
UC San Diego
Technical Reports

Title
Selecting tile shape for minimal execution time

Permalink
https://escholarship.org/uc/item/7x13n4n6

Authors
Hogstedt, Karin
Carter, Larry
Ferrante, Jeanne

Publication Date
1999-05-20
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7x13n4n6
https://escholarship.org
http://www.cdlib.org/


Selecting tile shape for minimal execution time

Karin H�ogstedt

�

, Larry Carter

y

, Jeanne Ferrante

z

fhogstedt, carter, ferranteg@cs.ucsd.edu

Department of Computer Science and Engineering, UCSD

9500 Gilman Drive, La Jolla, CA 92093-0114

Abstract

Many computationally-intensive programs, such as those for di�erential equations, spatial interpolation,

and dynamic programming, spend a large portion of their execution time in multiply-nested loops which have

a regular stencil of data dependences. Tiling is a well-known optimization that improves performance on such

loops, particularly for computers with a multi-levelled hierarchy of parallelism and memory.

Most previous work on tiling restricts the tile shape to be rectangular. Our previous work and its extension

by Desprez, Dongarra, Rastello and Robert showed that for doubly nested loops, using parallelograms can

improve parallel execution time by decreasing the idle time, the time that a processor spends waiting for

data or synchronization. In this technical report, we extend that work to more deeply nested loops, as well

as to more complex loop bounds. We introduce a model which allows us to demonstrate the equivalence

in complexity of linear programming and determining the execution time of a tiling in the model. We then

identify a sub-class of these loops that constitute rectilinear iteration spaces for which we derive a closed form

formula for their execution time. This formula can be used by a compiler to predict the execution time of a

loop nest. We then derive the tile shape that minimizes this formula.

Using the duality property of linear programming, we also study how the longest path of dependent tiles

within a rectilinear iteration space changes with the tile shape. Finally, we observe that the execution time

of a rectilinear iteration space depends on the slope of only four of the facets de�ning the iteration space,

independent of its dimensionality.

1 Introduction

Many computationally intensive programs spend a high percentage of their execution time in nested loops that

have a regular stencil of data dependences between the iterations. Obtaining high performance on such loops

requires both data locality and e�cient use of parallel resources. Tiling [Wol87, RAP87, IT88, Wol89, RS91] is a

well-known optimization that is e�ective at achieving both goals. Conceptually, given a loop nest, tiling operates

on the iteration space de�ned by that loop nest. For a loop nest of depth K, the iteration space is a polytope in

K-dimensional space. The tilings we consider partition this space into a collection of parallelepipeds which are

then scheduled for atomic execution. Tiling enables data locality when the tile size ensures that the necessary

data �t in a given level of the memory hierarchy.

Tiling also enables parallelization since independent tiles can simultaneously be executed on di�erent processors.

The data dependences [Wol96] between the iterations impose dependences between the tiles. If the tile shape

1

is

chosen such that the angle between the extreme vectors of the iteration dependences [IT88] are included within

the angle of the tile (see Figure 1), then we are guaranteed no dependence cycles between the tiles [IT88], and

the tiling is hence legal.

Apart from a�ecting the legality of the tiling, the shape also a�ects the execution time. Consider the iteration

space in Figure 2(a). The iteration dependences are such that both the tilings in Figure 2(b) and (c) are legal

�

Partly supported by the Hans Werth�en Foundation, Swedish Royal Academy of Engineering Sciences.

y

Also at San Diego Supercomputing Center.

z

This work was partly supported by NSF grant CCR-9504150 and IBM.

1

\Shape" is an informal notion referring to the coe�cients of the the linear constraints that de�ne the tile boundaries.

1



(a) (b)

Figure 1: Examples of (a) an illegal and (b) a legal tiling. The tiling in (a) is illegal since there is a dependence cycle

between the two shaded tiles, due to the dependence vectors in bold. In (b) the slope of the tiling is chosen small enough so

that the angle between the extreme vectors of the iteration dependences are included within the angle of the tile. As shown

in [IT88], there are therefore no cycles between the tiles.

(a) (b) (c)

Figure 2: Examples of two legal tilings ((b) and (c)) of the iteration space in (a). The iteration dependence stencil is

shown in (a) and repeated across all the iterations. The iteration dependences result in the tile dependences shown in (b)

and (c). Assume that the execution time of a full tile, and the amount of communication necessary between processors,

are the same in the two tilings. Then the longest paths of dependent tiles (shaded tiles) in (b) is much longer than in (c).

Assuming the model described in Section 3, the tiling in (c) therefore yields a better parallel execution time than the one

in (b).

tilings. In the latter however, the longest path of dependent tiles is much shorter, and therefore executes in a

shorter amount of time.

2

In this technical report, we explore the relationship between the shape of the tiles and

the execution time. A summary of the contributions of this technical report follows.

� We introduce the notions of initial and �nal synchronization points. Intuitively these points are the end

points of the longest path of dependent tiles within the iteration space, and therefore a measure of the

execution time of the iteration space.

� We introduce a new model for which we show that the complexity of determining the execution time of an

iteration space is equivalent to linear programming.

� We identify rectilinear iteration spaces, a sub-class of convex iteration spaces.

� For rectilinear iteration spaces, we �nd the coordinates of the initial and �nal synchronization points and

are thus able to derive a simple formula for the execution time.

2

under the model described in Section 3.

2



� We study how the longest path of dependent tiles within a rectilinear iteration space varies with the slope

of the tile shape.

� We determine the tile shape that minimizes the execution time of a rectilinear iteration space.

� We observe that the execution time depends on the slope of four of the facets de�ning a rectilinear iteration

space, independent of its dimensionality.

Rectilinear iteration spaces include rectangular iteration spaces of any dimension that have been skewed in

one dimension. A particular example is the abstraction of hyperbolic code (SOR) used originally by Wolf and

Lam [WL91a] and in [CFH95a]. Our previous work could not handle this code as tiled in [CFH95a].

In Section 2 we discuss related work in the area, and Section 3 contains a description of the assumptions and the

model used in this technical report. In Section 4 we show that the complexity of determining the execution time of

a convex iteration space under our model is equivalent to general linear programming. In Section 5 we introduce

rectilinear iteration spaces, a sub-class of convex iteration spaces, and in Section 6 we use the duality property

of linear programming to determine the location of the initial and �nal synchronization points in a rectilinear

iteration space. In Section 7 we then study how the longest path of dependent tiles within the iteration space

changes with the tile shape, and determine the tiling that optimizes the execution time under our model. Finally,

in Section 8 we present a closed-form execution time formula for a K-dimensional rectilinear iteration space, as

well as for some common iteration space shapes.

2 Background

As previously mentioned, traditional tiling [Wol87, RAP87, IT88, Wol89, RS91] partitions the iteration space of

a nested loop with a regular stencil of dependences into regular size and shape pieces. Tiling has been used to

achieve both locality and parallelism, and its bene�cial e�ects are well established [WL91a, WL91b, CK92, RS91,

CFH95a, CFH95b]. Unimodular transformations [Ban90, WL91b] (which include loop skewing) can increase the

applicability of tiling.

Most of this previous work on tiling considered rectangular tiles, or tiles of the same slope as the iteration

space.

3

For such tiles, only tile size selection is of concern [CM95, Sar97, ARY98]. Our previous work [HCF97]

recognizes the importance of tile shape selection for minimizing the idle time of parallel execution. Both that

work and [DDRR97] considered parallelepiped-shaped tiles for two dimensional iteration spaces, and determined

simple formulas for idle time and �nishing time. Allowing more general tile shapes is particularly useful when

tiling is applied in the context of multiple levels of parallelism [MCFH97, MHCF98], such as in hierarchical

tiling [CFH95a, CFH95b]. The di�erence between our previous work and [DDRR97] is that the latter used a

slightly di�erent model of partial tiles, resulting in simpler formulas and proofs. This technical report directly

extends [HCF97] from 2-dimensional iteration spaces to K-dimensional iteration spaces of a much more general

shape. [DKR91] uses linear programming to determine the execution time of a convex iteration space under the

assumptions that the iteration space is large enough compared to the size of a tile to be able to ignore the e�ects

of partial tiles. Our model extends this work by incorporating the e�ect of partial tiles.

3 Model and assumptions

The model of an iteration space we consider in this technical report is a convex, K-dimensional polytope, that is,

the set of K-tuples of real numbers that satisfy a given set of linear inequalities. Convex polytopes model nested

loops of the form:

for x

K

= 0 to N

for x

K�1

=max[f

K�1

1

; f

K�1

2

; : : :] to min[g

K�1

1

; g

K�1

2

; : : :]

: : :

for x

j

=max[f

j

1

; f

j

2

; : : :] to min[g

j

1

; g

j

2

; : : :]

: : :

3

An exception is [RAP87], which considered the use of hexagonal tiles.

3



for x

1

=max[f

1

1

; f

1

2

; : : :] to min[g

1

1

; g

1

2

; : : :]

<loop body>

where f

j

i

and g

j

i

are linear functions of less deeply nested loop index variables. Each such function corresponds

to a linear inequality that bounds the convex polytope, and vice versa.

Our model resides in real (as opposed to integer) space, even though the iterations of a loop are more naturally

modeled by a lattice of discrete points. We approximate the number of iterations in a region of space by the

volume of the region. This allows us to avoid messy details about the alignment of a region with respect to the

lattice of iterations. For large regions, the volume approaches the number of iteration points in the region.

In general, a tiling of a nested loop induces a partitioning of the model's K-dimensional real space into

parallelepipeds by K families of parallel hyper-planes [HCF97]. The angles of the hyper-planes are chosen so

that the angle between the extreme vectors of the iteration dependences are included within the angle of the

parallelepiped. As shown in [IT88], the resulting tiling is hence legal.

PSfrag replacements

for x

2

= 0 to 6

for x

1

= max (�x

2

+ 4; 1; 2x

2

� 7)

to min (�

1

3

x

2

+ 8;

1

6

x

2

+ 5)

<loop body>

(a)

8

6

2

4

2 4 6

PSfrag replacements

x

1

x

2

(b)

8

6

2

4

2 4 6

PSfrag replacements

x

1

x

2

(c)

2

4

6

8

4 8 12

4

8

12

16

2
4

6
PSfrag replacements

x

1

x

2

x

0

1

x

0

2

(d)

Figure 3: Transformation of a sample loop nest to an iteration space. The loop nest is shown in (a), and the corresponding

iteration space in (b). In (c) a tiling has been chosen and in (d) the necessary skewing and scaling has been performed to

achieve unit cube tiles.

In this technical report, we skew and scale the parallelepipeds into unit cubes.

4

This transformation is quite

straight-forward and illustrated in Figure 3.

5

The intersection of a unit cube with the iteration space is called a

tile. If the cube is entirely contained in the iteration space, it is a full tile; if it contains both points inside the

iteration space and points outside, it is a partial tile; otherwise it is an empty tile.

4

This is not a transformation of the loop, but a conceptual transformation of the iteration space.

5

Given a facet of a tiled iteration space, let i

d

be the original slope of the facet in dimension d, and let t

d

be the slope of the tiling

in dimension d and let w

d

and w

K

be the width of the parallelepipeds in dimension d and K, respectively. The slope in dimension d

of the same facet after the skewing and scaling, r

d

, is then given by r

d

= (i

d

� t

d

)

w

d

w

K

.

4



As in [HCF97, DDRR97], we assume that in each dimension, there are data dependences and synchronization

constraints between the tiles so that no point in tile T may be executed before all points in its predecessor

6

tiles

in all dimensions have completed execution. If in some dimension d there are no dependences the problem is

embarrassingly parallel in that dimension and reduces to a lower dimensional problem.

The last (i.e. the K-th) dimension is considered the vertical dimension. A stack of tiles is the set of all non-

empty tiles that di�er only in the last coordinate; and the bottom (or top) tile in a stack is the tile with minimal

(or maximal) last coordinate. Similarly, the bottom (or top) of the iteration space is the set of bottom (or top)

tiles in all stacks. The left (right) sides of an iteration space are any tiles that in a particular dimension d do not

have any predecessors (successors) in that dimension and that constitute neither the bottom nor the top of the

iteration space.

This technical report is concerned with the execution of an iteration space by a parallel computer. We consider

block distribution of tiles to processors, in which each stack of tiles is assigned to its own unique processor. Because

of the dependences, a processor must execute its stack from bottom to top. In all sections but Section 4, we also

make the following technical assumption.

Assumption 1 We assume that in each stack either 1) there exists at least one full tile that has an immediate

successor tile that is full, or 2) no tile in the stack has non-empty successors.

At time zero, each processor begins executing the bottom tile T in its �rst stack, provided T has no non-empty

predecessors. Otherwise, the processor is idle. Thereafter, a processor starts executing the next tile in its current

stack when all predecessor tiles are completed. In our model, we assume the time required to execute a tile is

proportional to its volume, with the time for a full tile being a constant, notated by E

t

. Given a tiling with tiles of

a certain shape and size, we assume E

t

to be given, maybe determined experimentally. E

t

includes overheads such

as cache miss penalties, loop overheads, and communication latency [CKP

+

96], as well as the pure computation

cost of the tile. It is future work to study the e�ects the choice of tile parameters has on those overheads. In this

technical report we concentrate on minimizing the number of tiles on the longest path of dependent tiles.

We want our model for the execution time of partial tiles to have the following properties.

1. The L

1

-norm distance

7

between two vertices of the iteration space polytope (i.e. extreme points of the

polytope) should be equal to the sum of the volume of the tiles on the longest path of dependent tiles

between those points. Note that this distance is not necessarily an integer due to the partial tiles.

