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Abstract

This review focuses on direct numerical simulations (DNS) of turbulent
flows laden with droplets or bubbles. DNS of these flows are more chal-
lenging than those of flows laden with solid particles due to the surface
deformation in the former. The numerical methods discussed are classified
by whether the initial diameter of the bubble/droplet is smaller or larger
than the Kolmogorov length scale and whether the instantaneous surface
deformation is fully resolved or obtained via a phenomenological model.
Also discussed are numerical methods that account for the breakup of a sin-
gle droplet or bubble, as well as multiple droplets or bubbles in canonical
turbulent flows.

217

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

01
9.

51
:2

17
-2

44
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 b
y 

SA
ID

 E
L

G
H

O
B

A
SH

I 
on

 0
1/

23
/1

9.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

https://doi.org/10.1146/annurev-fluid-010518-040401
https://doi.org/10.1146/annurev-fluid-010518-040401
https://www.annualreviews.org/doi/full/10.1146/annurev-fluid-010518-040401


FL51CH09_Elghobashi ARI 14 November 2018 9:7

1. INTRODUCTION

Turbulent flows laden with liquid droplets or gas/vapor bubbles [known as a member of turbulent
dispersed multiphase flows (TDMF), which include dispersed solid particles as well] are ubiquitous
in nature and engineering applications. In nature, examples include rain, waterfall mists, air bubbles
in the upper ocean, and vapor bubbles in geysers. Engineering applications include liquid fuel
sprays in all types of combustion engines, paint sprays, spray drying in the pharmaceutical industry
as well as food processing, and water vapor bubbles in nuclear reactor cooling systems or those
created by cavitation in the wakes of ship propellers, just to list a few.

Direct numerical simulations (DNS) of TDMF are far more challenging than DNS of tur-
bulent single-phase flows (TSPF). The reason is that TDMF possess, in general, a much wider
spectrum of important length scales and timescales than that of TSPF. These scales are associated
with the microscopic physics of the dispersed phase in addition to those of the carrier fluid, cov-
ering the range of fine to large structures of turbulence. Major advances in both supercomputer
technologies and numerical methods during the past three decades have made it possible to per-
form DNS of TDMF at moderate Reynolds numbers. However, current and near-future parallel
supercomputers do not allow the simultaneous resolution of all scales of TDMF, including the
scales of motion around each of the millions of dispersed particles of size smaller than the finest
scales of the carrier fluid motion.

Furthermore, DNS of turbulent flows laden with droplets or bubbles (the topic of the present
review) are more challenging than DNS of solid-particle-laden turbulent flows due to the necessity
of accounting for the shape deformation of the dispersed phase in the former.

Accurate prediction of the deformation of the interface between the dispersed and continuous
phases requires proper accounting of the effects of surface tension and the different viscosities and
densities of the two phases in the governing equations of motion. Two dimensionless quantities
that measure the ability of the carrier fluid motion to deform the immersed droplets or bubbles
are the Weber number, We, and the capillary number, Ca. We is the ratio of the inertial forces to
surface tension forces, whereas Ca is the ratio of viscous forces to surface tension forces. Ca is used
for droplets/bubbles whose size d is smaller than the Kolmogorov length scale, where the viscous
forces are dominant compared to inertial forces. We is used when d is larger than the Kolmogorov
length scale. Qualitatively, large values of We or Ca enhance the deformability whereas lower
values reduce it.

The sizes of the droplets or bubbles in the studies reviewed here range from smaller to larger
than the Kolmogorov length scale. In all the DNS studies reviewed, the governing conservation
equations of the interacting fluid phases are solved on a fixed (Cartesian) grid. In other words,
methods that use interface-fitting adaptive grids are not included in this review because these
methods consider only nonturbulent flows.

Since current supercomputers allow DNS to resolve the turbulent fluid motion only at length
scales greater than or equal to the Kolmogorov length scale, it is not possible at present to fully
resolve the motion of dispersed deformable droplets or bubbles below the Kolmogorov scale. In
order to overcome this difficulty, phenomenological models are used to compute the deformation
of the dispersed phase, as discussed in Sections 2.1.2 and 3.1.2.

For deformable bubbles or droplets larger than the Kolmogorov length scale, the resolved
shapes and motions of the interfaces between the two phases are computed via one of the following
three approaches: tracking points, tracking scalar functions, or the immersed boundary method
(IBM) with an interaction potential model (IPM).

According to the tracking points approach, the interface is marked by points that are advected by
the flow, as in the front-tracking method (FTM) of Unverdi & Tryggvason (1992) and Tryggvason
et al. (2001).
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In the tracking scalar approach, each of the following four numerical methods has its tracking
function:

1. For the volume of fluid (VOF) method, the relevant function is the volume fraction of the
local phase on either side of the interface (Scardovelli & Zaleski 1999).

2. For the level set method, the function is the signed distance function representing the
shortest distance from the interface (Sussman et al. 1994, Osher & Fedkiw 2001) or its
hyperbolic-tangent version (Desjardins et al. 2008).

3. For the lattice Boltzmann method (LBM), the function is the probability density function,
f n
i (x, t), of finding a fluid particle of fluid phase n at position x, at time t, and moving in

the direction i of one of the discretized lattice velocity directions. The physical properties
of the fluid, such as the density or momentum, are defined as moments of f n

i (x, t). In
discretized LBM, the moments are evaluated by quadrature summation over all i . The
interface between two phases is modeled by adding an extra force to the lattice Boltzmann
(LB) equilibrium velocity to represent the microscopic interaction between the two phases
(e.g., surface tension or diffusivity) (Shan & Chen 1993).

4. For the phase field model (PFM), the function is the scalar phase field, φ(x, t), also known as
the order parameter, which represents one of the physical properties (e.g., molar concentra-
tion) of a binary fluid mixture. The function φ(x, t) is mostly uniform in the bulk phases and
varies smoothly over a diffuse interfacial layer of finite thickness. The transport of φ(x, t) is
governed by the Cahn–Hilliard equation (Cahn & Hilliard 1959), which accounts for the ad-
vection of φ(x, t) by the fluid velocity and the diffusion, which equals ∇ · [M (φ)∇μφ], where
M(φ) is the fluid mobility and μ(φ) is the chemical potential, which is defined in terms of
the free energy f (φ) of the fluid. In contrast to the above methods 1–3, in PFM the surface
tension forces are replaced by a continuum model of f (φ) ( Jacqmin 1999). Accordingly, the
Navier–Stokes equations are modified by adding the forcing function, μ∇φ, to represent
the surface tension forces (Gurtin et al. 1996). Recently, a hybrid LBM-PFM was used to
simulate the dispersion of liquid droplets in isotropic turbulence (Komrakova et al. 2015),
as discussed in Section 3.2.4.

