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Abstract

Integrating Social Network Analytics into Operations Management

by

Yunduan Lin

Doctor of Philosophy in Engineering - Civil and Environmental Engineering

University of California, Berkeley

Professor Zuo-Jun Max Shen, Chair

The societal system is an intricate composition of individuals, each contributing their dis-
tinct demographics and experiences. It is not just a collection of people; it is an intercon-
nected network that goes beyond the sum of its separate parts. Within this network, even
a marginal action can have ripple effects, leading to the diffusion of behaviors, information,
or, as painfully evidenced, infectious diseases. These intricate connections introduce signifi-
cant challenges to the realm of operations management, including increased decision-making
complexity, data overload in analysis, and a lack of theoretical guidance. All these challenges
come together to form the central question that runs through my research: How can we
leverage the vast wealth of data and information available to navigate this intricate societal
system for more effective operational decision-making?

In response to this growing need, my dissertation contributes to the intersection of social
network analytics and operations management. The objective is to create a more precise
reflection of our interconnected societal systems, which, in turn, enables improved decision-
making across a broad spectrum of platforms. To this end, I have employed a diverse tool
set. These include optimization for high-quality problem-solving, data analytics to uncover
actionable insights, machine learning to enable data-driven decision-making, network and
graph theory to better understand the interconnected systems, and stochastic simulation for
informed evaluation, etc.

The dissertation comprises three papers that each examine a different facet of integrating so-
cial network analytics with operations management. In Chapter 2, we explore the promotion
optimization strategy with the consideration of the diffusion effects, drawing on extensive
data from a large-scale online platform. In Chapter 3, we propose a general approximation
framework to evaluate the impact of nonprogressive diffusion, delving into both its theoretical
underpinnings and practical applications. In Chapter 4, we highlight the significant findings
and set the stage for future research, particularly focusing on the challenges of learning user
behavior within a social network with limited data availability.
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Chapter 1

Introduction

Individuals interact in real-world to build relationships, share information, and create im-
pacts. These interactions are effectively encapsulated within the framework of social net-
works, which serve as a fundamental basis for understanding and analyzing human behavior.
In this dissertation, I will cover a series of studies that lie at the intersection of social net-
work analytics and operations management, with a keen focus on resolving the inherent
complexities that arise from this integration.

The primary challenge encountered in this integration is the intricate nature of network
behaviors, which tend to conflict with the need for simplicity and tractability in operational
decisions. Typically, the network effect, which propagates across the network structure and
evolves over time, has a complicated form or, even worse, lacks closed-form expression. This
complexity poses significant hurdles in accurately assessing the impact of social networks on
individual and collective behavior, and subsequently integrating these insights into practical
optimization frameworks. In the digital age, where online social networks dominate and are
in a constant state of expansion, these challenges become even more pronounced, necessitat-
ing innovative approaches to manage and leverage the vast amount of data these networks
generate.

This dissertation aims to bridge these gaps by developing unifying frameworks to provide
simple, efficient, and high-quality solutions to operational problems tied to social networks.
At its core, the aim is to contribute to our intellectual understanding of the following ques-
tions:

• How can we more efficiently evaluate the impact of network diffusion?

• How can network diffusion be integrated into operational decisions?

• How can we identify and learn about the diffusion effect using the limited data avail-
able?

In Chapter 2, we consider an in-depth analysis of the candidate generation and promo-
tion optimization (CGPO) problem for online content platforms, emphasizing the crucial
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role of the diffusion effect in shaping content promotion strategies. Content promotion
policies are crucial for online content platforms to improve content consumption and user
engagement. Unlike conventional methods that often sideline the complex dynamics of user
interactions, this study introduces a sophisticated diffusion model that seamlessly integrates
these elements with platform promotion strategies. Based on this diffusion model, the CGPO
problem can be formulated as a mixed-integer program with nonconvex and nonlinear con-
straints, which is proved to be NP-hard. Despite the complexity of the CGPO problem,
we prove the submodularity of its objective function, which enables us to find an efficient
(1− 1/e)-approximation greedy solution. Additionally, we investigate methods for estimat-
ing the diffusion model parameters using available online platform data and introduce novel
double ordinary least squares (D-OLS) estimators. We demonstrate that the D-OLS estima-
tors are consistent and have smaller asymptotic variances than traditional OLS estimators.
By utilizing real data from a large-scale video-sharing platform, we show that our diffusion
model effectively characterizes the adoption process of online content. Compared to the pol-
icy implemented on the platform, our proposed promotion policy increases total adoptions
by 49.90%. This work highlights the essential role of diffusion in online content and provides
actionable insights for online content platforms to optimize their content promotion policies
by leveraging our diffusion model.

In Chapter 3, we delves into the phenomenon of nonprogressive diffusion, a critical type
of social network behavior where agents are allowed to reverse their decisions as time evolves.
It has a wide variety of applications in service adoption, opinion formation, epidemiology,
etc. To offer an efficient framework for evaluating and optimizing nonprogressive diffusion,
we introduce a comprehensive model and a Fixed-Point Approximation (FPA) scheme. This
approximation scheme admits both theoretical guarantee and computational efficiency. We
establish that the approximation error is inherently related to the network structure, and
derive order-optimal bounds for the error using two novel network metrics. We show that the
FPA scheme is most accurate for dense and large networks that are generally prohibitive to
analyze by simulation. Taking the widely studied influence maximization and optimal pricing
problems on a social network as examples, we further illustrate the broad applications of our
FPA scheme. Finally, we conduct comprehensive numerical studies with synthetic and real-
world networks. In real networks, the FPA scheme shows 70-230 times more speed up in
computation time than simulation while achieving a mean absolute percentage error of less
than 3.48%. Moreover, our proposed network metrics are reliable indicators of the FPA
scheme’s performance.

In Chapter 4, I conclude the dissertation and chart out the prospective avenues for future
research. A key focus is on understanding user behavior within social networks, especially
in the face of limited data. This ongoing work navigates the complexities of learning user
behavior in social networks, where the interdependence of user actions renders traditional
machine learning approaches inadequate. We highlight the potential of simulation techniques
to generate counterfactual data from network diffusion models, offering a viable strategy
for overcoming the limitations of scarce real-world data, and setting the stage for future
explorations in network behavior analysis.
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1.1 Main Contribution

The primary goal of this dissertation is to present a perspective on the integration of social
network analytics with operations management. The details are elaborated throughout this
dissertation, drawing principally on the following publications authored by myself and my
colleagues (Lin et al. 2024, 2022). The key contributions are outlined as follows:

Content Promotion for Online Content Platforms with the
Diffusion Effect (Chapter 2)

• A diffusion model for online content. Our key contribution is the P-BDM for
depicting online content diffusion, which takes into account the promotion policy and
timeliness of content diffusion. Theoretically, the P-BDM characterizes the relation-
ship between the platform’s promotion decisions and the diffusion process, providing
a concise way to optimize promotion policy. Practically, the P-BDM demonstrates
effective alignment with real adoption patterns derived from an online video dataset.

• Formulation and algorithmic design for the CGPO problem. Under the P-
BDM, we represent the CGPO problem as a challenging mixed-integer optimization
problem that involves complex dynamics of content adoption. Despite the presence of
nonconvex and nonlinear constraints, as well as its proven NP-hardness, we identify
a crucial property known as the “monotonic property with nested sets”. This leads
to the establishment of the submodularity of the problem objective. Leveraging this
property, we propose the accelerated greedy algorithm (AGA), building upon the well-
known greedy algorithm for submodular maximization problems (Nemhauser et al.
1978) with a (1− 1/e)-approximation ratio.

• New estimation approach for the P-BDM. We introduce the double ordinary
least squares (D-OLS) method for estimating P-BDM parameters, taking advantage
of the online platform’s ability to distinguish different types of adopters. The D-OLS
estimators are straightforward to compute and possess desired statistical properties.
We show they yield smaller asymptotic variances compared to the OLS estimators and
demonstrate their robustness when the promotion policy is endogenous with diffusion
dynamics theoretically and numerically.

• Extensive numerical experiments with real data. We validate our models and
algorithms using a large-scale real-world data set from an online video-sharing platform.
Our observations are threefold. First, the promotion and diffusion coefficients for
online content are negatively correlated, highlighting the complexity of the CGPO
problem. Second, the policy generated by the AGA effectively strikes a balance between
incorporating the diffusion effect and updating the promotion policy. The success of
the AGA provides invaluable insights, such as the emphasis on the promotion effect
over the diffusion effect and the distinction of promotion strategies for various content
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based on their respective promotion and diffusion coefficients as well as content lifetime.
Third, the AGA policy significantly outperforms the benchmark policy that disregards
the diffusion effect, with an improvement of at least 49.90%.

Nonprogressive Diffusion on Social Networks: Approximation and
Applications (Chapter 3)

• Provable approximation scheme for a general diffusion model. We investi-
gate nonprogressive diffusion through a micro-founded, dynamic and stochastic model,
which captures local network effects and individual heterogeneity. Our model general-
izes the well-known linear threshold (LT) model and adapts it to the nonprogressive
diffusion (also see related discussions in the literature review). Within this model,
we propose the FPA scheme to approximate the limiting adoption probability of each
agent. To validate this approach, we develop a nontrivial “fixed-point sandwich” tech-
nique, establishing an order-optimal error bound. This bound indicates its superior
performance for large and dense networks, which are otherwise challenging to simulate.
These bounds naturally link to novel network structure metrics we propose to gauge
the performance of the FPA scheme: the inverse in-degree centrality and the inverse
in-degree density. These metrics provide valuable insights into both node-level and
network-wide structures of the network, serving as reliable indicators for the perfor-
mance of FPA in diverse network configurations. Under mild technical assumptions,
we also show that our bound is tight. Our large-scale empirical studies highlight the
FPA scheme’s superior performance over a wide range of networks. For example, it
achieves a mean absolute percentage error of less than 3.48% among all tested real-
world networks while concurrently accelerating computation by factors ranging from
70 to 230, compared with traditional simulation methods.

• Wide applicability in optimizing operational decisions. The FPA scheme of-
fers a powerful tool to reformulate and solve operational decision-making problems
in the nonprogressive diffusion setting. By virtue of our approximation error bound,
the reformulated problem will lead to efficient algorithms and provable high-quality
decisions for problems that were previously only able to be solved by cumbersome
simulation-based algorithms. We take the influence maximization (IM) and pricing
problems on a social network as examples. For the IM problem, we show that under
technical conditions, the influence function is submodular with regard to the seed set in
the reformulated problem. This extends the greedy algorithm to more general settings,
with significant efficiency improvement. For the pricing problem, we can also provide
near-optimal algorithms by the FPA reformulation. Specifically, under technical con-
ditions, the pricing problem under perfect price discrimination can be reformulated
as a convex program. In more general settings where perfect price discrimination is
infeasible, we derive approximate gradient expressions for the direct price optimization
problem, with which near-optimal solutions can be achieved efficiently.



5

Chapter 2

Content Promotion for Online
Content Platforms with the Diffusion
Effect

2.1 Introduction

In recent years, online content platforms such as TikTok and Instagram have achieved con-
siderable success in parallel with the proliferation of social media. These platforms offer
various forms of online content, including reviews, blogs, and videos, with the content serv-
ing as virtual products to attract users. However, several unique features of online content
platforms set them apart from traditional online retailers. (i) Platform objective: While
retailers aim to maximize the revenue obtained from selling products, content platforms aim
to maximize the engagement of users and the impact of their content. For example, the
total number of content clicks, which we adopt as the key metric in our work, is widely
recognized as a vital metric for platform operations (Su and Khoshgoftaar 2009) to measure
content consumption. (ii) Scale: The amount of content is orders of magnitude larger than
the number of products on an online retail platform. New content is generated significantly
faster than new products introduced on a retail platform. For instance, Amazon sells 12
million products in total (AMZScout 2021), while YouTube has more than 500 hours of
videos (YouTube 2021) uploaded per minute, with an average video length of 11.7 minutes
(Statista 2021). A rough estimate implies millions of new videos are uploaded every day.
(iii) User consumption behavior : Unlike in an e-commerce setting where users directly search
for a product of interest, online content platform users rely heavily on platform promotions
and/or friends sharing content on a social network as ways to overcome information overload
(Anandhan et al. 2018).

Therefore, online platforms actively promote content to users and foster an environment
where users are encouraged to share interesting content. This leads to the phenomenon
of content diffusion, wherein the content spreads to a larger audience beyond the scope of
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direct platform promotion. Consequently, a greater number of users have the opportunity to
discover and consume the content, thereby significantly amplifying user engagement. Two
examples of diffusion are provided below.

Example 2.1.1 (The diffusion of one piece of content) Some articles that announce
breaking news or tell good stories might go viral on the platform when many users cascadingly
re-post them. For instance, in 2020, a local news story about two missing children in Florida
netted almost 3.5 million shares on Facebook (FOX32 2020).

Example 2.1.2 (The diffusion of a trend) Some content that is of the same category,
similar in nature, or with homogeneous topics is usually associated with trending hashtags
and/or headlines. As more users are aware of and engaged in this trend, the related content
also becomes popular. For instance, the hashtag #squidgame has garnered 72.4 billion views
on TikTok (TikTok 2021). Numerous TikTok users became part of the trend, and an enor-
mous amount of content, including reenactments of the game, makeup looks, and Halloween
costumes inspired by the TV show “Squid Game”, was produced and viewed on TikTok.

The online content platform’s business model prompts the following research question:

How can a promotion policy be designed that selects a small subset of content
from the enormous corpus to display to users in a way that maximizes the total
content clicks?

The existing literature often prioritizes maximizing the number of clicks through direct
promotion, while neglecting the diffusion effect. It advocates promoting content with a high
historical click-through rate in hopes of attracting more direct clicks (Feng et al. 2007, Liu
et al. 2010). However, this type of promotion may overemphasize content that is already
popular, creating a scenario where a limited set of content is continuously promoted, reducing
overall content diversity. This “rich get richer” phenomenon can negatively impact user
engagement and satisfaction (Vahabi et al. 2015), as users might be unable to discover new
content. The challenge of the promotion policy lies in balancing between promoting trending
content for immediate gain and promoting diverse content to stimulate user engagement for
long-term platform sustainability. To the best of our knowledge, these trade-offs remain
largely unexplored in the literature. The diffusion effect serves as one of the major sources of
indirect gain. In this study, we aim to fill this gap by developing a diffusion-based promotion
policy for online content platforms.

Machine learning-based promotion strategies in practice typically involve two stages:
candidate generation and promotion optimization (Davidson et al. 2010, Covington et al.
2016). The candidate generation stage selects a small subset of content from a large cor-
pus, while the promotion optimization stage allocates a limited promotion budget to each
candidate content piece. This two-stage procedure balances computational efficiency and
focuses the platform’s attention on a small portion of content that can potentially generate
high rewards. We follow this framework and introduce two distinct features that differ from
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previous machine learning-based strategies. First, we incorporate the diffusion effect into
our promotion policy. Second, we recognize that the candidate set selection can impact the
optimal allocation of user attention to the content. We therefore carefully consider these two
stages together to maximize the total number of clicks, rather than treating them as separate
machine learning tasks as in previous literature. This leads to the candidate generation and
promotion optimization (CGPO) problem that we focus on in this paper.

A central piece of the CGPO problem is the promotion Bass diffusion model (P-BDM)
that we propose to characterize the diffusion process of online content. The P-BDM is
adapted from the well-known Bass diffusion model (BDM, Bass 1969) and inherits its in-
novative and imitative effects, which we interpret as two sources of user clicks on content
platforms: platform promotion and diffusion through user sharing, respectively. We show
that the BDM is not suitable for modeling the diffusion process of online content because
it fails to account for platform promotion policy and the timeliness of content diffusion. In
contrast, the P-BDM explicitly captures both and provides an excellent fit for a real-world
online content platform. Based on the P-BDM, we offer a set of complete solution techniques
for the online content promotion problem. Firstly, we integrate the candidate generation and
promotion optimization problems into a succinct mixed-integer program, allowing us to ob-
tain high-quality approximate solutions with performance guarantees. Secondly, leveraging
the high-granularity data commonly available on online platforms, we design a novel estima-
tion method for the parameters in the P-BDM. Lastly, our modeling framework, optimization
algorithm, and estimation method are demonstrated to be effective through counterfactual
analyses based on real online content data.

The remainder of this chapter is structured as follows: In Section 2.2, we review the
related literature. In Section 2.3, we discuss the formulation of the P-BDM. In Section 2.4,
we formulate the CGPO problem and propose the AGA for solving it. In Section 2.5, we
discuss the estimation issues for the P-BDM and propose the D-OLS method. Section 2.6
presents our numerical studies based on real-world data, followed by concluding statements
in Section 2.7.

2.2 Literature Review

As we discussed earlier, promotion and diffusion are two primary drivers of rewards for on-
line content platforms. Therefore, we focus our review on promotion policies and diffusion
effect studies. An active stream of literature is about recommender systems (RSs), which
focuses on investigating the connections between users and content. Various recommenda-
tion algorithms (Kitts et al. 2000, Covington et al. 2016) have been proposed to evaluate
the probability of users clicking on a particular item which characterizes the immediate in-
teractions between the platform and users. Some recent work (Lu et al. 2014, Besbes et al.
2016) demonstrates that maximizing the immediate item relevancy does not align with util-
ity maximization. The reasons are various, and one of the most important issues is the
consequent diffusion within the social network. This implies that the adoptions are not only
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from directly targeted users but also from those who are influenced by them. Few studies
incorporate this effect. Vahabi et al. (2015) are the first to mention that the social network
can empower the utility maximization of RSs. They propose a social-diffusion-aware RS
that can efficiently use recommendation slots and enhance the overall performance. Our
work substantially differs from Vahabi et al. (2015). While they utilize a personalized rec-
ommendation scheme with a hard constraint that prevents neighbors from receiving identical
content—we instead aim to characterize the diffusion trend across the population and find
an optimal promotion policy.

We remark that our work does not emphasize understanding the relationship between
users and content from a machine-learning perspective, as in the aforementioned literature.
Typically, these works consider content recommendations for each user individually. Rather,
we take a holistic approach and study the problem from an operations perspective. Our
objective is to maximize the total clicks by modeling the whole problem as a diffusion process
within the population and generating high-quality solutions using combinatorial optimization
techniques.

To understand how user interactions influence adoption, many diffusion models have been
proposed in the literature. Pioneered by Bass (1969), the BDM has become the most widely
used model for new products, capturing the adoption trend with parsimonious differential
equations. A sequence of work (Easingwood et al. 1983, Norton and Bass 1987) extends
the BDM by incorporating different dynamics, such as nonuniform influence and multiple
generations. The BDM has achieved tremendous success in predicting the adoption of a
variety of products, including consumer durable goods, medical innovations (Sultan et al.
1990), and information technology innovations (Teng et al. 2002). Despite its long history,
the BDM is also frequently applied in novel contexts (Jiang and Jain 2012, Agrawal et al.
2021). Our diffusion model extends the BDM by integrating promotion policy and the
timeliness of online content diffusion.

The BDM, along with all the other models previously referenced, focuses on the global
diffusion effect. In particular, each user is influenced by a universal diffusion effect, namely
the overall adoption level within the entire market. In contrast, some research has also ex-
plored diffusion in the context of social networks, where each user is influenced only by their
local neighborhood. This type of diffusion model can provide a more granular representation
of the unique diffusion effect experienced by each user. The independent cascade model
(Goldenberg et al. 2001) and linear threshold model (Granovetter 1978) are two such fun-
damental models that incorporate network structures. Kempe et al. (2003) then models the
influence maximization problem as an algorithmic problem, aiming to identify the optimal
subset of seed users that could trigger the maximum adoptions. For other applications, we
refer readers to review papers (Kiesling et al. 2012, Zhang and Vorobeychik 2019). However,
the diffusion process within a network is not easy to quantify through a simple formula;
hence, the market characterization relies heavily on simulation techniques, making the sub-
sequent optimization problem time-consuming to solve. Given the limitations, our work
focuses on the global diffusion effect to maintain simplicity and efficiency in optimization
problems.
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Another branch of study relevant to our work is revenue management for online retailers.
While users exhibit different behaviors, the process of candidate selection and promotion
optimization shares some similarities with assortment and pricing problems. Golrezaei et al.
(2020b) and Chen and Shi (2019) present the inventory and pricing strategies for strategic
customers, who exhibit similar user behavior as online content platforms. Moreover, recent
works also consider the network effect in operations management problems. Hu et al. (2016)
consider the case where purchase decisions can be influenced by earlier purchases. Du et al.
(2016), Wang and Wang (2017) propose a variant of the multinomial logit model incorpo-
rating the network effect in an assortment optimization problem. Follow-up works (Nosrat
et al. 2021, Chen and Chen 2021) also involve different choice models. This line of research
inspires us to consider similar problems on online content platforms.

2.3 Promotion Bass Diffusion Model

In this section, we introduce the promotion Bass diffusion model (P-BDM) to capture the
adoption process of online content. We begin by highlighting a common issue of the Bass
diffusion model to model the real-world online content adoption process. It motivates us to
develop a new model, P-BDM, that incorporates the platform’s promotion decisions, which
serves as the foundation for our subsequent optimization and analysis.

2.3.1 Background and Motivation from a Large-Scale
Video-Sharing Platform

We begin with a brief overview of the Bass diffusion model (BDM), which is a widely used
model for describing the adoption process of new products in a population over time. The
basic premise of the BDM is that adopters can be classified into two types: innovators and
imitators. Innovators are individuals who independently decide to adopt a product, while
imitators are influenced by those who have already adopted it. In the context of online
content, we view the clicks on a content piece as adoptions. For this reason, we use the
terms “click” and “adoption” interchangeably throughout.

The discrete-time BDM models the adoption process of a product over a discrete finite
time horizon t = 1, 2, . . . , T in a market of population size m. The initial number of adopters
is denoted by A0, and the number of new adopters at each time period t is given by:

at =

(
p+ q

At−1

m

)
(m− At−1) , ∀ t = 1, . . . , T , (2.1)

where At−1 = A0+
∑t−1

τ=1 aτ represents the cumulative number of adopters up to time period
t − 1, and p and q are the innovative and imitative coefficients, respectively. In particular,
(p+qAt−1/m) corresponds to the adoption rate of the non-adopters at period t. This indicates
that the adoption behavior at time t is jointly influenced by two forces: the innovative effect
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p and the imitative effect qAt−1/m, which is proportional to the cumulative number of
adopters. To ensure the discrete-time BDM is well-defined, it is commonly assumed that
p ≥ 0, q ≥ 0, and p+ q ≤ 1.

Whereas it seems intuitive to apply the BDM to model the adoption of online content,
empirical evidence may suggest otherwise. Particularly, we analyze the clickstream data
from a large-scale video-sharing platform. For a detailed introduction about the platform
and the data, please refer to Section 2.6.1. In Figure 2.1, we use a single video to showcase
the typical pattern of the content diffusion process.

Figure 2.1: Illustration of Adoption Curves and the Corresponding Fitted BDM Curve for
an Example Video
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Notes. To ensure data anonymity, we have scaled the y-axis using a randomly selected number. (a) Cumu-
lative adopters. (b) New adopters and targeted users.

In Figure 2.1a, we present both the actual cumulative adoption data over 102 periods
and the fitted BDM curve. For clarity, we limit the range of these curves to the time frame
within our observation. A comprehensive discussion on the fit of the BDM to online content
adoption data, including the full trajectory of the fitted BDM curve, is provided in Appendix
A.2.1.1.

A detailed explanation of our fitting method can be found in Section 2.5.1. Specifically,
we first estimate the parameters of the BDM using data from the initial 60 periods, then
use these parameters to generate a fitted curve for the full 102 periods. We evaluate the
fitness and predictive power of this curve in two parts: from time period 0 to 60 and from
60 to 102. In the first part, although the fitted curve largely reflects the overall trend, it
fails to capture the subtle swings of the curve from time to time. In the second part, the
fitted BDM continues to predict a steady growth of new adopters, whereas the actual data
shows a much slower rate of adoption. As a result, the predicted adoption number deviates
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significantly from the actual value at the end. These observations suggest that the BDM may
not be able to provide an appropriate description for the diffusion of online content. One
of the significant factors contributing to this inconsistency is the BDM’s assumption that
all non-adopters will be impacted by the innovation effect, as outlined in (2.1). However,
this is unlikely to hold for online content due to limited user time and targeted promotion
strategies. Figure 2.1b further supports this claim by showing a strong correlation between
targeted users and new adopters at each time period (the Pearson correlation coefficient is
ρ = 0.748).

The discrepancy between the BDM and actual adoption data is not unique to this par-
ticular example; it is commonly observed in the data. This suggests that platform-controlled
promotion plays a vital role in driving adoption and motivates us to develop a new diffusion
model tailored to online content that incorporates platform promotion policy.

2.3.2 The Promotion Bass Diffusion Model

The key message conveyed in the previous analysis is that one must take into account the
platform’s promotion policy to capture the adoption patterns of online content. This moti-
vates our promotion Bass diffusion model (P-BDM). It builds on the notation of the BDM
and adapts it to the specifics of online content. It aims to model the adoption process of
online content over a finite time horizon t = 1, 2, . . . , T in a market of size m. The model
posits that the adoption of a content piece is driven by two forces: (i) promotion effect,
which reflects the intrinsic preference of users towards a content piece, specifically how likely
a user is to adopt a content piece as an individual when it is promoted by the platform, and
(ii) diffusion effect, which represents the influence of the adopted population on others, i.e.,
the likelihood that a user will adopt a content piece that is shared by other adopters. The
promotion and diffusion effects are the counterparts of innovative and imitative effects in
the BDM; we, therefore, use these terms interchangeably in the following discussions. In a
similar vein, we define the promotion coefficient p and diffusion coefficient q to characterize
these two effects. Consistent with the BDM setting, we assume that p ≥ 0, q ≥ 0, and
p+ q ≤ 1.

The P-BDM incorporates the platform’s promotion policy as a new variable, denoted
by x = (xt : t = 1, 2, . . . , T ), which represents the fraction of users in the market that
receive the promotion at each time period. For mathematical convenience in the subsequent
formulation, we define this promotion fraction over the entire market size rather than over
the remaining non-adopters, although these two definitions can be converted to each other
as needed. Specifically, there are in total mxt users receiving the promotion at time t. The
platform does not promote any content piece to users who have already adopted it. Thus,
the promotion fraction xt is upper bounded by the fraction of the remaining non-adopters
in the market at time t − 1 (i.e., xt ≤ 1 − At−1/m). Denoting A0 as the initial number of
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adopters, the P-BDM assumes that the number of new adopters at time t is

at =

(
p+ q

At−1

m

)
mxt︸ ︷︷ ︸

Direct adopters

+ q
At−1

m
(m− At−1 −mxt)︸ ︷︷ ︸
Indirect adopters

= pmxt︸ ︷︷ ︸
Promotion effect

+ q
At−1

m
(m− At−1)︸ ︷︷ ︸

Diffusion effect

. (2.2)

In the P-BDM dynamics (2.2), we categorize adopters based on whether they receive the
promotion or not. For those not exposed to promotion, categorized as “indirect adopter”,
their adoption rate reflects only the diffusion effect and is expressed as qAt−1/m. For those
who receive the promotion, categorized as “direct adopters”, their adoption rate is increased
by the promotion effect, making it (p + qAt−1/m). It is worth noting that the BDM is a
special case of the P-BDM where all non-adopters receive the promotion at each time period
(i.e., xt = 1− At−1/m,∀t = 1, 2, . . . , T ).

In practice, we also observe a time decay effect in online content diffusion, which can
be attributed to the limited lifespan of content and the diminishing incentives for adopters
to share it over time. To account for this timeliness feature, we incorporate a time-decay
multiplicative factor γ for better alignment of the diffusion model with real-world data. We
explain this approach in more detail in Appendix A.2.1.2. It is important to note that we
consider the time-decay factor as an external influence, which means it does not complicate
the theoretical analysis of the promotion optimization problem. Therefore, we assume γ = 1
until the discussion of numerical experiments (i.e., Section 2.6), where we will explore the
effect of time-decay factor γ further.

2.4 Optimizing Content Adoptions

In practice, online platforms frequently undertake the mission of efficiently selecting and
spotlighting featured content. This content, a distinct subset that the platform deliberately
highlights or promotes, is usually selected due to its high quality and potential for stimulating
trends. For instance, on the platform with which we collaborate, algorithms select high-
quality content regularly for inclusion in the “trending video pool”. With the intent of
stimulating diffusion and creating buzz, this content is then blended with other material—
content selected based on user interests by machine learning algorithms, advertisements, and
more—and displayed to users. The content display process on this platform is representative,
including two stages (Davidson et al. 2010, Covington et al. 2016): candidate generation and
promotion optimization. The former involves the selection of a promising subset of content
from the overall corpus, while the latter necessitates the platform’s allocation of its limited
promotional resources among the selected candidates. This process, driven by machine
learning and reliant on decentralized algorithms, doesn’t account for overall diffusion—an
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objective of the trending video pool. In contrast, we formulate the content generation and
promotion optimization (CGPO) problem as an optimization task to incorporate the diffusion
effect into content promotion, using the P-BDM as a basis.

2.4.1 The Content Generation and Promotion Optimization
Problem

We consider a platform with a fixed content corpus V , operating within a market of un-
changing size m. The platform can select up to K candidate content pieces. Its objective is
to maximize total content adoptions over a fixed planning interval of length L given a pro-
motion budget C. To achieve this, the platform needs to determine not only the promotion
fraction for each content piece but also coordinate the timing of the promotion.

In line with the two-stage process, the platform first selects a subset U ⊆ V with no more
than K candidates. This cardinality constraint reflects the natural upper bound on the size
of the trending or featured video pool. Then, the platform determines the promotion policy
x = (xv,t : v ∈ U, t = 1, 2, . . . , L) for the candidate set U . Here, each candidate v ∈ U
is promoted to a fraction xv,t of users at each time t = 1, . . . , L. Subsequently, the CGPO
problem is formulated as

max
U⊆V: |U |≤K

R(U ;C) +R(V \ U ; 0) , (2.3)

where R(U ;C) denotes the maximum total adoptions for the candidate set U , achievable by
optimizing the promotion policy x within the promotion budget C. Similarly, R(V \ U ; 0)
denotes the total adoptions of the remaining set V \ U with budget 0. This is equivalent
to none of the content in set V \ U being promoted. Notice that, given any U ⊆ V and
promotion budget C, R(U ;C) can be defined as the optimal value of the following promotion
optimization (PO) subproblem:

max
x≥0,AU,1:L

∑
v∈U

Av,L (2.4a)

s.t. Av,t = Av,t−1 + pvmxv,t +
qv
m
Av,t−1(m− Av,t−1), ∀v ∈ U ∀t = 1, . . . , L, (2.4b)

xv,t ≤ 1− Av,t−1

m
, ∀v ∈ U ∀t = 1, . . . , L, (2.4c)

m
L∑

t=1

∑
v∈U

xv,t ≤ C. (2.4d)

In this subproblem, Av,: = (Av,t : t = 0, 1, . . . , L) denotes the cumulative adopters for
v ∈ U at each time and initial adoption AU,0 = (Av,0 : v ∈ U) is given. The objective (2.4a)
represents the total adoptions of all candidates in set U at the end of the L-period planning
interval; (2.4b) mandates the cumulative adopters follow the P-BDM diffusion dynamics,
as defined in (2.2); (2.4c) ensures that the number of users receiving the promotion does
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not exceed the remaining non-adopters; (2.4d) ensures that across the L periods a total
promotion budget C on the number of impressions used for promoting these videos in the
featured video pool. The rest of the platform capacity is reserved for other purposes such as
displaying videos selected based on user interests and advertisements. In addition, we use
C̄ := C/mL to indicate the average promotion budget per user per time period, which can
be an arbitrary given constant.

In a similar vein, we can define R(V \U ; 0). Specifically, it can be calculated according to
the P-BDM diffusion dynamics (2.2) when xv,t is set to 0 for all v ∈ V \U and t = 1, 2, . . . L.

We remark on the following before solving the CGPO problem. First, on the notation
side, we use bold notation to denote collections of specific variables for a set of content
pieces within a certain time period, in vector or matrix form. For example, x = (xv,t :
v ∈ V , t = 1, . . . , L), xv,: = (xv,t : t = 1, . . . , L), and xU,t = (xv,t : v ∈ U). We use i : j
to denote a slice of the vector or matrix ranging from index i to j, where i, j ∈ Z+. For
example, xv,2:L = (xv,t : t = 2, . . . , L). Second, one ultimate goal of content platforms is
to maximize total adoptions over a long time horizon of T periods (T ≫ L). Crafting a
“true” optimal promotion policy for this entire period is challenging due to the dynamic
platform environment, including regular updates to the content corpus and market size
variations. However, content diffusion on platforms typically outpaces these environmental
changes (Graffius 2022). As such, it is reasonable to design promotion policies periodically for
a short period, in which the environment is relatively stable. The CGPO problem, therefore,
seeks to identify such a dynamic policy within a L-period window. We can re-optimize it
periodically to account for the environmental changes over the extended time horizon.

2.4.2 Promotion Optimization Given the Content Set

The CGPO problem inherently comprises two stages, namely, candidate generation (CG)
and promotion optimization (PO). The CG stage, as represented in problem (2.3), is a com-
binatorial optimization problem that embeds the PO stage, as shown in problem (2.4). The
primary challenge in solving the CGPO problem stems from the implicit interaction among
content pieces, which is a consequence of the budget constraint (2.4d). This constraint not
only leads to different selections of content but also necessitates corresponding adjustments
in how the promotion budget is allocated to the selected content. These adjustments lead
to a variety of diffusion outcomes. The complexity of this problem is formally captured in
the following theorem:

Theorem 2.4.1 (NP-Hardness) The CGPO problem (2.3) is NP-hard.

For a detailed proof of Theorem 2.4.1, please refer to Appendix A.1.1.1. In this section,
we first focus on the PO stage for a given candidate content set U ⊆ V . We show how to
solve the PO subproblem optimally and identify the key property that helps solve the entire
CGPO problem.

Given set U , the PO problem (2.4) remains difficult to solve due to its non-convex
nature. In the following, we first perform convex relaxation and show that the PO problem



CHAPTER 2. CONTENT PROMOTION FOR ONLINE CONTENT PLATFORMS
WITH THE DIFFUSION EFFECT 15

is equivalent to its relaxed problem. Then, we highlight a critical ingredient in solving the
relaxed problem, which is also essential to solving the entire CGPO problem.

2.4.2.1 Convex Relaxation

The nonconvexity of problem (2.4) originates from the set of equality constraints (2.4b),
which include a quadratic term of A on the right-hand side. To transform this nonconvex
feasible region into a convex one, we relax (2.4b) as inequalities as follows:

Av,t ≤ Av,t−1 + pvmxv,t +
qv
m
Av,t−1(m− Av,t−1), ∀v ∈ U ∀t = 1, . . . , L . (2.5)

We denote the relaxed problem as PO-CR, which uses (2.4a) as the objective and includes
(2.5), (2.4c), and (2.4d) as the constraints. The PO-CR problem is a convex optimization
problem and thus can be handled by commercial solvers. Any optimal solutions to the
PO-CR problem serve as upper-bound solutions to the PO problem (2.4). Moreover, as we
illustrate in Theorem 2.4.2 below, the PO-CR problem is in fact equivalent to the original
PO problem (2.4).

Theorem 2.4.2 (Relaxation) The PO problem (2.4) and relaxed problem PO-CR are
equivalent.

We remark that the equivalence is non-trivial because the decision variablesA and x have
opposing relationships in constraints (2.4b) and (2.4c). Specifically, increasing Av,t seems
to increase the objective value due to (2.4b) but it lowers xv,s for s ≥ t + 1 due to (2.4c).
To establish the equivalence, we show that the optimal solutions of the PO-CR problem
are feasible solutions to the PO problem (2.4). The key intuition is that, under P-BDM
dynamics, there is no benefit in “holding back” realized adoptions as a larger unadopted
population for future promotion. In other words, achieving equality in constraint (2.4b)
is more beneficial than maintaining the constraint as a strict inequality for a larger upper
bound of x in constraint (2.4c). Complete proofs are in the appendix.

With the PO-CR problem at hand, we can directly find the optimal promotion policy
for any given candidate set U ⊆ V using commercial solvers. However, to tackle the CGPO
problem (2.3) as a whole, we need to utilize the optimality condition of the PO-CR problem,
as detailed in Section 2.4.2.2, and then establish its link to the outer CG problem. This is
accomplished by a reformulation that solely uses the promotion fraction x as the decision
variable.

