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Mechanistic Explanations in the Cognitive Sciences: Beyond Linear Storytelling

Alexander Hölken

Abstract
Over the last two decades, an increasing number of cognitive
scientists have turned to mechanistic explanatory frameworks
in their efforts to describe and explain cognitive phenomena.
Most mechanistic frameworks conceive of cognitive systems
as composed of functionally-individuated components whose
functions  are  narrowly  defined  by  their  ranges  of  possible
inputs  and  outputs,  as  well  as  their  relations  to  other
components  within  the  phenomenon-producing  mechanism.
In  this  paper,  I  argue  that  this  modular  view of  cognitive
mechanisms as linear systems is not applicable to biological
cognitive  systems,  and  offer  an  alternative  characterization
using the methodology of Dynamical Systems Theory.

Keywords: Dynamical Systems; Causation; Mechanisms

1. Introduction
Since  the  beginning  of  the  21st  century,  neo-mechanistic
theories have steadily gained popularity within the cognitive
sciences. These theories claim that the development and/or
functioning  of  cognitive  systems  should  be  explained  in
terms of mechanisms and their components. For instance, a
mechanistic  explanation of  how the visual  cortex  realizes
object recognition would divide that cortex into a variety of
sub-units  such  as  cortical  columns  and  retinotopic  maps,
and  explain  how  each  of  their  characteristic  functions
contributes to the recognition of a variety of visual objects.

Therefore, mechanistic explanations are successful when
they correctly individuate the components that a mechanism
consists of and give an accurate account of how it is realized
by interactions between these components. As components
may  themselves  be  smaller-scale  mechanisms  (Craver,
2007), this means that mechanistic theories typically make
reference to two different types of explanatory relations:

• Etiological  (same-scale)  relations between
components or mechanisms whose output serves as
input for another component or mechanism

• Constitutive  (inter-scale)  relations between
smaller-scale  components  or  mechanisms  whose
output  constitutes part  of  a  larger-scale
mechanism’s state or process

A simple example of an etiological  relation would be that
between the read/write head and the motor controlling the
tape reels in a Turing machine: Based on the output from the
read/write  head  (which  results  from  its  reading  of  the

symbol on the tape underneath it), the tape reel motor spins
either  clockwise  or  anti-clockwise,  moving  the  tape
underneath the read/write head either left or right. This, in
turn, presents the next symbol to the head. In this scenario,
the  read/write  head  and  the  motor  are  two  same-scale
systems interacting via one’s output being the others’ input.1

An example of a constitutive  relation would be the way in
which the  photoelectric sensor and the piece of graphite at
the  tip  of  the  read/write  head  contribute  to  its  ability  to
function as a device that can read and write symbols from a
tape. In other  words,  this function is  constituted by these
two,  smaller-scale  components,  standing in  certain  spatial
and causal relations with each other. As such, constitutive
relations  obtain  between  components  or  mechanisms  at
different scales.
If  these two types of  causal  relations were  the only ones
present  in  nature,  mechanistic  theories  would  provide
excellent  tools  for  explaining  how  any  system  comes  to
instantiate a certain function: We would be able to  neatly
decompose larger-scale mechanisms realizing more complex
functions (e.g. visual feature recognition) into smaller-scale
mechanisms  realizing  less  complex  ones  (e.g.  edge
detection).  This  decomposition  would  be  neat  precisely
when  the  components  of  a  given  mechanism  can  be
continuously individuated over time and  robustly identified
by  their  functional  contribution.  However,  while  neat
decomposition may be a successful strategy in the case of
many artificial systems such as grandfather clocks, it fails to
apply  to  more  complex  systems  of  the  types  found  in
chemistry and biology. 
In this paper, I argue that mechanistic explanations, insofar
as they refer to causal  relations between physical  systems
producing a phenomenon of interest  (POI),  fail to explain
the kinds of  inter-scale causal processes evident in a wide
range of natural systems. Starting with section 2, I discuss
some of the basic requirements for mechanistic explanations
and  how  they  are  rooted  in  the  assumption  that  causal
relations are linear in nature. In Section 3, I argue that this
assumption of  linear causality undermines their  ability  to
provide causal explanations of what I term Complex Natural