The recently developed hybrid IBM-IPM approach (Spandan et al. 2017a) couples IBM with
a phenomenological IPM to simulate deformable droplets or bubbles in a turbulent flow. The
dynamics of the interface deformation is modeled via a three-dimensional (3D) spring network
distributed over the surface of the immersed droplet (de Tullio & Pascazio 2016). The IPM is
based on the principle of minimum potential energy, where the total potential energy depends on
the extent of the spring network’s deformation. Modeling the spring network requires computing
ad hoc elastic constants via a reverse-engineered approach. The IBM enforces the boundary con-
ditions at the interface (e.g., the no-slip condition). A moving least squares (MLS) approximation
(Vanella & Balaras 2009) is used to reconstruct the solution in the vicinity of the immersed sur-
face and to convert the Lagrangian forcing back to the Eulerian grid. MLS ensures constructing
uniform Lagrangian grid elements on the immersed surface as it deforms. Spandan et al. (2018)
used the IBM-IPM approach to study the deformation of bubbles dispersed in a turbulent Taylor–
Couette (TC) flow and the effect of their deformation on drag reduction. This study is discussed
in Section 2.2.3.

Anderson et al. (1998) provided a historical review of the early studies by Poisson, Maxwell,
Gibbs, Rayleigh, and van der Waals on modeling the interface between two immiscible fluids.

When necessary, the numerical methods are briefly discussed in this review. However, the focus
here is not on the fine details of the different numerical algorithms but rather on the different
methods’ contributions to advancing our understanding of the physics of the interactions between
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Druzhinin & Elghobashi 1998
Druzhinin & Elghobashi 2001
Mazzitelli et al. 2003
Ferrante & Elghobashi 2004

Mashayek 1998
Chen et al. 1998
Miller & Bellan 1999
Leclercq & Bellan 2005
Russo et al. 2014
Kuerten & Vreman 2015

Cristini et al. 2003
Biferale et al. 2014
Spandan et al. 2016

Spandan et al. 2017b

d < η
Nondeformable

DNS of bubble-laden
turbulent flows

DNS of droplet-laden
turbulent flows

d < η
Deformable

d > η
Deformable

Scarbolo & Soldati 2013
Scarbolo et al. 2015
Komrakova et al. 2015
Dodd & Ferrante 2016
Scarbolo et al. 2016
Albernaz et al. 2017
Roccon et al. 2017
Spandan et al. 2017a

Unverdi & Tryggvason 1992
Lu et al. 2005
Qian et al. 2006
Lu & Tryggvason 2006
Lu et al. 2006
Tryggvason et al. 2006
Lu & Tryggvason 2008
Lu & Tryggvason 2013
Spanden et al. 2018

Figure 1
Direct numerical simulation (DNS) studies reviewed in this article of bubble- and droplet-laden turbulent
flows for bubbles/droplets smaller (d < η) and larger (d > η) than the Kolmogorov length scale, η.

turbulence and droplets or bubbles. This review intends to complement the recent reviews of
TDMF by Balachandar & Eaton (2010), of bubble-laden turbulent flows by Tryggvason et al.
(2013), and of simulation methods of particulate flows by Maxey (2017).

The article proceeds as follows. Section 2 discusses DNS of bubble-laden turbulent flows,
Section 3 discusses DNS of droplet-laden turbulent flows, and Section 4 provides concluding
remarks.

2. DNS OF BUBBLE-LADEN TURBULENT FLOWS

The word “bubbles” in this review refers to either gas bubbles or vapor bubbles since the mechan-
ical aspects of their motion in liquid are the same except for the stronger effects of added mass in
the latter (Prosperetti 2017).

The length scale, d , is used in this review to denote the maximum size of the bubble. Thus,
for a spherical bubble, d equals the diameter. For an ellipsoidal bubble, d equals the length of the
major axis. In the following sections, the discussion considers bubbles whose size d is smaller than
the Kolmogorov length scale, η, as well as bubbles with d > η. Figure 1 shows a list of the authors
whose papers are reviewed in this article.

2.1. Bubbles Smaller than the Kolmogorov Length Scale (d < η)

Bubbles of size d <η are generally termed microbubbles (Madavan et al. 1984, Druzhinin &
Elghobashi 1998). DNS of microbubble-laden turbulence can be performed using the two-fluid
(TF) approach or the Eulerian–Lagrangian (EL) approach. The EL approach is based on the point
particle assumption (Elghobashi & Prosperetti 2009, Balachandar & Eaton 2010).
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2.1.1. Nondeformable spherical bubbles of size d < η. Following the approach of Maxey &
Riley (1983), Druzhinin & Elghobashi (1998) derived the equation of motion of a nondeformable
spherical microbubble of size d < η in a turbulent flow, neglecting the Basset and lift forces and
assuming ρb � ρf , where ρb and ρf are the densities of the bubble gas and surrounding fluid
(liquid), respectively:

dVi

dt
= 3

DUi

Dt
+ 1

τb
(Ui ,xb − Vi + W δi z), 1.

where the bubble response time τb and terminal velocity W are defined as

τb = d 2

36ν
and W = 2τb g. 2.

In the above equations, Vi and Ui are the instantaneous components of the bubble velocity and
the carrier fluid velocity in the three coordinate directions (respectively), xb is the position of the
bubble center, D

Dt is the Lagrangian derivative, g is the gravitational acceleration, and ν is the
kinematic viscosity of the carrier fluid. Equation 1 is valid for the condition d < η, which simul-
taneously necessitates τb <

τK
36 according to Equation 2, where τK is the Kolmogorov timescale.

This condition on τb for the bubble does not have a corresponding restriction for the solid particle
when using the equation of Maxey & Riley (1983), where the particle response time, τp, can be
larger than τK.

Druzhinin & Elghobashi (1998) derived the TF equations for a bubble-laden turbulent flow by
spatially averaging the governing equations of the carrier fluid and the bubble phase over a scale
of the order of η, which is much larger than the bubble diameter. They used the TF equations to
predict a bubble-laden Taylor–Green vortex flow and decaying isotropic turbulence with two-way
coupling. The same authors used the TF equations in DNS to study a 3D bubble-laden spatially
developing mixing layer with two-way coupling (Druzhinin & Elghobashi 2001).

Ferrante & Elghobashi (2007) performed DNS using the TF equations to study the effects
of microbubbles on the vorticity dynamics in a Taylor–Green vortex flow. The results show that
bubbles with a volume fraction of ∼10−2 enhance the decay rate of the vorticity at the center of
the vortex. This is due to bubble clustering in the vortex core, which creates a positive velocity
divergence. The vorticity transport equation shows that this positive ∇ · U enhances the local
vorticity decay.

