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Abstract

Learning and Optimization Methods for Robust Control of Hard Disk Drives and
Geometric Control of Fully Actuated Mechanical Systems

by

Nikhil Potu Surya Prakash

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Roberto Horowitz, Chair

The use of Machine Learning (ML) and optimization for control applications in enhanc-
ing performance, replicating expert behaviors, and addressing other complex challenges has
emerged as a focal point in contemporary research. This has become possible due to ML
techniques’ ability to find patterns, approximate complex functions and make decisions from
data. Although promising, learning-based controllers often encounter difficulties in main-
taining stability guarantees due to their reliance solely on data. This data is often noisy or
incomplete, which may lead to unpredicted and in many cases unstable system responses
under previously unseen scenarios. A typical ML problem is formulated by designing a loss
function and the parameters that minimize the loss are used to obtain the optimal model.
For control applications, a constraint on the stability needs to be imposed both during train-
ing and inference. But, most ML models do not impose such conditions as hard constraints
and only encourage through soft constraints in the loss function. These constraints might
not be satisfied during inference and the ML control laws can destabilize the system.

This dissertation addresses the challenge of designing stabilizing controllers utilizing ML and
optimization techniques for two distinct classes of systems. In the first part, we explore de-
signing controllers through Neural Network potential functions for fully actuated mechanical
systems that evolve on manifolds with well-defined dynamics in the state space. The control
laws incorporate the concept of invariance for data efficient training and easy transferability
between robots with similar kinematic structure. The design methodology will be empha-
sized on an application to variable impedance control of mechanical manipulators. In the
second part, we discuss the robust control of Multi-Input Single Output (MISO) systems,
with a particular focus on Multi-Actuator Hard Disk Drives (HDDs). A design method-
ology in frequency domain based on available frequency response data to ensure stability
and robustness against disturbances and model uncertainties is presented. An unsupervised
ML technique to cluster the plant transfer functions and frequency responses into subgroups
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is presented. Clustering helps us design common controllers within each cluster to both
maintain robustness and improve performance. Lastly, identification methods for obtaining
dynamical models of disturbance processes with colored noises and necessary filters that sat-
isfy Strictly Positive Real (SPR) conditions for stability of adaptive control algorithms are
presented. Throughout the dissertation, we will delve into the theoretical underpinnings of
these methodologies, complemented by simulation results that highlight significant improve-
ments in system responsiveness and efficiency achieved through these innovative control
strategies.

This dissertation shows that integrating learning-based mechanisms into mechanical system
controllers is both feasible and effective. It also offers guidance for future research to ad-
dress the challenges of these technologies. By combining theoretical analysis and simulation
studies, this work demonstrates how data-driven approaches can improve control systems.
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Chapter 1

Introduction

1.1 Basic Introduction

The advent of Machine Learning (ML) is revolutionizing numerous fields, including control
systems, by offering powerful tools to learn complex patterns and make decisions based on
data. Machine learning algorithms excel at handling high-dimensional data, identifying in-
tricate relationships, and optimizing performance in tasks where traditional methods might
struggle due to their complexity or the sheer volume of data. In the context of control sys-
tems, ML techniques such as reinforcement learning, neural networks, and Bayesian learning
have shown great promise in designing controllers that can adapt to varying conditions and
optimize performance.

However, despite the significant advantages of machine learning, it also has notable limi-
tations when applied directly to designing control policies. One of the critical shortcomings
is that ML models, trained solely on data, might not guarantee stability when faced with
unseen environments or unexpected conditions. This is particularly problematic in control
applications, where stability and reliability are extremely important. Pure ML-based con-
trollers can perform exceptionally well within the scope of their training data but might fail
to generalize or ensure safe operation beyond those scenarios.

To address these limitations, it is essential to augment traditional control methods with
machine learning. Traditional control techniques, grounded in well-established principles of
control theory, offer robust guarantees of stability and performance. By integrating machine
learning on top of these methods, we can leverage the adaptive and predictive capabilities
of ML while maintaining the foundational stability provided by classical control approaches.
This hybrid approach allows for the creation of controllers that are not only robust and
stable but also capable of adapting to complex and dynamic environments, thereby enhancing
overall system performance.

In this dissertation, we focus on applying this hybrid approach to systems evolving on
manifolds, with particular emphasis on the impedance control of robotic manipulators and
the robust controller design for Hard Disk Drives (HDDs). By combining traditional control
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methodologies with ML techniques, we aim to ensure stability while optimizing performance
in these specific applications.

In the upcoming sections, a detailed overview of robotic manipulators and HDDs, high-
lighting their specific control requirements and the challenges associated with their operation
will be presented. The discussion will set the stage for understanding how this hybrid control
approach can be effectively applied to these systems, ensuring both stability and enhanced
performance.

1.2 Robotic Manipulators

Robotic manipulators are mechanical systems designed to perform tasks that require preci-
sion, dexterity, and control. These machines are fundamental in the field of robotics, inte-
grating mechanical, electrical, and computational systems to interact with objects and their
environments effectively. Robotic manipulators vary in complexity, from simple two-degree-
of-freedom (DOF) arms to sophisticated multi-DOF systems that replicate the versatility of
a human arm.

A typical robotic manipulator is composed of several key components. The structure
includes rigid links connected by joints, which can be either rotational (revolute) or linear
(prismatic). These joints provide the necessary degrees of freedom for the manipulator to
position and orient its end-effector. Actuators, such as electric motors, hydraulic cylinders,
or pneumatic systems, supply the force and motion required to move the joints. The choice
of actuators depends on specific application requirements, including speed, precision, and
load capacity. The end-effector, the part of the manipulator that interacts directly with the
environment, can take various forms, such as a gripper for picking up objects, a welding
tool, or a camera for inspection. Sensors embedded within the manipulator provide critical
feedback to the control system about the manipulator’s position, orientation, and interaction
with the environment. These sensors can include encoders, force/torque sensors, and vision
systems. The control system, which processes sensor data and sends commands to the
actuators, ensures that the manipulator performs tasks accurately and efficiently. This
system often incorporates advanced control algorithms from control theory, machine learning,
and artificial intelligence to achieve optimal performance.

Robotic manipulators have diverse applications across various industries due to their
versatility and precision. In manufacturing, they perform essential tasks such as assem-
bly, welding, painting, and material handling. These robots significantly boost productivity
and consistency while ensuring safety by executing repetitive and hazardous tasks with
high accuracy. In the healthcare sector, robotic manipulators are transformative, aiding in
surgeries, rehabilitation, and patient care. Surgical robots, for instance, enable minimally
invasive procedures, enhancing precision and control, thereby reducing recovery times and
improving patient outcomes. The logistics and warehousing industry also greatly benefits
from robotic manipulators. Automated storage and retrieval systems (AS/RS) utilize these
robots to efficiently manage and transport goods, increasing throughput and lowering op-
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erational costs. In agriculture, robotic manipulators undertake tasks such as harvesting,
pruning, and planting, enhancing efficiency and minimizing the physical labor required, par-
ticularly in challenging environments. Robotic manipulators are indispensable in exploration
and research, particularly in space and underwater missions. They handle delicate instru-
ments, collect samples, and perform repairs in hazardous or otherwise inaccessible locations.
Furthermore, the service and entertainment industries are increasingly utilizing robotic ma-
nipulators. From cleaning and serving food to enhancing interactive experiences through
animatronics and robotic performers, these robots are expanding their footprint, showcasing
their broad applicability and transformative impact across diverse fields.

Figure 1.1: An image of a Fanuc 200iD/7L robotic manipulator with a peg as an end effector
for demonstrating a ”peg in a hole task”.

The operation of robotic manipulators involves several well-coordinated steps. The con-
trol system begins by generating a trajectory or path for the manipulator to follow, calculat-
ing the required positions, velocities, and accelerations at each joint to achieve the desired
end-effector movement. Sensors continuously monitor the manipulator’s state and environ-
ment, providing feedback for real-time adjustments and ensuring the manipulator remains
on its intended path. Actuators, responding to control signals, move the joints accordingly,
with their precision and responsiveness being critical for the manipulator’s performance.
Algorithms ranging from something as simple as proportional-integral-derivative (PID) con-
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trollers to advanced algorithms like model predictive control (MPC), or neural network-based
controllers, are employed to minimize errors and adapt to dynamic conditions. Finally, the
end-effector interacts with the environment, performing the desired task. The manipulator
must handle variations and uncertainties in the task environment, such as changes in object
positions or unexpected obstacles, to accomplish its objectives effectively.

An emerging and critical area of application for robotic manipulators is contact-rich ma-
nipulation, where the robot interacts closely with objects and surfaces in a manner that
requires nuanced control and feedback. This type of manipulation is particularly relevant
in tasks that involve assembling parts, handling delicate materials, or performing opera-
tions that require a high degree of tactile feedback. Contact-rich manipulation leverages
force/torque sensors at the end effector and sometimes cleverly designed impedance control
without force/torque sensors to ensure that the manipulator can adapt to varying levels
of resistance and friction, making real-time adjustments to maintain precision and avoid
damage.

In the construction industry, robotic manipulators are increasingly being utilized for
their ability to perform contact-rich manipulation tasks. These applications include brick
laying, welding steel structures, painting large surfaces, and installing fixtures. The ability
to automate such labor-intensive and precise tasks not only enhances productivity but also
improves safety by reducing the need for human workers to operate in potentially hazardous
environments. The integration of robotic manipulators in construction allows for continuous
operation, higher quality workmanship, and the ability to work in environments that might
be dangerous or challenging for human laborers. These advancements are driving signifi-
cant transformations in construction methodologies, pushing the boundaries of what can be
achieved through automation.

1.3 Multi Actuator Hard Disk Drives

Based on current trends and projections, the total amount of data created, captured, copied,
and consumed globally is expected to reach approximately 610 zettabytes by 2030. This esti-
mate is derived from the exponential growth patterns observed in recent years and forecasts
for the near future. Projections indicate that by 2025, the global datasphere will increase
to around 181 zettabytes. The growth rate of data generation has been consistently high,
with year-over-year increases ranging from 20% to 30% in recent years. Assuming this trend
continues, we can expect the amount of data to more than triple between 2025 and 2030.

This massive growth in data generation necessitates robust and scalable storage solu-
tions, driving the need for advanced data storage devices and high-capacity data centers.
Data centers must ensure high availability, fast access speeds, reliability, and efficient power
consumption to meet the growing needs of various industries. The types of data storage
devices can be broadly classified into the following types each with unique characteristics
and use cases:
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• Hard Disk Drives (HDDs): These are magnetic storage devices widely used in data
centers, personal computers, and enterprise storage solutions due to their large stor-
age capacities and cost-effectiveness. They are critical in enterprise storage arrays,
network-attached storage (NAS), and storage area networks (SANs) for efficient data
management and storage. Due to their durability and cost-efficiency, HDDs are widely
used for backup and archival purposes in both consumer and enterprise environments.

• Solid State Drives (SSDs): Utilizing flash memory, SSDs offer faster data access speeds,
lower latency compared to HDDs. They are increasingly used in personal computers,
high-performance servers, and applications requiring rapid data access.

• Hybrid Drives (SSHDs): Combining HDD and SSD technologies, SSHDs aim to balance
performance and capacity, offering faster access speeds than HDDs and higher storage
capacities than SSDs.

• Optical Storage Devices : Including CDs, DVDs, and Blu-ray discs, these are used for
media distribution and archival storage.

• Tape Storage: Predominantly used for archival and backup purposes due to their high
storage density and longevity.

Despite the advancements in SSD technology, HDDs continue to dominate the storage
industry, especially in data centers and enterprise storage systems. The primary advantages
of HDDs over SSDs include:

• Cost per Gigabyte (GB): HDDs offer significantly lower cost per gigabyte, making them
ideal for large-scale storage requirements. Data storage on an SSD can cost $0.08–0.10
per GB, while an HDD only costs $0.03–0.06 per GB

• Storage Capacity : HDDs are available in much larger capacities compared to SSDs,
with enterprise HDDs reaching up to 20TB per drive.

• Reliability for Archival Storage: HDDs are well-suited for archival and backup storage
due to their established reliability and longer lifespan for write-heavy applications.

A typical HDD comprises several key components, including platters, which are thin disks
coated on either side with magnetic material for data storage. The data is stored on con-
centric circluar tracks by modifying the polarity of the magnetic material. Modern HDDs
typically have between one and nine platters. The spindle motor spins these platters at a
constant angular speed, usually ranging from 5,400 to 15,000 RPM. Positioned at the end
of a suspension arm, the read/write head, also known as a transducer, flies just above the
platter surface to read and write data. The Voice Coil Motor (VCM) moves the suspension
arm to accurately position the read/write head over the desired track. For fine position-
ing adjustments, a piezoelectric (PZT) micro-actuator works in tandem with the VCM in a
dual-stage actuation system. In a typical multi-actuator HDD, there can be more than one
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PZT actuator to enhance precision and performance. The VCM and PZT actuators work
in parallel to move the head. There could be additional PZT actuators that can be added
to improve the performance. The collection of all of these actuators that work together to
move a single head is called the Multi-Stage Actuator (MSA). Having one VCM and one
PZT makes it a Dual-Stage Actuator (DSA) and having one VCM and two PZTs makes it a
Triple-Stage Actuator (TSA) and so on. One MSA could also be stacked on top of the other
to control two different platters independently to parallelize the read/write operations. Such
an HDD is called a Multi Actuator HDD. On top of the regular challenges, Multi Actuator
HDDs face another disturbance transferred through the pivot from the other MSAs due to
their motion as both the MSAs operate on the same pivot.

Figure 1.2: An image of a Multi Actuator Dual Stage HDD with the case removed to show
the internal components.

Methods of Data Writing on HDDs

• Perpendicular Magnetic Recording (PMR): PMR [83] is a widely used technology in
modern HDDs where data bits are aligned perpendicularly to the disk surface, rather
than parallel as in traditional longitudinal recording. This method allows for a higher
data density by stacking more bits closer together, increasing the storage capacity of
the disk. PMR has become the standard for most consumer and enterprise HDDs due
to its balance of performance and cost.
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• Shingled Magnetic Recording (SMR): SMR [93] is a technique that further increases the
data density by overlapping the tracks on the disk surface, similar to the shingles on a
roof. This method allows for narrower track widths and higher areal density. However,
the overlapping of tracks means that writing new data can be slower, as adjacent tracks
may need to be rewritten. SMR is particularly useful for applications where data is
written sequentially, such as in archival and backup storage.

• Two-Dimensional Magnetic Recording (TDMR): TDMR [93] is an emerging technology
that utilizes multiple read heads to read data from overlapping tracks simultaneously.
This method improves read reliability and data density by using sophisticated signal
processing algorithms to distinguish between the closely spaced tracks. TDMR is seen
as a promising solution to push the limits of data density beyond what is achievable
with PMR and SMR.

• Heat-Assisted Magnetic Recording (HAMR): HAMR [31, 53, 84, 85, 86, 87] represents
a significant leap in HDD technology by incorporating a laser to heat the magnetic
media temporarily. The localized heating reduces the coercivity of the media, allowing
data to be written at much higher densities without compromising stability. Once the
media cools down, the written data becomes stable and less susceptible to thermal
fluctuations. HAMR promises to vastly increase storage capacities, making it a key
technology for future high-capacity HDDs.

• Microwave-Assisted Magnetic Recording (MAMR): MAMR [82] is another advanced
technology that uses a spin-torque oscillator to generate a microwave field, which assists
in writing data onto the magnetic media. The microwave field makes it easier to
switch the magnetic bits, enabling higher data densities. MAMR offers a pathway to
increase storage capacity and reliability while maintaining compatibility with existing
manufacturing processes and materials used in HDD production.

Each of these methods has its unique advantages and applications, allowing HDD tech-
nology to continue evolving and meeting the growing demands for data storage in various
sectors.

Control Problems in HDDs

There are two main types of control problems in HDDs namely the Track Seeking problem
and the Track Following problem.

• Track Seeking : Involves moving the read/write head from one track to another rapidly
and accurately. In this mode, the motions are large and hence disturbances don’t play a
big role as precision is not the priority. The most important task is to take the head to
the commanded track in the least possible time while not affecting the other actuators
that are in track following mode. It typically involves generating fast trajectories and
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Figure 1.3: (a) Actuator moving from track A to track B (b) Actuator following track A

using feedforward control to track the trajectory. A technique called input shaping [79]
is used to prevent the control inputs from containing resonant frequencies of the pivot
on which the actuators operate.

• Track Following : Focuses on maintaining the read/write head precisely on the target
track to ensure accurate data reading and writing. Precision through disturbance
rejection is the top most priority as motion by even a few nanomoeters might put the
head out of the track and the read/write process has to start afresh.

Disturbances

The following are the different types of disturbances that a HDD faces which makes the
control of the head challenging:

• Mechanical Vibrations: Caused by spindle motor imperfections, and operational vi-
brations.

• Acoustic Vibrations: Due to stacking of multiple HDDs in a small space in data centers,
HDDs generate a lot of heat which are handled by fans. These fan blades cause acoustic
disturbances inside HDDs by generating pressure waves. There is a also a periodic
component associated with it called the blade pass harmonic which occurs whenever
the blade of a fan passes through a certain location.
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• Thermal Variations: Resulting from changes in temperature that affect the physical
dimensions of the drive components.

• Aerodynamic Forces: Generated by the high-speed rotation of platters, impacting
the suspension arm and read/write head stability. The present HDDs however use
Helium inside them which is less denser than air. The usage of Helium inside HDDs
in the recent past has, to a large extent, reduced the aerodynamic forces on the head.
Nevertheless, the disturbances still can affect the read/write capabilities given the
amount of precision required today. Aerodynamic forces are called the windage in the
HDD community.

• Runout: Current day HDDs use the already existing head inside them to write the
magnetic tracks on a plane disk instead of an expensive process that requires precision
machining. This process however comes with a downside that the tracks written are
not exact circles as the actuators are disturbed by some of the above external factors.
This offset from the nominal circle is periodic during operation of head and is called
the runout. This sometime is specifically called the repeatable runout (RRO) due to
its periodic nature.

The disturbances caused by the mechanical vibrations and the aerodynamic forces are
lumped into a single category called the non-repeatable runout (NRRO). To mitigate these
disturbances, HDDs are equipped with various sensing mechanisms like position error signal
(PES) estimation [1, 24] to monitor the precise location of the read/write head, vibration
sensors to detect the acceleration of the case and microphones to get acoustic measurements.
Vibration sensors and acoustic measurements can be used in feedforward control to anticipate
and compensate for any external disturbances. On top of these there is another safety layer
which parks the head away from the disk when the accelerations are too high to safely carry
out read/write operations.

1.4 Dissertation Outline

The outlines of each of the remaining chapters in the dissertation are presented here. Chapter
2 presents the mathematical preliminaries required to arrive at the results of this dissertation.
Chapter 3 discusses designing geometric controllers for fully actuated mechanical systems
evolving on smooth manifolds by building potential functions using Physics Informed Neural
Networks (PINNs). Chapters 4, 5, 6 and 7 discuss identification, control and classification
of Multi Stage Actuator HDD plants. The work presented in this dissertation was first
presented in published form in [66, 64, 61, 62, 60, 59, 58].

Chapter 2:

In this chapter, the mathematical preliminaries required for arriving at the results in this
dissertation will be presented. Crucial topics include smooth manifolds, Lie groups and
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Lie algebras which will be necessary for understanding the geometric control of robotic
manipulators. A section about system norms of Linear Time Invariant (LTI) systems which
form preliminaries for the control of HDDs are also presented.

Chapter 3:

In this chapter, we introduce a novel approach for designing control laws for fully actuated
dynamical systems evolving on manifolds, which leverages the power of neural networks to
build invariant potential functions. The weights of the potential function can be tuned to
shape the potential functions according to the performance requirements through minimizing
a loss function.

Chapter 4:

This chapter discusses clustering stable linear dynamical systems to design robust controllers
to enhance performance. It introduces a k-medoids algorithm for hard clustering of stable
LTI systems and a Gaussian Mixture Models (GMM) clustering method tailored for a specific
class of LTI systems, commonly found in HDD plants. By clustering, the chapter aims to
design controllers that are optimal for each cluster, improving overall performance despite
plant variations.

Chapter 5:

This chapter describes a data-driven feedback control framework in the frequency domain
for designing track-following controllers for multi-actuator HDDs, using frequency response
measurements of the plants. The framework improves robustness and avoids model mismatch
by using plant measurements directly for controller design, leveraging the H∞ and H2 norms
for a convex optimization problem. The H∞ norm shapes the closed-loop transfer functions
and ensures stability, while the H2 norm minimizes the variance of relevant signals in the
time domain. The methodology is demonstrated on a triple-stage HDD.

Chapter 6:

In this chapter, we address the interaction between DSAs in Multi-Actuator HDDs and the
resulting disturbances. We use the Observer/Kalman Identification (OKID) framework to
accurately estimate the disturbance cross transfer function, overcoming the biases introduced
by colored runout noise.

Chapter 7:

In this chapter, we address the challenge of system identification for SPR transfer func-
tions. We introduce a convex optimization algorithm using Generalized Orthonormal Basis
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Functions (GOBFs) to approximate frequency response data, and a nonconvex optimization
problem for direct SPR transfer function estimation.

Key contributions of the dissertation

1. A novel approach for designing invariant control laws from by constructing potential
function for fully actuated dynamical systems evolving on manifolds is introduced.
This method falls under the umbrella of Physics Informed Neural Networks (PINNs).

2. Clustering methods for stable linear dynamical systems to enhance control performance
were proposed:

a) A k-medoids algorithm for hard clustering of stable Linear Time Invariant (LTI)
systems was developed.

b) Gaussian Mixture Models (GMM) clustering tailored for a specific class of LTI
systems in HDD plants was designed.

3. A data-driven feedback control framework in the frequency domain for designing track-
following controllers for multi-actuator HDDs was developed:

a) Frequency response measurements were utilized directly for controller design.

b) The H∞ and H2 norms were leveraged in a convex optimization problem to im-
prove robustness and minimize the variance of relevant signals.

4. The interaction between Dual Stage Actuators (DSAs) in Multi-Actuator HDDs and
the resulting disturbances was addressed using the Observer/Kalman Identification
(OKID) framework to estimate disturbance cross transfer functions accurately.

5. A convex optimization algorithm set up using Generalized Orthonormal Basis Func-
tions (GOBFs) for approximating frequency response data and a nonconvex optimiza-
tion problem for direct estimation of Strictly Positive Real (SPR) transfer functions
were introduced.
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Chapter 2

Mathematical Preliminaries

In this chapter, the necessary mathematical background required to understand and arrive
at the results in this dissertation will be presented.

2.1 Groups

In mathematics, a group is a set equipped with a binary operation (·) that combines any
two elements to form a third element, in such a way that four conditions, called the group
axioms, are satisfied. The group axioms are:

1. Closure: For every pair of elements a and b in the group, the result of the operation,
a · b, is also in the group.

2. Associativity: For every triplet of elements a, b, and c in the group, (a·b)·c = a·(b·c).

3. Identity element: There exists an element e in the group such that for every element
a in the group, e · a = a · e = a. This element e is called the identity element.