1For  the  sake  of  brevity,  this  description  is  simplified.  In
actuality, the output of the head to the motor is mediated by the
internal state  register,  and that of the motor to the head by the
contents  of  the  tape.  Nonetheless,  the  explanation-relevant
interactions  are  still  between  same-scale  systems  (the  tape,  the
head, the register and the motor), there are just more of them.
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Systems (CNS), followed in Section 4 by a comparison of
linear  and  nonlinear  causal-explanatory  strategies  in  an
example CNS. I close with a description of how nonlinear
theories of causality avoid these issues and why they may
serve as the foundation for establishing an updated version
of  dynamicism  in  the  cognitive  sciences,  providing  non-
mechanistic explanations of cognitive phenomena.

2. Mechanistic Explanations and Linearity
Few example cases highlight the supposed linear nature of
causality better than the classical philosophical example of
the light  switch, in which cause  (flicking the switch)  and
effect  (the  light  turning  on)  are  connected  by  a  literal
(power)  line.  Using  Fig.  1,  which  shows  a  simplified
depiction of the linear relation between the flicking of the
switch and the light’s turning on, we can understand what a
mechanistic  explanation of  this causal  process  could look
like: If we wanted to explain why, for instance, flicking the
switch  causes  the  light  to  turn  on,  we could  refer  to  the
system consisting of  the switch,  the electrical  circuit,  the
power source, and the light bulb, as a mechanism with two
possible outputs (light on / light off). Which of these states
occurs is then determined by two factors: The  connections
between the mechanism’s components, called its  structure,
and the internal states of these components, or  subsystems.
Accordingly, manipulation of the two relations mentioned in
Ch. 1 changes the light bulb’s state: Flipping the switch up
or down affects an etiological relation, since it serves as an
input to the electrical  wire, causing it to supply or cut off
energy  to  the  bulb.  However,  the state  of  the switch can
only be causally efficacious with regards to the light bulb if
the power source actually produces power, for instance by
converting the energy from photons into electricity using the
photovoltaic effect. Manipulating this process would affect
the constitutive relation between the sub-components of the
power source (a solar cell) and the functional contribution of
that power source to the overall mechanism.

Fig.  1:  Simplified  example  of  a  light  circuit  system.  Mechanistic
explanations of why the light turns on when the switch is flicked identify
a  set  of  causally-relevant  subsystems  based  on  their functional
contribution to a causal chain ending with the light turning on. Thus, the
state  of  the  light  does  not  depend  on  the  subsystems’  actual  internal
states, but on abstract relations between hypothesized functional states.

The  light  switch  example  showcases  the  minimum
requirements  for  causal  processes  as  they  appear  in
mechanistic  explanations,  and  linear  causal  explanations
more generally. What makes a causal process  linear is the
fact that its development over time is determined completely
by the two factors  mentioned above: The structure of the
system that realizes it (how the components of the electrical
circuit are interconnected) and the states of the subsystems
that constitute that system (the states of the switch, the bulb,
and  the  power  source).  In  other  words,  knowing  the
system’s structure and the states of its subsystems, we can
explain how etiological interactions between its subsystems
and constitutive interactions between subsystem and whole-
system states contribute to the light bulb’s turning on. 

Linear causal explanations thus depend on the assumption
that subsystems act as modules: They causally contribute to
realizing the larger-scale POI by  producing certain outputs
based on the input  they receive  and their  current  internal
state – a process which can be identified with a causal chain
of  events  (Fig.  2). Thus,  when  presented  with  a  certain
input, the subsystem in question will always develop in the
same way, independently of how the other subsystems, or
the system as a whole, develops.