To study drag reduction, Ferrante & Elghobashi (2004) performed DNS of a microbubble-
laden spatially developing turbulent boundary layer over a flat plate at Reθ = 1,430. They included
in Equation 1 the bubble lift force, [(U − V) × �s]i , where �s is the local vorticity vector, in
accordance with Auton (1987) and Auton et al. (1988). The lift force was needed for the bubble
trajectories as they pass through the viscous sublayer where the fluid mean velocity gradient is
maximum. The bubble diameter was db = 62 µm, d+

b = 2.4 in wall units, and the volume fraction
	v varied from 0.001 to 0.02. The authors concluded that

the presence of bubbles [in the boundary layer] results in a local positive divergence of the fluid velocity,
∇ ·U > 0, creating a positive mean velocity normal to (and away from) the wall which, in turn, reduces
the mean streamwise velocity and displaces the quasi-streamwise longitudinal vortical structures away
from the wall. This displacement has two main effects: (i) it increases the spanwise gaps between the
wall streaks associated with the sweep events and reduces the streamwise velocity in these streaks, thus
reducing the skin friction by up to 20.2% for 	v = 0.02; and (ii) it moves the location of peak Reynolds
stress production away from the wall to a zone of a smaller transverse gradient of the mean streamwise
velocity (i.e., smaller mean shear), thus reducing the production rate of turbulence kinetic energy and
enstrophy. (Ferrante & Elghobashi 2004, abstract, emphasis in original)
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The drag reduction mechanism described above applies for nondeformable microbubbles of
size d < η. Later we discuss that drag reduction can also be realized by deformable microbubbles
(Section 2.1.2) and by deformable large bubbles of size d > η (Section 2.2.2).

Mazzitelli et al. (2003) performed DNS of microbubble-laden isotropic turbulence using the
point particle approach to study the two-way coupling effects, especially that of the lift force
discussed above. They used 144,000 bubbles of size d ∼ 120–250 µm and volumetric fraction
	v = 0.016. However, they applied artificial forcing to the turbulence kinetic energy (TKE)
spectrum, E(k, t), at small wave numbers to create stationary turbulence at a fixed Reλ = 62. This
forcing camouflages the true two-way coupling effects of the bubbles on the flow, and thus no
correct conclusion can be made about these effects. The camouflage is explained by the spectral
transport equation of E(k, t):

dE(k, t)
dt

= T(k, t) − ε(k, t) + �b(k, t) + F (k, t), 3.

where the terms on the right-hand side are the transfer rate of TKE at wave number k, the
dissipation rate, the bubbles’ two-way coupling rate, and the artificial forcing rate, respectively.
The instantaneous two-way coupling and transfer rates (after omitting the t) are

�b(k) = −
∑

κ≤|κ|<κ+1

R
{〈

û∗
j (κ) f̂ j (κ)

〉}
and 4.

T (κ) =
∑

κ≤|κ|<κ+1

κl Pjk(κ) I

{∑
κ′

〈
ûk(κ′)ûl (κ − κ′)û∗

j (κ)
〉}

, 5.

respectively, where R{} and I{} denote the real and imaginary parts,

Pjk(κ) ≡ δ j k − κ j κk

κ2
6.

is the projection tensor, and δ j k is Kronecker delta. f̂ j (κ) is the Fourier coefficient of the force
f j imparted by the bubbles on the surrounding fluid, and the asterisk (∗) denotes the complex
conjugate. The right-hand sides of both Equations 4 and 5 create nonlinear triadic interactions
involving all wave numbers of E(k, t), including the small wave numbers where F (k, t) is applied
(Ferrante & Elghobashi 2003). These triadic interactions are responsible for signaling the effects
of the perturbations created by the microbubbles at high wave numbers to the large scales (small
wave numbers) (Elghobashi & Truesdell 1993). Therefore, artificially increasing E(k, t) at small
wave numbers by F (k, t) opposes the two-way coupling effects of the microbubbles. Furthermore,
by definition,

∫ kmax
kmin

dE(k,t)dk
dt = dE

dt = 0 for a forced stationary turbulence, and thus an invariant E(t)
cannot show any effects of the two-way coupling. It is important to note that it is appropriate to
use forced isotropic turbulence to study the dispersion of bubbles or particles in one-way coupling
(e.g., Wang & Maxey 1993, Snyder et al. 2007).

The word “artificial” in the above discussion distinguishes between the definition of homoge-
neous isotropic turbulence (used by Taylor and Kolmogorov), in which the production of TKE
is zero because of the statistical correlations 〈ui u j 〉 = 0 for i �= j , and that of shear flows (jets,
wakes, and channel flows), in which TKE is produced naturally by the interactions between finite
〈ui u j 〉 and gradients of mean velocities. In forced isotropic homogeneous turbulence, the TKE is
added artificially to the flow since no natural production of TKE exists.

2.1.2. Deformable bubbles of size d < η. Performing DNS of TDMF to resolve the shape
deformation of millions of bubbles or droplets with d < η is beyond the capabilities of current
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parallel supercomputers. For example, performing DNS of isotropic homogeneous TSPF at Reλ =
500 in a cubical domain requires a mesh of N 3 = 2,0483 � 8.6 × 109 points. A typical value of the
Kolmogorov length scale for that flow is η � 5 × 10−4 m. Assume that 80 × 106 liquid droplets
of diameter d = 5 × 10−5 m at a volume fraction of 	v = 10−3 are being dispersed in that flow.
Now, performing DNS to resolve the flow inside and outside each of these droplets would require
at least 20 mesh points per droplet diameter in each of the three coordinate directions. Since we
have d/η = 0.1, the mesh side length � of each of the 2,0483 cells has to be subdivided into 200
divisions. In other words, the cubical domain would require (200 × 2,048)3 � 69 × 1015 mesh
points. Furthermore, the time step for this TDMF would be smaller by a factor of 200 compared
to that of the above-described TSPF. No current or near-future supercomputer would be capable
of performing these computations. However, it is feasible to use the point particle approach
combined with a phenomenological subgrid model to calculate the shape deformation of the
dispersed phase. The study by Spandan et al. (2017b) was the first (and presently only) study that
followed that approach and thus is described here in some detail. Spandan et al. (2017b) performed
DNS to study the flow of deformable sub-Kolmogorov bubbles dispersed in a turbulent TC flow.
They used a two-way coupled point particle approach and were able to simulate approximately
105 continuously deforming bubbles. The density ratio ρ̂ of the bubble gas density to that of the
liquid was 10−3, the viscosity ratio μ̂ was 10−2, and the volume fraction 	v of the bubbles was 10−3.
The study focused on the effect bubble deformability had on the reduction of the torque required
to rotate the inner cylinder at a prescribed angular velocity. The reduction of the required torque
is calculated by comparing the average shear stress at the rotating wall for the bubble-laden flow
with that of a single-phase flow. The rotation rate of the inner cylinder was quantified by the
inner cylinder Reynolds number, Rei = riωi(ro −ri)/ν, where ri, ro, ωi, and ν are the inner cylinder
radius, outer cylinder radius, inner cylinder angular velocity, and the kinematic viscosity of the
carrier fluid, respectively. Two cases were simulated with Rei = 2.5 × 103 and 8 × 103.

