumptions on the latter point, so the complementary effects may be

ven larger in certain real-world contexts. 

.3. Detailed end-use interactions at level 2b 

As we saw in Fig. 11 , there are several effects at the end-use level

hat can affect the DR supply curve. Thus, the level 2b interactions we

aw for low-cost DR in Section 3.3 ( Fig. 8 ) are driven by underlying end-

se level interactions whose size and direction may offset or augment

ne another in complex ways Fig. 12 . illustrates these effects in detail,
23 With a minimum cost of $700/yr/kWh in the baseline scenario declining to 

400/yr/kWh in the equipment-only scenario. 

 

 

 

19 
resenting the changes in the shed and shift DR resources for individ-

al end uses. Because the equipment-only and envelope-only portfolios

educe loads without increasing controllability, all affected end-uses

how a reduction in DR resources. In the controls-only and controls-

lus-envelope scenarios, however, there are often opposite effects for

ifferent end uses. For example, in the controls-only scenario, shed DR

otential increases for residential cooling but decreases for commercial

ooling, because the modelled controls strategies tend to increase resi-

ential cooling load during evening peak hours but decrease commercial

ooling load at the same times. In other cases, certain end uses become

ewly available as sources of low-cost DR in the controls scenario, as

ith the commercial interior equipment end use in Texas, which be-

omes a new source of shed potential via the installation of controllable

ower strips. Finally, in some cases, the DR resource from an end use is

ffected by a change in coincidence with the system load, as can be seen

or shift DR from water heating in the envelope-only scenario. Envelope

easures do not affect water-heating load, but the shift DR potential

rom water heating decreases because the overall change in system load

hape reduces the coincidence of water-heating DF with periods of steep

amping. 
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