Switch flipped → Switch closes circuit → Light bulb supplied with energy

 
“Flicking the light switch”

Fig. 2: Example of a linear causal interpretation of the process of flicking
the  light  switch. This  process  is  composed of  cause-effect  couples  that
follow each other in linear time, which can be decomposed further to reveal
how each sub-process contributes to constituting the overall causal chain.

Treating  subsystems  as  modules  has  two  practical
upshots:  First,  it  defines  the etiological  relations  between
subsystems not in terms of their actual internal states, but in
terms of their functional relations: Sets of subsystems states
are seen as interchangeable insofar as they realize the same
function relative to other subsystems (i.e. mapping the same
inputs  to  the  same outputs).  This  decouples  linear  causal
explanations from the concrete states of a given subsystem,
instead  giving explanatory weight  to  the  function
supposedly realized by that  subsystem as part  of a causal
chain.  In  the  case  of  mechanistic  explanations,  such
functional  relations  even  lead  to  the  interpretation  of
different  system  developments  in  terms  of normative
aspects  such as  system malfunctions which  can  be  traced
down  to  functional  defects in  one  or  more  subsystems.
Second, the modular  view affects  how we experimentally
manipulate  (sub)system  states in  order  to arrive  at  causal
explanations:  Since  subsystem  states  are  assumed  to  be
independent  of those of other  subsystems (aside from the
input states) and the system as a whole,  we can explain a
system’s development  sufficiently  by  decomposing it  into
its subsystems and manipulating their inputs individually to
find  out  their  range  of  possible  states.  Knowledge  about
each subsystem’s range of states, coupled with knowledge
about  the  way that  subsystems are  structurally  related,  is
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then sufficient  for explaining any possible etiological  and
constitutive relation, if both of them are assumed to remain
stable over time.2

Together,  these analyses  form the foundation for  linear
causal explanations: Such explanatory strategies first define
a system realizing the phenomenon of interest (POI), which
is  then  neatly  decomposed into  smaller-scale  subsystems.
Their contribution to causing the POI is then explained by
identifying them with functionally-defined modules within a
causal  chain that  may further  be subdivided  into simpler
components  with a  more  limited range of  possible states.
Explaining a given module’s causal contribution to a POI is
then simply a matter of locating it within a causal chain and,
if needed, “zooming in” on its subsystems in order to see
how their outputs result from the inputs they received, given
their  internal  states and functional relations (Kellenberger,
2004). This explanatory strategy is linear in nature since it
assumes that all subsystems  causally interact on (roughly)
the same spatiotemporal scale – in other words, it depends
on  the  condition  that  actual  causal  processes  occurring
between subsystems can be  understood as  following each
other in linear time, are not happening simultaneously, and
that temporal dynamics (besides mere succession) play no
causal  role  in  their  development  (Port  &  Van  Gelder,
1995).3 As  I  argue  in  the  following  section,  these
assumptions are often unfounded in the case of CNS.

3. Limits of Linear Causal Explanations
While the assumption of linear causation may be useful for
modeling purposes, or in cases where the development of a
complex system needs to merely be approximately known, it
is  insufficient  for  a  metaphysics  of  causation  that  can
support  causal  explanations in  Complex Natural  Systems.
To see why this is the case, we need to look at some of the
metaphysical presuppositions of linear causal explanations.
We can extract these from the example of the light switch:

• Structural  Fixation:  Within  a  system realizing  a
POI,  both  the  ranges  of  possible  states  of  its
subsystems  and  the  structural  relations  between
subsystems remain  fixed during the explanatorily
relevant time period (den Hartigh et al., 2017).

• Temporal  Linearity:  An  effect  cannot  causally
influence  its  preceding  cause:  Causation  always
proceeds forwards in time along a causal chain, but
never backwards (Kim, 1999).

2Den Hartigh et  al.  (2017)  call  this the  “control of variables”
strategy. They argue that it does not succeed in explaining causal
relations in  anything but  abstract  models  of  natural  systems,  as
both etiological and constitutive relations are highly adaptive and
change over time within physically-instantiated natural systems.