The bubble shape was assumed to be at all times a triaxial ellipsoid described by a symmetric,
positive definite, second-rank tensor S satisfying the condition S−1: xx = 1, where x is the position
vector of any point on the ellipsoid surface relative to its center. The time rate of change of S is
described by the phenomenological equation of Maffettone & Minale (1998), which was originally
developed for liquid droplets,

dS
dt

− (� · S − S · �) = − f1

τ

(
S − g(S)I

)
+ f2

(
E · S + S · E

)
, 7.

where τ = μR/σ is the interfacial timescale, μ is the dynamic viscosity of the carrier fluid (liquid),
R is the radius of the equivalent undeformed spherical bubble, and σ is the surface tension. E and
� are the strain rate and rotational rate tensors, respectively. I is the second-rank unit tensor.

The left-hand side of Equation 7 is the Jaumann corotational derivative (Gurtin et al. 2010),
which is frame invariant and depends on �. Equation 7 states that the temporal evolution of the
shape tensor is governed by two competing phenomena: the interfacial tension (the first term on
the right-hand side), which attempts to restore the initial spherical shape, and the drag exerted
by the motion of the ellipsoid while preserving the initial volume (the second term on the right-
hand side). The positive dimensionless coefficients f1 and f2 are functions of the viscosity ratio
μ̂. The function g(S) is introduced to preserve the bubble volume and is proportional to the ratio
of the third invariant of S to the second invariant of S. The derivation of Equation 7 is given by
Maffettone & Minale (1998).

Time integration of Equation 7 leads to three eigenvalues of S, which equal the squares of
the three semiaxes of the ellipsoid, and three eigenvectors, which provide the orientations of the
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semiaxes. Equation 7 has been validated experimentally by Guido et al. (2000) for a neutrally
buoyant liquid droplet immersed in a viscous fluid subjected to uniform shear. Spandan et al.
(2017b) assumed a small capillary number, which measures the relative importance of the viscous
forces to surface tension forces at the small-scale motion, i.e., Ca = τ/τK = (η μf )/(στK) � 1,
where μf is the dynamic viscosity of the carrier fluid and τK is the Kolmogorov timescale.

To ensure that the deformed ellipsoidal bubble is nearly axisymmetric, Spandan et al. (2017b)
further assumed that Camax = 0.1. To satisfy the no-slip boundary condition, they used the
drag and lift coefficients developed by Njobuenwu & Fairweather (2015) for solid ellipsoidal
particles by assuming that the bubble interface is contaminated with surfactants. D. Lohse (personal
communication) justified using the no-slip boundary condition for the bubble surface and the drag
and lift forces for solid ellipsoids by setting Ca � 1 and μ̂ = 10−2; hence, the viscosity of the
bubble gas was negligible, thus minimizing the drag due to the internal gas circulation. The
bubble acceleration equation accounted for the forces due to drag, lift, added mass, and buoyancy.
It should be noted that whether the interface of a bubble or droplet is clean or contaminated
(e.g., with surfactants) has significant effects on its shape deformation and motion dynamics (e.g.,
drag and lift forces) and, consequently, on the mathematical/numerical treatment of the boundary
conditions at the interface (Clift et al. 1978).

The DNS results show that an increase in the deformability of the sub-Kolmogorov bub-
bles enhances drag reduction due to a significant accumulation of the deformed bubbles near
the rotating inner wall (Figures 2 and 3). In Figure 2, the dimensionless deformation parame-
ter is D = (d3 − d1)/(d3 + d1) (Maffettone & Minale 1998), where d1 and d3 are the lengths of
the minor and major semiaxes of the ellipsoid, respectively. A larger concentration of bubbles
near the driving wall indicates that they are effective in suppressing the plumes’ ejection pro-
cess; hence, drag reduction is greater. These plumes are unsteady vortical structures that detach
from either the inner or outer cylinder in the wall-normal direction (van der Veen et al. 2016).
The plume ejection occurs predominantly at the stagnation regions (along the walls) between the

1.0

0.10

0.08

0.06

0.04

0.02

0
0.80.60.40.20

D

Rei = 2,500; Ca = 10–3

Rei = 2,500; Ca = 10–2

Rei = 8,000; Ca = 10–2

r = (r – r i )/d

Figure 2
Radial (wall-normal) profiles of azimuthally, axially, and temporally averaged deformation parameter D of
the sub–Kolmogorov length scale bubbles for two capillary numbers, with inner cylinder Reynolds number
Rei = 2,500 and 8,000. Figure adapted from Spandan et al. (2017b) with permission from the American
Physical Society.
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Rei = 2,500; Ca = 10–6

Rei = 2,500; Ca = 10–2

Rei = 8,000; Ca = 10–2
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1

0
0.80.60.40.20

ϕ/Φv

r = (r – r i)/d

Figure 3
Radial (wall-normal) profiles of azimuthally, axially, and temporally averaged local volume fraction, φ, of the
sub–Kolmogorov length scale bubbles, normalized by the total volume fraction, 	v, for two capillary
numbers, with inner cylinder Reynolds number Rei = 2,500 and 8,000. Figure adapted Spandan et al.
(2017b) with permission from the American Physical Society.

counter-rotating rollers where a negative pressure gradient normal to the wall is created. The
bubbles’ preferential accumulation is induced by increased resistance to the bubbles leaving
the wall in its normal direction. The increased resistance is due to the strong deformation of
the bubbles near the rotating wall, which makes them prolated (stretched along one axis) and
oriented along the streamwise direction.

2.2. Bubbles Larger than the Kolmogorov Length Scale (d > η)

In the following three subsections, we review studies of bubble deformation in isotropic turbulence
using LBM, as well as in turbulent channel flow using FTM, and in turbulent TC flow using IBM-
IPM.

2.2.1. Single-bubble deformation and breakup in isotropic turbulence using the lattice
Boltzmann method. Qian et al. (2006) studied the deformation and breakup of a single bub-
ble in stationary isotropic turbulence (20 ≤ Reλ ≤ 35) using LBM with a D3Q15 lattice (see
Section 3.2.1) and the BGK (Bhatnagar–Gross–Krook; Bhatnagar et al. 1954) form of the LB equa-
tion with single relaxation time. A validation test was made for a nonturbulent flow by comparing
the results of this LBM with those of FTM for a 2D rising bubble and showed good agreement
(Sankaranarayanan et al. 2003). Qian et al. (2006) defined the Weber number as We = ρl〈δu2〉de/σ ,
where δu is the velocity difference over a distance equal to the bubble’s equivalent spherical diam-
eter, de, and the angle brackets denote averaging over space and time. The results show that, prior
to the bubble breakup, the bubble surface area increases by at least 37%. They compared their re-
sults with the experimental data of Risso & Fabre (1998), which were conducted in a microgravity
environment. Both the experiment and LBM indicate that there is a Weber number below which
breakup is not observed. This Weber number is based on the statistics of the single-phase flow
that would exist in the absence of the bubble. In LBM, this Weber number was approximately 3.0.
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2.2.2. Deformable bubbles of size d > η in turbulent channel flow using the front-tracking
method. Unverdi & Tryggvason (1992) introduced FTM, in which one set of the incompressible
Navier–Stokes and continuity equations is used for the whole computation domain, including the
bubbles and the carrier liquid:

ρ
∂u
∂t

+ ρ∇ · uu = −∇P + ∇ · μ(∇u + ∇uT ) + σ

∫
F

kf nf δ(x − xf ) dAf , 8.