4. Inverse element: For every element a in the group, there exists an element b (often
denoted as a−1) in the group such that a · b = b ·a = e, where e is the identity element.

Example: A common example of a group is the set of integers under addition. The set of
integers (Z) with the operation of addition (+) satisfies all four group axioms:

1. Closure: The sum of any two integers is an integer.

2. Associativity: For any integers a, b, and c, (a+ b) + c = a+ (b+ c).

3. Identity element: The identity element is 0, since a+ 0 = a for any integer a.

4. Inverse element: For any integer a, the inverse is −a, since a+ (−a) = 0.

Groups are fundamental objects in abstract algebra and are used in many areas of mathe-
matics and science to study symmetry, structure, and transformations.
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2.2 Manifolds

Manifold

A manifold is a topological space that locally resembles Euclidean space. More formally,
a topological space M is called an n-dimensional manifold if each point in M has a neigh-
borhood that is homeomorphic to an open subset of Rn. This means that for every point
p ∈ M , there exists a neighborhood U of p and a homeomorphism φ : U → V ⊂ Rn, where
V is an open subset of Rn.

Figure 2.1: Manifold M (n-dimensional) with two open subsets Ui and Uj that map to open
sets Vi and Vj through ϕi and ϕj respectively.

Charts and Atlases

A chart on a manifold M is a pair (U,φ) where U is an open subset of M and φ : U →
φ(U) ⊂ Rn is a homeomorphism. The map φ is called a coordinate map or coordinate chart.
An atlas for a manifold M is a collection of charts {(Ui, φi)} such that the

⋃
Ui =M . The

charts in the atlas must be compatible: if Ui ∩ Uj ̸= ∅, then the transition map φj ◦ φ−1
i :

φi(Ui ∩ Uj)→ φj(Ui ∩ Uj) is a homeomorphism.
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Smooth Manifold

A smooth manifold is a manifold with an atlas whose transition maps are all smooth.
Formally, an n-dimensional manifold M is a smooth manifold if it has an atlas {(Ui, φi)}
such that for any overlapping charts (Ui, φi) and (Uj, φj), the transition map φj ◦ φ−1

i is a
smooth function, i.e., it is infinitely differentiable.

Example

Consider the 2-dimensional sphere S2. It can be covered by two charts:
1. Chart 1: Excluding the south pole,

U1 = S2 \ {(0, 0,−1)}, φ1 : U1 → R2 via stereographic projection from the south pole.

2. Chart 2: Excluding the north pole,

U2 = S2 \ {(0, 0, 1)}, φ2 : U2 → R2 via stereographic projection from the north pole.

The transition maps between these charts are smooth, making S2 a smooth manifold. The
transition map between these charts can be expressed as:

φ2 ◦ φ−1
1 (x, y) =

(
x

x2 + y2 + 1
,

y

x2 + y2 + 1

)
.

This map is smooth, confirming that S2 is a smooth manifold.

Configuration on a Manifold

A configuration on a manifold M is a point q ∈ M that represents a specific position of
a system evolving on the manifold. The manifold M is called the configuration space,
encompassing all possible configurations of the system.

Example

For a rigid body moving in 3D space, the configuration space is SE(3), representing all
possible positions and orientations. A configuration is a specific point in SE(3), defined by
a rotation matrix R ∈ SO(3) and a translation vector p ∈ R3.

Variation on a Manifold

A variation on a manifold M is a smooth one-parameter family of curves βts on M , where
s is the variation parameter and t is the curve parameter. The variation describes how a
curve βt on M is smoothly perturbed as the parameter s changes.
Formally, a variation is a map F : (−ϵ, ϵ) × [0, 1] → M , where F (s, t) = βts, such that for
each fixed s, βts is a smooth curve on M .
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Example

Consider a manifold M representing the surface of a sphere S2. A variation could be a
family of great circle arcs βts on the sphere, where s parameterizes different great circles,
and t parameterizes the position along each circle.

2.3 Tangent Space

A tangent space TpM at a point p on a smooth manifold M can be formally defined and
constructed in several ways, including using smooth curves, derivations, or local coordinates.

Via Curves

Consider a smooth manifold M and a point p ∈M . Let γ : (−ϵ, ϵ)→M be a smooth curve
such that γ(0) = p. The tangent vector to γ at p is given by the derivative of γ at 0:

dγ(t)

dt

∣∣∣∣
t=0

= γ̇(0)

The tangent space TpM is then the set of all such tangent vectors, i.e.,

TpM = { γ̇(0) | γ : (−ϵ, ϵ)→M is a smooth curve with γ(0) = p}

Via Derivations

The tangent space TpM can also be defined as the space of derivations at p. A derivation at
p is a linear map D : C∞(M)→ R that satisfies the Leibniz rule:

D(fg) = D(f)g(p) + f(p)D(g),

where f, g ∈ C∞(M). The tangent space TpM is then the set of all such derivations at p.

Via Local Coordinates

If (U,φ) is a local coordinate chart around p with φ : U → Rn and φ(p) = 0, then the
coordinate functions (x1, x2, . . . , xn) induce a basis for TpM . The basis vectors are the
partial derivatives at p: {

∂

∂xi

∣∣∣∣
p

}n

i=1

.

Any tangent vector v ∈ TpM can be written as a linear combination of these basis vectors:
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Figure 2.2: Figure showing tangent space TpM at a point p on the Manifold M . TpM is the
collection of all the vectors that are tangents at p to the curves γ(t).

v =
n∑

i=1

vi
∂

∂xi

∣∣∣∣
p

,

where vi ∈ R are the components of v in the coordinate basis.

2.4 Lie Group and Lie Algebra

A Lie group is a group that is also a smooth manifold, such that the group operations
(multiplication and inversion) are smooth maps. In other words, a Lie group combines the
algebraic structure of a group with the geometric structure of a smooth manifold.

Lie Group

A Lie group G is a group that is also a smooth manifold such that:

• The multiplication map µ : G × G → G defined by µ(g, h) = gh is smooth.

• The inversion map ι : G → G defined by ι(g) = g−1 is smooth.

Formally, for g, h ∈ G:

µ(g, h) = gh and ι(g) = g−1.
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Lie Algebra

A Lie algebra g is a vector space over a field (typically R or C) equipped with a binary
operation called the Lie bracket [·, ·] : g× g→ g that satisfies the following properties:

1. Bilinearity: For all x, y, z ∈ g and scalars a, b ∈ R:

[ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y].

2. Alternativity: For all x ∈ g:
[x, x] = 0.

3. Jacobi Identity: For all x, y, z ∈ g:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The Logarithmic and the Exponential Map between the Lie
Group and Lie Algebra

In the context of Lie groups and their corresponding Lie algebras, the logarithmic map (or
logarithm map) and its inverse, the exponential map, provide a way to relate elements of
the Lie group to elements of the Lie algebra. These are particularly useful for understanding
the local structure of the Lie group near the identity element.

Exponential Map

The exponential map exp : g → G is a map from the Lie algebra g to the Lie group G. For
a matrix Lie group, the exponential map is given by the matrix exponential:

exp(A) =
∞∑
n=0

An

n!
, (2.1)

where A is an element of the Lie algebra g and

An =

I if n = 0

A · A · . . . · A︸ ︷︷ ︸
n

otherwise.

Logarithmic Map

The logarithmic map (or logarithm map) log : G → g is the inverse of the exponential map,
defined locally around the identity element of the Lie group. It maps an element of the Lie
group g ∈ G back to an element of the Lie algebra g.
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For a matrix Lie group, the logarithmic map can be defined using the matrix logarithm.
For R ∈ G close to the identity element, the logarithm map log : G → g is given by:

log(R) =
∞∑
n=1

(−1)n+1

n
(R− I)n, (2.2)

where I is the identity matrix of appropriate dimension.

2.5 Common Manifolds and Kinematics

In this section, a brief introduction to the commonly used manifolds in the robotics commu-
nity (unit two sphere S2, the Special Orthogonal Group (SO(3)) and the Special Euclidean
Group (SE(3)) ) will be presented. Next, kinematics of particles constrained to move on
these manifolds will be presented. And finally, given desired trajectories on these manifolds,
we will define the notions of errors in configurations and velocities, by defining variations of
configurations, that can be used in the design of control laws for mechanical systems evolving
on these manifolds with inspiration from [9, 44].

Special Orthogonal Group (SO(3)):

Dynamical systems evolving on SO(3), the group of all rotations in three-dimensional space,
encapsulate the essence of rotational motion. Examples include the attitude dynamics of
spacecraft, where controlling the orientation relative to an inertial frame is crucial for mission
success. Other applications include the study of spinning tops and gyroscopes as well as
molecular geometries in chemistry. The Special Orthogonal group (SO(3)) represents the set
of all possible rotation matrices R without any reflections. The following is a representation
of the group as an embedding in R3×3

SO(3) = {R ∈ R3×3 : RTR = RRT = I , det(R) = 1}. (2.3)

The Lie algebra of SO(3), denoted so(3), is the tangent space at the identity matrix of the
Lie group SO(3). It consists of all 3 × 3 skew-symmetric matrices. A matrix S ∈ so(3)
satisfies:

ST = −S.

A general element of so(3) can be written as: 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ R3×3,
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where ω1, ω2, ω3 ∈ R. Given ω = [ω1, ω2, ω3]
T ∈ R3, the hat (̂·) and vee (·)∨ maps are defined

as follows to conveniently move between vector and matrix versions as follows

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

∨

= ω. (2.4)

The exponential map defined in (2.1) applied to the SO(3) manifold takes an element ω̂ from
the Lie algebra so(3) to the Lie group SO(3). It can be calculated as follows [51]

expso(3)(ω̂) = I + sin(∥ω∥2)
ω̂

∥ω∥2
+ (1− cos(∥ω∥2)

ω̂2

∥ω∥22
, (2.5)

where ∥ω∥2 is the 2-norm of the vector ω and is defined as ∥ω∥2 =
√
ω2
1 + ω2

2 + ω2
3. This

formula is called the Rodrigues formula. A detailed derivation of the formula is provided in
lemma 5 in Appendix A.
The logarithmic map defined in (2.2) applied to the SO(3) manifold takes an element from
the Lie group SO(3) to the Lie algebra so(3). It be calculated as follows [51]

logSO(3)(R) =
ϕ

2 sinϕ
(R−RT ) ∈ so(3), (2.6)

with ϕ = cos−1
(
1
2
(tr(R)− 1)

)
and |ϕ| < π.

The kinematics of a body that is just restricted to rotate without any translations can be
written as

Ṙ = RΩ̂, (2.7)

where Ω ∈ R3 is the angular velocity expressed in the body-fixed frame and Ω̂ ∈ so(3).
A variation on SO(3) consistent with the kinematics in (2.7) can be defined for ϵ > 0 and
η̂ ∈ so(3) as

Rϵη =
∆ R expso(3)(ϵη̂). (2.8)

The infinitesimal variation δRη ∈ TRSO(3) (Tangent space of SO(3) at configuration R) can
be defined as

δRη =
∆ d

dϵ
Rϵη

∣∣
ϵ=0

= Rη̂. (2.9)

The configuration error between a desired configuration Rd and the current configuration R
can be defined as

Re =
∆ RT

dR. (2.10)

This error is called the right error according to [9]. Note that the error Re is also an element
of SO(3), and the error becomes I when R = Rd. The body fixed angular velocity error
according to [9] can be defined using the body fixed angular velocity Ω̂ = RT Ṙ and the
desired angular velocity Ω̂d = RT

d Ṙd via

Ṙe =
d
dt
(RT

dR) = ṘT
dR +RT

d Ṙ

= Ω̂T
dR

T
dR +RT

dRΩ̂ = −Ω̂dRe +ReΩ̂

= Re(Ω̂−RT
e Ω̂dRe) = ReΩ̂e.

(2.11)
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Using (RT
e Ω̂dRe)

∨ = RT
e Ωd (lemma 1 in A), we define the body fixed angular velocity error

as
Ωe =

∆ Ω−RT
e Ωd. (2.12)

Special Euclidean Group (SE(3)):

Dynamical systems evolving on SE(3), the Special Euclidean group that encompasses all
rotations and translations in three-dimensional space, is fundamental in understanding and
controlling motion in the physical world. This group is crucial for modeling systems like
robotic arms, which require precise articulation in 3D space, and autonomous vehicles, in-
cluding drones and underwater robots, that navigate by adjusting their position and orien-
tation within their environment.
The Special Euclidean group (SE(3)) describes the pose of a rigid body in 3D space via a
rotation matrix R and a position p. The following is a representation of the group:

SE(3) = {(R, p) ∈ SO(3)× R3 : RTR = I , det(R) = 1}.

The group operation is given by:

(R1, p1) · (R2, p2) = (R1R2, R1p2 + p1).

In matrix form, an element of SE(3) can be represented as a 4× 4 matrix:

g =

[
R p
0 1

]
,

with the regular matrix multiplication as the group operation. This matrix representation
is called the homogeneous representation of the SE(3) group. The Lie algebra of SE(3),
denoted se(3), consists of all 4× 4 matrices of the form:[

ω̂ b
0 0

]
,

where ω̂ ∈ so(3) (with ω ∈ R3) and b ∈ R3. This can be represented in terms of a map Γ(·)
similar to the hat map defined as follows. Given ξ = [ωT , bT ]T ∈ R6,

Γ(ξ) =

[
ω̂ b
0 0

]
∈ R4×4. (2.13)

The exponential map defined in (2.1) takes an element Γ(ξ) from the Lie algebra se(3) to
the Lie group SE(3) and can be obtained as (lemma 6 in A) ([51])

expse(3)(Γ(ξ)) =

[
expso(3)(ω̂) A(ω)b

0 1

]
, (2.14)
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with

A(ω)=I+

(
1−cos(∥ω∥2)
∥ω∥2

)
ω̂

∥ω∥2
+

(
1− sin(∥ω∥2)

∥ψ∥

)
ω̂2

∥ω∥22
. (2.15)

Γ(ξ) = log (g) ∈ g can now be defined as the exponential coordinates of the group element
g, and the logarithmic map is regarded as a local chart of the manifold G according to [8].
The logarithm map on g = (R, p) ∈ SE(3) such that tr(R) ̸= −1 is defined in the following

way, given g =

[
R p
0 1

]
∈ SE(3)

logSE(3)(g) =

[
ω̂ A−1(ω)p
0 0

]
∈ se(3), with

A−1(ω) = I − 1

2
ω̂ + (1− α(∥ω∥)) ω̂2

∥ω∥2
,

(2.16)

where ω̂ = logSO(3)(R), α(y) = (y/2) cot (y/2).
The kinematics of a body evolving on SE(3) can be written as

ġ = gΓ(V b), (2.17)

where

g =

[
R p
0 1

]
, V b =

[
Ω
v

]
,Γ(V b) =

[
Ω̂ v
0 0

]
. (2.18)

Here g is called the homogeneous representation of the SE(3) group and v ∈ R3 is the
translational velocity with ṗ = v represented in the body coordinates.
For ϵ > 0, η = [ηT1 , η

T
2 ]

T ∈ R6 with η1, η2 ∈ R3, a variation on SE(3) can be defined using
the exponential map (2.14) as

gϵη =
∆ g expse(3)(ϵΓ(η)) (2.19)

Note that we regard η1 as a translational element and η2 as a rotational element following
the convention of [51]. The infinitesimal variation can now be defined as

δgη =
∆ d

dϵ
gϵη

∣∣
ϵ=0

= gΓ(η). (2.20)

The configuration error between a desired configuration gd and the current configuration g
can be defined as follows utilizing Re from (2.10) and pe = p− pd denoting the translational
error

ge =
∆ g−1

d g =

[
Re RT

d pe
0 1

]
, gd =

[
Rd pd
0 1

]
=

[
R p
0 1

] [
η̂2 η1
0 0

]
=

[
Rη̂2 Rη1
0 1

]
. (2.21)

Note that the configuration error ge is also an element of SE(3) and the error becomes I
when g = gd.
By taking the time derivative of ge and following the same steps as (2.11), we can obtain the
following

ġe = geΓ(eV ), (2.22)



2.5. COMMON MANIFOLDS AND KINEMATICS 22

where eV is the velocity error defined by the following utilizing the desired quantities with
subscript d

eV =∆
[
v
Ω

]
︸︷︷︸
V b

−
[
RT

e vd+R
T
e Ω̂dR

T
d (p−pd)

RT
e Ωd

]
︸ ︷︷ ︸

V ∗
d

=

[
ev
eΩ

]
.

(2.23)

Two Sphere (S2):
Dynamical systems on the two sphere, such as the spherical pendulum and spin axis sta-
bilization of satellites, explore the complex behaviors of objects constrained to move on a
spherical surface.
The spherical pendulum shows interesting motion patterns due to its unrestricted swinging
directions, while spin axis stabilization is essential for maintaining a satellite’s orientation in
orbit. These systems highlight the rich dynamics and control challenges inherent in spherical
geometries. A unit two sphere can be represented as follows

S2 = {r ∈ R3 : ∥r∥2 = 1}, (2.24)

where r is the coordinate of a point on the sphere with respect to a spatial frame attached
to the origin (center of the sphere). The kinematics of a point whose configuration evolves
on S2 can be written as

ṙ = ω × r = ω̂r, (2.25)

where ω ∈ R3 is an angular velocity vector and × represent the cross product. The time
derivative ṙ is an element on the tangent space (TrS2) of S2 at r. It is easy to visualize that
any vector tangent to the sphere will have to be perpendicular to r as r is always normal to
the sphere. And, ω× r is always perpendicular to both ω and r. For a desired configuration
rd ∈ S2, the configuration error re ∈ R can be defined as

re =
∆ rTd r. (2.26)

Note that, when the configuration r reaches rd, re becomes 1 and not 0. Though 1 − rTd r
is also a valid representations of the error, which can make the error zero at the desired
configuration, we will use the definition of re in (2.26) to be consistent with the definitions of
errors on the SO(3) and SE(3) manifolds in this dissertations which are also elements on the
manifold. Notice that, re is not an element on the manifold but a scalar. With the current
definition of error, the control law should be designed to drive the error to 1 instead of 0.
A variation on the sphere can be defined as a configuration on the sphere obtained by
flowing with an angular velocity η ∈ R3 for a time ϵ ∈ R from the configuration r. Using
the exponential map (see [51]), the variation rϵη can be defined as follows

rϵη =
∆ expso(3)(ϵη̂)r. (2.27)
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Figure 2.3: (a) Variation of an element on S2 (b) Configurations and their Tangent spaces
from [66]

The infinitesimal variation δrη ∈ TrS2, can now be defined as

δrη =
∆ d

dϵ
rϵη

∣∣
ϵ=0

= η̂r = η × r. (2.28)

The velocity error on S2 can now be defined using a transport map from [9] T(r,rd) :
TrdS2 7→ TrS2 as

ev =
∆ ṙ − T(r,rd)ṙd, (2.29)

where the transport map T(r,rd) on S2 is given by

T(r,rd) = (rTd r)I +
̂(rd × r). (2.30)

Since the current velocity ṙ and the desired velocity ṙd lie on different tangent spaces, i.e.,
TrS2 and TrdS2 respectively, they cannot be directly compared like in the case of Euclidean
space. Therefore, it is necessary to transport one vector to the tangent space of the other
and compare them. This comparison can be made with the help of this transport map, and
the potential functions must be designed such that they are compatible with the transport
map.

Left Invariance:

It can be seen from the following equations that by transforming the current and desired
configurations both from the left arbitrarily by the same translation, we do not get a change
in the error.

(Rlrd)
T (Rlr) = rTd (R

T
l Rl)r = rTd r = re,

(RlRd)
T (RlR) = RT

d (R
T
l Rl)R = RT

dR = Re,

(glgd)
−1(glg) = g−1

d (g−1
l gl)g = g−1

d g = ge,

(2.31)
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This is an essential property as incorporating this property allows us to transfer trained skills
from one scene to another scene without any new training. We will use these errors to con-
struct potentials in chapter 3. Since the potentials depend solely on the errors, the potential
functions are also left invariant. It is also easy to see that for left error representations, we
have right invariance. [76] presents a more elaborate explanation of invariance.

Variation of a function:

For any scalar function u : M 7→ R mapping from a manifold M to the the reals, the
derivative Dmu at m ∈ M can be defined with the help of its infinitesimal variation δu
described as

δu(m) = d
dϵ
uϵη

∣∣
ϵ=0

= d
dϵ
u(mϵη)

∣∣
ϵ=0

= Dmu(m) · η, (2.32)

with mεη as the variation of m on M obtained by flowing from m with η for a period of ϵ.
Furthermore,

Dmu =∆ ∂
∂η
δu. (2.33)

This derivative Dmu will be used to define the control law in the later sections.

2.6 Linear Time Invariant Systems Norms

In this section, a few mathematical preliminaries from robust control theory for Linear Time
Invariant (LTI) systems will be provided.

For a continuous time transfer function Gm×n(s) or a discrete time transfer function
Gm×n(z) with sampling time Ts with m inputs and n outputs, two types of system norms
are defined namely H∞ norm and H2 norm. Let the realization of a continuous time system
G in terms of system matrices A,B,C, and D be denoted as

G ∼
[
A B
C D

]
. (2.34)

H∞ Norm:

TheH∞ norm is defined as the supremum of the largest singular value of the transfer function
evaluated across the entire frequency range.
For continuous time systems, the H∞ norm is defined as

||Gm×n||∞ = sup
ω∈Ω

σ̄(Gm×n(jω)), (2.35)

where Ω = (−∞,∞) is the entire frequency range and σ̄(·) is the largest singular value.
By utilizing the definition of matrix norms, the H∞ norm can also be equivalently written
as

||Gm×n||∞ = sup
ω∈Ω
||Gm×n(jω)||2. (2.36)
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For Single Input Single Output (SISO) systems, the definition boils down to

||G1×1||∞ = sup
ω∈Ω
|Gm×n(jω)|. (2.37)

Similarly, for discrete time systems, the H∞ norm is defined as

||Gm×n||∞ = sup
ω∈Ω

σ̄(Gm×n(e
jωTs)) = sup

ω∈Ω
||Gm×n(e

jωTs)||2, (2.38)

where Ω = (− π
Ts
, π
Ts
] denotes the entire frequency range upto the Nyquist frequency. For

SISO systems, the definition boils down to

||G1×1||∞ = sup
ω∈Ω
|Gm×n(e

jωTs)|. (2.39)

For Single Input Single Output (SISO) systems, it can be seen that the H∞ norm is the
peak of the bode magnitude plot which is also the same as the maximum amplification of
an input sinusoidal wave for stable systems. Therefore

||Gm×n||∞ = sup
u∈L2,||u||2≥1

||y||2
||u||2

, (2.40)

where the space L2 is the space of all square integrable functions.
Instead of sweeping the entire frequency range, the H∞ norm can be obtained from the
state matrices by utilizing the bounded real lemma. For this, a Hamiltonian matrix (H) is
constructed as follows ([40])

H =

[
A BBT

γ2

−CTC −AT

]
. (2.41)

The smallest γ that keeps the Hamiltonian matrix asymptotically stable is the H∞ norm of
the system. This value is usually found using an iterative scheme like the bisection technique.
An equivalent result exists for discrete time systems as well.