2. The volume of each stack, and thus the whole iteration space, should be the same as in the original iteration

space.

The �rst property permits us to determine the execution time of a tiled iteration space using linear program-

ming. This is a peculiar property since we want a linear distance to be equal to a volume. For a single tile, a unit

cube, this can be achieved if we ensure that the extreme points selected by the linear programming algorithm

always occur at the midpoint of the top and bottom surface of a tile. For this to happen we choose the set of

constraints for the linear programming problem as shown in Figure 4. This choice gives the desired property not

only for single tiles, but also for paths of dependent tiles.

The second property is desirable since we assume that the execution time of a tile is proportional of the volume

of the tile. If this property does not hold and the di�erence in volumes can be large, it is likely that the di�erence

between the execution time determined using the model and the actual execution time also is large.

The models used in previous research do not have these properties. The volume of the iteration space using

the model in [HCF97] exactly corresponds to the volume of the original iteration space, but the model does not

ful�ll the �rst requirement, since the facets bounding the iteration space can intersect at any point in a stack.

Using the model in [DDRR97] the volume of a stack might di�er by an arbitrarily large amount compared to the

original iteration space.

We introduce a new model that ful�lls the above two properties. The necessary transformation is illustrated in

Figure 4, and a comparison to other models are given in Figure 5. Note that after this transformation the slopes

of the di�erent facets and even the number of facets might change.

6

A tile T

1

is a predecessor of T

2

if the tile dependences are such that T

1

needs to be executed before T

2

can start. If T

1

is a

predecessor of T

2

, then T

2

is a successor of T

1

.

7

L

1

-norm distance between two points ~x and ~y is de�ned as

P

i

jy

i

� x

i

j.

5



4

16

12

8

4
PSfrag replacements

x

0

1

x

0

2

(a)

16

12

8

4

4

PSfrag replacements

x

0

1

x

0

2

(b)

16

12

8

4

4

PSfrag replacements

x

0

1

x

0

2

(c)

4

16

12

8

4
PSfrag replacements

x

0

1

x

0

2

(d)

Figure 4: Example to illustrate our model. (a) shows the same sample iteration space as in Figure 3(d) (this corresponds

to the model used in [HCF97]) with the partial tiles shaded, and (b) shows how the partial tiles are transformed to our

model. In our model the bottom and top of a stack is always horizontal. The height of a stack is determined by making a

horizontal cut so that the volume cut o� is equal to the volume added by the cut, i.e in the blow-up in (b), the area of the

dark shading is equal to the area of the light shading. Note that the total area shaded in (a) is equal to the total area shaded

in (b), i.e. this transformation preserves the volume of the stacks. In (c) we show the transformed iteration space. In (d)

we show how the constraints of the linear programming problem are determined. For all dimensions the slope between two

stacks is equal to the slope of the line between the mid-points of the two stacks in that dimension.

Apart from the number of tiles on the longest path of dependent tiles, the execution time also depends on the

additional time it takes to communicate data between processors. To model the communication time, we de�ne a

parameter c

d

such that c

d

E

t

is the amount of time that is needed to communicate a full tile surface between two

neighboring processors in dimension d, and that can be overlapped with computation of subsequent tiles on the

same processor. This corresponds to the latency part of communication in the LogP model [CKP

+

96]. The part of

the communication time that cannot be overlapped, i.e. the overhead in the LogP model, is included in E

t

. E.g. c

d

is equal to zero when the architecture does not allow any overlap of communication by computation. This does not

mean that the communication cost is 0, merely that the processor is busy communicating and the communication

cost is therefore included in the execution time of the tile. For example, c

d

= 0:25 if the architecture allows

for 0:25E

t

seconds of the communication of one full tile surface to be overlapped by computation. In this case,

immediately after a tile is completed the execution of the next tile in the same stack may begin, but the dependent

tile in the adjacent stack has to wait for 0:25E

t

seconds. The reason the value of c varies with the dimension is

that the amount of data needed to be communicated varies from dimension to dimension. In particular, since all

tiles in each stack are executed by the same processor no communication is needed in the K-th dimension and

we have c

K

= 0.

Let p

d

and q

d

be two coordinates in dimension d such that p

d

� q

d

. Due to property 1 of our model, there

are then q

d

� p

d

tiles and q

d

� p

d

surfaces to be communicated on the path between p

d

and q

d

. This observation

leads to the following de�nition of the execution time of the tiles on the longest path of dependent tiles between

~p and ~q.

De�nition 1 Let ~p = (p

1

; : : : ; p

K

) and ~q = (q

1

; : : : ; q

K

) be two points within an iteration space such that ~p

precedes

8

~q. We de�ne E(~p; ~q), the execution time of the path from ~p to ~q, as follows.

E(~p; ~q) =

P

K

d=1

(q

d

� p

d

)(1 + c

d

)E

t

Lemma 1 proves a lower and upper bound on the di�erence in the execution time under our model and the

model in [HCF97]. The proof of this lemma consists of two parts. Let I and

^

I denote an iteration space that

8

Given two points ~p and ~q in the iteration space, we say ~p precedes ~q if for all dimensions d, p

d

� q

d

. If ~p doesn't precede ~q, the

longest path of dependent tiles between them is unde�ned.

6



(a) (b) (c)

Figure 5: The bottom of a 2-dimensional, rectilinear iteration space. (a) shows our model of partial tiles in this technical

report. The height of each stack is chosen such that the area of the light shading is equal to the area of the dark shading.

(b) and (c) show the models used in [DDRR97] and [HCF97] respectively. The model in (a) allow us to elegantly write the

problem of �nding the length of a path of dependent tiles as a linear programming problem. In [DDRR97], the execution

time of a 2-dimensional partial tile is a rectangular tile of size p�f , where f is the length of a full tile in the �rst dimension

and p is the length of the partial tile in the second and last dimension.

has been modeled using our model and the model in [HCF97], respectively. Let p and p̂ be the longest path of

dependent tiles through I and

^

I , respectively. First we notice that for all paths in I there exist a path in

^

I of

equal or greater length. p can therefore not be longer than p̂. See Figure 6 for an illustration of this argument.

Furthermore, let q̂ be a path through

^

I that does not go through (non-empty) tiles that are empty in I (unless

it also goes through all such tiles in that same stack). Then we know that for each q̂ there exists a path in I of

equal length. If p̂ is of this type, it can therefore not be longer than p. This argument holds since p̂ then goes

through either all or no partial tiles in a stack, and all stacks have the same volume in the two models.

Second, we determine an upper bound on the total volume of the tiles that can lie on p̂ but are empty in I .

At either end of p̂ there can be at most K � 1 of them and it can be shown that the largest volume the i-th of

those tiles can have is a

1

(i+1)!

-th of a full tile volume. See Figure 7 for a 2 and 3-dimensional example. Adding

the volume of all those tiles together, we get an upper bound on the di�erence in volume of the tiles on p̂ and p

of 2V

P

K�1

d=1

1

(d+1)!

� 2V where V is the volume of a full tile. The same reasoning is applied to prove a limit on

the amount of communication time needed in between those tiles.

Lemma 1 Let c = max

d

[c

d

], and let E

i

and

^

E

i

be the execution time of a rectilinear iteration space using the

model of partial tiles used in this technical report and [HCF97], respectively.

0 �

^

E

i

�E

i

� 2(2c+ 1)E

t

Proof of Lemma 1: Let

^

I be an iteration space modeled with the model used in [HCF97] and let p̂ be the

longest path of dependent tiles through

^

I . Now consider the same iteration space modeled with the model used

in this paper, and let us call the resulting iteration space I . Let p be the longest path of dependent tiles through

I .

^

E

i

�E

i

� 0: This direction is trivial once we have proved Sublemma 1. If for each path in I , there exists a path

in

^

I of equal or greater length, then p cannot be longer than p̂. This argument is illustrated in Figure 6.

Sublemma 1 For all paths in I there exists a path in

^

I of equal or greater length.

Proof of Sublemma 1: Let q be a path in I , and let T

1

and T

2

be the �rst and last tile on q that corresponds

to a full tile in

^

I . Either q is such that all the tiles below T

1

(or above T

2

) in that same stack are on q, or it is

not.

Assume q is of the former kind. Then we know there exists a path in

^

I with the same volume as q, since each

stack in the original iteration space has the same volume in I and

^

I .

Assume q is of the latter kind. Then we know either the beginning end of q has gone through a tile in a di�erent

stack before going through T

1

, or the ending end of q has gone through a tile in another stack after having gone

through T

2

. Due to Assumption 1 we know that there exists a path identical to q except that it goes between the

same stacks as q through only full tiles. That path is then either of the same or of a greater volume than q, and

is of the former kind.

End of Proof of Sublemma 1 2

7



^

E

i

�E

i

� 2E

t

(1 + 2c):

Let us look at two possible characteristics p̂ might have at each end of the path. Let T

l

and T

u

be the �rst and

last full tile on p̂, respectively . Due to Assumption 1, we know both T

l

and T

u

exist (they might coincide). Before

p̂ goes through T

l

, it either only goes through partial tiles in the same stack as T

l

, or it does not. Similarly, after

p̂ goes through T

u

it either only goes through partial tiles in the same stack as T

u

, or it does not. In dimensions

where either the beginning or the end of p̂ only goes through partial tiles from the same stack as T

l

or T

u

, we

say that end of p̂ belongs to Case 1. Otherwise it belongs to Case 2.

Consider the case in which both the beginning and end of p̂ belongs to Case 1. In this case, p̂ either goes

through all or no partial tiles of the top or bottom of a given stack. Since all stacks have the same volume in the

two models, we then know there exists a path in I of the same length as p̂. We also know this path is p, using

Sublemma 1. Hence, dimensions in which both ends of p̂ belong to Case 1 do not contribute to the di�erence

between the two models. The largest di�erence in execution time between the two models thus occurs when both

ends of p̂ belong to Case 2 in all dimensions. We consider this worst-case scenario next.

Assume T

l

is located at the coordinate (t

l

1

; : : : ; t

l

K

) and let S

l

K

be the stack that contains T

l

. Symmetrically,

assume T

u

is located at the coordinate (t

u

1

; : : : ; t

u

K

) and let S

u

K

be the stack that contains T

u

. We �rst note that

the tile just below T

l

(above T

u

), (t

1

; : : : ; t

K�1

; t

K

� 1) ((t

u

1

; : : : ; t

u

K�1

; t

u

K

+1)), is the lowest (highest) tile in S

l

K

(S

u

K

) to have predecessors (successors) in any other dimension than K.

9

We also notice that p̂ can not cross more

than one stack boundary in each dimension before (after) going through T

l

(T

u

), since such a path would be

shorter than the one that crossed those stack boundaries at a larger (smaller) coordinate in the K-th dimension

(see Figure 7). These two observations lead to the conclusion that the tiles preceding (succeeding) the tile at

(t

1

; : : : ; t

K�1

; t

K

� 1) ((t

1

; : : : ; t

K�1

; t

K

+ 1)) in any dimension d have no predecessors (successors) in dimension

d.

8d : 1 � d � K � 1 let T

l

d

be the tile located at (t

l

1

� 1; : : : ; t

l

d

� 1; t

l

d+1

; : : : ; t

l

K�1

; t

l

K

� 1), and let S

l

d

be the

stack that contains T

l

d

. 8d : 1 � d � K� 1 let T

u

d

be the tile located at (t

u

1

� 1; : : : ; t

u

d

� 1; t

u

d+1

; : : : ; t

u

K�1

; t

u

K

+1),

and let S

u

d

be the stack that contains T

u

d

. Let q be the path that goes through all the tiles below T

l

and above T

u

in I . The largest di�erence in execution time between p̂ and q therefore occurs when p̂ goes through T

l

d

and T

u

d

8d, and when T

l

and T

u

are the �rst and last tiles on q, respectively. The size of the di�erence is less or equal to

the sum of the volumes of T

l

d

and T

u

d

8d plus the sum of all the tile surfaces communicated between those tiles.

This is also an upper bound on the di�erence between the execution times of p̂ and p since p can not be shorter

than q. We now determine the volume of those tiles and tile surfaces in Sublemma 3 and 4, respectively. But

�rst we calculate an integral in Sublemma 2 that we need in the proofs.

Sublemma 2

Z

1�x

1

0

: : :

Z

1�

P

d�1

i=1

x

i

0

1�

d

X

i=1

x

i

dx

d

: : : dx

2

=

1

d!

(1� x

1

)

d

Proof of Sublemma 2:

Let D and d be positive integers such that 2 � D � d.

Induction Hypothesis:

Z

1�x

1

0

: : :

Z

1�

P

D�1

i=1

x

i

0

1

(d� (D � 1))!

(1�

D

X

i=1

x

i

)

d�(D�1)

dx

D

: : : dx

2

=

1

d!

(1� x

1

)

d

9

We know tiles (t

1

; : : : ; t

K�1

; t

K

� 1) and (t

u

1

; : : : ; t

u

K�1

; t

u

K

+ 1) are non-empty since otherwise p̂ would belong to Case 1.

8



Base Case (d = 2):

When d = 2, the only possible value of D is 2.

Z

1�x

1

0

: : :

Z

1�

P

D�1

i=1

x

i

0

1

(d� (D � 1))!

(1�

D

X

i=1

x

i

)

d�(D�1)

dx

D

: : : dx

2

=

=

Z

1�x

1

0

(1� x

1

� x

2

) dx

2

(D = d = 2)

=

�

(1� x

1

)x

2

�

x

2

2

2

�

1�x

1

0

= (1� x

1

)(1� x

1

)�

(1� x

1

)

2

2

=

(1� x

1

)

2

2

=

1

d!