∇ · u = 0, 9.

where u is the velocity, P is the pressure, ρ and μ and are the discontinuous density and viscosity
fields, respectively, δ is a 3D delta function, σ is the surface tension coefficient, k is twice the mean
curvature, the subscript f denotes the front, nf is a unit vector normal to the front, x is the point
at which the equation is solved, and xf is the position of the front. The integral is over the entire
front such that it creates a force that acts at the interface but is smooth along the front.

The moving interface (front) between the bubble gas and the surrounding liquid is represented
by an unstructured mesh that explicitly marks the position of the front. The front mesh (or marker)
points are advected by the carrier flow velocities, interpolated from the fixed Cartesian mesh. As
the front deforms, surface markers are dynamically added or removed. An indicator function, I(x),
which has the value 1 inside the bubble and 0 in the carrier liquid, is constructed from the known
position xf . Since both ρ and μ are constant within each fluid, their values at any point can be
calculated using I(x) via the equations ρ(x) = ρ0 + (ρb − ρ0)I(x) and μ(x) = μ0 + (μb − μ0)I(x),
where the subscripts b and 0 denote the bubble and carrier fluids, respectively.

The front is given a thickness of the order of several mesh cells to avoid numerical instabilities
associated with a sharp interface. In this narrow transition zone, the fluid properties change
smoothly. The sharp delta functions in Equation 8 are approximated by smoother functions with
a compact stencil on the fixed Cartesian mesh. At each time step, after the front has been advected,
the density and the viscosity fields are reconstructed by integration of the smooth grid delta
function. The surface tension force (the last term on the right-hand side of Equation 8) is then
added to the nodal values of the discretized Navier–Stokes equations. More details are given by
Tryggvason et al. (2006).

Lu et al. (2005) performed DNS of a turbulent flow in a minimum channel at Reτ = 135.
They used the FTM described above to study the effect of 16 dispersed bubbles on the wall shear
stress. The nondeformed bubble diameter was 54 wall units. The density ratio was restricted to
ρb/ρ0 = 0.1, and the dynamic viscosity ratio was fixed at μb/μ0 = 1, which resulted in a kinematic
viscosity ratio νb/ν0 = 10, a typical value for air bubbles in liquid water. Three Weber numbers
were tested: 0.203, 0.270, and 0.405. The results show that deformable bubbles (with largest We)
can lead to a significant reduction of the wall drag by suppression of streamwise vorticity. Less
deformable bubbles, however, are slowed down by the viscous sublayer and lead to a large increase
in drag. The reduction of streamwise vorticity occurs by bubbles moving parallel to the wall at a
distance of about one bubble radius between the bubble surface and the wall. These bubbles move
over the streamwise vortices with a higher velocity than the advection velocity of the vortices.
The bubbles’ passing forces the streamwise vortices closer to the wall, causing the streamwise
vortices and the wall-bounded vorticity of the opposite sign to mutually cancel out. This reduces
the streamwise vorticity and correspondingly the uv component of the Reynolds stress tensor.
Tryggvason et al. (2006) discussed the numerical difficulties that arise when using FTM with
large density and viscosity ratios.

Lu & Tryggvason (2006) performed DNS with FTM to study a bubbly vertical channel down-
flow at friction Reynolds number Reτ = 127. The number of bubbles ranged from 18 to 72, with
an average volume fraction 	v ranging from 0.015 to 0.06 and a diameter of 0.25H, where H
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is half of the channel width. The density and kinematic viscosity ratios were ρb/ρ0 = 0.1 and
νb/ν0 = 10, respectively. The results show that the lift force on the bubbles near the wall caused
them to concentrate in the core region and create a bubble-free wall layer.

Lu & Tryggvason (2008) performed DNS with FTM to study the effect of deformability
of 21 bubbles on their dispersion in a turbulent bubbly upflow in a vertical channel at friction
Reynolds number Reτ = 127. The density and viscosity ratios were prescribed as those in Lu &
Tryggvason (2006). Two cases were studied for two values of the Eötvös number, Eo = ρf gd 2/σ ,
which measures the ratio of gravitational forces to surface tension forces: 0.45 for nearly spherical
bubbles and 4.5 for deformable bubbles. The lift force on a clean spherical bubble rising in a vertical
shear flow is directed toward the side where the fluid moves faster past the bubble in a frame of
reference moving with the bubble (Lu et al. 2006), according to Saffman (1965). In channels, where
the fluid velocity is zero at the walls, spherical bubbles therefore move laterally toward the walls in
upflow and away from the walls in downflow. However, bubble deformation can reverse the sign
of the lift force. Furthermore, the lift force on strongly deformable bubbles is weaker than that on
nearly spherical bubbles. Turbulent dispersion of deformable bubbles overcomes their tendency
to concentrate in the core region of this upflow.

Lu & Tryggvason (2013) performed DNS of nearly spherical bubbles in a vertical turbulent
channel upflow similar to their earlier study (Lu & Tryggvason 2008) but at higher Reynolds
number (Reτ = 250) and with 140 bubbles. The bubble diameter was prescribed to be 40 wall
units, or 8% of the channel width. At a statistically steady state, the weight of the bubble-laden
liquid and the imposed pressure gradient are balanced by the shear stress. For the upflow in the
channel, as the bubbles migrate toward the wall (by the lift force), the average mixture density in
the core increases until the weight is balanced exactly by the pressure gradient. The shear force,
and subsequently the lift force, vanish in the core region, thus ending the bubbles’ migration to
the wall. As a result, the velocity gradient exists only in the wall region where the bubbles’ volume
fraction reaches its peak (see Lu & Tryggvason 2013, figures 3 and 4). The high concentration
of bubbles in the wall layer results in a significant reduction of the TKE and its dissipation rate
there. However, figure 5 of Lu & Tryggvason (2013) also shows that the peak of the dissipation
rate increases very close to the wall as compared to single-phase flow, for reasons that were not
discussed.

2.2.3. Deformable bubbles of size d > η in turbulent Taylor–Couette flow using the
immersed boundary method with the interaction potential model. Spandan et al. (2018)
performed DNS to study the effects of dispersed deformable bubbles of size d > η on drag
reduction in a turbulent TC flow using hybrid IBM-IPM (see Section 1). The surface of each
dispersed bubble was discretized using an unstructured Lagrangian mesh. The effect of the bubbles
on the carrier fluid was accounted for via a volume-averaged force that is computed on that mesh
and then transferred to the Eulerian mesh where the NS equations are solved. The deformation
of the immersed bubbles is computed via the IPM, where the surface tension of a liquid–gas
interface is modeled using a triangulated network of elastic and torsional springs, as described by
Spandan et al. (2017a). Two cases were simulated with inner cylinder Reynolds numbers, 5 × 103

and 2 × 104. The number of the dispersed bubbles was 120, each with an initial diameter of
db ∼ 14η and db ∼ 25η for the low- and high-Rei cases, respectively, and the global volume
fraction 	v was 0.001. Each bubble was initialized as a sphere with its surface discretized with
1,280 and 2,560 Lagrangian marker points for the low- and high-Rei cases, respectively. Four
values of Weber number, based on the velocity of the inner cylinder, were considered: 0.01, 0.5,
1, and 2. These values were assumed to be small enough to avoid bubble breakup. The ratio, ρ̂, of
the bubble gas density to that of the liquid was 5×10−2. Bubble–bubble and bubble–wall collisions
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were modeled via an elastic potential between the Lagrangian mesh nodes and the center of the
enclosing Eulerian cell.