3Of  course,  linear  causal  explanations  may  include  the
possibility for multiple different outcomes, e.g. via acyclic graphs
(Glymour,  2001).  However,  such  models  are  still  linear  in  the
mathematical sense, since they do not allow for the simultaneous
realization of  multiple  branches or  feedback between subsystem
processes across different temporal scales.

• Scale Specificity: States and processes at different
spatiotemporal scales do not causally interact with
each  other.  Smaller-scale  events,  e.g.  the  solar
cell’s  absorption  of  photons,  do  not  cause,  but
constitute larger-scale ones (Glennan, 1996).

These three axioms of linearity jointly restrict the notion
of causal  processes  to etiological  relations only – that  is,
interactions between systems occurring in linear succession
and (roughly) at the same spatiotemporal scale. Thus, most
mechanistic  explanations  referring  to  causal  interactions
between  components  assume  or  imply  the  existence  of
linear  causal  relations  between  them.  In  addition,  they
conceive of constitutive relations as non-causal, completely
eliminating  the  possibility  of  causal  processes  occurring
between components at different scales (Krickel, 2018).

However,  actual  physical  systems rarely fulfill  all  three
axioms  of  linearity:  For  instance,  scale  specificity  is  a
feature of linear systems only (as defined above), and thus
not  found  in  nonlinear  systems  which  abound  in  nature
(Bishop, 2008, 2012). Accordingly, linear causal processes
understood in terms of etiological relations may, at best, act
as abstractions or approximations of these nonlinear systems
(Den Hartigh et al., 2017), on pain of failing to sufficiently
explain – that  is, allowing us to describe,  manipulate and
predict – POIs in Complex Natural Systems (Lamb, 2015). 

For  an  illustration  of  the  explanatory  shortcomings  of
linear  causal  explanations,  we  can  turn  to  biological
systems, many of which do not display structural  fixation
and scale specificity. The Central Nervous System is a CNS
in which nonlinear  organizational  features  are particularly
prominent: It  frequently exhibits both structural  adaptivity
(from  synaptic  rewiring  to  changes  in  functional  and
effective  connectivity)  and  a  variety  of  electro-chemical
processes  simultaneously  occurring  at  vastly  different
spatiotemporal  scales,  from  those  of  a  single  neuron  to
whole-cortex  oscillatory  activity  (Buzsáki,  2006).  The
structure of such systems does not remain fixed over time,
as the relations between their subsystems constantly adapt to
both changing states of other subsystems and of the larger-
scale  system  they  co-constitute.  Rather  than  remaining
static, the structure of these systems is itself is a parameter
for  their  development,  which  renders  linear  causal
explanations completely unsuited for explaining many of the
phenomena they exhibit. In the following section, I refer to
neural populations as a paradigm example of a CNS whose
structure is a parameter for its development and argue for
why we should abandon linear and mechanistic explanations
in our effort to understand the complex, multi-scale causal
relations that obtain in systems of this kind.

4. Neural Populations: A Case Study
The term  neural population describes  a group of neurons
whose  receptive  fields  correspond  to  sections  along  the
same feature dimension. For instance, the activity of large
groups  of  neurons  in  the  deep  layer  of  the  superior
colliculus corresponds to focal points within the visual field,
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with each  neuron’s  tuning curve  being “centered”  around
one two-dimensional  coordinate  specifying  a  point  in  the
visual  field.  Together,  these  neurons  realize  a  retinotopic
map of  focal  targets,  directing  eye movements  towards  a
particular point in visual space (Schöner & Spencer, 2016,
p.  64f.). At  first  glance,  this  neural  population  may  be
considered  an  ideal  candidate  for  a  linear  causal
explanation:  It  receives  a  series  of  inputs  from upstream
areas  and,  based  on  the  connectivity  of  its  subsystems
(neurons,  interpreted  as  mechanisms),  produces  an output
that is  independent  of any other system state.  Taking this
reasoning  to  its  extremes,  we could  expect  to  be  able  to
manipulate this population independently from other areas
of the brain by providing it the correct kind of input, and
reliably receive the same output (a focal target) in turn. 