(1� x

1

)

d

(d = 2)

Induction Step: Suppose the induction hypothesis true for d� 1. We now show it is true for d.

Base Case (D = 2):

Z

1�x

1

0

: : :

Z

1�

P

D�1

i=1

x

i

0

1

(d� (D � 1))!

(1�

D

X

i=1

x

i

)

d�(D�1)

dx

D

: : : dx

2

=

=

Z

1�x

1

0

1

(d� 1)!

(1� x

1

� x

2

)

d�1

dx

2

(D = 2)

=

1

(d� 1)!

�

�

(1� x

1

� x

2

)

d

d

�

1�x

1

0

=

1

(d� 1)!

(�

(1� x

1

� (1� x

1

))

d

d

+

(1� x

1

� 0)

d

d

)

=

1

d!

(1� x

1

)

d

Induction Step: Suppose the induction hypothesis true for D � 1. We now show it is true for D.

Z

1�x

1

0

: : :

Z

1�

P

D�1

i=1

x

i

0

1

(d� (D � 1))!

(1�

D

X

i=1

x

i

)

d�(D�1)

dx

D

: : : dx

2

=

=

Z

1�x

1

0

: : :

Z

1�

P

D�2

i=1

x

i

0

1

(d� (D � 1))!

"

�

(1�

P

D

i=1

x

i

)

d�(D�2)

d� (D � 2)

#

1�

P

D�1

i=1

x

i

0

dx

D�1

: : : dx

2

=

Z

1�x

1

0

: : :

Z

1�

P

D�2

i=1

x

i

0

1

(d� (D � 2))!

"

�(1�

D�1

X

i=1

x

i

� x

D

)

d�(D�2)

#

1�

P

D�1

i=1

x

i

0

dx

D�1

: : : dx

2

=

Z

1�x

1

0

: : :

Z

1�

P

D�2

i=1

x

i

0

(1�

P

D�1

i=1

x

i

)

d�(D�2)

(d� (D � 2))!

dx

D�1

: : : dx

2

=

1

d!

(1� x

1

)

d

(Ind. Hyp.)

We have now proved the induction hypothesis for any values of d and D such that 2 � D � d. In particular it

is true for d = D, and we have proven the Sublemma.

End of Proof of Sublemma 2 2

Sublemma 3 The largest possible volume that T

l

d

and T

u

d

can have is a

1

(d+1)!

-th of the volume of a full tile.

Proof of Sublemma 3: Let us start by rotating each T

u

d

upside-down and both T

l

d

and T

u

d

for all d's, such

that their bottom surfaces can be described by the equations x

K

=

P

d

i=1

a

l

i

x

i

and x

K

=

P

d

i=1

a

u

i

x

i

, respectively.

Since T

l

d

doesn't have any predecessors and T

u

d

does not have any successors for any values of d, we know that

8i : 1 � i � d (a

l

i

� 1 and a

u

i

� 1). The volumes of T

l

d

and T

u

d

are therefore going to be smaller or equal to the

volume of a tile that has its bottom surface described by the equation x

K

=

P

d

i=1

x

i

. We call this volume V

d

.

Integrating over this tile we get the following derivation.

9



V

d

=

Z

1

0

Z

1�x

1

0

: : :

Z

1�

P

d�1

i=1

x

i

0

Z

1

0

: : :

Z

1

0

Z

1

P

d

i=1

x

i

dx

K

: : : dx

1

=

Z

1

0

Z

1�x

1

0

: : :

Z

1�

P

d�1

i=1

x

i

0

Z

1

0

: : :

Z

1

0

1�

d

X

i=1

x

i

dx

K�1

: : : dx

1

=

Z

1

0

Z

1�x

1

0

: : :

Z

1�

P

d�1

i=1

x

i

0

1�

d

X

i=1

x

i

dx

d

: : : dx

1

=

Z

1

0

1

d!

(1� x

1

)

d

dx

1

(Sublemma 2)

=

1

d!

�

�

(1� x

1

)

d+1

d+ 1

�

1

0

=

1

(d+ 1)!

End of Proof of Sublemma 3 2

Sublemma 4 The largest possible tile surface that needs to be communicated between T

l

d

and T

l

d�1

or between

T

u

d�1

and T

u

d

is a

1

d!

of a full tile surface.

Proof of Sublemma 4: As stated in Sublemma 3, the volumes of T

l

d

and T

u

d

are going to be smaller or equal

to the volume of a tile that has its bottom surface described by the equation x

K

=

P

d

i=1

x

i

. Let us call this tile

T . Let V

d

be the volume of the tile surface communicated between T

l

d

and T

l

d�1

or between T

u

d�1

and T

u

d

. V

d

is

smaller or equal to the integral over T in all dimensions but d, with x

d

= 0. Integrating over T in this manner we

get the following derivation for the upper bound on the communication surface between T

l

d

and T

l

d�1

, and T

u

d�1

and T

u

d

.

V

d

=

Z

1

0

Z

1�x

1

0

: : :

Z

1�

P

d�2

i=1

x

i

0

Z

1

0

: : :

Z

1

0

Z

1

P

d�1

i=1

x

i

dx

K

: : : dx

d+1

dx

d�1

: : : dx

1

=

Z

1

0

Z

1�x

1

0

: : :

Z

1�

P

d�2

i=1

x

i

0

Z

1

0

: : :

Z

1

0

1�

d�1

X

i=1

x

i

dx

K�1

: : : dx

d+1

dx

d�1

: : : dx

1

=

Z

1

0

Z

1�x

1

0

: : :

Z

1�

P

d�2

i=1

x

i

0

1�

d�1

X

i=1

x

i

dx

d�1

: : : dx

1

=

Z

1

0

1

(d� 1)!

(1� x

1

)

d�1

dx

1

(Sublemma 2)

=

1

(d� 1)!

�

�

(1� x

1

)

d

d

�

1

0

=

1

d!

End of Proof of Sublemma 4 2

As stated above, the biggest di�erence in the execution times using the two models occurs when 8d with

1 � d � K � 1 T

l

d

and T

u

d

lie on p̂ and T

l

and T

u

are the �rst and last tiles on p respectively. We therefore get

the following derivation for

^

E

i

�E

i

.

10



^

E

i

�E

i

= 2E

t

K�1

X

d=1

(

1

(d+ 1)!

+ c

d

1

d!

) (Sublemma 3, 4)

� 2E

t

K�1

X

d=1

(

1

(d+ 1)!

+ c

1

d!

) (if c = max

d

[c

d

])

� 2E

t

(

K�1

X

d=1

1

(d+ 1)!

+ c

K�1

X

d=1

1

d!

)

� 2E

t

(

K

X

d=2

1

d!

+ c

K�1

X

d=1

1

d!

)

� 2E

t

(

1

X

d=2

1

d!

+ c

1

X

d=1

1

d!

)

� 2E

t

(

1

X

d=0

1

d!

� 2 + c(

1

X

d=0

1

d!

� 1))

� 2E

t

(e� 2 + c(e� 1))

� 2E

t

(1 + 2c)

where c = max

d

[c

d

].

End of Proof of Lemma 1 2

PSfrag replacements

p

1

p

2

p

3

p

4

p

5

(a)

PSfrag replacements

p̂

1

p̂

2

p̂

3

(b)

PSfrag replacements

p

1

p

2

p

3

p

4

p

5

(c)

PSfrag replacements

p̂

1

p̂

2

p̂

3

(d)

Figure 6: Paths in a portion of an iteration space modeled ((a) and (c)) using the model presented in this paper, and ((b)

and (d)) using the model in [HCF97]. We see that for each path in (a) and (c) there exists a path in (b) and (d) with equal

or greater length. Comparing (a) and (b) we see that p̂

1

has the same length as p

1

, and p̂

3

as p

5

, and p̂

2

is as long as or

longer than p

2

, p

3

, and p

4

. Same is true when comparing (c) and (d) ; p̂

1

has the same length as p

1

, p̂

3

as p

5

, and p̂

2

is as

long as or longer than p

2

, p

3

, and p

4

. The longest path of dependent tiles in (a) and (c) can therefore not be longer than

the longest path of dependent tiles in (b) and (d).

11



T

PSfrag replacements

p̂

(a)

PSfrag replacements

p̂

1

p̂

2

(b)

PSfrag replacements

x

1

x

2

x

3

(c)

Figure 7: In (a) we show a 2-dimensional iteration space with p̂, the longest path of dependent tiles, and T , the �rst full

tile on p̂, marked. The largest possible volume the lightly shaded tile, i.e. the last partial tile on p̂ not in the same stack as

T , can have is half of the volume of a full tile. If it would have had a larger volume as depicted in (b) we see that p̂

1

is

longer than p̂

2

. p̂

2

can therefore not be p̂, and the dark tile in (b) is therefore not the �rst full tile on p̂ anymore, and the

lightly shaded tile is not the last partial tile on p̂ not in the same stack as T . (c) shows a 3-dimensional iteration space.

The �rst full tile on p̂ is the darkest tile, and all the shaded partial tiles are of maximum size. The lightest shaded tile has

a volume of a

1

3!

-th of a full tile and the medium shaded tile has a volume of a

1

2!

-th of a full tile.

4 Execution time of a convex iteration space

In this section we show that the problem of determining the execution time of a general convex iteration space

is equally hard as general linear programming. We start by showing that we can solve it by linear programming.

This direction was shown in [DKR91] using a di�erent model. In that model all tiles were assumed to be full, and

to reduce the e�ect of the error of this assumption, the iteration spaces were assumed to be su�ciently large.

Direction 1 - Determining the execution time is no harder than linear programming: The execution

time of an iteration space is given by the execution time of the tiles on the path within the iteration space that

takes the longest to execute. We de�ne the initial and �nal synchronization points to be the end points on this

path.

De�nition 2 Let ~z

i

and ~z

f

be two points within a polytope such that E(~z

i

; ~z

f

) = max

~p;~q

(E(~p; ~q)). We call ~z

i

and ~z

f

the initial and �nal synchronization points of that polytope.

The problem of determining the E(~z

i

; ~z

f

) for a general convex iteration space bounded by M

tot

constraints

can then be formulated as the following linear programming problem.

12



Constraints:

// First M

tot

constraints ensure the starting point,

// (x

1

; : : : ; x

K

), of the longest path of dependent tiles

// lies within iteration space.

8i : 1 � i �M

b

(

P

K�1

d=1

s

i

d

x

d

� x

K

� �n

i

)

8i : M

b

+ 1 � i �M

b

+M

t

(�

P

K�1

d=1

s

i

d

x

d

+ x

K

� n

i

)

8i : M

b

+M

t

+ 1 � i �M

b

+M

t

+M

l

(�x

i

� �n

i

)

8i : M

b

+M

t

+M

l

+ 1 � i �M

tot

(x

i

� n

i

)

// Next M

tot

constraints ensure end point, (x

K+1

; : : : ; x

2K

),

// of longest path of dependent tiles lies within iteration space.

8i : M

tot

+ 1 � i �M

tot

+M

b

(

P

K�1

d=1

s

i�M

tot

d

x

K+d

� x

2K

� �n

i�M

tot

)

8i : M

tot

+M

b

+ 1 � i �M

tot

+M

b

+M

t

(�

P

K�1

d=1

s

i�M

tot

d

x

K+d

+ x

2K

� n

i�M

tot

)

8i : M

tot

+M

b

+M

t

+ 1 � i � 2M

tot

�M

r

(�x

K+i�M

tot

�M

b

�M

t

� �n

i�M

tot

)

8i : 2M

tot

�M

r

+ 1 � i � 2M

tot

(x

K+i�M

tot

�M

b

�M

t

�M

l

� n

i�M

tot

)

// Last K constraints ensure tile dependences are obeyed.

8i : 2M

tot

+ 1 � i � 2M

tot

+K

(�x

K+i�2M

tot

+ x

i�2M

tot

� 0)

Objective:

Maximize

P

K

d=1

(x

K+d

� x

d

)(1 + c

d

)

where M

b

, M

t

, M

l

, and M

r

denote the number of facets de�ning the bottom, top, left and right side of the

iteration space, respectively, and M

tot

= M

b

+M

t

+M

l

+M

r

. Here and in the rest of this technical report we

use

P

K�1

d=1

(�s

i

d

)x

d

+ x

K

= n

i

to denote the equation describing facet i.

De�nition 3 8d : 1 � d � K�1, let s

i

d

be the slope in dimension d of facet i. We de�ne

P

K�1

d=1

(�s

i

d

)x

d

+x

K

= n

i

to be the equation of facet i.

The objective function ensures that the solution is indeed the coordinates for the synchronization points, as

de�ned in De�nition 1 and 2. Note that we are maximizing

P

K

d=1

(x

K+d

� x

d

)(1 + c

d

) rather than E

t

times this

quantity (as in De�nition 1) since E

t

is a positive constant with respect to the tile shape, and does not a�ect the

solution.

We have now shown that the problem of determining the execution time of a general planar convex iteration

space can be solved with linear programming, and go on to showing the other direction.

Direction 2 - Determining the execution time is at least as hard as linear programming: Let A be

an algorithm that determines the execution time of a given convex iteration space under our model, and let L be

a general linear programming problem that we want to solve. We know that �nding the solution to L is equally

hard as determining whether there exists a solution to L [Kar91]. This means that the objective function of L is

irrelevant and we can replace it with any other objective function without changing the answer of whether there

exists a solution to L or not. We then transform L into a linear programming problem L

0

such that the solution

space is �nite [Chv83]. Now we give the convex polytope described by the constraints of L

0

as input to A. If A

outputs a non-zero execution time, then we know there exist a solution to L

0

(and thus to L), otherwise there

doesn't.