The results show that for all four We values, the bubbles concentrate near the inner cylindrical
wall. This is in contrast to the deformable sub-Kolmogorov bubbles that preferentially concentrate
near the inner wall as Ca is increased (see Section 2.1.2).

Sugiyama et al. (2008) derived the drag reduction of the bubble-laden TC flow as the sum of
two terms, DR1 =

(
1 − 〈εB〉

〈ε〉

)
and DR2 =

(
〈fb·u〉
〈ε〉

)
, where 〈εB〉 and 〈ε〉 are the mean dissipation rates

of TKE per unit mass of the bubble-laden carrier fluid and the single-phase flow, respectively.
The volume-averaged source term in the Navier–Stokes equations, fb, represents the two-way
force per unit mass of the carrier flow due to the dispersed bubbles, and u is the local fluid ve-
locity. The results show that DR1 dominates DR2 and increases with increasing We. The reason
is that when the bubbles are more deformable, they are stretched along the streamwise direc-
tion similar to that of sub-Kolmogorov deformable bubbles (see Section 2.1.2). The stretching
reduces the projected surface area in the direction of the relative velocity, which in turn lowers
the bubble Reynolds number, leading to smaller wake, lower TKE, and thus smaller 〈εB〉 and
lower DR1.

3. DNS OF DROPLET-LADEN TURBULENT FLOWS

3.1. Droplets Smaller than the Kolmogorov Length Scale (d < η)

Examples of liquid droplets of diameter d < η include rain droplets in the atmospheric bound-
ary layer and fuel droplets in the combustion chambers of modern aircraft jet engines. Carl
et al. (2001) measured the size distribution of the liquid fuel droplets under realistic condi-
tions in the combustion chamber of an aircraft jet engine, and their data show that the diam-
eter of most droplets is smaller than η in the region downstream of the initial ligament breakup
zone.

3.1.1. Nondeformable droplets of size d < η. Mashayek (1998) performed DNS with the point
particle approach and 963 grid points to study droplet–turbulence interactions in a homogeneous
shear flow. He considered both one-way and two-way couplings for nonevaporating and evaporat-
ing droplets. The number of droplets was 1.5 × 105, and the diameter of nonevaporating droplets
varied between 0.2η and 0.3η. The study showed that in the case of nonevaporating droplets, the
TKE is reduced and the flow anisotropy is increased due to the two-way coupling. In the case of
evaporating droplets, he found that the TKE and the mean internal energy of the carrier flow are
increased due to the mass transfer of the droplet vapor to the carrier fluid.

Chen et al. (1998) studied the collision and coalescence of mono-sized droplets in a turbulent
channel using DNS with the point particle approach at friction Reynolds number Reτ = 116.
The droplet diameter ranged from 0.1η to 0.5η, and the initial volume fraction was in the range
5.8×10−6 ≤ 	v ≤ 3.1×10−4. The ratio of the liquid density to that of the carrier fluid varied from
20 to 2,000. The results showed that the droplet inertia was the dominant factor in the collision
mechanism. The results also showed that the predicted collision rate agreed with the theory of
Saffman & Turner (1956) for droplets with a response time in wall units of τ+

d < 1.
Miller & Bellan (1999) performed DNS of a confined temporally developing mixing layer

with one layer laden with evaporating liquid droplets using the point particle approach and two-
way coupling for mass, momentum, and energy exchanges. The confining walls were treated as
frictionless and adiabatic to simplify the boundary conditions for the droplets and ensure the
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conservation of mass and energy. The initial volume fraction of the droplets in the laden stream
was 5.5 × 10−4. The initial number of the mono-size droplets in the different cases varied from
4×104 to 7.3×105, and their initial diameter ranged from 115 to 231 µm. The Reynolds number
based on the vorticity thickness was 200, and the convective Mach number Mc was 0.5. The initial
temperatures of the gas and droplets were 350 K and 325 K, respectively. The results show that the
TKE and the growth rate of the mixing layer were both attenuated monotonically by increasing
the mass loading ratios of the droplets.

Leclercq & Bellan (2005) extended the mathematical formulation of Miller & Bellan (1999)
to account for multicomponent chemical composition of the liquid droplets. They examined the
effects of the liquid composition on the development of the vortical features of the flow, the vortical
state reached after the second pairing, and the gas temperature and composition. They concluded
that the mixing layer growth and main rotational characteristics are unaffected by liquid specificity;
however, the global mixing is highly liquid specific. The analysis of the vorticity budgets showed
that the small-scale vortical activity increases with increased fuel volatility.

Russo et al. (2014) studied the evaporation and condensation of water droplets in a turbulent
channel flow in zero gravity at Reτ = 150 using DNS with the point particle approach and two-way
coupling of mass, momentum, and heat between the two phases. The carrier fluid consisted of air
and water vapor. One of the channel walls was heated while the other was cooled. This created
a temperature gradient in the wall-normal direction and also a nonuniform mean vapor mass
fraction. The objective of the study was to analyze the effects of phase change on the global heat
transfer properties of the flow and on droplet motion and size distribution. The density of both the
air and water vapor were time and space dependent, but their sum remained invariant to satisfy
the zero divergence condition for the whole flow. The details of the pseudospectral numerical
method are given by Kuerten (2006). The results show that initially the droplets migrate towards
the channel walls due to turbophoresis (Reeks 1983), thus increasing the droplet concentration
in the vicinity of the walls. Simultaneously, evaporation and condensation result in the droplets’
growth near the cold wall and diminution near the warm wall. This also creates a gradient in
water vapor concentration, directed from the cold to the warm wall. After reaching a steady state,
the droplet concentration and mean droplet size become nearly constant. Turbulent diffusion of
water vapor generates a mean flux of water vapor from the warm to the cold wall. Consequently,
conservation of water mass results in a net mass flux of the droplets from the cold to the warm
wall.