2.4.2.2 Monotonic Property with Nested Sets of PO Problems

Given that the adoption number Av,1:L intrinsically depends on x and Av,0, we logically
reformulate the PO-CR problem into a convex program that solely involves the promotion
fraction x:

max
x≥0

∑
v∈U

fv(xv,:) (2.6a)
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s.t. m
L∑

t=1

∑
v∈U

xv,t ≤ C, (2.6b)

xv,t ≤ 1− Av,0

m
, ∀ v ∈ U ∀ t = 1, . . . , L, (2.6c)

where for all v ∈ U , function fv(xv,:) is defined as

fv(xv,:) := max
Av,1:L

Av,L s.t. (2.5), (2.4c). (2.7)

This reformulation utilizes a series of black-box functions, fv for each v ∈ U , to evaluate the
adoptions of content v under a given promotion policy. To ensure fv(xv,:) is well-defined, we
include a set of redundant constraints (2.6c) which ensures that problem (2.7) always has a
feasible solution. We elaborate on the rationale behind these constraints and the process of
constructing a feasible solution to problem (2.7) for any given policy in Appendix A.1.1.3.
This reformulation creates a crucial link between the PO problem for a specific candidate set
and the CG problem, which encompasses a set of PO problems for any possible candidate
sets. It naturally divides the PO problem into two steps: evaluation and optimization.
Evaluation is through functions fv, separable for each content piece v ∈ V and independent
of the chosen set U . For example, if we consider two different candidate sets U1 and U2

where v ∈ V is included in both sets, function fv will be consistently defined across both PO
problems. Moreover, the reformulation preserves the convexity of the PO-CR problem, as
we can demonstrate that fv is a concave function for each v ∈ V in Lemma 2.4.1.

Lemma 2.4.1 (Concavity) For any v ∈ V, fv(xv,:) is a concave function for xv,: ∈
[0, 1− Av,0/m]L.

Lemma 2.4.1 derives from the fact that problem (2.7) is a convex program. Based on this,
we illustrate the optimality condition of the PO problem using the Lagrangian multiplier,
which serves as a stepping stone to solving the entire CGPO problem. Specifically, we dualize
the reformulation (2.6) as dual problem (2.8), with θ being the Lagrangian multiplier for
constraint (2.6b):

min
θ≥0

∑
v∈U

hv(θ) + θC . (2.8)

Here, hv(θ) is defined as the optimal value function of the following maximization problem:

hv(θ) := max
xv,:∈[0,1−Av,0/m]L

fv(xv,:)− θm

L∑
t=1

xv,t . (2.9)

For any candidate set U ⊆ V , let θ∗(U) denote the optimal dual variables of dual prob-
lem (2.8). In Lemma 2.4.2, we provide a comparison of optimal dual variables for nested
candidate sets U1 ⊆ U2 ⊆ V .
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Lemma 2.4.2 (Monotonic property with nested sets) For any nested candidate sets
U1 ⊆ U2 ⊆ V, the optimal dual variables satisfy θ∗(U1) ≤ θ∗(U2).

Lemma 2.4.2 implies that for nested candidate sets, the optimal dual variables of the
larger set will always be greater or equal. This conclusion is grounded in the consistent
definition of function fv across PO problems with different sets. Lemma 2.4.2 not only
enables us to efficiently search for the optimal dual solution θ∗ without requiring a closed-
form expression but also plays a crucial role in proving the submodularity of the GG problem.
In particular, we employ this property to show that the marginal gain of the CG problem
decreases monotonically as the content set U enlarges.

2.4.3 Candidate Generation

In this section, we address the candidate generation (CG) stage, which aims to select a
subset of content pieces that yield the maximum total adoptions. Leveraging the “monotonic
property with nested sets” for PO problems derived in the previous section, we approach
this combinatorial optimization from another perspective. Instead of directly identifying the
optimal candidate set, we focus on the comparison of total adoptions between two nested
candidate sets. By comparing the marginal gains of incorporating an additional content
piece into nested candidate sets, we show that the objective of the CG problem (2.3) is a
monotone submodular set function. This finding enables us to apply the greedy algorithm for
submodular maximization to solve the entire CGPO problem, thereby achieving an (1−1/e)-
approximation. Moreover, we can further accelerate the greedy algorithm by leveraging the
“monotonic property with nested sets” again.

2.4.3.1 Submodularity of the CGPO Objective

To verify that the CGPO objective (i.e., R(U ;C)+R(V \U ; 0)) is a submodular set function
of U ⊆ V , we need to show that R(U ∪{w};C)+R(V \ (U ∪{w}); 0)−R(U ;C)−R(V \U ; 0)
is decreasing in U , for all w ∈ V \U . With simple algebra, this is equivalent to showing that
for any given nested sets U1 ⊆ U2 ⊆ V and w ∈ V \ U2,

R(U1 ∪ {w};C)−R(U1;C)−R({w}; 0) ≥ R(U2 ∪ {w};C)−R(U2;C)−R({w}; 0) .
(2.10)

The left and right sides of (2.10) represent the marginal gain of adding an additional content
piece w to sets U1 and U2, respectively. The marginal gain is characterized by the differ-
ence between the optimal values of two different PO problems. Direct comparison of two
marginal gains is intractable, as the optimal value of PO problem does not have a closed-form
expression. To overcome this challenge, in the following, we express the marginal gain as the
difference between the optimal values of the same PO problem under different promotion
budgets instead.

At a higher level, R(U ;C) denotes the optimal adoptions when the promotion budget
C is entirely allocated to the candidate set U , whereas R(U ∪ {w};C) denotes the optimal
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adoptions when part of promotion budget c ∈ [0, C] is allocated to U and the remaining
(C − c) is allocated to w. Hence, we can reformulate R(U ∪ {w};C) as the optimal value of
the following problem:

R(U ∪ {w};C) := max
0≤c≤C

[R(U ; c) +R({w};C − c)] , (2.11)

where R(U ; c) is the maximum total adoptions of set U given a promotion budget c and
R({w};C − c) is the maximal total adoptions of content piece w with a promotion budget
(C − c).

Hence, if c∗(U) denotes the optimal promotion budget allocated to set U in problem
(2.11), the marginal gain from including content piece w given content set U can be expressed
as

R(U ∪ {w};C)−R(U ;C)−R({w}; 0)
= [R(U ; c∗(U))−R(U ;C)] + [R({w};C − c∗(U))−R({w}; 0)] . (2.12)

The marginal gain is decomposed into two parts: the adoption loss of set U due to the
cannibalization of new content piece w, and the adoption gain resulting from w. Both parts
can be depicted as the difference between optimal values of the same PO problem, with
the promotion budget varied. This further enables us to use the Lagrangian multiplier to
represent the marginal gain. Analogous to (2.8), we formulate the PO dual problem for set
U and promotion budget c as

R(U ; c) = min
θ≥0

∑
v∈U

hv(θ) + θc , (2.13)

where hv(θ) adheres to the same definition in (2.9). By the envelope theorem, we can express
the difference between two optimal values as an integral of the optimal dual variable, such
as

R(U ; c)−R(U ; 0) =

∫ c

z=0

θ∗(U ; z)dz , ∀ θ∗(U ; z) ∈ Θ∗(U ; z) ,

where Θ∗(U ; z) is the set of optimal dual variables to problem (2.13) when the budget is z.
Consequently, the first term in (2.12) can be represented as

R(U ; c∗(U))−R(U ;C) =

∫ c∗(U)

z=0

θ∗(U ; z)dz −
∫ C

z=0

θ∗(U ; z)dz = −
∫ C

z=c∗(U)

θ∗(U ; z)dz .

In a similar manner, we can express the second term in (2.12). Therefore, the marginal gain
of adding piece w to the candidate set U can be represented by the optimal dual variables
as

(2.12) = −
∫ C

z=c∗(U)

θ∗(U ; z)dz +

∫ C−c∗(U)

z=0

θ∗({w}; z)dz .
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Hence, we transform the proof of submodularity, which essentially involves comparing
the marginal gain of piece w over two nested sets U1 and U2, into a comparison between
the optimal dual variables of PO problems with two nested sets. This leads us directly to
Theorem 2.4.3.

Theorem 2.4.3 (Submodularity) The CGPO objective, R(U ;C)+R(V\U ; 0), is a mono-
tone submodular set function with respect to content set U ⊆ V.

The proof of Theorem 2.4.3 relies on transforming marginal gain and utilizing the “monotonic
property with nested sets”. The complete proof is included in Appendix A.1.1.4. As a result,
the CGPO problem (2.3) can be viewed as a monotone submodular maximization problem
with a cardinality constraint.

2.4.3.2 Accelerated Greedy Algorithm

The greedy algorithm (Nemhauser et al. 1978) provides an (1− 1/e)-approximation for the
monotone submodular maximization problem with a cardinality constraint. The algorithm
iterates K times, selecting a content piece with the highest marginal gain in each iteration.
The greedy algorithm is presented as Algorithm 1.

Algorithm 1: Greedy Algorithm for the CGPO Probem.

1 U0 := ∅.
2 for k ∈ [1, . . . , K] do
3 for v ∈ V \ Uk−1 do
4 Solve the PO problem (through its convex relaxation) for set Uk−1 ∪ {v}.
5 Let R(Uk−1 ∪ {v};C) be the optimal value.

6 end
7 v∗ := argmaxw∈V\Uk−1

R(Uk−1 ∪ {w};C) +R(V \ (Uk−1 ∪ {w}); 0).
8 Uk := Uk−1 ∪ {v∗}.
9 end

Subsequently, we aim to demonstrate that an acceleration of the greedy algorithm can
be achieved by exploiting the “monotonic property with nested sets”. In each iteration, the
greedy algorithm solves PO problems by adding an extra content piece to the selected set,
which means it repeatedly solves PO problems for nested sets. Acceleration can be achieved
by combining the Lagrangian relaxation technique with the greedy approach. The core idea
is to utilize the optimal dual variable values from previously solved PO problems to create a
more compact feasible region for subsequent iterations, which deals with expanded candidate
sets. We formalize this idea as the accelerated greedy algorithm (AGA), which is detailed
as follows.

Accelerated Greedy Algorithm:
For Line 4 in Algorithm 1,
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(i) At iteration k, record the optimal Lagrangian dual variable when solving the PO
problem with set Uk−1 ∪ {v} as θ∗(Uk−1 ∪ {v}).

(ii) At iteration k+1, when solving the PO problem for set Uk ∪ {v}, set the lower bound
of Lagrangian dual variable as max{θ∗(Uk), θ

∗(Uk−1 ∪ {v})}.

As indicated by Lemma 2.4.2, the optimal dual variable monotonically increases with each
greedy iteration. By implementing the AGA, we do not treat the PO problems as separate
convex programming problems but rather utilize knowledge from previous iterations to speed
up the solving process. In the AGA, the search region of the dual variable is adaptively shrunk
at each greedy iteration by updating the lower bound to match the optimal dual variable
from previous iterations. Consequently, the AGA can significantly reduce the execution time
of optimizing the CGPO problem by exploiting the problem structure in conjunction with
the greedy algorithm.

2.5 Parameter Estimation

In this section, we discuss how to estimate the parameters of the P-BDM by adapting the
classical methods for the BDM. We show that despite the challenges of estimating parameters
for diffusion models, the data available on online platforms allows us to achieve high-quality
estimates even when the promotion policy is endogenously determined throughout the dif-
fusion process.

Although the BDM describes a deterministic diffusion dynamic, several probabilistic
methods have been proposed to estimate its parameters. Bass (1969) first estimates the
parameters using the ordinary least square (OLS) method. Schmittlein and Mahajan (1982),
Srinivasan and Mason (1986) apply maximum likelihood estimation (MLE) and nonlinear
least square to obtain better estimates. However, these methods and their analysis are
complicated by the diffusion nature, such as autocorrelation, which exists among observations
because diffusion happens as a dynamic process. The new adoptions at each time step depend
on the previous cumulative adoption number and affect future adoptions. The intricate
relationship of parameters, such as the cumulative adopters as a direct function of p, q, andm,
further complicates the problem (a commonly used expression can be founded in Schmittlein
and Mahajan 1982). These issues degrade the performance of the estimators. Estimating the
parameters of the P-BDM introduces additional challenges due to promotion. The inclusion
of promotion decisions makes the closed-form expression of cumulative adopters no longer
exist, limiting our choice of tools. Additionally, as the platform determines promotion policy
based on real-time adoption levels, the promotion fraction is correlated with the cumulative
adopters and thus endogenous in the diffusion dynamics.

We revisit the OLS and MLE methods for the BDM and adapt them to the P-BDM,
leading to new estimation methods, namely the D-OLS and D-MLE methods. We highlight
that, while there are inherent deficiencies in estimating diffusion models as mentioned above,
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we can largely alleviate these issues and improve the estimation results on online platforms.
In fact, compared to traditional markets, we can extract additional information from online
platforms, particularly by identifying adopters who have received promotions. We use a fixed
design framework to underscore the theoretical benefits of this extra information. Although
this analysis is stylized, the benefits we demonstrate are not merely fortuitous; they are
also consistently observed in numerical experiments with both OLS-based and MLE-based
estimators. In the following discussions, we focus on a fixed v ∈ V and omit the subscript v,
and treat the market size m as fixed.

2.5.1 OLS Estimators

In this part, we discuss the OLS-based methods for estimating parameters in the P-BDM. We
base our approach on the OLS method for the BDM as presented in Bass (1969), summarized
in Appendix A.1.2.1. To estimate parameters in the P-BDM, we observe a sequence of
observations {(at, xt, At)}Tt=1, which includes both the realization of promotion decisions and
adoption numbers. The OLS method for the P-BDM relies on the following relationship:

at = p ·mxt + q · At−1

m
(m− At−1) + ϵt ,

where p and q are the two parameters to estimate and ϵt is independent random noise with
mean 0, as defined in the OLS estimation for the BDM. We obtain OLS estimators for p and
q by considering mxt and (At−1 − A2

t−1/m) as two observed covariates. However, since the
promotion fraction often correlates with adoption numbers, there can be certain colinearity
between these two covariates, resulting in OLS estimators possibly yielding large variances.

To reduce the variances, we can leverage information about adopter types on online
platforms. Specifically, out of the total new adopters (at), we can observe the number of direct
adopters who receive the promotion (adt ) and the number of indirect adopters who do not

receive the promotion (ait). This yields a sequence of adoption data
{(

adt , a
i
t, At, xt

)}T
t=1

. We
propose a straightforward double-OLS (D-OLS) method based on the following relationships:

adt = p ·mxt + q · At−1xt + ϵdt and ait = q · At−1

m
(m− At−1 −mxt) + ϵit, (2.14)

where the first equation in (2.14) focuses on the direct adopters targeted by promotion
while the second focuses on the others; ϵdt and ϵit are independent random noises such that
ϵt = ϵdt + ϵit.

Our D-OLS method yields estimators, p̂D-OLS and q̂D-OLS, through the following steps:
(i) We use the OLS method to estimate q̂D-OLS from the second equation in (2.14),

resulting in:

q̂D-OLS =

∑T
t=1

[
At−1(1− xt − At−1

m
)ait

]
∑T

t=1

[
At−1(1− xt − At−1

m
)
]2 ;
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(ii) We use the OLS method again, but this time we substitute q in the first equation in
(2.14) with the D-OLS estimator q̂D-OLS, to compute p̂D-OLS, which is given by:

p̂D-OLS =

∑T
t=1

[
mxt(a

d
t − q̂D-OLSAt−1xt)

]∑T
t=1 (mxt)

2
.

By separating the estimation of two coefficients, the D-OLS method also alleviates the
issue of correlation between the promotion fraction and adoption number. This method
reduces the variance of estimators and enhances prediction accuracy. In the next section, we
illustrate this improvement by analyzing the asymptotic properties of these estimators.

2.5.1.1 Asymptotic Properties

We now examine the asymptotic properties of the estimators. Our analysis reveals that
D-OLS estimators are

√
n-consistent and possess smaller asymptotic variances than OLS

estimators. Moreover, the reduction in variance becomes more pronounced when the pro-
motion policy is endogenous with the diffusion dynamics.

In the traditional BDM literature, rigorous asymptotic analysis of estimation has been
a challenging task due to the lack of an asymptotic framework for diffusion processes. To
flesh out the comparison between OLS and D-OLS estimators, we consider a fixed design
framework with a triangular sequence of infinite diffusion processes. Specifically, we consider
a sequence of diffusion processes with an increasing market size m(n) for n = 1, 2, . . .. We
assume the observations come from a fixed-design triangular array, wherein the n-th row
includes n observations from the diffusion process with market size m(n). We treat the
covariates as fixed rather than random variables. This creates a framework amenable to
theoretical analysis. For the n-th diffusion process, let

{
Ai,(n)

}n
i=1

denote the adopters at

n different time steps and
{
xi,(n)

}n
i=1

denote the consequent promotion fractions. We then
define the empirical second-moment matrices of the OLS method, as well as the empirical
second moments of the two estimation steps in the D-OLS method as follows:

Q(n) =

(
1
n

∑n
i=1 x

2
i,(n)

1
n

∑n
i=1 xi,(n)Āi,(n)(1− Āi,(n))

1
n

∑n
i=1 xi,(n)Āi,(n)(1− Āi,(n))

1
n

∑n
i=1

[
Āi,(n)(1− Āi,(n))

]2 ) ,

Q̃11,(n) =
1

n

n∑
i=1

x2
i,(n)Āi,(n), and Q̃22,(n) =

1

n

n∑
i=1

Ā2
i,(n)(1− xi,(n) − Āi,(n))

2,

where Āi,(n) = Ai,(n)/m(n) is the normalized adopter number (i.e., the fraction of adopters).
Our analysis is based on the following assumption, common for regression in fixed-design

settings and reasonable in practice. With Q defined in the assumption, we let Q11 be the
component in row one and column one of Q. Other components can be defined in a similar
fashion.
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Assumption 2.5.1 (Positive Definiteness) We assume that the following limits exist:

lim
n→∞

Q(n) = Q, lim
n→∞

Q̃11,(n) = Q̃11, and lim
n→∞

Q̃22,(n) = Q̃22,

where Q is positive definite and Q̃11, Q̃22 > 0.

We further suppose the scaled random noise for the n-th diffusion process ϵ̄ := ϵ/m(n) has
variance σ2. The following theorems, Theorem 2.5.1 and Theorem 2.5.2, show the asymptotic
properties of D-OLS estimators. The detailed proof is given in Appendix A.1.2.2.

Theorem 2.5.1 (Consistency) Suppose that the scaled random noise ϵ̄ii := ϵii/m(n) and
ϵ̄di := ϵdi /m(n) are independently and identically distributed with mean zero and finite variance
for all i = 1, . . . , n, then D-OLS estimators p̂D-OLS and q̂D-OLS converge to the true parameters
p and q in probability as n scales to infinity. That is,

p̂D-OLS
(n)

p−→ p and q̂D-OLS
(n)

p−→ q.

Theorem 2.5.1 implies that with sufficient observations, the true values of p and q can be
uncovered.

Theorem 2.5.2 (Asymptotic Normality) Suppose that the scaled random noise ϵ̄ii and
ϵ̄di are independently and identically distributed with mean zero and variance (1 − η)σ2 and
ησ2 for all i = 1, . . . , n for some η ∈ (0, 1), then when n scales to infinity,

(i) D-OLS estimators p̂D-OLS
(n) and q̂D-OLS

(n) are asymptotically normal. Specifically,

√
n
(
p̂D-OLS
(n) − p

) d−→ N
(
0,

1

Q11

(1 + ξ1)σ
2

)
and

√
n
(
q̂D-OLS
(n) − q

) d−→ N
(
0,

1

Q22

(1 + ξ2)σ
2

)
,

where ξ1 = η(Q̃2
11/Q̃22Q11 − 1) and ξ2 = ηQ22/Q̃22 − 1.

(ii) OLS estimators p̂OLS
(n) and q̂OLS

(n) are asymptotically normal. Specifically,

√
n
(
p̂OLS
(n) − p

) d−→ N
(
0,

1

Q11

(1 + κ)σ2

)
and

√
n
(
q̂OLS
(n) − q

) d−→ N
(
0,

1

Q22

(1 + κ)σ2

)
,

where κ = Q2
12/|Q|.

We draw two insights based on Theorem 2.5.2. First, the ratio κ is not negligible,
especially when the promotion policy is endogenous with diffusion dynamics. We observe
that κ increases as the determinant of Q decreases. When x is highly colinear to Ā(1− Ā),
κ approaches infinity while ξ1 and ξ2 remain bounded. Therefore, D-OLS estimators are
more robust against correlations than OLS estimators. Second, when η ≤ Q̃22/Q22, D-
OLS estimators have smaller asymptotic variances than OLS estimators (see Proposition
A.1.1, Appendix A.1.2). We note that, according to our real-world data set, the average
of promotion fraction xt is 0.00062 per hour, placing Q̃22/Q22 in close proximity to one.
Consequently, we expect η ≤ Q̃22/Q22 to be readily fulfilled in our setting, suggesting that
D-OLS estimators present smaller asymptotic variances than OLS estimators. The advantage
of D-OLS is clearly observed in subsequent numerical experiments.
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2.5.2 MLE Estimators

While the OLS method is straightforward and computationally efficient, it lacks a rigorous
probabilistic interpretation in a diffusion setting. On the other hand, the MLE method in
Schmittlein and Mahajan (1982) for estimating the BDM is based on a rigorous probabilistic
model. However, it requires an explicit expression of the cumulative adopter number At,
which is not applicable in the P-BDM. Nonetheless, we show that MLE-based estimators
can still be used in our setting.

When the platform cannot distinguish adopter types, the probabilistic counterpart is
established as follows: At time t, there are (m− At−1) non-adopters, each of which has the
same adoption probability as (pxt/(1−At−1/m) + qAt−1/m). The log-likelihood function is
formulated as

LLMLE(p, q)

=
T∑
t=1

at log

(
mxt

m− At−1

p+
At−1

m
q

)
+ (m− At−1 − at) log

(
1− mxt

m− At−1

p− At−1

m
q

)
.

When the platform can distinguish adopter types, the probabilistic counterpart is es-
tablished as follows: At time t, there are (m − At−1) non-adopters. Each non-adopter has
a probability of mxt/(m − At−1) to be promoted by the platform. Given being promoted,
the non-adopters adopt independently with probability (p+ qAt−1/m). Otherwise, the non-
adopters adopt independently with probability qAt−1/m when not being promoted. The
log-likelihood function is formulated as

LLD-MLE(p, q) =
T∑
t=1

[
ait log

(
At−1

m
q

)
+ (m− At−1 −mxt − ait) log

(
1− At−1

m
q

)]

+
T∑
t=1

[
adt log

(
p+

At−1

m
q

)
+ (mxt − adt ) log

(
1− p− At−1

m
q

)]
,

and the derived estimators are named D-MLE estimators. In Appendix A.1.2.3, we show
that both log-likelihood functions are concave, allowing us to use the gradient method for
estimation.

2.5.3 Comparing OLS-Based and MLE-Based Estimators with
Simulation

We create a synthetic dataset by bootstrapping the diffusion processes of a content piece
according to P-BDM dynamics. The diffusion processes are simulated based on the D-MLE
probabilistic counterpart defined in Section 2.5.2 when adopter types can be distinguished.
We assess the estimators under two promotion schemes: (i) Const: promotion fraction xt

remains constant; (ii) Linear: promotion fraction xt has a positive linear relationship with
adopter number At−1.
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The true values of coefficients are set at p = 0.523 and q = 0.062. We run experiments
with market sizes ranging from m = 1, 200 to m = 40, 000, and scale observation numbers
with market size, as mentioned in Section 2.5.1.1. Performance is measured using estimation
error of the parameters, which is the Euclidean distance between the estimators and true
values

√
(p− p̂)2 + (q − q̂)2.

Figure 2.2 displays the results for Const and Linear schemes, respectively. Overall, we
observe a significant improvement when adopter types can be distinguished, emphasizing the
benefits of using additional data for estimating diffusion models.

Figure 2.2: Estimation Errors for Different Methods Against Market Size
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Notes. Scale with the number of observations. (a) Const: OLS-based methods. (b) Const: MLE-based
methods. (c) Linear: OLS-based methods. (d) Linear: MLE-based methods.

We offer two more observations. First, comparing Figures 2.2a with 2.2c, and Figures
2.2b with 2.2d, we see larger relative improvements under the Linear scheme compared to the
Const scheme, particularly for OLS-based estimators. This not only indicates robustness in
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MLE-based methods but also verifies the theoretical results in Theorem 2.5.2 and highlights
the effectiveness of our proposed estimators. Second, comparing Figures 2.2a and 2.2b, or
Figures 2.2c and 2.2d, we notice that D-OLS and D-MLE perform similarly when adopter
types can be distinguished, while the MLE method outperforms the OLS method when they
cannot be differentiated. In this case, the correlation among covariates creates difficulty for
OLS estimators, but additional information about adoption types helps to greatly narrow
the gap.

In summary, both the D-OLS and D-MLE methods perform well when working with
data available on online platforms. While the D-MLE method is supported by a rigorous
probabilistic framework, it is less computationally efficient. Given the similar performance of
D-OLS and D-MLE, we opt to use the D-OLS method for other computational experiments
with real data.

2.6 Numerical Results

In this section, we conduct a comprehensive analysis using data from a large-scale video-
sharing platform. At a high level, we test the performance of the AGA promotion policy
with this data set. To help readers better understand our numerical results, we provide the
code for our analyses in a GitHub repository1.

2.6.1 Platform and Data Overview

We obtain the data set from one of the most popular Chinese video-sharing platforms,
similar to TikTok. The platform is fueled by user-generated content and has become a social
phenomenon, with a massive user base sharing their daily lives. As of 2023, it has over
360 million daily active users and over 20 billion videos. Effective content promotion plays
an important role in platform operations. While machine learning-based algorithms offer
personalized recommendations curated based on user interests, promoting content that has
the potential to go viral is challenging due to the difficulty of optimizing diffusion. As such,
the issue addressed in this study is essential for the platform to maximize its impact and
foster an engaged user community.

The data set consists of user behavior logs for 46,444 short videos, sampled from 518,646
users over 20 days (7/1/2020-7/20/2020). The logs contain timestamped records of video
promotions and user behavior in terms of clicks. For each video, we identify two distinct user
sets: LP , which comprises users who receive the promotion, and LC , which comprises users
who click on it. Due to the presence of diffusion effects, some users click on videos without
receiving promotions (i.e., LC \LP ̸= ∅). For ease of analysis, we aggregate the timestamped
data hourly. Then, we calculate the promotion fraction as the ratio between the promoted
users (LP ) and market size m. We further identify adopter types: direct adopters (LP ∩LC)
and indirect adopters (LC \ LP ). In addition, each video is categorized by the platform

1See https://github.com/YunduanLin/Content Promotion

https://github.com/YunduanLin/Content_Promotion
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according to its topic. The dataset includes videos from 61 category labels provided by the
platform, ranging from 155 to 2,759 videos per category.

2.6.2 Model Calibration

In this section, we estimate the promotion and diffusion coefficients under the P-BDM spec-
ification with the real-world video data, comparing results with the BDM benchmark.

We use the D-OLS method to estimate p and q. During this process, we consider the
following two key aspects. (i) Time-decay factor : We include a time-decay factor γ as a hy-
perparameter to reflect users’ decreasing tendency to share content over time. See Appendix
A.2.1.2 for more details. (ii) Group estimation: We estimate the same p and q values for each
video category. We highlight that promotion decisions are often made at the early stages of
a video’s life cycle when limited data is available for estimation. Consequently, group-wise
estimation is typically utilized to guarantee generalizability. In principle, we can adopt a
contextual approach given the availability of the featurized information of each content piece.
The group-based estimation can be seen as a special case of this approach, where the sole
feature variable is the category information. For the sake of simplicity in this study, we use
the category labels provided by the platform to determine groups. See Appendix A.2.1.3
for more details. For further details about our calibration process, including data splitting,
hyperparameter selection, and the effect of time-decay factor γ, please refer to Appendix
A.2.1.4. Next, we present the calibration results under the best time-decay factor γ = 0.983.

Distribution of p and q: Figure 2.3 depicts the distribution of estimated coefficients
across 61 different categories. Notably, a negative correlation between p and q is observed,

Figure 2.3: Distribution of Estimated Promotion Coefficient p and Diffusion Coefficient q
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Notes. Each point in the scatter plot represents a video category. The size of points represents the number
of videos in each category.

with a Pearson correlation coefficient of ρ = −0.5335. A one-tailed t-test further supports
the observation, with a t-statistic of -4.845 rejecting the null hypothesis at a significance level
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of 0.05 (critical t-value of -1.671). These findings suggest that videos with a large promotion
effect may not have a larger diffusion effect, highlighting the need for a promotion policy
that accounts for the diffusion effect.

Performance of estimation: We evaluate the performance using the weighted mean
absolute percent error (WMAPE), which can be calculated as WMAPE =

∑Tv

t=1 |av,t −
âv,t|/

∑Tv

t=1 av,t for video v, where âv,t is the predicted number for new adopters. Overall, the
P-BDM estimated with the D-OLS method achieves an average out-of-sample WMAPE of
38.96%. We assess the D-OLS approach with the P-BDM against two benchmarks. Our first
point of comparison is the traditional OLS method, illustrating the advantages of the D-
OLS method in the context of online platforms. Secondly, we contrast the P-BDM with the
BDM, demonstrating the P-BDM’s superior aptitude in managing online content adoptions.
The out-of-sample WMAPEs for these two benchmarks register at 39.66% and 81.25%, re-
spectively. The P-BDM shows a considerable improvement over the BDM and a moderate
yet noticeable enhancement compared to the OLS method. In contrast to the simulation in
Section 2.5.3, the colinearity issue brought up in Section 2.5.1.1 is not severe in this dataset.
Through the use of a paired t-test, we ascertain that the improvement is statistically signifi-
cant with a t-statistic of -35.48, smaller than the t-value corresponding to a 0.05 significance
level (i.e., -1.645). Further, when we perform hypothesis tests for each category, we find that
53 out of the 61 categories display improvement at the 0.05 significance level. Two categories
indicate deterioration, while the remaining six categories do not show significant changes.

To further illustrate the effectiveness of the P-BDM, we present two examples in Figure
2.4. Figure 2.4a uses the same video as the example in Section 2.3.1. To delineate the issue,
we estimate the coefficients from a single video, rather than the entire category. That is, for
each video, we use the first 60% data samples to estimate coefficients and generate the fitted
curves for the entire time horizon using the estimated coefficients.

Compared to the BDM, the P-BDM fits not only the overall adoption trend but also
the curve shape. While the BDM provides reasonable fit in early periods, a common issue
observed is the underestimation of the diffusion coefficient. In some cases, as shown in
Figure 2.4b, the estimated coefficient can even be negative, which lacks a valid real-world
interpretation. These observations underscore the effectiveness of the P-BDM.

2.6.3 Experiments on the Accelerated Greedy Algorithm

In this section, we simulate the platform environment with estimated parameters to evaluate
promotion policies. We name the policy decided by the AGA under the P-BDM as the AGA
policy.

2.6.3.1 Long-term Performance with Different Planning Intervals

In practice, platforms are concerned with the long-term efficacy of promotion policies. Ac-
cordingly, we solve the CGPO problem every L periods using the AGA policy in the most
recent platform environment.
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Figure 2.4: Illustration of Adoption Curves and the Corresponding Fitted BDM/P-BDM
Curves for Example Videos
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Notes. To ensure data anonymity, we have scaled the y-axis using a randomly selected number. (a) Moti-
vating example in Section 2.3.1. (b) Example of negative fitted BDM coefficient.

We simulate a 120-period time horizon with a market size of m = 10, 000 and assess the
AGA policy by varying the planning interval L from 1 to 20. More details are described as
follows.

• Video corpus : The video corpus is initialized at t = 0 with 50 videos, all with zero
adoptions. We assume that at each time step, five new videos are added with no initial
adoptions, to be consistent with the practical operations of the platform. Each video
is associated with parameters (p, q) randomly sampled from the empirical distribution
estimated in Section 2.6.2.

• User behavior : At each time, users act according to the D-MLE stochastic counterpart
of the P-BDM, as described in Section 2.5.2.

• AGA implementation. We assume that the platform employs the AGA with a planning
interval of L. We solve the CGPO problem every L periods and implement the policy
recommended by the AGA for these L periods. To keep the policy up-to-date with the
platform environment, new videos added during the past L periods are included when
solving the new CGPO problem instance, with initial adoption numbers set to match
those at the end of the past L periods.

We first remark that the selection of L is crucial in striking a balance between the frequency of
policy updates and the consideration of diffusion effects. A smaller L permits more frequent
policy updates yet is myopic and ignores diffusion in the long term. Conversely, a larger L



CHAPTER 2. CONTENT PROMOTION FOR ONLINE CONTENT PLATFORMS
WITH THE DIFFUSION EFFECT 30

considers more extended diffusion effects but may delay the promotion of new videos due
to less frequent policy updates. When L = 1, the AGA policy is equivalent to ignoring all
diffusion effects. We observe that this trade-off is influenced by the choice of candidate set
size K and the promotion budget C. To elucidate this, we present results varying these two
parameters separately.

In Figure 2.5, we fix the average promotion budget per user per period C̄ at 6, and vary
the size of the candidate set size to be K ∈ {30, 50, 70}.

Figure 2.5: Illustration of the AGA Policy for Different Selections of Candidate Set Size K.
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Notes. (a) Promoted videos. (b) Total adoptions.

As shown in Figure 2.5a, we notice that this tradeoff is evident by an initial increase
followed by a decrease in the number of unique promoted videos as L increases. Notably,
we observe that an increase in K leads to a rise in the number of promoted videos. This
trend suggests that the capacity constraint becomes more restricted in scenarios with a larger
planning horizon L, primarily due to the increased complexity of the diffusion trajectory in
such cases. On average, 61.37% of instances face a binding capacity constraint, underscoring
its significant impact on the outcomes of the promotion strategy. Figure 2.5b further sheds
light on the total adoptions during the process, which mirrors the pattern observed in the
number of promoted videos. Especially, as K increases, the optimal planning horizon L also
tends to be larger.

In Figure 2.6, we fix the candidate set size to be 50, and vary the average promotion
budget to be C̄ ∈ {2, 4, 6, 8, 10}.

From Figure 2.6a, we observe a similar tradeoff akin to our previous findings, except
that an increase in C leads to a smaller optimal planning horizon. As shown in Figure
2.6b, direct adoptions exhibit a consistent decrease with an increase in L. This is expected
because a longer planning interval reduces direct adoptions from promotion to potentially
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Figure 2.6: Illustration of the AGA Policy for Different Selections of Promotion Budget.
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Notes. (a) Total adoptions. (b) Direct adoptions. (c) Indirect Adoptions.

increase indirect adoptions driven by diffusion. Similar to the total adoptions, the indirect
adoption curve assumes an inverted U-shape, a phenomenon driven by the fact that when
L is too large, the algorithm suffers from infrequent updates, losing the diffusion power for
new videos due to timeliness.

Hereafter, we fix the cardinality constraint K = 50 to conduct the simulation. We then
investigate how the AGA policy with different L values distributes the promotion budget
among videos based on p and q. Figure 2.7 shows the average promotion times received by
videos in different categories. Although videos with a large p value tend to receive more

Figure 2.7: Illustration of the AGA Policy across Different Video Categories
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Notes. Each point in the scatter plot represents a video category. The size of points represents the average
promotion times. Left: L = 1. Right: L = 20.

promotion, clearly as L increases, the AGA policy increases the budget allocated to the
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videos with a large q value to trigger more long-term diffusion. The judicious allocation of
limited resources is governed by our algorithm.

2.6.3.2 The Underlying Mechanism of the AGA Policy

To gain deeper insights into the mechanism underlying the AGA policy and promote a
qualitative understanding of how to manage the interactions of promotion and diffusion
effects, we conduct additional analysis of the promotion fraction for videos, focusing on
different model primitives. For illustration, we select L = 13, which consistently performs
well across different promotion budgets in our experiments.

We aim to understand how a video’s configuration (pv and qv) and lifetime (Av,t−1)
affect the promotion fraction xv,t in the AGA policy. We use our experimental results as
observations, where each observation represents a promotion fraction xv,t allocated to a
video v at the beginning of time t. We divide the observations into six stages based on video
lifetime. Stage 0 includes observations with Av,t−1 = 0, and stages i ∈ {1, 2, 3, 4, 5} include
observations when the video v has an adopter number Av,t−1 at the start of time t such that
i = ⌈5Av,t−1/m⌉.