We have now shown that the problem of determining the execution time of a general planar convex iteration

space is equally hard as general linear programming. For a general convex iteration space it is therefore not likely

that we can derive a closed-form formula for the execution time. A formula would however be very useful both

13



for predicting the execution time given a tiling and also to �nd the tile shape that minimizes the execution time.

In the next section we introduce rectilinear iteration spaces, a sub-class of convex iteration spaces, for which we

can derive a closed-form formula for the execution time.

5 Rectilinear iteration spaces

The execution time of a tiled, convex iteration space is given by the execution time of the tiles on the path within

the iteration space that takes the longest to execute (see De�nition 1). The problem of �nding this path can

be formulated as a linear programming problem (see Section 4) and we can thus �nd the answer in polynomial

time. This however only gives us a numeric value and not a closed-form, symbolic formula for the execution

time. A closed-form solution directly allow us to determine the tile shape that optimizes the execution time. It

can also be used to predict the execution time of a given tiling. Since �nding a symbolic solution for a general

convex iteration space corresponds to �nding a symbolic solution to a general linear programming problem (see

Section 4), we must further restrict the kind of iteration spaces we consider.

Rectilinear iteration spaces will be a sub-class of convex iteration spaces. For rectilinear iteration spaces we

can use the duality property of a linear programming formulation to derive a closed-form, symbolic formula for

the execution time. The key property that makes it easier to analyze rectilinear iteration spaces is the fact that

the slopes of two adjacent facets di�er only in one dimension. All 2-dimensional, convex iteration spaces are

therefore rectilinear. See Figure 8 for an example of a 3-dimensional rectilinear iteration space.

Figure 8: The top of a 3-dimensional, rectilinear iteration space.

A rectilinear iteration space is de�ned as follows.

De�nition 4 Let T (x

1

; : : : ; x

K�1

) and B(x

1

; : : : ; x

K�1

) be the functions describing the top and bottom of the

iteration space respectively. A convex iteration space is rectilinear if

8i : 1 � i � K � 1 (

@B(x

1

;:::;x

K�1

)

@x

i

= g

i

(x

i

))

and

8i : 1 � i � K � 1 (

@T (x

1

;:::;x

K�1

)

@x

i

= h

i

(x

i

))

where g

i

(x

i

) and h

i

(x

i

) are arbitrary

10

functions of x

i

.

In other words, a K-dimensional, convex iteration space is rectilinear if the following condition holds.

The intersection of any two facets de�ning the boundaries of the iteration space is either parallel or per-

pendicular to all coordinate axes.

The loop nests that generate convex iteration spaces with planar surfaces are all loop nests with loops of the

form

for x

j

= max

i

(f

i

) to min

k

(g

k

)

where f

i

and g

k

are linear functions of less deeply nested iteration variables. For example, this includes all

rectangular iteration spaces with any amount of skewing. For rectilinear iteration spaces, however, there are

additional requirements that we describe next.

10

By the convexity of the iteration space they must be monotone

14



From the loop bounds of a loop nest of depth K of the form given in Section 3, we get equations x

K

� m,

x

K

� n, x

K�1

� f

K�1

1

, x

K�1

� f

K�1

2

, : : : x

K�1

� g

K�1

1

, x

K�1

� g

K�1

2

, : : :, x

1

� f

1

1

, x

1

� f

1

2

, : : :, x

1

� g

1

1

,

x

1

� g

1

2

, : : :. We get a system of equations of the following form.

�i

1

1

x

1

� i

1

2

x

2

� : : :� i

1

K�1

x

K�1

+ x

K

� n

1

�i

2

1

x

1

� i

2

2

x

2

� : : :� i

2

K�1

x

K�1

+ x

K

� n

2

: : :

�i

M

b

1

x

1

� i

M

b

2

x

2

� : : :� i

M

b

K�1

x

K�1

+ x

K

� n

M

b

�i

M

b

+1

1

x

1

� i

M

b

+1

2

x

2

� : : :� i

M

b

+1

K�1

x

K�1

+ x

K

� n

M

b

+1

�i

M

b

+2

1

x

1

� i

M

b

+2

2

x

2

� : : :� i

M

b

+2

K�1

x

K�1

+ x

K

� n

M

b

+2

: : :

�i

M

b

+M

t

1

x

1

� i

M

b

+M

t

2

x

2

� : : :� i

M

b

+M

t

K�1

x

K�1

+ x

K

� n

M

b

+M

t

x

1

� n

M

b

+M

t

+1

x

2

� n

M

b

+M

t

+2

: : :

x

K�1

� n

M

b

+M

t

+K

x

1

� n

M

b

+M

t

+K

x

2

� n

M

b

+M

t

+K+1

: : :

x

K�1

� n

M

b

+M

t

+2K�2

where M

b

, and M

t

are the number of facets de�ning the bottom, and top of the iteration space respectively. The

M

b

�rst equations are the equations describing the bottom of the iteration space. The following M

t

equations

describe the top, the next K the left side and the �nal K the right side. Note that there could be less than, but

no more than K � 1 equations de�ning the left and right sides.

Using this notation, a loop nest of depth K corresponds to a rectilinear iteration space if the following four

conditions are true:

1. There exists a placement of equations 1 through M

b

at grid-points in an contiguous, (K � 1)-dimensional

grid, such that no two neighboring equations i and j, have the property 9l;m : (i

i

l

6= i

j

l

and i

i

m

6= i

j

m

).

2. There exists a placement of equations M

b

+ 1 through M

b

+M

t

at grid-points in an contiguous, (K � 1)-

dimensional grid, such that no two neighboring equations i and j have the property 9l;m : (i

i

l

6= i

j

l

and

i

i

m

6= i

j

m

).

3. Consider the same grids as in condition 1 and 2. Let i and i + 1 be any two neighboring equations at

coordinate l and l + 1, respectively, in dimension d, and let j and j + 1 be any other two neighboring

equations at coordinates l and l + 1, respectively, in the same dimension d. The third condition is that

8i; j; l; d (n

i

� n

i+1

= n

j

� n

j+1

).

These conditions ensure that the slope only changes in one dimension at a time between any two neighboring

surfaces. Note that these conditions are su�cient but not necessary for an iteration space to be rectilinear. For

example, the conditions might not be met and the resulting iteration space still be rectilinear if one or more of

the M

b

+M

t

�rst equations are superuous and do not contribute to the actual iteration space boundary.

6 Longest path of dependent tiles

According to De�nition 1, to determine the execution time of an iteration space we need to determine the

location of the initial and �nal synchronization points (Def. 2) of that iteration space. For general iteration space

shapes we can locate the synchronization points by solving a linear programming problem (see Section 4). In

this section we show how to �nd the synchronization points to a rectilinear iteration space without running a

15



linear programming algorithm. This result allows us to derive a closed-form formula for the execution time of the

iteration space (Section 8). It also gives us an understanding as to how the longest path of dependent tiles changes

with the shapes of the iteration space and the tiles. This is discussed in Section 7, where we also determine the

tile shape that minimizes the length of this path.

Apart from the synchronization points, there are two other points that turn out to be of importance: the

bottom and top corner of the iteration space. These are the coordinate points at which in all dimensions d the

slope of the bordering facets is less than �(1+ c

d

) on one side and greater or equal to �(1+ c

d

) on the other side

(see Figure 9). We de�ne these points, ~q

b

and ~q

t

, as follows.

De�nition 5 For a rectilinear iteration space, the bottom corner, ~q

b

, is the coordinate point such that 8d

1. there exists no facet of the bottom surface of the iteration space at a smaller coordinate than q

b

d

that has

slope s

d

� �(1 + c

d

), and

2. there exists no facet of the bottom surface of the iteration space at a larger coordinate than q

b

d

that has slope

s

d

< �(1 + c

d

).

Similarly, the top corner, ~q

t

, is the coordinate point such that 8d

1. there exists no facet of the top surface of the iteration space at a smaller coordinate than q

t

d

that has slope

s

d

< �(1 + c

d

), and

2. there exists no facet of the top surface of the iteration space at a larger coordinate than q

t

d

that has slope

s

d

� �(1 + c

d

).

PSfrag replacements

s

d

� �(1 + c

d

)

s

d

� �(1 + c

d

)

s

d

< �(1 + c

d

)

s

d

< �(1 + c

d

)

q

b

d

q

t

d

x

d

x

K

Figure 9: A 2-dimensional projection of a K-dimensional iteration space. 8d : 1 � d � K � 1, the bottom corner (see

De�nition 5), q

b

d

, is de�ned as the point along the bottom of the iteration space for which all facets to its left have slopes

less than �(1 + c

d

) and all facets to its right have slopes greater or equal to �(1 + c

d

). The top corner, q

t

d

, is de�ned

similarly for all d : 1 � d � K � 1. s

d

refers to the slope in dimension d of the corresponding facet.

The location of the synchronization points in each dimension changes if the bottom corner precedes the top

corner in that dimension. In Theorem 1 we show that in all dimensions d where the tile slope is such that q

b

d

� q

t

d

,

we have z

i

d

= q

b

d

and z

f

d

= q

t

d

, and in all dimensions d such that q

b

d

> q

t

d

, z

i

d

and z

f

d

are the end points of the

longest vertical path in that dimension (see Figure 10). To distinguish between these two kinds of dimensions,

we introduce the following terminology.

De�nition 6 8d : 1 � d � K � 1, if q

b

d

� q

t

d

we call d a forward dimension. 8d : 1 � d � K � 1, if q

b

d

> q

t

d

we

call d a backward dimension. We call the set of all forward dimensions F and the set of all backward dimensions

B.

We prove Theorem 1 by using the duality property of linear programming on the linear programming formu-

lation from Section 4. As always, �nding the solution to the dual problem is tricky since we have to \guess"

the values of the dual variables. For rectilinear iteration spaces the two solution points to the primal problem

are surrounded by 2

K�1

facets, which limits the problem to �nding the dual variables corresponding to those

constraints. (The dual variables corresponding to the other constraints are all set to zero.) It turns out that K

16



PSfrag replacements

s

d

< �(1 + c

d

)

s

d

� �(1 + c

d

)

s

d

� �(1 + c

d

)

s

d

< �(1 + c

d

)

s

top

d

� s

bot

d

< 0

s

top

d

� s

bot

d

� 0

x

d

x

K

q

b

d

q

t

d

b

d

= z

i

d

a

d

= z

f

d

Figure 10: A 2-dimensional projection of a K-dimensional iteration space. When the tile slope in dimension d is small

enough so that d is a forward dimension (as in Figure 9), then the initial and �nal synchronization points (see De�nition 2)

are equal to q

b

d

and q

t

d

, respectively. When d is a backward dimension, as in this picture, then z

i

d

and z

f

d

are de�ned such

that the path between them is the longest vertical path in the projection.

of the 2

K�1

variables should be picked to be a telescoping series that sums to 1. To determine which those K

variables are, we need to order the constraints to which they correspond. The ordering is determined by the value

of a certain measure that we provide. The variables are ordered so that the constraint corresponding to the i-th

variable only di�ers in slope in dimension d compared to the constraint corresponding to the (i� 1)-th variable,

where d is the dimension in which the measure is the i-th largest for all dimensions. This will de�ne a unique

ordering of K variables (constraints). The rest of the 2

K�1

variables of the dual problem are set to zero. Once

we have \guessed" this solution to the dual problem, we prove that the objective function of the dual problem at

that point is equal to the objective function of the primal problem at the synchronization points.

Theorem 1 Let ~{ and ~| be any two coordinate points on the top and bottom surface of the iteration space respec-

tively, such that 8d : 1 � d � K�1 (i

d

= j

d

). Let ~a and

~

b be the two points on the top and bottom of the iteration

space respectively, such that a

K

� b

K

= max

~{;~|

[i

K

� j

K

].

The location of the two synchronization points are then given by

8d 2 F (z

i

d

= q

b

d

; z

f

d

= q

t

d

)

8d 2 B (z

i

d

= b

d

= z

f

d

= a

d

)

Proof of Theorem 1: We �rst prove the theorem in Lemma 2 for the kinds of iteration spaces in which the

bottom and top corners do not lie at neither the maximum or minimum coordinate in any dimension other than

the vertical. An example of an iteration space not covered by Lemma 2 is one that does not have any top or

bottom surfaces such that s

d

< �(1+c

d

), e.g. a rectangle. Then we show that the location of the synchronization

points are the same for those kinds of iteration spaces.

Lemma 2 Consider an iteration space where 8d : 1 � d � K � 1, neither q

b

d

nor q

t

d

are equal to the smallest

or greatest coordinate possible in dimension d. Let ~{ and ~| be any two coordinate points on the top and bottom

surface of the iteration space respectively, such that 8d : 1 � d � K � 1 (i

d

= j

d

). Let ~a and

~

b be the two points

on the top and bottom of the iteration space respectively, such that a

K

� b

K

= max

~{;~|

[i

K

� j

K

].

The locations of the two synchronization points are then given by

8d 2 F (z

i

d

= q

b

d

; z

f

d

= q

t

d

)

8d 2 B (z

i

d

= b

d

= z

f

d

= a

d

)

17



as long as a

d

, b

d

, q

b

d

and q

t

d

do not to lie at neither the maximum nor the minimum coordinate in any dimension

d.