The results show that, at steady state, the heat transfer between the two walls for the droplet-
laden flow, quantified by the Nusselt number, is 3.5 times larger than that of the single-phase
flow and 2.6 times larger than that of a flow laden with solid spherical particles having the same
diameter, response time (τ+

p = τpu2
τ /ν), and specific heat as the droplets. This augmentation of

heat transfer (by droplets versus solid particles) is due to the latent heat of vaporization, which
reduces the droplet temperature near the hot wall, and the latent heat of condensation, which
increases the droplet temperature near the cold wall. The results also show that, at steady state,
the turbulence modulation of the carrier fluid by the droplets is the same as the modulation by
solid particles. The Reynolds shear stresses and the TKE production are reduced in the wall
region by the droplets. This finding is in contrast to that of Mashayek (1998), who found that
droplets’ evaporation enhanced the TKE production. In the simulation of Russo et al. (2014),
both evaporation and condensation occur due to the presence of the hot and cold walls, resulting
in a negligible net evaporation rate. The mean droplet diameter was found to be smaller near the
warm wall than near the cold wall. Nucleation of droplets and droplet breakup were not accounted
for in this study.
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Kuerten & Vreman (2015) extended the DNS study of Russo et al. (2014) to include the
effects of droplet collisions. The prescribed Weber number of the droplets was small enough that
coalescence between colliding droplets was negligible. The droplets’ overall volume fraction was
in the range 0.55 × 10−4 ≤ 	vo ≤ 2.2 × 10−4, and the corresponding number of droplets varied
from 0.5 × 106 to 2 × 106. The results show that droplet collisions (i.e., four-way coupling) cause
a significant reduction (about 76%) of the maximum local concentrations of the droplets near the
channel walls, as compared to the two-way coupling case with the same overall 	vo. Regarding
the dependence of droplet collisions on 	vo, Kuerten & Vreman (2015) stated that: “Elghobashi’s
diagram (Elghobashi 1994) indicates that the demarcation line between the two-way and four-
way coupling regimes shifts toward lower volume fraction if the Stokes number becomes higher.
However, in the present work, the Stokes number is only 10 in wall units, which shows that the
effect of collisions on concentration in dilute flows is not limited to very high Stokes numbers”
(p. 21).

Two comments related to the above statement are made here to clarify the diagram of
Elghobashi (1994). First, the logarithmic-scale ordinate in the diagram is the Stokes number,
St = τp/τK. The diagram shows that the demarcation line between the two-way and four-way
regimes shifts toward lower volume fraction (<10−3) for τp/τK ≥ 0.7 since the maximum pref-
erential accumulation of solid particles in isotropic turbulence occurs at τp/τK = 1 (Ferrante &
Elghobashi 2003). In other words, particle collisions are expected to start before the local concen-
tration reaches its peak. Second, if preferential accumulation occurs in a particle-laden turbulent
flow, then the abscissa of the diagram should represent the local volume fraction, φv, instead of the
overall volume fraction, 	vo, to determine whether the regime at a selected location is two-way
or four-way coupling.

The heat transfer results of Kuerten & Vreman (2015) indicate that accounting for the droplet
collisions (four-way coupling) reduces the Nusselt number by approximately 17% as compared
to two-way coupling for the case with highest 	vo. This means that a reduction of 76% in the
maximum φv near the wall resulted in only 17% reduction in Nusselt number. To explain this
result, we should note here that the large increase in Nusselt number when inertial particles are
present in the flow is caused totally by the direct convective heat transfer between the particles
and the carrier fluid due to their temperature difference. The reason for this direct causality
is that the two-way momentum coupling between the particles and fluid reduces the turbulent
shear stresses, TKE, and hence the turbulent heat fluxes within the carrier fluid—for example,
quantities proportional to <uiTf>, where ui and Tf are the fluctuations of the local fluid velocity
and temperature (see equations 20 and 21 in Kuerten & Vreman 2015).

The 76% reduction in the maximum φv near the hot wall reduces the total surface area of the
droplets across which heat is transferred from the hot fluid. Consequently, the fluid temperature
(as well as the temperature difference between the fluid and droplets) near the hot wall is higher
for the colliding droplets than in the case of no collisions. Thus, the Nusselt number reduction
for the four-way coupling case is not as severe as that of φv.

3.1.2. Deformable droplets of size d < η. Cristini et al. (2003) studied the deformation and
breakup of sub-Kolmogorov droplets in stationary isotropic turbulence. The objective was to
enhance the understanding of the droplet breakup process beyond the phenomenological models
of Kolmogorov (1949) and Hinze (1955). At the scale of these droplets, the viscous stresses,
Tμ = μ/τK, dominate the inertial stresses, Tρ = ρd 2/τ 2

K, since Tμ/Tρ = η2/d 2. Consequently, the
local velocity field in the vicinity of these droplets was assumed to be governed by the Stokes flow
equations. Both the viscosity ratio of the droplet fluid to the carrier fluid and the corresponding
density ratio were set equal to unity (neutrally buoyant droplets). The droplets were treated as
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passive tracers with no effects on the carrier fluid. Under these conditions, it was assumed that the
trajectory of a droplet center of mass is identical to that of the carrier fluid particle that coincided
with it at an initial time. The velocity field of the stationary isotropic turbulence, at Reλ = 54, was
obtained using a pseudospectral DNS method.

The velocity field around a droplet was obtained by iteratively solving, at each time step, the
boundary integral equation for the Stokes flow on a set of interfacial marker points that were
distributed on the surface of the initially spherical droplet. That velocity field was matched with
the velocity of the turbulent flow near the droplet location via linear expansion. The boundary
conditions for the local Stokes flow velocity field around the deformable droplets were prescribed
at the droplet interface by the continuous velocity and tangential stress and the discontinuous
normal stress due to surface tension. The droplet interface was adaptively restructured, between
time steps, to maintain uniform resolution of the pointwise curvature with a prescribed accuracy,
as described in detail by Cristini et al. (2001). The results of Cristini et al. (2003) included the
history of the deformation of two initially spherical droplets along their trajectories. Depending
on the local shear/strain rates, the droplet deformation stages included stretched ellipsoids and
dumbbells that led to neck thinning and pinch-off.

Biferale et al. (2014) studied the deformation and orientation statistics of sub-Kolmogorov el-
lipsoidal droplets in isotropic turbulence. Both the viscosity ratio of the droplet fluid to the carrier
fluid and the corresponding density ratio were set equal to unity (neutrally buoyant droplets). The
droplets were treated as passive tracers with no effects on the carrier fluid. Each of the simulated
droplets followed the trajectory of the carrier fluid particle coinciding with its center at an initial
time. The stationary homogeneous isotropic turbulent flow was computed via DNS at Reλ = 185
and 400. The ellipsoidal droplet shape evolution was predicted via the phenomenological equation
of Maffettone & Minale (1998) described earlier in Section 2.1.2. The prescribed initial droplet
size was such that d/η ≤ 0.1. The trajectories of 7 × 103 droplets for the Reλ = 185 case and
15 × 103 droplets for the Reλ = 400 case were computed. The results show, as expected, that
increasing the capillary number, Ca, for a given τK increases the droplet deformation. The defor-
mation of a typical droplet may follow a sequence of becoming oblate, becoming prolate, and then
returning to a spherical shape. A critical capillary number was identified at which the droplet elon-
gation along one or two directions becomes unbounded, which should eventually lead to droplet
breakup.