H2 Norm:

H2 norm of a system can be viewed as the energy of the dynamical system. For SISO
systems, it is a representation of the area under the bode plot. The H2 norm of a system is
finite only when the system is stable and the feedthrough matrix D is zero i.e., the system
must be strictly proper. The H2 norm for a continuous time Multiple Input Multiple Output
(MIMO) system is defined as

||Gm×n||22 =
1

2π

∫ ∞

−∞
tr[G(jω)∗G(jω)]dω (2.42a)

=
1

2π

∫ ∞

−∞
tr[G(−jω)TG(jω)]dω, (2.42b)
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where (·)∗ represents the complex conjugate. For systems whose frequency responses are
available instead of the model, the approximate H2 norm is given as

||Gm×n||22 ≈
1

2π

N∑
k=1

tr[G(jωk)
∗G(jωk)]∆ωk, (2.43)

where ωk is the kth frequency at which the response is available.
Utilizing Parseval’s theorem, the H2 norm in (2.42) can be written in terms of the system
matrices as

||Gm×n||22 = tr[CPCT ], (2.44)

where tr[·] denotes the trace and the matrix P is the controllability grammian given by

P =

∫ ∞

−∞
eAtBBT eA

T tdt, (2.45)

which is also the solution of the Lyapunov equation given by

AP + PAT = −BBT . (2.46)

We can also express (2.44) in terms of the input matrix B, and in that case, the grammian
would be the observability grammian. H2 norms can also be calculated for discrete time
systems in a similar fashion.
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Part I

Geometric Control of Fully Actuated
Mechanical Systems
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Chapter 3

Tracking and Variable Impedance
Control using Deep Geometric
Potential Fields

3.1 Introduction

The development of learning-based control laws for systems operating on smooth manifolds
remains an interesting problem in the realm of control systems engineering. Such systems are
crucial in a variety of applications, such as aerial robots [43, 42, 45, 35, 37, 38], and robotic
manipulators with impedance and admittance control systems [23, 76, 77, 75]. These appli-
cations require advanced control strategies capable of managing the inherent nonlinearities
and complexities of the systems. In this framework, employing potential functions whose
elastic forces determine the control laws presents itself as an effective approach for controller
synthesis [8, 9], offering a reliable method to direct system behavior toward desired states
or trajectories.

It has been noted that potential functions designed in [9, 43] on the Special Orthogonal
group (SO(3)) exhibit vanishing gradients when the discrepancy between the desired and
current orientation is π radians. Consequently, due to the configuration of the potential
functions, at specific errors, the forces are minimal and have slow responses even when the
errors are significant. Research in [8, 56, 55] uses a metric on the Lie algebras of SO(3) and
the Special Euclidean group (SE(3)) that is uniformly quadratic, but the logarithmic map is
not defined when the desired and current configurations are π radians apart since a rotation
about any axis by π radians would yield the same orientation. These potential functions
can integrate matrix gains for positions and orientations, which can be utilized to shape the
system’s response, but tuning these gains easily based on the required response is not as
straightforward as in the case of linear systems. These limitations inspire us to use neural
networks, for their representational power, to construct potential functions whose gradients
produce elastic and damping forces which are nonlinear generalizations of proportional and
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derivative terms respectively. Such a method would fall under the umbrella of Physics
Informed Neural Networks (PINNs) [68, 69, 16, 18, 70, 50, 15, 73, 74, 74, 94] as instead of
using a plain feedforward neural network, the knowledge of physics of springs and dampers
are incorporated into the framework. These neural network potential functions might still
possess only almost global properties instead of global properties since it is impossible to
create a continuous control law that provides a continuous vector field on a compact manifold
with a globally asymptotic equilibrium point [6]. Since this cannot be overcome, instead of
having potential functions with fixed properties, we aim to create potential functions whose
”problematic” points are positioned in the regions on the manifold that are not of interest to
us. The way we move the problematic points away is by defining an optimization problem and
using gradient descent to encourage the problematic points to not fall around the desired
trajectories. Though this may seem a little vague, this will become clear when the cost
function and the optimization problem are defined.

Another significant application of creating potential functions using the representational
power of neural networks is in learning potential fields through demonstrations by an expert
in an invariant manner. In our previous work in [76], we present a neural network architecture
for learning gains as a function of the state from expert demonstrations using potential fields.
The work in this chapter can serve as a generalized framework for learning these state-
dependent gains through potential functions, which provide a provably stabilizing control
law directly during inference.

One of the challenges in constructing these potential functions is ensuring that their
structure satisfies specific Lyapunov function properties, such as being zero at the equilib-
rium and positive everywhere else (or equivalently being lower bounded and attaining the
minimum at its equilibrium). These properties will be achieved through the use of Input
Convex Neural Networks (ICNNs) [2] and their application to the construction of Lyapunov
functions for learning stable dynamical systems in [47]. Although these Lyapunov functions
were initially constructed for Euclidean spaces, the subsequent sections will demonstrate how
this approach is also advantageous for systems evolving on smooth manifolds. The primary
application of this method will be for the orientation control of a spacecraft on SO(3) and for
the impedance control of a robotic manipulator whose end effector pose evolves on SE(3).
The main contributions of this chapter can be summarized as follows:

1. A Neural Network architecture to construct deep invariant geometric potential func-
tions on smooth manifolds is presented. These potential functions are designed to
produce stabilizing elastic and dissipative wrench pairs from any random initial net-
work setup.

2. Kinematic control laws utilizing conservative potential functions and their stability are
presented.

3. An impedance control law for robotic manipulators and an orientation control law for
satellites based on these potential functions, including a training procedure aimed at
refining the potential function to enhance convergence of trajectories is presented.
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3.2 Standard Potential Functions

In this section, we will present two types of conservative geometric potential functions that
are common in the literature for SO(3) manifolds. Though their simplicity makes them an
easy choice for use in geometric control laws, a short discussion about their shortcomings
will be presented.

Potential Function 1: Frobenius Norm Potential

First, we will consider the potential function from [9] utilizing the trace operator tr[·] which
was later used in [43, 42, 45, 35, 36, 37, 96] etc. It was also shown that this potential function
can be expressed using the Frobenius norm in [77].

Ψ1(Re) = tr[I −Re] = tr[I −RT
dR]. (3.1)

R,Rd, Re = RT
dR ∈ SO(3) and Ψ1 : SO(3) 7→ R+. The elastic force fc1 generated by this

potential function can be obtained from its variation.

δΨ1 η =
d
dϵ
Ψ1,ϵη

∣∣
ϵ=0

= d
dϵ
tr[I −RT

dRϵη]
∣∣
ϵ=0

= d
dϵ
tr[I −RT

dRexp(ϵη̂)]
∣∣
ϵ=0

= tr[−RT
dRexp(ϵη̂)η̂]

∣∣
ϵ=0

= tr[−RT
dRη̂]

We can use the property of trace that tr[Ab̂] = (AT − A)∨ · b (lemma 4) and get

= (RT
dR−RTRd)

∨ · η = (Re −RT
e )

∨ · η = −fc1 · η. (3.2)

Potential Function 2:

We now consider the potentials from [8, 56, 55] (Lie algebra potentials) using the logarithmic
map from the Lie group to its Lie algebra (see [51]) as follows

Ψ2(Re) =
1
2
∥log(Re)∥2F = 1

2
∥log(RT

dR)∥2F , (3.3)

where ∥A∥F = tr[ATA]1/2 represents the Frobenius norm of the matrix A. The elastic force
fc2 generated from this potential can be obtained from its variation as follows
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Figure 3.1: Comparison of Potential Functions (left) and corresponding elastic forces (right)
for Frobenius Norm potential (Lie group based) and Logarithm map potential (Lie algebra
based).

δΨ2,η =
d
dϵ
Ψ2,ϵη

∣∣
ϵ=0

= 1
2

d
dϵ
∥log(RT

dRϵη)∥2F
∣∣
ϵ=0

= 1
2

d
dϵ
∥log(RT

dR exp(ϵη̂))∥2F
∣∣
ϵ=0

since RT
dR ∈ SO(3), we can express it in terms of the exponential map in (2.5)

using an element υ̂ ∈ so(3), such that RT
dR = exp(υ̂), and obtain

= 1
2

d
dϵ
∥log(exp(υ̂) exp(ϵη̂))∥2F

∣∣
ϵ=0

since υ̂ and ϵη̂ are skew symmetric matrices, their matrix multiplication commutes

and using the fact that exp(A+B) = exp(A) · exp(B) when A ·B = B · A,
we can write

= 1
2

d
dϵ
∥log(exp(υ̂ + ϵη̂))∥2F

∣∣
ϵ=0

= 1
2

d
dϵ
∥υ̂ + ϵη̂∥2F

∣∣
ϵ=0

= 1
2

d
dϵ
tr
(
(υ̂ + ϵη̂)T (υ̂ + ϵη̂)

)∣∣
ϵ=0

= 1
2

(
2tr

(
υ̂T η̂

)
+ 2ϵtr

(
η̂T η̂

))∣∣
ϵ=0

= tr
(
υ̂T η̂

)
= tr

(
log(Re)

T η̂
)

we can use the property of trace that tr[Ab̂] = (AT − A)∨ · b (lemma4) and get

= − log(Re)
∨ · η = −fc2 · η. (3.4)

Fig. 3.1 shows a comparison between the potential function and their corresponding
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elastic forces for SO(2) manifold (planar rotations with α as the angle between desired and
current configurations). Here we can see that for smaller errors, Ψ1 is slightly better, and for
larger errors, Ψ2 outperforms as fc1 tends to become zero even when the error is π radians.
Since the rotations are planar, they can be viewed as rotations about a fixed axis and there
is no ambiguity in the axis. But when it comes to 3D rotations, a rotation about any axis by
π radians causes the same orientation, which causes a discontinuity in Ψ2, and therefore, the
logarithmic map is defined only when the argument is not the identity. We wish to overcome
these issues by using more expressive potential functions that can be built through neural
networks.

3.3 Potential Functions

In this section, a methodology for designing positive definite conservative potential functions
and positive semi definite dissipative potential functions utilizing Fully Input Convex Neural
Networks (FICNNs) and Partially Input Convex Neural Networks (PICNNs) from [2] and
their use in the construction of Lyapunov functions [47] will be presented.

Input Convex Neural Networks

Input Convex Neural Networks (ICNNs) ([2]) are a class of neural networks designed to
ensure convexity with respect to their inputs.

Fully Input Convex Neural Networks (FICNNs)

In an FICNN, every layer of the network is designed to preserve convexity with respect
to the input. This is accomplished by using convex, non-decreasing activation functions,
such as ReLU, a smoothed ReLU, softplus etc, and ensuring that the weights applied to the
inputs are non-negative entries. Constraints on weights and biases are applied to guarantee
that the entire network remains convex with respect to its inputs. An FICNN can be fully
represented with the help of the following recursive equations representing the outputs of
each layer of the neural network.

z1 = σ0(W0x+ b0)

zi+1 = σi(Wizi + Uix+ bi), for i = 1, . . . , k − 1 (3.5)

Explanation of Terms:

• x: The input vector.

• zi: The output of layer i after the activations.

• Wi: Weight matrices applied to the activations zi. The number of columns of Wi

decides the size of layer i and the number of rows of Wi decides the size of layer i+ 1.
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• Ui: Non-negative weight matrices applied directly to the input x, ensuring convexity.
The number of columns of Ui must be the same as the input dimension and the number
of rows of Ui must match the size of the layer i+ 1.

• bi: Bias vectors added at each layer i. The size of the bias vector must be the same as
the size of layer i.

• σi: Activation functions, which must be convex and non-decreasing (e.g., ReLU).

• zk: The final output of the network with k layers.

Partially Input Convex Neural Networks (PICNNs)

PICNNs relax the requirement for convexity by allowing certain layers or components of
the network to be non-convex. This approach enables the network to retain convexity with
respect to a subset of inputs while allowing for greater expressiveness and flexibility in
modeling complex, non-convex relationships. The structure of a PICNN consists of two
paths, a non-convex path in input x and a convex path in input y. The network can be
represented in a recursive way in terms of the outputs of layers along each path as follows

u0 = x

ui+1 = σ̃i(W̃iui + b̃i)

zi+1 = σi

(
U

(z)
i

(
zi ◦

[
W

(zu)
i ui + b

(z)
i

]
+

)
+

W
(y)
i

(
y ◦

(
W

(yu)
i ui + b

(y)
i

))
+W

(u)
i ui + bi

)
.

(3.6)

Explanation of Terms

• x : The input vector over which the function need not be convex.

• y : The input vector over which the function needs to be convex.

• ui: Output of layer i in the non-convex path.

• W̃i: Weight matrix applied to ui.

• b̃i: Bias vector along non-convex path added at each layer i.

• σ̃i: Activation function applied to the linear combination along the non-convex path.
The activations need not be convex.

• zi: Output of layer i in the convex path after the activations.

• U
(z)
i : Non-negative weight matrix applied to zi to ensure convexity.

• W
(zu)
i : Weight matrix applied to ui in interaction with zi.
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• b
(z)
i : Bias vector for z at layer i.

• ◦: Element-wise product (also known as the Hadamard product).

• σi: Convex, non-decreasing activation function applied to the entire expression.

• W
(y)
i : Weight matrix applied to the y-input interaction at layer i.

• W
(yu)
i : Weight matrix applied to ui in interaction with y.

• b
(y)
i : Bias vector for y at layer i.

• W
(u)
i : Weights applied to ui along the convex path.

• bi: Bias added to the final sum along the convex path at layer i.

• zk: Final output of the network.

• u0 = x: Initial state of the non-convex u-path.

For the remainder of the section, quantities defined byW are real matrices, quantities defined
by U are non-negative matrices (non-negative entries), and quantities defined by b are real
bias vectors, all of appropriate dimensions. The nonlinear activation function σ must be a
convex and non-decreasing like ReLU but σ̃ could be arbitrary nonlinear activation.

Positive Definiteness

The built convex functions using ICNNs need not be positive semi-definite. To ensure positive
definiteness, we first shift the output of ICNN to be zero at the locations we desire and
pass the shifted output through a non negative activation function like ReLU. To ensure
smoothness of functions for easier gradient flows, we can use a smoothed ReLU as follows

σ(x) =


0 if x ≤ 0,

x2/2d if 0 < x < d,

x− d/2 otherwise.

(3.7)

Here the parameter d is used to control the smoothness around the origin. Fig. 3.2 shows a
smoothed ReLU activation function and its derivative.
A small positive definite term is added at the end using ϵ1, ϵ2 > 0 to ensure the positive
definiteness of the potential functions.
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Figure 3.2: Figure showing smoothed ReLU (left) and its derivative (right).

Properties of Conservative Potentials

We consider the following properties to build conservative potential functions Ψ that generate
elastic forces fc which are the nonlinear generalizations of proportional terms in PD control.
The potential function Ψ

1. is a function of only the configuration error.

2. is positive definite.

3. obtains its unique global minimum when the current configuration and desired config-
uration are the same.

The aim is to make the conservative potential function zero when the current configuration
and desired configuration coincide and positive everywhere else. Though convexity is a
restriction, we can relax this by adding another layer of an invertible residual network [5]
layer before the ICNN to improve representative power. A caveat here is that though we are
using an FICNN to build the conservative potential functions, the manifold is not convex,
and hence, the conservative potential function and domain pair together are not convex, but
the conservative potential function with a convex domain remains convex.

Properties of Dissipative Potentials

We consider the following properties to build dissipative potential functions R (Rayleigh
dissipation potentials) that generate damping forces which are the nonlinear generalizations
of derivative terms in PD control. The potential function R

1. is a non negative function of the configuration error (first argument) and the velocity
error (second argument).

2. is positive definite in its second argument.
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3. is zero when the velocity error is zero.

0 = R(·, 0) ≤ R(·, ·) (3.8)

4. is convex in its second argument i.e., velocity error. This property is necessary for
proving asymptotic stability.

Potential Functions on S2:
Conservative Potentials:

We can define the conservative potential function Ψ : [−1, 1] 7→ R+ such that Ψ(1) = 0 as
follows:

z1 = σ0(W0re + b0)

zi+1 = σi(Uizi +Wire + bi), i = 1, . . . , k − 1

Φ(re) ≡ zk

Ψ(re) = σk+1(Φ(re)− Φ(1)) + ϵ1∥1− re∥22.

(3.9)

Here

• re is the configuration error on S2 defined in (2.26).

• zi are the outputs of the ith layer.

• σi are the convex non-decreasing activation functions.

• Wi are the weights applied to zi.

• bi are the biases added at layer i.

• Φ(re) = zk is the output of the final layer of FICNN.

Dissipative Potentials:

We can define the dissipative potential functionR : [−1, 1]×R3 7→ R+ such thatR(re, 03×1) =
0 as follows:

z1 = σ0(W0re + b0)

ui+1 = σ̃i(W̃iui + b̃i)

zi+1 = σi(U
z
i (zi ◦ [W zu

i ui + bzi ]+) +W y
i (y ◦ (W

yu
i ui + byi )) +W u

i ui + bi)

ξ(re, ev) ≡ zk

R(re, ev) = σk+1(ξ(re, ev)− ξ(re, 0)) + ϵ2∥ev∥22.

(3.10)

• y = z0 = ev is the input over which the function needs to be convex. ev is the velocity
error on S2 from (2.29)
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• zi is the output of layer i along the convex path.

• ui is the output of layer i along the non-convex path.

• σi are convex activation functions

• σ̃i are the activation functions along the non-convex path. These need not be convex.

• Subscript + denotes softplus activation.

• U z
i are the non-negative weights applied to zi along the convex path.

• ξ(re, ev) is the output of the final layer of PICNN.

• The remaining quantities are the same as (3.6).

Potential Functions on SE(3)

Conservative Potentials:

We can define Ψ : SE(3) 7→ R+ such that Ψ(I) = 0 as follows

z1 = σ0(W0ḡe + b0)

zi+1 = σi(Uizi +Wiḡe + bi),

Φ(ge) ≡ zk

Ψ(ge) = σk+1(Φ(ge)− Φ(I)) + ϵ1∥I − ge∥2F .

(3.11)

Here

• ge is the configuration error on SE(3) defined in (2.21).

• ḡe =

[
R̄e

RT
d pe

]
(The idea is to use the non trivial information of ge and converting it into

a vector for ease of calculations).

• R̄e is the 9× 1 vector reshaping of Re, i.e., R̄e = vec(Re).

• Re is the rotation error from (2.10).

• pe is the translation error.

• Rd is the desired rotation configuration.

• zi is the output of layer i.

• σi are the convex non decreasing activation functions.

• Wi are the weights applied to zi.
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• bi are the biases added at layer i.

• Φ(ge) = zk is the output of the final layer of FICNN.

Dissipative Potentials:

We can define the dissipative potential functionR : SE(3)×R6 7→ R+ such thatR(ge, 06×1) =
0 as follows:

u0 = ḡe

ui+1 = σ̃i(W̃iui + b̃i)

zi+1 = σi(U
z
i (zi ◦ [W zu

i ui + bzi ]+) +W y
i (y ◦ (W

yu
i ui + byi )) +W u

i ui + bi)

ξ(ge, eV ) ≡ zk

R(ge, eV ) = σk+1(ξ(ge, eV )− ξ(ge, 06×1)) + ϵ2∥eV ∥22,

(3.12)

Here

• y = z0 = eV is the input over which the function needs to be convex. eV is the velocity
error on SE(3) from (3.36)

• zi is the output of layer i along the convex path.

• ui is the output of layer i along the non-convex path.

• σi are convex non decreasing activation functions

• σ̃i are the activation functions along the non-convex path. These need not be convex.

• U z
i are the non-negative weights applied to zi along the convex path.

• ξ(ge, eV ) is the output of the final layer of PICNN.

• The remaining quantities are the same as (3.6).

By making pe = 0, the potential function in (3.11) reduces to the potential on SO(3).
Similarly, making pe = 0, ve = 0 (ve is the translational velocity error) and just using Re,Ωe

in (3.12) also reduces the dissipative potential to that of SO(3)×R3. It is worth noting here
that the potential functions defined in (3.11) and (3.12) always produce a stabilizing elastic
force and damping force pair (likewise the potentials in (3.9) and (3.10)) irrespective of the
initialization of the weights as long as U matrices are non-negative. This constraint on U
can be enforced by first initializing them randomly and then using the softplus activation
function [97] to make them all positive. The subscript + in dissipation potentials follows the
convention in [2] and makes its corresponding arguments positive using softplus activation
function.
In all of the potential functions described (both conservative and dissipative), we take the
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final layer of the ICNN and shift it to make it equal to zero at the locations we desire
(conservative potentials need to be zero at identity and dissipative potentials need to be zero
when error velocities are zero). The shifted outputs are passed through smoothed ReLU
which makes them positive semi-definite. Finally small positive definite terms are added
at the end that makes the conservative potential functions positive definite and dissipative
potential functions positive semi definite. These positive definite terms are typically already
existing and well known potential functions.

3.4 Kinematic Control

In this section, a detailed description of how to obtain the elastic forces from the potential
functions will be presented for S2, SO(3) and SE(3) manifolds. Stability proofs for S2 and
SO(3) will be presented as the extension to SE(3) from SO(3) is straightforward. Although
we are more interested in applications to dynamics on manifolds, we will emphasize the
derivations for kinematic systems as the control laws straightforwardly extend to dynamical
systems by adding a damping term to the elastic force. The stability proofs will become
clear once we construct Lyapunov candidates using the designed potential functions.

Unit two sphere S2:
The variation of the potential function defined in (3.9) will be used to obtain the elastic force
as follows

Ψ = Ψ(rTd r) =⇒ Ψϵη = Ψ(rTd e
ϵη̂r)

=⇒ δΨη =
d
dϵ
Ψϵη

∣∣
ϵ=0

= Ψ′(rTd r)(r
T
d e

ϵη̂η̂r)
∣∣
ϵ=0

(3.13)

= Ψ′(rTd r)(r
T
d η̂r)

where Ψ′ ≜ ∂
∂z
Ψ(z)

∣∣
z=rTd r

. Utilizing the cyclic property of the box product [a b c] = a·(b×c) =
aT b̂c that [a b c] = [b c a] = [c a b], we can write

δΨ = Ψ′(rTd r)(r̂rd)
Tη = Ψ′(rTd r)(r̂rd) · η = DrΨ · η. (3.14)

The corresponding elastic force is now given by

fc = −DrΨ = −Ψ′(rTd r)(r̂rd). (3.15)

Since Ψ has tunable parameters (weights and biases), its partials or gradients can be found
using automatic differentiation packages like PyTorch’s autograd.

Theorem 1. The kinematic tracking control law ω = ωd + fc, where the elastic force fc
is given by fc = −Ψ′(rTd r)(r̂rd), almost globally asymptotically tracks rd(t) for the system
(2.25).
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Proof. We will consider the potential function Ψ as the Lyapunov function candidate as it
is positive definite, and the only point where it is 0 is when re is 1. The time derivative of
the Lyapunov function yields

Ψ̇ = Ψ′(rTd r)(ṙ
T
d r + rTd ṙ) = Ψ′(rTd r)(r

T ω̂drd + rTd ω̂r)

= Ψ′(rTd r)r
T
d (ω̂ − ω̂d)r

= Ψ′(rTd r)r
T
d (ω̂d − ω̂d −Ψ′(rTd r)

̂(r × rd))r.