We first conduct a sensitivity analysis to examine how video configurations impact the
promotion fraction x. This analysis uses linear regression to study the effects of p and q
while controlling other relevant covariates. For a detailed explanation of this analysis, please
refer to Appendix A.2.2.2. The regression coefficients of p and q, which we interpret as their
impacts, are presented in Figure 2.8.

Figure 2.8: The Impacts of Video Configurations on the AGA Policy Across Different Life-
time Stages
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Notes. (a) Impacts of p and q. (b) Impact ratio between p and q.
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Figure 2.8a demonstrates that both p and q positively influence x. Contrary to the
intuitive expectation that the impact should decrease gradually after the initial stage, our
findings suggest otherwise. The impact of p and q is most pronounced during the intermediate
stages (i.e., stages 1 and 2). This is because, in the initial stage, the policy aims to kickstart
the diffusion processes for a large pool of videos; so that it does not heavily differentiate
between video configurations. In other words, by accounting for the diffusion effect, the AGA
policy promotes a diverse range of videos in their initial stages, thereby making efficient use
of the promotion budget. In the intermediate stages, however, the policy becomes more
selective, filtering out noncompetitive videos and favoring videos with greater potential.
Furthermore, Figure 2.8b shows the impact ratio between p and q, indicating that p carries
more weight than q, particularly during the intermediate stages.

Then, we use K-Means clustering to group video configurations into four clusters based
on their lifetime promotion policies. The clustering procedure is described in Appendix
A.2.2.3.

Figure 2.9: Illustration of the AGA Policy Clusters Corresponding to Different Video Con-
figurations
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Notes. (a) Clusters of different video configurations. (b) Cluster centers.

Figure 2.9a displays the clustering results according to video configuration, while Figure
2.9b showcases the “average” promotion policy for each cluster. Several observations can be
made. Despite the clusters being based on promotion policy, they strongly correlate with
video configurations. Cluster 0, located in the bottom left of Figure 2.9a, is distinct due to
its notably lower promotion at stage 0. These are the videos “discarded” by the AGA policy.
Roughly speaking, moving towards the right of Figure 2.9a, videos receive more promotions.
Echoing the insights from our sensitivity analysis, we notice a trend where the points of peak
promotion shift towards later stages as p increases. In contrast, videos in Cluster 1 and 2
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that have larger q values and smaller p values need to be promoted early to take advantage
of their diffusion potential.

In summary, the AGA policy operates based on two main principles: (i) Promotion and
diffusion effects, p and q, positively influence the promotion intensity, with the most profound
impact during the intermediate lifetime stages. Among these, the promotion effect has a more
notable impact. (ii) Videos with a small p but large q mainly receive their promotion in the
early stages, where the promotion acts as a trigger for diffusion. In contrast, videos with a
large p but small q continue to be promoted, serving as both a trigger for diffusion and an
attraction for direct adoptions.

2.6.3.3 Comparison with Benchmarks

Finally, we compare the total adoptions of the AGA policy with benchmark policies, using
the same experimental setting as in Section 2.6.3.1.

Benchmark policies: To ensure a fair comparison, we simulate the benchmark policies
using the same diffusion process as our algorithm and compare the generated virtual rewards.

• CGPO with accelerated greedy algorithm (AGA). Our proposed algorithm as discussed
in Section 2.4.3.2, with a planning horizon of L = 13.

• CGPO without the diffusion effect (NoD). This benchmark ignores the network effect.
This is equivalent to the CGPO formulation when L = 1. It is a common practice in
the industry that ignore the diffusion effects when promoting content.

• Candidate Generation by Attractiveness (ATT). This benchmark considers a heuristic
CG strategy by selecting content that has the largest promotion potential pv(m−Av).
This benchmark speeds up the CG procedure but overemphasizes the promotion effect.

• Candidate Generation by Timeliness (TIM). This benchmark considers a heuristic CG
strategy by selecting content that is most recently added to the platform. This bench-
mark takes the timeliness of online content into account but overlooks the promotion
effect.

• Candidate Generation by Potential (POT). This benchmark considers a heuristic CG
strategy by selecting content that has the most number of new adopters at the previous
time step. This benchmark illustrates the “rich-get-richer” principle.

Experiment result: Table 2.1 compares the performance of all benchmarks. We draw
three key observations from the table. Firstly, AGA consistently performs well, ranking
second only when C̄ = 2. The margin of AGA over others is remarkable. Secondly, ATT
and TIM also show notable improvement over NoD, suggesting the benefits of considering
diffusion effects in promotion decisions. These benchmarks can be practical alternatives to
AGA in real-world scenarios. Thirdly, POT performs even worse than NoD in most cases,
indicating the drawbacks of the “rich-get-richer” principle. These observations highlight the
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Table 2.1: Total adoptions of different promotion policies

NoD AGA ATT TIM POT

C̄ = 2
597,774 1,244,845 1,086,217 1,276,566 603,698

- 108.25% 81.71% 113.44% 0.99%

C̄ = 4
1,113,254 2,195,978 1,984,325 2,127,953 916,924

- 97.26% 78.25% 91.15% -17.64%

C̄ = 6
1,534,981 2,846,019 2,691,889 2,664,396 1,048,988

- 85.41% 75.37% 73.58% -31.66%

C̄ = 8
1,950,074 3,262,392 3,172,585 3,081,788 1,202,599

- 67.30% 62.69% 58.03% -38.33%

C̄ = 10
2,400,101 3,597,649 3,534,973 3,401,598 1,265,783

- 49.90% 47.28% 41.74% -47.26%

Notes. In each table cell, the first number represents the total adoptions under the benchmark, and the
second number represents its relative improvement from NoD policy.

importance of both candidate generation and diffusion effects for content promotion and
support the effectiveness of our proposed promotion policy.

2.7 Conclusion

In this study, we address the content promotion problem in online content platforms with
the diffusion effect. We introduce a novel diffusion model to capture the platform’s policy
and the timeliness factor in online content diffusion. Based on this model, we formulate the
candidate generation and promotion optimization (CGPO) problem. The problem is proved
to be NP-hard, and we offer an efficient approximation algorithm that exploits the problem
structure. We also propose a double OLS method to estimate model parameters, leveraging
the online platform data. Finally, we use a real-world dataset to validate the model, evaluate
the performance, and provide managerial insights. Our empirical evidence underscores the
importance of considering the diffusion effect in promotion optimization and supports the
effectiveness of our proposed promotion policy.

There are several future directions for this study. First, we could investigate the impact
of externalities between content pieces. For instance, similar content could potentially sub-
stitute for each other, complicating the CGPO problem as the current submodularity results
no longer apply. Second, we focus on an offline setting in this paper, where parameters
are estimated beforehand. It can be quite interesting to consider the online version where
parameters for new videos are estimated simultaneously with promotion optimization. The
wealth of user and content information available on online platforms offers opportunities to
explore this setting.
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Chapter 3

Nonprogressive Diffusion on Social
Networks: Approximation and
Applications

3.1 Introduction

Social networks fundamentally shape our lives. People are more receptive to information
shared by their friends and relatives (Lu et al. 2013) and more inclined to make a purchase
when informed by their acquaintances (Ma et al. 2015, Bapna and Umyarov 2015). It is
even more so in the digital era—globally, 4.62 billion people, approximately 58.4% of the
population worldwide, used online social network platforms, such as Facebook, YouTube,
and Tiktok, by January 2022 (Datareportal 2022). These platforms extend the reach and
complexity of our social networks, as both friends and strangers online contribute to shaping
our opinions and choices.

Within such networks, each agent both affects and is affected by others, setting the stage
for the diffusion of information and behavior. In this work, we use the term diffusion to
represent the general phenomenon of information or behavior spread when agents’ beliefs
or behaviors are influenced by their social connections. Platforms that harness this power
of network diffusion can substantially boost their impact and profitability (Shriver et al.
2013). However, understanding diffusion within social networks is a complex undertaking.
It involves not just individual behaviors, but also the intricate relationships that bind them.
This complexity has made network analysis an enduring subject of study that has engaged
generations of researchers (see books Jackson 2010).

Network diffusion analysis spans multiple domains, such as computer science (Kempe
et al. 2003, Acemoğlu et al. 2013), economics (Sadler 2020, Acemoglu et al. 2011), operations
management (Song and Zipkin 2009, Candogan et al. 2012, Shen et al. 2017, Wang and Wang
2017) and epidemiology (Kermack and McKendrick 1927, Drakopoulos and Zheng 2017). In
the seminal paper (Kempe et al. 2003), diffusion processes are broadly categorized into
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progressive and nonprogressive types. While progressive diffusion deals with unidirectional
changes in the state—such as adopting new technology or purchasing a product—our study
focuses on nonprogressive diffusion, which allows for bidirectional state transitions. This
framework is especially relevant in contexts where decisions can be reversed, such as signing
up for a membership program, belief propagation influenced by social learning behaviors,
being infected in a pandemic, etc.

Analyzing network diffusion primarily adheres to one of two approaches. The first is
microfounded by capturing the concrete network topology and the stochastic evolution of
agent states. Notable models of this include the independent cascade model (Goldenberg
et al. 2001) and the linear threshold model (Granovetter 1978, Schelling 1978). While these
models capture fine granularity, detailing the diffusion on an individual basis over time,
their intricate nature often leads to computational challenges. In most cases, simulation
happens to be the only viable tool to analyze such models, making the optimization, even
for a sparse and moderate-sized network, time-consuming (Chen et al. 2009). Conversely,
the second approach offers a macroscopic view, simplifying the diffusion process. Some
models, (e.g., Bass models; Bass 1969), bypass the intricacies of network topology, focusing
on the overall population. Others, like Candogan et al. (2012), Jackson et al. (2020), ignore
the stochasticity and focus on the equilibrium outcome. This macro lens, while sacrificing
detailed characterization of the diffusion, facilitates efficient analyses and generates sharper
insights.

Our work bridges these two approaches in the context of nonprogressive diffusion by
providing a simple, efficient, and accurate approximation scheme. We base on a general
diffusion model that takes into account heterogeneous agents, local network effects, and
network topology. While characterizing the long-run adoption rate for each agent in such a
detailed model may seem technically intractable, we investigate a fixed-point approximation
(FPA) scheme that estimates the adoption rates through a set of easily solvable fixed-point
equations. Notably, we show that the FPA scheme comes with provable guarantees. Its
performance is associated with the network structure and improves for larger and denser
networks. We also propose metrics at both node and network levels that can efficiently
indicate the FPA’s performance for different network structures. Moreover, the FPA scheme
further paves the way for optimizing operational decisions, such as the influence maximization
and pricing problems in the nonprogressive diffusion context. It allows for straightforward
problem formulation and algorithm development, that are not just computationally efficient
but also yield near-optimal solutions. In summary, through the FPA scheme, we show that
the diffusion outcome characterized by the “micro-model” can be accurately approximated by
an easy-to-analyze “macro-model”, integrating the advantages of both modeling paradigms.

The remainder of this chapter is structured as follows: In the following of this section,
we review the related literature. Section 3.2 introduces the nonprogressive diffusion model
and characterizes the limiting adoption rate. In Section 3.3, we describe the FPA scheme
and demonstrate our main theoretical results. Then in Section 3.4, we establish the order-
optimal error bound followed by extensive numerical experiments in Section 3.5. We study
the IM and pricing problem using our FPA scheme in Section 3.6. Section 3.7 concludes this
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paper. Throughout this paper, we use increasing and decreasing in the non-strict sense.

3.1.1 Literature Review

Our paper is broadly related to the literature on network diffusion. We first review diffusion
models in different settings. Then, we discuss the optimization problems that involve network
diffusion.

Diffusion Models. Various models have been proposed across disciplines to characterize
diffusion for specific applications. However, a consistent trade-off can be observed: re-
searchers often have to choose between the conciseness of the model and practical efficiency.
For instance, the Bass model (Bass 1969) ignores most information on network structure
and agents but enjoys the advantages of the analytical expressions on some critical values,
allowing for easy optimization (Agrawal et al. 2021, Lin et al. 2024). In contrast, the LT
model (Granovetter 1978, Schelling 1978) incorporates the network structure, but is compu-
tationally challenging, as evidenced by Chen et al. (2010).

Given our specific focus on nonprogressive diffusion, we will discuss some parallel streams
of work related to our study. First, while the LT model is designed for a progressive case,
a nonprogressive variant1 has been introduced by Kempe et al. (2003). This model retains
most features of the traditional LT model but selects the random threshold independently at
each time period, unlike the fixed random threshold of the original model. Our model builds
upon this nonprogressive LT model, introducing agent heterogeneity and accommodating a
more arbitrary randomness distribution. Second, our work is related to the social learning
literature (Jadbabaie et al. 2012, Chandrasekhar et al. 2020, Allon et al. 2019), where agents
form beliefs towards a binary signal of the world based on their neighbors’ beliefs. While
this body of work predominantly examines the learning process and the final network-wide
belief distribution, our emphasis is on characterizing individual agent adoption states for
an arbitrary network diffusion instance. Third, a variety of engineering and economics
applications describe the interactions across the network using network games (e.g., see
Ballester et al. 2006, Candogan et al. 2012, Afèche et al. 2023, Baron et al. 2022, Feng et al.
2022). A central goal of this literature is to analyze various types of equilibria. Although our
fixed-point approximation is reminiscent of the equilibrium in the network games, our focus
diverges in its relation to a concrete micro-founded model. Fourth, a number of operations
management studies incorporate network externality into consumer choice models. This
type of work, serving for the subsequent assortment or pricing problem, generally simplifies
the network structure. For example, some studies consider only global effects by looking at
market-wide adoption averages (Du et al. 2016, Wang and Wang 2017), while others restrict
their focus to myopic local proxy or specific types of networks (Gopalakrishnan et al. 2022,
Xie and Wang 2020). Our work, instead, accounts for full network information and operates
under a more general setting. Finally, our work also relates to works studying the mean-

1Hereafter, we will refer to this as the nonprogressive LT model to differentiate it from its progressive
counterpart.
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field approximation for stochastic processes (Benäım and Weibull 2003, Van Mieghem et al.
2008). While these works typically offer a deterministic description at the population level,
we go further by addressing the operational aspects at the individual level.

Optimization with Network Diffusion. The FPA scheme is applicable in a wide variety of
applications. In this paper, we highlight its applications in two examples: influence maxi-
mization and pricing within social networks, and provide a concise review of the literature
on these themes. Kempe et al. (2003) first consider the issue of choosing an influential set of
seed agents to maximize the spread of diffusion influence as a discrete optimization problem.
They show that the IM problem, under the LT model, is NP-hard for both progressive and
nonprogressive cases. This NP-hard result can also be extended to various other diffusion
models. Moreover, to evaluate the total influence under different influential sets, extensive
simulations are required so that it is time-consuming to even achieve an approximate solu-
tion. We refer readers to the survey (Li et al. 2018) for a comprehensive review of the existing
approaches. These approaches compromise either accuracy or efficiency and are not ideal for
practical use. However, with the FPA scheme, we can effectively balance both. We also point
out that a recent paper (Chan et al. 2020) specifically studies the IM problem with the non-
progressive LT model, closely aligning with our setting. For the pricing problem, there is a
growing literature in the economics and operations management communities that considers
the presence of network effects (Anari et al. 2010, Hu et al. 2020, Li 2020, Yang and Zhang
2022, Huang et al. 2022). Recent studies on the single-item pricing problem with the network
effect can be found in Candogan et al. (2012), Du et al. (2018), and Nosrat et al. (2021).
Compared with these three papers, our framework as well as the proposed algorithms can
be used to consider a more general and flexible setting, with theoretical guarantees rooted
in our micro-founded model.

3.2 Nonprogressive Network Diffusion Model

In this section, we first introduce the network diffusion model and then characterize the
limiting behavior of each agent within it. This model can be applied to various nonprogressive
diffusion settings, among which we use service adoption on an online social network platform
for illustration.

3.2.1 Preliminaries and Formulation

We model the social network platform (e.g., TikTok) as a graph G = (V,E) with n agents,
where V := {1, 2, ..., |V |} is the set of agents and E := {1, 2..., |E|} is the set of directed
edges. A directed edge (i, j) ∈ E, where i, j ∈ V , implies that agent j is influenced by agent
i, and we call i an in-neighbor of j. We interpret (i, j) ∈ E as j following i on the platform.
We use Ni to denote the set of all in-neighbors for agent i (i.e., Ni := {j ∈ V : (j, i) ∈ E})
and di := |Ni| to denote the in-degree (i.e., the number of in-neighbors). Throughout, we
use agent and node interchangeably.
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We use t to denote the discrete time period, starting with t = 0 as the service launch time.
Define Yi(t) ∈ {0, 1} as the state of agent i at period t, where Yi(t) = 1 (resp. Yi(t) = 0)
means the adoption (resp. nonadoption) of the service in this period. The initial state Y(0)
follows an arbitrary distribution on {0, 1}n. For all t ≥ 1, each agent’s decision to adopt is
governed by their realized utility ui(t) during that period, as given by

ui(t) := vi + β ·
∑

j∈Ni
Yj(t− 1)

di
+ ϵi(t). (3.1)

Without loss of generality, we normalize the utility of nonadoption to 0, and thus Yi(t) =
1{ui(t) ≥ 0}. As shown by (3.1), ui(t) consists of three parts: the idiosyncratic intrinsic

value vi, the local network effect β ·
∑

j∈Ni
Yj(t−1)

di
and the random noise ϵi(t). The value

vi reveals the personalized preference and remains constant over time. From an analytical
point of view, vi can be estimated from agent features such as demographic information and
behavioral data with the support of big data. It may also be affected by the platform’s
operational strategies. For example, the price of a paid service (e.g., YouTube Premium)
will definitely affect whether and how, the agent likes it. The local network effect captures
the peer influence on the agent from in-neighbors, with parameter β to quantify the network
effect intensity. If agent i has no in-neighbors (i.e., Ni = ∅), we set this term to 0. Finally,
we assume the random noise ϵi(t) is independent and identically distributed (i.i.d.) across
agents and time. We assume, without loss of generality, that E[ϵi(t)] = 0. For now, we
impose no further constraints on its distribution, except for the following mild condition.

Assumption 3.2.1 (Lipschitz Continuity) The random noise ϵi(t) has an L-Lipschitz
continuous cumulative distribution function (CDF): |Fϵ(x)−Fϵ(y)| ≤ L|x−y| for any x, y ∈
R.

We require that the noise distribution is sufficiently smooth. Assumption 3.2.1 is sat-
isfied by any continuous distribution with a bounded probability density function (PDF),
making common distributions like the uniform, logistic, or normal distribution compatible
with our model. We also impose a bound for the network effect intensity β that facilitates
characterizing the limit of diffusion.

Assumption 3.2.2 (Bounded Network Effects) The network effect satisfies |β| < 1/L.

Parameter β quantifies the magnitude of network externality. Similar assumptions are
commonly made in the network economics literature (e.g., see Horst and Scheinkman 2006,
Wang and Wang 2017, Xu 2018, Jackson et al. 2020, Gopalakrishnan et al. 2022). In these
settings, such assumptions are often introduced to ensure that the equilibrium of a network
game uniquely exists. However, our model assigns additional significance to Assumption
3.2.2. It not only excludes divergent or periodic behavior in the long run in our diffusion
model (Proposition 3.2.1) but also guarantees a valid fixed-point characterization of the limit-
ing adoption probabilities (Proposition 3.3.1). In Section 3.5.1, we also extend our discussion
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through extensive numerical experiments to investigate the implications of Assumption 3.2.2
being violated. For the remainder of this analysis, we assume that the network effects are
positive, operating under the assumption that 0 < β < 1

L
. However, it should be noted that

our results can be generalized to scenarios where − 1
L
< β < 0, thereby covering situations

of negative network effects as well.
A natural goal in such a setting is to quantify the total diffusion in the network. In

line with prior studies (Kempe et al. 2003), we focus on the limiting adoption probability.
Provided it converges, it also represents accumulated reward (frequency of adoption) in the
long run.

We remark on the notations. Hereafter, we use a bold math notation to denote the col-
lection of a particular variable over all agents in vector form. It is important to note that the
network structure and intrinsic values together identify a specific diffusion case. Meanwhile,
the noise distribution and the network effect intensity make up the diffusion environment.
Accordingly, a specific diffusion instance is represented by a quadruple (G,v, Fϵ(·), β). Se-
quences of such instances are likewise represented by a series of these quadruples.

3.2.2 A Markov Chain Perspective

Notably, each diffusion instance can be characterized by a Markov chain (MC), of which
the state space is the set of indicator vectors denoting all possible combinations of adoption
decisions, represented by {0, 1}n. The transition probability from state y to y′ can be
computed as

P (y,y′) =
∏
i∈V

P(Yi(t) = y′i|Y(t− 1) = y)

=
∏
i∈V

Fϵ

(
−vi − β

∑
j∈Ni

yj

di

)1−y′i

·
[
1− Fϵ

(
−vi − β

∑
j∈Ni

yj

di

)]y′i
.

As our primary interest lies not in the individual MC states, but rather in the overall adoption
probability for each agent. To that end, we define the adoption probability of agent i at time
t as

qi(t) := P(Yi(t) = 1) ≡
∑

y∈{0,1}n
1{yi = 1} · P(Y(t) = y). (3.2)

We have the following proposition on the limiting behavior of q(t) when t tends to infinity.

Proposition 3.2.1 (Limiting Adoption Probability) Under Assumptions 3.2.1 and
3.2.2, for any initial state Y(0), the adoption probability of each agent i converges to

lim
t→∞

qi(t) = q∗i :=
∑

y∈{0,1}n
1{yi = 1} · π(y),

when t increases, where π is the stationary distribution of the MC that satisfies π = πP .
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As made clear in the proof of Proposition 3.2.1, with assumptions on random noise
and network effect, the MC only has a single aperiodic recurrent class. Thus, a limiting
distribution π leads to the limiting adoption probabilities q∗. By the standard MC theory,
one can easily verify that

lim
t→∞

1

t
·

t∑
s=1

Yi(s) = q∗i a.s. and lim
t→∞

1

t
·

t∑
s=1

qi(s) = q∗i , ∀i ∈ V, (3.3)

for any initial state Y(0). As a result, this enables us to leverage the limiting adoption
probability q∗ when formulating optimization problems related to nonprogressive diffusion.
Specifically, various operational problems, such as the influence maximization problem (Sec-
tion 3.6.1) and the pricing problem on a social network (Section 3.6.2), can be generally
framed as:

maximize
x∈X

g
(
q∗(G,v(x), Fϵ(·), β),x

)
. (3.4)

Here, x represents platform decisions with X denoting the feasible set of such decisions. For
simplicity, we only consider decisions influence diffusion outcomes by altering the intrinsic
values. with a slight abuse of notation, v(·) represents intrinsic values as a function of
platform decisions, and q∗(·) denotes the mapping from a diffusion instance to the limiting
probability vector. Finally, g(·, ·) is the objective function that depends on the diffusion
outcome q∗ and decision variables x. For example, the influence maximization problem can
be formulated as (3.4) with the decision vector x defined as setting the intrinsic utility of a
set of seed users to sufficiently high levels; and the objective g(·, ·) defined as the limiting
total expected adoptions

∑
i∈V q∗i . For the optimal pricing problem, the decision vector x

is the price vector that affects the intrinsic value of each agent, and the objective g(·, ·) is
the expected profit under the limiting adoption probability, i.e.,

∑
i∈V q∗i xi. The specific

formulations of these problems will be presented in Section 3.6.
Solving the optimization problem (3.4) is challenging, due to the absence of closed-form

expressions for q∗ and the exponential growth in the MC state space. It is intractable to
construct the transition matrix even for a moderate-sized network, let alone to calculate
q∗. Therefore, problem (3.4) is generally intractable either analytically or computationally,
which motivates us to develop our approximation scheme for q∗ presented in Section 3.3.

Before presenting our approximation scheme, it is worth situating our diffusion model
within the broader network diffusion literature. Our model is most closely related to the LT
model (Granovetter 1978), which is one of the most widely studied diffusion models. We
extend the LT model for nonprogressive settings (see Kempe et al. 2003), by introducing the
heterogeneity of agents’ intrinsic values and incorporating different random noise distribu-
tions. One advantage of the LT model is its ability to closely represent rational decision-
making by agents, thereby characterizing the evolution of diffusion processes. While the LT
model offers a solid micro-foundation for diffusion, it comes with the drawback of computa-
tional intractability. Our subsequent approximation technique offers a practical solution to
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this limitation. Our model also bears similarities to the game-theoretic discrete choice mod-
els with network effects (Du et al. 2016, Wang and Wang 2017). There are two noteworthy
distinctions. First, our model accommodates a broader range of choice models than what the
standard logistic distribution covers. Second, we include the stochasticity of network effects
by assuming that the network effects come from realized average adoptions, as opposed to
the more commonly assumed expected adoption rates. Interestingly, our result shows that,
in the long term, the expected adoption rates that arise naturally from a game-theoretic
perspective are also well-justified in a dynamic and micro-founded setting. This convergence
validates the use of expected adoption rates, effectively bridging the LT and game-theoretic
choice models.

3.3 Fixed-Point Approximation (FPA)

In this section, we introduce the FPA scheme. We present a comprehensive analysis of the
scheme’s performance, offering theoretical upper bounds for approximation error. Further-
more, we put forth two critical metrics designed to evaluate the difficulty of approximation
and the performance of the FPA scheme; see (3.6). In this section, we assume that Assump-
tions 3.2.1 and 3.2.2 hold.

3.3.1 Overview and Motivating Example

For a given diffusion instance (G,v, Fϵ(·), β), we will show that the limiting adoption proba-
bility q∗ can be reasonably approximated by the solution µ∗ of the following simple system
of equations:

µi = 1− Fϵ

(
−vi − β

∑
j∈Ni

µj

di

)
, for all i ∈ V. (3.5)

We begin with a motivating example to demonstrate the values of q∗ and µ∗. This
particular instance features heterogeneity in both network connectivity and intrinsic values
among agents. To facilitate an intuitive understanding of the impact of network effects, we
also introduce a misspecified model as a benchmark scenario. In this misspecified model,
the adoption probability for each agent i, qMM

i , is calculated as E [1{vi + ϵi ≥ 0}] so the
network effects are ignored. For detailed information about this example instance, including
numerical results, please refer to Appendix B.2.1.

Figure 3.1a presents the network structure and the approximation results. Clearly, nodes
with fewer neighbors exhibit higher errors, whereas well-connected nodes yield smaller errors.
Further insights can be gained from Figure 3.1b, which enumerates the values of q∗, µ∗ and
qMM. The strong impact of network effects is underscored by the large discrepancy between
q∗ and qMM. Against q∗ as a baseline, the mean absolute error values for µ∗ and qMM

are 0.045 and 0.310, respectively. These observations confirm the high quality of the FPA
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Figure 3.1: The 10-node Example to Illustrate the FPA Scheme
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between q∗ and µ∗. (a) Approximation results on the network structure. (b) Adoption probability values.

solution and suggest that the approximation tends to be more accurate for agents with
central positions in the network.

In the following, we quantitatively measure the deviation between q∗ and µ∗, with a
particular focus on its dependence on network structures. The key technical challenge arises
from the fact that adoption decisions exhibit temporal and spatial correlations, compounded
by the non-linearity introduced by a general distribution of noise. To overcome this challenge,
we employ a novel “fixed-point sandwich” technique to provide the theoretical guarantee for
general diffusion instances.

3.3.2 The Approximation Error

We first remark on notations before formally presenting our analysis on error bound. Given
an network G = (V,E) with n nodes, we define the matrix Ã ∈ Rn×n such that Ãij = 1

di

if an edge is directed from j to i, and Ãij = 0 otherwise. This matrix can be viewed as
a transformation of the network’s adjacency matrix A, where Aij = 1 if there is an edge
directing from i to j and Aij = 0 otherwise. Specifically, one obtains Ã by scaling row i of
A⊤ by 1

di
. It is worth noting that Ã is a row scholastic matrix; that is, Ãe = e where e is

a vector of ones. Additionally, we introduce the vector b =
(

1
d1
, 1
d2
, . . . , 1

dn

)⊤
, consisting of

the reciprocal of each node’s in-degree. Lastly, we define ρ := Lβ as the discount parameter
that characterizes the diffusion environment (ρ < 1 by Assumption 3.2.2). Let dmin be the
minimum in-degree of the network with dmin > 0.

We introduce two centrality metrics critical in our analysis, which we term as the inverse
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in-degree centrality C(G; ρ) and the inverse in-degree density D(G). They are defined as
follows:

C(G; ρ) := (1− ρ)

(
I +

∞∑
ℓ=1

ρℓÃ
ℓ

)
b = (1− ρ)

(
I− ρÃ

)−1

b and D(G) :=
e⊤b

n
.

(3.6)

The inverse in-degree centrality C(G; ρ) is an n-dimensional vector that captures the cen-
trality of each agent, with its i-th entry denoted by Ci(G; ρ). It bears similarities to the
classical Bonacich centrality (Bonacich 1987), taking the form of summed discounted matrix
powers. On the other hand, it introduces distinct features regarding the inverse in-degree
properties, making it specifically tailored to evaluate the FPA scheme. Importantly, this
centrality measure is well-defined given that Ã is row stochastic and ρ < 1 by Assumption
3.2.2. The inverse in-degree density D(G) is a scalar that represents the average inverse
in-degree of all agents in the network, serving as an aggregate measure of the FPA scheme’s
performance. Together, these two centrality metrics offer comprehensive evaluations, afford-
ing both individualized and holistic views of the network. Such a dual perspective not only
enhances our understanding of the FPA scheme but also provides actionable insights into its
application across different network configurations.

For clarity in our subsequent theoretical analysis, we adopt the notations | · | and (·) 1
2

to represent entry-wise operations on vectors. For instance, for vector q, we define |q| :=
(|q1|, |q2|, . . . , |qn|)⊤ and q

1
2 := (

√
q1,

√
q2, . . . ,

√
qn)

⊤. We also define the constant Cρ :=
ρ

(1−ρ)
√

(1−ρ/2)
. We now present our technical key result. In Theorem 3.3.1, our primary

focus is to characterize the entry-wise error between the limiting probability q∗ and our FPA
solution µ∗.

Theorem 3.3.1 (Entry-wise Error Bound of the FPA Scheme) Under Assumptions
3.2.1 and 3.2.2, for any diffusion instance

(
G,v, Fϵ(·), β

)
, the absolute difference between

the limiting adoption probability q∗ and the fixed-point solution µ∗ can be upper bounded by

|q∗ − µ∗| ≤ Cρ ·
[
C(G; ρ)

] 1
2 .

Theorem 3.3.1 shows that the entry-wise error of FPA is closely related to the network

structure through the inverse in-degree centrality C(G; ρ) := (1 − ρ)
(
I +

∑∞
ℓ=1 ρ

ℓÃ
ℓ
)
b =

(1 − ρ)
(
I− ρÃ

)−1

b. Note that
∑∞

ℓ=0 ρ
ℓ = 1/(1 − ρ) and Ã is a row stochastic matrix,

so each component of C(G; ρ) is always within the range [0, 1]. Similar to the Bonacich
centrality, C(G; ρ) can also be interpreted as the weighted sum of different entries of b, the
vector of inverse in-degrees. These weights capture the connectedness between node pairs.
To illustrate, consider P(j,i) as the set of directed paths from agent j to agent i. The weight
allocated to the inverse in-degree bj in the i-th term of C(G, ρ) is (1−ρ)

∑
P∈P(j,i)

ρ|P |∏
k∈P

1
dk
.

Remarkably, this weight decays exponentially fast with respect to the length of the path that
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connects nodes j and i. As a consequence, the inverse in-degree centrality of each node is
predominantly affected by the inverse in-degrees of its nearby nodes. This result rationalizes
the observations in Figure 3.1.

To further understand the intuition of C(G, ρ), we let dmin,i(ℓ) be the minimum in-degree
of any node j that is connected to node i via a path of length ℓ. It is straightforward that
dmin,i(ℓ) ≥ dmin. By Theorem 3.3.1, it then holds that

Ci(G; ρ) ≤ (1− ρ)
∞∑
ℓ=0

ρℓ

dmin,i(ℓ)
≤ 1

dmin

, for all i ∈ V, (3.7)

where the first inequality holds because Ã is a row stochastic matrix. Consequently, we
arrive at:

|q∗i − µ∗
i | ≤ Cρ ·

√√√√ (1− ρ)
∞∑
ℓ=0

ρℓ

dmin,i(ℓ)
, (3.8)

which suggests that the error is small for nodes with large in-degrees and only distantly
connected to nodes with low in-degrees. A subsequent corollary is then derived directly from
(3.7).

Corollary 3.3.1 (ℓ∞-Norm Bound) Under Assumptions 3.2.1 and 3.2.2, for any diffu-
sion instance

(
G,v, Fϵ(·), β

)
, the ℓ∞-norm of the difference between q∗ and µ∗ can be upper

bounded by

∥q∗ − µ∗∥∞ ≤ Cρ ·
√

1

dmin

. (3.9)

Corollary 3.3.1 removes the dependence on the specific network structure from the bound
to highlight a worst-case convergence rate as the network expands. Specifically, for a sequence
of diffusion instances characterized by an increasing minimum in-degree dmin, the maximal

deviation shrinks at a rate of O
(√

1/dmin

)
. As dmin approaches infinity, µ

∗ is asymptotically

equal to q∗. This simplified bound clearly indicates that the FPA scheme can perform better
in larger and denser networks. We remark that although (3.8) and (3.9) are both intuitively
appealing, these bounds are looser than the one based on the inverse in-degree centrality
presented in Theorem 3.3.1.

The ℓ∞-norm, while easy to understand, has its limitations. It relies entirely on the
minimal in-degree of the network, rendering it overly conservative and vulnerable to the
isolated outliers. For most real-world networks, the minimal in-degree is often quite small
even if its size n is large, limiting the applicability of this bound. Corollary 3.3.2 below
counters this limitation by introducing an upper bound characterized by the scaled ℓ1-norm.
This bound takes into account the inverse in-degree density across the entire network D(G),
providing a more reliable and effective metric compared to the minimal in-degree dmin. Define
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r(G) := maxi∈V (
∑n

j=1Aij/
∑n

j=1Aji) as the largest out-degree to in-degree ratio among all
nodes in the network. It always holds that r(G) ≥ 1, with a smaller value indicating a more
evenly distributed degrees in the network.

Corollary 3.3.2 (Scaled ℓ1-Norm Bound) Under Assumptions 3.2.1 and 3.2.2, for any
diffusion instance

(
G,v, Fϵ(·), β

)
, the scaled ℓ1-norm of the difference can be upper bounded

by

1

n
∥q∗ − µ∗∥1 ≤ Cρ ·

√
∥C(G, ρ)∥1

n
. (3.10)

If r(G) < 1/ρ, the bound can be further simplified as

1

n
∥q∗ − µ∗∥1 ≤ Cρ ·

√
1− ρ

1− ρr(G)
· D(G). (3.11)

In light of (3.7), the worst-case network-structure-free bound on 1
n
∥q∗ − µ∗∥1 is also

of order O
(√

1/dmin

)
. However, Corollary 3.3.2 provides more meaningful bounds. Par-

ticularly, (3.10) bounds the scaled ℓ1-norm of the error by that of the inverse in-degree
centrality C(G, ρ). In poorly conditioned networks with a large r(G), large weights may ap-
ply to nodes with a small in-degree, pushing this bound closer to the worst-case scenario of

O
(√

1/dmin

)
. Yet, for most networks, we believe that (3.10) gives an accurate characteriza-

tion of the ℓ1-norm that takes into account the whole network structure. When the network
is appropriately conditioned (i.e., r(G) < 1/ρ), we obtain a more transparent bound in (3.11)
characterized by D(G), which is an aggregate measure of the network structure. Unlike the
minimal in-degree which offers a perspective of extreme nodes, D(G) provides a holistic
view. It emphasizes the average inverse in-degree, thereby giving an encompassing depiction
of network connectivity and underscoring the relationship between network structure and
the FPA error. Moreover, the inverse in-degree density D(G) is also computationally more
efficient than the aforementioned inverse in-degree centrality C(G, ρ), which requires invert-
ing an n-by-n matrix. As a consequence, D(G) is a more practical performance indicator for
the FPA scheme across different networks.

