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The Scattering of Electromagnetic Waves from Two-Dimensional Randomly Rough
Penetrable Surfaces

Ingve Simonsen,1, ∗ Alexei A. Maradudin,2 and Tamara A. Leskova2

1Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
2Department of Physics and Astronomy and Institute for Surface and Interface Science,

University of California, Irvine CA 92697, U.S.A.
(Dated: October 27, 2018)

An accurate and efficient numerical simulation approach to electromagnetic wave scattering from
two-dimensional, randomly rough, penetrable surfaces is presented. The use of the Müller equations
and an impedance boundary condition for a two-dimensional rough surface yields a pair of coupled
two-dimensional integral equations for the sources on the surface in terms of which the scattered
field is expressed through the Franz formulas. By this approach, we calculate the full angular
intensity distribution of the scattered field that is due to a finite incident beam of p-polarized light.
We specifically check the energy conservation (unitarity) of our simulations (for the non-absorbing
case). Only after a detailed numerical treatment of both diagonal and close-to-diagonal matrix
elements is the unitarity condition found to be well-satisfied for the non-absorbing case (U > 0.995),
a result that testifies to the accuracy of our approach.

PACS numbers:

The scattering of electromagnetic waves from two-
dimensional randomly rough penetrable surfaces has
been studied theoretically for more than five decades.
The methods used in these studies in recent years, where
attention has been directed toward multiple-scattering
phenomena, have been either analytical in nature or com-
putational. Chief among the former methods has been
the small-amplitude perturbation theory [1–3], while sev-
eral different computational methods have been used in
solving the scattering problem. In the earliest calcula-
tion of this type [4] the system of coupled inhomogeneous
integral equations for the tangential components of the
total electric and magnetic fields on the rough surface
obtained from scattering theory, was converted into a
system of inhomogeneous matrix equations by the use of
the method of moments [5], which was then solved by
Neumann-Liouville iteration [6]. This is a formally exact
approach but one that is computationally (and memory)
intensive.

In subsequent work on this problem approximate solu-
tions of the exact integral equations have been sought. In
the sparse-matrix flat-surface iterative approach [7, 8] the
matrix elements for two close points on the surface are
treated exactly, while those connecting two widely sep-
arated points are treated approximately, in an iterative
solution of the matrix equations.

Soriano and Saillard [9] have combined the sparse-
matrix flat-surface iterative approach with an impedance
approximation [10] to calculate co-polarized and cross-
polarized bistatic scattering coefficients of aluminum ran-
domly rough surfaces for comparison with results ob-
tained from perfectly conducting surfaces.

An approach that combines the fast multipole
method [11] and the sparse-matrix flat-surface iterative
approach has been developed by Jandhyala et. al [12].

Despite these advances, the calculation of the scatter-
ing of electromagnetic waves from two-dimensional, pene-
trable, randomly rough surfaces, remains a computation-
ally intensive problem, in need of further improvements
in the methods used to solve it.

In this paper we use the Franz formulas of electromag-
netic scattering theory [13, 14] to obtain expressions for
the amplitude of the electromagnetic field scattered from
a two-dimensional, rough, metallic or dielectric surface
in terms of the tangential components of the total elec-
tric and magnetic fields on the surface. The independent
elements of these tangential field components satisfy a
system of four coupled inhomogeneous two-dimensional
integral equations — the Müller equations [15, 16] — de-
rived from Franz formulas. This system of four integral
equations is reduced to a system of two integral equa-
tions by the use of an impedance boundary condition at
a two-dimensional rough metallic surface [17], and its so-
lution is used to calculate the mean differential reflection
coefficient.

The approach to the scattering of an electromagnetic
field from a rough metallic or dielectric surface outlined
here is similar to the approach of Soriano and Saillard [5]
in its use of an impedance boundary condition to reduce
the number of coupled integral equations that have to be
solved from four to two. However, there are still impor-
tant differences between these two approaches. The first
is that we do not use the sparse-matrix flat-surface iter-
ative approach: the matrix elements connecting any two
points on the surface are calculated accurately. More-
over, those connecting two nearby points are calculated
more accurately than in the work of Soriano and Saillard.
The second is that we calculate the full angular inten-
sity distribution of the scattered field, which allows us
to check the unitarity (energy conservation) of the scat-
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FIG. 1: (Color online) The mean differential reflection coef-
ficients [20], 〈∂Rνp/∂Ωs〉 (p → ν) for a p-polarized incident
beam, whose polar angle of incidence is θ0 = 20◦, as functions
of the polar scattering angle θs for the (a) in-plane and (b)
out-of-plane scattering. See text for additional parameters.

tered field (for the non-absorbing case). This enabled the
identification of critical aspects of the numerical imple-
mentation that, if not handled properly, could lead to
erroneous results and/or a significant drop in accuracy.
This important point seems to have been overlooked in
previous publications. The third is that although the
occurrence of hyper-singular kernels is avoided in both
approaches by the use of the Müller equations [15, 16],
some differences are found between our resulting matrix
elements and those of Soriano and Saillard that appear to
affect the unitarity of the scattered field[24]. Moreover,
contrary to what was reported in Ref. [15], we find that
matrix element terms containing the Green’s function of
the metal also have to be taken into account for some off-
diagonal elements in order to produce accurate results.
The fourth is that we do not use the beam decomposi-
tion method [19] for the incident beam in which a wide
beam is represented by a weighted sum of shifted narrow
beams. Instead we use a single wide incident beam.