Utilizing the property that a× (b× c) = b(a · c)− c(a · b)

Ψ̇ = −Ψ′(rTd r)
2rTd (rd∥r∥22 − r(rd · r)) (3.16)

= −Ψ′(rTd r)
2(∥rd∥22∥r∥22 − (rd · r)2) ≤ 0.

Special Orthogonal Group SO(3):

A potential on SO(3) can be represented as Ψ(Re) by letting pe = 0 in (3.11). The variation
of this potential function defined will be used to obtain the elastic force as follows

Ψ = Ψ(RT
dR) =⇒ Ψϵη = Ψ(RT

dRe
ϵη̂)

=⇒ δΨη =
d
dϵ
Ψϵη

∣∣
ϵ=0

= tr[Ψ′(RT
dR)

TRT
dRe

ϵη̂η̂]

= tr[Ψ′(RT
dR)

TRT
dRη̂],

(3.17)

where Ψ′ = ∂
∂M

Ψ(M)
∣∣
M=Re

(Ψ′
ij = ∂

∂Mij
Ψ(M)

∣∣∣
M=Re

where [·]ij denotes the element in the

ith row and jth column of the matrix [·]). Utilizing the property of trace from lemma 4, we
can write

δΨη = (RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨ · η (3.18)

=⇒ DRΨ = DReΨ = (RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨.

The corresponding elastic force is now given by

fc = −DRΨ = −(RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨. (3.19)

Theorem 2. The kinematic tracking control law Ω = RT
e Ωd + fc, where the elastic force fc

is given by (3.19), almost globally asymptotically tracks Rd(t) for the system (2.7).

Proof. We will consider the potential function Ψ as the Lyapunov function candidate as it
is positive definite and the only point where it is 0 is when Re is I. The time derivative of
the Lyapunov function yields

Ψ̇ = tr[Ψ′(Re)
T Ṙe] = tr[Ψ′(Re)

TReΩ̂e]

= [(Ψ′TRe)
T − (Ψ′TRe)]

∨ · Ωe.
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Utilizing the angular velocity error from (2.12), we get

Ψ̇ = −∥(RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨∥22 ≤ 0. (3.20)

Special Euclidean Group SE(3):

The variation of the potential function on SE(3) defined in (3.11) can be used to obtain the
elastic force.

Ψ = Ψ(RT
dR,R

T
d pe)

=⇒ Ψϵη = Ψ(RT
dRe

ϵη2 , RT
d (p+ ϵRη1 − pd))

=⇒ δΨη=
d
dϵ
Ψϵη̂

∣∣
ϵ=0

= tr[∂1Ψ
TRT

dRη̂2] + ∂2Ψ
TRT

dRη1,

where ∂1Ψ = ∂
∂M

Ψ(M, z)
∣∣
M=Re,z=RT

d pe
and ∂2Ψ = ∂

∂z
Ψ(M, z)

∣∣
M=Re,z=RT

d pe
. This yields the

elastic force as

fc =

[
−RT

e ∂2Ψ
−(RT

e ∂1Ψ− ∂1ΨTRe)
∨

]
. (3.21)

Theorem 3. The control law given by the following equation almost globally asymptotically
tracks gd(t) [

Ω
v

]
=

[
RT

e Ωd

vd

]
+ fc. (3.22)

Proof. For brevity, we skip the stability proof, as the process is similar to that of SO(3) for
rotations with a trivial extension to translations.

In every case, the time derivative of the Lyapunov function is zero only at a finite number
of points when fc = 0, but negative everywhere else, and therefore, the equilibrium is almost
globally asymptotically stable. The remaining points are unstable equilibria.

3.5 Elastic and Damping Wrenches

In this section, we define the damping forces as gradients of dissipative potentials.

Special Orthogonal Group SO(3):

A conservative potential on SO(3) can be represented as Ψ(Re) by letting pe = 0 in (3.11)
and a dissipative potential on SO(3)× TRSO(3) can be represented as R(Re,Ωe) by letting
pe = 0, ve = 0. The elastic (fc) and damping (fd) forces can be defined respectively as

fc = −DReΨ = −(RT
e Ψ

′(Re)−Ψ′(Re)
TRe)

∨,

fd = −∂ΩeR(Re,Ωe),
(3.23)

where Ψ′ = ∂
∂M

Ψ(M)
∣∣
M=Re

and ∂ΩeR(Re,Ωe) =
∂R(Re,Ωe)

∂Ωe
.
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Special Euclidean Group SE(3):

The variation of the conservative potential function on SE(3) defined in (3.11) and the
gradient of dissipative potential function defined in (3.12) generate the following elastic and
damping forces as follows

fc =

[
−RT

e ∂2Ψ
−(RT

e ∂1Ψ− ∂1ΨTRe)
∨

]
,

fd = −∂eVR,
(3.24)

where ∂1Ψ = ∂
∂M

Ψ(M, z)
∣∣
M=Re,z=RT

d pe
, ∂2Ψ = ∂

∂z
Ψ(M, z)

∣∣
M=Re,z=RT

d pe
and ∂eVR = ∂R(ge,eV )

∂eV
.

Theorem 4. The dissipative potential functions defined in (3.12) satisfy ΩT
e ∂ΩeR(Re,Ωe) ≥

0 and eTV ∂eVR(ge, eV ) ≥ 0.

Proof. For a smooth convex function h(·), we have the following first-order necessary and
sufficient condition in terms of its gradient ∀ x, y ∈ dom(h)

h(y) ≥ h(x) + ∂xh(x)
T (y − x) (3.25)

By interchanging x and y, we get

h(x) ≥ h(y) + ∂yh(y)
T (x− y)

=⇒ ∂xh(x)
T (y − x) ≤ h(y)− h(x) ≤ ∂yh(y)

T (y − x)
=⇒ (∂yh(y)− ∂yh(x))T (y − x) ≥ 0

(3.26)

Since R(·, ·) is convex in its second argument, we have

(∂yR(·, y)− ∂xR(·, x))T (y − x) ≥ 0, (3.27)

By letting x = 0, we get
∂yR(·, y)Ty = yT∂yR(·, y) ≥ 0. (3.28)

This is equivalent to
fd(·, y)Ty ≤ 0. (3.29)

By letting y = ev,Ωe or eV , the theorem can be proved for all manifolds.

3.6 Dynamic Control

In this section, we consider two interesting and practical problems on SO(3) and SE(3) mani-
folds namely orientation control of a satellite and Impedance control of a robotic manipulator
respectively. The dynamics of both of the systems, and their respective stabilizing control
laws using the constructed potential functions will be presented.
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Control of a Satellite on SO(3):

A simple model of a rigid body rotating without translating can be used to describe the
orientation control problem of a satellite. The orientation of the satellite is described through
rotation matrices R ∈ SO(3). The control is achieved through momentum wheels attached to
three perpendicular axes of the satellite. Again for simplicity, we will ignore the dynamics of
the reaction wheels and assume the availability of three independent torque components along
its three perpendicular axes. The dynamics can be written as follows with J ∈ S++ ⊂ R3×3

as the symmetric positive definite inertia matrix, Ω ∈ R3 as the angular velocity represented
in the body-fixed frame and τ ∈ R3 as the torque.

Ṙ = RΩ̂

JΩ̇ + Ω̂JΩ = τ
(3.30)

Theorem 5. The following control almost globally asymptotically tracks Rd(t) for a dynam-
ical system described by (3.30) with the elastic force fs and damping force fd described by
(3.23)

τ = Ω̂JΩ− JΩ̂eR
T
e Ωd + JRT

e Ω̇d + J(fc + fd). (3.31)

Proof. This control law achieves the following autonomous error dynamics

Ω̇e + ∂ΩeR(Re,Ωe) +DReΨ(Re) = 0

or Ω̇e − fd(Re,Ωe)− fc(Re) = 0
(3.32)

We will consider the following positive definite Lyapunov candidate function

W = Ψ(Re) +
1
2
ΩT

e Ωe

=⇒ Ẇ = Ψ̇(Re) + ΩT
e Ω̇e = ΩT

e (Ω̇e − fc(Re))

= ΩT
e fd(Re,Ωe) ≤ 0 from (3.29).

Using Lasalle’s Invariance principle, we can also conclude that the equilibrium Re = I of
the error dynamics in (3.32) is almost globally asymptotically stable as the largest invariant
set where Ẇ = 0 only when Re = I (removing the other unstable equilibria). It may firstly
be a bit non-intuitive, but it should be noted that Ωe can be expressed in terms of Re and Ṙe

which makes the entire error equation a function of just Re and its time derivatives. The
expression is omitted for compactness.

Control of a Robotic Manipulator on SE(3):

Another problem where potential functions play an important role is in the control of robotic
manipulators. We will demonstrate an application to impedance control of a robotic manip-
ulator [77]. The manipulator equations in joint space can be written as follows with q ∈ Rn
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as the vector of generalized coordinates of the manipulator.

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + Jb(q)
TTe, (3.33)

where M(q) ∈ Rn×n is the symmetric positive definite inertia matrix, C(q, q̇) ∈ Rn×n is a
Coriolis matrix, G(q) ∈ Rn represents the gravitational terms, τ ∈ Rn is the joint torque,
and Te∈R6 is an external wrench at the end-effector from contacts, human inputs etc. The
Coriolis matrix satisfies the property that Ṁ−2C is skew-symmetric.

In the field of impedance control combined with operational space formulation, it is well
known from [32] that the robot dynamics (3.33) can be rewritten as

M̃V̇ b + C̃V b + G̃ = τ̃ + τ̃e, (3.34)

where the definitions of M̃ , C̃, G̃, τ̃ , and τ̃e can be written as (from [77]).

M̃(q) = Jb(q)
−TM(q)Jb(q)

−1,

C̃(q, q̇) = Jb(q)
−T (C(q, q̇)−M(q)Jb(q)

−1J̇)Jb(q)
−1,

G̃(q) = Jb(q)
−TG(q), τ̃ = Jb(q)

−T τ, τ̃e = Jb(q)
−TTe.

where Jb is a body-frame Jacobian matrix which relates body velocity and joint velocity by
V b = Jbq̇.

Theorem 6. The following control law almost globally asymptotically tracks gd(t) for a
dynamical system described by (3.34) with the elastic and damping forces described by (3.24)
when Te = 0

τ̃ = M̃V̇ ∗
d + C̃V ∗

d + G̃+ M̃(fd + fc). (3.35)

Proof. When Te = 0, this control law achieves the following error dynamics

ėV + ∂eVR(ge, eV ) +DgeΨ(ge) = 0

or ėV − fd(ge, eV )− fc(ge) = 0
(3.36)

We will consider the following positive definite Lyapunov candidate function

W = Ψ+ 1
2
eTV eV

=⇒ Ẇ = Ψ̇ + eTV ėV = eTV (ėV − fc(ge))
= eTV fd(ge, eV ) ≤ 0 from (3.29).

(3.37)

Using Lassalle’s, we can conclude again that the desired equilibrium is almost globally asymp-
totically stable.
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The elastic and dissipative forces in (3.31) and (3.35) are invariant to left translations
i.e., when both the scene and the end effector’s pose are left-translated by the same, the
elastic force doesn’t change as the elastic force is only a function of error configuration and
from the way it was defined in (2.10) and (2.21), error configuration was shown to be left
invariant in (2.31). It can also be seen that the the error dynamics in (3.32) and (3.36) only
depend on the error configuration and the error velocities and have no dependence on the
physical properties of the robot. Therefore, control laws designed for robots with the same
kinematic structure can be transferred from one robot to the other without the hassle of
tuning the potentials afresh. This becomes extremely handy when mimicking expert demon-
strations as smaller robots can be trained with human demonstrations and can be seamlessly
transferred to larger robots. A more detailed discussion about invariance can be found in [76].

3.7 Training the Neural Network

Once the structure of the potential function is finalized (by fixing the number of layers and
their sizes), an objective according to the needs of the user can be specified which can be
posed as an optimization problem of minimizing a loss function by gradient descent. For
improving the performance, we can consider an LQR-style problem where we have a running
cost along the trajectory that needs to be minimized. A sample loss function for an error
trajectory is shown in (3.38) with a positive weight λ. We could also add weighting matrices
like in the LQR problem instead of the scalar λ.

L1 =

∫ T

0

(∥I3 −Re(t)∥2F + λ∥Ωe(t)∥22)dt (3.38)

The procedure to shape the potential function to minimize this loss is shown in Fig. 3.3.
We first start by forming a set of initial conditions around which the system is expected to
start. The set of parameters defining the neural network potential functions will be denoted
by θ = [θc, θd] with θc denoting the parameters of the conservative potential function and
θd denoting the parameters of the dissipative potential function. Since any potential with
random initialization (of course with some non-negative weights which can be taken care
of by softplus function in PyTorch) becomes a valid potential function, we can obtain the
corresponding stabilizing elastic and damping forces and integrate the system forward to
obtain the error trajectories for each of the initial conditions for a user-defined fixed time T
without the fear of trajectories blowing up. Here we have shown it for SO(3) error dynamics
in (3.32), but any of the error dynamics can be used here depending on the system and
situation of interest. A mean loss is computed by taking the average of individual losses
corresponding to the trajectory for each initial condition. Next, standard back-propagation
algorithms with the choice of gradient descent, such as Stochastic Gradient Descent (SGD),
RMSprop, and ADAM, can be used to update the parameters of the potential functions.
The function α(·) is used to represent the choice of our optimizer. These updated potential
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functions generate the updated elastic and damping forces and the system is integrated
forward for all the initial conditions again. This cycle is repeated till convergence or any
other user-specified termination criterion. Note that since the dynamics evolve on manifolds,
a variational integrator like [34, 33, 65] could be a better choice to integrate the system
forward as they preserve the geometry of the manifold. In Fig.3.3, the dynamical equations

Initial condition set
{gie(0), eiV (0)}
∀i = 1, . . . , N

Integrate forward &
Collect trajectories
gie(t), e

i
V (t) ∀i = 1, . . . , N

ġe = geΓ(eV )
ėV − fd(ge, eV )− fc(ge) = 0

Compute Mean Loss

L = 1
N

∑N
i=1 L1(g

i
e(t), e

i
V (t))

Take gradient step
θ+ = θ − α(∂L

∂θ
)

Update potentials
Ψθ+c

,Rθ+d

fc,θ+c = −DgeΨθ+c

fd,θ+d
= −∂eVRθ+d

Figure 3.3: Flow chart showing the training process for potential functions for a satellite
orientation control problem.

in the integration block can be replaced by (3.36) and the loss function can be updated
appropriately to account for SE(3) trajectories.
For mimicking expert potential fields, we can sample the combined error configuration and
error velocity space to form a set of N points and minimize the distance between the expert
potential field and the neural network potential field at these points through the loss function
(3.39). The loss can be minimized by updating the parameters of the potential functions
using a gradient descent technique similar to the previous method.

L2(θ) =
N∑
i=1

∥Ω̇i
e,des − Ω̇i

e∥22

=
N∑
i=1

∥Ω̇i
e,des − fd,θd(Ri

e,Ω
i
e)− fc,θc(Ri

e)∥22

(3.39)

Here Ω̇i
e,des is the i

th sample of the desired potential field from the expert and Ω̇i
e = fd,θd(R

i
e,Ω

i
e)+

fc,θc(R
i
e) is the ith sample of the potential field from the neural network and the error dy-

namics in (3.32) at samples Ri
e and Ωi

e.
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3.8 Simulation Results

Implementation on Satellite with linear damping

We consider the problem of regulating the rotation error Re to I3 for dynamics (3.32). A
neural network with 3 hidden layers of 14 neurons each, using Kaiming initialization within
bounds (−

√
3,
√
3), was trained on 50 initial conditions. Initial conditions were set with

rotation errors normally distributed around π radians from the identity matrix according to
(3.40) and angular velocity errors with zero mean and unit variance. The training utilized the
Adam optimizer at a learning rate of 0.01 to minimize the loss function in (3.38). Results in
Fig.3.4 illustrate the evolution of rotation error trajectories for neural network, logarithmic,
and Frobenius norm potential functions. Despite being designed for large initial errors around
π radians, performance for more minor errors is comparable across potential functions, as
shown in Fig.3.4(c).

Implementation on a Manipulator

In this section, we consider the problem of regulating the error ge to I of a rigid body evolving
on SE(3) according to the error dynamics (3.36). A neural network with 3 hidden layers of
7 neurons each, using Kaiming initialization within bounds (−

√
3,
√
3), was trained on 50

initial conditions. Initial conditions were set with rotation errors normally distributed around
π radians from the identity matrix, position errors normally distributed around [1, 1, 1] with
unit variance and velocity errors with zero mean and unit variance. The training utilized
the Adam optimizer at a learning rate of 0.01 to minimize the loss function in (3.38) with
λ = 1. Results in Fig.3.5 illustrates the evolution of configuration error trajectories for
neural network potential functions for a random initialization without any training. Fig.
3.6 shows improved trajectories after the training process. We can see that the trajectories
remain stable despite random initializations even in this case. In all the plots, we will use
ΨF (ge) =

1
2
∥I − ge∥2F to evaluate the configuration error.

Fig. 3.7 shows the trajectories with the trained potential functions but with large initial
errors. The benchmark potential functions used are Ψb =

1
2
∥I − ge∥2F and Rb =

1
2
∥eV ∥22.

Implementation on Mujoco environment

We have implemented our proposed approach to a UR5e robotic manipulator in the Mujoco
environment (see Fig. 3.8) to show its feasibility with the same parameters as that of the
satellite but with a different first layer to account for input dimensions of SE(3).

To show the advantages of the proposed approach, we will compare the regulation per-
formance under large initial error conditions for the proposed approach and the benchmark
approach, the geometric impedance control [77] with Frobenius norm-based potential func-
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Figure 3.4: Comparison of responses with various potential functions (a) Re trajectories for
0.99π radians initial error(b) and corresponding angular velocities errors. (c) Re trajectories
for 0.1π radians initial error (d) and corresponding angular velocity errors.

tion. The goal pose gd = (Rd, pd) of the end-effector is given as

pd =
[
0.7 0.0 0.4

]T
, Rd =

0 1 0
1 0 0
0 0 −1


The initial condition gi = (Ri, pi) is given as

pi = pd, Ri = Rot(w, θ)Rd, (3.40)

where w = [−1, 1, 1]T , θ = π−ε with 0 < ε≪ 1, and Rot(w, θ) is an axis-angle representation
of the rotation matrix, e.g., one can use Rodrigues formula to convert it into the rotation
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Figure 3.5: Randomly Initialized Network: (a) Configuration error trajectory and (b) Cor-
responding velocity error trajectory for a rigid body with initial rotation error Re(0) = 0.1π
rotated along the z-axis, pe = [1, 1, 1]T and zero initial velocity error.
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Figure 3.6: Trained Network: (a) Configuration error trajectory and (b) Corresponding
velocity error trajectory for a rigid body with initial rotation error Re(0) = 0.1π rotated
along the z-axis, pe = [1, 1, 1]T and zero initial velocity error.

matrix. The results of this large initial rotational angle scenario are shown in Fig. 3.9. The
proposed approach showed faster convergence compared to the Frobenius-norm-based ones
but showed more spikes in the norm of velocity error because of faster convergence.

One caveat for the proposed approach in application to the robotic manipulator system
is that the closed-loop system may not be exactly feedback linearized to (3.36) via control
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Figure 3.7: Trained Network: (a) Configuration error trajectory and (b) Corresponding
velocity error trajectory for a rigid body with initial rotation error Re(0) = 0.999π rotated
along the z-axis, pe = [1, 1, 1]T and zero initial velocity error.

law (3.35) due to inherent uncertainties. For example, one of the assumptions from original
geometric impedance control from [77] is that the Jacobian matrix Jb(q) needs to be non-
singular. However, the near singular point can be encountered as the proposed approach is
executed in the robotic manipulator via a feedback linearization scheme. This singularity
and non-precise feedback linearization is the main reason for performance differences between
single rigid-body systems, like satellites, and more complex robotic manipulator systems.

3.9 Summary

In this chapter, a generic design methodology for designing trainable conservative and dis-
sipative potential functions for fully actuated dynamical systems evolving on manifolds has
been presented. The corresponding elastic and damping wrenches/forces obtained from
the potential functions were shown to be stabilizing irrespective of the initialization of the
network. These wrenches/forces were used to formulate the loss functions which can be
minimized using gradient descent algorithms to achieve user’s requirements. Analysis of the
potential functions and stability for various manifolds of interest has also been presented.
Finally, the methodology was demonstrated on two problems - a satellite orientation control
and a robotic manipulator impedance control.
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Figure 3.8: UR5e robot manipulator implemented in Mujoco environment.
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Figure 3.9: (a) Potential function Ψ with respect to time, (b) 2-norm of velocity errors, for
the learning-based controller and the Frobenius-norm-based controllers are presented.
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Part II

Identification and Control of Hard
Disk Drives
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Chapter 4

Clustering Techniques for Stable
Linear Dynamical Systems with
applications to Hard Disk Drives

4.1 Introduction

Transfer function clustering is a valuable technique in control systems engineering because it
enables us to identify groups of transfer functions that share similar characteristics. This can
help us gain a better understanding of a system’s behavior and design appropriate control
strategies. Some sub-fields of dynamical systems where clustering transfer functions can be
useful are as follows:

1. System identification: Clustering transfer functions can assist in identifying different
modes of a system, which can facilitate model identification and system identification.
By clustering transfer functions with similar behaviors, distinct system modes and
their associated dynamics can be identified.

2. Control design: Clustering transfer functions can aid in designing control strategies
tailored to specific modes of a system. For instance, in a system with multiple modes,
a control strategy might be designed to switch between different controllers depending
on the current mode.

Overall, clustering transfer functions can provide valuable insights into a system’s be-
havior and help design effective control strategies and diagnose faults. In this chapter, the
focus will be on clustering stable linear dynamical systems common for HDD plants. Once
the clusters have been finalized, controllers can be designed for each of the plants using
existing control design techniques so that the controllers are both optimal and robust within
each cluster. Although the focus will be on stable LTI systems, some preliminary ideas on
extending this technique to unstable LTI systems will also be presented.
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Recently, in most personal computers, Solid State Drives (SSD) have replaced HDDs due
to their higher data transfer rate. Despite this, HDDs continue to dominate the market
in data centers due to their lower cost and higher reliability compared to SSDs. The cost
of memory per square inch of an HDD can be reduced by decreasing the spacing between
successive tracks on which the data is stored. One factor dictating the spacing between
tracks in an HDD is the sensitivity of the controller to disturbances. To improve disturbance
rejection characteristics, additional actuators are added. The Voice Coil Motor (VCM)
actuator compensates for low-frequency disturbances and has higher strokes, while piezo-
electric micro actuators (PZT) compensate for high-frequency disturbances and have lower
strokes, typically around one to three tracks. A dual-stage actuator (DSA) system has a
VCM and a PZT actuator, while a triple-stage actuator (TSA) system has a VCM and two
PZTs.