Another key observation pertains to the largest out-to-in-degree ratio r(G). Interestingly,
the derived upper bound is tighter as r(G) decreases, indicating a better performance of the
FPA scheme for more balanced networks. We also highlight that the assumption r(G) < 1/ρ
for the second part of Corollary 3.3.2 is not restrictive in general. Notably, all undirected
graphs and balanced directed graphs satisfy that r(G) = 1 < 1/ρ. Studies such as Mislove
(2009) also validate the balanced nature of social networks in practice. In particular, active
agents (i.e., those who create many links) also tend to be popular (i.e., they are the target
of many links). This high correlation is generally attributed to the prevalence of reciprocal
links in social networks.
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We remark on two facts. First, all the aforementioned bounds apply to networks where
dmin > 0. For any standalone node i with no in-neighbors, the local network effect term in
(3.1) is zero. Thus, for these nodes, µ∗

i = q∗i holds trivially. Therefore, the inclusion of such
nodes would only tighten the derived bounds. Further discussions of this aspect are deferred
to the numerical experiments in Section 3.5. Second, it is easy to show that the constant
Cρ is strictly decreasing in ρ and converges to zero as ρ converges to zero. Therefore, our
bounds suggest that FPA works better when ρ, which represents the compound effect of
network externality and noise magnitude, is small.

Operationalizing the FPA solution. The significance of the FPA solution µ∗ lies in the fact
that it allows us to reformulate and simplify problem (3.4). Instead of solving (3.4) directly,
we can replace q∗ with µ∗ and approximate (3.4) as follows:

maximize
x∈X ,µ

g(µ,x) s.t. µ = h
(
µ ; G,v(x), Fϵ(·), β

)
, (3.12)

where h(· ; G,v, Fϵ(·), β) is the adoption evolution operator (AEO) induced by the diffu-
sion instance (G,v, Fϵ(·), β), which we will formally define using (3.13) in Section 3.3.3.
The approximate problem (3.12) offers an explicit formulation by incorporating the FPA
scheme as a constraint. This stands in contrast to the implicit variable q∗ in problem (3.4),
which emerges from a complex stochastic process. The formulation (3.12) thus simplifies the
optimization problem and facilitates its solution.

We advocate for the use of this approximate optimization problem (3.12). The benefits
are as follows: (i) Theoretical Guarantee. The FPA scheme is especially appealing due to
its superb performance, particularly for large and dense networks. Stronger results can
be obtained for specific network structures, such as regular networks and random graphs
(see Sections 3.4.2 and 3.5.2). From a practical standpoint, many real-world networks are
large and continuously expanding, making the FPA scheme a promising tool (see Section
3.5.3). (ii) Computational Efficiency. The FPA scheme offers significant computational
advantages over traditional Markov Chain Monte Carlo (MCMC) simulations. According
to Rheinboldt (1998), a fixed-point iteration converges to the FPA solution in linear time.
In contrast, MCMC simulations require considerable computational resources and become
more cumbersome as network sizes grow. (iii) Insights on Network Structure. Our proposed
metrics, namely inverse in-degree centrality and inverse in-degree density, serve as accurate
indicators of the FPA scheme’s performance. These metrics offer actionable insights on
whether to employ the FPA scheme, depending on specific accuracy and efficiency goals.
(iv) Closed-Form Expression. The approximate problem (3.12) is considerably more tractable
than (3.4), which paves the way for developing more efficient algorithms tailored for specific
problems (see Section 3.6).

3.3.3 Proof Sketch of Theorem 3.3.1

In this section, we sketch the proof of Theorem 3.3.1, which is our main methodological
contribution. The key idea is to construct an approximate process {µ(t)}∞t=0 for a given



CHAPTER 3. NONPROGRESSIVE DIFFUSION ON SOCIAL NETWORKS:
APPROXIMATION AND APPLICATIONS 49

instance (G,v, Fϵ(·), β). We show that {µ(t)}∞t=0 closely aligns with the adoption probability
process {q(t)}∞t=0. As a result, q

∗, as the limit of q(t), is expected to be closely approximated
by µ∗, the limit of {µ(t)}∞t=0.

Specifically, we define {µ(t)}∞t=0 as a deterministic dynamic system throughout the time
horizon:

µi(t) =

{
qi(0) t = 0

1− Fϵ

(
−vi − β

∑
j∈Ni

µj(t−1)

di

)
t > 0

, for all i ∈ V. (3.13)

By Proposition 3.2.1, q∗ has a unique value regardless of the initial distribution of the
adoption state Y(0). Without loss of generality, we assume Yi(0) = 0 for all i ∈ V . Indeed,
by Proposition 3.2.1, the limiting distribution q∗ is irrelevant to the starting adoption status
so any bound on q∗ −µ∗ derived under Y(0) = 0 applies to an arbitrary initial distribution
of Y(0). We introduce h : Rn → Rn as the mapping function that allows us to express
{µ(t)}∞t=0 in the form µ(t) = h

(
µ(t−1)

)
for t ≥ 1. We refer to h(·) as the adoption evolution

operator (AEO) and define a family of auxiliary AEOs H :=
{
hζ(·) = h(·) + ζ : ζ ∈ Rn

}
.

We proceed by discussing the properties of any AEO h ∈ H and its role in shaping the
approximate diffusion process {µ(t)}∞t=0.

Proposition 3.3.1 (Partial Order Preserving, Existence, and Uniqueness) Any
AEO h ∈ H satisfies the following properties (i) and (ii), and the induced dynamic system
{ν(t)}∞t=0 defined by fixed-point iteration ν(t) = h

(
ν(t− 1)

)
satisfies the following property

(iii):

(i) h(a) ≤ h(b) if a ≤ b.

(ii) There exists a unique fixed-point solution ν∗ ∈ Rn with h(ν∗) = ν∗.

(iii) For any initial state ν(0), the dynamic system {ν(t)}∞t=0 satisfies limt→∞ ν(t) = ν∗.

The proof of Proposition 3.3.1(i) follows from the definition of h(·). Proposition 3.3.1(ii)
and (iii) are consequences of the fact that h(·) is a contraction mapping. Note that {µ(t)}∞t=0

is the special case of the induced dynamic system {ν(t)}∞t=0 when ν(0) = q(0). Given these
properties of {µ(t)}∞t=0, for any diffusion instances under Assumptions 3.2.1 and 3.2.2, we
can always find the well-defined FPA solution µ∗ for limiting adoption probability q∗ by
solving the system of equations h(µ∗) = µ∗.

To show that {µ(t)}∞t=0 closely approximates {q(t)}∞t=0, we face two challenges. The first
stems from the temporal and spatial dependencies among (un)adoptions. Specifically, an
agent’s adoption utility is directly shaped by the behavior of their immediate in-neighbors.
Over time, these localized correlations not only accumulate but also spread across the net-
work. The second challenge arises from the non-linearity of the CDF Fϵ of a general distri-
bution. This non-linearity makes it difficult to analytically track the transition of adoption
states over time and particularly complicates the characterization of adoption correlations.
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To address these challenges, our subsequent efforts focus on bounding the spatio-temporal
variances and the nonlinear dynamics in a sequential manner.

In our first analytical phase, we focus on bounding the variance of agents’ adoptions, par-
ticularly addressing the local network effect term presented in (3.1). This term is essentially
an average over a set of mutually dependent random variables. To quantify its variability, we
introduce κi(t) := Var

(
1
di

∑
j∈Ni

Yj(t)
)
as the variance of the in-neighbor adoption fraction

for agent i. Lemma 3.3.1 provides an upper bound of this variance for each period over the
entire time horizon.

Lemma 3.3.1 (In-Neighbor Variance Bound) Under Assumptions 3.2.1 and 3.2.2, for
any diffusion instance

(
G,v, Fϵ(·), β

)
and t ≥ 0, the in-neighbor adoption variance can be

upper bounded by

κ(t) ≤ 1

4

[
I+

t−1∑
τ=1

(
ρ2

2

)τ

Ã
τ

]
b.

Since Ã is row stochastic, Lemma 3.3.1 bounds κ by (approximately) the weighted sum
of inverse in-degrees b. This essentially implies that as the number of in-neighbors increases,
the variance decreases. In other words, having more in-neighbors reduces the impact of any
single neighbor, thereby reducing the mutual dependence among the adoptions of different
agents. As time progresses, this upper bound gradually increases, which can be interpreted
as a discounted contribution from the neighbors that are connected through a path of length
t − 1. As we can see, the network structure plays a critical role here. The expression

I +
∑t−1

τ=1

(
ρ2

2

)τ
Ã

τ
offers insights into how stochasticity is disseminated, including both

spatial and temporal aspects. We can then connect this bound to the centrality measure
that resembles our inverse in-degree centrality as follows:

κ(t) ≤ lim
t→∞

1

4

[
I+

t−1∑
τ=1

(
ρ2

2

)τ

Ã
τ

]
b =

1

4

(
I− ρ2

2
Ã

)−1

b, for all t ≥ 0. (3.14)

With the variance bound (3.14), we move to our second analytical phase of bounding the
nonlinear dynamics. Although the adoption probability process {q(t)}∞t=0 lacks a closed-form
expression, we expect that its transition between consecutive time periods akin to the AEO
h(·).

Lemma 3.3.2 (Deviation of Adoption Probability) Under Assumptions 3.2.1 and
3.2.2, for any diffusion instance

(
G,v, Fϵ(·), β

)
and t ≥ 1, we have∣∣h(q(t− 1)

)
− q(t)

∣∣ ≤ δ,

where δ =

[(
ρ
2

)2 (
I− ρ2

2
Ã
)−1

b

] 1
2

.
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Building on Lemma 3.3.1, Lemma 3.3.2 establishes a connection between the transitions
of {q(t)}∞t=0 and {µ(t)}∞t=0, providing a one-step guarantee for their similarity. Based on this
fact, we use a “fixed-point sandwich” technique to prove the final results in Theorem 3.3.1.
Specifically, we define a lower bound system {µ(t)}∞t=0 and an upper bound system {µ(t)}∞t=0

as follows:

µ
i
(t) =

{
qi(0) t = 0

1− Fϵ

(
−vi − β

∑
j∈Ni

µ
j
(t−1)

di

)
− δi t > 0

, for all i ∈ V,

µi(t) =

{
qi(0) t = 0

1− Fϵ

(
−vi − β

∑
j∈Ni

µj(t−1)

di

)
+ δi t > 0

, for all i ∈ V.

Employing our auxiliary AEOs, these two systems can be expressed as two fixed-point iter-
ations: µ(t) = h−δ(µ(t− 1)) and µ(t) = hδ(µ(t− 1)), with µ∗ and µ∗ being the fixed-point
solutions to these two systems, respectively. The proof of Theorem 3.3.1 uses these two fixed-
point iterations to sandwich both {q(t)}∞t=0 and {µ(t)}∞t=0. When t goes to infinity, |q∗−µ∗|
can be bounded by

∣∣µ∗ − µ∗
∣∣, which we can quantify by the lemmas above. This allows

us to show that the entire trajectories of {q(t)}∞t=0 and {µ(t)}∞t=0 are close to each other.
Therefore, the FPA solution µ∗ serves as a good approximation for the limiting adoption
probability q∗.

3.4 Improved Error Bounds for the FPA Scheme

In this section, we delve deeper into the error bound of the FPA scheme. We demonstrate
that, by introducing a mild additional assumption on the noise distribution Fϵ(·), a tighter
upper bound can be derived. Moreover, we also present a matching lower bound of the same
order with this refined upper bound, closing the gap in our analysis. For the subsequent
analysis in this section, we will proceed under Assumption 3.4.1.

Assumption 3.4.1 (Smoothness Condition) The random noise ϵi(t) has a differentiable
probability density function (PDF) fϵ(·) with its derivative upper bounded by |f ′

ϵ(·)| ≤ Lf .

This assumption mainly requires the smoothness of the PDF fϵ. It is worth noting that
this assumption is fairly mild, given that many commonly used distributions inherently
exhibit high degrees of differentiability, including but not limited to the normal and logistic
distributions.

3.4.1 Improved Upper Bounds

Recall that Theorem 3.3.1 establishes an upper bound for the error of FPA at the order of[
C(G; ρ)

] 1
2 . Under Assumption 3.4.1, Theorem 3.4.1 below refines this upper bound to a lower
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order of C(G; ρ) ≤
[
C(G; ρ)

] 1
2 , where the inequality follows immediately from C(G; ρ) ≤ e.

Define the constant C̃ :=
Lfβ

2

4(1−ρ)(1−ρ/2)
, which is increasing in both ρ and Lf .

Theorem 3.4.1 (Improved Entry-Wise Error Bound of the FPA Scheme) Under
Assumptions 3.2.1, 3.2.2 and 3.4.1, for any diffusion instance

(
G,v, Fϵ(·), β

)
, we have

|q∗ − µ∗| ≤ C̃ · C(G; ρ) and ∥q∗ − µ∗∥∞ ≤ C̃ · 1

dmin

. (3.15)

Our inverse indegree centrality C(G; ρ) remains essential in the improved bounds. In light
of the refined bound (3.15), we also sharpen the scaled ℓ1-norm of the approximation error.

Corollary 3.4.1 (Improved Bound for Scaled ℓ1-Norm) Under Assumptions 3.2.1,
3.2.2 and 3.4.1, for any diffusion instance

(
G,v, Fϵ(·), β

)
with r(G) < 1/ρ, we have

1

n
∥q∗ − µ∗∥1 ≤ (1− ρ)C̃

1− ρr(G)
· D(G). (3.16)

Finally, we remark that the proof of Theorem 3.4.1 largely parallels that of Theorem
3.3.1, with the primary difference in that we employ a second-order Taylor expansion of
Fϵ(·), enabled by Assumption 3.4.1 to bound the deviation |h(q(t−1))−q(t)|. Lemma 3.4.1
refines Lemma 3.3.2 by removing the square root in the upper bound.

Lemma 3.4.1 (Improved Fixed-Point Deviation of Adoption Probability) Under
Assumptions 3.2.1, 3.2.2 and 3.4.1, for any diffusion instance

(
G,v, Fϵ(·), β

)
and t ≥ 1, we

have ∣∣∣h(q(t− 1))− q(t)
∣∣∣ ≤ Lfβ

2

8

(
I− ρ2

2
Ã

)−1

b.

3.4.2 A Matching Lower Bound

Our results in Section 3.4.1 highlight a linear dependence of FPA’s error upper bounds on
the network measures such as C(G; ρ), 1/dmin, and D(G). We next establish matching lower
bounds of the same orders, suggesting that the order-optimality of the upper bounds.

Theorem 3.4.2 (A Lower Bound with Regular Graphs) For any (n, d) ∈ Z2
+ with

d ≤ n, there exists a diffusion instance
(
G,v, Fϵ(·), β

)
satisfying Assumptions 3.2.1, 3.2.2

and 3.4.1 such that |V | = n, G is d-regular and

|q∗ − µ∗| ≥ c · 1
d
e, (3.17)

where c ≈ 0.003 > 0. Consequently, it holds that

|q∗ −µ∗| ≥ c · C(G; ρ), ∥q∗ −µ∗∥∞ ≥ c · 1

dmin

, and
1

n
∥q∗ −µ∗∥1 ≥ c · D(G). (3.18)
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For a regular graph G, it follows that C(G; ρ) = e/d and 1/dmin = D(G) = 1/d, so (3.18)
follows from (3.17). Note that, for any minimal in-degree dmin and inverse in-degree density
D(G), we can construct instances such that the bounds (3.15) and (3.16) are order-tight
with respect to network-structure-based measures. We relegate the analysis regarding the
(sub-)optimality of the constants Cρ and C̃ to future research.

To show the lower bound (3.17), we construct a diffusion instance such that (i) the
network structure is a d-regular (directed) graph G = (V,E), (ii) each agent i ∈ V has the
same intrinsic value vi = −1.5, (iii) the strength of the network effect is β = 1, and (iv) the
random noise follows ϵi(t) ∼ Logistic(0, 1)2. A key observation that enables the analysis is
that for any node i ∈ V ,

vi + β

∑
j∈Ni

Yj(t− 1)

di
∈ [v, v + β] = [−1.5,−0.5].

Then, we exploit the boundedness of Fϵ(·), fϵ(·), and f ′
ϵ(·), as well as the convexity of Fϵ(·)

in [−1.5,−0.5] to derive sharp bounds that allow us to reverse the chain of inequalities in
the analysis of the upper bounds, thus eventually establishing (3.17).

3.5 Numerical Experiments

In this section, we conduct a series of numerical studies, spanning across the 10-node example
(i.e., Figure 3.1a), large-scale random networks, and real-world networks, to validate our FPA
scheme in different scenarios. We underscore a few key insights from our numerics. Firstly,
our FPA scheme consistently achieves superior approximation performance in every scenario,
even for small and sparse networks or some instances where the assumptions necessary for
the theoretical analysis, such as Assumption 3.2.2, are not met. Secondly, both the inverse
in-degree centrality, C(G, ρ), and the inverse in-degree intensity, D(G), emerge as highly
indicative metrics that offer precise evaluations of the FPA scheme’s efficacy for a wide range
of networks. Lastly, in terms of computational efficiency, FPA significantly outperforms
alternative approaches, notably the MCMC method.

We note a fundamental challenge in measuring the accuracy of the FPA scheme that
the ground-truth limiting adoption probabilities q∗ are generally unknown. As outlined in
Section 3.2, deriving q∗ would require solving the stationary distribution of a large-scale
MC, which is generally prohibitive both analytically and computationally.3 Thus, as a
workaround, we resort to the MCMC simulation with a long running time horizon to estimate
the ground-truth q∗. See Appendix B.2.3 for details.

Unless otherwise specified, we adhere to the following settings for all subsequent experi-
ments. The limiting adoption probability q∗ is computed by MCMC simulations, while the
FPA solution µ∗ is obtained through fixed point iteration, with an initial value µ(0) = 0 and

2The CDF of Logistic(µ, σ) is Fϵ(x) = 1/(1 + exp{−(x− µ)/σ}).
3For some highly structured symmetric networks (such as star networks and complete networks), solving

the stationary distribution is tractable. See Appendix B.2.2 for details.
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a convergence criterion of 10−5. The noise distribution follows ϵi(t)
i.i.d.∼ Logistic(0, 1) and the

network effect intensity is set to be β = 3.5, so ρ = 0.875. By setting a relatively high value
for ρ, our experiments aim to provide insights into the near-worst-case scenarios, offering
a robust assessment of the FPA scheme. Further, to quantify performance for a specific
diffusion instance (G,v, Fϵ(·), β), we use a self-normalized measure, the mean absolute per-

centage error (MAPE) across all agents, defined as MAPE = 1
n

∑
i∈V

|µ∗
i−q∗i |
q∗i

× 100%, rather

than absolute errors as in the theoretical discussion in previous sections. Doing so allows
to focus on the relative errors, which is more interpretable and facilitates the comparisons
across different scales of adoption probabilities.

3.5.1 Revisiting the Motivating Example

In this subsection, we revisit the 10-node motivating example introduced in Section 3.3.1 to
numerically validate our theoretical results. We focus on two aspects: the role of our central-
ity measure as a node-level metric for the performance of FPA, and a thorough examination
of Assumption 3.2.2, which serves as a sufficient condition for all our theoretical results.
For the experiments in this subsection, the limiting adoption probability q∗ is achieved by
solving the exact MC stationary distribution. We use the same set of parameters and still
compute the FPA solution initialized at µ(0) = 0.

3.5.1.1 Discussions on the Inverse In-degree Centrality

As highlighted in Theorem 3.3.1, the upper bound of the approximation error is intrinsically
linked to the inverse in-degree centrality, C(G, ρ). Each component of C(G, ρ) is computed as
a weighted average of the inverse in-degrees across all nodes, emphasizing the connectivity
of each node to those with different in-degrees. In Figure 3.2, we juxtapose the absolute
approximation error |q∗i −µ∗

i | with the inverse in-degree centrality Ci(G, ρ) for this illustrative
set of 10 nodes, which show a discernible positive correlation between these two metrics. This
underscores the significance of inverse in-degree centrality as a sharp node-level indicator in
evaluating the performance of the FPA scheme.

3.5.1.2 Discussions on Assumption 3.2.2

Although similar assumptions as ρ = βL < 1 are commonly made in the network liter-
ature (e.g., see Huang et al. 2022), its implications on the FPA scheme warrant further
exploration—especially when this assumption is not satisfied. The parameter ρ has two key
elements, namely the network effect intensity β and the Lipschitz constant L of Fϵ(·). We
experiment by varying each of these two components, benchmarking against the misspecified
model where the network diffusion is not incorporated (similar to the setup in Section 3.3.1).
Figure 3.3 plots the MAPE of the FPA scheme for instances with different values of β and
L.
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Figure 3.2: Analysis of the 10-Node Example Instance
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Notes. Left: Reproduction of the network diagram from Figure 3.1a. Right: Illustration of the relationship
between the approximation error and inverse in-degree centrality.

Figure 3.3: Sensitivity of the FPA Error Against the Discount Parameter ρ
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Notes. In right subfigure, FPA scheme 0 (1, resp.) represents the FPA solution initialized with µ(0) =
0 (µ(0) = 1, resp.). (a) Sensitivity regarding network effect intensity. (b) Sensitivity regarding noise
distribution.

(i) Sensitivity analysis regarding the network effect intensity . We vary β from 0 to 10 and

keep all other parameters fixed. Given that the noise distribution follows ϵi
i.i.d.∼ Logistic(0, 1)

with L = fϵ(0) = 0.25, our experiments encompass both scenarios when Assumption 3.2.2 is
satisfied or violated. As illustrated in Figure 3.3a, the MAPE first increases with β, but at a
notably slower rate compared to the misspecified model. Subsequently, the MAPE gradually
declines to 0 when ρ = βL > 1.

Our analysis can then be divided into two segments based on the value of ρ in relation
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to 1.
For ρ < 1, it is not surprising that the FPA scheme performs exceptionally well when β

is close to 0 (i.e., the network effect is weak). When β increases, the network effect becomes
increasingly influential on user adoption behavior, leading to a slight degradation in the
FPA’s quality. This dependency on β is primarily reflected in the constant Cρ (and C̃) in
our theoretical results. Nevertheless, even when β = 3.5 where the MAPE peaks at 9.11%,
the performance remains commendable, substantially lower than what is observed in the
misspecified model (64.42%). This underscores the superb quality of the FPA scheme even
with strong network effects in such a small network.

When ρ > 1, we observe an intriguing trend: the MAPE decreases in β. This demon-
strates the robust and resilient performance of the FPA. The underlying reason can be at-
tributed to the fact that L is not uniformly tight for Fϵ(·). Specifically, with large values of β,
network effects heavily influence user behavior, driving the adoption probabilities close to 1

for agents. Thus, the nominal utility in the FPA scheme, represented by vi + β
∑

j∈Ni
µj(t−1)

di
,

gravitates towards the flat areas of the CDF where the Lipschitz constant is significantly
smaller than L, ensuring a unique limit of the FPA. Thus, even if the nominal utility for

adoption, given by vi + β
∑

j∈Ni
Yj(t−1)

di
, occasionally lands in CDF regions with larger Lips-

chitz constants, thereby violating Assumption 3.2.2, the resilience of the FPA scheme remains
evident.

(ii) Sensitivity analysis regarding the noise distribution. The experiment above may lead
the readers to conceive that Assumption 3.2.2 is conservative, but we demonstrate that it is
not the case by varying L. Particularly, we assess the performance of the FPA scheme across

a family of Logistic distributions defined by ϵi
i.i.d.∼ Logistic(0, s), where s ranges from 0.0625

to 2.5. The associated Lipschitz constant can be derived as L = 1
4s
. All other parameters

are fixed as in Section 3.3.1.
In Figure 3.3b, we observe a continuous increase of MAPE as L increases. Indeed,

when ρ > 1, the FPA scheme’s performance deteriorates drastically, approaching that of
the misspecified model. This deterioration can be attributed to the violation of Proposition
3.3.1, i.e., there may be multiple solutions to the FPA scheme. In particular, the FPA
solution initialized at µ(0) = 0 diverges from q∗. To offer a more comprehensive view, we
also present an additional FPA solution initialized at µ(0) = 1 in Figure 3.3b. Notably, these
two solutions exhibit divergent performance, with the latter significantly outperforming the
former when ρ > 1. We remark that other FPA solutions might exist with different initial
values and it is difficult to know which FPA solution provides a better performance a priori.

Upon closer examination, an important difference emerges between the two scenarios.
In the first, the intrinsic utility v is in the same location within the noise distribution. In
contrast, the second scenario can exhibit extreme placements of v, either to the far left or
far right relative to the noise distribution, especially when s is small. Consequently, in the
latter scenario, certain agents are highly inclined to adopt, while others lean towards non-
adoption. When Assumption 3.2.2 is breached in this context, the FPA scheme has multiple
solutions, complicating its application. In short, the effects of violating Assumption 3.2.2
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on the FPA’s quality are multifaceted, contingent on the specific circumstances. We leave
further explorations of these phenomena to future studies.

3.5.2 Random Networks

In this section, we evaluate the performance of the FPA scheme across a range of well-studied
random networks, with a focus on Erdős-Rényi networks of different sizes and densities.
Additionally, we explore the FPA scheme’s performance in power-law networks, varying the
exponent and degree correlation to gain insights into its sensitivity to network structure.
These supplementary results are provided in Appendix B.2.4. To ensure the robustness
of our empirical findings, we run 50 repetitions for each combination of random network
parameters.

In the following, we consider a sequence of directed Erdős-Rényi networks, each denoted
by G(n, p(n)), where n represents the number of nodes and p(n) represents the network
density—the probability that any given edge connecting two nodes exists. In an Erdős-
Rényi network, edges are present independent of each other. To thoroughly understand
the FPA scheme, we conduct experiments focusing on two aspects: the sensitivity of FPA’s
performance with respect to network structures and the computational efficiency of the FPA
scheme.

3.5.2.1 The FPA Scheme’s Accuracy with Regard to Network Structure

We assess the performance of the FPA scheme by varying the size and density of Erdős-Rényi
networks.

(i) Network size. We vary the network size n from 20 to 10,000, and select densities

p(n) from the set { 1
n1.1 ,

1
n
, (logn)

2

n
, 0.1}. The choice of these values is motivated by the critical

ranges of p(n) identified in the random graph literature. Further discussions on the properties
of different Erdős-Rényi networks can be found in Appendix B.2.5 (see, also, Huang et al.
2022).

In Figure 3.4a, we examine how MAPE varies with the network size n. The MAPE either
decreases or remains stable as n grows, but the rate of decrease differs depending on p(n).
Interestingly, the decrease rate is faster when p(n) is relatively small or large and slower when
p(n) is moderate. At first glance, this may seem contradictory to our theoretical insights,
which suggest that the FPA scheme performs better in larger, denser networks. However, our
theoretical results, as discussed in Sections 3.3 and 3.4, are developed under the assumption
dmin > 0, thereby excluding standalone nodes. In the FPA solution, these standalone nodes,
which do not receive any influence but can exert influence (i.e., their out-degree can be
positive), are perfectly approximated, thereby leading to a decline in MAPE once included.

Consequently, we conclude that for dense networks (i.e., p(n) = (logn)2

n
and p(n) = 0.1), the

fraction of standalone nodes remains minimal, but the in-degrees increases and converges
to its mean value np(n) as n increases, resulting in a rapid decrease in MAPE—consistent
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Figure 3.4: Performance of the FPA Scheme on Erdős-Rényi Networks of Different Network
Sizes
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Notes. All horizontal axes are in the log scale. Shaded areas represent the 95% confidence interval. (a)
MAPE against n. (b) D(G) against n. (c) Inverse of average in-degree against n.

with our theoretical predictions. Conversely, for very sparse networks (i.e., p(n) = 1
n1.1 ), the

increasing fraction of standalone nodes with growing n also drives a reduction in MAPE.
The observation in Figure 3.4a reveals that some traditional measures of network density,

such as p(n) and average degree, may not effectively evaluate the FPA scheme’s performance,
because critical information regarding network configuration is absent in these measures.
To confirm this intuition, Figures 3.4b and 3.4c present two metrics—the inverse in-degree
density D(G) and the inverse of average in-degree, which is the metric widely used to measure
network densities. We compute D(G) as 1

n

∑
i∈Vi:di>0

1
di

to reflect the impact of standalone
nodes. As n increases, we find that D(G) follows a trend that matches that of MAPE,
suggesting that it is a sharp indicator of the scheme’s performance. Meanwhile, the average
in-degree, which captures the traditional view of network density, cannot reflect the trend.

(ii) Network density : We fix a medium network size of n = 1, 000 and focus on various

densities p(n) ∈
{

1
n1.3 ,

1
n1.1 ,

1
n
,
√
logn
n

, logn
n

, (logn)
2

n
, 0.1

}
. In Figure 3.5a, the MAPE first in-

creases and then decreases as the network gets denser, reflecting a trend that aligns with
Figure 3.4a.

The peak MAPE is achieved at p(n) =
√
logn
n

. When p(n) is very small (i.e., p(n) = 1
n1.3 )

or very large (i.e., p(n) = 0.1), the MAPE is less than 5%. Recall that we set ρ close to 1 to
demonstrate the near-worst-case performance. Even under such a setting, the FPA scheme
performs exceptionally well. Figures 3.5b and 3.5c further show the inverse in-degree density
D(G) and the inverse of average in-degree, respectively, for different random graphs. The
trends largely mirror those seen in Figures 3.4b and 3.4c, again confirming that D(G) is a
robust indicator of FPA’s performance.

We observe that the enhanced performance of dense networks can also be partly at-
tributed to the largest out-in-degree ratio r(G). As highlighted in Corollary 3.3.2, we show
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Figure 3.5: Performance of the FPA Scheme on Erdős-Rényi Networks of Different Network
Densities
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Notes. (a) MAPE against p(n). (b) D(G) against p(n). (c) Inverse of average in-degree against p(n).

that the upper bound for approximation error increases as r(G) increases. In dense Erdős-
Rényi networks, both the in-degrees and the out-degrees of nodes tend to cluster around
the mean value. This contributes to the density of the network while also making it more
balanced. To explore the role of network imbalance level further, we conduct an exten-
sive analysis with power-law networks, constructing in-degree and out-degree sequences with
different correlations (see Appendix B.2.4).

Finally, we complement our analysis by singling out the agents with low in-degrees, who,
as illustrated by both numerical and theoretical analyses, significantly affect the performance
of FPA. We analyze the MAPE for the nodes with d = 0, 1, 2, and also those with d ≥ 5 for
comparison, visualized in Figure 3.6, across various network sizes and densities.

Key takeaways from our observations include the following: Standalone agents, who have
an in-degree of 0 always show zero error. However, agents with an in-degree of 1 exhibit larger
MAPE compared to those with larger in-degrees, far exceeding the network-wise MAPE as
shown in Figures 3.4a and 3.5a. These findings reaffirm our node-level theoretical predictions
(Theorem 3.3.1 and 3.4.1), suggesting that the FPA scheme is more accurate for nodes with
higher in-degrees. Additionally, for both agents with in-degrees of 1 and 2, we find that
their MAPEs remain relatively stable as n increases. However, there is a slight upward
trend with growing p(n). This can be attributed to the influence of more distant neighbors,
highlighting the importance of capturing network’s overall structure and connectivity beyond
mere in-degrees. We observe that such information is comprehensively represented by our
inverse indegree centrality measure, as depicted in Figure 3.6c. The patterns observed in
the centrality align closely with those of MAPE. Indeed, this alignment would be nearly
impeccable if the mean absolute error was used instead. However, we have omitted the
corresponding results due to space constraints.
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Figure 3.6: Degree-level MAPE of the FPA Scheme
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Notes. (a) MAPE against n and p(n) is fixed to be 1
n . The x-axis is in the log scale. Shaded areas represent

the 95% confidence interval. (b) MAPE against p(n) and n is fixed to be 1, 000. (c) C(G; ρ) against p(n).

3.5.2.2 The Computational Efficiency of the FPA Scheme

We evaluate the computational efficiency by comparing the CPU time required to calculate
µ∗ and that for approximating q∗ with MCMC. To ensure a fair comparison, we report the
computational time of the MCMC process once its real-time MAPE falls below that achieved
by the FPA scheme. Keeping the network density constant at n(p) = 0.1, we vary n from 100
to 10,000. As shown in Table 3.1, the runtime for both methods increases with n. However,
the FPA scheme consistently outperforms MCMC by a substantial margin. The gap is
even larger for large and dense networks. For instance, when n = 10, 000, approximately
40 minutes are required for MCMC to match the performance of the FPA scheme, which
completes the task in just 2.3 seconds.

Table 3.1: The CPU Time Required for the MCMC Simulation and the FPA Scheme

Network size n 100 200 500 1,000 2,000 5,000 10,000

MCMC time (s) 0.5296 2.4152 18.9790 97.4521 286.7179 1315.3010 2366.8788
FPA time (s) 0.0074 0.0183 0.0438 0.1015 0.2298 1.0270 2.3044

In conclusion, the FPA scheme offers considerable advantages in computational efficiency
across all the tested scenarios without a significant compromise in accuracy, which implies its
potential to effectively characterize the diffusion process for a large variety of social networks.
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3.5.3 Real-World Networks

Our numerical experiments in Section 3.5.2 focus on the random networks, which may not
capture real-world phenomena (e.g., see Jackson 2010). As such, to evaluate the FPA scheme
in more realistic settings, we test this scheme on real-world networks from the Network
Repository (Rossi and Ahmed 2015). More specifically, we select five social friendship net-
works extracted from Facebook. These networks consist of people as nodes, with the edges
representing friendship ties. An overview and the results for these networks are summarized
in Table 3.2. For the raw data and additional summary statistics, readers can refer to the
Network Repository website.4

Table 3.2: Experiment Results for Real-World Networks

Instance n Avg. in-degree D(G) MAPE(%) MCMC time (s) FPA time (s)

Caltech36 770 43.2623 0.1108 3.48 4.5335 0.0636
Reed98 963 39.0696 0.0962 3.14 5.6228 0.0623

Haverford76 1,447 82.3621 0.0427 1.59 23.2347 0.1009
Simmons81 1,519 43.4338 0.0857 2.85 11.9185 0.1426
Amherst41 2,236 81.3542 0.0488 1.71 35.6749 0.1846

We emphasize three key observations from these experiments on real-world networks.
First, the FPA scheme performs exceptionally well, achieving a maximum MAPE of just
3.48% across all evaluated networks. This suggests that the FPA scheme is not only accurate
but also reliable for real-world applications. Second, the computational time required by the
FPA scheme is significantly less than that of the MCMC method, with a factor ranging
from 70 to 230. This underscores the computational efficiency of the FPA scheme, making
it particularly well-suited for applications where scalability matters. Third, among various
metrics such as network size n and average in-degree, the inverse in-degree density D(G)
stands out as the most reliable indicator of the FPA scheme’s performance measured by
MAPE.

Figure 3.7 presents a comprehensive overview of the relationship between the performance
of FPA and the inverse in-degree density across different families of networks. The figure
clearly plots a positive correlation between MAPE and D(G). This reaffirms that D(G) is not
merely an upper bound of performance, but also a dependable and easy-to-compute metric
to gauge the FPA scheme’s efficacy. Notably, real-world networks typically demonstrate
lower D(G) values and MAPE for FPA than several of the random networks we analyzed.
This observation highlights the FPA scheme’s practical relevance and resilience in real-world
scenarios.

4See https://networkrepository.com/networks.php.

https://networkrepository.com/networks.php
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Figure 3.7: Performance of the FPA Scheme Against the Inverse In-degree Density for Dif-
ferent Networks
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3.6 Applications of the Fixed-point Approximation

Scheme

The FPA scheme can be applied to many classical operational decision problems that involve
network diffusion. In this section, we consider two noteworthy applications: the influence
maximization (IM) problem in network analysis, and optimal pricing on a social network in
revenue management. Hereafter, we assume that the (G,v, Fϵ(·), β) is known to the platform
and confine our analysis of the optimization problems to a given instance.

We first formulate how the approximation error of FPA translates into the optimality gap
of the original optimization problem. Consider the generally defined original problem (3.4)
and its approximate formulation (3.12), we define the regret for a platform decision x as the
difference between the optimal objective value and the objective value under x. Formally,
the regret for platform decision x is given by:

Regret(x) = g
(
q∗(G,v(x∗), Fϵ, β),x

∗
)
− g
(
q∗(G,v(x), Fϵ, β),x

)
, (3.19)

where x∗ is the optimal solution derived from original problem (3.4).