However,  what we find in actuality is a different story:
The neurons that constitute the entire population do not act
as functionally-individuated mechanisms, with each of them
playing the part of a module, situated within a linear causal
chain. If this were the case, the causal contribution of each
neuron to the overall mechanism of foveation would be to
indicate something akin to how closely its level of activation
aligns  with  the  location  of  the  focal  target –  that  is,  its
causal role could be narrowly defined in functional terms.
Accordingly,  we  would  expect  that  a  targeted  chemical
deactivation of such a neuron would make the population
unable to direct the eyes to focus on that location in visual
space. However, as shown by  Lee et al. (1988), this is not
the case – the deactivation of single neurons of the superior
colliculus in monkeys did not impair foveation of the areas
that these neurons were most attuned to (Fig. 3b). What’s
more, if a focal target was shown whose encoded location in
the population was in proximity to the deactivated neurons,
the  resulting  eye  movements  were  biased  away from the
location coded for by the deactivated neurons – even though
the  neurons  whose  tuning  curves  corresponded  most
strongly to the focal target were completely intact (Fig. 3c).

What explains these findings is the fact that the location
of the focal targets is not encoded by the activity of single
neurons, but by activity patterns within the population as a
whole:  The  activity  of  each  neuron  contributes  to  the
creation of a topological space in which the region with the
overall highest amount of activity defines the location of the
focal target.4 Therefore,  an adequate causal explanation of
how this population in the superior colliculus contributes to
eye movements  should not conceive  of  single neurons as
modules  with  narrowly-defined  functions (rendering  them
merely  functionally  interchangeable),  but  as broadly
interchangeable elements  of  a  larger-scale  system  which
realizes a topological space within which the focal  target
locations are defined. 

4Dynamical Systems Theory refers to such regions as attractors,
because they bias system development towards states within their
vicinity.  In neural  systems, attractors and topological spaces are
often transient,  since they result  from the  distribution of neural
activity throughout  the  population,  not  from  the  structural
connections between neurons alone.

Fig. 3: Results of experiments by Lee at al. (1988), adapted by
Schöner & Spencer (2016). On the left, the motor map realized
by a population within the superior colliculus is shown, with the
location of the deactivated neurons marked by a blue dot and the
approximate  region  of  neuronal  activity  elicited  by  the  target
stimulus shown by the red circle. (a) shows a condition in which
no deactivation occurred, while in (b) and (c), neurons at location
“A” were deactivated. On the right, the resulting eye movements
are displayed as vectors, showcasing no impairment in condition
(b) and a shift away from the deactivated area in (c).

Recall from section 2 that functional interchangeability is a
direct result  of the way in which mechanistic  frameworks
explain  how  mechanisms  realize  POI  –  namely  by  the
characteristic  functional  contributions  of  the  individual
subsystems that make up the mechanism. Consequently, the
function  of  the  mechanism  (bringing  about  the  POI)  is
supposed  to  causally  result from  the  functions  of  its
subsystems.  While  this  doesn’t  mean  that  the
malfunctioning or deactivation of a  single subsystem must
necessarily  cause  the  POI-realizing  mechanism  to  fail,  it
does  make  mechanisms  highly  subsystem-dependent.  In
other words,  if neural  populations such as that  within the
superior  colliculus were  causal  mechanisms,  we  would
expect to be able to cause their functional breakdown with a
small number of well-targeted interventions on functionally
vital subsystems. However, what we see is a very different
picture: Interventions such as the deactivation of groups of
neurons or the repeated exposure to multisensory stimuli do
not  lead  to  a  breakdown  of  function,  but  to  structural
adaptation (Yu et al., 2009). This is precisely a result of the
fact that neural populations, like many other CNS, are not
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mechanisms  defined  by  static  structures  and  subsystems
whose  ranges  of  possible  states  remain  fixed,  but  self-
organizing  systems whose  subsystems  jointly  realize  a
dynamic structure whose topology results from the various
constraints placed on it  (Juarrero, 2023). The remainder of
this  paper  clarifies  this  notion  of  a  constraint-shaped
topology  and  why  it  is  often  a  part  of  successful
explanations of phenomena in Complex Natural Systems.