Recently, data-driven feedback control design approaches from frequency response mea-
surements ([19, 28, 29]) for multi-stage systems have been developed in [3, 4, 60, 63] to
suppress disturbances. These data-driven controllers are robust to variations in the plant
models. Although robustness is ensured when a solution to the optimization problem exists,
a common controller might not be optimal for each individual HDD due to variations in the
plants and disturbances. To address these issues, data-driven feedforward controllers have
been developed in [79, 78, 80] based on the frequency response measurement of disturbance
processes on top of the robust feedforward controllers. Another add-on adaptive feedforward
controller has been developed in [11] on top of the robust feedback controller to account for
plant variations. Robust controllers for Linear Time Invariant (LTI) plants with parametric
uncertainties with applications to HDDs have also been developed in [13, 12], utilizing plant
models instead of a data-driven approach. Performance can be improved while still keeping
the controllers robust to plant variations by clustering the plants into different clusters and
designing a controller for each cluster separately so that the controller is optimal within
the cluster. Since every cluster contains other plants, robustness is also imposed. Once the
controllers are designed, controllers for each system coming out of the manufacturing plant
can be selected using time responses/frequency responses of the system to determine which
cluster the system belongs to.

The flow of this chapter is organized as follows: In section 4.2, we present some of
the distance metrics used for clustering in the literature and list their shortcomings. In
section 5.2, we present some of the preliminaries for H norms of systems and how they can
be used to define distances between two linear dynamical systems. In section 4.3, we present
the k-medoids algorithm for hard clustering LTI systems, and in section 4.4, we present a
soft clustering algorithm utilizing Gaussian Mixture Models (GMM) clustering for a class of
plants common for HDDs. Finally, in section 4.5, we show the effectiveness of the algorithm
in clustering HDD plants.
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4.2 Previous Work

The most important part of clustering, such as k-means or k-medoids, is the concept of
distance between two data points. Each data point in this chapter represents an LTI system.
It could either be a transfer function or a set of frequency responses. One of the first notions
of distances between two linear dynamical systems was introduced in [49], with the distance
defined between two ARMA models. Let H1(z

−1) and H2(z
−1) be the z-transforms of two

discrete time stable LTI systems of the same order defined as follow

H1(z
−1) =

b10 + b11z
−1 + b12z

−2 + · · ·+ b1mz
−m

1 + a11z
−1 + a12z

−2 + · · ·+ a1nz
−n

(4.1a)

H2(z
−1) =

b20 + b21z
−1 + b22z

−2 + · · ·+ b2mz
−m

1 + a21z
−1 + a22z

−2 + · · ·+ a2nz
−n

, (4.1b)

then the distance d(H1, H2) according to [49] is defined as

d(H1, H2)
2 =

m∑
i=0

λb(b
1
i − b2i )2 +

n∑
j=1

λa(a
1
j − a2j)2, (4.2)

where λa and λb are some positive weights.
One of the major drawbacks of this distance metric is that in certain cases, two LTI dynamical
systems which produce the same output due to pole-zero cancellations might have a non-
zero distance between them according to the above distance metric. A simple example that
demonstrates the issue is as follows

H1(z
−1) =

1 + z−1

1 + 0.5z−1

=
1 + z−1 + 0z−2

1 + 0.5z−1 + 0z−2
(4.3a)

H2(z
−1) =

1 + z−1

1 + 0.5z−1
× 1 + 0.5z−1

1 + 0.5z−1

=
1 + 1.5z−1 + 0.5z−2

1 + z−1 + 0.25z−2
. (4.3b)

Though H1 and H2 have the same outputs for any given input, the distance between them
is non-zero.
In [67], another distance metric was proposed in terms of the system matrices. If the real-
izations of strictly proper stable LTI systems H1 and H2 are (A1, B1, C1) and (A2, B2, C2)
respectively, then the distance d(H1, H2) between them with positive weights λA, λB, and
λC is defined as

d(H1, H2)
2 = ||C1 − C2||2F + λA||A1 − A2||2F + λB||B1 −B2||2F , (4.4)

where ∥·∥F denotes the Frobenius norm. Such a distance is defined only when both systems
have the same order. Since multiple realizations are possible for the same system, such a
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distance metric would produce non-zero distances between two different realizations of the
same system.
To overcome the shortcomings of these distance metrics, we propose a distance metric in
terms of the H norms of the system, the details of which are presented in the upcoming
sections.

4.3 Hard Clustering

H2 and H∞ Distances

The H2 and H∞ norms summarized in 2 can be used to define the notion of another distance
between transfer functions which can then be used to cluster transfer functions. Let us
consider two stable continuous time MIMO systems G1 and G2 with state space realizations
as follows

G1 ∼
[
A1 B1

C1 D1

]
, G2 ∼

[
A2 B2

C2 D2

]
. (4.5)

The difference between these two transfer functions has the following state space realization

G1 −G2 ∼

 A1 0 B1

0 A2 B2

C1 −C2 D1 −D2

 (4.6a)

=

[
A12 B12

C12 D12

]
. (4.6b)

The idea behind using the difference is to see how much the outputs of the systems differ
under the same input.
If D12 = 0, the H2 distance between the transfer functions G1 and G2 exists and can be
found as follows

||G1 −G2||22 = tr[C12P12C
T
12], (4.7)

where

P12 =

∫ ∞

−∞
eA12tB12B

T
12e

AT
12tdt, (4.8)

which is the solution of the Lyapunov equation given by

A12P12 + P12A
T
12 = −B12B

T
12. (4.9)

The H∞ distance between the transfer functions G1 and G2 can be found by constructing
the Hamiltonian matrix as

H12 =

[
A12

B12BT
12

γ2

−CT
12C12 −AT

12

]
. (4.10)
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The smallest γ that keeps the Hamiltonian matrix H12 asymptotically stable is the H∞
distance between the transfer functions G1 and G2. For systems whose frequency responses
are available instead of the model, the approximate H2 distance is given as

||G1-G2||22 ≈
1

2π

N∑
k=1

tr[(G1-G2)(jωk))
∗((G1-G2)(jωk)]∆ωk. (4.11)

In addition, the approximate H∞ distance can be calculated as

||G1 −G2||∞ = sup
ωk∈{ω1,...,ωN}

||G1(jωk)−G2(jωk)||2. (4.12)

Though these norms and distances are defined for stable LTI systems, we can extend the
notion of the distance to unstable LTI systems by first designing a common controller for
all the systems and using the same notions on the closed loop systems. Note that this
distance would not be representative of how much the outputs differ as the outputs diverge
for unstable systems in open loop. Nevertheless, when a stabilizing controller exists, we
can use the distances for the closed loop systems to cluster the open loop plants. But it is
possible that such a stabilizing controller might not exist for all plants that we are interested
in clustering.

In this section, utilizing the distance metrics, the transfer functions/frequency responses
can be clustered using a k-medoids algorithm with the chosen distance metric. We prefer a
k-medoids algorithm to a k-means algorithm for two reasons:

• Robustness to outliers: k-medoids is more robust to outliers than k-means because
medoids are selected as the most centrally located point in a cluster, which is less
sensitive to outliers than the mean. This means that k-medoids can handle noisy data
better than k-means.

• Defining a mean frequency response is straightforward for data as a simple arithmetic
mean serves as the center of mass. However, for transfer functions, the mean trans-
fer function obtained by summing all the given transfer functions and dividing by
the number of data points would produce a very high-dimensional transfer function.
Computing the distances from this mean to other data points might become compu-
tationally very expensive. Nonetheless, it is still theoretically possible to have such a
mean.

The mean system obtained by taking the average of N systems with (Ai, Bi, Ci, Di) repre-
senting the system matrices of the ith system is

1

N

N∑
i=1

Gi ∼


A1 0 . . . 0 B1

0 A2 . . . 0 B2
...

...
. . .

...
...

0 0 . . . AN BN
C1

N
C2

N
. . . CN

N
1
N

∑N
i=1Di

 . (4.13)
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It can easily be seen that the order of the mean system scales linearly with the number of data
points. Therefore, to improve robustness and, more importantly, to keep the computational
effort reasonable, instead of finding the mean, we find the point in the group that minimizes
the total sum of distances to the other points.

4.4 Soft Clustering

Soft clustering allows a data point to belong to multiple clusters to varying degrees, while,
in contrast, hard clustering assigns a data point to only one cluster. In soft clustering, each
data point is assigned a probability of belonging to each cluster, with the sum of probabilities
across all clusters equaling one. These probabilities are based on the distance between the
data point and the cluster centers and the degree of overlap between the clusters. This
approach is useful in situations where there is ambiguity or uncertainty in the data, or when
a data point may belong to multiple groups simultaneously. The advantage of soft clustering
is that it can be used to design probabilistic controllers. In this section, we utilize a Gaussian
Mixtures Model (GMM) for soft clustering on a feature vector that summarizes the plant.
A feature vector is used as an alias for the entire plant, and a covariance matrix can be
defined for the feature vectors, whereas a notion of covariance does not make sense for the
frequency response data. Instead of GMMs, one could also use a technique like fuzzy C-
means clustering ([41]) directly on the data points, without the intermediate step of finding
the feature vector, which just requires the notion of a distance. A fuzzy C-means algorithm
can be used with the H distances defined in section 4.2. The frequency response data for a
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Figure 4.1: Frequency responses of 30 VCM plants
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Figure 4.2: Zoomed frequency responses of the 30 VCM plants in Fig.4.1 around the resonant
peaks.

batch of 30 VCM plants is depicted in Fig. 4.1. The data shows several discernible resonance
modes. The data has been generated from HDD plant models representative of real plants.
The various modes in increasing order of natural frequency are Butterfly mode at around 1.9
KHz, Torsion mode around 2.3 KHz, and Sway mode around 16.5 KHz. Hence, it is suitable
to represent the transfer function between the input and output as a sum of modes, which
can be expressed as follows:

G(s) =
b0
s2

+
n∑

k=1

bk
s2 + 2ζkωks+ w2

k

(4.14)

In this section, we stick to plants of this form, but soft clustering can also be done for other
stable LTI plants using the fuzzy C-means clustering algorithm. Fuzzy C-means clustering
can be applied to an extended class of transfer functions where the systems’ orders are
different, which is not possible with GMMs as the structure restricts the systems being
compared to be of the same order.
To represent the transfer function as a sum of modes, only three parameters per mode
are needed: natural frequency, damping coefficient, and modal constant. The parameters
for each mode in the summation form can be easily determined through a single degree
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of freedom (SDOF) modal analysis. The SDOF model is based on the assumption that the
dynamics of a system near a resonance frequency are mainly dominated by the corresponding
resonance mode, and other modes contribute to a lesser extent. This assumption is generally
valid for disk drive structures ([14]). The circular shape of the data points in the Nyquist

Figure 4.3: Nyquist plots of the 30 VCM plants in Fig.4.1 showing the circles in the complex
plane near the resonant frequencies.

plane in Fig. 4.4 is utilized to identify the parameters, i.e., natural frequency, damping
coefficient, and modal constant, as these can be extracted from the circle’s geometry. A
least-square algorithm can be used to fit the circle, making the process easier. We will present
the equations that are used to find the modal parameters from the frequency responses of
the plant, and the reader is referred to [14, 17] for more details about the method.
The frequency at which the maximum sweep rate of data points around the circle is attained
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is known as the natural frequency, and it is defined by the expression

γ(ω2) =
dθ

d(ω2)
≈ ∆θ

∆(ω2)
. (4.15)

The other modal parameters can be determined using the following equations

η =
2

ω2
nγmax

, (4.16a)

b0 = 2Rω2
nη. (4.16b)

This process is repeated for all the modes by first picking all the local peaks and using the
circle fit method around these local peaks. All the modal parameters can be collected to
form a feature vector ϕ for each plant as follows

ϕ = [b0, b1, . . . , bn, ζ1, . . . , ζn, ω1, . . . , ωn]
T (4.17)

Now, a GMM can be used to cluster the plants based on these feature vectors.

Gaussian Mixtures Model Clustering

Gaussian Mixtures Model (GMM) clustering is a statistical method for clustering data points
into multiple groups or clusters based on their similarity. In this method, each cluster is mod-
eled as a probability distribution with a Gaussian (normal) distribution. A GMM assumes
that the data points in each cluster are generated from a mixture of multiple Gaussian dis-
tributions with different means and variances. The GMM clustering algorithm estimates the
parameters of these Gaussian distributions (such as means and variances) and assigns each
data point to the cluster with the highest probability of generating that point.

PΦ(ϕ) =
K∑
k=1

πkPΦ|Z=k(ϕ;µk,Σk), (4.18)

where

ϕ : is the observed quantity

Z : is one of K classes

Φ|Z = k : is Gaussian

µk : is the mean of cluster K

Σk : is the covariance of cluster K

πk : is the probability of belonging to cluster k

PΦ : is the probability density of ϕ
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with
PΦ|Z=k(ϕ, µk,Σk)

=
1

(2π)D/2|Σk|1/2
exp(−1

2
(ϕ− µk)Σ

−1
k (ϕ− µk)).

(4.20)

Maximum Likelihood Estimate (MLE) for the Guassian Mixtures is given by

θ = (π1, µ1,Σ1, π2, µ2,Σ2, . . . , πK , µK ,ΣK), (4.21)

which is the solution of the following optimization problem

maximize
θ

N∑
i=1

ln(
K∑
k=1

πkPΦ|Z=k(ϕi, µk,Σk))

subject to
K∑
k=1

πk = 1

πk ≥ 0

Σk ≻ 0.

(4.22)

The above optimization problem can be solved by the Expectation Maximization (EM)
algorithm ([95]).

4.5 Results

In this section, we present the results of hard and soft clustering algorithms applied to the
frequency response data of VCM plants shown in Fig. 4.1. It can be observed that the
responses can be categorized into three different clusters. However, for the algorithm, we
used the elbow method to determine the optimal number of clusters for hard clustering.
Both algorithms were successfully able to cluster the plants into three clusters.

For the GMM approach, feature vectors of size ten (one feature corresponding to the
rigid body mode, three features corresponding to each resonant mode) were constructed
from the frequency response data for each plant. A total of 300 data points were used for
soft clustering.

4.6 Summary

In this chapter, we presented a novel way of clustering transfer functions and frequency
response data of stable LTI plants by defining distance metrics in terms of H∞ and H2

norms. The distance metrics were used to cluster the systems using k-means and k-medoids
algorithm. We also presented a novel way of soft clustering transfer functions and frequency
response data utilizing Gaussian Mixture Models for a class of systems which are common
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Figure 4.4: Clustering results for 30 VCMs using k-medoids algorithm with H2 distance
respectively.

in mechatronic systems like HDDs by extracting features from the frequency response data
and applying using these features to cluster the frequency responses. The techniques have
been demonstrated on various plants used in HDDs and the results are presented.
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Chapter 5

Data-Driven Robust Feedback
Control Design for Multi-Actuator
Hard Disk Drives

5.1 Introduction

One factor that determines the spacing between tracks in an HDD is the controller’s sensitiv-
ity to disturbances. To enhance the disturbance rejection characteristics of HDDs, additional
actuators are incorporated. The VCM actuator compensates for low-frequency disturbances
and has a higher range of motion, while PZTs address high-frequency disturbances with a
smaller range of motion, typically covering one to three tracks.

An important source of disturbances in data centers is the acoustic noise from adjacent
HDDs and other machinery. These disturbances have high-frequency components (5-10 kHz).
To enhance disturbance rejection in these scenarios, robust and precise controllers need to
be designed.

Recently, data-driven feedback control design approaches from frequency response mea-
surements [19, 28, 29] for DSA HDDs have been developed in [3, 4] to suppress disturbances.
These data-driven controllers are robust to variations in plant models. Sometimes designing
a common controller for all the plants might not be optimal for each plant and in some
cases a stabilizing controller might not even exist. In such cases to maintain robustness and
optimality, we cluster the plants based on the distance between each other using techniques
presented in chapter 4 and design common controllers within each cluster.
To further improve the disturbance rejection capabilities which cannot be handled by feed-
back controllers alone, data-driven feedforward controllers have been developed in [79, 78,
80] based on frequency response measurements of disturbance processes. Additionally, an
adaptive feedforward controller has been developed in [11], layered on top of the robust
feedback controller to account for plant variations.

In this chapter, we will focus on developing robust feedback controllers using multiple
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plant measurements for a TSA HDD equipped with a VCM actuator and two PZT actuators
(namely milli and micro). The controller design will be formulated as a convex optimization
problem with the objective of minimizing the H∞ norm or H2 norm of a function of closed-
loop transfer functions, subject to constraints on the H∞ and H2 norms. The H∞ constraints
will shape the closed-loop transfer functions using numerical weights in the frequency domain
and ensure the stability of the closed-loop system [3]. The H2 constraints will be used to
limit the variances of various signals.

5.2 Preliminaries

In this section, we present some preliminaries and nomenclature related to the structure of a
TSA system. The discussion will be confined to the discrete-time case (z-domain) since the
design process in the s-domain follows straightforwardly. Consider the control block diagram
shown in Fig. 5.1. The HDD plant G(z) is a multi-input single-output (MISO) system that
takes the control signals generated by the controller and produces the displacement of the
head. The controller K(z) is a single-input multi-output (SIMO) system that takes the
measured position error signal and generates the control inputs.

In this diagram:

• r represents the runout that needs to be followed,

• y is the total head position,

• e is the actual position error signal,

• n represents the measurement noise,

• u is the vector control input signal generated by the controller,

• D(z) is the disturbance process, and

• d̄ is zero-mean white noise of unit power, assumed to produce the actual disturbance
d through D(z).

In general, we only have access to the measured position error signal, which is e+n. For
brevity, the dependence on z will be omitted in the remainder of the chapter.

Though the plant is denoted by G(z), it must be noted that the actual plant is not
available to us. Instead, only a set of frequency responses representative of the plant are
available, i.e., the frequency responses G(ejωTs), with Ts as the sampling time, are available

for a finite set of ω ∈ Ω =
(
− π

Ts
, π
Ts

)
.
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Figure 5.1: Control block diagram for a MSA HDD.

Triple Stage Actuation System

Consider the block diagram shown in Fig. 5.2. The plant includes three actuators: a VCM
actuator and two PZT actuators (milli and micro). The plant GV CM represents the VCM
actuator, Gmilli represents the milli PZT actuator, and Gmicro represents the micro PZT
actuator. The control inputs to these actuators are uV CM , umilli, and umicro respectively.
Let K1, K2, and K3 represent the Single Input Single Output (SISO) controller transfer
functions from the measured position error signal to the control inputs uV CM , umilli, and
umicro, respectively.

The magnitude frequency responses of the benchmark model for the VCM and PZT ac-
tuators are shown in Fig. 5.3. Additionally, some typical variations in resonance frequencies
are illustrated. These variations usually limit the achievable bandwidth of the servo system.
To address this, milli and micro actuators, which have higher resonance modes than the
VCM but can only achieve a stroke of a few tracks, are used to enhance overall disturbance
attenuation in the servo system. In our case study model, the milli PZT actuator has a
nominal resonance frequency of 9.5 kHz, while the micro PZT actuator has a higher nominal
resonance frequency of 15 kHz.

In an actual HDD product, multiple frequency response measurements for various TSA
systems can be collected, as the dynamics of actuator assemblies differ slightly between
disk platters and among different drives in the same product line. Additionally, even for a
specific actuator, the dynamics may vary due to environmental factors such as temperature.
Benchmark models are utilized in model-based control design, while multiple measurements
with slight variations are used in data-driven control design.

In large data centers, millions of enterprise HDDs are stacked in server boxes, operating in
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Figure 5.2: Control block diagram for a TSA HDD.

a harsh environment with significant vibrations generated by neighboring drives and cooling
fans. Following conventional industry practices, the effects of track run-out, windage, and
internal and external disturbances of an HDD are incorporated into the definition of the
disturbance filter D(z). A typical magnitude frequency response of the disturbance filter
D(z) is shown in Fig. 5.4. The impact of D(z) on the position error signal is significantly
greater than that of the measurement noise n and the runout r. Therefore, in the design
presented here, the effects of n and r are not considered, although they can easily be included
in our design framework.

Sensitivity Decoupling Structure

The feedback control block diagram for a TSA system with the sensitivity decoupling struc-
ture ([52]) is shown in Fig. 5.5. Ĝmilli and Ĝmicro are the plant estimates of milli and micro
PZT actuators respectively. KV CM , Kmilli and Kmicro are single-input-single-output (SISO)
controllers for VCM, milli and micro PZT actuators respectively (not to be confused with
K1, K2 and K3 defined earlier).

The sensitivity decoupling structure is necessary during the implementation of the con-
troller in real HDDs because it can stabilize just the VCM loop in case the other actuators
fail. The plant estimates are usually close to the actual plant models at low frequencies
and there are only high frequency uncertainties. The overall closed loop sensitivity from the
disturbance d to the position error signal e approximated by Eq. (5.1). Eq. (5.1) clearly
shows how the use of double-stage and triple stage systems increase the overall attenuation
of the servo system, as the overall error rejection closed loop sensitivity transfer function can
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Figure 5.3: VCM actuator frequency responses (left) and PZT actutor frequency responses
(right)

be approximated by the series combination of all three single-stage sensitivities.

Sd→e ≈ SV CM
d→e Smilli

d→e S
micro
d→e , (5.1)

where

SV CM
d→e =

1

(1 +KV CMGV CM)
,

Smilli
d→e =

1

(1 +KmilliGmilli)
,

Smicro
d→e =

1

(1 +KmicroPmicro)
.

(5.2)

A more general control diagram for a TSA system with a SIMO controller KTSA is shown
in Fig. 5.2. In order to take full advantage of the TSA system, we first design the optimal
SIMO controllerKTSA and transform the SIMO controller into three SISO controllersKV CM ,
Kmilli and Kmicro. The SISO controllers can be computed as

KV CM =
K1

1 +K2Ĝmilli +K3Ĝmicro

, (5.3)

Kmilli =
K2

1 +K3Ĝmicro

, Kmicro = K3,

where Ĝmilli and Ĝmicro are estimates of the dynamics of milli and micro PZT actuators
respectively and are used in the sensitivity decoupling controller implementation shown in
Fig. 5.5.
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Figure 5.4: Typical frequency response of the disturbance filter D(z) in Figs. 5.1 and 5.2.

Controller Factorization

The vector controller transfer function can be factorized as K = XY −1 following the con-
vention from [28] as

X(z) = Xpz
p + Xp−1z

p−1 + · · ·+ X0,

Y (z) = zp + Yp−1z
p−1 + · · ·+ Y0,

where p is the controller order and the controller parameters are {Yp−1, . . .Y0} ∈ R and
{Xp,Xp−1, . . .X0} ∈ Rn×1. For the remainder of the paper, the convention Xi = Xp(i)z

p +
Xp−1(i)z

p−1 + · · ·+ X0(i) will be used to denote the ith row of X(z).
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Closed loop transfer functions

With this controller factorization, various essential closed loop transfer functions can be
easily calculated as follows

Sd→e =
Y

Y +GX
, Ud→uV CM

=
X1

Y +GX
,

Ud→umilli
=

X2

Y +GX
, Ud→umicro

=
X3

Y +GX
,

Yd→ymilli
=

GmilliX2

Y +GX
, Yd→ymicro

=
GmicroX3

Y +GX
.

(5.4)

Figure 5.5: Control block diagram for a TSA HDD with sensitivity decoupling structure.