3.6.1 Influence Maximization

In the IM problem, we aim to select a set of up to K seed users to adopt the service at the
beginning, with the goal of maximizing the long-term expected total adoptions of the entire
network. For example, the service provider may select the key influencers on social media
as the initial adopters to promote the service to broader audiences. Additionally, we assume
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that the adoptions of seed users are irreversible, contrasting the standard nonprogressive
diffusion setting. This choice serves two purposes. First, from an application perspective,
it assumes that the influence of seed users is long-lasting, as is often the case in practice.
Second, as demonstrated in Proposition 3.2.1, merely changing the initial states would not
affect the long-run limit. Instead, by requiring the seed users’ adoption irreversible, we
effectively change the limiting behavior. In terms of problem formulation, one can interpret
it as increasing the intrinsic values sufficiently large for seed users so they will always adopt.

Given diffusion instance (G,v, Fϵ(·), β), the original IM problem can be formulated as

maximize
S⊆V :|S|=K

∑
i∈V

q∗i = lim
t→∞

∑
i∈V

E[Yi(t)] (3.20a)

subject to Yi(t) =

{
1 ∀i ∈ S, t ≥ 1,

1

{
vi + β

∑
j∈Ni

Yi(t−1)

di
+ ϵi(t) ≥ 0

}
∀i ∈ V \ S, t ≥ 1.

(3.20b)

The objective (3.20a) is the limiting total expected adoptions. Constraint (3.20b) describes
the stochastic process that determines q∗ with Yi(t) = 1 for all i ∈ S and t ≥ 0 and
initialization Y(0) = 1.

Employing the FPA scheme, the approximate IM problem can be formalized as follows:

maximize
µ,S⊆V :|S|=K

∑
i∈V

µi (3.21a)

subject to µi = 1, ∀i ∈ S, (3.21b)

µi = 1− Fϵ

(
−vi − β

∑
j∈Ni

µj

di

)
, ∀i ∈ V \ S. (3.21c)

For ease of formulation, we use µ as an explicit decision variable and a set of equality
constraints specifies the FPA scheme which uniquely determines µ∗(S) for any given S ⊆ V .
We next derive a regret bound for the optimal solution SFPA to (3.21) compared with the
optimal solution to (3.20), S∗.

Proposition 3.6.1 (IM Regret Bound) Under Assumptions 3.2.1 and 3.2.2, for any IM
instance (G,v, Fϵ(·), β),

Regret(SFPA) ≤ 2Cρ

√
n∥C(G, ρ)∥1.

The approximation error of the FPA scheme directly translates into the decision error. All our
previous findings, including the refined bounds discussed in Section 3.4.1, can be extended
to the approximate IM problem as well. For example, following (3.7), the worst-case regret
bound in Proposition 3.6.1 can also be adjusted to one with order O(n/

√
dmin), which is

sublinear in n when dmin increases with rate Ω(1).
While (3.21) provides an excellent approximation to the IM problem, solving it remains

challenging. Under a mild technical condition, g(µ∗(S), S) is also submodular in the seed
set S as in the original optimal seeding problem. Specifically, we impose the following
assumption.
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Assumption 3.6.1 (Restricted Convexity of the CDF) The random noise CDF Fϵ(·)
is convex on the range [−vmax − β,−vmin], where vmax := maxi∈V vi and vmin := mini∈V vi.

Assumption 3.6.1 covers a wide range of commonly studied cases. For example, the
nonprogressive LT model, a special case of our model, naturally satisfies this assumption.
Detailed discussions and additional examples supporting this assumption can be found in
Appendix B.3.1.1. Under Assumption 3.6.1, the following theorem shows the submodularity
of g(µ∗(S), S).

Theorem 3.6.1 (Submodularity of Approximate IM Problem) Under Assumptions
3.2.1, 3.2.2 and 3.6.1, g(µ∗(S), S) is a submodular set function of seed set S.

As an immediate corollary of Theorem 3.6.1, the well-known greedy algorithm (e.g., see
Nemhauser et al. 1978) that recursively adds nodes with the largest marginal increase of
total approximate adoption (i.e., adding node i that maximizes µ∗(S ∪ {i}) − µ∗(S)) is
applicable in our setting for solving the approximate IM problem. For instances that align
with Assumption 3.6.1, the greedy algorithm provides a (1 − 1/e)-approximation solution
to the approximate IM problem (3.21). Together with Proposition 3.6.1, the simple greedy
approach also provides a high-quality solution to the original IM problem (3.20).

In summary, our approximate IM formulation presents several notable advantages. It fa-
cilitates establishing clear-cut conditions, such as Assumption 3.6.1, which allow us to affirm
submodularity, thereby paving the way for efficient solution strategies. In contrast, verifying
comparable conditions for the original IM problem can be intractable. Additionally, solution
techniques like the greedy algorithm become markedly simpler to implement for the approx-
imate IM problem. This simplification is especially pertinent for the greedy algorithm, with
O(nK) calculations of limiting adoptions. To validate our findings, we conduct extensive
numerical experiments on the approximate IM problem, with details provided in Appendix
B.3.1.2. Importantly, our results indicate that the greedy algorithm for the approximate
IM problem achieves near-optimal solutions irrespective of whether Assumption 3.6.1 holds
or not. Moreover, this algorithm’s performance is nearly on par with the simulation-based
greedy algorithm for the original IM problem, surpassing many other heuristics. However,
our greedy algorithm is dramatically faster than the simulation-based counterpart.

3.6.2 Optimal Pricing

Network effects often play an important role in determining customers’ preferences for prod-
ucts or services, motivating an emerging literature takes into account network effects in
revenue management problems (Du et al. 2016, 2018, Wang and Wang 2017, Chen and Shi
2023, Chen and Chen 2021, Gopalakrishnan et al. 2022). Our model is also naturally con-
nected to this literature which often employs the axiomatic or game-theoretic models. We
highlight that these models also arise naturally as approximations to the limiting customer
purchasing behaviors in a dynamic and stochastic environment.
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We assume that the firm uses pricing as the operational lever to steer consumers’ adoption
or purchase decisions, so we express the adoption utility for user i at time t as ui(t) =

vi − γpi + β ·
∑

j∈Ni
Yj(t−1)

di
+ ϵi(t), where pi is the price offered to user i and γ represents the

price sensitivity. In general, we allow offering different prices to different consumers. Indeed,
many platforms have the power to implement targeted price discrimination. Suppose the
platform can set a maximum of m distinct prices, represented by p ∈ Rm. We define a
transformation matrix W ∈ Rn×m, where Wik = 1 if consumer i is assigned with the k-th
price, and Wi = 0 otherwise. When m = n and W = In, customers face idiosyncratic
prices. When m = 1 and W = en, customers face a homogeneous price. Various forms of
price-discrimination in between, such as price discrimination based on high or low network
connectivity, is also possible. We assume that the transformation matrix W is known by
the platform; that is, the platforms have pre-determined m customer segments for pricing
purposes. The ultimate objective is to identify an optimal price vector that maximizes profit.

Given diffusion instance (G,v, Fϵ(·), β), the original pricing problem can be formulated
as

maximize
p

∑
i∈V

(
m∑
k=1

Wikpk

)
· q∗i =

∑
i∈V

(
m∑
k=1

Wikpk

)
· lim
t→∞

E[Yi(t)] (3.22a)

subject to Yi(t) = 1

{
vi − γ

m∑
k=1

Wikpk + β

∑
j∈Ni

Yi(t− 1)

di
+ ϵi(t) ≥ 0

}
∀i ∈ V, t ≥ 1.

(3.22b)

The objective (3.22a) represents the total profit and constraint (3.22b) describes the stochas-
tic process that determines q∗ with given price vector p.

Employing the FPA scheme, the approximate pricing problem can be formally stated as:

maximize
µ,p

µ⊤Wp (3.23a)

subject to µi = 1− Fϵ

(
−vi + γ

m∑
k=1

Wikpk − β

∑
j∈Ni

µj

di

)
, ∀i ∈ V. (3.23b)

We use µ as an explicit decision variable and use constraint (3.23b) to link p and µ. The
approximate problem (3.23) is generally nonconvex due to the constraint (3.23b) and chal-
lenging to solve. Similar to the IM problem, we first establish the regret bound for the
optimal solution to (3.23), denoted by pFPA, before discussing how to solve (3.23).

Proposition 3.6.2 (Regret Bound for Approximate Pricing Problem) Under
Assumptions 3.2.1 and 3.2.2, for any pricing instance (G,v, Fϵ(·), β),

Regret(pFPA) ≤ pmaxCρ

√
n∥C(G, ρ)∥1,

where pmax := max
{∥∥p∗

∥∥
∞,
∥∥pFPA

∥∥
∞

}
.
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Proposition 3.6.2 establishes a similar regret bound to Proposition 3.6.1, except that the
bound being dependent on a derivative pmax. In practice, the platform usually has a natural
upper bound for the prices (e.g., the price under which no agent will make a purchase, re-
gardless of his/her neighbors’ adoption decisions), so pmax can be bounded by some constant.
Hence, like Proposition 3.6.1, our bound in Proposition 3.6.1 also highlights a sublinear de-
pendency on n and the network structure.

The distribution of random noise ϵ impacts the formulation and hardness of the problem.
For some common utility distributions, such as the normal distribution, the optimal pricing
problem is complex. Hereafter, we focus on the case with the logistic random noise where

ϵi(t)
i.i.d.∼ Logistic(0, 1). In this case, the formulation naturally relates to the existing revenue

management literature (Li and Huh 2011, Gallego and Wang 2014, Golrezaei et al. 2020a,
Chen and Shi 2023), in which a proven-useful technique to analyze such a pricing problem
is to transform it into an optimization problem in the demand space. Motivated by this
technique, we consider the problem in both the adoption probability and the price spaces.

3.6.2.1 Profit Maximization in the Adoption Probability Space

When considering the adoption probability space, the pricing problem becomes less challeng-
ing when certain technical conditions hold. In a perfect price discrimination environment
(m = n, W = In) where the platform can provide an idiosyncratic price/subsidy to each
consumer and there are no price constraints, one can reformulate the problem as follows.5

maximize
µ,p

µ⊤p (3.24a)

subject to µi = 1− 1

1 + exp{vi + β
∑

j∈Ni
µj/di − γpi}

, ∀i ∈ V. (3.24b)

Cancelling out p, we can reformulate the problem in the adoption probability space as:

maximize
µ

∑
i∈V

1

γ

(
vi + β

∑
j∈Ni

µj

di
+ ln

1− µi

µi

)
µi (3.25a)

subject to 0 ≤ µi ≤ 1, ∀i ∈ V. (3.25b)

When β = 0, the local network effect term does not play a role, so the problem is reduced
to the classical pricing problem with a concave objective. We show that this property is
preserved when β is sufficiently small.

Theorem 3.6.2 (Concavity of Price Optimization) The objective of the pricing prob-
lem (3.25) is concave in µ if and only if 0 < β ≤ 3.375.

5Possible negative prices mean that the platform can subsidize some users, in particular those who might
have a large influence on the network. The platform incurs losses for these customers to promote a larger
overall profit, as commonly found in practice.
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Theorem 3.6.2 states that when the network diffusion intensity satisfies 0 < β ≤ 3.375,
problem (3.25) is a convex optimization problem and the optimal adoption probability µ∗

can be solved by standard optimization techniques (i.e.. gradient methods). Given µ∗, we
can then recover the optimal prices. Furthermore, we remark that both Theorem 3.6.2 and
Assumption 3.2.2 require the network effect parameter to be relatively small, a condition
consistently made in the related literature (e.g., Candogan et al. 2012).

3.6.2.2 Profit Maximization in the Price Space

In a more general setting where perfect price discrimination is not feasible, the pricing
problem cannot be reformulated in the adoption probability space. Thus, we need to study
profit maximization directly in the price space. Particularly, we represent the adoption
probability as an implicit function of price, µ(p), and write the profit function as Π(p). We
can then derive the gradient of Π(p) as follows:

dΠ(p)

dp
=

dµ(p)

dp
·W · p+W⊤ · µ(p), (3.26)

where the gradient of µ(p) is not explicitly given. To obtain this gradient, we apply the
implicit function theorem to (3.24b) (i.e., µ(p) = h(p,µ(p)); see Appendix B.3.2.1 for
details) and rewrite (3.26) as

dΠ(p)

dp
=

∂h(p,µ(p))

∂p
·
(
I− ∂h(p,µ(p))

∂µ(p)

)−1

·W · p+W⊤ · µ(p). (3.27)

We can then apply the standard gradient descent techniques for nonlinear optimization
problems to find the near-optimal solution. As a final remark, the profit maximization in
the price space is valid under any noise distribution whereas the gradient-based approach can
be easily applied to cases with more sophisticated price constraints (e.g., the box constraints).

Finally, we conduct numerical experiments to implement the gradient-based algorithms
for the optimal pricing problem. We study two extreme scenarios, the perfect price discrimi-
nation case, where each consumer is offered a personalized price, and the uniform price case,
where all consumers receive the same price. We show that, in both scenarios, near-optimal
solutions can be achieved with the FPA scheme. Interested readers are referred to Appendix
B.3.2.1 and Appendix B.3.2.2 for more detailed discussions of the implementation and results
of the experiments, respectively.

3.7 Conclusion

In this study, we focus on nonprogressive diffusion on a social network, where agents can
withdraw their previous decisions in accordance with a change in the social environment.
We tide over the issues of the lack of a general modeling framework and efficient algorithms
in the previous studies. Specifically, we base on a general nonprogressive diffusion model
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that is agent-based, considers the local network effect, and can be adapted to many utility
models. We propose, with a provable performance guarantee, a fixed-point approximation
scheme that can accurately and efficiently approximate the limiting adoption probability for
all agents and validate the results through extensive experiments. We provide order-optimal
bounds for the approximation error and conduct a thorough analysis of its dependency with
network structure. Finally, we investigate the conventional optimization problems based on
the fixed-point approximation.

We also view one of our contributions as proposing a novel approach to studying the
long-run behavior of the agents in networks in stochastic settings. In particular, there are
several directions for future research, in which our method seems readily extendable. First,
the adoptions may not change in each period but last for several periods in practice (e.g.,
a user needs to subscribe to Netflix for at least one month). It would be interesting to
investigate how we can represent the limiting behavior in this scenario. Second, this work
only considers a binary-choice case where each agent only decides to adopt or not. It is worth
investigating whether similar results can be extended to a multiple-choice case (e.g., not to
subscribe, to subscribe to a normal membership, or to subscribe to a premium membership).
Finally, the local network effect is captured by the average adoption of the in-neighbors in
our model. It is promising to consider the weighted average of in-neighbor adoptions where
the network effect is asymmetric.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

In this dissertation, I have explored the interface between social network analytics and op-
erations management, addressing a range of challenges and opportunities presented by this
interdisciplinary field. By employing various analytical tools and methods, I have man-
aged to uncover significant insights that facilitate practical implementations in operations
management.

The integration of the diffusion effect into platform policies, as demonstrated in Chapter
2, underscores the transformative potential of leveraging social network effects in operational
strategies. The observed significant performance improvements validate the power of social
dynamics to enhance operational efficiencies and outcomes. Moreover, the development of a
general framework in Chapter 3 provides a means to streamline network operations, enabling
more personalized and effective management practices that account for the complex web of
social interactions.

In conclusion, this dissertation not only illuminates the complexities at the intersection
of social network analytics and operations management but also sets the stage for future
research and development in this promising field. As digital platforms continue to evolve
and the volume of social network data expands, the methodologies and insights presented
here will remain relevant and increasingly crucial.

4.2 Future Work

Inspired by my current research—which underscores the far-reaching influence of network
interactions—I am committed to contributing to a more interconnected and enlightened
future. This unified vision will guide my future research along two main avenues:

Optimizing network operations in practical contexts. The inherent complexities
of networks demand innovative approaches for their practical operation. Broadly, I am driven
to explore fundamental questions such as: Can we quantify the relationship between network
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complexity and operational efficiency? and How can insights from one type of network be
efficiently transferred to another? One compelling application that brings this focus to
life is the realm of experimental design within social networks. Traditional A/B testing
approaches often fall short when network effects are at play, introducing biases into strategy
impact estimations. A case in point is the enduring challenge of attributing similar behaviors
within a community to shared demographics (homophily) or social influence. Fueled by this
challenge, I am eager to integrate social network analytics, machine learning, and statistical
methods to design and execute robust large-scale randomized network experiments. I aim to
strike a delicate balance between robust data collection for precise social influence inferences
and practical, cost-effective real-world implementations.

Extending the reach of social goods through social network. The transformative
power of social networks extends beyond the confines of private platforms—it holds the
potential to reshape society itself. This potential drives my future research endeavors, as I
aim to harness it for broad social benefits. For instance, I plan to apply a game-theoretical
approach to explore how social networks can promote organic farming, comparing these
influences with traditional farming subsidies to offer actionable insights that can guide more
effective policymaking and foster sustainable agriculture.

In Section 4.2.1, I will present the ongoing work that serves as a bridge connecting the
available social network data with complex network diffusion models.

4.2.1 Learning User Behavior in a Social Network with Limited
Data

The role of network diffusion in analyzing user behavior data is profound, leading to a
paradigm shift in its interpretation and application. This shift moves away from consider-
ing user behaviors as isolated individual actions, instead framing them within a context of
intricate interdependence. Such a transition necessitates a focused approach toward calibrat-
ing network diffusion models. Traditional analytical approaches, which ignore the network
effects, can lead to misinterpretations, incomplete insights, and erroneous decision-making.

In network studies, addressing the calibration challenge is also crucial, as it forms a vital
link between theoretical results and real-world applications. The effectiveness of network-
related models and algorithms is contingent upon accurately calibrating their parameters
with available data. Such calibration not only facilitates the practical deployment of these
models but also supports their use in downstream applications. These applications include,
but are not limited to, predicting user behavior in a new social network structure and
optimizing network operations. Take the network diffusion model in Chapter 3 as an example,
in order to apply all of the results, we first need to learn the true value of v and β in reality.
Therefore, calibration is an essential, practical step that transcends theoretical analysis,
rendering network studies pertinent and actionable in diverse real-world settings.

Effective calibration involves the understanding of both individual characteristics and the
network effects arising from interactions among individuals. There are primarily two chal-
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lenges. Firstly, the network diffusion process is dynamic and governed by intricate network
structures. This complexity means that the outcomes of diffusion often lack straightforward,
closed-form expressions that would facilitate easy analysis. Additionally, theoretical analysis
becomes even more complicated due to correlations resulting from network interactions. Sec-
ondly, calibrating network diffusion models is complicated by limitations in available data,
both temporally and spatially. From the temporal perspective, although network diffusion is
a dynamic process, capturing its entire trajectory may require extensive efforts and thus is
often not feasible. This limitation often necessitates calibrating the network diffusion model
with long-term behavior. From the spatial perspective, network structures are typically spe-
cific and limited. While individual-level data might be abundant, sampling network-level
structures as desired is usually not possible. Consequently, the data collected may be overly
specific to a certain network structure, thereby limiting their generalizability.

In the literature, several methods have been suggested to calibrate the network diffusion
model. Some scholars propose the use of surrogate models to simplify complex dynamics
and employ conventional estimation methods for calibration. Others propose the collection
of panel data to compensate for data insufficiency, with this data offering richer and more
diverse information for calibration. Nevertheless, these methods either compromise the pre-
cision of the diffusion dynamics or demand significant data collection efforts. Compromising
on the diffusion dynamics can lead to loss of critical insights, and excessive data collection
can impose logistical constraints and significant resource costs which may not always be
feasible in reality.

In this work, we aim to present a comprehensive framework for learning user behavior in
social networks, which involves calibrating diffusion models and generalizing to new diffusion
instances. We aim at calibrating parameterized diffusion model based on one single observed
network instances. Our approach assumes prior knowledge of the model but with unknown
parameters and the parameters indicate (i) the dependence of users’ intrinsic utility and
features and (ii) the intensity of network effects.

Due to the aforementioned challenges of complex dynamics, directly obtaining the explicit
dependence of the output data on the network behavior parameters is a formidable challenge.
This necessitates the employment of simulation as a vital tool to evaluate the dependence.
Specifically, simulation enables the modeling of complex systems and the observation of their
behavior under various conditions. By constructing a simulation model of the network, we
can generate output data corresponding to different network parameter values, circumventing
the need for an explicit relationship between the parameters and the output data.

In addition, we also leverage simulation to generate output data for diverse combinations
of the network parameters. Subsequently, we compare this simulated data to the observed
data in an attempt to identify the parameter values that yield the closest match. This com-
parison is facilitated by the definition of an objective function, which quantifies the distance
between the given data and the simulated data. Through the execution of simulation exper-
iments, we can explore the parameter space and pinpoint the values that most accurately
explain the diffusion dynamics in our network. This approach enables us to systematically
address the problem, despite the intricate nature of the system and the scarcity of data.
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Appendix A

Supplemental Materials for Chapter 2

A.1 Proofs and Supplements

A.1.1 Proofs and Supplements for Section 2.4

A.1.1.1 NP-Hardness of the CGPO Problem

Proof of Theorem 2.4.1: We prove the NP-hardness of the CGPO problem by reduction
from the SUBSET-SUM problem. Let the positive integers b1, . . . bn, and B form an instance
of SUBSET-SUM. Without loss of generality, we assume that bi ≤ B for all i ∈ {1, 2, . . . , n}.
Let si = bi/B. We have si ∈ [0, 1] for all i.

We construct a special instance of the CGPO problem where V = {1, 2, . . . , n}, L = 2,
C = m, K ∈ Z+, Av,0 = 0 and pv ≤ 1/2 for all v ∈ V . By this construction, the optimal
solution satisfies x∗

v,2 = 0 for all v ∈ V . We show this claim by contradiction. Assume the
optimal solution x∗

v,2 > 0. We construct a feasible solution: x′
v,1 = x∗

v,1 + x∗
v,2 and x′

v,2 = 0.
Let x∗

v,1 + x∗
v,2 = cv ≤ 1. The optimal adoption is given by

A∗
v,2 = −p2vqvmx∗

v,1
2 + pvmqvx

∗
v,1 + pvm(x∗

v,1 + x∗
v,2) = −p2vqvmx∗

v,1
2 + pvmqvx

∗
v,1 + pvmcv .

Similarly, the adoptions with x′
v,1 and x′

v,2 is A
′
v,2 = −p2vqvmx′

v,1
2+pvmqvx

′
v,1+pvmcv. Given

pv ≤ 1/2, we have A′
v,2 − A∗

v,2 = pvqvmx∗
v,2(1 − pv(x

′
v,1 + x∗

v,1)) ≥ pvqvmx∗
v,2(1 − 2pv) ≥ 0,

contradicting with the assumption.
Therefore, we can omit the variables x:,2 and write x = x:,1 for simplicity. Let αv = p2vqvm

and βv = pvm(qv + 1). Under this construction, the CGPO problem can be expressed as

max
x,U⊆V:|U|≤K

∑
v∈V

−αvx
2
v + βvxv

s.t.
∑
v∈V

xv ≤ 1,

0 ≤ xv ≤ 1{v ∈ U}, ∀v ∈ V .
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We assume that there exists values of p, q and m such that for all v ∈ V , −2αvsv + βv = d1
and αvs

2
v = d2 for some d1, d2 ∈ R+. We justify the existence of p, q, and m at the end of

this proof. Here, we let ℓ(x) =
∑

v∈V −αvx
2
v + βvxv. We claim that

ℓ(x∗) ≥ d1 + d2K ,⇐⇒ there exists U ⊆ V with |U | = K and
∑
v∈U

sv = 1 .

To prove this claim, we first express the objective value as

ℓ(x) =
∑
v∈V

−αvx
2
v + βvxv

(a)
=
∑
v∈U

−αvx
2
v + βvxv

(b)
=
∑
v∈U

−αv(xv − sv)
2 + d1xv + d2

(c)

≤ d1
∑
v∈U

xv + d2|U |
(d)

≤ d1 + d2K .

where (a) follows from constraint xv ≤ 1{v ∈ U}; (b) follows from the definition of d1 and
d2; (c) follows since αv ≥ 0; (d) follows from the constraint

∑
v∈V xv ≤ 1. If there exists

U ⊆ V such that |U | = K and
∑

v∈U sv = 1, then we can let U∗ = U and x∗
v = sv1{v ∈ U}

for all v ∈ V . Then, it is easy to verify that ℓ(x∗) = d1 + d2K. On the other hand, if
ℓ(x∗) = d1 + d2K, then the (c) implies that we must have x∗

v = sv1{v ∈ U∗}; (d) implies
that

∑
v∈U∗ x∗

v =
∑

v∈U∗ sv = 1 and |U∗| = K.
This claim allows us to reduce SUBSET-SUM to our problem as follows. If there exists

a subset I ⊆ {1, . . . , n} such that
∑

i∈I si = 1, then the objective value ℓ(x∗) is equal to
d1 + d2K for K = |I|. If there exists K ∈ {1, 2, . . . , n} such that ℓ(x∗) = d1 + d2K, one can
find I = U∗ such that

∑
i∈I si = 1.

We then proceed by providing an example of the values of m, d1, and d2, which ensures
that our construction serves as a valid CGPO instance. Let s = minv∈V sv, m = 64/s2,
d1 = m/2 and d2 = 1. Our construction assumes{

−2p2vqvmsv + pvm(qv + 1) = d1

p2vqvms2v = d2
,=⇒

{
pvqv + pv = 1

2
+ 2

msv

pvqv · pv = 1
ms2v

.

Therefore, for any given sv, we can solve pv and qv as demonstrated in (A.1):

pv =

1
2
+ 2

msv
+

√(
1
2
+ 2

msv

)2
− 4

ms2v

2
and qv =

1
2
+ 2

msv
−
√(

1
2
+ 2

msv

)2
− 4

ms2v

1
2
+ 2

msv
+

√(
1
2
+ 2

msv

)2
− 4

ms2v

. (A.1)

To ensure that pv and qv provided in (A.1) are valid within the context of P-BDM, we
need further justifications. First, we need to ensure (A.1) has real value solutions, that is,(
1

2
+

2

msv

)2

− 4

ms2v
=

1

4
+

2

msv
+

(
4

m2
− 4

m

)
1

s2v
≥ 1

4
+

2

m
+

(
4

m2
− 4

m

)
1

s2
=

3

16
+

33

16m
≥ 0 .
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Next, we need to validate that pv, qv ≥ 0, pv ≤ 1/2, and pv + qv ≤ 1. It is obvious that
pv, qv ≥ 0 by (A.1). In order to show pv + qv ≤ 1, it suffices to show that pv, qv ≤ 1/2. To
show pv ≤ 1/2, we have√(

1

2
+

2

msv

)2

− 4

ms2v
≤ 1

2
− 2

msv
⇐⇒ 1

2
− 2

msv
≥ 0,

and

√(
1

2
− 2

msv

)2

+
4

msv
− 4

ms2v
≤ 1

2
− 2

msv
,

where the inequalities follow since 0 ≤ sv ≤ 1. To show qv ≤ 1/2, we have

1

2
+

2

msv
≤ 3

√(
1

2
+

2

msv

)2

− 4

ms2v
⇐⇒

(
1

2
+

2

msv

)2

− 9

2ms2v
≥ 23

128
+

33

16m
≥ 0 .

Therefore, the construction of this specific CGPO instance is valid. Such construction exists
for every instance of SUBSET-SUM. In conclusion, the CGPO problem is NP-hard. □

A.1.1.2 Proofs for the PO-CR Problem

Proof of Theorem 2.4.2: To establish the equivalence of two problems, we need to show
that for all optimal solutions of the PO-CR problem, equalities hold for all constraints (2.5).
We will show this by contradiction.

Let (x∗,A∗) and R∗ be the optimal solution and optimal value of the PO-CR problem.
Assume there exists u ∈ U and τ ∈ {1, . . . , L} such that the following inequality holds:
A∗

u,τ < A∗
u,τ−1 + pvmx∗

u,τ +
qu
m
A∗

u,τ−1(m− A∗
u,τ−1).

By the optimality of (x∗,A∗), it is straightforward to confirm that (x∗
U,τ+1:L,A

∗
U,τ+1:L) is

also the optimal solution of the following problem (A.2). Consequently, the optimal value of
problem (A.2) is equal to R∗.

max
x≥0,AU,τ+1:L

∑
v∈U

Av,L (A.2a)

s.t. Av,τ+1 ≤ A∗
v,τ + pvmxv,τ+1 + qv

A∗
v,τ

m
(m−A∗

v,τ ), ∀v ∈ U, (A.2b)

xv,τ+1 ≤ 1 −
A∗

v,τ

m
, ∀v ∈ U, (A.2c)

Av,t ≤ Av,t−1 + pvmxv,t + qv
Av,t−1

m
(m−Av,t−1),∀v ∈ U ∀t = τ + 2, . . . , L, (A.2d)

xv,t ≤ 1 − Av,t−1

m
, ∀v ∈ U ∀t = τ + 2, . . . , L, (A.2e)

m

L∑
t=τ+1

∑
v∈U

xv,t ≤ C −m

τ∑
t=1

∑
v∈U

x∗
v,t. (A.2f)

We then construct a feasible solution (x′,A′) for the PO-CR problem and let R′ be the
objective value:
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(i) When t = 1, 2, . . . , τ − 1, x′
U,t := x∗

U,t; When t = 0, 1, . . . , τ − 1, A′
U,t := A∗

U,t.

(ii) When t = τ , x′
U,t := x∗

U,t and

A′
v,t :=

{
A∗

v,t−1 + pvmx∗
u,t−1 + qv

A∗
v,t−1

m
(m− A∗

v,t−1), when v ∈ {u},
A∗

v,t, when v ∈ U \ {u}.

(iii) When t = τ + 1, . . . , L, (x′
U,t,A

′
U,t) is defined as the optimal solution of the following

problem (A.3):

max
x≥0,AU,τ+1:L

(A.2a)

s.t. Av,τ+1 ≤ A′
v,τ + pvmxv,τ+1 +

qv
m
A′

v,τ (m− A′
v,τ ),∀v ∈ U, (A.3a)

xv,τ+1 ≤ 1−
A′

v,τ

m
, ∀v ∈ U, (A.3b)

(A.2d)− (A.2f).

As a consequence, the optimal value of problem (A.3) is also equal to R′.
In the following, we focus on problems (A.2) and (A.3). We aim to show that R′ >

R∗, which contradicts with the optimality of (x∗,A∗). Firstly, to characterize the optimal
solution for problem (A.2), we use Lagrangian multipliers to introduce the constraints (A.2b),
(A.2c) and (A.2f) into the objective function. Let Ω denote the feasible region constructed
by constraints (A.2d), (A.2e). The dual problem can thus be expressed as

min
λ≥0,µ≥0,θ≥0

r(λ,µ, θ) +
∑
v∈U

λv

(
A∗

v,τ +
qv
m
A∗

v,τ (m− A∗
v,τ )
)
+
∑
v∈U

µv

(
1−

A∗
v,τ

m

)
+ θC ,

(A.4)

where r(λ,µ, θ) is the optimal value function of a parameterized maximization problem as
shown in (A.5):

r(λ,µ, θ) := max
xU,τ+1:L≥0,

(x,A)U,τ+1:L∈Ω

∑
v∈U

[
Av,L − λvAv,τ+1 + (λvmpv − µv − θm)xv,τ+1

− θm

(
τ∑

t=1

x∗
v,t +

L∑
t=τ+2

xv,t

)]
. (A.5)

Notice that, in the maximization problem (A.5), variable xU,τ+1 is not constrained by
any other variables, but only by a constant 0. Thus, we can split problem (A.5) into two
subproblems:

max
xU,τ+2:L≥0,

(x,A)U,τ+1:L∈Ω

∑
v∈U

[
Av,L − λvAv,τ+1 − θm

(
τ∑

t=1

x∗
v,t +

L∑
t=τ+2

xv,t

)]
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and max
xU,τ+1≥0

∑
v∈U

(λvmpv − µv − θm)xv,τ+1 .

We then optimize two subproblems separately. For the former subproblem, we denote its
optimal value as s(λ, θ). For the latter subproblem, the maximization problem can be further
decomposed for each content piece v ∈ U and we can easily derive the optimal solution and
the value of function r(λ,µ, θ) as follows:

x∗
v,τ+1 =

{
0 when µv ≥ m(λvpv − θ),

+∞ when µv < m(λvpv − θ),

and r(λ,µ, θ) =

{
s(λ, θ) when θ > minv∈U(λvpv − µv

m
),

+∞ o.w.

We then substitute the value function of r(λ,µ, θ) into the dual problem (A.4). To
minimize the dual value, it is obvious that r(λ,µ, θ) should not be infinity. Hence, the dual
problem (A.4) can be reformulated as (A.6),

min
λ≥0,θ≥0

[
s(λ, θ) +

∑
v∈U

λv

(
A∗

v,τ +
qv
m
A∗

v,τ (m− A∗
v,τ )
)

+ θC +
∑
v∈U

min
µv≥0,

µv≥m(λvpv−θ)

µv

(
1−

A∗
v,τ

m

)]
. (A.6)

The inner minimization of problem (A.6) can be represented as (A.7). For any v ∈ U ,

min
µv≥0,

µv≥m(λvpv−θ)

µv

(
1−

A∗
v,τ

m

)
. (A.7)

Since A∗
v,τ ≤ m always holds, when given the value of (λ, θ), the optimal solution of µv

should be µ∗
v(λ, θ) = max{0,m(λvpv − θ)}. Finally, we define the dual value function as

u(λ, θ;A∗
U,τ ) := s(λ, θ) +

∑
v∈U

λv

(
A∗

v,τ +
qv
m
A∗

v,τ (m− A∗
v,τ )
)
+ θC

+
∑
v∈U

(
1−

A∗
v,τ

m

)
max{0,m(λvpv − θ)}.

Similarly, for problem (A.3), we can also have the dual value function as

u(λ, θ;A′
U,τ ) := s(λ, θ) +

∑
v∈U

λv

(
A′

v,τ +
qv
m
A′

v,τ (m− A′
v,τ )
)
+ θC

+
∑
v∈U

(
1−

A′
v,τ

m

)
max{0,m(λvpv − θ)}.
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Let (λ∗, θ∗) and (λ′, θ′) be the optimal dual variables for the dual problems of (A.2) and
(A.3). Given that problems (A.2) and (A.3) are convex optimization problems, by invoking
Slater’s condition, strong duality holds for both problems. Thus, the optimal values for
problems (A.2) and (A.3) can be represented as R∗ = u(λ∗, θ∗;A∗

U,τ ) and R′ = u(λ′, θ′;A′
U,τ ).

Finally, we compare between R∗ and R′ and show that R∗ ≤ R′.

R∗ −R′ = u(λ∗, θ∗;A∗
τ )− u(λ′, θ′;A′

τ ) ≤ u(λ′, θ′;A∗
τ )− u(λ′, θ′;A′

τ ) (A.8a)

=
∑
v∈U

λ′
v

(
A∗

v,τ +
qv
m
A∗

v,0(m− A∗
v,τ )
)
+
∑
v∈U

(
1−

A∗
v,τ

m

)
max{0,m(λ′

vpv − θ′)}

−

[∑
v∈U

λ′
v

(
A′

v,τ +
qv
m
A′

v,τ (m− A′
v,τ )
)
+
∑
v∈U

(
1−

A′
v,τ

m

)
max{0,m(λ′

vpv − θ′)}

]

=
∑
v∈U

(A∗
v,τ − A′

v,τ )

[
λ′
v

(
1 + qv −

qv
m
(A∗

v,τ + A′
v,τ )
)
− 1

m
max{0,m(λ′

vpv − θ′)}
]

≤
∑
v∈U

(A∗
v,τ − A′

v,τ )
[
λ′
v

(
1 + qv −

qv
m
(A∗

v,τ + A′
v,τ )
)
− λ′

vpv

]
(A.8b)

<
∑
v∈U

(A∗
v,τ − A′

v,τ )λ
′
v (1− qv − pv) (A.8c)

≤ 0, (A.8d)

where (A.8a) follows since (λ∗, θ∗) is the optimal solution to dual problem (A.4); (A.8b)
follows due to the construction of A∗

τ ≤ A′
τ and the inherent non-negativity of dual variables

(i.e., λ′ ≥ 0 and θ′ ≥ 0); (A.8c) follows since by definition qv ≥ 0, A∗
u,τ < A′

u,τ ≤ m and
A∗

v,τ = A′
u,τ ≤ m for all v ∈ U \ {u}; (A.8d) follows from the definition pv + qv ≤ 1.