The physical system that we consider consists of
vacuum [ε0 = 1] in the region x3 > ζ(x‖) [where
x‖ = (x1, x2, 0)] and a non-magnetic metal in the re-
gion x3 < ζ(x‖) that is characterized by a complex,
frequency-dependent, dielectric function, ε(ω), for which
Re ε(ω) < 0 and Imε(ω) > 0. The surface profile func-
tion, x3 = ζ(x‖), is assumed to constitute a zero-mean,
Gaussian random process that is a single-valued func-
tion of x‖ and is differentiable with respect to x1 and

x2 at least twice. It is defined by
〈
ζ(x‖)

〉
= 0 and〈

ζ(x‖)ζ(x′‖)
〉

= δ2W (|x‖ − x′‖|), where δ is the root-

mean-square roughness, W (·) denotes the (normalized)
correlation function, and the angle brackets denote an
average over the ensemble of realizations of ζ(x‖). In this
work we will use an isotropic Gaussian correlation func-
tion W (x) = exp(−x2/a2) with a the correlation length.

The starting point of our approach is the Franz formu-
las of electromagnetic theory (or the dyadic form of Huy-
gens principle) [13, 14]. By applying them to the vacuum
region above the metal surface, and letting the observa-
tion point, x, approach the surface x3 = ζ(x‖), two cou-
pled inhomogeneous integral equations for the tangential
components of the electric and magnetic fields, JE(x‖) =
n̂×E(x)|x3=ζ(x‖)

and JH(x‖) = n̂×H(x)|x3=ζ(x‖)
, re-

spectively, are obtained, where n̂ denotes the unit vec-
tor normal to the surface and directed into the vac-
uum. These equations contain double derivatives of the
scalar Green’s function g0(x,x′) = exp[ik0R]/4πR [k0 =√
ε0(ω)ω/c, R = |x − x′|] resulting in non-integrable

hyper-singular kernels that are sources of computational
difficulties [9, 15, 16]. One way to obtain integrable ker-
nels, is to combine in a suitable way the two sets of Franz
formulas obtained separately for the vacuum and metal
regions so that the resulting integral equations do not
contain any hyper-singular terms. The resulting equa-
tions are known as the Müller integral equations [15],
and the one satisfied by JH(x‖|ω) reads

JH(x‖|ω) = JH(x‖|ω)inc

+ P
∫
d2x′‖ [[n̂(x‖)× {∇× [G(x|x′)JH(x′‖|ω)]}]] (1)

− ic

ω

∫
d2x′‖ [[n̂(x‖)× {∇×∇× [G(x|x′)JE(x′‖|ω)]}]],

where the equation satisfied by JE(x′‖|ω) can be ob-

tained from duality [14]. In writing Eq. (1) we have
introduced G(x‖|x′‖) = g0(x‖|x′‖) − g(x‖|x′‖) — the dif-
ference between the scalar Green’s functions for the
vacuum (subscript 0) and the metal; [[A(x|x′)]] =
A(x|x′)|x3=ζ(x‖);x

′
3=ζ(x

′
‖)

; P denotes the Cauchy princi-

ple value of an integral; and JH(x‖|ω)inc is defined sim-
ilarly to JH(x‖|ω) but for the incident field. Initially
the kernel of Eq. (1) seems to be hyper-singular. How-
ever, because the leading term (when R → 0) of the
second derivative of the scalar Green’s function is in-
dependent of medium parameters, the most divergent
terms of the kernel cancel, rendering it integrable. By
adopting the impedance boundary condition that re-
lates the surface currents JE(x‖|ω) and JH(x‖|ω) via
the (local) impedance tensor (K) [17]: JE(x‖|ω)i =
Kij(x‖|ω)JH(x‖|ω)j [i, j = 1, 2], the dependence on
JE(x‖|ω) can be removed from Eq. (1). Moreover, the re-
sulting equation can be converted into a matrix equation
for the two independent electric surface current compo-
nents, say, JH(x‖|ω)i [i = 1, 2], by the use of the method
of moments [5]. The resulting linear system is then solved
by the BiCGStab method [18] and the solution used to
calculate the mean differential reflection coefficient that
is averaged over an ensemble of realizations of the surface
profile function (see Ref. [20] for details).