Proof of Lemma 2: To prove the lemma we use the duality property of a linear programming problem. We

formulate the dual problem and guess a solution ~v. We then need to prove four things, 1) that ~z

i

and ~z

f

satisfy

the constraints of the primal problem, 2) that ~v satis�es the constraints of the dual problem, 3) that the objective

function of the primal problem at (z

i

1

; : : : ; z

i

K

; z

f

1

; : : : ; z

f

K

) is equal to the objective function of the dual problem at

~v, and 4) that 8i : 1 � i � 2M

tot

+K (v

i

� 0).

11

But �rst we need to introduce some terminology and notation.

Recall that the synchronization points in a rectilinear iteration space are each de�ned by the intersection of

2

K�1

facets. For a given dimension d, there are only two slopes used in those facets. Using this fact, we de�ne

the four de�ning facets of an iteration space as follows.

12

De�nition 7 Consider all the 2

K�1

facets intersecting in the initial synchronization point, ~z

i

. For all dimen-

sions d, let s

low

d

and s

high

d

be the two slopes in dimension d used in those facets such that s

low

d

� s

high

d

.

The �rst de�ning facet, Facet 1, is the facet with equation �

P

K�1

d=1

s

low

d

x

d

+ x

K

= n

1

.

8d : 1 � d � K � 1, the slope in dimension d of Facet 1, s

1

d

, is thus equal to s

low

d

.

The second de�ning facet, Facet K, is the facet with equation �

P

K�1

d=1

s

high

d

x

d

+ x

K

= n

K

.

8d : 1 � d � K � 1, the slope in dimension d of Facet K, s

K

d

, is thus equal to s

high

d

.

De�nition 8 Consider all the 2

K�1

facets intersecting in the �nal synchronization point, ~z

f

. For all dimensions

d, let s

low

d

and s

high

d

be the two slopes in dimension d used in those facets such that s

low

d

� s

high

d

.

The third de�ning facet, Facet M

b

+ 1, is the facet with equation

P

K�1

d=1

s

high

d

x

d

� x

K

= n

M

b

+1

.

8d : 1 � d � K � 1, the slope in dimension d of Facet M

b

+ 1, s

M

b

+1

d

, is thus equal to s

high

d

.

The fourth de�ning facet, Facet M

b

+K, is the facet with equation

P

K�1

d=1

s

low

d

x

d

� x

K

= n

M

b

+K

.

8d : 1 � d � K � 1, the slope in dimension d of Facet M

b

+K, s

M

b

+K

d

, is thus equal to s

low

d

.

Together with the de�nition of the synchronization points in the statement of this lemma, De�nition 7 and 8

let us make the following observations.

Observation 1 8d : 1 � d � K � 1 (s

1

d

� s

K

d

)

Observation 2 8d : 1 � d � K � 1 (s

M

b

+1

d

� s

M

b

+K

d

)

Observation 3 8d : 1 � d � K � 1 (s

M

b

+1

d

� s

1

d

� 0)

Observation 4 8d : 1 � d � K � 1 (s

M

b

+K

d

� s

K

d

� 0)

Observation 1 and 2 are true for the bottom and top of any convex iteration space, and Observation 3 and 4

follow from the construction of ~a and

~

b in the formulation of the lemma. Remember that by De�nitions 7 and 8,

for each dimension d, s

1

d

, s

K

d

, s

M

b

+1

d

and s

M

b

+K

d

are the slopes surrounding z

i

d

= b

d

and z

f

d

= a

d

respectively.

Observation 5 8d : 1 � d � K � 1 (s

1

d

+ 1 + c

d

� 0)

Observation 6 8d 2 F (s

K

d

+ 1 + c

d

� 0)

Observation 7 8d 2 F (s

M

b

+1

d

+ 1 + c

d

� 0)

Observation 8 8d : 1 � d � K � 1 (s

M

b

+K

d

+ 1 + c

d

� 0)

11

8d : 1 � d � K (z

i

d

� 0; z

f

d

� 0) by construction.

12

Note that these two de�nitions are identical to De�nition 12 and 13, but we restate them here to avoid circular dependences.

18



The last four observations all follow from the construction of the initial and �nal synchronization points in

the formulation of the Lemma, together with De�nition 5, 7, 8. The observations regarding backward dimensions

also use De�nition 6 and the construction of ~a and

~

b.

We now formulate the dual problem as follows

Constraints:

8d : 1 � d � K � 1

(

P

M

b

i=1

s

i

d

y

i

�

P

M

b

+M

t

i=M

b

+1

s

i

d

y

i

�

P

M

b

+M

t

+M

l

i=M

b

+M

t

+1

y

i

+

+

P

M

tot

i=M

b

+M

t

+M

l

+1

y

i

+ y

2M

tot

+d

� �(1 + c

d

))

�

P

M

b

i=1

y

i

+

P

M

b

+M

t

i=M

b

+1

y

i

+ y

2M

tot

+K

� �1

8d : 1 � d � K � 1

(

P

M

tot

+M

b

i=M

tot

+1

s

i�M

tot

d

y

i

�

P

M

tot

+M

b

+M

t

i=M

tot

+M

b

+1

s

i�M

tot

d

y

i

�

�

P

M

tot

+M

b

+M

t

+M

l

i=M

tot

+M

b

+M

t

+1

y

i

+

P

2M

tot

i=M

tot

+M

b

+M

t

+M

l

+1

y

i

� y

2M

tot

+d

� 1 + c

d

)

�

P

M

tot

+M

b

i=M

tot

+1

y

i

+

P

M

tot

+M

b

+M

t

i=M

tot

+M

b

+1

y

i

� y

2M

tot

+K

� 1

Objective:

Minimize �

P

M

b

i=1

n

i

(y

i

+ y

M

tot

+i

) +

P

M

b

+M

t

i=M

b

+1

n

i

(y

i

+ y

M

tot

+i

) �

P

M

b

+M

t

+M

l

i=M

b

+M

t

+1

n

i

(y

i

+ y

M

tot

+i

)

+

P

M

tot

i=M

b

+M

t

+M

l

+1

n

i

(y

i

+ y

M

tot

+i

) subject to the constraints.

and guess the following solution to this problem.

13

v

1

= 1�

s

1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

1

�(1)

�s

K

�(1)

v

l

=

s

1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

1

�(l�1)

�s

K

�(l�1)

�

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

(8l : 2 � l � K � 1)

v

K

=

s

1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

1

�(K�1)

�s

K

�(K�1)

v

i

= 0 (8i : K + 1 � i �M

tot

+M

b

)

v

M

tot

+M

b

+1

= 1�

s

M

b

+1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

M

b

+1

�(1)

�s

M

b

+K

�(1)

v

M

tot

+M

b

+l

=

s

M

b

+1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

M

b

+1

�(l�1)

�s

M

b

+K

�(l�1)

�

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

(8l : 2 � l � K � 1)

v

M

tot

+M

b

+K

=

s

M

b

+1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

M

b

+1

�(K�1)

�s

M

b

+K

�(K�1)

v

i

= 0 (8i : M

tot

+M

b

+K + 1 � i � 2M

tot

)

v

2M

tot

+d

= min [�(1 + c

d

+ s

1

d

);�(1 + c

d

+ s

M

b

+K

d

)] (8d 2 B)

v

2M

tot

+d

= 0 (8d 2 F)

v

2M

tot

+K

= 0

where � : [1; : : : ;K] ! [1; : : : ;K] and � : [1; : : : ;K] ! [1; : : : ;K] are the following two one-to-one ordering

functions.

De�nition 9 8l : 1 � l � K � 1 (�(l) = d) where d is the dimension with the l-th largest value of the fraction

s

1

d

+1+c

d

+v

2M

tot

+d

s

1

d

�s

K

d

.

De�nition 10 8l : 1 � l � K � 1 (�(l) = d) where d is the dimension with the l-th largest value of the fraction

s

M

b

+1

d

+1+c

d

+v

2M

tot

+d

s

M

b

+1

d

�s

M

b

+K

d

.

13

To reduce the amount of notation needed, we de�ne 8l : s

1

�(l)

= s

K

�(l)

(

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

= 0) and 8l : s

M

b

+1

�(l)

= s

M

b

+K

�(l)

(

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

= 0), since in those dimensions both the numerator and the denominator evaluate to zero. The numerator

is equal to zero when the corresponding denominator is equal to zero since then we know l is a backward dimension and by Observation 3

and 4.

19



We make the following six observations about the solution to the dual problem.

Observation 9

P

K

i=1

v

i

= 1

Observation 10

P

K

i=1

v

M

tot

+M

b

+i

= 1

Observation 11

P

l

i=1

v

i

= 1�

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

Observation 12

P

l

i=1

v

M

tot

+M

b

+i

= 1�

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

Observation 13

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

�

s

1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

1

�(l�1)

�s

K

�(l�1)

Observation 14

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

�

s

M

b

+1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

M

b

+1

�(l�1)

�s

M

b

+K

�(l�1)

Now we are almost ready. We only need four more observations. Consider using � to order the facets such

that 8j : 1 � j � K Facet j is the facet with equation

P

j�1

l=1

s

K

�(l)

x

�(l)

+

P

K�1

l=j

s

1

�(l)

x

�(l)

� x

K

= �n

j

, and �

to order the facets such that 8j : 1 � j � K Facet M

b

+ j is the facet with equation �

P

j�1

l=1

s

M

b

+K

�(l)

x

�(l)

�

P

K�1

l=j

s

M

b

+1

�(l)

x

�(l)

+ x

K

= n

M

b

+j

. We know such orderings are possible by De�nition 7 and 8.

Observation 15 9 an ordering of K of the 2

K�1

facets surrounding the initial synchronization point such that

8j : 1 � j � K the equation for Facet j is

P

j�1

l=1

s

K

�(l)

x

�(l)

+

P

K�1

l=j

s

1

�(l)

x

�(l)

� x

K

= �n

j

.

Similarly, 9 an ordering of K of the 2

K�1

facets surrounding the �nal synchronization point such that 8j : 1 �

j � K the equation for Facet M

b

+ j is �

P

j�1

l=1

s

M

b

+K

�(l)

x

�(l)

�

P

K�1

l=j

s

M

b

+1

�(l)

x

�(l)

+ x

K

= n

M

b

+j

.

But we could also pick the 2K constraints in the following way.

Observation 16 9 an ordering of K of the 2

K�1

facets surrounding the initial synchronization point such that

8j : 1 � j � K the equation for Facet j is

P

j�1

d=1

s

K

d

x

d

+

P

K�1

d=j

s

1

d

x

d

� x

K

= �n

j

.

Similarly, 9 an ordering of K of the 2

K�1

facets surrounding the �nal synchronization point such that 8j : 1 �

j � K the equation for Facet M

b

+ j is �

P

j�1

d=1

s

M

b

+K

d

x

d

�

P

K�1

d=j

s

M

b

+1

d

x

d

+ x

K

= n

M

b

+j

.

Using the latter ordering, subtracting the equation for Facet d from the equation for Facet d + 1, and the

equation for Facet M

b

+d from the equation for Facet M

b

+d+1, gives us the following coordinates for the initial

and �nal synchronization point. (The coordinates for z

i

K

and z

f

K

come from solving the equations of Facet 1 and

Facet M

b

+ 1, respectively.)

14

Observation 17

8d : 1 � d � K � 1, z

i

d

=

n

d+1

�n

d

s

1

d

�s

K

d

8d : 1 � d � K � 1, z

f

d

=

n

M

b

+d+1

�n

M

b

+d

s

M

b

+1

d

�s

M

b

+K

d

z

i

K

=

P

K�1

d=1

s

1

d

z

i

d

+ n

1

z

f

K

=

P

K�1

d=1

s

M

b

+1

d

z

f

d

+ n

M

b

+1

On the other hand, subtracting the equation for Facet l from the equation for Facet l+1 given in Observation 15,

we get 8l : 1 � l � K�1, z

i

�(l)

=

n

l+1

�n

l

s

1

�(l)

�s

K

�(l)

. This can also be written as 8d : 1 � d � K�1, z

i

d

=

n

�

�1

(d)+1

�n

�

�1

(d)

s

1

d

�s

K

d

,

since 8d : 1 � d � K � 1 9l : �(l) = d. Combining this expression with Observation 17, we make the following

observation.

14

Note that this observation is identical to Observation 20, but we repeat it here to avoid circular dependences.

20



Observation 18

8d : 1 � d � K � 1

n

d+1

�n

d

s

1

d

�s

K

d

=

n

�

�1

(d)+1

�n

�

�1

(d)

s

1

d

�s

K

d

8d : 1 � d � K � 1

n

M

b

+d+1

�n

M

b

+d

s

M

b

+1

d

�s

M

b

+K

d

=

n

M

b

+�

�1

(d)+1

�n

M

b

+�

�1

(d)

s

M

b

+1

d

�s

M

b

+K

d

Let us now go on by proving the the four steps.

Step 1: True by construction.