As a result, (x′,A′) is a feasible solution to the PO-CR problem while the resulting
objective value R′ is greater than R∗. This indicates that (x∗,A∗) cannot be an optimal
solution to the PO-CR problem.

In conclusion, the original PO problem (2.4) and the relaxed problem are equivalent.
□

A.1.1.3 Lemmas and Proofs for the Single-Variable Reformulation

In the following, we include lemmas and proofs to validate the single-variable reformulation
and to show that it remains a convex program.

Lemma A.1.1 (Redundant Constraint) Constraint (2.6c) is redundant to the reformu-
lation (2.6).

Proof of Lemma A.1.1: Let (x∗,A∗) be the optimal solution of the PO problem (2.4).
By P-BDM dynamics (2.4b), we can deduce that the optimal adoption number A∗ is non-
decreasingly evolves over time (i.e., Av,0 ≤ A∗

v,1 ≤ · · · ≤ A∗
v,L for all v ∈ U). By Theorem
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2.4.2, (x∗,A∗) is also the optimal solution to the PO-CR problem. Therefore, for all v ∈
U, t = 1, 2, . . . , L, constraint xv,t ≤ 1−Av,0/m is redundant compared with xv,t ≤ 1−Av,t−1/m
in the PO-CR problem. □

Construction of Feasible Solution to Problem (2.7).
For any v ∈ U , given xv,: ∈ [0, 1 − Av,0/m]L, a feasible solution can be constructed by

the following three steps:
Step 1: Set t := 1. Let Av,1 := Av,0 + pvmxv,1 + qvAv,0(m− Av,0)/m. Then, increment t

by 1, i.e., t := t+ 1.
Step 2: Let Av,t = min{m(1− xv,t+1), Av,t−1 + pvmxv,t + qvAv,t−1(m− Av,t−1)/m}.
Step 3: Increment t by 1, i.e., t := t+ 1. Repeat step 2, until t = L+ 1. □

To demonstrate that single-variable reformulation (2.6) remains a convex program, it is
sufficient to show that the objective is concave, given that all constraints are linear.

Proof of Lemma 2.4.1: For simplicity, we omit the subscript v here. For any x(1) and x(2),
let x(λ) = λx(1) + (1− λ)x(2), and we want to show that λf(x(1)) + (1− λ)f(x(2)) ≤ f(x(λ))
holds for any 0 ≤ λ ≤ 1.

Suppose A(1∗), A(2∗) and A(λ∗) are the optimal solutions to problem (2.7) with regard
to x(1), x(2), and x(λ), respectively. Let A(λ) = λA(1∗) + (1 − λ)A(2∗). We first show that
A(λ) is a feasible solution to problem (2.7) with regard to x(λ) by verifying that it satisfies
constraints (2.5) and (2.4c).

For constraint (2.5), we have

A
(λ)
t−1 + pmx

(λ)
t +

q

m
A

(λ)
t−1(m− A

(λ)
t−1)− A

(λ)
t

=λA
(1∗)
t−1 + (1− λ)A

(2∗)
t−1 + pm

[
λx(1) + (1− λ)x(2)

]
+

q

m

[
λA

(1∗)
t−1 + (1− λ)A

(2∗)
t−1

] [
m− λA

(1∗)
t−1 − (1− λ)A

(2∗)
t−1

]
−
[
λA

(1∗)
t + (1− λ)A

(2∗)
t

]
=λ
[
A

(1∗)
t−1 + pmx

(1)
t−1 + qA

(1∗)
t−1 − A

(1∗)
t

]
+ (1− λ)

[
A

(2∗)
t−1 + pmx

(2)
t−1 + qA

(2∗)
t−1 − A

(2∗)
t

]
− q

m

[
λA

(1∗)
t−1 + (1− λ)A

(2∗)
t−1

]2
≥λ
[
A

(1∗)
t−1 + pmx

(1)
t−1 + qA

(1∗)
t−1 − A

(1∗)
t

]
+ (1− λ)

[
A

(2∗)
t−1 + pmx

(2)
t−1 + qA

(2∗)
t−1 − A

(2∗)
t

]
− q

m

[
λA

(1∗)
t−1

2
+ (1− λ)A

(2∗)
t−1

2
]
(λ+ 1− λ)

=λ
[
A

(1∗)
t−1 + pmx

(1)
t−1 +

q

m
A

(1∗)
t−1

(
m− A

(1∗)
t−1

)
− A

(1∗)
t

]
+ (1− λ)

[
A

(2∗)
t−1 + pmx

(2)
t−1 +

q

m
A

(2∗)
t−1

(
m− A

(2∗)
t−1

)
− A

(2∗)
t

]
≥0 ,

where the first inequality follows from Cauchy–Schwarz inequality, the second inequality
follows since A(1∗) and A(2∗) satisfy the constraint (2.5) with regard to x(1) and x(2).
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For constraint (2.4c), we have

1−
A

(λ)
t−1

m
− x

(λ)
t = λ

[
1−

A
(1∗)
t−1

m
− x

(1)
t

]
+ (1− λ)

[
1−

A
(2∗)
t−1

m
− x

(2)
t

]
≥ 0,

where the inequality follows since A(1∗) and A(2∗) satisfy the constraint (2.4c) with regard
to x(1) and x(2).

Next, by the optimality of A(λ∗), we have f(x(λ)) = A
(λ∗)
L ≥ A

(λ)
L = λA

(1∗)
L +(1−λ)A

(2∗)
L =

λf(x(1)) + (1− λ)f(x(2)).
In conclusion, fv(xv,:) is a concave function on the range [0, 1− Av,0/m]L. □

We then outline the optimality condition of the single-variable reformulation in Lemma
A.1.2. To facilitate the characterization of subgradient, we introduce the convex function
f̃v := −fv. Let ∂f̃v(xv) be the subgradient set at xv:

Lemma A.1.2 (Optimality Condition) Given θ ≥ 0, the optimal solution x∗(θ) to the
inner maximization problem (2.9) satisfies the following condition.

∀v ∈ U, t = 1, 2, . . . , L, gv,:(θ) ∈ ∂f̃v(x
∗
v(θ)),


gv,t(θ) ≥ −θ when x∗

v,t(θ) = 0,

gv,t(θ) = −θ when 0 < x∗
v,t(θ) < Av,0,

gv,t(θ) ≤ −θ when x∗
v,t(θ) = Av,0.

(A.9)

Proof of Lemma A.1.2: Define rv(xv,:; θ) := −f̃v(xv,:)− θm
∑L

t=1 xv,t for all v ∈ U . The
problem is separable by content piece v, so we focus on a specific v ∈ U in the following and
omit the subscription for clarity.

When x∗
t (θ) = 0, we construct a feasible solution x′(θ) := x∗(θ) + ϵet where ϵ is a

sufficiently small positive constant and et is a vector with 1 in the t-th entry and 0 in all
other entries. By the concavity of r, we have

r(x′(θ); θ) ≥ r(x∗(θ); θ)− (g(θ) + θ1)⊤(x′(θ)− x∗(θ)) = r(x∗(θ); θ)− (gt(θ) + θ)ϵ ,

where 1 is the all one vector. Given the optimality of x∗(θ), gt(θ) ≥ −θ should hold.
When x∗

t (θ) = Av,0, we construct a feasible solution x′′(θ) := x∗(θ) − ϵet. By concavity
of r, we have

r(x′′(θ); θ) ≥ r(x∗(θ); θ)− (g(θ) + θ1)⊤(x′′(θ)− x∗(θ)) = r(x∗(θ); θ) + (gt(θ) + θ)ϵ .

Given the optimality of x∗(θ), gt(θ) ≤ −θ should hold.
When 0 < x∗

t (θ) < Av,0, we simultaneously construct two feasible solutions x′(θ) and
x′′(θ) as previous. Similarly, by optimality of x∗(θ), gt(θ) = −θ should hold.

In conclusion, we can characterize this optimality condition based on the subgradient
g(θ) and θ. □
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For any θ ≥ 0, we denote
(
x∗
v,:(θ) : v ∈ V

)
as the optimal solution to (2.9), and let

function s(θ;U) := m
∑

v∈U
∑L

t=1 x
∗
v,t(θ) describe the total optimal promotion times with

dual variable θ. In the following, we establish the property of s(θ;U) for any given candidate
set U ⊆ V in Lemma A.1.3.

Lemma A.1.3 (Monotonicity) For any U ⊆ V, s(θ;U) is a nonincreasing function in θ.

Proof of Lemma A.1.3: For all θ1, θ2 ≥ 0, let

gv(θ1) ∈ ∂f̃v(x
∗
v,:(θ1)) and gv(θ2) ∈ ∂f̃v(x

∗
v,:(θ2)),

for all v ∈ U . By Lemma A.1.2, for all v ∈ U , we have(
x∗
v,:(θ1)− x∗

v,:(θ2)
)⊤

(−gv(θ1) + gv(θ2))

=
(
x∗
v,:(θ1)− x∗

v(θ2)
)⊤

(θ1 · 1− θ2 · 1) +
L∑

t=1

(
x∗
v,t(θ1)− x∗

v,t(θ2)
)
(−θ1 − gv,t(θ1))

+
L∑

t=1

(
x∗
v,t(θ1)− x∗

v,t(θ2)
)
(θ2 + gv,t(θ2))

= (θ1 − θ2) ·
(
x∗
v,:(θ1)− x∗

v,:(θ2)
)⊤

1

+
L∑

t=1

(
1{x∗

v,t(θ1) = 0}+ 1{x∗
v,t(θ1) = Av,0}

) (
x∗
v,t(θ1)− x∗

v,t(θ2)
)
(−θ1 − gv,t(θ1))

+
L∑

t=1

(
1{x∗

v,t(θ2) = 0}+ 1{x∗
v,t(θ2) = Av,0}

) (
x∗
v,t(θ1)− x∗

v,t(θ2)
)
(θ2 + gv,t(θ2)) .

We further discuss the latter two terms. We have{
x∗
v,t(θ1)− x∗

v,t(θ2) = −x∗
v,t(θ2) ≤ 0, and − θ1 − gv,t(θ1) ≤ 0, when x∗

v,t(θ1) = 0,

x∗
v,t(θ1)− x∗

v,t(θ2) = Av,0 − x∗
v,t(θ2) ≥ 0, and − θ1 − gv,t(θ1) ≥ 0, when x∗

v,t(θ1) = Av,0;

and{
x∗
v,t(θ1)− x∗

v,t(θ2) = x∗
v,t(θ1) ≥ 0, and θ2 + gv,t(θ2) ≥ 0, when x∗

v,t(θ2) = 0,

x∗
v,t(θ1)− x∗

v,t(θ2) = x∗
v,t(θ2)− Av,0 ≤ 0, and θ2 + gv,t(θ2) ≤ 0, when x∗

v,t(θ2) = Av,0.

Given concavity of fv, we have 0 ≥
(
x∗
v,:(θ1)− x∗

v,:(θ2)
)⊤

(−gv(θ1) + gv(θ2)) ≥ (θ1 − θ2) ·(
x∗
v,:(θ1)− x∗

v,:(θ2)
)⊤

1.

By summing up over v ∈ U , we have (θ1 − θ2) · m
∑

v∈U
∑L

t=1

[
x∗
v,t(θ1)− x∗

v,t(θ2)
]
=

(θ1 − θ2) · (h(θ1)− h(θ2)) ≤ 0.
In conclusion, s(θ;U) is nonincreasing. □
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Proof of Lemma 2.4.2: We begin by demonstrating that s(θ∗(U2);U1) ≤ s(θ∗(U1);U1).
We can decompose the function s(θ;U2) as s(θ;U1) + s(θ;U2 \ U1). We consider two cases
based on the value of s(θ∗(U1);U1):

(i) s(θ∗(U1);U1) = C. We directly have

s∗(θ∗(U2);U1) ≤ s∗(θ∗(U2);U2) ≤ C = s(θ∗(U1);U1).

(ii) s(θ∗(U1);U1) < C. We show this by contradiction. Assume that s(θ∗(U2);U1) >
s(θ∗(U1);U1). We can construct a feasible solution x′

U2,:
for the PO problem given

candidate set U2 as

x′
v,: =

{
x∗
v,:(θ

∗(U1)) when v ∈ U1,

x∗
v,:(θ

∗(U2)) when v ∈ U2 \ U1.

The objective value generated by x′
U2,:

is larger than x∗
U2,:

(θ∗(U2)), given the optimality
of x∗

U1,:
(θ∗(U1)) for the PO problem with candidate set U1. This contradicts with the

optimality of x∗
U2,:

(θ∗(U2)) for the PO problem with candidate set U2.

Consequently, s(θ∗(U2);U1) ≤ s(θ∗(U1);U1). By Lemma A.1.3, we conclude that θ∗(U1) ≤
θ∗(U2). □

A.1.1.4 Submodularity of the CGPO Objective

Proof of Theorem 2.4.3: It is easy to verify that R(U ;C) + R(V \ U ; 0) is a monotone
function. By (2.11), we have

R(U ∪ {w};C) +R(V \ (U + {w}); 0)
= max

0≤c≤C
R(U ; c) +R({w};C − c) +R(V \ (U + {w}); 0)

≥R(U ;C) +R({w}; 0) +R(V \ (U + {w}); 0) = R(U ;C) +R(V \ U ; 0).

Next, we focus on the proof of submodularity. To prove that R(U ;C) + R(V \ U ; 0)
is a submodular function, we need to demonstrate that for any given U1 ⊆ U2 ⊆ V and
w ∈ V \ U2, (2.10) holds. Therefore, we compare the marginal gain of content piece w when
given nested content sets U1 and U2 as follows:

R(U1 ∪ {w};C)−R(U1;C)−R({w}; 0)− [R(U2 + {w};C)−R(U2;C)−R({w}; 0)]
=R(U1; c

∗(U1)) +R({w};C − c∗(U1))−R(U1;C)−R({w}; 0)
− [R(U2; c

∗(U2)) +R({w};C − c∗(U2))−R(U2;C)−R({w}; 0)]
≥R(U1; c

∗(U2)) +R({w};C − c∗(U2))−R(U1;C)−R({w}; 0)
− [R(U2; c

∗(U2)) +R({w};C − c∗(U2))−R(U2;C)−R({w}; 0)]
= [R(U1; c

∗(U2))−R(U1;C)]− [R(U2; c
∗(U2))−R(U2;C)]
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=−
∫ C

z=c∗(U2)

θ∗(U1; z)dz +

∫ C

z=c∗(U2)

θ∗(U2; z)dz

=

∫ C

z=c∗(U2)

[θ∗(U2; z)− θ∗(U1; z)] dz ≥ 0.

where the first inequality follows since c∗(U1) is the optimal solution that maximizes problem
(2.11) and the last inequality follows by Lemma 2.4.2.

In conclusion, R(U ;C) +R(V \ U ; 0) is a monotone submodular set function. □

A.1.2 Proofs and Supplements for Section 2.5

A.1.2.1 The OLS Estimation Method for the BDM

According to Bass (1969), the OLS method of the BDM works as follows. Given a sequence
of adoption data {(at, At)}Tt=0, it assumes the following relationship: at = β1 + β2 · At−1 +
β3A

2
t−1 + ϵt, where β1 = pm, β2 = q − p and β3 = −q/m are three different parameters to

estimate; 1, At−1, and A2
t−1 are considered as three observed covariates; ϵt is the independent

white noise. For notation simplicity, we denote the covariate matrix and dependent variable
as

Z =


1 A0 A2

0

1 A1 A2
1

...
...

...
1 AT−1 A2

T−1

 and a =


a1
a2
...
aT

 .

The OLS estimator β̂ can then be derived as β̂ = (Z⊤Z)−1Z⊤a. Consequently, the
estimators can be obtained as

m̂ =
β̂2 ±

√
β̂2
2 − 4β̂1β̂2

2β̂3

, p̂ =
β̂1

m̂
, and q̂ = −β̂3m̂.

However, these estimators suffer from large variances. In extreme cases (e.g., m̂ = 0), they
even become invalid.

A.1.2.2 Proofs for the Asymptotic Analysis of the OLS-Based Estimators

To streamline notation, we define the fixed-design covariate matrix for the n-th diffusion
process as

Z(n) =


x1,(n) Ā1,(n)(1− Ā1,(n))
x2,(n) Ā2,(n)(1− Ā2,(n))
...

...
xn,(n) Ān,(n)(1− Ān,(n))

 .
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Proof of Theorem 2.5.1: We first consider the n-th D-OLS estimator for q, which is rep-
resented as

q̂D-OLS
(n) = q+

∑n
i=1

[
Ai,(n)(1− xi,(n) −

Ai,(n)

m(n)
)ϵii,(n)

]
∑n

i=1

[
Ai,(n)(1− xi,(n) −

Ai,(n)

m(n)
)
]2 = q+

1
n

∑n
i=1 Āi,(n)(1− xi,(n) − Āi,(n))ϵ̄

i
i,(n)

1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))2

.

Let ϵ̄i denote the noise distribution with finite variance var
(
ϵ̄i
)
< ∞, we can characterize

the mean and variance of D-OLS estimator as follows:

E
[
q̂D-OLS
(n)

]
= q +

1
n

∑n
i=1 Āi,(n)(1− xi,(n) − Āi,(n)) · E

[
ϵ̄ii,(n)

]
1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))2

= q, and

var
(
q̂D-OLS
(n)

)
=

1
n2

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))

2 var
(
ϵ̄ii,(n)

)
[
1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))2

]2 =
Q̃22,(n)

nQ2
22,(n)

var
(
ϵ̄i
)
.

By Chebyshev’s inequality, we have Pr
(
|q̂D-OLS

(n) − q| ≥ k
)

≤ Q̃22,(n)

k2nQ2
22,(n)

var
(
ϵ̄i
)
. Taking

limits on both sides, we get

lim
n→∞

Pr
(
|q̂D-OLS

(n) − q| ≥ k
)
≤ lim

N→∞

1

k2

Q̃22,(n) var
(
ϵ̄i
)

nQ2
22,(n)

=
var
(
ϵ̄i
)

k2
·
limn→∞ Q̃22,(n)

limn→∞ Q2
22,(n)

· lim
n→∞

1

n
=

Q̃22 var
(
ϵ̄i
)

k2Q2
22

· lim
n→∞

1

n
= 0 ,

which implies that limn→∞ q̂D-OLS
(n) = q. Similarly, we consider the n-th D-OLS estimator for

p, which is

p̂D-OLS
(n) = p+

∑n
i=1

[
m(n)xi,(n)

(
(q − q̂D-OLS

(n) )xi,(n)Ai,(n) + ϵ̄di,(n)

)]
∑n

t=1(m(n)xi,(n))2

= p+

1
n

∑n
i=1

[
xi,(n)

(
(q − q̂D-OLS

(n) )xi,(n)Āi,(n) + ϵ̄di,(n)

)]
1
n

∑n
i=1 x

2
i,(n)

.

We consider the following two terms separately:

lim
n→∞

(
1
n

∑n
i=1(q − q̂D-OLS

(n) )x2
i,(n)Āi,(n)

1
n

∑n
t=1 x

2
i,(n)

)
and lim

n→∞

(
1
n

∑n
i=1 xi,(n)ϵ̄

d
i,(n)

1
n

∑n
t=1 x

2
i,(n)

)
.

The first term converges to 0 since

lim
n→∞

(
1
n

∑n
i=1(q − q̂D-OLS)x2

i,(n)Āi,(n)

1
n

∑n
t=1 x

2
i,(n)

)
= lim

n→∞

(
q − q̂D-OLS

(n)

)
· lim
n→∞

(
Q̃11,(n)

Q11,(n)

)
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=
Q̃11

Q11

lim
n→∞

(
q − q̂D-OLS

(n)

)
= 0 .

The second term also converges to 0, similarly as in the proof of q̂D-OLS
(n) . As a result, we have

limn→∞ p̂D-OLS
(n) = p.

In conclusion, D-OLS estimators p̂D-OLS and q̂D-OLS are consistent estimators. □

Proof of Theorem 2.5.2: We consider two different estimation methods, respectively.

(i) The D-OLS method.

First, we characterize the limiting distribution of
√
n(q̂D-OLS

(n) − q). We can represent it
as

√
n
(
q̂D-OLS
(n) − q

)
=

√
n
∑n

i=1

[
Āi,(n)(1− xi,(n) − Āi,(n))ϵ̄

i
i,(n)

]
∑n

i=1

[
Āi,(n)(1− xi,(n) − Āi,(n))

]2
=

1√
n

∑n
i=1

[
Āi,(n)(1− xi,(n) − Āi,(n))ϵ̄

i
i,(n)

]
1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))2

.

We consider it as the sum of n independent random variables:

√
n
(
q̂D-OLS
(n) − q

)
=

n∑
i=1

wi,(n)ϵ̄
i
i,(n), where wi,(n) =

1√
n

[
Āi,(n)(1− xi,(n) − Āi,(n))

]
1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))2

.

We then show that this sequence satisfies

lim
n→∞

max
i=1,2,...,n

|wi,(n)| ≤ lim
n→∞

1√
n
· 1

Q̃22,(n)

= lim
n→∞

1√
n
· lim
n→∞

1

Q̃22,(n)

= lim
n→∞

1√
n
· 1

Q̃22

= 0 .

where the inequality follows since 0 ≤ xi,(n), Āi,(n) ≤ 1 for all i = 1, 2, . . . , n.

This implies that Lindeberg’s condition is satisfied. At last, the variance of
√
n(q̂D-OLS

(n) −
q) is as follows:

var
(√

n(q̂D-OLS
(n) − q)

)
=

1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))

2[
1
n

∑n
i=1 Ā

2
i,(n)(1− xi,(n) − Āi,(n))2

]2 var (ϵ̄ii,(n)) = 1

Q̃22,(n)

ησ2.
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Let ξ2 = ηQ22/Q̃22 − 1. By Lindeberg’s central limit theorem, we have

√
n(q̂D-OLS

(n) − q)
d−→ N

(
0,

1

Q22,(n)

(1 + ξ2)σ
2

)
.
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We consider the two terms separately. For the former term, we can easily derive that
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For the latter term, we perform a similar analysis as the previous one and get

1√
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Let ξ1 = η(Q̃2
11/Q̃22Q11 − 1). As these two terms are independent, therefore, we can

conclude that

√
n(p̂D-OLS − p)

d−→ N
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Q11

(1 + ξ1)σ
2

)
.

(ii) The OLS method. For notation simplicity, we write the OLS formulation in matrix
form. Let β = (p, q)⊤ and ϵ̄(n) = (ϵ̄1,(n), ϵ̄2,(n), . . . , ϵ̄n,(n))

⊤. Consider the limiting

distribution of
√
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(n) − β), we have
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where the first inequality follows since the definition of matrix operator norm and the
second inequality follows since 0 ≤ xi,(n), Āi,(n) ≤ 1 for all i = 1, 2, . . . , n.

This implies that Lindeberg’s condition is satisfied. Then, we calculate the variance of√
n(β̂OLS − β) as follows:
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By Lindeberg’s central limit theorem, we have
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At last, we conclude that (i) The asymptotic variances of p̂D-OLS and q̂D-OLS are (1 +
ξ1)σ

2/Q11 and (1 + ξ2)σ
2/Q22, where ξ1 = η(Q̃2

11/Q̃22Q11 − 1) and ξ2 = ηQ22/Q̃22 − 1. (ii)
The asymptotic variances of p̂OLS and q̂OLS are (1 + κ)σ2/Q11 and (1 + κ)σ2/Q22, where
κ = Q2

12/|Q|. □

Proposition A.1.1 When η ≤ Q̃22/Q22, we can show that the asymptotic variances of D-
OLS estimators are smaller than those of OLS estimators, that is, ξ1 ≤ κ and ξ2 ≤ κ.

Proof for Proposition A.1.1: Particularly, we have
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where the first inequality follows since 0 ≤ η ≤ Q̃22/Q22, the second inequality follows since
Q2

12 ≥ 0 and the third inequality follows since xi,(n) ≤ 1− Āi,(n). Furthermore, we have

κ− ξ2 =
Q2

12

|Q|
−
(
η
Q22

Q̃22

− 1

)
≥ κ ≥ 0.

where the first inequality follows since η ≤ Q̃22/Q22 and the second inequality follows by
definition. □

A.1.2.3 Proofs for the MLE Estimators

Proposition A.1.2 When platforms cannot observe adopter types, the log-likelihood func-
tion LLMLE(p, q) is concave.

Proof of Proposition A.1.2: To show that LLMLE(p, q) is concave, it is sufficient to show
that the corresponding Hessian matrix is negative semi-definite.

Let gt = pxt/(1−At−1/m)+qAt−1/m. The partial derivatives of LLMLE(p, q) with regard
to p and q are

∂LLMLE(p, q)
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.

Let HLL and Hgt be the Hessian matrices of LLMLE and gt, respectively. We have

HLL

=
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)
·
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)(
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.

Since Hgt is a zero matrix and at/g
2
t + (m − At−1 − at)/(1 − gt)

2 ≥ 0 always holds, we
can conclude that HLL is negative semi-definite which implies LLMLE(p, q) is concave.

In conclusion, the log-likelihood function LLMLE(p, q) is concave. □

Proposition A.1.3 When platforms can observe adopter types, the log-likelihood function
LLD-MLE(p, q) is concave.

Proof of Proposition A.1.3: To show that LLD-MLE(p, q) is concave, it is sufficient to show
that the corresponding Hessian matrix is negative semi-definite.
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Let gt = qAt−1/m and ht = p + qAt−1/m. The partial derivatives of LLD-MLE(p, q) with
regard to p and q are
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Let HLL, Hgt and Hht be the Hessian matrices of LLD-MLE, gt and ht, respectively. We
have
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Since Hgt and Hht are zero matrices and ait/g
2
t + (m − At−1 −mxt − ait)/(1 − gt)

2 ≥ 0
and adt /h

2
t + (mxt − adt )/(1 − ht)

2 ≥ 0 always hold, we can conclude that HLL is negative
semi-definite which implies LLD-MLE(p, q) is concave.

In conclusion, the log-likelihood function LLD-MLE(p, q) is concave. □

A.2 Supplements for Numerical Experiments

A.2.1 Model Calibration

A.2.1.1 The BDM for Online Content Adoption

This section complements our discussions on the discrepancy on the BDM and actual adop-
tion data for online content. A common issue to fit the BDM is the notable underestimation
of the diffusion coefficient q, exemplified in our case study shown in Figure 2.4a. In some
cases, this coefficient is even negative, as seen in Figure 2.4b, leading to a deviation of the
fitted BDM curve from its typical S-shaped configuration.

It is important to emphasize that these variations, while significant, do not contradict the
theoretical foundation of the BDM. To clarify this point, we illustrate the complete trajectory
of the fitted BDM curve, extended beyond the time horizon of our observation, for our
motivating example in Figure A.1. In Figures 2.1a and 2.4a, we have only included a segment
of the BDM curve that fits within the observed time frame. In Figure A.1, the complete fitted
BDM curve gradually presents an S-shape. Despite this delayed emergence of the S-shape,



APPENDIX A. SUPPLEMENTAL MATERIALS FOR CHAPTER 2 95

Figure A.1: Illustration of the Complete Fitted BDM Curve to the Actual Adoption for the
Motivating Example
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the BDM curve significantly diverges from the actual pattern of online content adoption.
This discrepancy highlights the limitations of the BDM model in accurately capturing the
pattern of online content adoption and underscores the necessity of adopting a modified
model, such as the P-BDM, for a more precise representation of these dynamics.

A.2.1.2 Timeliness of Online Content Diffusion

In this section, we will explore the concept of timeliness in online content and how it affects
the diffusion process, resulting in a time-decay factor. We will begin by presenting our
findings from data analysis and then modify the P-BDM to incorporate the time-decay
factor for a better fit.

Online platforms operate in a highly dynamic and fast-paced environment, with new
content being created and shared at a rapid rate. Compared to traditional markets, online
platforms have a faster speed of information dissemination. As a result, the timeliness of
online content plays a critical role. For example, a review video of a new movie will lose
its relevance and generate fewer adoptions as the movie becomes older and less popular.
Our analysis of the dataset from the video-sharing platform confirms this phenomenon. To
demonstrate this, we calculate two ratios to characterize the promotion and diffusion effects:

adv,t
mxv,t

−
aiv,t

m− Av,t−1

and
aiv,t

Av,t−1

m
(m− Av,t−1)

. (A.10)

We would like to remark that our goal with this analysis is not to calculate precise values
of p and q, but rather to provide insight into the trends of both effects in the real world.
As shown in Figure A.2, the average values of these two ratios among all content pieces are
presented against the time from t = 1 to t = 50.

It is apparent from Figure A.2 that the diffusion effect exhibits a time-decay trend, while
the promotion effect remains nearly constant throughout the entire horizon. The sensitivity
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Figure A.2: Illustration of the Trends of Promotion and Diffusion Effects
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Notes. The x-axis represents the time elapsed since the video was uploaded to the platform and the y-axis
represents the average values of the ratios as shown in (A.10) among all videos at the same time step t.

to timeliness is primarily observed in the diffusion effect. As such, incorporating the time-
decay factor in diffusion modeling is critical to accurately capture the content adoptions for
online platforms.

Recall that in the P-BDM dynamic (2.2), the diffusion effect is proportional to the cumu-
lative adopter number, given by qAt−1/m. To incorporate the timeliness of online content
diffusion, we introduce a time-decay multiplicative factor γ where 0 < γ ≤ 1. Specifically,
we consider the diffusion effect to be qγt−1At−1/m instead. Therefore, the P-BDM with a
time-decay factor can be shown as follows:

at =

(
p+ q

γt−1At−1

m

)
mxt︸ ︷︷ ︸

Direct adopters

+ q
γt−1At−1

m
(m− At−1 −mxt)︸ ︷︷ ︸

Indirect adopters

= pmxt︸ ︷︷ ︸
Promotion effect

+ q
γt−1At−1

m
(m− At−1)︸ ︷︷ ︸

Diffusion effect

. (A.11)

This model uses the time-decay factor to characterize the decreasing incentive to diffuse the
content as time elapses since its upload. When γ = 1, this model is equivalent to the original
P-BDM.

We make two remarks here. First, the exponent of γ is related to the time elapsed
since the content is uploaded. It should be distinguished from the subscript t in the CGPO
problem, where the latter is used to denote the time since the beginning of the L planning
period. Second, when γ is given, all the results in Sections 2.4 and 2.5 still hold. From the
optimization perspective, it serves as a known parameter in the CGPO problem and does
not change the underlying optimal structure. From the estimation perspective, it requires
preprocessing of the observations, but the same estimation methods and analyses can be
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applied. Therefore, the P-BDM with a time-decay factor does not add to the difficulty of
the entire problem but provides flexibility in characterizing the true adoption processes.

A.2.1.3 Group Estimation

In the context of online platforms, estimating parameters for each content piece individually
is usually impractical because of the mountainous amount of videos and the scarcity of data
pertaining to a video. What makes things worse is that we often have to make promotion
decisions at the early stage of a video’s life cycle with minimal data available for estimation.
Consequently, it is reasonable to group or cluster the videos using features, and then estimate
the parameters to make sure that past estimates can be generalized to future videos and the
results are precise. Due to the lack of contextual information, we focus on using category
labels for estimation.

The group estimation procedure is similar to that of a single piece, except that the
observations are expanded to include all content pieces in the group. Let Vc ⊆ V be the set
of content pieces in the group c. Therefore, the observations for a group can be represented
as ∪v∈Vc{(adv,t, aiv,t, Av,t, xv,t)}t=1,2,...,Tv . The OLS-based and the MLE-based methods can be
readily applied.

A.2.1.4 Calibration Process

For each video category c ∈ C within the dataset, we split the observations into training,
validation and test sets, separately. To avoid data corruption, we split the data based on
video granularity, using a 60-20-20 split. Specifically, for the video set Vc ⊆ V corresponding
to category c, we randomly select 60% of the videos v ∈ Vc and assign the associated
observations {(adv,t, aiv,t, Av,t, xv,t)}t=1,2,...,Tv to the training set. The remaining videos are also
randomly split into 20% and 20% for validation and test sets, respectively.

To summarize the calibration process, we present Algorithm 2. We make a remark here,
for each video v ∈ V , we only include observations when the promotion fraction xv,t is
positive in our training, validation, and test sets.

We evaluate the calibration performance using the weighted mean absolute percentage
error (WMAPE). In Figure A.3, we show the WMAPE we obtain by calibrating the P-BDM
with different time-decay factor γ using the D-OLS method. The minimum WMAPE is
achieved when γ = 0.983.

For the sake of completeness, we also include the calibration results in Figure A.4 when
the timeliness is ignored (i.e., γ = 1). We observe that the estimated diffusion coefficient
q is smaller in this case to account for the time decay in diffusion. However, the average
out-of-sample WMAPE is 42.92%, which is 10% larger than when γ = 0.983. The average
out-of-sample WMAPEs of the P-BDM with OLS and the BDM are 43.53% and 81.25%,
respectively.
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Algorithm 2: Calibration process with time-decay factor and group estimation.

1 for c ∈ C do
2 Randomly split the video set Vc into Vc

train, Vc
valid and Vc

test, using a 60-20-20 split.
3 Training set Dtrain := ∪v∈Vc

train
{(adv,t, aiv,t, Av,t, xv,t)}t=1,2,...,Tv .

4 Valid set Dvalid := ∪v∈Vc
valid

{(adv,t, aiv,t, Av,t, xv,t)}t=1,2,...,Tv .

5 Test set Dtest := ∪v∈Vc
test

{(adv,t, aiv,t, Av,t, xv,t)}t=1,2,...,Tv .

6 end
7 for γ ∈ {γ1, γ2, . . .} do
8 for c ∈ C do
9 Obtain p̂c(γ) and q̂c(γ) based on the training set Dtrain and time-decay factor

γ.
10 for v ∈ Vc

valid do
11 Use p̂c(γ) and q̂c(γ) to predict adoptions as {âv,t}t=1,2,...Tv .

12 WMAPEv(γ) :=
∑Tv

t=1 |av,t − âv,t|/
∑Tv

t=1 av,t × 100%.

13 end

14 end
15 WMAPE(γ) := 1

|V|
∑

v∈V WMAPEv(γ).

16 end
17 γ∗ := argmaxγ WMAPE(γ).

18 for c ∈ C do
19 for v ∈ Vc

test do
20 Use p̂c(γ∗) and q̂c(γ∗) to predict adoptions as {âv,t}t=1,2,...Tv .
21 end

22 end

A.2.2 Supplementary Analysis of the AGA Policy

In this section, we provide a supplementary analysis of the AGA policy with L = 13. We
begin by examining the AGA policy across different lifetimes, followed by the detailed pro-
cedures of the sensitivity analysis and K-Means clustering analysis.

A.2.2.1 The AGA Policy Across Different Lifetime Stages

We begin by presenting the AGA policy across different lifetime stages in Figure A.5.
As shown in Figure A.5a, the policy primarily promotes videos in their initial stages,

dedicating about 53% of the overall budget to videos that have no adopters (stage 0). This
heavy initial promotion indicates the policy aims at sparking interest in new content. Figure
A.5b further emphasizes this point by showing that, on average, the promotion fraction
allocated to videos tends to decline as the lifetime progresses. However, an exception can be
observed at stage 1. This anomaly occurs because only a subset of videos is advanced to later
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Figure A.3: WMAPE of the Validation Set Against Time-decay Factor γ.
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Figure A.4: Distribution of Estimated Coefficients When the Timeliness of Content Diffusion
is Ignored (γ = 1).
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stages after the initial promotion at stage 0. It implies that the policy also acts as a filter or
selection mechanism, deciding if a video shows enough promise for further promotion. As a
result, the policy generally allocates the promotion budget to videos that show considerable
potential in their early stages.

A.2.2.2 Sensitivity Analysis of Promotion and Diffusion Coefficients

In order to understand the relationship between the promotion policy and the characteris-
tics of videos, we perform sensitivity analysis for some important characteristics. For this
purpose, we specify the following regression model for the allocated promotion fraction xc,v,t,
where each observation is a video v at the beginning of time t in the experiment with pro-
motion budget C̄ = c:

xc,v,t = β0 + β1pv + β2qv + β3Āv,t−1 + β4c+ ϵv,t. (A.12)
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Figure A.5: Promotion Budget Allocation of the AGA Policy for Videos at Different Lifetime
Stages
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Notes. (a) Percentage of allocated budget. (b) Average promotion fraction.

where the adoption number is normalized by the market sizem before entering the regression.
The coefficient β in (A.12) can therefore be used to represent the impact of each characteristic
on the allocated promotion fraction.