On the basis of the integral equation (1), and with
the use of the impedance boundary condition, we have
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performed numerical simulations for a p-polarized inci-
dent beam of wavelength λ = 0.6328 µm that is scat-
tered from a Gaussian randomly rough silver surface. At
this wavelength ε(ω) = −16.00 + i1.088 [21]. The sur-
face was characterized by a root-mean-square roughness
of δ = λ/4 and a correlation length a = λ/2. In the sim-
ulations it was assumed to cover an area of 16λ × 16λ,
and the discretization interval was ∆ = λ/7 for both the
x1- and x2-directions.

Figure 1 presents the mean differential reflection co-
efficients as functions of the polar scattering angle θs
for the in-plane [Fig. 1(a)] and out-of-plane (φs =
±90◦) [Fig. 1(b)] scattered light due to a p-polarized
Gaussian beam of width w = 4λ incident on the sur-
face at a polar angle θ0 = 20◦. For the same parameters,
Figs. 2 depict the full angular intensity distribution of
the incident p-polarized light that is scattered into p- and
s-polarized light (polarization not recorded) [Fig. 2(a)];
p-polarization [Fig. 2(b)]; and s-polarization [Fig. 2(c)].
The number of surface realizations used to obtain these
results was Nζ = 5000. The simulations required for ev-
ery surface realization 96 CPU seconds (on a 2.67GHz
Intel i7 CPU) for each angle of incidence when calculat-
ing the scattered field on a 100 × 100 grid. The peaks
observed in Figs. 1 and 2 at angular positions θs = −θ0
(and φs = φ0+π) are due to the enhanced backscattering
phenomenon, a multiple scattering effect [22]. The en-
ergy fraction of the incident light that is scattered by the
surface was 94.7%, compared to 96.9% as predicted from
the Fresnel coefficient of the corresponding flat interface
scattering system. All the light scattered by the surface
was essentially incoherent (diffuse) (about 99.98%).

In order to evaluate the accuracy of the simulations
and to perform a self-consistency check of our approach,
we have performed simulations using the parameters
given above with the exception that the metal was as-
sumed to be non-absorbing, i.e. we artificially put
Im ε(ω) ≡ 0. Under this assumption, the total time-
averaged power fluxes of the incident and scattered fields
have to be equal, or in other word, one should require en-
ergy conservation (or equivalently unitarity of the scat-
tered field, U ≡ 1 where U denotes the fraction of the
incident power flux that is scatted by the rough metal
surface. It should be stressed that energy conservation
is only a necessary, but not sufficient condition to guar-
antee the correctness of the simulation results for non-
absorbing systems. It is still, however, a rather useful
and non-trivial condition that can assist in detecting in-
accuracies of the simulation approach as well as potential
implementation errors. For the parameters used in the
simulations reported in this work, we found U > 0.995
for “non-absorbing” silver [ε(ω) = −16.00], a result that
testifies to the accuracy of our approach.

In order to achieve such good unitarity values, it
turned out that great care had to be exercised when han-
dling the matrix elements of the integral equation kernel

FIG. 2: (Color online) The same as Fig. 1, but now showing
the full angular intensity distribution of the scattered field.
(a) p→ polarization not recorded; (b) p→ p; and (c) p→ s.

that were on, or close to, the diagonal. Soriano and Sail-
lard [9] have previously pointed out one way of handling
the diagonal matrix elements that contain the singular-
ity (at x‖ = x′‖) of the Green’s function by separating
it into two parts: one for which the integrand is singu-
lar but integrable and is handled analytically, and an-
other that is regular and is handled numerically. These
authors were not able within their approach to check
the energy conservation of their calculations. We have
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found, however, that in order to achieve good results
for the energy conservation, also close-to diagonal ma-
trix elements (in addition to those on the diagonal) have
to be treated accurately even if the off-diagonal matrix
elements are regular everywhere. These findings some-
what resemble results reported for volume integral equa-
tions where also close to diagonal volume-elements had
to be handled with higher accuracy then more distant
matrix elements[23]. For instance the use of the mid-
point method for evaluating all off-diagonal matrix ele-
ments (as in Ref. [9]) and a more accurate method for
the diagonal elements, would, for the surface parameters
assumed here, result in about 16.4% (U = 0.834) of the
incident energy not being accounted for, a result that
was found to be more-or-less independent of how accu-
rately one treated the diagonal elements, or if the surface
was rough or flat. Moreover, if in addition to the diago-
nal matrix elements, also the nearest-neighbor elements
were treated accurately, the amount of energy that was
not accounted for dropped to 4.9% (U = 0.951). If, addi-
tionally, also next-nearest neighbor matrix elements were
treated accurately, the unitarity condition started to be-
come well satisfied (U > 0.995), and treating accurately
matrix elements that were even further apart contributed
only insignificantly to the improvement of the unitarity
condition [24]. It should be stressed that without per-
forming the self-consistency check based on energy con-
servation, which requires the full angular distribution of
the scattered light being available to us, it has probably
not been realized that failing to treat close-to-diagonal
matrix elements accurately could cause inaccuracies in
the range of 10–20% even for flat interfaces. This is one
of the main results of this Letter.