5.3 Data-Driven Control Design

In this section, various objectives and constraints that can be used to design the controller
will be formulated in such a way that a convex optimization solver can obtain a solution.
The formulation will be demonstrated for one of the closed loop transfer functions, but
the same procedure can be followed for any of the closed loop transfer functions. The H∞
constraints are used to shape the closed loop transfer functions and H2 constraints are used
to constrain the variance of various signals. In the data-driven design, the constraints will
only be enforced at the frequencies at which the responses are available. It is assumed that
the data set is rich enough i.e., the frequencies at which the data is collected represent the
key characteristics of the plants.
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Constraints and Objectives

H∞ Constraints:

H∞ constraints are used to shape the closed loop transfer functions. A feasible controller
that satisfies the H∞ constraints is guaranteed to stabilize the closed loop system ([3]).
A typical H∞ constraint on the weighted sensitivity of the TSA can be formulated as
||W (ω)Sd→e(e

jω)||∞ ≤ γ, where W (ω) is a numerically shaped weight for all the frequencies
ω ∈ Ω = (− π

Ts
, π
Ts
). Using the definition for sensitivity with the controller factorization, this

constraint can be equivalently written as (from [3])

γ−1|W (ω)Y (ejω)| < Re(Y (ejω) +G(ω)X(ejω)). (5.5)

Note that for a MISO system, this constraint is a convex constraint as it can be expressed as
a Second Order Cone constraint. Any of the available Second Order Conic Program (SOCP)
solvers can handle these constraints.

H2 Constraints:

H2 constraints can be used to minimize the variances of various signals. For a normally
distributed random variable, the confidence of finding the random variable within three
standard deviations from the mean is 99.7%. Though hard limits on the magnitudes of the
signals cannot be enforced in the frequency domain design unlike in state space techniques
like Model Predictive Control (MPC), we can constrain the signal’s variance to increase the
confidence that the signal does not go beyond the limit 99.7% of the time. This can be done
by restricting the L2 norm of the zero mean signal to be always less than a third of the limit.

The constrains can be applied on various signals like the inputs to the actuators, the
stroke limits of the actuators, the overall position error signal etc. In case of multiple plants,
we can either constrain the L2 norms of the signals for each of the plants or constrain the
average L2 norm of the signals for all the plants. For example, if the average variance of the
VCM actuator input due to the disturbance needs to be constrained to be less than µ for l
plants, using Parseval’s theorem, it can be be formulated as

||uV CM,i||2 = ||Ud→uV CM,i
D||2

=⇒ 1

l

l∑
i=1

||uV CM,i||22 =
1

l

l∑
i=1

||Ud→uV CM,i
D||22 ≤ µ,

(5.6)

where the subscript i corresponds to the ith plant and D is the disturbance filter shaping
transfer function. The H2 norm for this input transfer function is given by

||Ud→uV CM,i
D||22 =

Ts
2π

∫
Ω

tr(D∗U∗
d→uV CM,i

Ud→uV CM,i
D)dω. (5.7)
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Using slack variables, the H2 constraint in Eq. (5.6) can be reformulated into two constraints
as

1

l

l∑
i=1

Ts
2π

∫
Ω

tr(ΓuV CM
i (ω))dω ≤ µ, (5.8)

D∗U∗
d→uV CM,i

Ud→uV CM,i
D ⪯ ΓuV CM

i . (5.9)

Since the responses are available only at a finite set of frequencies, the integral in Eq. (5.8)
will be evaluated approximately using a trapezoidal rule by replacing the function ΓuV CM

i (ω)
with a finite set of ΓuV CM

k,i for k = 1 to N where N is the number of frequency responses
available per plant. The matrix inequality in Eq. (5.9) can be reformulated using controller
factorization and the Schur complement lemma as[

ΓuV CM
k,i X1D

D∗X∗
1 (Y +GiX)∗(Y +GiX).

]
(ωk) ⪰ 0 (5.10)

Notice that this is a non convex constraint, as P ∗P = (Y + GiX)∗(Y + GiX) is quadratic.
However, this quadratic part can be linearized using a first order Taylor series expansion
around a nominal controller Kc = Xc/Yc, as shown in [28], using

P ∗P ≈ P ∗
c Pc + (P − Pc)

∗Pc + P ∗
c (P − Pc), (5.11)

where Pc = Yc +GiXc as[
ΓuV CM
k,i X1D

D∗X∗
1 P ∗

c Pc + (P − Pc)
∗Pc + P ∗

c (P − Pc)

]
(ωk) ⪰ 0. (5.12)

H∞ Objective:

Consider the case in which the worst case weighted sensitivity of the TSA system needs to
be minimized. The optimization problem in this case can be formulated as

min
X,Y

max
i={1,...,l}

||WSi
d→e||∞

s.t. H∞ and H2 constraints,
(5.13)

where W is a numerically shaped weighing filter as a function of frequency ω and the su-
perscript i corresponds to the ith set of actuators. The same optimization problem can be
reformulated using a slack variable γ as follows

min
X,Y

γ

s.t. ||WSi
d→e||∞ ≤ γ ∀ i = {1, . . . , l}

H∞ and H2 constraints

(5.14)
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or equivalently using Eq. (5.5) as

min
X,Y

γ

s.t. γ−1|W (ω)Y (ejω)| ≤ Re(Y (ejω) +G(ω)X(ejω))

H∞ and H2 constraints.

(5.15)

Note that the first constraint in Eq. (5.15) is a non-convex constraint but it turns into a
second order conic constraint when γ is fixed. In the next section, this structure will be
exploited to develop a bisection technique to find the globally minimum γ.

H2 Objective:

H2 objectives can be used in cases when the variances of signals need to be minimized. A
very obvious choice would be to minimize the variance of the tracking error i.e., the position
error signal e. The position error signal due to the disturbance d̄ is given by Sd→eDd̄.
Since d̄ is is zero mean white noise of unit variance, its Fourier transform is just 1. Now the
variance of the position error signal e due to the disturbance d̄ can be equivalently written
in the frequency domain as ||Sd→eD||22.
The optimization problem in it’s raw form can be written as

min
X,Y

||Sd→eD||22

s.t. H∞ and H2 constraints.
(5.16)

Using a similar approach shown for the H2 constraints, we can formulate the optimization
problem using slack variables as follows

min
X,Y

∫
Ω

tr(ΓSd→e
(ω))dω

s.t.

[
ΓSd→e

(ω) Y D
D∗Y ∗ (Y +GiX)∗(Y +GiX)

]
⪰ 0

H∞ and H2 constraints.

(5.17)

Minimum H2 norm controller

As was shown previously, the H2 norm minimization is a non-convex problem. The quadratic
part can be linearized around a nominal controller to make the constraint convex or more
precisely a Linear matrix Inequality (LMI). The final controller can be designed by first
obtaining the nominal controller using just H∞ constraints without any objective and then
linearizing around it to obtain a better controller with the H2 constraints and H2 objective.
The detailed algorithm is shown algorithm 1.
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Algorithm 1 Iterative algorithm for minimum H2 norm controller

Require: Niter ∈ Z+ ▷ number of iterations required for satisfactory convergence
1: Define H∞ Constraints
2: Optimize(H∞ Constraints)
3: Obtain initial controller K0 = X0/Y0
4: Define linearized H2 Constraints with X0, Y0
5: while k ≤ Niter do
6: Optimize(H2 Objective, H∞, H2 Constraints)
7: Obtain Kk = Xk/Yk
8: Define linearized H2 Constraints with Xk, Yk
9: end while

Minimum H∞ norm controller

The optimization problem formulated in Eq. (5.15) is non-convex and hence finding a global
minimum is non-trivial. But in the first set of constraints in Eq.(5.15), if γ is fixed, the
constraints turn out to be Second Order Conic constraints. This structure can be exploited
and a bisection technique can be used to find the globally minimum γ. In the bisection
technique, the optimization problem will be converted to a feasibility problem by fixing the
γ and the value of γ will be decreased till the problem is no longer feasible. The bisection
algorithm is summarized in algorithm 2. Here γmax and γmin are chosen such that the
problem is feasible for γ = γmax but infeasible for γ = γmin. In cases where the knowledge
of the system is limited, a very large value for γmax and a very small value for γmin can be
chosen. The stopping criterion for the bisection algorithm is determined by the user defined
tolerance ϵ.

5.4 Case Study: Application to a triple Stage

Actuation HDD

In this section, the data-driven control techniques will be applied to a TSA HDD with a VCM
actuator and two PZT actuators to minimize i) H2 norm of Sd→eD, which is equivalent
to the standard deviation of the position error signal due to the external disturbance d,
and ii) H∞ norm of WSd→e

Sd→e. The frequency response measurements for the VCM and
two PZT actuators used in the design are shown in Fig. 5.3. Firstly for the H2 norm
minimization problem, the design and analysis will be conducted on one plant for each of
the actuators and for the H∞ norm minimization problem, four plant measurements are used
in the design for each of the actuators. In both these designs, H∞ constraints on the closed
loop sensitivities will be enforced to guarantee stability of the system for each stage, as
well as some additional performance attenuation and robustness requirements, as described
subsequently. The optimization problem for all the cases was set up using MOSEK and
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Algorithm 2 Bisection Technique for finding the minimum H∞ norm controller

Require: γmin > 0, γmax > 0, ϵ > 0,Niter ∈ Z+

1: γ ← γmax

2: while |γmax − γmin| ≥ ϵ do
3: γ ← (γmax + γmin)/2
4: Define H∞ constraints as a function of γ
5: Optimize(H∞ Constraints)
6: Obtain initial controller K0 = X0/Y0
7: Define linearized H2 Constraints with X0, Y0
8: while k ≤ Niter do
9: Optimize(H∞, H2 Constraints)
10: Obtain Kk = Xk/Yk
11: Define linearized H2 Constraints with Xk, Yk
12: end while
13: if feasible then
14: γmax ← γ
15: else
16: γmin ← γ
17: end if
18: end while

YALMIP in MATLAB R2021a.

H∞ Constraints

Shown below are the H∞ constraints that have been used on various closed loop transfer
functions. W with a corresponding subscript represents a numerically shaped weight that is
applied for each of the closed loop transfer functions H∞ constraints. For example, WSDSA

d→e

is the weight that is applied to the error rejection closed loop sensitivity transfer function
SV CM
d→e for the single-stage H∞ minimization constraints in Eq. (5.18). The superscript i

in the closed loop transfer functions (e.g. SV CM,i
d→e indicates that the ith frequency response

plant data is being used in a computation, as multiple plants’ frequency responses can
be evaluated. The inverses of the frequency weights W ’s are shown as dotted lines along
with the magnitude bode plots of their respective resulting closed loop transfer functions
in all the figures. These weight inverse plots provide an upper bound at each frequency to
the magnitude frequency response of the closed loop transfer function that they are being
used with in the H∞ constraint. Thus, they are used to impose minimum performance
requirements, perform frequency response shaping and to satisfy robustness requirements.
In the case of the error rejection closed loop sensitivity transfer functions, the weights W ’s
are chosen to specify desired minimum levels of attenuation, bandwidths and maximum levels
of amplification (see for example Figs. 5.6, 5.7, 5.9 and 5.10). In the case of closed loop
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control action transfer functions (e.g. UV CM
d→uv

in Eq. (5.18)), the weights are being used to
prevent the excitation of uncertain resonance modes and to constrain the frequency range of
operation of each of the three actuators. In our case study, the VCM is desired to operate in
the low frequency range [0 4kHz] range, the milli PZT actuator in [1khZ 3kHz] and the micro
PZT actuator in [3kHz 10kHz] range. Since it is undesirable to excite the uncertain resonant
modes of the actuators, the weights are shaped to have a 0 dB or greater magnitude at the
nominal resonant frequencies (i.e., 8kHz for the VCM, 9.5kHz for the milli PZT actuator and
15kHz for the micro PZT actuator) of the actuator that they are being used with in the H∞
constraints (see for example Figs. 5.6, 5.8 and 5.10). Furthermore, uncertainties in the high
frequency regions can arise from measurements and the data might not be representative of
the actual dynamics. To avoid operating in higher frequencies than the regions in which the
data is reliable, the weights on the closed loop control actions are increased to large values
at high frequencies. In this case study, the weights are designed such that their inverses have
high roll offs at high frequency regions with 0 dB at the nominal resonant frequencies.

Single Stage (VCM):

||WSV CM
d→e

SV CM,i
d→e ||∞ < 1, ||WUV CM

d→uv
UV CM,i
d→uv

||∞ < 1.
(5.18)

Dual Stage (DSA): ||WSDSA
d→e

SDSA,i
d→e ||∞ < 1,

||WUDSA
d→uv

UDSA,i
d→uv

||∞ < 1, ||WUDSA
d→umilli

UDSA,i
d→umilli

||∞ < 1.
(5.19)

Triple Stage (TSA):

||WSTSA
d→e

STSA,i
d→e ||∞ < 1, ||WUTSA

d→umicro
UTSA,i
d→umicro

||∞ < 1,

||WUTSA
d→umilli

UTSA,i
d→umilli

||∞ < 1, ||WUTSA
d→uv

UTSA,i
d→uv

||∞ < 1.

(5.20)

The superscripts V CM refers to the case when only the VCM actuator is turned on i.e.,
when K2 = K3 = 0, DSA refers to the case when the VCM and milli PZT actuators are
turned on i.e., when K3 = 0, TSA refers to the case when all the actuators are operating.
Though we are interested in the TSA system, it is necessary to impose H∞ constraints on
the the cases when only the VCM is working i.e., when the PZT actuators fail and for the
case when only the tertiary actuator fails i.e., the DSA system as H∞ constrains ensure the
stability of the closed loop system. With these constraints, the system will be guaranteed
to remain stable despite actuator failures. As the tertiary micro actuator is mounted on
the secondary milli actuator, the tertiary actuator gets automatically disconnected when the
secondary actuator fails, so, the case when the VCM and micro PZT actuators are working
need not be considered.

H2 Constraints

In this case study we assume that the maximum available input to the VCM is 6 volts and
hence the H2 norm of the control input to VCM is constrained to be less than 2 volts. The
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maximum stroke limit of the PZT actuators needs to be constrained to keep them within
their respective linear regimes and prevent saturation. The H2 norm of the outputs of the
PZT actuators were constrained to be 1 track each. The track width considered for the
design is 30 nano-meters. The means of variances will be constrained in this formulation,
but the variances for individual plants can also be constrained separately.

Single Stage (VCM):
1

l

l∑
i=1

||UV CM,i
d→uV CM

||22 < (2 volts)2. (5.21)

Dual Stage (DSA):
1

l

l∑
i=1

||UDSA,i
d→uDSA

||22 < (2 volts)2.

1

l

l∑
i=1

||Y DSA,i
d→ymilli

||22 < (30 nm)2.

(5.22)

Triple Stage (TSA):
1

l

l∑
i=1

||UTSA,i
d→uTSA

||22 < (2 volts)2.

1

l

l∑
i=1

||Y TSA,i
d→ymilli

||22 < (30 nm)2.

1

l

l∑
i=1

||Y TSA,i
d→ymicro

||22 < (30 nm)2.

(5.23)

Tracking error minimization:

We will pose the optimization problem with the objective to minimize the variance of the
position error signal due to the disturbance process D. Controllers will be designed for all the
three stages i.e., single stage VCM, DSA and TSA, and the performance will be evaluated by
using the residual error as a metric. We will just consider one set of plant frequency response
measurements (l = 1) for the design in this case to unambiguously evaluate the performance
in each stage as additional actuators are added. A 20th order controller is designed for all
the cases.

Single Stage (VCM):

The position error minimization problem with just the VCM actuator can be formulated as

min
X,Y

||SV CM
d→e D||22

s.t. Constraints in (5.18) and (5.21).
(5.24)

The standard deviation (σ) of residual position error i.e., the square root of minimum at-
tained value of the objective in this case was 41.326 nano-meters. This implies that the 3σ
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value is around 4 tracks. For good performance of the HDD, this value needs to be less
than 0.15 tracks (15%) for writing and 0.30 tracks (30%) for reading processes. Magnitude
frequency response plots of the closed loop transfer functions, along with the inverses of their
corresponding numerically shaped weights (dotted lines), which provide an upper bound of
the transfer function magnitude frequency response at each frequency, are shown in Fig. 5.6.

Figure 5.6: The closed loop disturbance to error sensitivity function SV CM
d→e (left) and distur-

bance to control transfer functions UV CM
d→uV CM

for the single stage H2 norm minimization case.

Dual Stage (DSA):

Position error minimization problem for the DSA system with both VCM actuator and milli
PZT actuator can be formulated as

min
X,Y

||SDSA
d→e D||22

s.t. Constraints in (5.18), (5.19) and (5.22).
(5.25)

The standard deviation (σ) of residual position error in this case was 14.4 nano-meters. This
implies that the 3σ value is around 1.5 tracks. With the addition of one PZT actuator (milli),
the 3σ value of position error signal reduced by 2.5 tracks when compared to the previous
case when only the VCM actuator was operating. Frequency response plots of the closed
loop transfer functions along with the inverses of their corresponding numerically shaped
weights (dotted lines) for this design are shown in Fig. 5.7 and 5.8.
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Figure 5.7: The closed loop disturbance to error sensitivity function SV CM
d→e (left) and SDSA

d→e

(right) for the DSA H2 norm minimization case.

Figure 5.8: The closed loop disturbance to control transfer functions UDSA
d→uV CM

(left) and
UDSA
d→umilli

(right) for the double stage H2 norm minimization case.

Triple Stage (TSA):

Position error minimization problem for the TSA system with VCM actuator, milli and micro
PZT actuators can be formulated as

min
X,Y

||STSA
d→eD||22

s.t. Constraints in (5.18), (5.19), (5.20) and (5.23)
(5.26)
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The standard deviation (σ) of residual position error in this case was 8.985 nano-meters.
This implies that the 3σ value is around 1 track. With the addition of another PZT actuator
(micro, the 3σ value of position error signal reduced by 0.5 tracks when compared to the
DSA system case.

Frequency response plots of the closed loop transfer functions along with the inverses of
their corresponding numerically shaped weights (dotted lines) for this design are shown in
Fig. 5.9 and 5.10.

The design was repeated by removing all the H2 constraints for the TSA system and a
residual tracking error of 8.524 nm was obtained. This is the lower limit on the residual
error that can be achieved with the three actuators for the considered H∞ constraints and
further reduction of the residual will only be possible by either adding additional actuators,
using feedforward controllers or relaxing the H∞ constraints to make the controller more
aggressive.

Figure 5.9: The closed loop disturbance to error sensitivity function SV CM
d→e (left), SDSA

d→e

(center) and STSA
d→e (right) for the TSA H2 norm minimization case.

Figure 5.10: The closed loop disturbance to control transfer functions UTSA
d→uV CM

(left),
UTSA
d→umilli

(centre) and UTSA
d→umicro

(right) for the TSA H2 norm minimization case.
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Minimum H∞ norm controller design:

The H∞ norm minimization problem for the weighted sensitivity of the TSA system can be
posed as

min
X,Y

max
i∈{1,...l}

||WSTSA
d→e

STSA,i
d→e ||∞

s.t. Constraints in (5.18), (5.19), (5.20) and (5.23).
(5.27)

The problem was solved using the bisection technique shown in algorithm 2 for 4 frequency
response measurement sets for each of the actuators shown in Fig. 5.3. A 20th order controller
was used for the design. γmax (feasible) was set at 10 and γmin (infeasible) was set at 0.1.
The controller obtained was able to stabilize all the plants. The global minimum value for
the H∞ norm was found to be 0.3906 when the tolerance for stopping criterion was set
at ϵ = 0.1. The frequency responses of the closed loop transfer functions and inverses of
their corresponding weights (dotted lines) are shown in Fig. 5.11, 5.12 and 5.13. The plots
show that all the H∞ constraints have been respected thus providing good low frequency
disturbance rejection characteristics.

The residual error with the disturbance process D i.e., ||STSA
d→eD||2 was found to be 20.556

nm while the residual error using H2 norm minimization control was 8.985 nm. Therefore, if
the knowledge of the disturbance process is available, H2 norm minimization controller pro-
vides the best possible tracking but when the knowledge is unavailable H∞ norm minimizing
controller tries to get the best sensitivity shape to unknown disturbances with respect to the
weights provided.

Figure 5.11: The closed loop disturbance to control transfer functions UTSA
d→uV CM

(left),
UTSA
d→umilli

(centre) and UTSA
d→umicro

(right) for the TSA H∞ norm minimization case.

The problem is then solved for controller orders p from 5 to 45 for the TSA system
with one frequency response measurement set for each actuator to understand the effect of
the controller order on the minimum achieved. The value of the obtained norm is shown
in Fig. 5.14. It was seen that there wasn’t considerable improvement beyond a 30th order
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Figure 5.12: Sensitivity plots. SV CM
d→e (left) and SDSA

d→e (right) for the triple stage H∞ norm
minimization case.

controller. It wasn’t possible to obtain a stabilizing controller with an order less than 5 for
the considered frequency response measurement data.

5.5 Summary

In this chapter, data driven robust feedback control techniques for MISO systems with
applications to triple stage hard disk drives have been presented. Controller design has
been posed as a convex optimization problem with H∞ and H2 objectives and constraints.
H∞ norm constraints on the closed loop transfer functions have been imposed for both H∞
and H2 norm minimization problems to ensure stability of the closed loop system. The
methodologies were applied on single, dual and triple stage actuation system HDDs and the
results were presented. It was only possible to convexify the H∞ constraints in the case of
MISO systems and an approach to convexify them for Multi-Input Multi-Output (MIMO)
systems is yet to be developed.
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Figure 5.13: Sensitivity plot for STSA
d→e for the TSA H∞ norm minimization case.
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Figure 5.14: Minimum attained H∞ norm of the disturbance to error sensitivity transfer
function vs Controller order. The line in blue indicates the lower limit produced by ’hinfsyn’
in MATLAB.



85

Chapter 6

System Identification in
Multi-Actuator Hard Disk Drives
with Colored Noises using
Observer/Kalman Filter Identification
(OKID) Framework

6.1 Introduction

In 2017, Seagate introduced its new multi actuator technology as a significant advancement
capable of doubling the data transfer performance of next-generation HDDs designed for
hyper-scale data centers. In these drives, the read-write (R/W) heads are divided into two
distinct sets—upper and lower halves. This division enables simultaneous operation of the
upper and lower platter sets, effectively doubling the data transfer rate.

The implementation of multi actuator technology posed new challenges in the design
of HDD controllers. Since both actuator sets operate around the same pivot point, the
forces and torques generated by one actuator can impact the operation of the other. The
interaction between the two actuators can be classified into three primary scenarios. In the
first scenario, both actuators are in track following mode, where it is expected that their
interaction is minimal. In the second scenario, both actuators are in seek mode. Here, the
vibrational coupling interaction typically remains insignificant compared to the substantial
trajectories of both actuators. In the third scenario, one actuator is in seek mode while the
other is in track following mode. In this case, the seeking actuator introduces vibrations that
disturb the track following actuator, significantly affecting its performance. The feedback
controllers may not fully attenuate these transferred disturbances, necessitating the design
of feedforward controllers, which rely on an accurate model of the disturbance process.