We conduct the regression on the observations from the previous AGA experiments with
L = 13. Furthermore, in order to illustrate the difference of policy for videos at different
lifetime, we perform regression within each lifetime stage separately. Table A.1 reports the
regression results. Although the R2 is small for all the regressions, indicating that the linear
regression model (A.12) is not a good representation of the complicated AGA policy, all
coefficients are significant at the significance level of 0.0001. Therefore, we consider the
values of regression coefficients can represent the impact of video characteristics on the
promotion policy.

A.2.2.3 K-Means Clustering for the Promotion Policy

In order to further understand the AGA policy over the entire lifetime as a whole, we
perform K-Means clustering on the average policy for different video configurations. Let
S = {0, 1, 2, 3, 4, 5} be the set of lifetime stages. To summarize the clustering process, we
present Algorithm 3.



APPENDIX A. SUPPLEMENTAL MATERIALS FOR CHAPTER 2 101

Table A.1: Regression Results of the Promotion Fraction of the AGA Policy with Regard to
Video Characteristics

# of Obs. R2 β0 (const) β1 (p) β2 (q) β3 (Ā) β4 (C̄)

stage 0 72,867 0.044
-0.1412∗∗∗∗ 0.8243∗∗∗∗ 0.6687∗∗∗∗ - 0.0055∗∗∗∗

(0.0043) (0.0216) (0.0377) - (0.0002)

stage 1 21,490 0.418
-1.1621∗∗∗∗ 5.8253∗∗∗∗ 3.7211∗∗∗∗ -0.7627∗∗∗∗ 0.0576∗∗∗∗

(0.0245) (0.1223) (0.1035) (0.0195) (0.0245)

stage 2 31,610 0.209
-0.4399∗∗∗∗ 2.3614∗∗∗∗ 1.3477∗∗∗∗ -0.1820∗∗∗∗ 0.0121∗∗∗∗

(0.0145) (0.0794) (0.0527) (0.0101) (0.0004)

stage 3 30,733 0.125
-0.2060∗∗∗∗ 0.8130∗∗∗∗ 0.5548∗∗∗∗ 0.0563∗∗∗∗ 0.0039∗∗∗∗

(0.0079) (0.0304) (0.0248) (0.0046) (0.0002)

stage 4 25,460 0.213
-0.1825∗∗∗∗ 1.0395∗∗∗∗ 0.7441∗∗∗∗ -0.0714∗∗∗∗ 0.0048∗∗∗∗

(0.0055) (0.0298) (0.0247) (0.0055) (0.0002)

stage 5 29,340 0.085
0.0395∗∗∗∗ 0.1499∗∗∗∗ 0.1519∗∗∗∗ -0.0843∗∗∗∗ 0.0003∗∗∗∗

(0.0021) (0.0068) (0.0080) (0.0039) (0.0001)

Notes. Robust standard errors are reported in parentheses. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p <
0.0001. For stage 0, Ā is not included in the regression since it takes 0 value for all observations.

Algorithm 3: K-Means clustering for the promotion policy of different video cat-
egories.

1 for c ∈ C do
2 Classify observations ∪v∈Vc{Av,t−1, xv,t}t=1,2,...,T into different lifetime stages by

Āv,t−1.
3 for s ∈ S do
4 Let Xs be the set of promotion fractions for observations at stage s.
5 x̃c

s :=
∑

x∈Xs
x/|Xs|.

6 end
7 x̃c := (x̃c

s)
⊤
s∈S . // average promotion policy for category c.

8 end

9 X̃ := (x̃c)c∈C. // feature matrix for all categories.

10 Impute the missing values matrix X̃ using k-Nearest Neighbors, with k = 2.

11 Perform K-Means clustering based on X̃.
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Appendix B

Supplemental Materials for Chapter 3

B.1 Proofs and Supplements

B.1.1 Proofs for Section 3.2

The following lemma is useful in the proof of Proposition 3.2.1.

Lemma B.1.1 For each agent i ∈ V , at least one of following value

(a)
∏

y∈{0,1}|V |

P(Yi(t) = 1|Y (t− 1) = y) or (b)
∏

y∈{0,1}|V |

P(Yi(t) = 0|Y (t− 1) = y)

are positive.

Proof of Lemma B.1.1: When random noise ϵi(t) is not bounded on either side, it is
obvious that the statement holds. In the following, we only consider the situation when
ϵi(t)) is with support on some bounded interval [ϵ, ϵ].

If (a) is not positive, there exists y ∈ {0, 1}|V | such that Fϵ(−vi − β
∑

j∈Ni
yj

ni
) = 1. Hence,

we have

−vi − inf
y∈{0,1}|V |

β

∑
j∈Ni

yj

ni

= −vi ≥ ϵ.

Consequently, we can derive the following inequality

−vi − β > −vi −
1

L
≥ −vi − (ϵ− ϵ) ≥ ϵ,

where the first inequality follows from Assumption 3.2.2, the second inequality follows from
property (ii) in Assumption 3.2.1. As a direct result, for any y ∈ {0, 1}|V |, Fϵ(−vi −
β

∑
j∈Ni

yj

ni
) > 0 and the value of (b) is positive.

In conclusion, for each agent i ∈ V , at least one of (a) and (b) have positive value. □
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Proof of Proposition 3.2.1: Our goal is to show that although the MC may not be irre-
ducible, there is only one recurrent communication class and it is aperiodic.

We first show that there is only one recurrent communication class. Follow after Lemma
B.1.1, we construct y′ as follows

y′i =

{
0 when

∏
y∈{0,1}|V | P(Yi(t) = 1|Y (t− 1) = y) = 0,

1 o.w.

Hence, we have P(Yi(t) = y′i|Y (t − 1) = y) > 0 for all i ∈ V and y ∈ {0, 1}|V |. When
given the previous adoption state, each agent i ∈ V makes their decision independently.
Consequently, p(y,y′) =

∏
i∈V P(Yi(t) = y′i|Y (t− 1) = y) > 0 holds for all y ∈ {0, 1}|V |. It

further implies that all states of this MC communicates with state y′. As a result, the states
that y′ communicates with forms a recurrent communication class while other states are in
the transient classes.

Further, we can notice that since p(y′,y′) > 0 also holds, state y′ has period 1 which
implies that the recurrent communication class is aperiodic.

In conclusion, this MC has a limiting distribution π that satisfies π = πP and the
limiting adoption probability of each agent is a linear transformation of π that follows (3.2).
□

B.1.2 Proofs and Supplements for Section 3.3

In this Appendix, we start by showing the existence and uniqueness of the FPA solution.

Proof of Proposition 3.3.1: We first show the property (i) and then proof property (ii)
and (iii) by showing that h(·) is a contraction mapping.

Proof of (i): When a ≤ b, we have
∑

j∈Ni
aj ≤

∑
j∈Ni

bj for all i ∈ V . Since CDF Fϵ(·)
is monotonically increasing, if a ≤ b,

1− Fϵ

(
−vi − β

∑
j∈Ni

aj

di

)
≤ 1− Fϵ

(
−vi − β

∑
j∈Ni

bj

di

)
,

for all i ∈ V , which implies h(a) ≤ h(b).
Proof of (ii) and (iii): It is trivial that h(·) maps Rn to itself. Consider the Jacobian

matrix of h(µ), for all µ ∈ Rn,

∂h(µ)i
∂µj

=



0, j /∈ Ni

β
di

∂Fϵ

(
−vi − β

∑
j′∈Ni

µj′

di

)
∂

(
−vi − β

∑
j′∈Ni

µj′

di

) , j ∈ Ni.
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By Assumption 3.2.1, we can have

∣∣∣∣∂h(µ)i
∂µj

∣∣∣∣ ≤ βL
di

for all j ∈ Ni. Therefore, the ∞-norm

of dh(µ)
dµ

can be upper bounded as∥∥∥∥dh(µ)dµ

∥∥∥∥
∞

= max
i∈V

∑
j∈V

∣∣∣∣∂h(µ)i∂µj

∣∣∣∣ ≤ max
i∈V

di
βL

di
= βL < 1,

where the last inequality follows from Assumption 3.2.2.

Thus, for all µ ∈ Rn, we have
∥∥∥dh(µ)

dµ

∥∥∥
∞

< 1. It then implies that h(µ) is a contraction

mapping. By contraction mapping theorem, we conclude the proof. □

Then, we include the proof for the first analytical phase, namely, bounding the spa-
tiotemporal variance. Before that, we show an important gradient for the proof in Lemma
B.1.2.

Lemma B.1.2 (Variance of Lipschitz Functions) Let X be a random variable with a
well-defined second moment. If g(·) is a L-Lipschitz continuous function, the following in-
equality holds:

Var(g(X)) ≤ L2Var(X).

Proof of Lemma B.1.2:

Var(g(X)) = Var(g(X)− g(E[X])) ≤ E[(g(X)− g(E[X]))2]

≤ E[L2(X − E[X])2] = L2Var(X),

where the first inequality follows since for any random variable Y , Var(Z) = E[Z2]−(E[Z])2 ≤
E[Z2], and the last inequality follows from the L-Lipschitz continuity. □

Proof of Lemma 3.3.1: We can decompose Cov(Yi(t), Yi′(t)) into two parts by using the
law of total covariance:

Cov(Yi(t), Yi′(t)) = EY(t−1)

[
Covϵ(t)

(
Yi(t), Yi′(t)

∣∣Y(t− 1)
)]

+ CovY(t−1)

(
Eϵ(t)

[
Yi(t)

∣∣ Y(t− 1)
]
,Eϵ(t)

[
Yi′(t)

∣∣ Y(t− 1)
])

.

The first term EY(t−1)

[
Covϵ(t)(Yi(t), Yi′(t)|Y(t− 1))

]
is always 0. The reason is as follows:

by applying the law of total conditional covariance, we have

Covϵ(t)
(
Yi(t), Yi′(t)

∣∣ Y(t− 1)
)

= Eϵ(t)

[
Cov

(
Yi(t), Yi′(t)

∣∣ Y(t− 1), ϵ(t)
)∣∣∣ Y(t− 1)

]
+ Covϵ(t)

(
E
[
Yi(t)

∣∣ Y(t− 1), ϵ(t)
]
, E
[
Yi′(t)

∣∣ Y(t− 1), ϵ(t)
] ∣∣∣ Y(t− 1)

)
.
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The former term vanishes because Yi(t) and Yi′(t) are deterministic when given Y(t− 1), ϵt.
The latter term is also zero since ϵi(t) and ϵi′(t) are independent of each other.

We then show that the second term CovY(t−1)

(
Eϵ(t)

[
Yi(t) |Y(t−1)

]
, Eϵ(t)

[
Yi′(t)

∣∣ Y(t−

1)
])

can be bounded recursively as

CovY(t−1)

(
Eϵ(t)

[
Yi(t)

∣∣ Y(t− 1
)]
, Eϵ(t)

[
Yi′(t)

∣∣ Y(t− 1)
])

= Cov

(
1− Fϵ

(
−vi − β

∑
j∈Ni

Yj(t− 1)

di

)
, 1− Fϵ

(
−vi′ − β

∑
j′∈Ni′

Yj′(t− 1)

di′

))

≤

√√√√Var

(
Fϵ

(
−vi − β

∑
j∈Ni

Yj(t− 1)

di

))
Var

(
Fϵ

(
−vi′ − β

∑
j′∈Ni′

Yj′(t− 1)

di′

))
(B.1a)

≤

√√√√√(Lβ)2Var

(
1

di

∑
j∈Ni

Yj(t− 1)

)
(Lβ)2Var

 1

di′

∑
j′∈Ni′

Yj′(t− 1)

 (B.1b)

≤ ρ2

2

Var( 1

di

∑
j∈Ni

Yj(t− 1)

)
+Var

 1

di′

∑
j′∈Ni′

Yj′(t− 1)

 , (B.1c)

where (B.1a) follows from Cauchy–Schwarz inequality, (B.1b) follows from Lemma B.1.2 and
(B.1c) follows from the arithmetic-mean geometric-mean (AM-GM) inequality and the fact
that ρ = Lβ. In summary, for any time t ≥ 1, we can upper bound the covariance between
any pair of nodes by

Cov(Yi(t), Yi′(t)) ≤ ρ2

2

Var( 1

di

∑
j∈Ni

Yj(t− 1)

)
+Var

 1

di′

∑
j′∈Ni′

Yj′(t− 1)

 . (B.2)

Incorporating the trivial fact that the variance of a binary random variable can be no
larger than 1/4, we get Var(Yi(t)) ≤ 1/4 for all i ∈ V and t ≥ 0. As a consequence, we can
show that

Var

(
1

di

∑
j∈Ni

Yj(t)

)
=

1

d2i

∑
j∈Ni

Var
(
Yj(t)

)
+

1

d2i

∑
j∈Ni

∑
j′∈Ni,j′ ̸=j

Cov
(
Yj(t), Yj′(t)

)
≤ 1

4di
+

di − 1

d2i
· ρ

2

2

∑
j∈Ni

Var

 1

dj

∑
k∈Nj

Yk(t− 1)


≤ 1

4di
+

1

di
· ρ

2

2

∑
j∈Ni

Var

 1

dj

∑
k∈Nj

Yk(t− 1)

 ,
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where the first inequality comes from (B.1) and the last inequality is trivial, given that di > 0
by definition.

Recalling the definition of Ã and b, we can write this inequality in matrix form as

κ(t) ≤ 1

4
b +

ρ2

2
Ãκ(t− 1).

As a consequence, we can derive the upper bound for the variance recursively in the
next. When t = 1, agents indeed act independently given the initial adoption states Y(0).
In other words, the diffusion process is initialized with Cov(Yi(0), Yi′(0)) = 0 for all i, i′ ∈ V .
Therefore, we can express the upper bound as

κ(1) ≤ 1

4
b.

By induction, we can show that

κ(t) ≤ 1

4
b +

ρ2

2
Ãκ(t− 1) ≤ 1

4
b +

ρ2

2
Ã

(
1

4
b +

ρ2

2
Ãκ(t− 2)

)
≤ · · ·

≤ 1

4

(
I +

t−1∑
τ=1

ρ2τ

2τ
Ãτ

)
b.

The conclusion follows. □

We then move to the proof of the second analytical phase: bounding nonlinear dynamics.

Proof of Lemma 3.3.2: Let ∆i(t) =
β
di

(∑
j∈Ni

qj(t−1)−
∑

j∈Ni
Yj(t−1)

)
. For any i ∈ V

and t ≥ 0, the adoption probability of agent i at t can be written as

qi(t) = EY(t−1)

[
Eϵ(t)

[
Yi(t)

∣∣Y(t− 1)
]]

= EY(t−1)

[
1− Fϵ

(
−vi − β

∑
j∈Ni

Yj(t− 1)

di

)]
= 1− EY(t−1)

[
Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)]
.

Therefore, we have∣∣∣∣EY(t−1)

[
Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)]∣∣∣∣
=

√(
EY(t−1)

[
Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)])2

≤

√√√√EY(t−1)

[(
Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

))2
]



APPENDIX B. SUPPLEMENTAL MATERIALS FOR CHAPTER 3 107

≤
√

EY(t−1)

[
L2
∣∣∆i(t− 1)

∣∣2] =

√√√√EY(t−1)

[
(Lβ)2

(∑
j∈Ni

qj(t− 1)

di
−
∑

j∈Ni
Yj(t− 1)

di

)2
]

=

√
ρ2 Var

[∑
j∈Ni

Yj(t− 1)

di

]
,

where the first inequality follows by Jensen’s inequality and the second inequality follows
by Assumption 3.2.1.

Let δ =

[(
ρ
2

)2 (
I− ρ2

2
Ã
)−1

b

] 1
2

. Applying (3.14), we can obtain

∣∣∣∣EY(t−1)

[
Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di
+ ∆i(t− 1)

)
− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)]∣∣∣∣ ≤ δi,

which further leads to

1− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)
− δi ≤ qi(t) ≤ 1− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)
+ δi.

In summary, we have ∣∣∣h(q(t− 1)
)
− q(t)

∣∣∣ ≤ δ.

and this concludes the proof. □

Finally, we prove our main result, i.e., Theorem 3.3.1.

Proof of Theorem 3.3.1: We first show by induction that, µ(t) ≤ q(t) ≤ µ(t) for each
t ≥ 0.

Base case: t = 0. By definition, we have µ(0) = q(0) = µ(0).
To show t = s+ 1: Assume that µ(t) ≤ q(t) ≤ µ(t). Then we have

µ(s+ 1) = h−δ

(
µ(s)

)
≤ h−δ

(
q(s)

)
≤ q(s+ 1) ≤ hδ

(
q(s)

)
≤ hδ

(
µ(s)

)
= µ(s+ 1),

where the first and last inequalities follow from Proposition 3.3.1(i) while the other two
follow from Lemma 3.3.2.

By the contraction mapping theorem, we know that µ(t) (resp. µ(t)) converges to
µ∗ (resp. µ∗) where µ∗ (resp. µ∗) is the fixed-point solution for h−δ(µ

∗) = µ∗ (resp.
hδ(µ

∗) = µ∗). Thus, the following result holds,

µ∗ ≤ q∗ ≤ µ∗ and µ∗ ≤ µ∗ ≤ µ∗. (B.3)

By the definition of AEOs, the difference between µ∗ and µ∗ can be written as

µ∗ − µ∗ = h(µ∗)− h(µ∗) + 2δ.
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Let ∆µ = µ∗ − µ∗, for all i ∈ V ,

|∆µi| ≤ ρ

∣∣∣∣∣
∑

j∈Ni
µ∗
j

di
−
∑

j∈Ni
µ∗
j

di

∣∣∣∣∣+ 2δi = ρ

∣∣∣∣
∑

j∈Ni
∆µi

di

∣∣∣∣+ 2δi,

where the inequality comes from Assumption 3.2.1.
In matrix form, we can write it as |∆µ| ≤ ρÃ|∆µ|+ 2δ or equivalently

(I− ρÃ)|∆µ| ≤ 2δ. (B.4)

Recall that the inverse matrix (I−ρÃ)−1 can be expanded into the sum of matrix powers
I+
∑∞

ℓ=1 ρ
ℓÃℓ. Given that all elements of Ã are non-negative, it follows that all elements of

(I − ρÃ)−1 are also non-negative. Therefore, when we pre-multiply both sides of (B.4) by
(I− ρÃ)−1, we obtain the inequality

|∆µ| ≤ 2(I− ρÃ)−1δ. (B.5)

Combining (B.3) and (B.5), we finally have the following chain of inequalities:

|q∗ − µ∗|

≤ |∆µ| ≤ 2(I− ρÃ)−1δ = 2
(
I− ρÃ

)−1
[(ρ

2

)2(
I− ρ2

2
Ã

)−1

b

] 1
2

= ρ
(
I− ρÃ

)−1
[(

I− ρ2

2
Ã

)−1

b

] 1
2

=
ρ

1− ρ

[
(1− ρ)

(
I− ρÃ

)−1
]
·

[(
I− ρ2

2
Ã

)−1

b

] 1
2

≤ ρ

1− ρ

[
(1− ρ)

(
I− ρÃ

)−1
(
I− ρ2

2
Ã

)−1

b

] 1
2

=
ρ√
1− ρ

[(
∞∑
s=0

ρsÃs

)(
∞∑
t=0

(
ρ2

2

)t

Ãt

)
b

] 1
2

=
ρ√
1− ρ

 ∞∑
ℓ=0

 ∑
s,t∈Z+: s+t=ℓ

ρs ·
(
ρ2

2

)t
 Ãℓb

 1
2

=
ρ√
1− ρ

 ∞∑
ℓ=0

ρℓ+1 −
(

ρ2

2

)ℓ+1

ρ− ρ2

2

Ãℓb


1
2

≤ ρ√
1− ρ

[
∞∑
ℓ=0

ρℓ+1

ρ− ρ2

2

Ãℓb

] 1
2

=
ρ√

(1− ρ)(1− ρ/2)

[ (
I +

∞∑
ℓ=1

ρℓÃℓ

)
b

] 1
2

.

where the third inequality follows from the Jensen’s inequality provided (1− ρ)
(
I− ρÃ

)−1

is a row-stochastic matrix. This concludes the proof. □
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In the following, we prove the corollary for Theorem 3.3.1.

Proof of Corollary 3.3.2: From Theorem 3.3.1, it holds that

1

n
∥q∗ − µ∗∥1 ≤ Cρ

n
e⊤C

1
2 (G, ρ)

(a)

≤ Cρ√
n

√∥∥∥C 1
2 (G, ρ)

∥∥∥
1
=

Cρ

√
1− ρ√
n

√√√√ e⊤

(
I +

∞∑
ℓ=1

ρℓÃℓ

)
b .

where (a) follows due to Cauchy-Schwarz inequality. Further, (a) proves (3.10) in the corol-
lary.

In the following, we will bound e⊤
(
I +

∑∞
ℓ=1 ρ

ℓÃℓ
)
b. Let us define D = diag(b), so

that Ã = DA⊤ holds where let us recall that A is the adjacency matrix. Further, we define

Q(s) := A⊤Ãs−1 = A⊤(DA⊤)s−1, ∀ s ≥ 0.

Then, it holds that∥∥∥Ãsb
∥∥∥
1
= e⊤DQ(s)De

=
N∑
i=1

N∑
j=1

1

didj
Qij(s) ≤

N∑
i=1

N∑
j=1

1

2

(
1

d2i
+

1

d2j

)
Qij(s) =

1

2

∥∥D2Q(s)e
∥∥
1
+

1

2

∥∥Q(s)D2e
∥∥
1
,

(B.6)

where the inequality follows from the AM-GM inequality.
We then bound the two terms in (B.6) as follows:

1

2

∥∥D2Q(s)e
∥∥
1

=
1

2

∥∥∥D2A⊤Ãs−1e
∥∥∥
1

=
1

2

∥∥DDA⊤e
∥∥
1

=
1

2
∥De∥1 =

1

2
∥b∥1 ,

where the second and the third inequalities follow because Ã is row-stochastic and

1

2

∥∥Q(s)D−2e
∥∥
1
=

1

2

∥∥(A⊤D)sDe
∥∥
1

≤ 1

2

∥∥A⊤D
∥∥s
1
∥De∥1

(b)
=

1

2
rs(G) ∥De∥1 =

1

2
rs(G) ∥b∥1 ,

where the inequality follows from the definition of matrix-ℓ1-norm as an operator norm and
(b) follows since by inspection r(G) = A⊤D. Combined with (B.6), we get∥∥∥Ãsb

∥∥∥
1
≤ 1

2
(1 + rs(G)) ∥b∥1 ≤ rs(G) ∥b∥1 , (B.7)
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where the last inequality follows since by definition the largest out-in-degree ratio r(G) ≥ 1.
Therefore, as long as ρr(G) < 1,

e⊤

(
I +

∞∑
ℓ=1

ρℓÃℓ

)
b =

∥∥∥∥∥
(
I +

∞∑
ℓ=1

ρℓÃℓ

)
b

∥∥∥∥∥
1

≤ ∥b∥1 +
∞∑
ℓ=1

ρℓ
∥∥∥Ãℓb

∥∥∥
1

≤ 1

1− ρr(G)
∥b∥1 ,

where the first inequality follows from the subadditivity of norms and the last inequality
follows from (B.7). This concludes the proof. □

B.1.3 Proofs and Supplements for Section 3.4

For a refined upper bound on the approximation error, we first show the proof for Lemma
3.4.1, which is a refined version of Lemma 3.3.2.

Proof of Lemma 3.4.1: LetXi = −vi−β 1
di

∑
j∈Ni

Yj(t−1) and νi = −vi−β 1
di

∑
j∈Ni

qj(t−
1) for all i ∈ V . For any i ∈ V and t ≥ 1, the adoption probability of agent i at t can be
written as

qi(t) = EY(t−1)

[
E
[
yi(t)

∣∣ Y(t− 1)
]]

= EY(t−1)

[
1− Fϵ

(
−vi − β

∑
j∈Ni

Yj(t− 1)

di

)]
= 1− EXi

[
Fϵ (Xi)

]
.

With Assumption 3.4.1, we can apply Taylor expansion to Fϵ (Xi) and get∣∣∣EXi

[
Fϵ (Xi)− Fϵ (νi)

]∣∣∣ =

∣∣∣∣EXi

[
Fϵ (νi) + fϵ(νi)(Xi − νi) +

1

2
f ′
ϵ(Ci)(Xi − νi)

2 − Fϵ (νi)

]∣∣∣∣
=

1

2

∣∣∣EXi

[
f ′
ϵ(X̃i)(Xi − νi)

2
]∣∣∣ , (B.8)

where X̃i is a random variable such that X̃i lies in between the random variable Xi and νi.
Consequently, we can upper bound (B.8) by∣∣EXi

[Fϵ (Xi)− Fϵ (νi)]
∣∣ = 1

2

∣∣∣EXi

[
f ′
ϵ(X̃i)(Xi − νi)

2
]∣∣∣ ≤ 1

2
EXi

[
|f ′

ϵ(X̃i)|(Xi − νi)
2
]

≤ Lf

2
Var (Xi) =

Lfβ
2

2
Var

(
1

di

∑
j∈Ni

Yj(t− 1)

)
,

where the first inequality comes from Jensen’s inequality and the second inequality is from

Assumption 3.4.1. Let η =
Lfβ

2

8
·
(
I− ρ2

2
Ã
)−1

b. By applying Lemma 3.3.1, we can finally

get ∣∣∣E[Fϵ(Xi)− Fϵ (νi)
]∣∣∣ ≤ ηi,
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which further leads to

1− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)
− ηi ≤ qi(t) ≤ 1− Fϵ

(
−vi − β

∑
j∈Ni

qj(t− 1)

di

)
+ ηi.

In conclusion, we have

h(q(t− 1))− η ≤ q(t) ≤ h(q(t− 1)) + η.

□

Based on Lemma 3.4.1, we then show the proof for the refined Theorem 3.4.1 and Corol-
lary 3.4.1.

Proof of Theorem 3.4.1: Following the same steps leading to (B.5), with Lemma 3.4.1,
we obtain

|∆µ| ≤ 2(I− ρÃ)−1η. (B.9)

Therefore, following the same line of analysis in the proof of Theorem 3.3.1, it holds that

|q∗ − µ∗| ≤ |∆µ| ≤ 2(I− ρÃ)−1η = 2
(
I− ρÃ

)−1

· Lfβ
2

8
·
(
I− ρ2

2
Ã

)−1

b

=
Lfβ

2

4

[(
∞∑
s=0

ρsÃs

)(
∞∑
t=0

(
ρ2

2

)t

Ãt

)
b

]
≤ Lfβ

2

4(1− ρ/2)
·

(
I +

∞∑
ℓ=1

ρℓÃℓ

)
b

=
Lfβ

2

4(1− ρ)(1− ρ/2)
· C(G; ρ).

We conclude the proof. □

Proof of Corollary 3.4.1: By Theorem 3.4.1, we can upper bound the scaled ℓ1-norm as

1

n
∥q∗ − µ∗∥1 ≤ C̃

n
e⊤C(G, ρ) =

(1− ρ)C̃

n
· e⊤

(
I +

∞∑
ℓ=1

ρℓÃℓ

)
b,

Following the proof of Corollary 3.3.2, the last term can be bounded by

(1− ρ)C̃

n
· e⊤

(
I +

∞∑
ℓ=1

ρℓÃℓ

)
b ≤ (1− ρ)C̃

n(1− ρr(G))
∥b∥1 ,

and we conclude the proof. □
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Proof of Theorem 3.4.2: We use the diffusion instance given in the main text to show
the lower bound. We first remark on the following facts that will be used in the next. For
this specific instance, the CDF Fϵ, PDF fϵ and the derivative of PDF f ′

ϵ are given by

Fϵ(x) =
1

1 + e−x
, fϵ(x) =

e−x

(1 + e−x)2
, and f ′

ϵ(x) =
e−x(e−x − 1)

(1 + e−x)3
.

It is also convenient to define two constants that are crucial in showing the bounds as

u = max
0.5≤x≤1.5

{|fϵ(x)|, |f ′
ϵ(x)|} = fϵ(0.5) ≈ 0.235,

and l = min
0.5≤x≤1.5

{|fϵ(x)|, |f ′
ϵ(x)|} = f ′

ϵ(0.5) ≈ 0.058.

Specifically, we have for all x ∈ [0.5, 1.5], l ≤ fϵ(x) ≤ u and −u ≤ f ′
ϵ(x) ≤ −l. Recall that

−vi − β 1
di

∑
j∈Ni

Yj(t − 1) ∈ [−v − β,−v] = [0.5, 1.5]. As a consequence, we remark that
for the proof of Lemma 3.3.1 to be valid, it suffices to use the Lipschitz constant L = u, see
(B.1b).

To lower bound the variance, we first provide a lower bound of the variance of the
adoption indicator Yi(t) for each agent i ∈ V and t ≥ 0. Since var(Yi(t)) = qi(t)(1 − qi(t))
where qi(t) = E[1− Fϵ(−v − β 1

d

∑
j∈Ni

Yj(t− 1))], we can derive that

var
(
Yi(t)

)
≥
(
1− Fϵ(−v)

)
· Fϵ(−v − β) =

(
1− Fϵ(1.5)

)
Fϵ(0.5) ≈ 0.114. (B.10)

We define constant c1 =
(
1− Fϵ(1.5)

)
Fϵ(0.5) ≈ 0.114.

By Lemma 3.3.1, we have

κ(t) ≤ 1

4d

[
I+

t∑
τ=1

(
ρ2

2

)τ

Ãτ

]
e =

1

4d

[
1 +

t∑
τ=1

(
ρ2

2

)τ
]
e ≤ 1

4
(
1− ρ2

2

)
d
e, (B.11)

where ρ = Lβ = uβ ≈ 0.235. Furthermore, we are able to provide a lower bound on the
pair-wise covariance, which is similar to (B.2) as

Cov(Yi(t), Yi′(t)) ≥ − ρ2

2

Var(1

d

∑
j∈Ni

Yj(t− 1))

)
+Var

1

d

∑
j′∈Ni′

Yj′(t− 1))

 .

(B.12)

Therefore, we can derive a lower bound for the in-neighbor variance as

Var

(
1

d

∑
j∈Ni

Yj(t)

)
=

1

d2

∑
j∈Ni

Var (Yj(t)) +
1

d2

∑
j∈Ni

∑
j′∈Ni,j′ ̸=j

Cov(Yj(t), Yj′(t))

≥ c1
1

d
− d− 1

d2
· ρ

2

2

∑
j∈Ni

Var

1

d

∑
k∈Nj

Yk(t− 1)

 (B.13a)
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≥ c1
1

d
− 1

d
· ρ

2

2

∑
j∈Ni

Var

1

d

∑
k∈Nj

Yk(t− 1)

 (B.13b)

≥ c1
1

d
−

ρ2

2

4
(
1− ρ2

2

)
d
, (B.13c)

where (B.13a) follows from (B.12) and (B.10), (B.13b) follows from the trivial fact that the
variance is nonnegative, and (B.13c) follows from (B.11).

Define c2 = c1 −
ρ2

2

4
(
1− ρ2

2

) ≈ 0.106. We then obtain that for all i ∈ V and t ≥ 0,

Var

(
1

d

∑
j∈Ni

Yj(t)

)
≥ c2

1

d
= 0.106

1

d
.

We then bound the difference between q(t) and h
(
q(t− 1)

)
. Similar to proof of Lemma

3.4.1, we obtain

E
[
Fϵ (Xi)− Fϵ (νi)

]
=

1

2
E
[
f ′
ϵ(X̃i)(Xi − νi)

2
]

≤ − l

2
Var (Xi)

= − lβ2

2

(
1

d

∑
j∈Ni

Yj(t− 1)

)
≤ − lβ2c2

2d

where the first inequality follows because X̃i ∈ [0.5, 1.5] and f ′
ϵ(x) < −l for x in this range.

Therefore,

qi(t) = 1− E[Fϵ (Xi)] ≥ 1− Fϵ (νi) +
lβ2c2
2d

= h(q(t− 1))i +
lβ2c2
2d

.

Letting c3 = lβ2c2/2 ≈ 0.003, we have

q(t) ≥ h(q(t− 1)) + c3
1

d
e. (B.14)

Finally, we lower bound the approximation error in a way analogous to Theorem 3.3.1.
Let ζ = c3/n. We show q(t) ≥ µ(t) ≥ µ(t) by induction, where

µi(t) =

qi(0) t = 0

1− Fϵ

(
−vi − β

∑
j∈Ni

µj(t−1)

di

)
+ ζ t > 0

, for all i ∈ V.

Base case t = 0: By definition, we have q(0) = µ(0) = µ(0).
To Show t = s+ 1: Assume that q(s) ≥ µ(s) ≥ µ(s). We have

q(s+ 1) ≥ hζe(q(s)) ≥ hζe(µ(s)) = µ(s+ 1) ≥ hζe(µ(s)) ≥ h(µ(s)).
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where the first inequality follows from (B.14), the second and third inequalities follow Propo-
sition 3.3.1 and the induction hypothesis, and the last inequality is trivial because ζ > 0.

Thus, the following result holds,

q∗ ≥ µ
∗ ≥ µ∗, (B.15)

where µ
∗
is the limit of µ(t). By the contraction mapping theorem, we have

q∗ − µ∗ ≥ µ
∗ − µ∗ = h(µ

∗
)− h(µ∗) + ζe ≥ ζe = 0.003

1

d
e,

where both inequalities follow from (B.15). We conclude the proof. □

B.2 Supplements for Numerical Experiments on the

FPA Scheme

B.2.1 Illustration of the 10-Node Example Instance

To offer a clear illustration of the instance, we construct an undirected network comprising
10 nodes. The network structure is visualized in Fig. 3.1a, while the intrinsic values assigned
to each agent are detailed in Table B.1. We set the network effect intensity at β = 3.5 and

assume that the random noise distribution is ϵi(t)
i.i.d.∼ Logistic(0, 1) for all i ∈ V and t ≥ 0.

The characteristics of this example network, along with numerical results obtained from
different models, are presented in Table B.1.

B.2.2 Numerical Experiments on Highly-Structured Symmetric
Networks

To illustrate the exact performance of the FPA scheme, we focus on two kinds of highly-
structured symmetric networks, namely directed star network and complete network. These
simple and symmetric structures make it easier to calculate the limiting adoption probability.
We further simplify the diffusion instance by setting the intrinsic value of all agents in the
network to be the same as v. This allows us either to directly compute the limiting adoption
probability or to construct an MC with a much smaller state space.

Network instances:

• Directed star network. A star network consists of a central node and several surrounding
nodes. We consider the directed version where the edges only point from surrounding
nodes to the central node, not vice versa. Figure B.1a shows an example of network
size n = 6.

• Complete network. A complete network is the network where each node is directly
connected to every other node. Figure B.1b shows an example of network size n = 6.
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Table B.1: Characteristics and Results of the 10-Node Example Instance

Node Degree Intrinsic value v q∗ µ∗ FPA error pMM MM error

0 5 -1.7064 0.5126 0.5292 0.0166 0.1536 -0.3590
1 7 -1.2453 0.5932 0.6069 0.0137 0.2235 -0.3697
2 4 -0.8789 0.6325 0.6524 0.0199 0.2934 -0.3391
3 4 -3.9454 0.1442 0.1221 -0.0222 0.0190 -0.1253
4 3 -0.0822 0.7827 0.8219 0.0393 0.4795 -0.3032
5 5 -3.4441 0.1933 0.1731 -0.0202 0.0309 -0.1624
6 3 -0.2877 0.7341 0.7755 0.0414 0.4286 -0.3055
7 2 -2.9084 0.3287 0.2849 -0.0438 0.0517 -0.2770
8 2 -1.2859 0.6702 0.7646 0.0944 0.2166 -0.4536
9 1 -0.6963 0.7416 0.8786 0.1371 0.3326 -0.4090

Notes. p∗ is calculated by first constructing a 1,024-state MC according to Section 3.2.2 and calculating
the stationary distribution. µ∗ is calculated by conducting fixed-point iteration according to (3.5), and FPA
error equals (µ∗

i − q∗i ). pMM is calculated as E[1{vi + ϵi ≥ 0}], and MM error equals (µMM
i − q∗i ).

Figure B.1: Illustration of Highly Structured Symmetric Network Structure

(a) (b)

Notes. (a) Directed star network. (b) Complete network.