Step 2:

Constraint d 8d : 1 � d � K � 1:

P

M

b

i=1

s

i

d

y

i

�

P

M

b

+M

t

i=M

b

+1

s

i

d

y

i

�

P

M

b

+M

t

+M

l

i=M

b

+M

t

+1

y

i

+

+

P

M

tot

i=M

b

+M

t

+M

l

+1

y

i

+ y

2M

tot

+d

=

=

P

K

i=1

s

i

d

v

i

+ v

2M

tot

+d

(Def. of ~v)

=

P

K

i=1

s

i

�(l)

v

i

+ v

2M

tot

+�(l)

(8d : 1 � d < K,

9l : (�(l) = d))

=

P

l

i=1

s

1

�(l)

v

i

+

P

K

i=l+1

s

K

�(l)

v

i

+ v

2M

tot

+�(l)

(Obs. 15)

= s

1

�(l)

P

l

i=1

v

i

+ s

K

�(l)

P

K

i=l+1

v

i

+ v

2M

tot

+�(l)

= s

1

�(l)

P

l

i=1

v

i

+ s

K

�(l)

(1�

P

l

i=1

v

i

) + v

2M

tot

+�(l)

(Obs. 9)

= (s

1

�(l)

� s

K

�(l)

)

P

l

i=1

v

i

+ s

K

�(l)

+ v

2M

tot

+�(l)

= (s

1

�(l)

� s

K

�(l)

)(1�

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

) + s

K

�(l)

+ v

2M

tot

+�(l)

(Obs. 11)

= (s

1

�(l)

� s

K

�(l)

)

�(s

K

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

)

s

1

�(l)

�s

K

�(l)

+ s

K

�(l)

+ v

2M

tot

+�(l)

= �(s

K

�(l)

+ 1 + c

�(l)

+ v

2M

tot

+�(l)

) + s

K

�(l)

+ v

2M

tot

+�(l)

= �(1 + c

�(l)

)

� �(1 + c

d

)

Constraint K:

�

P

M

b

i=1

y

i

+

P

M

b

+M

t

i=M

b

+1

y

i

+ y

2M

tot

+K

= �

P

K

i=1

v

i

(Def. of ~v)

� �1 (Obs. 9)

Constraint d 8d : K + 1 � d � 2K � 1:

P

M

tot

+M

b

i=M

tot

+1

s

i�M

tot

d

y

i

�

P

M

tot

+M

b

+M

t

i=M

tot

+M

b

+1

s

i�M

tot

d

y

i

�

P

M

tot

+M

b

+M

t

+M

l

i=M

tot

+M

b

+M

t

+1

y

i

+

+

P

2M

tot

i=M

tot

+M

b

+M

t

+M

l

+1

y

i

� y

2M

tot

+d

=

= �

P

M

tot

+M

b

+K

i=M

tot

+M

b

+1

s

i�M

tot

d

v

i

� v

2M

tot

+d

(Def. of ~v)

= �

P

M

tot

+M

b

+K

i=M

tot

+M

b

+1

s

i�M

tot

�(l)

v

i

� v

2M

tot

+�(l)

(8d : 1 � d < K,

9l : (�(l) = d))

= �

P

l

i=1

s

M

b

+1

�(l)

v

M

tot

+M

b

+i

�

P

K

i=l+1

s

M

b

+K

�(l)

v

M

tot

+M

b

+i

� v

2M

tot

+�(l)

(Obs. 15)

= �s

M

b

+1

�(l)

P

l

i=1

v

M

tot

+M

b

+i

� s

M

b

+K

�(l)

P

K

i=l+1

v

M

tot

+M

b

+i

� v

2M

tot

+�(l)

= �s

M

b

+1

�(l)

P

l

i=1

v

M

tot

+M

b

+i

� s

M

b

+K

�(l)

(1�

P

l

i=1

v

M

tot

+M

b

+i

)� v

2M

tot

+�(l)

(Obs. 10)

= (s

M

b

+K

�(l)

� s

M

b

+1

�(l)

)

P

l

i=1

v

M

tot

+M

b

+i

� s

M

b

+K

�(l)

� v

2M

tot

+�(l)

= (s

M

b

+K

�(l)

� s

M

b

+1

�(l)

)(1�

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

)� s

M

b

+K

�(l)

� v

2M

tot

+�(l)

(Obs. 12)

= (s

M

b

+K

�(l)

� s

M

b

+1

�(l)

)

�(s

M

b

+K

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

� s

M

b

+K

�(l)

� v

2M

tot

+�(l)

= s

M

b

+K

�(l)

+ 1 + c

�(l)

+ v

2M

tot

+�(l)

� s

M

b

+K

�(l)

� v

2M

tot

+�(l)

= 1 + c

�(l)

� 1 + c

d

Constraint 2K:

�

P

M

tot

+M

b

i=M

tot

+1

y

i

+

P

M

tot

+M

b

+M

t

i=M

tot

+M

b

+1

y

i

� y

2M

tot

+K

=

P

M

tot

+M

b

+K

i=M

tot

+M

b

+1

v

i

(Def. of ~v)

� 1 (Obs. 10)

21



Step 3: To compare the two objective functions, we �rst calculate the objective function for the dual problem

and then for the primal.

Dual objective function:

�

P

M

b

i=1

n

i

(v

i

+ v

M

tot

+i

) +

P

M

b

+M

t

i=M

b

+1

n

i

(v

i

+ v

M

tot

+i

)�

P

M

b

+M

t

+M

l

i=M

b

+M

t

+1

n

i

(v

i

+ v

M

tot

+i

)

+

P

M

tot

i=M

b

+M

t

+M

l

+1

n

i

(v

i

+ v

M

tot

+i

) =

= �

P

K

i=1

n

i

v

i

+

P

K

i=1

n

M

b

+i

v

M

tot

+M

b

+i

(Def. of ~v)

= �(1�

s

1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

1

�(1)

�s

K

�(1)

)n

1

�

P

K�1

l=2

(

s

1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

1

�(l�1)

�s

K

�(l�1)

�

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

)n

l

�

s

1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

1

�(K�1)

�s

K

�(K�1)

n

K

+ (1�

s

M

b

+1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

M

b

+1

�(1)

�s

M

b

+K

�(1)

)n

M

b

+1

+

P

K�1

l=2

(

s

M

b

+1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

M

b

+1

�(l�1)

�s

M

b

+K

�(l�1)

�

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

)n

M

b

+l

+

s

M

b

+1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

M

b

+1

�(K�1)

�s

M

b

+K

�(K�1)

n

M

b

+K

(Def. of ~v)

Primal objective function:

P

K

d=1

(x

K+d

� x

d

)(1 + c

d

) =

= z

f

K

� z

i

K

+

P

K�1

d=1

(z

f

d

� z

i

d

)(1 + c

d

) (c

K

= 0)

=

P

K�1

d=1

(1 + c

d

+ s

M

b

+1

d

)z

f

d

+ n

M

b

+1

�

P

K�1

d=1

(1 + c

d

+ s

1

d

)z

i

d

� n

1

(Obs 17)

=

P

K�1

d=1

(1 + c

d

+ s

M

b

+1

d

+ v

2M

tot

+d

)z

f

d

+ n

M

b

+1

�

P

K�1

d=1

(1 + c

d

+ s

1

d

+ v

2M

tot

+d

)z

i

d

� n

1

(8d 2 B (z

i

d

= z

f

d

))

=

P

K�1

d=1

(1 + c

d

+ s

M

b

+1

d

+ v

2M

tot

+d

)

n

M

b

+d+1

�n

M

b

+d

s

M

b

+1

d

�s

M

b

+K

d

+ n

M

b

+1

�

P

K�1

d=1

(1 + c

d

+ s

1

d

+ v

2M

tot

+d

)

n

d+1

�n

d

s

1

d

�s

K

d

� n

1

(Obs. 17)

=

P

K�1

d=1

(1 + c

d

+ s

M

b

+1

d

+ v

2M

tot

+d

)

n

M

b

+�

�1

(d)+1

�n

M

b

+�

�1

(d)

s

M

b

+1

d

�s

M

b

+K

d

+ n

M

b

+1

�

P

K�1

d=1

(1 + c

d

+ s

1

d

+ v

2M

tot

+d

)

n

�

�1

(d)+1

�n

�

�1

(d)

s

1

d

�s

K

d

� n

1

(Obs. 18)

=

P

K�1

d=1

(1 + c

d

+ s

M

b

+1

d

+ v

2M

tot

+d

)

n

M

b

+�

�1

(d)+1

�n

M

b

+�

�1

(d)

s

M

b

+1

d

�s

M

b

+K

d

+ n

M

b

+1

�

P

K�1

l=1

(1 + c

�(l)

+ s

1

�(l)

+ v

2M

tot

+�(l)

)

n

l+1

�n

l

s

1

�(l)

�s

K

�(l)

� n

1

(8d : 1 � d < K,

9l : (�(l) = d))

=

P

K�1

l=1

(1 + c

�(l)

+ s

M

b

+1

�(l)

+ v

2M

tot

+�(l)

)

n

M

b

+l+1

�n

M

b

+l

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

+ n

M

b

+1

�

P

K�1

l=1

(1 + c

�(l)

+ s

1

�(l)

+ v

2M

tot

+�(l)

)

n

l+1

�n

l

s

1

�(l)

�s

K

�(l)

� n

1

(8d : 1 � d < K,

9l : (�(l) = d))

= �(1�

s

1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

1

�(1)

�s

K

�(1)

)n

1

�

P

K�1

l=2

(

s

1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

1

�(l�1)

�s

K

�(l�1)

�

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

)n

l

�

s

1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

1

�(K�1)

�s

K

�(K�1)

n

K

+ (1�

s

M

b

+1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

M

b

+1

�(1)

�s

M

b

+K

�(1)

)n

M

b

+1

+

P

K�1

l=2

(

s

M

b

+1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

M

b

+1

�(l�1)

�s

M

b

+K

�(l�1)

�

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

)n

M

b

+l

+

s

M

b

+1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

M

b

+1

�(K�1)

�s

M

b

+K

�(K�1)

n

M

b

+K

And we see that the values of the two objective functions are equal at the two solutions (z

i

1

; : : : ; z

i

K

; z

f

1

; : : : ; z

f

K

)

and ~v.

22



Step 4: As the last step of the lemma we show that all elements of ~v are non-negative. Let's start with v

2M

tot

+d

8d : 1 � d � K � 1.

Case 1 (8d : 1 � d � K � 1 (v

2M

tot

+d

)): If d is a forward dimension v

2M

tot

+d

= 0 and trivially non-negative.

If d is a backward dimension, v

2M

tot

+d

is either equal to �(1 + c

d

+ s

1

d

) or �(1 + c

d

+ s

M

b

+K

d

). We know that

both 1 + c

d

+ s

1

d

and 1 + c

d

+ s

M

b

+K

d

are less or equal to 0 (Obs. 5 and 8), and therefore that v

2M

tot

+d

� 0.

Case 2 (v

1

):

From the de�nition of v

1

we have v

1

= 1�

s

1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

1

�(1)

�s

K

�(1)

= �

s

K

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

1

�(1)

�s

K

�(1)

. Since s

1

�(1)

�

s

K

�(1)

� 0 (Obs. 1), we need to prove that s

K

�(1)

+ 1 + c

�(1)

+ v

2M

tot

+�(1)

� 0. If �(1) is a forward dimension this

is true since v

2M

tot

+�(1)

= 0 and s

K

�(1)

+1+ c

�(1)

� 0 (Obs. 6). If �(1) is a backward dimension however we have

two cases. If (v

2M

tot

+�(1)

= �(1 + c

�(1)

+ s

1

�(1)

)), s

K

�(1)

+ 1 + c

�(1)

+ v

2M

tot

+�(1)

= s

K

�(1)

� s

1

�(1)

� 0 (Obs. 1). If

(v

2M

tot

+�(1)

= �(1 + c

�(1)

+ s

M

b

+K

�(1)

)), s

K

�(1)

+ 1 + c

�(1)

+ v

2M

tot

+�(1)

= s

K

�(1)

� s

M

b

+K

�(1)

� 0 (Obs. 4).

Case 3 (8l : 2 � l � K � 1 (v

l

)):

8l : 2 � l � K � 1, v

l

=

s

1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

1

�(l�1)

�s

K

�(l�1)

�

s

1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

1

�(l)

�s

K

�(l)

, which is non-negative by

Observation 13.

Case 4 (v

K

):

From the de�nition of v

K

we have v

K

=

s

1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

1

�(K�1)

�s

K

�(K�1)

. Since s

1

�(K�1)

�s

K

�(K�1)

� 0 (Obs. 1),

we need to show that s

1

�(K�1)

+ 1 + c

�(K�1)

+ v

2M

tot

+�(K�1)

� 0. If �(K � 1) is a forward dimension, it follows

from the fact that v

2M

tot

+�(K�1)

= 0 and s

1

�(K�1)

+1+c

�(K�1)

� 0 (Obs. 5). If �(K�1) is a backward dimension

and v

2M

tot

+�(K�1)

= �(1 + c

�(K�1)

+ s

1

�(K�1)

), s

1

�(K�1)

+ 1 + c

�(K�1)

+ v

2M

tot

+�(K�1)

= 0 and we are done. If

v

2M

tot

+�(K�1)

= �(1 + c

�(K�1)

+ s

M

b

+K

�(K�1)

), s

1

�(K�1)

+ 1 + c

�(K�1)

+ v

2M

tot

+�(K�1)

= s

1

�(K�1)

� s

M

b

+K

�(K�1)

, which

is less or equal to zero since s

M

b

+K

�(K�1)

� s

1

�(K�1)

by the construction of v

2M

tot

+�(K�1)

.

Case 5 (8i : K + 1 � i �M

tot

+M

b

;M

tot

+M

b

+K + 1 � i � 2M

tot

; i = 2M

tot

+K (v

i

)):

Trivially true since 8i : K + 1 � i �M

tot

+M

b

;M

tot

+M

b

+K + 1 � i � 2M

tot

; i = 2M

tot

+K (v

i

= 0).