5. Causal Explanations in CNS
As  we  have  seen  in  the  previous  section,  mechanistic
approaches  can,  at  least  sometimes,  be  insufficient  to
explain a POI. In this section, I argue that this  explanatory
impotence of mechanistic explanations is the  rule, not the
exception, in the case of Complex Natural Systems. Instead
of referring to mechanisms as explanatorily relevant entities,
causal explanations in CNS should put topologies front and
center,  unless  there  are  good  reasons  to  look  for
alternatives.5 Topologies, understood in this general sense,
define biases in a landscape of possible system states, where
states  that  the  system  is  more  likely  to  exhibit  act  as
attractors (valleys) for nearby states,  while states that the
system is unlikely to exhibit act as repellors (hills).

Generally  speaking,  mechanistic  explanations  fail  to
explain a POI adequately if the system realizing that POI is
not constituted by modular subsystems fulfilling a narrow
range  of  functions,  but  by  broadly  interchangeable
subsystems  that  self-organize  into  transient  assemblies
developing in a way that allows the overall system to adapt
to external constraints (Sornette, 2006). For the purpose of
this paper, we can understand these transient assemblies as
groups of broadly interchangeable subsystems that  entrain
the development of other subsystems for as long as some
external constraint needs to be satisfied  (Anderson, 2015).
Ecological  niches  serve  as  an  accessible  example  of  this
process: Prey availability is an extremely relevant constraint
for the behavior of a predator population within a specific
ecological niche. If prey becomes rare, the spatio-temporal
patterns  of  its  occurrence  act  as  a  constraint  on  predator
behavior – for instance, whether hunting occurs during the
night or in packs. Since a lack of prey leads to individuals
dying  from  starvation,  the  behavior  of  a  subset  of
individuals – namely those that survive – gradually comes to
dominate  the  behavior  of  the  predator  population  as  a
whole.  This  situation  persists  until  either  the  external
constraint is relaxed (prey population increases) or another
constraint becomes more dominant (e.g. changes in the local
climate).  As  mentioned  in  section  3,  Complex  Natural

5Some  empirical  questions  about  POI  in  Complex  Natural
Systems  may  be  best  addressed  by  mechanistic  explanations.
However, these questions are often about general features of CNS,
such as how neurons  in general are able to generate spike trains
based  on  their  membrane  potential.  In  contrast,  mechanistic
explanations  often  prove  inadequate  for  explaining  concrete
instantiations of causal relations within such systems – e.g. why
eliciting this membrane potential within a certain neuron led to that
particular response pattern (cf. Beer, 2023).

Systems can also respond to a constraint by changing their
internal structure or the range of states of their subsystems.
In the case of a predator population, this might be realized
by individuals adapting their behavior, e.g. by spending less
energy on anything but hunting, or by the relations between
individuals changing, e.g. a shift from individual hunting to
pack hunting (Post et al., 1999; Fryxell et al., 2007). 

The phenomenon of small groups of subsystems coming
to  dominate  overall  system  development  for  a  limited
amount of time is a result of the ability of a CNS to exhibit
phase transitions between different regimes (characteristic
patterns  of  development).  Despite  phase  transitions  being
ubiquitous  in  nature,  mechanistic  explanations  cannot
account  for  the  concrete  dynamics  of  these  transitions
within a physical system – at most, mechanisms can account
for  the  multistability  of  such  systems  in  general,  by
allowing  that  individual  subsystems  may  realize  multiple
functions.  However,  questions  about  which  precise
conditions allow for the phase transition to occur,  how it
plays out and how it can be manipulated remain unanswered
within  mechanistic  explanations  that  do  not  take  the
system’s  continuous temporal  dynamics into account.  For
instance,  investigating  the  predator  population  as  a
dynamical system, we can answer questions such as “Why
did these wolves start pack hunting under these conditions?”
with  reference  to  the  relevant  causal  topology  of  that
system,  which  in  this  case  is  realized  by  the  behavior
patterns of individual wolves within the population.