Modern HDDs utilize their built-in actuators for writing servo tracks instead of employ-
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ing a separate servowriter or disk writer. This approach helps to reduce manufacturing costs
significantly. A servowriter typically relies on large motors and robust equipment to achieve
precise servo track writing, which would be impractically bulky for integration within an
HDD. The inherent precision of HDD actuators during the writing process is limited com-
pared to a servowriter, mainly due to their smaller size and less robust construction. Various
disturbances such as spindle vibrations and windage affect the writing process, leading to de-
viations from the ideal circular shape of servo tracks. This deviation is referred to as runout,
which can be modeled as white noise colored by a stable disturbance process. The presence
of runout introduces colored noise that corrupts the time series signals during operation.

Methods for system identification tend to yield biased estimates in the presence of col-
ored noise corruption. In this chapter, we extend the Observer/Kalman filter Identification
(OKID) technique to estimate the disturbance cross transfer function from the Voice Coil
Motor (VCM) control input of one actuator to the output of another actuator. This modi-
fication utilizes time series data collected under conditions of colored noise corruption and
provide unbiased estimates.

OKID [27, 90, 88, 91, 89, 57, 81] is a technique used to identify a linear dynamical system
and its associated Kalman filter using input-output measurements that may be affected by
noise. Initially developed at NASA under the name OKID/ERA algorithm, OKID stands
out from other methods due to its formulation involving state observers, offering a clear
interpretation from the perspective of control theory.

6.2 Observer/Kalman filter Identification formulation

In this section, we expand the OKID algorithm to accommodate colored noise. Specifically,
we address scenarios where colored noise affects the system’s output, such as in HDDs where
runout introduces colored noise. This approach can also be adapted for situations where the
process noise itself exhibits colored characteristics. Consider the following dynamical system
of interest

xa(k + 1) = Aax(k) +Bau(k) + w̄p(k)

ya(k) = Caxa(k) +Dau(k) + wcm(k),
(6.1)

where xa(k) is the state of the system, w̄p(k) is a white process noise, u(k) is the known
control input, ya(k) is the measured output, wcm is a colored noise (runout in the case of
a HDD) and (Aa, Ba, Ca, Da) represent the state, control, output and feedthrough matrices
respectively of the actual system. The subscript ’a’ is used for the actual system of interest.
The colored noise can be assumed to be the output of a stable dynamical system with a
white noise as its input as follows

xc(k + 1) = Acx(k) + wwm(k)

yc(k) = Ccxc(k) +Dcwwm(k),
(6.2)
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where xc(k) is the state of the coloring process, wwm(k) is a white noise, yc(k) is is the
colored noise (yc(k) = wcm(k)) and (Ac, Bc, Cc, Dc) represent the state, control, output and
feedthrough matrices respectively of the coloring process. The subscript ’c’ is used for the
coloring process. Both the dynamical systems in (6.1) and (6.2) can be augmented to form

x(k + 1) = Ax(k) +Bu(k) + wp(k)

y(k) = Cx(k) +Du(k) + wm(k),
(6.3)

where x =

[
xa
xc

]
, A =

[
Aa 0
0 Ac

]
, B =

[
Ba

0

]
, C =

[
Ca Cc

]
, D = Da, wp =

[
w̄p

wm

]
& wm =

Dcwwm. It can also be seen that the transfer function from the output to the input of the
augmented system is the same as that of the actual system from

Ya(s)

U(s)
= Ca(sI − Aa)

−1Ba +Da, (6.4)

and

Y (s)

U(s)
= C(sI − A)−1B +D

= [Ca Cc](sI −
[
Aa 0
0 Ac

]
)−1

[
Ba

0

]
+D

= [Ca Cc]

[
(sIa − Aa)

−1 0
0 (sIc − Ac)

−1

] [
Ba

0

]
+D

= Ca(sIa − Aa)
−1Ba +Da,

(6.5)

since D = Da. Here I, Ia and Ic represent identity matrices with same sizes as A,Aa and Ac

respectively. Here neither the matrices, the noises nor their variances and covariances are
assumed to be known. The only assumption made is that the noises in (6.3) are zero mean
gaussian.

Since the pair (Aa, Ca) is detectable and Ac is Schur, the pair (A,C) will also be detectable
if Cc ̸= 0.Now, as (A,C) is detectable, a steady state Kalman filter can be designed for the
system if we exactly know the matrices (A,B,C,D). Hence a Kalman filter gain K exists
such that A − KC is Schur. With the filter gains defined (as unknowns), the observer
dynamics can be expressed as

x̂(k + 1) = (A−KC)x̂(k) + (B −KD)u(k) +Ky(k)

ŷ(k) = Cx̂(k) +Du(k).
(6.6)

Let F = A−KC, H = B−KD and G = K. Defining L = [H G] and νx(k) = [uT (k) yT (k)]T

for brevity, we get the observer in predictor form as

x̂(k + 1) = Fx̂(k) + Lvx(k)

ŷ(k) = Cx̂(k) +Du(k).
(6.7)
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Using (6.6), the observer state at kth time instance can be derived as

x̂(k) = F px̂(k − p) + Tz(k), (6.8)

where

T =
[
I F ... F p−2 F p−1

]
L,

z(k) =
[
νTx (k − 1) νTx (k − 2) ... νTx (k − p)

]
.

The stability of the observer ensures that F p becomes negligible for sufficiently large values
of p (p >> n) and hence the observer state in (6.8) becomes

x̂(k) ≈ Tz(k). (6.9)

Substituting (6.9) in (6.7), we get the estimated output as

ŷ(k) = CTz(k) +Du(k). (6.10)

The estimated output in (6.10) is related to the measured output as

y(k) = Φν(k) + ϵ(k), (6.11)

where ν(k) = [uT (k)zT (k)]T , Φ = [D CL CFL ... CF p−2L CF p−1L] and ϵ(k) is the error
between the measured output and the estimated output.
The outputs at different time instances can be collected and stacked to obtain the following
equation

Y = ΦV + E, (6.12)

where
Y = [y(p) y(p+ 1) ... y(l − 1)], (6.13a)

V = [ν(p) ν(p+ 1) ... ν(l − 1)], (6.13b)

E = [ϵ(p) ϵ(p+ 1) ... ϵ(l − 1)] (6.13c)

for l measurements. The best estimate of Φ is obtained using least squares formulation as
Φ̂ = Y V † († denotes the pseudo inverse). Various system matrices and the Kalman filter
gain can be extracted from Φ̂ using the Eigensystem Realization Algorithm (ERA).

6.3 Eigensystem Realization Algorithm (ERA)

Eigensystem Realization Algorithm, first developed in [26] and later applied and extended in
[22, 54, 72, 10, 7], is a system identification technique used most popularly for aerospace and
civil structures from the input and output time domain data. Though ERA uses impulses
as inputs to excite the system, it can be intertwined with OKID framework to estimate the
system matrices using non-impulsive inputs. There are many variants to the ERA depending
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on the application and the type of data collected. In this section we will summarize one of
the variants to extract estimates of the system matrices and the Kalman filter gain from Φ̂.

It can be easily seen that D is the first column in Φ̂. From the Markov parameters in Φ̂,
the following Hankel matrices can be defined

H(0) =

 CL CFL CF 2L . . .
CFL CF 2L CF 3L . . .
...

...
. . .

 = OC, (6.14)

H(1) =

CFL CF 2L CF 3L . . .
CF 2L CF32L CF 4L . . .

...
...

. . .

 = OFC, (6.15)

where O is the observability matrix and C is the controllability matrix of the dynamical
system in (6.7) with νx as its input.
Using singular value decomposition, H(0) can be decomposed as

H(0) = UΣV T =
[
U+ U−

] [Σ+ 0
0 Σ−

] [
V T
+

V T
−

]
. (6.16)

The subscript ’+’ denotes the singular values above a specified threshold and ’−’ for the
singular values below the threshold. The desired degree of the estimated system can be
decided from these dominant singular values.
The Observability and Controllability matrices can be split as follows ([20] presents other
ways in which the matrices can be split)

O = U+Σ
1
2
+, (6.17)

C = Σ
1
2
+V

T
+ . (6.18)

Now using the Hankel matrix H(1), the matrix F can be obtained as

H(1) = OFC = U+Σ
1
2
+FΣ

1
2
+V

T
+

=⇒ F = Σ
− 1

2
+ UT

+H(1)V+Σ
− 1

2
+ . (6.19)

Since C is the controllability matrix of (6.7), L can be obtained from the first few columns
of C and similarly C can be obtained from the first few rows of O based on the dimensions.
Further H and G can be obtained from L as L = [H G]. The Kalman filter gain K = G.
Now, the state matrix A and the input matrix B can be estimated from F and H matrices
respectively as

F = A−KC =⇒ A = F +GC, (6.20)

H = B −KD =⇒ B = H +GD. (6.21)
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6.4 Results

The algorithm extended to include colored noises in OKID/ERA framework has been used
to estimate the disturbance cross transfer function between the VCM voltage input of the
track seeking actuator and the PES of the track following actuator in a multi actuator HDD.

Fig.6.1 shows three seeking wavelet inputs applied one after the other in the top plot.
This series forms the control input to the DSA in the track seeking mode. As both the DSAs
in the multi actuator drive are mounted on the same pivot timber, the large movements of
the track seeking actuator cause vibrations to transfer through the pivot timber and affect
the track following DSA. For this estimation, the track following DSA is turned off so that
its free response can be used to estimate the cross transfer function. The PES is collected
during the excitation and used for the estimation. The sampling frequency in this case was
38520 Hz. The bottom plot of fig.6.1 shows the PES as a function of time. Fig.6.2 shows the
frequency response plot of the coloring process which was used as the filter to generate the
colored noise. A Gaussian Noise signal with zero mean and unit variance is passed through
this filter to generate the colored noise.

A total of 1600 measurements were used and p was chosen to be 800. Ten most dominant
singular values of the Hankel matrix were used for the estimation which gave a tenth order
plant estimate. Fig.6.4 shows frequency response plots of the actual and estimated plots. It
is known from experiments that the low frequency components of the seeking signal have
minimal effect on the PES of the track following actuator but the high frequency components,
typically more than 2000 Hz have a large impact on the PES and as a result, the Signal to
Noise Ratio (SNR) is high in the high frequency region. Due to high SNR at high frequencies,
the estimate of the disturbance transfer function at higher frequencies is more accurate than
the low frequency region. Despite a bad fit in the low frequency region, the estimated models
are still acceptable as frequency response magnitudes in this region are very small and their
contribution towards PES predictions remains very small. This can also be seen from Fig.6.5
that the actual and the estimated PES match well.

6.5 Summary

In this chapter, OKID/ERA algorithm was extended to include colored noises. The algorithm
was used to estimate the disturbance cross transfer function between the voice coil motor
input of the track seeking actuator and the output of the track following actuator in a multi
actuator HDD. The input voltage to the VCM actuator and the measured PES, which is
the combination of the actual error corrupted by colored noise, were used to estimate the
disturbance process.
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Figure 6.1: Three seeking input voltage pulses applied one after the other to the Voice Coil
Motor actuator of the seeking actuator (top) and the corresponding PES measured at the
head of the track following actuator with no input voltage (bottom) as a function of time.
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Figure 6.2: Frequency response plot of the coloring dynamics used as filter to generate the
colored noise.
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Chapter 7

Data-Driven Strictly Positive Real
System Identification with prior
System Knowledge

7.1 Introduction

Strictly Positive Real (SPR) transfer functions are important in engineering, especially in
passivity theory for circuit analysis and adaptive control. In passivity theory, storage func-
tions and Lyapunov functions are connected by the positive real lemma [71]. Passivity
theory and hyper-stability help analyze the stability of parameter adaptation algorithms,
which need an SPR condition [25].

Series-parallel adaptation algorithms (equation error methods) naturally meet the SPR
condition but can produce biased plant estimates with measurement noise. Parallel predic-
tors (output error methods) handle measurement noise better but can have stability issues.
Stability in this case requires the transfer function with only the system’s poles to be SPR,
which isn’t always the case. To solve this, a pre-filter is designed to make sure the system,
formed by the ratio of the pre-filter and the system’s poles, meets the SPR condition. De-
signing this filter is complex and often relies on prior system knowledge. This complexity
drives the need for an algorithm to identify SPR systems.

In many cases, frequency response measurements of plants can be obtained, particularly
when the plants are stable, and these measurements can be used to build plant models,
which can serve as initial conditions for adaptation algorithms. However, even with accurate
frequency domain data, obtaining good plant estimates is difficult. Sometimes, even when
the plant is known to be stable, least squares fits [21] might yield an unstable estimate.
Time domain system identification algorithms, such as the series-parallel adaptation algo-
rithm, generally avoid this issue as they compare error signals at each time instant, typically
converging to a stable model if the plant being identified is stable. Therefore, frequency
domain system identification techniques and time domain techniques like OKID/ERA can
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be combined to achieve SPR estimates.
This chapter presents a systematic methodology to obtain SPR estimates by integrating

time domain response data and frequency response measurements of the system of interest.
Initially, time domain data can be used to estimate the system using OKID/ERA or the
series-parallel adaptation algorithm. This initial estimate may not be SPR, but its poles
and zeros would be close to the actual values. A time domain method is chosen over a
frequency domain method as they typically produce stable estimates from input-output
time series for stable plants while least squares fit from frequency responses might produce
unstable estimates as well. In the next step, the poles of the estimated system are used
to construct Generalized Orthonormal Basis Functions (GOBFs). The actual system is
assumed to be a linear combination of these GOBFs, and their coefficients are determined
to minimize the L2 norm of the error between the actual frequency response measurements
and the estimated system’s frequency response. The SPR condition is converted to a finite
set of linear inequality constraints evaluated at various frequencies, which are incorporated
into the optimization problem. As this is a data-driven technique, the SPR constraint is
enforced at a finite set of frequencies, and the algorithm’s confidence level can be enhanced
by using a large set of frequency response data. A simple second order example will be
used to demonstrate the method and explain its shortcomings. Next, a non-convex method
utilizing only the frequency domain data with less stricter assumptions about the poles of
the system will be presented so that an estimate can be produced only from the frequency
response data without having to obtain time domain response data. We will demonstrate
this method with a practical example from HDD adaptive control problem [11].

Motivating Example

To further motivate the necessity of SPR identification, example of an adaptive control
algorithm from Multi Actuator DSA HDD from [11] is used. In a Multi Actuator DSA HDD
the most prominent disturbance is the the cross disturbance between from the track seeking
actuator to the track following actuator as both the actuators operate on the same pivot
timber. In this application, an adaptive controller C as shown in Fig. 7.1 is used to adapt to
the uncertainties in the estimates of the closed loop disturbance and compensate for them.

In fig. 7.1, uv2 represents the VCM voltage input of the track seeking actuator, Q repre-
sents the closed loop disturbance transfer function which is equal to the open loop disturbance
transfer function multiplied by the sensitivity transfer function S, ds represents the residual
disturbance signal after the feedback controller compensates for the disturbance, y represents
the actual output of the track following DSA, ro represents the runout, ros represents the
filtered runout through the sensitivity transfer function S, e represents the PES from the
track, Km represents the SISO feedback controller of micro PZT, Ĝm represents the esti-
mate of micro PZT, Rrv→y represents the transfer function from the reference signal of the
VCM rv to the output y and Rr→y represents the the transfer function from the reference to

the DSA r to the output y. Here Q̂ is the estimate of the closed loop disturbance transfer
function obtained designed from the frequency response measurements available from all the
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Figure 7.1: Simplified block diagram of the adaptive control structure for disturbance rejec-
tion in multi-actuator hard disk drives

plants in the system. In this control structure, block shown in blue is always close to 1 at all
frequencies (see [11]). Therefore the block diagram can be further simplified to the structure
shown in fig. 7.2.

The block diagram shown in fig.7.2 can be recognised to be using the parallel predictor
for the parameter adaptation algorithm (PAA). This adaptive control scheme has Q in the
primary path and Q̂ and C in the secondary path. For the stability of the adaptation
algorithm, it is essential that the ratio Q̂/Q is strictly positive real (SPR). The design of Q̂
has mostly been an iterative process and heuristic. The algorithms presented in this chapter
could be used as a handy tool to design filters such as Q̂ from the frequency response of
Q if we know a priori the structure of Q. The a priori knowledge of Q can be obtained
from the time series data of its inputs and output using any of the standard time domain
system identification techniques like OKID/ERA. Other techniques such as the equation
error method, ARMA or ARMAX models can also be used for the time series identification
method. Once the poles are obtained, we will only pick the stable poles of the system and
project the remaining into the unit circle and use them for constructing the filters. Next, a
complete system identification technique in frequency domain will be posed as a non-convex
optimization problem.



7.2. GENERALIZED ORTHONORMAL BASIS FUNCTIONS (GOBF) 99

Figure 7.2: Further simplified block diagram of the structure in fig.7.1

7.2 Generalized Orthonormal Basis Functions

(GOBF)

In this section a brief description of Generalized Orthonormal Basis Functions (GOBFs)
will be provided. Orthogonal functions were used in [46, 92] for the identification of a finite
sequence of expansion coefficients. The idea is based on the fact that every stable system can
be represented as a unique series expansion in terms of a pre-chosen basis. A representation
with finite number of terms can serve as an approximate model. Historically, the coefficients
of the series expansion have been estimated from the input-output time domain data, but
we will show that they can also be estimated from the frequency domain data.

Consider a stable discrete time system G(q) where q−1 is the delay operator (similar to
z−1 in z-domain but the term q is used in cases where we want to use it as an operator). Then
there exists a unique series expansion in terms of orthonormal basis function {fk(q)}k=1,2,...

according to [46, 92] such that

G(q) =
∞∑
k=1

akfk(q), (7.1)

where {ak}k=1,2,... are real coefficients. Since {fk(q)}k=1,2,... are orthonormal, they satisfy the
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following property

1

2π

∫ π
Ts

− π
Ts

fl(e
jωTs)fm(e

−jωTs)dω =

{
1 if l = m
0 if l ̸= m.

(7.2)

If we are choosing a finite number of basis functions, it is profitable to use filters that reflect
the dominant dynamics of the system i.e., the poles. The poles of the estimated system from
OKID/ERA will be used to build these filters. The most well known filters are Laguerre
filters for well damped poles and Kautz filters for underdamped poles.
Laguerre filters:

Lk(q, a) =

√
1− a2
q − a

[
1− aq
q − a

]k−1

, a ∈ R, |a| < 1, k ≥ 1.

Kautz filters:
for odd k

Ψk(q, a) =

√
1− c2(q − b)

q2 + b(c− 1)q − c

[
−cq2 + b(c− 1)q + 1

q2 + b(c− 1)q − c

] k−1
2

, (7.3)

for even k

Ψk(q, a) =

√
(1− c2)(1− b2)

q2 + b(c− 1)q − c

[
−cq2 + b(c− 1)q + 1

q2 + b(c− 1)q − c

] k−2
2

. (7.4)

b, c ∈ R, |b| < 1, |c| < 1, k ≥ 1.

Here a, b and c are the parameters that decide the location of the poles.

7.3 SPR System Identification as Convex Problem

with Prior Knowledge

In this section, utilizing the GOBFs, identification of the SPR transfer function will be
posed as an optimization problem. The problem that we are trying to solve here is to find
an estimate Ĝ of given frequency response of a transfer function G such that WĜ is SPR
for a given filter W . Note that if W = 1, then the estimate Ĝ would be an SPR estimate of

G and if W = 1
G
, then the estimate Ĝ would be such that Ĝ

G
is SPR, which is the necessary

condition in the motivating example of adaptive control.
Various texts provide various definitions of SPR transfer functions, so, to be consistent, we
present the definition from [30].
Definition: A discrete time transfer function G(q) is said to be SPR iff

1. G(q) is Schur,

2. Re[G(ejωTs)] > 0 ∀ ω ∈ [− π
Ts
, π
Ts
].
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Note that in discrete time, a transfer function can be SPR only if its relative degree is zero.
The first condition is automatically satisfied when we choose the GOBFs to have stable
poles. After choosing the GOBFs, we proceed with formulating the identification problem
as a convex optimization problem. The transfer function estimate can be approximated as
a linear combination of the GOBFs as

Ĝ(q) =

p∑
i=1

aifi(q) = θTΦ(q), (7.5)

where fi(q) is either a Laguerre or a Kautz filter and the constants ai are to be determined.
Let G(ejωtTs) denote the frequency response measurements of the system at N different
frequencies ωn for t = 1, ..., N . Ts denotes the sampling time of the system. The frequency
responses of the estimate can be found by evaluating at the available frequencies as

Ĝ(ejωtTs) =

p∑
i=1

aifi(e
jωtTs) = θTΦ(ejωtTs), (7.6)

where θ = [a1 a2 . . . ap]
T and Φ(q) = [f1(q) f2(q) . . . fp(q)]

T .

The SPR constraint onWĜ can be written as Re(WĜ) ≥ ϵ for ϵ > 0 (user defined tolerance)
at every available frequency. This can be transformed into a set of linear constraints in θ as
follows

W (ejωtTs)Ĝ(ejωtTs) +W ∗(ejωtTs)Ĝ(e−jωtTs) ≥ ϵ

=⇒
p∑

i=1

aiRe(W (ejωtTs)fi(e
jωtTs)) ≥ ϵ

=⇒ θTRe(W (ejωtTs)Φ(ejωtTs)) ≥ ϵ, (7.7)

which forms a set of linear inequality constraints.
The problem of finding θ can now be formulated as a convex quadratic program by minimizing
the squared distance between the estimate’s frequency response and the frequency response
of the actual plant with the SPR constraints formulated as linear constraints as follows

Ĝ∗ =argmin
Ĝ

N∑
t=1

||G(ejωtTs)− Ĝ(ejωtTs)||22

subject to Re(W (ejωtTs)Ĝ(ejωtTs)) ≥ ϵ, t = 1, . . . , N,

(7.8)

which from (7.5) is equivalent to

θ∗ =argmin
θ

p∑
t=1

||G(ejωtTs)− θTΦ(ejωtTs)||22

subject to θTRe(−W (ejωtTs)Φ(ejωtTs)) ≤ −ϵ, t = 1, . . . , N.

(7.9)
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7.4 SPR System Identification as a Non-Convex

Problem

In this section, identification of continuous time SPR transfer functions with relative degree
zero from the frequency response measurements of the system will be posed as a non-convex
optimization problem. To be consistent with the definitions of SPR transfer functions, we
present the definition from [30].
Definition: A continuous time transfer function G(s) is said to be positive real iff

1. G(s) is Hurwitz

2. Re[G(jω)] > 0 ∀ ω

Note that in continuous time, a proper transfer function can be SPR only if its relative
degree is at most one. But, in this chapter, we will restrict the identification problem to
systems with relative degree zero.
Given frequency response data of a continuous time plant G (we are using the same notation
as before to be consistent, but the discrete time plant is replaced by a continuous time plant),
we want to find an estimate Ĝ of G such that WĜ is SPR. Here W is a user defined transfer
function or numerically shaped weight. It can be seen that if W = 1, Ĝ becomes the SPR

estimate of G and if W = 1
G
, Ĝ becomes the estimate such that Ĝ

G
is SPR.