Case 6 (v

M

tot

+M

b

+1

):

From the de�nition of v

M

tot

+M

b

+1

we have

v

M

tot

+M

b

+1

= 1 �

s

M

b

+1

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

M

b

+1

�(1)

�s

M

b

+K

�(1)

= �

s

M

b

+K

�(1)

+1+c

�(1)

+v

2M

tot

+�(1)

s

M

b

+1

�(1)

�s

M

b

+K

�(1)

. Since s

M

b

+1

�(1)

� s

M

b

+K

�(1)

� 0 (Obs. 2),

we need to prove that s

M

b

+K

�(1)

+ 1 + c

�(1)

+ v

2M

tot

+�(1)

� 0. If �(1) is a forward dimension this is true since

v

2M

tot

+�(1)

= 0 and s

M

b

+K

�(1)

+ 1 + c

�(1)

� 0 (Obs. 8). If �(1) is a backward dimension however we have two

cases. If (v

2M

tot

+�(1)

= �(1 + c

�(1)

+ s

1

�(1)

)), s

M

b

+K

�(1)

+ 1 + c

�(1)

+ v

2M

tot

+�(1)

= s

M

b

+K

�(1)

� s

1

�(1)

, which is less or

equal to zero since s

1

�(1)

� s

M

b

+K

�(1)

by the construction of v

2M

tot

+�(K�1)

. If (v

2M

tot

+�(1)

= �(1+ c

�(1)

+ s

M

b

+K

�(1)

)),

s

M

b

+K

�(1)

+ 1 + c

�(1)

+ v

2M

tot

+�(1)

= 0.

Case 7 (8l : 2 � l � K � 1 (v

M

tot

+M

b

+l

)):

8l : 2 � l � K�1, v

M

tot

+M

b

+l

=

s

M

b

+1

�(l�1)

+1+c

�(l�1)

+v

2M

tot

+�(l�1)

s

M

b

+1

�(l�1)

�s

M

b

+K

�(l�1)

�

s

M

b

+1

�(l)

+1+c

�(l)

+v

2M

tot

+�(l)

s

M

b

+1

�(l)

�s

M

b

+K

�(l)

, which is non-negative

by Observation 14.

Case 8 (v

M

tot

+M

b

+K

):

From the de�nition of v

M

tot

+M

b

+K

we have v

M

tot

+M

b

+K

=

s

M

b

+1

�(K�1)

+1+c

�(K�1)

+v

2M

tot

+�(K�1)

s

M

b

+1

�(K�1)

�s

M

b

+K

�(K�1)

. Since s

M

b

+1

�(K�1)

�

s

M

b

+K

�(K�1)

� 0 (Obs. 2), we need to show that s

M

b

+1

�(K�1)

+ 1 + c

�(K�1)

+ v

2M

tot

+�(K�1)

� 0. If �(K � 1) is a

forward dimension, it follows from the fact that v

2M

tot

+�(K�1)

= 0 and s

M

b

+1

�(K�1)

+ 1 + c

�(K�1)

� 0 (Obs. 7).

If �(K � 1) is a backward dimension and v

2M

tot

+�(K�1)

= �(1 + c

�(K�1)

+ s

1

�(K�1)

), s

M

b

+1

�(K�1)

+ 1 + c

�(K�1)

+

v

2M

tot

+�(K�1)

= s

M

b

+1

�(K�1)

� s

1

�(K�1)

� 0 (Obs. 3). If v

2M

tot

+�(K�1)

= �(1 + c

�(K�1)

+ s

M

b

+K

�(K�1)

), s

M

b

+1

�(K�1)

+ 1 +

c

�(K�1)

+ v

2M

tot

+�(K�1)

= s

M

b

+1

�(K�1)

� s

M

b

+K

�(K�1)

� 0 (Obs. 4).

End of Proof of Lemma 2 2

23



Lemma 2 does not cover iteration spaces where the location of the bottom and top corners is at either the

minimum or maximum coordinate in any dimension. The intuition behind the proof in these cases is that extra

stacks can be added to an iteration space without altering the longest path of dependent tiles.

Let I be an iteration space such that 9d such that either q

b

d

= x

min

d

, q

b

d

= x

max

d

, q

t

d

= x

min

d

, or q

t

d

= x

max

d

.

Let I

0

be an iteration space that we construct in the following way. First, construct I

0

so it is an identical copy

of I . Second, pull the top of I

0

a distance of � apart from the bottom in the vertical dimension. This ensures

that there are vertical sides in all dimensions of I

0

. (We will later refer to this iteration space as I

0

".) Third,

8d : (q

b

d

= x

max

d

or q

t

d

= x

max

d

) add some stacks to the coordinates greater than x

max

d

, and 8d : (q

b

d

= x

min

d

or

q

t

d

= x

min

d

) add some stacks to the coordinates smaller than x

min

d

. The shape of the added stacks should be such

that the bottom and top corners unde�ned in I are equal to x

min

d

or x

max

d

in I

0

. This completes the construction

of I

0

.

Observation 19 6 9d in I

0

such that q

b

d

or q

t

d

lie within the stacks that were added to I

0

in dimension d.

Now, use Lemma 2 to calculate the location of the synchronization points of I

0

and thus the longest path of

dependent tiles through I

0

. Due to Observation 19 we know that the longest path of dependent tiles through I

0

can not go though any of the stacks added to I

0

. We therefore know that we can remove these stacks without

a�ecting the longest path of dependent tiles. If there were a longer path after removing the extra stacks there

would have been a longer path before the removal as well. If the longest path of dependent tiles were shortened

after removing the extra stacks, the longest path before the removal would also have been shorter. We therefore

know that the longest path of dependent tiles in I

00

is the same as in I

0

, and the location of the synchronization

points must therefore also be identical. Letting � approach zero and thus letting I

00

approach I , we see that this

claim is true for I as well.

End of Proof of Theorem 1 2

7 Tile shape selection

In this section we discuss the implications Theorem 1 has on the preferred choice of tile shape. We �rst study how

the longest path of dependent tiles changes with the tile shape and then determine the tile shape that minimizes

the length of this path. In past practice, tiles were chosen either to be rectangular, or of the same shape in the

case of parallelepiped iteration spaces, as the iteration space. Our results do not necessarily support either of

these choices.

The height of the tallest stack in an iteration space is a lower bound on E(~z

i

; ~z

f

), since all vertical paths are

paths of dependent tiles. We therefore know that for any two points ~e and

~

f that lie on the bottom and top of

a single stack, E(~e;

~

f) can never be less than f

K

� e

K

. Due to the rectilinear property of the iteration space we

know that E(~z

i

; ~z

f

) decreases as the number of dimensions d for which z

i

d

= z

f

d

increases.

The tile shape should therefore be chosen such that the coordinates for the initial and �nal synchronization

points are the same in as many dimensions as possible. If that is not possible then they should lie as close as

possible. Increasing the tile slope in a given dimension decreases the distance between the synchronization points

in that dimension. At the point when q

b

d

�rst becomes greater than q

t

d

, there is no longer a bene�t in increasing

the slope further. The longest path of dependent tiles is at that point already vertical and can not become shorter.

This is illustrated in Figure 11, and we see that the longest path of dependent tiles between the synchronization

points in (f) is indeed shorter than when we use rectangular tiles in (e).

We state the following corollary to Theorem 1.

Corollary 1 The execution time of a tiling is minimized when, for all dimensions d : 1 � d � K � 1, the slope

of the tiling in dimension d is chosen as small as possible such that q

b

d

� q

t

d

. If this is not possible due to legality,

the slope should be chosen as large as possible without violating the legality of the tiling.

8 Execution time of a rectilinear iteration space

In this section we �rst derive a closed form formula for the execution time of a rectilinear iteration space. We

then give the execution time for some common iteration space shapes in Table 1.

24



(a) (b) (c) (d)

PSfrag replacements

q

u

d

= z

f

d

q

l

d

= z

i

d

(e)

PSfrag replacements

q

u

d

= z

f

d

q

l

d

= z

i

d

(f)

PSfrag replacements

q

l

d

= z

i

d

q

u

d

z

f

d

(g)

PSfrag replacements

q

u

d

z

f

d

q

l

d

z

i

d

(h)

Figure 11: The same projection through the same iteration space tiled with four di�erent tile slopes, increasing from (a)

to (d). In all tilings the tile size is the same. Figures (e)-(h) show the iteration space after transformations. The example

illustrates how the location of both the bottom and top corner as well as the two synchronization points changes with the

tile slope. The shaded tiles constitute the longest path of dependent tiles. Increasing the tile slope pushes the bottom and

top corners of the iteration space to the right and left respectively. Also the synchronization points move but only to the

point where z

i

d

= z

f

d

. At that point they specify the coordinate in dimension d for the tallest stack within the iteration

space. Since the execution time of a stack is a lower bound on the execution time of the iteration space, we would like for

as many dimensions as possible to achieve this lower bound, i.e. be backward dimensions.

As it turns out, the execution time only depends on the slope of four of the facets on the top and bottom

surfaces, independently of the dimensionality of the iteration space. All other facets can change slope without

a�ecting the execution time, as long as the iteration space remains convex and rectilinear. We call these four facets

the de�ning facets of an iteration space. Before we de�ne these facets we need to introduce some terminology.

De�nition 11 Let x

min

d

and x

max

d

be the lowest and highest coordinates that exist within the iteration space in

dimension d.

We de�ne C

i

to be the set of dimensions d such that (z

i

d

= x

min

d

or z

i

d

= x

max

d

) by Theorem 1. We de�ne C

f

to

be the set of dimensions d such that (z

f

d

= x

min

d

or z

f

d

= x

max

d

) by Theorem 1.

We also de�ne G

i

= K � jC

i

j, and G

f

= K � jC

f

j.

Recall that the initial and �nal synchronization points in a rectilinear iteration space are de�ned by the

intersection of 2

G

i

�1

and 2

G

f

�1

facets of bounding the bottom and top surfaces, respectively. For a dimension

d 2 C

i

(or 2 C

f

) there are only one slope used in those facets, and for a dimension d 62 C

i

(or 62 C

f

) there are two

slopes. Using this fact, we de�ne the four de�ning facets as follows (see Figure 12).

De�nition 12 Consider all the 2

G

i

�1

facets bounding the bottom surface and intersecting in the initial synchro-

nization point, ~z

i

. For all dimensions d 62 C

i

, let s

low

d

and s

high

d

be the two slopes in dimension d used in those

facets such that s

low

d

� s

high

d

. For all dimensions d 2 C

i

we call the only slope used in those 2

G

i

�1

facets s

only

d

.

25



The �rst de�ning facet, Facet 1, is the facet with equation

�

X

8d62C

i

s

low

d

x

d

�

X

8d2C

i

s

only

d

x

d

+ x

K

= n

1

:

8d 62 C

i

, the slope in dimension d of Facet 1, s

1

d

, is thus equal to s

low

d

.

The second de�ning facet , Facet G

i

, is the facet with equation

�

X

8d62C

i

s

high

d

x

d

�

X

8d2C

i

s

only

d

x

d

+ x

K

= n

G

i
:

8d 62 C

i

, the slope in dimension d of Facet G

i

, s

G

i

d

, is thus equal to s

high

d

.

8d 2 C

i

, s

G

i

d

= s

1

d

= s

only

d

.

De�nition 13 Consider all the 2

G

f

�1

facets bounding the top surface and intersecting in the �nal synchronization

point, ~z

f

. For all dimensions d 62 C

f

, let s

low

d

and s

high

d

be the two slopes in dimension d used in those facets such

that s

low

d

� s

high

d

. For all dimensions d 2 C

f

we call the only slope used in those 2

G

f

�1

facets s

only

d

.

The third de�ning facet, Facet M

b

+ 1, is the facet with equation

X

8d62C

f

s

high

d

x

d

+

X

8d2C

f

s

only

d

x

d

� x

K

= n

M

b

+1

:

8d 62 C

f

, the slope in dimension d of Facet M

b

+ 1, s

M

b

+1

d

, is thus equal to s

high

d

.

The fourth de�ning facet, Facet M

b

+G

f

, is the facet with equation

X

8d62C

f

s

low

d

x

d

+

X

8d2C

f

s

only

d

x

d

� x

K

= n

M

b

+G

f :

8d 62 C

f

, the slope in dimension d of Facet M

b

+G

f

, s

M

b

+G

f

d

, is thus equal to s

low

d

.

8d 2 C

f

, s

M

b

+G

f

d

= s

M

b

+1

d

= s

only

d

.

PSfrag replacements

Facet 1

Facet G

i

Facet M

b

+ 1

Facet M

b

+G

f

x

1

x

2

z

i

1

z

f

1

Figure 12: In a 2-dimensional iteration space the de�ning facets are the facets intersecting at the synchronization points.

We number the de�ning facets 1, G

i

, M

b

+ 1 and M

b

+G

f

, as shown.

Knowing that there are only 2(G

i

� 1) + jC

i

j (and 2(G

f

� 1) + jC

f

j) di�erent slopes in the 2

G

i

�1

(and 2

G

f

�1

)

facets intersecting at the two synchronization points, helps us solve the system of linear equations from Section 4.

We present the resulting coordinates in Observation 20.

We start by selecting the following G

i

equations from the equations of the facets bounding the iterations space.

Due to the way they are chosen, they all intersect in the initial synchronization point. We let 8d 2 C

i

s

1

d

denote

the only slope used in both Facet 1 and G

i

.

26



2

6

6

6

6

6

6

6

4

s

1

1

s

1

2

s

1

3

: : : s

1

G

i

�2

s

1

G

i

�1

�1

s

G

i

1

s

1

2

s

1

3

: : : s

1

G

i

�2

s

1

G

i

�1

�1

s

G

i

1

s

G

i

2

s

1

3

: : : s

1

G

i

�2

s

1

G

i

�1

�1

: : : : : : : : : : : : : : : : : : : : :

s

G

i

1

s

G

i

2

s

G

i

3

: : : s

G

i

G

i

�2

s

1

G

i

�1

�1

s

G

i

1

s

G

i

2

s

G

i

3

: : : s

G

i

G

i

�2

s

G

i

G

i

�1

�1

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

4

z

i

1

z

i

2

z

i

3

: : :

z

i

G

i

�1

z

i

G

i

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

n

1

n

2

n

3

: : :

n

G

i

�1

n

G

i

3

7

7

7

7

7

7

5

To determine z

i

d

for all d : 1 � d � G

i

� 1 we then subtract equation d and d + 1 from each other. For all

dimension d 2 C

i

, we know by Theorem 1 that z

i

d

is equal to either x

min

d

or x

max

d

. Similarly we get the coordinates

for ~z

f

by solving the following system of linear equations.