Conversely, the predator system shows no evidence of a
causal  chain,  constituted  by  functionally-individuated
subsystems: No individual wolf realizes a narrowly-defined
function as part of a causal chain realizing a mechanism, as
in the light switch example. Rather, the development of the
population as a whole emerges from the behavioral patterns
of the individuals that constitute it, with the term emergence
referring to the way in which subsystems realize a  causal
topology that is sensitive to  a different range of states than
its  constitutive  subsystems,  and  whose  development
causally  affects  these  subsystems  in  turn  (Haken,  1990).
Thus, emergence can be defined as the ongoing process by
which whole-system states, such as the hunting strategy of a
wolf pack, are realized by, and in turn have an effect on,
relations  between  the  states  and  processes  of  their
subsystems.  These  relations  characterize  precisely  the
structural  adaptivity that  linear causal  explanations cannot
account for.  Nonlinear approaches, on the other hand, can
explain how whole-system states  (e.g. a  hunting strategy)
are  both  constituted  by  individual  behaviors,  and  play  a
unique  causal  (and  thus  explanatory)  role  that  individual
behaviors do not.

The final nail in the coffin of linear causal explanations
comes from the multitude of spatiotemporal scales at which
CNS develop. In the case of the predator population, we saw
that shifts in individual behaviors can cause changes on the
level  of the whole population, e.g.  the hunting strategies.
However, this causal process is gradual, both on the level of
the  individual  and  that  of  the  entire  population.  It  is
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important to note that the rate at which these processes take
place, as well as their  spatial extension, differs depending
on which system instantiates them – the individual or the
population.  Generally  speaking,  systems  extended  over
larger spatial scales (e.g. populations) develop more slowly
than  smaller-scale  systems  (e.g.  individuals).  This  means
that  the  development  of  systems  and  their  constituent
subsystems  often  occur  simultaneously,  but  on  different
spatiotemporal  scales.  This  results  in  the  complete
breakdown of the strict distinction between etiological and
constitutive relations – it simply makes no sense to think of
the relation between larger-scale CNS and their subsystems
as one of asymmetric constitution when there is no single,
universal spatiotemporal scale, relative to which changes to
subsystem  states  may  elicit  changes  in  the  larger-scale
system’s structure (Kiverstein & Kirchhoff, 2023). Instead,
a system’s causally-relevant states and processes occur on a
timescale  whose  resolution  is  relative  to  the  temporal
development of that very system.

We can  think  of  this  temporal  relativity  in  terms  of  a
“perspective” of the system of interest: From the individual
wolf’s “perspective”, the change of the population’s hunting
strategy doesn’t occur as either a singular cause – a sudden
change  in  how  all  other  wolves  hunt  –  nor  a  gradual,
continuous  development.  Rather,  the  change  in  hunting
strategy (a population-wide process) is causally efficacious
on the level of the individual via a series of events that, from
the  perspective  of  the  individual,  seem  unrelated  or
randomly patterned  in  time and space.  Contrast  this  with
how, from the “perspective” of the light bulb, changes of
system-wide states or processes, such as the structure of the
electrical  circuit,  occur  either  at  singular  points  in  time
(such as when the circuit  is  interrupted)  or  as continuous
changes over time (such as decreasing voltage due to wire
corrosion). This is because most aspects of the light switch
system can be adequately explained by reference to unique
cause-effect  relationships  that  constitute  part  of  a  causal
chain  between  the  different  components  of  the  system.
Outputs of these components act as efficient causes on other
components  and  can  only  lead  to  two  kinds  of  results:
Function  or  malfunction,  defined  in  relation  to  the
component’s  functional  role  within  the  mechanism.
However, if a subsystem is not a functionally-individuated
part  of  a  mechanism,  it  is  not  constrained  to  a  role  of
providing functionally-defined outputs based on inputs from
other subsystems – in short, it cannot be seen as a modular
component of a mechanism. Such subsystems do not fulfill
narrowly-defined functional roles, acting as efficient causes
like cogs in a man-made mechanism. Instead, they jointly
realize a causal topology that biases the development of the
whole system, which in turn affects their own development. 