In conclusion, we have presented an accurate and high-
performance simulation approach for the scattering of
electromagnetic waves from two-dimensional penetrable
metallic surfaces based on surface integral techniques.
By this approach, the scattering of a p-polarized finite
beam by a two-dimensional, randomly rough, silver sur-
face was studied in the optical regime, and it gave rise
to the well-known enhanced backscattering phenomenon.
Due to the calculation of the full angular intensity dis-
tribution of the scattered light, it was possible for us
to evaluate the accuracy of the simulation approach. It
was found that high-quality simulation results required
an accurate treatment of both the diagonal and close-
to-diagonal matrix elements. This latter point seems to
have been overlooked in previous studies. In this way, we
were able to obtain results that respect energy conserva-
tion (unitarity) for the equivalent non-absorbing system,
something that testifies to the accuracy of our approach.

The simulation approach presented in this Letter opens
the door to a direct and detailed comparison of the
full angle-resolved intensity distributions of the scattered
light obtained experimentally and theoretically. Addi-

tionally, the approach provides the tools needed to pre-
dict the effect of surface roughness on the electromagnetic
field in the near and far zone of the surface, and also
to tailor surface structures towards specific applications
(engineered surfaces). Such issues are of importance in
numerous applications, like for instance, in the photo-
voltaic industry where surface roughness in solar cells is
known to increase the efficiency of the cell, but the op-
timal surface structure, and the mechanism responsible
for the increased efficiency, are still unknown [25].

This research was supported in part by AFRL con-
tract FA9453-08-C-0230, the Research Council of Norway
(Sm̊aforsk grant), and NTNU.

∗ Electronic address: Ingve.Simonsen@ntnu.no
[1] A.R. McGurn and A.A. Maradudin, Waves in Random

Media 6, 251 (1996).
[2] J. T. Johnson, J. Opt. Soc. Am. A. 16 2720 (1999).
[3] A. Soubret et al., Phys. Rev. B 63, 245411 (2001).
[4] P. Tran and A.A. Maradudin, Opt. Commun. 110, 269

(1994).
[5] R. F. Harrington, Field Computation by Moment Meth-

ods (Macmillan, New York, 1968).
[6] G. Arfken, Mathematical Methods for Physicists, 3rd ed.

(Academic Press, 1985) section 16.3.
[7] L. Tsang et al., Electron. Lett. 29 1153 (1993); J. Opt.

Soc. A. A 11, 711 (1994).
[8] K. Pak et al., J. Opt. Soc. Am. A 14, 1515 (1997).
[9] G. Soriano and M. Saillard, J. Opt. Soc. Am. A 18, 124

(2001).
[10] A.M. Marvin and V. Celli, Phys. Rev. B 50, 14546

(1994).
[11] N. Engheta et al., IEEE Trans. Antennas Propag. 40,

634 (1992).
[12] V. Jandhyala et al., J. Opt. Soc. Am. A 15, 1877 (1998).
[13] W. Franz, Z. Naturforsch. 3a, 500 (1948).
[14] J.A. Kong, Electromagnetic Wave Theory, 3rd ed.

(EMW Publishing, Cambridge, 2005), pp. 674–675.
[15] C. Müller, Foundations of the Mathematical Theory of

Electromagnetic Waves (Springer-Verlag, Berlin, 1969),
sections 21 and 23.

[16] N. Morita et al., Integral Equation Methods for Electro-
magnetics (Artech House, Boston, 1990), section 3.5.2.

[17] A.A. Maradudin, Opt. Commun. 116, 452 (1995).
[18] H. van der Vorst, SIAM J. Sci. Statist. Comput. 13, 631

(1992).
[19] M. Saillard and D. Maystre, J. Opt. (Paris) 19, 173

(1988).
[20] I. Simonsen et al., Phys. Rev. A. 81, 013806 (2010).
[21] P.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370

(1972).
[22] A.A. Maradudin et al., Ann. Phys. (N.Y.) 203, 255

(1990).
[23] J.P. Kottmann and O.J.F. Martin, IEEE Trans. Anten-

nas Propag. 48, 1719 (2000).
[24] I. Simonsen et al. (unpublished work).
[25] S. Fahr et al., Appl. Phys. Lett. 92, 171114 (2008).

mailto:Ingve.Simonsen@ntnu.no

	 Acknowledgments
	 References