The optimization problem in it’s raw form can be expressed as follows

J∗ =min
b,a

N∑
t=1

||b(jωt)− a(jωt)G(jωt)||22

s.t a(s) Hurwitz

Re(W (jωt)
b(jωt)

a(jωt)
) > 0 ∀t = 1, . . . , N,

(7.10)

where Ĝ(s) = b(s)
a(s)

.
In the above optimization problem, the cost function J is motivated from the regular least
squares formulation of system identification from frequency domain data. For equally spaced
frequencies, this can be viewed as the equivalent of an H2 norm. Also the SPR constraints
have been evaluated only at a finite number of points instead of infinite points. This approx-
imation is motivated by the fact that as the number of frequency response measurements
increase, the confidence level of the fit increases.
Estimates can also be obtained from plant measurements obtained from multiple similar
plants (n plants) by slightly modifying the cost function as follows
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J∗ =min
b,a

N∑
t=1

n∑
i=1

||b(jωt)− a(jωt)Gi(jωt)||22

s.t a(s) Hurwitz

Re(Wi(jωt)
b(jωt)

a(jωt)
) > 0 ∀t = 1, . . . , N, ∀ i.

(7.11)

In the remainder of the section, we will recast the constraints to obtain a more suitable
form to be given to an optimization solver. Let us first consider the Hurwitz constraint.
The following theorem will be used to derive a sufficient condition for ensuring that a(s) is
Hurwitz.

Theorem 7. Let h(s) = a(s)
p(s)

for any chosen Hurwitz polynomial p(s). If ∀ω ,Re(h(jω)) > 0,

then a(s) is Hurwitz.

Proof. As p(s) is Hurwitz, the number of poles of h(s) on the open right half plane is 0. And
since Re(h(jω)) > 0 there will be no encirclements of the origin, which ensures that number
of zeros of h(s) on the open right half plane is 0 from Nyquist theorem. Therefore since a(s)
does not have any unstable zeros, it is Hurwitz.

This condition is a set of linear convex constraints when evaluated at a finite set of
frequencies. Any prior knowledge of a(s) can be used to construct p(s). But the knowledge
need not be as precise as in the previous convex formulation using GOBFs where the poles
are to be known somewhat precisely.
The second set of constraints will be recast into a set of linear inequality constraints and
nonlinear equality constraints.

Ĝ(s) =
b(s)

a(s)
=
b(s)a(−s)
a(s)(−s)

=
k(s)

a(s)a(−s)
, (7.12)

where k(s) = b(s)a(−s). Here, the denominator is always a positive quantity at all frequen-
cies. Hence the second set of constraints can be recast as

W (jωt)k(jωt) ≥ 0, (7.13a)

b(s)a(−s) = k(s). (7.13b)

The second equation in (7.13) is a set of nonlinear equality constraints obtained by comparing
the coefficients of polynomials b(s),a(s) and k(s).
Now the optimization problem in (7.10) with the recast constraints becomes

J∗ =min
b,a

N∑
t=1

||b(jωt)− a(jωt)G(jωt)||22

s.t Re(h(jωt)) > 0,∀ t = 1, ..., N,

b(s)a(−s) = k(s).

(7.14)
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The decision variables can be reduced in the case whenW = 1, i.e., for the problem of identi-
fying SPR transfer functions. The following theorem from [48] can be used for the reduction.

Theorem 8. Let G(s) = b(s)
a(s)

. Given a Hurwitz polynomial a(s) = sn+an−1s
n−1+ · · ·+a1s+

a0 = ρa(s)â of degree n ≥ 2, the set of polynomials b(s) = bns
n + bn−1s

n−1 + · · ·+ b1s+ b0 =
ρb(s)b̂ that make G(s) SPR can be parametrized using n + 1 real numbers k1, k2, . . . kn+1,
which are chosen such that

k(s) =
n+1∑
i=1

(−1)i−1s2(i−1)ki = ρk(s)(̂k)

k(jω) > 0,∀ω (7.15)

. Moreover b̂ = X−1k̂ where

X =



1 0 0 0 . . . 0
−an−2 an−1 −1 0 . . . 0
−an−4 an−3 −an−2 an−1 . . . 0

...
...

...
... . . .

...

a0 −a1 a2 −a3 . . .
...

0 0 −a0 a1 . . . −a2
0 0 0 0 . . . a0


(7.16)

The matrixX is obtained by comparing the powers on both sides of be(s)ae(s)−bo(s)ao(s) =
k(s). Here the subscript ′e′ denotes the even part and ′o′ denotes the odd part of the poly-
nomials.
The problem of identifying an SPR transfer function Ĝ translates to the problem of finding
a hurwitz a(s) and an even k(s) such that k(jω) > 0 ∀ ω, which can be expressed as follows

J∗ =min
â,k̂

N∑
t=1

||ρb(jωt)b̂(â, k̂)− ρa(jωt)âG(jωt)||22

subject to Re(h(jωt)) > 0,

k(jωt) > 0 t = 1, . . . , N,

(7.17)

which is equivalent to

J∗ =min
â,k̂

N∑
t=1

||ρb(jωt)X(â)−1k̂ − ρa(jωt)âG(jωt)||22

subject to Re(h(jωt)) > 0,

k(jωt) > 0 t = 1, . . . , N.

(7.18)

This is an optimization problem with a nonconvex objective and convex constraints. Simi-
larly, the optimization problem for the ratio to be SPR can also be posed.
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7.5 Simulations

In this section, the SPR identification algorithms presented in the previous section will be
demonstrated on a simple transfer function to demonstrate the and a second example to de-
sign filters for adaptive control that satisfy the SPR condition. The first example considers
the case when the actual transfer function is SPR and the second example considers the case
in which the actual transfer function is not SPR.

Example 1 using GOBFs: In this example, a simple second order discrete time transfer
function with a sampling time of 1 second will be considered which is SPR. The transfer
function corresponding to the frequency response considered is

G(q) =
q2 + 0.2q + 0.3

q2 + 0.4q + 0.5
. (7.19)

100 equally spaces frequencies from 0 to 3 rad/s were considered and the frequency responses
for simulation were obtained by evaluating the transfer function in (7.19) at those frequencies.
Kautz filters were built with c = −0.2 and b = −0.33. It can be seen that the values used for
b and c do not correspond to the actual poles of the system and yet the simulation results
will show that a good fit can be obtained. N was chosen to be 8 for the algorithm (this
would make the order of the estimated plant equal to 16). The Bode plot in Fig.7.3 and
Nyquist plot in Fig.7.4 show a close fit and that the SPR conditions are also being satisfied.

Despite a good fit, we can notice that for a second order transfer function, when the poles
are not accurate, we required a 16th order transfer function to get a good approximation.
This might not be acceptable in some cases where there is a limit on the computational
capabilities.

Example 2 using Non-Convex formulation: In this example, the filter Q̂ will be designed
for the adaptive control algorithm introduced in subsection 7.1 such that the SPR condition
on the ratio Q̂/Q is satisfied. We will consider 4 different plant frequency responses for the
closed loop disturbance cross transfer functions and try to obtain a filter that satisfies the
SPR condition for all of the frequency responses. The problem will be set up in the style of
Eq. (7.11) with the reformulated constraints following Eq. (7.11). p(s) = (s+ 1)7 and a 7th

order transfer function is estimated from the frequency response. The results are plotted in
Fig. 7.5 and Fig. 7.6. It can be seen that the estimate is close to the frequency responses
from Fig. 7.5 and that the estimate satisfies the SPR constrain i.e., the nyquist plot of the

ration Q̂
Q
is always on the right of the imaginary axis.

7.6 Conclusions

In this chapter, a data-driven technique for estimating strictly positive real transfer functions
from its frequency response with prior knowledge of the system is presented. The problem
is first posed as a convex optimization problem with a quadratic objective function and
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Figure 7.3: Frequency responses of the actual plant shown in Eq. (7.19) and the estimated
16th order plant.

linear constraints in which prior knowledge of the poles was assumed. A simple example
was provided on which simulations were done. Next, a non-convex algorithm was presented
in which the knowledge of the locations of the poles was relaxed to a large extent. This
algorithm was used to build SPR condition satisfying filters for adaptive feedorward control
of a multi actuator DSA HDD.
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Figure 7.4: Nyquist plot of the actual plant shown in (7.19) and the estimated 16th order
plant
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Figure 7.5: Frequency response plots of four transfer functions (shown by solid lines) and
their estimate (shown by the dotted line).
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Figure 7.6: Nyquist plots of ratio of the estimate with four transfer functions showing that
the estimate satisfies the SPR condition i.e., all the plots are on the right hand side of the
imaginary axis.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we utilized ideas from machine learning, estimation theory, control theory
and optimization to design controllers for two kinds of mechanical systems (a) fully actuated
mechanical systems with full state measurement evolving on smooth manifolds (b) flexible
manipulators inside HDDs with output measurements. The initial part of the dissertation
focused on building potential functions using neural networks and tuning the weights of
the neural network to shape them according to the needs of the task using gradient descent.
Neural networks were used as they are universal approximators and increasing the size of the
network can increase the optimality of potential functions for the task. Two kind of potential
functions, a conservative potential function and a dissipative potential function were built
using Input Convex Neural Networks (ICNNs). A methodology to obtain spring/elastic
forces/wrenches from the conservative potential functions and damping forces/wrenches from
dissipative potential functions was presented using ideas from differential geometry. The
elastic forces were nonlinear generalizations of proportional control terms and the damping
forces were nonlinear generalizations of the derivative terms in PD control. The method was
applied to systems evolving on some common manifolds like a sphere, the special orthogonal
group and the special euclidean group such as a satellite, an underwater vehicle and a robotic
manipulator.

The latter part of the dissertation focused on identification and robust control of a flex-
ible manipulator inside a HDD. Even though, these dynamical systems are LTI systems,
control design is extremely challenging due to the extreme amount of precision that is re-
quired inside a HDD. To achieve high precision, the control design was split into designing
a feedback controller to reject unknown disturbances and then a feedforward controller to
reject any expected but unwanted motions. Due to the variability of the plants inside HDDs,
the designed controller needs to be robust to plant variations. Since, designing a common
controller might be sub-optimal, a methodology to cluster LTI plants by defining the distance
between two stable LTI plants using H-norms was presented. Next, a data driven controller
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design methodology for designing a common robust controller for the available frequency
responses of plants within each cluster was presented. It was demonstrated that any user
defined shape can be used as a limit for shaping various important transfer functions like
the sensitivity transfer function, error to input transfer function etc. The robustness and
disturbance rejection capabilities of the controller were demonstrated.

Next, an introduction to feedforward design methodologies to further attenuate distur-
bances, by compensating for any known parts of the disturbance was presented. Feedforward
design schemes require a good model of the disturbance processes to predict the disturbances
and apply control to compensate for the expected motions. One of the challenges with HDDs
is that the measurements are corrupted by coloured noises and hence regular system iden-
tification might not estimate the systems well without introducing any bias. An extended
OKID/ERA technique was developed to learn stable LTI systems in the presence of colored
noises with applications to learning disturbance processes in HDDs. A more generalized
form of feedforward control is the adaptive feedforward control scheme in which we relax
the assumption that we know the parameters of the transfer function but we still attribute
a structure to the transfer function and learn the parameters of the system from the data.
This control scheme required an SPR condition on some filters used in the control loop for
stability. For ensuring stability of the adaptive feedforward control scheme, a system iden-
tification technique from the frequency response measurements to design filters that satisfy
the SPR condition was developed.

8.2 Future Work

In this section, we present directions in which the presented ideas in this dissertation can be
extended.

Output feedback control for systems on manifold: In this dissertation, the developed
feedback control for mechanical systems evolving on manifolds utilized the full configuration
and the velocities of the systems, but, in general the full configuration and velocities of the
system are not available and a linear/nonlinear function of these and the input is available
to us as the measurement. In such cases, a geometric estimator (typically nonlinear) must
be added to the loop to first estimate the configuration and the velocity of the system before
feeding them to the potential functions. Design of geometric estimators along with ensuring
stability with cascaded estimators is left for work in the future.

Contact Rich applications: The most interesting and important applications of Impedance
control of robotic manipulators are in the area of contact rich manipulation where the ma-
nipulators can interact smartly with the environment without damaging them. The design
of control laws utilizing the designed potential functions for contact rich manipulation is an
easy extension and is left for work in the near future.

Integration with barrier functions: The control law for the robotic manipulator was de-
signed such that the end effector’s configuration error follows a certain trajectory either for
trajectory tracking or set point tracking. Since the designed potential functions are unaware
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of the kinematic structure of the manipulator, the control law might command a certain
configuration that’s unreachable for the robot which means that the robot would get into
singular configurations i.e., were the jacobian becomes rank deficient. In such cases, it would
be a good idea to integrate the learning process with barrier functions, like [39], to ensure
that the robot does not get into singular configurations which would help in shaping the
potential functions such that the singular configurations are avoided.

Neural Lyapunov functions: The control laws designed for systems evolving on manifolds
were restricted to fully actuated systems and hence the lyapunov functions could be built
utilizing the designed potential functions which could prove the stability of the system. This
is not the case for underactuated systems and instead of designing these potential functions,
one could directly build a class of candidate lyapunov functions parameterized by neural
networks and then design a method to pick the parameters in such a way that the candidate
function becomes a lyapunov function. This of course is not very straightforward and needs
further study.

Clustering nonlinear and unstable LTI systems: A method for clustering stable LTI
systems was presented but these are only a small class of dynamical systems. An idea for
clustering unstable LTI systems is to design a common stabilizing controller for all of the
systems and then cluster the closed loop stable LTI plants. But, a common stabilizing
controller might not exist and one might have to resort to another method. The clustering
of Linear Parameter Varying (LPV) and nonlinear systems are even more challenging and
the study is left for future.

MIMO data drive robust control: HDDs have Multiple Input Single Output (MISO)
plants in which the control inputs from three different actuators (in case of a TSA system)
attached in parallel are used to move one read/write head and hence generates one PES
signal. It was shown that utilizing a H∞ constraint on at least one of the closed loop
transfer function generated a stabilizing data driven controller. This was restricted to MISO
systems and extending it to generic Multiple Input Multiple Output (MIMO) systems is left
for the future.

In conclusion, this dissertation has demonstrated the potential of integrating learning-
based methods with traditional control techniques to address complex control challenges in
mechanical systems. The proposed approaches pave the way for future research aimed at
developing more intelligent, adaptable, and robust control systems, ultimately contributing
to advancements in the field of control engineering.
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Appendix A

Derivations

A.1 Powers of Skew-Symmetric Matrices

Given a vector ω =

ω1

ω2

ω3

 ∈ R3, the corresponding skew-symmetric matrix ω̂ is defined as

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
Its square can be found using simple matrix multiplication as

ω̂2 = ω̂ · ω̂

=

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


=

−ω2
3 − ω2

2 ω1ω2 ω1ω3

ω1ω2 −ω2
3 − ω2

1 ω2ω3

ω1ω3 ω2ω3 −ω2
2 − ω2

1

 .
Notice that

ωωT =

ω1

ω2

ω3

 [
ω1 ω2 ω3

]
=

 ω2
1 ω1ω2 ω1ω3

ω1ω2 ω2
2 ω2ω3

ω1ω3 ω2ω3 ω2
3

 .
We can now compactly express ω̂2 in terms of the identity matrix I, the vector ω, and its
transpose ωT as

ω̂2 = −(ω2
1 + ω2

2 + ω2
3)I + ωωT .

Since ω2
1 + ω2

2 + ω2
3 = ∥ω∥22, we can write it even more compactly as

ω̂2 = −∥ω∥22I + ωωT . (A.1)
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Higher powers can be easily computed using the square of ω̂ with some basic algebra.
We can compute the cube as

ω̂3 = ω̂ · ω̂2

= ω̂ · (−∥ω∥22I + ωωT )

= −∥ω∥22ω̂ + ω̂ωωT (A.2)

Next, consider ω̂ω:

ω̂ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

ω1

ω2

ω3

 =

00
0


This is because ω̂ω = ω×ω = 0 for an three dimensional vector ω. Thus, the final expression
for ω̂3 can be obtained as

ω̂3 = −∥ω∥22ω̂. (A.3)

Similarly, we can express the higher powers of ω̂ either in terms of ω̂ or ω̂2 as follows

ω̂4 = ω̂ω̂3 = −∥ω∥22ω̂2 (A.4)

ω̂5 = ∥ω∥22ω̂3 = ∥ω∥42ω̂ (A.5)

ω̂6 = ∥ω∥42ω̂2 and so on. (A.6)

A.2 Necessary Lemmata

Lemma 1. For a rotation matrix R ∈ SO(3) and a vector ω ∈ R3,

(RT ω̂R)∨ = RTω. (A.7)

Proof. Given a vector v ∈ R3, the cross product of ω and v can be expressed using the hat
operator as:

ω × v = ω̂v

Now consider the following rotated versions of these vectors, RTω and RTv. The cross
product of these rotated vectors is

(RTω)× (RTv).

By the definition of the hat operator, we can write this cross product as:

(RTω)× (RTv) = R̂Tω(RTv).

On the other hand, we can use the original vectors and transform the result of their cross
product as

RT (ω × v) = RT (ω̂v) = RT ω̂v = RT ω̂RRTv = RT ω̂R(RTv).
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Thus, we have

R̂Tω(RTv) = RT ω̂R(RTv).

Since this equation holds for any vector RTv, we can conclude:

R̂Tω = RT ω̂R =⇒ (RT ω̂R)∨ = RTω.

Lemma 2. For a symmetric matrix A ∈ R3×3 and a skew-symmetric matrix b̂ ∈ R3×3,

tr[Ab̂] = 0. (A.8)

Proof. The trace of a product of two matrices can be written as

tr[Ab̂] = tr[b̂A].

Since b̂T = −b̂, we have
tr[b̂A] = tr[AT b̂T ].

Since A is symmetric, AT = A, and hence

tr[AT b̂T ] = tr[A(−b̂)] = −tr[Ab̂]

Combining the results, we get

tr[Ab̂] = −tr[Ab̂] =⇒ tr[Ab̂] = 0.

Lemma 3. For two vectors a, b ∈ R3 and their skew-symmetric counterparts â, b̂,

tr[âb̂] = −2(a · b). (A.9)

Proof. Given two vectors a =

a1a2
a3

 and b =

b1b2
b3

, the corresponding skew-symmetric ma-

trices â and b̂ are defined as

â =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 , b̂ =
 0 −b3 b2
b3 0 −b1
−b2 b1 0

 .
Their product âb̂ can be computed as

âb̂ =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 =

−a2b2 − a3b3 a2b1 a3b1
a3b2 −a1b1 − a3b3 a1b3
a2b3 a1b3 −a1b1 − a2b2

 .
The trace of this matrix is the sum of its diagonal elements. Therefore,

tr[âb̂] = (−a2b2− a3b3)+ (−a1b1− a3b3)+ (−a1b1− a2b2) = −2(a1b1+ a2b2+ a3b3) = −2a · b.
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Lemma 4. For a matrix A ∈ R3×3 and a vector b ∈ R3,

tr[Ab̂] = (AT − A)∨ · b. (A.10)

Proof. Given a matrix A and a vector b =

b1b2
b3

, the corresponding skew-symmetric matrix

b̂ is defined as

b̂ =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 .
Any matrix A can be decomposed into its symmetric and skew-symmetric parts:

A = Askew + Asym,

where Asym = 1
2
(A+AT ) is the symmetric part and Askew = 1

2
(A−AT ) is the skew-symmetric

part.
With the matrix A decomposed into its symmetric and skew-symmetric parts, we have

tr[Ab̂] = tr[(Asym + Askew)b̂] = tr[Asymb̂] + tr[Askewb̂].

From lemmata 2 and 3, we have

tr[Ab̂] = tr[Askewb̂] = (AT − A)∨ · b.

Lemma 5. Rodrigues’ formula: For ω̂ ∈ so(3), the exponential map is given by

expso(3)(ω̂) = I + sin(∥ω∥2)
ω̂

∥ω∥2
+ (1− cos(∥ω∥2)

ω̂2

∥ω∥22
(A.11)

Proof. Given a skew-symmetric matrix ω̂ ∈ so(3), the matrix exponential of ω̂ is defined
using (2.1) as

expso(3)(ω̂) = I + ω̂ +
ω̂2

2!
+
ω̂3

3!
+
ω̂4

4!
+ · · ·

We can group the terms involving ω̂ and ω̂2 as

expso(3)(ω̂) = I +

(
ω̂ − ω̂3

3!
+
ω̂5

5!
− · · ·

)
+

(
ω̂2

2!
− ω̂4

4!
+ · · ·

)
and using the powers of skew-symmetric matrices defined in section A.1, we can obtain the
following

expso(3)(ω̂) = I + ω̂

(
1− ∥ω∥

2
2

3!
+
∥ω∥42
5!
− · · ·

)
+ ω̂2

(
1

2!
− ∥ω∥

2
2

4!
+ · · ·

)
.
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Using the Taylor series expansions of sin(∥ω∥2) and cos(∥ω∥2) that

sin(∥ω∥2) = ∥ω∥2 −
∥ω∥32
3!

+
∥ω∥52
5!
− · · ·

and

cos(∥ω∥2) = 1− ∥ω∥
2
2

2!
+
∥ω∥42
4!
− · · · ,

we can obtain the exponential of ω̂ as

expso(3)(ω̂) = I + sin(∥ω∥2)
ω̂

∥ω∥2
+ (1− cos(∥ω∥2))

ω̂2

∥ω∥22
.

Lemma 6. Exponential of an element in se(3): For an element Γ(ξ) =

[
ω̂ v
0 0

]
∈ se(3),

where ω̂ ∈ so(3) and v ∈ R3, the exponential map is given by

expse(3)(Γ(ξ)) =

[
expso(3)(ω̂) A(ω)v

0 1

]
(A.12)

with

A(ω) = I +
1− cos(∥ω∥2)
∥ω∥22

ω̂ +
∥ω∥2 − sin(∥ω∥2)

∥ω∥32
ω̂2 (A.13)

Proof. The exponential map of Γ(ξ) using the matrix exponential definition can be written
as

expse(3)(Γ(ξ)) = I + Γ(ξ) +
Γ(ξ)2

2!
+

Γ(ξ)3

3!
+ · · · .

Substituting Γ(ξ), we have

expse(3)(Γ(ξ)) =

[
I 0
0 1

]
+

[
ω̂ v
0 0

]
+

1

2!

[
ω̂2 ω̂v
0 0

]
+

1

3!

[
ω̂3 ω̂2v
0 0

]
+ · · ·

=

[
expso(3)(ω̂)

∑∞
n=0

ω̂n

(n+1)!
v

0 1

]
.

Using the powers of skew-symmetric matrices defined in A.1 and the Taylor series expansions
of sin(∥ω∥2), cos(∥ω∥2), it can be seen that

A(ω) = I +
1− cos(∥ω∥2)
∥ω∥22

ω̂ +
∥ω∥2 − sin(∥ω∥2)

∥ω∥32
ω̂2 =

∞∑
n=0

ω̂n

(n+ 1)!
.

Therefore

expse(3)(Γ(ξ)) =

[
expso(3)(ω̂) A(ω)v

0 1

]
.
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