This  kind  of  system-to-subsystem  influence  can  be
understood  in  terms  of teleodynamics (Deacon  &
Koutroufinis,  2014) or enabling  constraints (Juarrero,
1999), which affect the population’s causal topology, thus
biasing  the  range  of  possible  states  of  each  individual
subsystem. Here, we see precisely the kind of variability of

system  structure  and  the  subsystems’  ranges  of  internal
states that are central to nonlinear systems, exemplified by
topological changes within the larger-scale system and the
individual  subsystems  respectively.  While  such  topology-
based explanatory frameworks are still fairly novel (Kelso,
1995;  Varela  et  al.,  2001), they  have  seen  increased
application in both biology and the cognitive sciences since
the dawn of the new century.  A striking example of  this
framework in use can be found in DiFrisco & Jaeger (2020),
who  explicitly  refer  to  topological  regimes  as  causally
efficacious  entities  that  constrain  the  range  of  possible
phenotypes realizable by a single gene.

Theoretical  approaches such  as  these,  which
conceptualize  topological  features  as  causally  efficacious
factors  for  system development,  have  slowly but  steadily
gained popularity over the past few years.  Similar to how
neo-mechanism built on and reformed many of the elements
of 20th-century mechanistic approaches to explanation and
science,  perhaps  the  theoretical  and  empirical  research
projects  which  make  reference to causally  efficacious
topologies  could  be  seen  as  heralds  of  a  kind  of  neo-
dynamicism, which aims to put into practice and improve on
many  of  the  mathematical  and  conceptual  considerations
made  in  the  wake  of  then  cutting-edge  research  on
Dynamical Systems in the 1980s and 90s. While the initial
hype  around  dynamical  approaches  has  largely  subsided,
recent  developments  in various scientific fields concerned
with living organisms have brought the issue of  causation
back to the forefront of many scientific research paradigms
(Ladyman & Ross,  2009;  Falkenburg  & Morrison,  2015;
Nicholson  & Dupré,  2018).  It  is  precisely  this  issue  that
dynamical accounts are furnished to address in a  way that
other  approaches  cannot  –  precisely because  they are  not
limited  to  single-scale,  linear  explanations  of  causal
relations. An in-depth engagement with the unique type of
causality  present  in  Complex  Natural  Systems  will  be
required to discern to which degree topological explanations
may  replace  widely-accepted  mechanistic  ones  in  such
systems, and whether the two approaches may, in fact, be
commensurable (see for instance Huneman, 2018).

6. Conclusion
In  this  paper,  I  argued  that  mechanistic  explanations  of
empirical  POI necessarily  make reference  to  functionally-
individuated  components  (subsystems)  whose  interaction
forms part of a causal chain. I then argued that this picture is
incomplete at best when it comes to explaining phenomena
in  Complex  Natural  Systems,  whose  subsystems  are  not
functionally-individuated,  but  rather  self-organize  into
assemblies  that  maintain,  and  are  in  turn  affected  by,  a
system-wide  topology  that  serves  to  ensure  system
coherence in the face of a varied set of constraints. Finally, I
argued that this topology should be understood as a causally
efficacious  entity  in  its  own  right,  and  that  such  a
conceptualization  could  serve  as  the  basis  for  a  neo-
dynamicist  approach  to  explanation  that  can  provide  a
realistic alternative to currently-popular mechanistic ones.
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