For directed star networks, the adoption decisions of surrounding nodes are independent of
each other. Therefore, we can directly calculate the limiting adoption probability of the
central node as

q =
n−1∑
i=0

(
n− 1

i

)
(1− Fϵ(−v))i Fϵ(−v)n−1−i ·

[
1− Fϵ

(
−v − β

i

n− 1

)]
.

For complete networks, we can construct a more efficient MC by using the number of
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adopted agents as the MC states, rather than considering the combination of all agents’
adoption states. The transition probability of this MC can be defined as

P (i, j) =

min{i,j}∑
k=0

(
i

k

)[
1− Fϵ

(
−v − β

i− 1

n− 1

)]k
Fϵ

(
−v − β

i− 1

n− 1

)i−k (
n− i

j − k

)

·
[
1− Fϵ

(
−v − β

i

n− 1

)]j−k

Fϵ

(
−v − β

i

n− 1

)n−i−j+k

.

Hence, the limiting adoption probability for this MC can be easily calculated.
We measure the performance of the FPA scheme by the percentage error (PE) of the

representative node, given in the following equation:

PE =
µ∗
i − q∗i
q∗i

· 100%.

In directed star networks, we focus solely on the central node because the surrounding nodes
have zero in-degree and can thus be perfectly approximated by the FPA scheme. In complete
networks, the PE is identical for all nodes. Therefore, the PE for any arbitrary node in a
complete network is equivalent to the mean average percentage error.

To assess the FPA scheme’s performance, we investigate two scenarios for both types of
network structures: (i) a sequence of diffusion instances with different intrinsic values, and (ii)
a sequence of diffusion instances with different network sizes. For these experiments, we set

the network effect intensity to be β = 1 and generate the random noise ϵi(t)
i.i.d.∼ Logistic(0, 1).

(i) The accuracy with regard to intrinsic values. We choose the intrinsic value v from -5
to 5 in increments of 0.1. These instances are tested on networks of size n ∈ {10, 20, 30}.
Figure B.2 shows the PE of both network structures at different intrinsic values. Overall,

Figure B.2: PE Versus Intrinsic Value
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Notes. Left: directed star network. Right: complete network.
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all instances have a small absolute percentage error (less than 0.5%), illustrating the high
accuracy of the FPA solution. We notice that the PE curves of different network structures
possess similar shapes, however, the exact values are slightly different. In general, the FPA
scheme tends to underestimate the adoption probability when the intrinsic values are small
and overestimate it when they are large. There exist two critical points at around v = −1.7
and v = 0.4 where the PE reaches extremes. These points exhibit the worst cases and align
with regions where the CDF Fϵ has the highest curvature.

(ii) The accuracy with regard to network size. We then focus on instances with intrinsic
values at the two previously mentioned critical points v ∈ {−1.7, 0.4}. We choose the
network size n from 2 to 50. Figure B.3 shows the PE across these different network sizes.
Regardless of the network structure and the intrinsic values, PE converges to 0 rapidly

Figure B.3: PE Versus Network Size
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when the network size increases. This can be theoretically confirmed, and we have explicitly
demonstrated it in Corollary 3.3.1 or a refined version in Theorem 3.4.1. Our findings show
that, for highly-structured networks, the FPA scheme offers excellent approximation quality
and exhibits asymptotic convergence as the network size grows.

B.2.3 MCMC Simulation Settings

To estimate the limiting adoption probability for general instances where direct computation
is impractical, we employ the MCMC simulation technique. The simulation initiates with
all agents in a non-adopted state. We designate the first 1,000 time steps as the warm-up
period to allow the system to reach a steady state, which we will elaborate on shortly. These
initial steps are discarded from our analysis to avoid transient bias. In line with (3.3), we
set the run length for each simulation replication to be 100,000 steps beyond the warm-up
period. The adoption frequency of each agent throughout this period then serves as the
ground truth for the limiting adoption probability.
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In the following, we conduct additional experiments to empirically show when the MC
enters a steady state so that the data samples can be gathered to calculate limiting adoption
probability. Instead of focusing on the probability of each state of the MC, we use the average
cumulative adoption proportion among the population as an indicator. This is represented
by the following equation:

1

t

t∑
τ=1

1

n

∑
i∈V

Yi(τ).

In Figure B.4, we show how the average cumulative adoption proportion changes with
time. We test on 4 different diffusion instances, each represented by a randomly sampled
Erdős-Rényi network G(n, p(n)). We choose the network size from n ∈ {10, 100, 1000, 10000}
and keep the probability of edge existence to be p(n) = 0.1. We set the network effect
coefficient β to be 1. Our observations reveal that after 1,000 time steps, all tested trajectories

Figure B.4: Average Cumulative Adoption Proportion Versus MCMC Time Steps
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have reached a steady state. Furthermore, larger networks appear to reach a steady state
more rapidly. Additional tests on diffusion instances with varying parameters yielded similar
results. Based on these results, we conclude that a warm-up period of 1,000 time steps is
adequate for our problem context.

B.2.4 Numerical Experiments for Power-Law Networks

We extend our examination of the FPA scheme another important class of random networks
i.e., power-law networks. These networks exhibit a degree distribution that follows a power-
law pattern. We consider a sequence of directed power-law networks with n nodes and define
the associated CDF of the degree distribution as Fd(· ; n). The network in- and out-degrees
are generated using the following CDF:

Fd(x;n) = P(d ≤ x) =
1−

(
x

dmin

)1−α

1−
(

dmax

dmin

)1−α for dmin ≤ x ≤ dmax = n,
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where the α is the exponent of power-law distribution. We set dmin to be 2 and dmax to
be n. Correspondingly, the probability mass function satisfies fd(x) ∝ x−α, which aligns
with the conventional definition of a power-law distribution. Power-law networks often pose
significant challenges for the analysis and optimization on networks due to the prevalence
of low-degree nodes in such networks. Focusing on power-law networks with dmin = 2 and
ρ = 0.875 (see Section 3.5) allows us to test the limit of the FPA scheme.

We generate power-law network based on Fd(· ; n) following the approach proposed by
Huang et al. (2022). Detailed information on the generation process is included in Appendix
B.2.5 for completeness. In this generation process we use an auxiliary parameter θ to account
for the pairwise correlation between the in-degree and out-degree sequences. Although θ is
not the exact correlation between these two sequences, it approximates the actual correlation
between in- and out-degrees, particularly for large values of n.

We conduct two sets of experiments to test the FPA scheme across different power-law
exponents α and pairwise correlations θ. For each parameter combination, we conduct 100
repetitions to ensure stable performance metrics. The results are presented in Figure B.5.
In general, The FPA scheme still performs reasonably well. Also, we observe a consistent

Figure B.5: Performance of the FPA Scheme on Power-Law Networks of Different α and θ
Values
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Notes. All horizontal axes are in the log scale. Shaded areas represent the 95% confidence interval. In the
legend of the right subfigure, numbers within parentheses represent empirical correlations between in- and
out-degrees. (a) MAPE against α. (b) MAPE against θ.

decrease in the MAPE as n increases across all tested α and θ values, albeit at a relatively
modest pace in comparison with Erdős-Rényi networks. Additionally, power-law networks
exhibit both a higher mean and greater variance in MAPE. The increased mean MAPE
in power-law networks is largely attributable to a higher proportion of nodes with low in-
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degrees. The increased variance, on the other hand, is primarily due to the more intricate
structural variations inherent to power-law networks when specified parameters are used.

We note that the power-law exponent α has a crucial impact on the degree distribution.
Typically, power-law networks feature an α > 2 to avoid divergence in the expected degree.
In the case where α = 3, the network adheres to a model generated through the preferential
attachment process. Accordingly, we select α from the set {2.5, 3, 3.5} and set θ = 0 to
construct Figure B.5a. Note that it is easy to see that when α increases, the proportion of
low degree nodes increases, and consistent with our theoretical analysis, we find that the
MAPE tends to increase as α increases.

In the second experiment, we generate the in-degree and out-degree sequences with θ ∈
{−1,−0.5, 0, 0.5, 1}. Corollary 3.3.2 shows that the FPA scheme’s performance is related
to the imbalance level of the network, which can be captured by this pairwise correlation
coefficient θ. Specifically, a large positive θ indicates a strong positive correlation between
in-degree and out-degree sequences, resulting in a more balanced network. Conversely, a
negative θ, suggests a more imbalanced network. From Figure B.5b, the MAPE remains
relatively stable when θ ranges between -1 and 0. However, it substantially diminishes as θ
becomes positive, which aligns with our theoretical findings that the FPA scheme performs
better on balanced networks.

Finally, we focus on the FPA scheme’s performance for nodes with different in-degrees d.
For illustration, we choose instances with α = 2.5 and θ = 0. In Figure B.6a, we illustrate
how the MAPE varies with respect to the in-degree d.

Figure B.6: Performance of the FPA Scheme on Power-Law Networks with Regard to the
In-Degree Values
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confidence interval. (a) MAPE against d. (b) Empirical CDF for in-degree and MAPE.

Aside from standalone nodes—which display zero error—the MAPE consistently de-
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creases for nodes with d ≥ 1 as d increases. For nodes with more than 10 in-neighbors,
the MAPE diminishes to less than 6.5%. Furthermore, the network-wide MAPE stands at
approximately 12.36%; notably, only nodes with an in-degree of less than 3 exhibit errors
above this level. In Figure B.6b, we extend our analysis by displaying the empirical CDF
for the in-degree distribution and the MAPE. Given the nature of power-law networks, a
substantial number of nodes exhibit low in-degree. Moreover, these low in-degree nodes are
also associated with larger errors. Specifically, 84.89% of the total error is attributable to
agents with fewer than 5 in-neighbors, and 95.97% of the error can be attributed to agents
with fewer than 10 in-neighbors.

B.2.5 Supplementary Discussions on Random Networks

In our numerical experiments of random networks, we generate our data following the setup
outlined in Huang et al. (2022), which also offers an excellent discussion on the key properties
of these networks. In the following, we revisit some of the discussions on parameter selection
and instance construction for both Erdős-Rényi and power-law networks, supplementing
them with additional numerical illustrations for more robust empirical support. For more
details, please refer directly to this paper.

(i) Erdős-Rényi networks . In the asymptotic analysis of Erdős-Rényi networks, the den-
sity p(n) plays a pivotal role in shaping the structural attributes of the network. Some
critical cases are outlined as follows:

• When p(n) = o(n−2), the Erdős-Rényi networks are empty almost surely (Erdős et al.
1960).

• When p(n) = O(n−(1+ϵ)) for some ϵ > 0, the expected in-degree and out-degree vanishes
asymptotically. Such networks are called very sparse networks. They are probabilisti-
cally acyclic and fragmented.

• When p(n) = Θ(n−1), the expected in-degree and out-degree remain asymptotically
bounded and positive. Such networks are called critically sparse networks. At this
point, a phase transition occurs: as p(n) increases from 1

n
− O(n− 4

3 ) to 1
n
+ O(n− 4

3 ),
smaller components merge into a giant component comprising a positive fraction of
nodes, and cycles begin to form (Janson et al. 1993).

• When p(n) = ω( logn
n

), networks are called dense networks. These networks are highly
likely to be connected, contain many cycles, and are asymptotically regular and bal-
anced. Both in-degree and out-degree distributions concentrate around the mean value
and converge asymptotically to a normal distribution.

It is important to note that dense networks are asymptotically regular and balanced.
This underlying property aligns our numerical findings with the theoretical implications
with regard to the imbalance level of networks.
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(ii) Power-law networks . To avoid notation confusion, in this part, we let dini and douti

denote the in-degree and out-degree of node i. To construct a power-law network, we require
both the in-degrees din1 , d

in
2 , . . . , d

in
n and the out-degrees dout1 , dout2 , . . . , doutn are i.i.d. sampled

from distribution Fd(·, n). One distinctive aspect of our experiments with power-law networks
is the introduction of a pairwise correlation parameter to capture the imbalance level of the
network. A valid correlated in-degree sequence and out-degree sequence can be generated
using the following procedure:

• Sample i.i.d. in-degrees din1 , d
in
2 , . . . , d

in
n from the power-law distribution. Without loss

of generality, assume this sequence is sorted in descending order.

• Sample i.i.d. random variables Z1, Z2, . . . , Zn as follows: for each i ∈ V , Zi = 1 with
probability |θ|, and Zi = 0 with probability 1− |θ|, where θ ∈ [−1, 1] is the parameter
used to control the correlation. This parameter θ is not necessarily the correlation
Cov(dini , d

out
i ).

• Define sets of nodes I0 : {i : Zi = 0, 1 ≤ i ≤ n} and I1 : {i : Zi = 1, 1 ≤ i ≤ n}.

• If θ ≥ 0, set douti = dini for i ∈ I1 and set {douti : i ∈ I0} by a random permutation of
{dini : i ∈ I0}; If θ < 0, set douti = dinn−i+1 for i ∈ I0 and set {douti : i ∈ I1} by a random
permutation of {dinn−i+1 : i ∈ I1}.

• Use a configuration model (Molloy and Reed 1995, Newman et al. 2001) to construct
the directed random network with given in- and out-degree sequences.

Under this construction, when θ ≥ 0, the correlation is θ + O(n−1), so it asymptotically
equals θ. When θ < 0, the generated pairwise correlation may deviate from θ, and different
values of θ yield similar degree sequences, as evidenced by Figure B.7.

B.3 Supplements for Applications

B.3.1 Proofs and Supplements for IM Problem

B.3.1.1 Proofs for Section 3.6.1

We first provide the proof to characterize the optimality gap of the approximate IM problem.

Proof of Proposition 3.6.1: The proof largely follows Corollary 3.3.2, where we bound
the scaled ℓ1-norm of the FPA error. Therefore, the regret can be bounded by

Regret(SFPA)

=
∑
i∈V

q∗i (S
∗)−

∑
i∈V

q∗i
(
SFPA

)
=
∑
i∈V

q∗i (S
∗)−

∑
i∈V

µ∗
i (S

∗) +
∑
i∈V

µ∗
i (S

∗)−
∑
i∈V

µ∗
i

(
SFPA

)
+
∑
i∈V

µ∗
i

(
SFPA

)
−
∑
i∈V

q∗i
(
SFPA

)
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Figure B.7: In-Degree and Out-Degree Distributions of Power-Law Networks with Different
Pairwise Correlations θ
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Notes. (a) θ = −1. (b) θ = −0.5. (c) θ = 0. (d) θ = 0.5. (e) θ = 1.

≤
∥∥∥q∗ (S∗)− µ∗ (S∗)

∥∥∥
1
+
(∑

i∈V

µ∗
i (S

∗)−
∑
i∈V

µ∗
i

(
SFPA

) )
+
∥∥∥q∗ (SFPA

)
− µ∗ (SFPA

) ∥∥∥
1

≤
∥∥∥q∗ (S∗)− µ∗ (S∗)

∥∥∥
1
+
∥∥∥q∗ (SFPA

)
− µ∗ (SFPA

) ∥∥∥
1

≤2Cρ

√
n∥C(G, ρ)∥1,

where the first inequality holds trivially, the second inequality follows from the optimality
of SFPA for approximate IM problem (3.21), and the third inequality follows from Corollary
3.3.2. □

In the next, we discuss the applicability of Assumption 3.6.1.
Instances that satisfy Assumption 3.6.1. As we mentioned immediately after the

assumption, the classical LT model (for nonprogressive diffusion) is a specific instance that
meets this assumption. Recall we can recover the LT model by setting vi = −0.5 and ϵi(t) ∼
U(−0.5, 0.5) for all i ∈ V and t ≥ 1. Therefore, for any β > 0, CDF Fϵ can be expressed as
Fϵ(x) = 1{x ≥ −0.5} · (x+ 0.5) on range [0.5− β, 0.5], which is convex. Additionally, some
other diffusion instances related to common utility models can also meet Assumption 3.6.1.
Some examples are: (i) Linear probability model: vi ≥ −c and ϵi(t) ∼ U(−c, c) for all i ∈ V ,
t ≥ 0. (ii) Logit model: vi ≥ 0 and ϵi(t) ∼ Logistic(0, s) and for all i ∈ V , t ≥ 0. (iii) Probit
model: vi ≥ 0 and ϵi(t) ∼ N (0, s) and for all i ∈ V , t ≥ 0. For many general distributions,
the convexity assumption essentially requires the intrinsic values to be appropriately lower
bounded.



APPENDIX B. SUPPLEMENTAL MATERIALS FOR CHAPTER 3 124

Finally, we show the proof of the submodularity for the approximate IM objective.

Proof of Theorem 3.6.1: Consider two seed set S1 ⊆ S2 ⊆ V and an additional user
w ∈ V \ S2, it is sufficient to show that µ∗(S2 + {w})− µ∗(S2) ≤ µ∗(S1 + {w})− µ∗(S1).

We consider constraints (3.21b) and (3.21c) as the dynamic system, that is, µ(t) =
h(µ(t− 1)). We can notice that, for different seed sets, the transition function h is not the
same. However, for all the users that are not selected as seed users, the transition function
for the corresponding element is the same. With a little abuse of notation, in the following
proof, we use h to denote the transition function for all users in V \ (S2 + {w}).

We want to show that at all time steps t ≥ 1, the inequality µ(S2 + {w}, t)−µ(S2, t) ≤
µ(S1 + {w}, t) − µ(S1, t) always holds. For user i ∈ S2, µi(S2 + {w}, t) − µi(S2, t) = 0 ≤
µi(S1 + {w}, t) − µi(S1, t). For user w, µw(S2 + {w}, t) − µw(S2, t) = 1 − µw(S2, t) ≤
1 − µw(S1, t) ≤ µw(S1 + {w}, t) − µw(S1, t). The above two inequalities hold because of
Proposition 3.3.1(i). For all the other users in V \ (S2 ∪ {w}), we show by induction.

t = 0: First of all, µ(S, 0) = 0 for all S ⊆ S2 ∪ {w} by definition. Therefore,

µ(S2 + {w}, 0)− µ(S2, 0) = µ(S1 + {w}, 0)− µ(S1, 0).

Assume t = s: The induction hypothesis holds such that

µ(S2 + {w}, s)− µ(S2, s) ≤ µ(S1 + {w}, s)− µ(S1, s).

Show t = s+ 1: We have

µ(S2 + {w}, s+ 1)− µ(S2, s+ 1) = h(µ(S2 + {w}, s))− h(µ(S2, s))

≤ h(µ(S2, s) + µ(S1 + {w}, s)− µ(S1, s))− h(µ(S2, s))

≤ h(µ(S1 + {w}, s))− h(µ(S1, s))

= µ(S1 + {w}, s+ 1)− µ(S1, s+ 1),

where the first inequality comes from Proposition 3.3.1(i) and the second inequality comes
from Assumption 3.6.1.

When t tends to infinity, we get the fixed-point solution µ∗(S2+{w})−µ∗(S2) ≤ µ∗(S1+
{w})− µ∗(S1), and hence the submodularity is proved. □

B.3.1.2 Experiments for IM Problem

In the experiments, we consider two scenarios, one satisfies Assumption 3.6.1 and thus leads
to a submodular influence function, while the other does not. For both scenarios, we assume

that the intrinsic value vi
i.i.d.∼ U(−4, 0) and β = 3.5. In addition, we assume the random

noise to be ϵi(t)
i.i.d.∼ U(−4, 4) in the submodular case, while ϵi(t)

i.i.d.∼ Logistic(0, 1) in the
nonsubmodular case.

The well-known greedy framework selects one user at each iteration which leads to the
largest total adoptions. We refer to the algorithm that embeds the FPA solution into this
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greedy framework for the total influence evaluation as the greedy-FP algorithm. We randomly
generate some small network instances to illustrate that greedy-FP can find a near-optimal
solution. Although there is no theoretical guarantee for the nonsubmodular case, it is in-
teresting to observe from the results that the FPA solutions are still of good quality. For
either scenario, we generate 100 diffusion instances with random graph G(15, 0.5) and set
the number of seed users to 5. We enumerate all the subsets to find the optimal seed set and
evaluate the diffusion influence using MCMC. In Table B.2, we show the numerical results
of the greedy-FP algorithm.

Table B.2: Numerical Results of greedy-FP Algorithm for IM Problem

Scenario
Percentage of instances where
the optimal seeding is recovered

Optimality Gap (%)
Mean Max

Submodular 91 0.0194 0.4704
Non-submodular 84 0.0685 1.7444

We notice that in both the submodular and nonsubmodular scenarios, the greedy-FP
algorithm can generate a near-optimal IM solution and even uncover the exact optimal
solution for a large portion of instances. Meanwhile, the greedy-FP algorithm has a slightly
better performance in the submodular case than in the nonsubmodular case but even in the
nonsubmodular problem instances, it remains quite practical.

Furthermore, we choose a real-world network—Caltech36 as introduced in Section 3.5.3
and compare the performance of greedy-FP with the traditional IM heuristics. Recall that
the instance includes 765 agents with an average number of neighbors of 43. We define
several benchmark strategies as follows. The DEG and EIG schemes are motivated by the
important role of the centrality measures in diffusion discussed in the network economics
literature (e.g., Ballester et al. 2006, Jackson 2010). We include them for completeness, but
as substantiated in the numerical experiments, by overlooking the idiosyncratic features of
the agents, these schemes are dominated by the FPA-based heuristic.

Benchmarks:

• Greedy and MCMC (greedy-MCMC): This is the classical algorithm used for the IM
problem. The MCMC is embedded into a greedy framework for influence evaluation.
The length of the MCMC run is set to 100,000 after the warm-up period.

• Greedy and the FPA solution (greedy-FP): This is our proposed algorithm. We embed
the FPA solution into a greedy framework for an influence evaluation.

• Greedy and low-resolution MCMC (greedy-l-MCMC): The MCMC is embedded into a
greedy framework for an influence evaluation. The length of the MCMC run is set to
50 so that the runtime is at the same scale as that of the FPA scheme.
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• Degree centrality (DEG): Set K users with the largest degree to be seed users.

• Eigenvector centrality (EIG): Set K users with the largest eigenvector centrality to be
seed users.

• Model misspecification without network effect (MM): This benchmark considers the
misspecified model that ignores the network effect in the IM problem. This is the same
as setting K users with the smallest intrinsic value to be seed users.

• Random (RAN): Randomly select K users to be seed users.

Figure B.8 demonstrates the relative loss of the expected limiting adoptions compared
with greedy-MCMC against the number of seed users. Similarly, we also consider both the
submodular and nonsubmodular cases.

Figure B.8: Performance of Different IM Algorithms
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Notes. Left: submodular case. Right: non-submodular case.

When the number of seed users increases from 0 to 30, the difficulty of the IM problem
increases since the number of feasible solutions also increases. We observe that regardless of
the number of seed users, the performance of greedy-FP matches that of greedy-MCMC nearly
perfectly. It significantly outperforms all the other benchmarks. This is no surprise to us;
this is driven by the high accuracy of the FPA scheme. In particular, we also notice that the
performance of the greedy framework with the MCMC method degrades drastically when
the simulation length of the MCMC procedure is small. Compared with greedy-l-MCMC,
greedy-FP achieves an improvement of 8.90% and 18.42% when K = 30 in the submodular
and nonsubmodular cases. In short, we conclude that, by offering a significant efficiency
gain, greedy-FP outperforms greedy-MCMC in solving the IM problem.
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B.3.2 Proofs and Supplements for Pricing Problem

B.3.2.1 Proofs for Section 3.6.2

We first provide the proof to characterize the optimality gap of the approximate pricing
problem.

Proof of Proposition 3.6.2: The proof aligns with Corollary 3.6.1. Therefore, the regret
can be bounded by

Regret(pFPA) = q∗ (p∗)⊤Wp∗ − q∗ (pFPA
)⊤

WpFPA

= q∗ (p∗)⊤Wp∗ − µ∗ (p∗)⊤Wp∗ + µ∗ (p∗)⊤Wp∗ − µ∗ (pFPA
)⊤

WpFPA

+ µ∗ (pFPA
)⊤

WpFPA − q∗ (pFPA
)⊤

WpFPA

≤
∥∥∥(q∗ (p∗)− µ∗ (p∗)

)⊤
Wp∗

∥∥∥
1
+
(
µ∗ (p∗)⊤Wp∗ − µ∗ (pFPA

)⊤
WpFPA

)
+
∥∥∥(q∗ (pFPA

)
− µ∗ (pFPA

))⊤
WpFPA

∥∥∥
1

≤
∥∥∥(q∗ (p∗)− µ∗ (p∗)

)⊤
Wp∗

∥∥∥
1
+
∥∥∥(q∗ (pFPA

)
− µ∗ (pFPA

))⊤
WpFPA

∥∥∥
1

≤
∥∥∥q∗ (p∗)− µ∗ (p∗)

∥∥∥
1

∥∥∥Wp∗
∥∥∥
∞
+
∥∥∥q∗ (pFPA

)
− µ∗ (pFPA

) ∥∥∥
1

∥∥∥WpFPA
∥∥∥
∞

≤ 2Cρ max
{∥∥∥p∗

∥∥∥
∞
,
∥∥∥pFPA

∥∥∥
∞

}√
n∥C(G, ρ)∥1,

where the first inequality follows trivially, the second inequality follows since the optimality
of pFPA for approximate pricing problem (3.23), the third inequality follows from Corollary
3.3.2, and the last one follows the properties of matrix operator norms. □

We then focus on the proof of the pricing problem in the adoption probability space.

Proof of Theorem 3.6.2: Let π(µ) =
∑

i∈V

(
vi + β

∑
j∈Ni

µj

di
+ ln 1−µi

µi

)
µi. The Hessian

matrix of π(µ) can be derived as

∂2π

∂µ2
i

= −1

γ

1

µi(µi − 1)2
and

∂2π

∂µi∂µj

=
1

γ
1{j ∈ Ni}

β

di
+

1

γ
1{i ∈ Nj}

β

dj
.

For the diagonal elements of the Hessian matrix Hπ, we can have −1/[µ(µ−1)2] ≤ −6.75
holds for any x ∈ [0, 1]. The inequality is tight when µ = 1/3. For the nondiagonal elements
of the Hessian matrix Hπ, we can find them related to the structure of network G(V,E).

Therefore, we can have the Hessian matrix to be

Hπ = diag

({
− 1

µi(µi − 1)2

}
i∈V

)
+ β

(
Ã+ Ã⊤

)
⪯ −6.75I + β

(
Ã+ Ã⊤

)
.
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By Gershgorin circle theorem, we can bound the eigenvalues of Ã by −1 ≤ λ(Ã) ≤ 1.
Since 1 is one of the eigenvalues of Ã, we can have λmax(Ã) = 1. Therefore, when β ≤ 3.375,

λmax

(
−6.75I + β

(
Ã+ Ã⊤

))
≤ 0,

which implies that Hπ is negative semi-definite. The equality holds when β = 3.375.
As a result, Hπ ⪯ 0 if and only if β ≤ 3.375. □

In the following, we illustrate the procedure of gradient descent for the pricing problem
in the price space.

Gradient descent and approximate gradient descent. By taking the derivative on
both sides of the fixed-point equation, we get

dµ(p)

dp
=

∂h(p,µ(p))

∂p
+

dµ(p)

dp
· ∂h(p,µ(p))

∂µ(p)
.

By rearranging the terms, we obtain

dµ(p)

dp
·
(
I − ∂h(p,µ(p))

∂µ(p)

)
=

∂h(p,µ(p))

∂p
.

Matrix (I− ∂h(p,µ(p))/∂µ(p)) is guaranteed to be invertible. The reason is that, by
Proposition 3.3.1, we know that h is a contraction mapping and ∥∂h(p,µ(p))/∂µ(p)∥∞ < 1.

With an eye toward implementation, we also notice that (3.27) involves the derivation
of the gradient, which requires computing the inverse of an n × n matrix. When the net-
work is large and dense, this calculation becomes intimidating. However, we notice that
∥∂h(p,µ(p))/∂µ(p)∥∞ < 1, and therefore, the spectral radius of ∂h(p,µ(p))/∂µ(p) is
smaller than 1, so we can expand the inverse as the sum of discounted matrix powers, which
is similar to the centrality measure,(

I− ∂h(p,µ(p))

∂µ(p)

)−1

= lim
n→∞

k∑
ℓ=0

(
∂h(p,µ(p))

∂µ(p)

)ℓ

.

This leads to the following k-th order approximate gradient:

dΠ(p)

dp
≈ G̃k(p) =

∂h(p,µ(p))

∂p
·

(
I +

k∑
ℓ=1

(
∂h(p,µ(p))

∂µ(p)

)ℓ
)

·W · p+W⊤ ·µ(p), (B.16)

for the pricing problem. We expect such an easy-to-compute approximate gradient to lead
to a significant efficiency gain, as is usually the case in the literature regarding approximate
gradient descent (Ruder 2016). Previous works have applied similar low-order approxima-
tions for network effects for different purposes (e.g., see Candogan et al. 2012, Zeng et al.
2023). In subsequent numerical experiments, we find that k = 2 works very well in practice,
leading to near-optimal solutions very quickly.
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B.3.2.2 Experiments for Pricing Problem

In the experiments for pricing problems on a social network, the first issue is that the optimal
pricing problem under the original diffusion model seems impossible to derive. We test over
different randomly generated instances and find that the profits calculated via MCMC and
the FPA scheme are quite close, with a percentage error almost uniformly bounded by 0.5%
in our experiment.

In order to check the performance of the FPA scheme with regard to the total profit
when price is considered, we test over three groups of instances. By fixing the expected
number of neighbors to be 10, we generate diffusion instances with random graphs G(20, 0.5),
G(100, 0.1), G(1000, 0.01). For each instance, the agent is associated with an intrinsic value
i.i.d. sampled from U(0, 4) and an offered price i.i.d. sampled from U(0, 4). We set β = 3
and γ = 1. In Figure B.9, we show the distribution of profit difference among all diffusion
instances. We notice that the absolute profit difference is small. Furthermore, as the network

Figure B.9: Profit Difference between MCMC and the FPA Solution
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becomes larger, the performance gap becomes more concentrated. In conclusion, we consider
the FPA scheme can achieve almost the same performance as the simulation methods in the
pricing problem.

Hereafter, we compare the pricing scheme under the FPA scheme as default. We assume

ϵi(t)
i.i.d.∼ Logistic(0, 1), which follows the theoretical analysis in Section 3.6.2. We study two

extreme scenarios, the perfect price discrimination case, where each consumer is offered a
personal price, and the public price case, where all consumers receive the same price.

In the perfect price discrimination scenario, we test three different algorithms. The first
algorithm is the gradient descent method in the adoption probability space (grad-PROB).
With a network effect parameter that satisfies Theorem 3.6.2, grad-PROB can find the global
optimal solution. The second algorithm is the gradient method in the price space (grad-
PRICE). The third algorithm considers the pricing problem without network diffusion, that
is, the price is determined according to the standard logit model. We still refer to it as the
model misspecification (MM) scheme.
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For the public price case, we also test three different algorithms. However, in this case,
the pricing problem cannot be considered in the adoption probability space. Instead, we
use a grid search (GS) to find an upper-bound solution for the problem. Specifically, we
divide the price into grids of tolerance ξ. For each price p, we upper bound the profit with
(p− ξ) ·

∑
i∈V µi(p). The other two algorithms, grad-PRICE and MM, as discussed above, are

applied here.
For both scenarios, we test on a real-world network—Amherst41 as introduced in Section

3.5.3. For each diffusion instance, we set the price sensitivity as γ = 0.1, and the intrinsic

value vi
i.i.d.∼ U(0, 4). In Figures B.10 and B.11, we plot the realized profit of three algorithms

and the relative profit loss against different values of the network effect intensity β. The
relative profit loss is compared with the optimal (upper bound) results from grad-PROB
and GS, respectively. Furthermore, as remarked before, algorithm grad-PRICE involves the
derivation of the gradient as (3.27), which requires calculating the inverse of a n-by-n matrix.

We resort to the second-order approximate gradient, G̃2(p), as given in (B.16).

Figure B.10: Realized Profit Versus Network Effect.
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Notes. Left: with price discrimination. Right: without price discrimination (The curve of grad-PROB
coincides with grad-PRICE in the left figure. In order to make them identifiable in the figures, we shift the
grad-PROB to the left by 0.05.)

We offer several observations from these two figures. First, grad-PRICE obtains a near-
optimal solution in the case of price discrimination. This hints that we can use grad-PRICE
to gain high-quality results in the general pricing setting when grad-PROB is not applicable.
Second, there is a significant performance degradation of MM when the network effect is large.
When β = 3, the relative profit loss reaches 21.16% and 8.30% if the network effect is ignored,
respectively. Third, comparing these two scenarios, we find that pricing discrimination can
significantly increase the total profit, especially when the network effect is large.
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Figure B.11: Profit Loss Compared with grad-PROB/GS Versus Network Effect.
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Notes. Left: with price discrimination. Right: without price discrimination.

Furthermore, we compare the performance of these algorithms on more instances in terms
of their execution time and the quality of solutions. We assume parameters (n, p(n), vmax) ∈
{100, 1000}×{0.1, 0.9}×{4, 10}, where vmax is a parameter representing the range of intrinsic
value vi. Specifically, we assume vi is i.i.d. sampled from U(0, vmax). The numerical results
for the two scenarios are shown in Tables B.3 and B.4. The grad-PRICE approach derives
high-quality solutions in both scenarios. We notice that in the perfect price discrimination
case, the run time for grad-PROB is less than grad-PRICE, although the margin is not too large
and the run times of the two algorithms are on a similar scale. The profit difference between
these two approaches is quite small, uniformly smaller than 0.2%. For the public price case,
we set the tolerance of the grid search to be 0.5 within the range [0, 100]. grad-PRICE runs
much faster than the grid search with a performance loss of up to 2%. The performance of
MM remains poor across the two scenarios in this experiment, suggesting that the loss from
ignoring network effects can be detrimental. In summary, our main message through the
numerical experiments is twofold. First, it is important to incorporate the network effect
into operational problems. The gain from doing so can be significant. Second, we advocate
grad-PRICE as a practical method for price optimization. With our approximate gradient
expression tailored to the network setting as in (B.16), grad-PRICE becomes a competitive
price optimization technique. It can be efficiently implemented in various practical scenarios
to find high-quality price solutions.
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Table B.3: Numerical Results of Pricing Problem for Randomly Generated Instances (Perfect
Price Discrimination)

Parameters
(n, p(n), vmax)

grad-PROB grad-PRICE MM

time (s) time (s)
profit loss (%)

time (s)
profit loss (%)

min mean max min mean max

(100,0.1,4) 0.035 0.115 0.064 0.079 0.100 0.007 19.034 20.126 20.971
(100,0.1,10) 0.095 0.095 0.005 0.009 0.013 0.006 18.475 19.208 19.766
(100,0.9,4) 0.025 0.131 0.066 0.089 0.120 0.006 18.300 19.724 20.874
(100,0.9,10) 0.083 0.093 0.006 0.009 0.013 0.006 18.241 19.067 19.200

(10,000,0.1,4) 11.041 81.223 0.009 0.009 0.009 7.753 19.008 19.082 19.138
(10,000,0.1,10) 11.062 81.191 0.009 0.009 0.009 7.727 19.019 19.074 19.140
(10,000,0.9,4) 76.184 151.138 0.085 0.087 0.090 8.363 19.654 19.790 19.901
(10,000,0.9,10) 78.501 160.918 0.009 0.009 0.009 7.967 19.011 19.070 19.148

Table B.4: Numerical Results of Pricing Problem for Randomly Generated Instances (Public
Price)

Parameters
(n, p(n), vmax)

GS grad-PRICE MM

time (s) time (s)
profit loss (%)

time (s)
profit loss (%)

min mean max min mean max

(100,0.1,4) 0.652 0.059 1.728 1.871 2.068 0.005 4.102 7.837 10.115
(100,0.1,10) 0.687 0.093 0.832 0.964 1.134 0.007 0.891 1.333 2.505
(100,0.9,4) 0.685 0.062 1.698 1.857 2.071 0.005 5.762 8.137 11.547
(100,0.9,10) 0.720 0.096 0.833 0.957 1.159 0.007 0.924 1.395 3.040

(10,000,0.1,4) 137.674 27.147 1.827 1.860 1.866 0.014 7.523 7.880 8.259
(10,000,0.1,10) 151.969 60.072 0.952 0.968 0.984 0.047 0.973 1.024 1.120
(10,000,0.9,4) 1070.717 91.743 1.835 1.860 1.866 0.024 7.634 7.879 8.294
(10,000,0.9,10) 1203.320 170.557 0.951 0.966 0.984 0.042 0.984 1.028 1.106
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