2

6

6

6

6

6

6

6

6

4

s

M

b

+1

1

s

M

b

+1

2

s

M

b

+1

3

: : : s

M

b

+1

G

f

�2

s

M

b

+1

G

f

�1

�1

s

M

b

+G

f

1

s

M

b

+1

2

s

M

b

+1

3

: : : s

M

b

+1

G

f

�2

s

M

b

+1

G

f

�1

�1

s

M

b

+G

f

1

s

M

b

+G

f

2

s

M

b

+1

3

: : : s

M

b

+1

G

f

�2

s

M

b

+1

G

f

�1

�1

: : : : : : : : : : : : : : : : : : : : :

s

M

b

+G

f

1

s

M

b

+G

f

2

s

M

b

+G

f

3

: : : s

M

b

+G

f

G

f

�2

s

M

b

+1

G

f

�1

�1

s

M

b

+G

f

1

s

M

b

+G

f

2

s

M

b

+G

f

3

: : : s

M

b

+G

f

G

f

�2

s

M

b

+G

f

G

f

�1

�1

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

z

f

1

z

f

2

z

f

3

: : :

z

f

G

f

�1

z

f

G

f

3

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

n

M

b

+1

n

M

b

+2

n

M

b

+3

: : :

n

M

b

+G

f

�1

n

M

b

+G

f

3

7

7

7

7

7

7

5

Observation 20 In the last dimension, K, z

i

K

and z

f

K

are given by

z

i

K

=

P

K�1

d=1

s

1

d

z

i

d

+ n

1

z

f

K

=

P

K�1

d=1

s

M

b

+1

d

z

f

d

+ n

M

b

+1

For all dimensions d 62 C

i

, z

i

d

is given by

z

i

d

=

(

n

d+1

�n

d

s

1

d

�s

G

i

d

(8d : (s

1

d

6= s

G

i

d

))

z

f

d

(8d : (s

1

d

= s

G

i

d

))

For all dimensions d 62 C

f

, z

f

d

is given by

z

f

d

=

8

<

:

n

M

b

+d+1

�n

M

b

+d

s

M

b

+1

d

�s

M

b

+G

f

d

(8d : (s

M

b

+1

d

6= s

M

b

+G

f

d

))

z

i

d

(8d : (s

M

b

+1

d

= s

M

b

+G

f

d

))

where 8i : 1 � i � K � 1 the facets are ordered such that there is only one dimension that changes between facet

i and facet i+ 1.

15;16

Using these coordinates we can now calculate the execution time of the iteration space as de�ned in De�-

nition 1. Given the execution time of a tile a compiler can use this formula to predict the execution time of

the loop for a particular tile shape. In Theorem 2, the execution time is given as a function of the parameter

T . As illustrated in Figure 13, T is the number of (possibly empty) tiles between Facet 1 and Facet M

b

+ 1

at coordinate ~z

i

. The quantity T +

P

8d2F

s

M

b

+1

d

(z

f

d

� z

i

d

) therefore represents the vertical distance (in units

of tiles) between the top surface at coordinate ~z

f

and the bottom surface at ~z

i

. In each dimension d 2 F the

quantity

P

8d2F

(1 + c

d

)(z

f

d

� z

i

d

) is the number of tiles (stacks) plus communication cost between the processors

along the horizontal path in that dimension d from ~z

i

to ~z

f

. Table 1 shows the execution time for some common

iteration space shapes.

Theorem 2 The execution time of a rectilinear iteration space, E

i

, is given by the following expression.

E

i

= E

t

X

8d2F

(1 + c

d

+ s

M

b

+1

d

)(z

f

d

� z

i

d

) +E

t

T

where T =

P

K�1

d=1

(s

M

b

+1

d

� s

1

d

)z

i

d

+ n

M

b

+1

� n

1

and 8d : 1 � d � K � 1 z

i

d

and z

f

d

are given by Observation 20.

15

We know that such an ordering exists since the iteration space is rectilinear.

16

We know by Theorem 1 that 6 9d : (d 62 C

i

and d 62 C

f

) where (s

1

d

= s

G

i

d

and s

M

b

+1

d

= s

M

b

+G

f

d

).

27



Proof of Theorem 2:

E

i

= E(~z

i

; ~z

f

) (Def. 2, 1)

= E

t

((z

f

K

� z

i

K

) +

P

K�1

d=1

(z

f

d

� z

i

d

)(1 + c

d

)) (Def. 1)

= E

t

(

K�1

X

d=1

(1 + c

d

+ s

M

b

+1

d

)z

f

d

�

K�1

X

d=1

(1 + c

d

+ s

1

d

)z

i

d

+ n

M

b

+1

� n

1

) (Obs. 20)

= E

t

(

X

8d2F

(1 + c

d

+ s

M

b

+1

d

)z

f

d

�

X

8d2F

(1 + c

d

+ s

1

d

)z

i

d

+

X

8d2B

(s

M

b

+1

d

� s

1

d

)z

i

d

+ n

M

b

+1

� n

1

) (8d 2 B (z

i

d

= z

f

d

))

= E

t

(n

M

b

+1

� n

1

+

X

8d2F

(1 + c

d

+ s

M

b

+1

d

)(z

f

d

� z

i

d

)

+

X

8d2F

(s

M

b

+1

d

� s

1

d

)z

i

d

+

X

8d2B

(s

M

b

+1

d

� s

1

d

)z

i

d

)

= E

t

(

X

8d2F

(1 + c

d

+ s

M

b

+1

d

)(z

f

d

� z

i

d

)

+

K�1

X

d=1

(s

M

b

+1

d

� s

1

d

)z

i

d

+ n

M

b

+1

� n

1

)

= E

t

X

8d2F

(1 + c

d

+ s

M

b

+1

d

)(z

f

d

� z

i

d

) +E

t

T

where T =

K�1

X

d=1

(s

M

b

+1

d

� s

1

d

)z

i

d

+ n

M

b

+1

� n

1

.

End of Proof of Theorem 2 2

PSfrag replacements

x

2

x

1

Facet 1

Facet M

b

+ 1

n

1

n

M

b

+1

T

z

i

1

z

f

1

~z

i

~z

f

Figure 13: Example 2-dimensional iteration space. The quantity

P

K�1

d=1

(s

M

b

+1

d

� s

1

d

)z

i

d

+n

M

b

+1

�n

1

that we call T is the

distance between Facet 1 and Facet M

b

+ 1 at coordinate ~z

i

. Since tiles are unit cubes, T is equal to the number of tiles

in the stack located at ~z

i

. Note that these tiles might be empty. Since they also might be partial, T is not necessarily an

integer.

References

[ARY98] Rumen Andonov, Sanjay Rajopadhye, and Nicola Yanev. Optimal orthogonal tiling. In Europar'98,

pages 480{490, September 1998.

[Ban90] Utpal Banerjee. Unimodular transformations of double loops. In Workshop on Programming Lan-

guages and Compilers for Parallel Computing, Irvine, CA, August 1990.

28



dim I.S. Shape F or B Execution time formula

a

2

Parallelogram w/

vertical sides

B E

t

T

F E

t

(1 + c

1

+ s

M

b

+1

1

)(P

1

� 1) +E

t

T

b

Parallelogram

B E

t

T

F E

t

(1 + c

1

+ s

M

b

+1

1

)(z

f

1

� z

i

1

) +E

t

T

c

General

B E

t

T

F E

t

(1 + c

1

+ s

M

b

+1

1

)(z

f

1

� z

i

1

) +E

t

T

d

3

Polytope w/ vertical

sides & only one

top&bottom facet

B;B E

t

T

F ;B E

t

((1 + c

1

+ s

M

b

+1

1

)(P

1

� 1) + T )

F ;F E

t

(

P

2

d=1

(1 + c

d

+ s

M

b

+1

d

)(P

d

� 1) + T )

e

K

Parallelepiped

j 2 B E

t

(

P

8d2F

(1 + c

d

+ s

M

b

+1

d

)(P

d

� 1) + T )

j 2 F E

t

(

P

8d2F;d6=j

(1 + c

d

+ s

M

b

+1

d

)(P

d

� 1) + (1 + c

j

+ s

M

b

+1

j

)(z

f

j

� z

i

j

) + T )

Table 1: The execution time formula from Theorem 2 for some common iteration space shapes. Case a: In a 2-

dimensional parallelogram with vertical sides, the longest path of dependent tiles goes straight up each stack if the �rst

dimension is a backward dimension (Theorem 1). The execution time is thus T times the execution time of a tile. If the

�rst dimension is a forward dimension the longest path of dependent tiles goes horizontally through all P stacks as well as

up to the top. Along the horizontal component of the path, (P

1

� 1) tiles are executed and (P

1

� 1) surfaces communicated.

Along the vertical component we execute the number of tiles between z

i

K

and z

f

K

, i.e. T + (P

1

� 1)s

M

b

+1

. Due to the fact

that only the de�ning facets a�ect the execution time, there is no di�erence in the execution time formula between the Case

b and c. Case e: The only K-dimensional parallelepiped that is rectilinear, is the parallelepiped skewed in at most one

dimension other than the vertical. In this table we call this dimension j. The table shows the formula for when j 2 F and

j 2 B. P

d

is the number of processors along dimension d in the processor grid, i.e. the total number of processors is equal

to

Q

K�1

d=1

P

d

. T is equal to

P

K�1

d=1

(s

M

b

+1

d

� s

1

d

)z

i

d

+ n

M

b

+1

� n

1

, and is explained in Figure 13.

[CFH95a] Larry Carter, Jeanne Ferrante, and S. Flynn Hummel. E�cient parallelism via hierarchical tiling. In

SIAM Conference on Parallel Processing for Scienti�c Computing, February 1995.

[CFH95b] Larry Carter, Jeanne Ferrante, and S. Flynn Hummel. Hierarchical tiling for improved superscalar

perfomance. In International Parallel Processing Symposium, April 1995.

[Chv83] Va�sek Chv�atal. Linear Programming. W. H. Freeman and Company, 1983.

[CK92] Steve Carr and Ken Kennedy. Compiler blockability of numerical algorithms. The Journal of Super-

computing, pages 114{124, November 1992.

[CKP

+

96] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Eunice Santos, Klaus Erik Schauser,

Rarnesh Subramonian, and Thorsten von Eicken. LogP: A practical model of parallel computation.

Communications of the ACM, 39(11):78{85, November 1996.

[CM95] Stephanie Coleman and Kathryn S. McKinley. Tile size selection using cache organization and data

layout. In Programming Language Design and Implementation, June 1995.

[DDRR97] Frederic Desprez, Jack Dongarra, Fabrice Rastello, and Yves Robert. Determining the idle time of a

tiling: New results. In International Conference on Parallel Architectures and Compilation Techniques

(PACT'97), November 1997.

[DKR91] Alain Darte, Leonid Khachiyan, and Yves Robert. Linear scheduling is nearly optimal. Parallel

Processing Letters, 1(2):73{81, 1991.

[HCF97] Karin H�ogstedt, Larry Carter, and Jeanne Ferrante. Determining the idle time of a tiling. In Sympo-

sium on Principles of Programming Languages, January 1997.

[IT88] Fran�cois Irigoin and R�emi Triolet. Supernode partitioning. In Symposium on Principles of Program-

ming Languages, pages 319{328, January 1988.

29



[Kar91] Howard Karlo�. Linear Programming. Progress in Theoretical Computer Science. Birkh�auser, 1991.

[MCFH97] Nicholas Mitchell, Larry Carter, Jeanne Ferrante, and Karin H�ogstedt. Quantifying the multi-level

nature of tiling interactions. In Workshop on Languages and Compilers for Parallel Computing, 1997.

Published in Springer-Verlag Lecture Notes in Computer Science Volume 1366.

[MHCF98] N. Mitchell, K. H�ogstedt, L. Carter, and J. Ferrante. Quantifying the multi-level nature of tiling

interactions. International Journal of Parallel Programming, 26(6):641{670, 1998.

[RAP87] D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils and problem partitionings: Their inuence on

the performance of multiple processor systems. IEEE Transactions on Computers, C-36(7):845{858,

July 1987.

[RS91] J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spaces for nonshared memory

machines. In Supercomputing, November 1991.

[Sar97] Vivek Sarkar. Automatic selection of high-order transformations in the IBM XL FORTRAN compilers.

IBM Journal of Research and Development, 41(3):233{264, 1997.

[WL91a] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm. In Symposium on

Programming Language Design and Implementation, 1991.

[WL91b] Michael E. Wolf and Monica S. Lam. A loop transformation theory and an algorithm to maximize

parallelism. IEEE Transactions on Parallel and Distributed Systems, 2(4):452{471, 1991.

[Wol87] Michael J. Wolfe. Iteration space tiling for memory hierarchies. In Parallel Processing for Scienti�c

Computing, pages 357{361, 1987.

[Wol89] Michael J. Wolfe. More iteration space tiling. In Supercomputing, pages 655{664, 1989.

[Wol96] Michael J. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley, 1996.

30