Spandan et al. (2016) studied the deformation and orientation statistics of neutrally buoyant
sub-Kolmogorov ellipsoidal droplets in turbulent TC flow. They followed the same approach of
Biferale et al. (2014) and their own study of the sub-Kolmogorov bubbles (Spandan et al. 2017b)
described above in Section 2.1.2. Spandan et al. (2016) used the term “zero-way coupling” as a
name for the approach that considers the droplet as a massless passive tracer. However, “zero-
way coupling” means no coupling, and certainly this is not the case of a tracer following the
identical instantaneous Lagrangian motion of a fluid particle. “Tracer” or “passive scalar” are
more appropriate names for this approach.

The droplet sizes were in the range 0.05 ≤ d/η ≤ 0.15 even during the deformation. The
DNS were performed for two inner cylinder Reynolds numbers (Rei = 2,500 and 5,000), four
capillary numbers (Ca = 0.05, 0.1, 0.2, and 0.3), and two viscosity ratios (μ̂ = 1 and 100).

The statistical analysis of the droplet deformation was performed using the dimensionless
deformation parameter D defined above in Section 2.1.2. The results show that the maximum
values of D occur near both the rotating and stationary walls, and as expected, D increases with
increasing the capillary number, Ca. However, the peak of the D profile moves away from the
wall with increasing Ca. This is a result of the elastic collision model used for the interaction of
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the droplet with the wall. The center of mass of a highly stretched droplet is displaced away from
the wall as compared to that of a less-deformed droplet.

3.2. Droplets Larger than the Kolmogorov Length Scale (d > η)

In the following five subsections, we review studies on single-droplet deformation and evaporation
in isotropic turbulence using LBM, single-droplet deformation in a turbulent channel flow using
PFM, coalescence and breakup of large droplets in turbulent channel flow using PFM, dispersion
of liquid droplets in isotropic turbulence using LBM-PFM, and the interaction between 3,130
fully resolved droplets and isotropic turbulence using VOF.

3.2.1. Single-droplet deformation and evaporation in isotropic turbulence using the lattice
Boltzmann method. Albernaz et al. (2017) used a hybrid LBM to study the deformation and
evaporation of a single droplet in stationary isotropic turbulence. In their hybrid method, the fluid
density and velocity fields were obtained via LBM with a D3Q19 lattice and a multirelaxation time
collision operator (d’Humières et al. 2002), but the internal energy conservation equation was
solved by the finite difference scheme of Lallemand & Luo (2003). In the D3Q19 lattice, “D3”
denotes 3D flow and “Q” refers to the first author of the paper by Qian et al. (1992). The number
19 indicates that a fluid point at the center of the cubic lattice interacts with the 18 neighboring
points (12 points of intersection of the 3 midplanes with the edges of the cube, plus 6 points of
intersection of the 3 midplanes at the 6 surfaces of the cube). A fluid point at the center of the cube
has 18 possible velocity directions, plus a zero velocity. The internal energy equation contained
a correction term proportional to the difference between the mean pressure of the domain and
the initial reference pressure. The correction is needed for conditions close to the critical point
where fluctuations of thermodynamic properties occur.

Forcing at low wave numbers using the method of Kareem et al. (2009) was applied at every time
step to generate a statistically stationary velocity field for 73 ≤ Reλ ≤ 133. The pseudopotential
method of Shan & Chen (1993) and Kupershtokh & Medvedev (2006) was used to simulate the
droplet in the LBM. The liquid hexane droplet was surrounded by its vapor as the carrier fluid.
The interface between the liquid and vapor was considered as a thin transition layer of finite width
(several nodes of the lattice) where the density changes smoothly from one phase to the other.
The ratio of the liquid density to that of the vapor was ∼10. Additionally, the ratio of the liquid
dynamic viscosity to that of the vapor was ∼10, since both the liquid and the vapor had identical
kinematic viscosity. The surface tension, σ , was calculated via the Young–Laplace equation, which
relates the pressure jump across the interface to the product of σ and the local curvature (Landau
& Lifshitz 1959). The initial temperature of both the liquid and the vapor was prescribed to be
0.9Tcritical of hexane. The initial droplet diameter, do, ranged from 50η to 80η, which corresponds
to the range from 2.4λ to 3.8λ.

The effect of surface tension on the droplet deformation was studied by varying the Ohnesorge
number, Oh = μ�/

√
ρ�σ d = √

We�/Re�, in the range 4.2 × 10−3 ≤ Oh ≤ 6 × 10−3, where μ� and
ρ� are the dynamic viscosity and density of the droplet.

Some interesting results of this study are: (a) For a fixed Reλ, increasing do increases the kinetic
energy of the carrier fluid and reduces the kinetic energy of the droplet since the total kinetic
energy is a function of the fixed Reλ. (b) The droplet deformation increases with increasing do due
to the increase of Weber number. (c) Reducing the surface tension increases the fluctuations of the
thermodynamic properties, thus increasing the evaporation rate. (d ) At the droplet surface, low-
temperature regions are associated with stronger curvature, whereas higher temperature occurs
in flatter surface regions (Figure 4). (e) Droplet volume fluctuations are correlated with vapor
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0.900

0.903

0.893

0.896

S* = 0.122 0.122 0.017 0.064 0.035

T

Figure 4
Temperature distribution over the droplet surface for different values of the deformation parameter, S∗ = (S − S0)/S0, where S is the
instantaneous area of the droplet surface and S0 is the equivalent surface area of a sphere whose volume is identical to that of the
deformed droplet. Figure adapted from Albernaz et al. (2017) with permission from Cambridge University Press.

temperature fluctuations. Strong correlations occur between positive temperature fluctuations
and vapor condensation.

3.2.2. Single-droplet deformation in a turbulent channel flow using the phase field model.
Scarbolo & Soldati (2013) used the PFM (see Section 1) of Gurtin et al. (1996) to study the
deformation of a single droplet released in a fully developed turbulent channel flow at Reτ = 100.
The ratios of the liquid density and viscosity of the droplet to those of the carrier fluid were
prescribed to be equal to unity. As described earlier in Section 1, the forcing term representing
the surface tension effects was added to the Navier–Stokes equations. The modified Navier–Stokes
equations were solved together with the phase field transport equation of Cahn & Hilliard (1959).
The initial droplet diameter was do = 0.8H, where H is half the channel height, and do/η ranged
from 7.7 to 16.7. The Weber number, We = (ρu2

τ H)/σ , was in the range 5.3 × 10−3 ≤ W e ≤
42.4 × 10−3. For that range of We, the mass loss at the end of the simulation varied from 4% to
14%. The results show that the TKE reaches its minimum value at the interface. The vorticity
peak occurs at a distance of ∼d/4 from the droplet interface, and the magnitude of that peak
decreases with decreasing We (see Scarbolo & Soldati 2013, figure 5).

Scarbolo et al. (2013) compared the performance of PFM with that of LBM (described in
Section 3.2.1 above) in simulating the deformation of a single 2D cylindrical droplet in simple
shear flows. The comparison showed that the PFM’s computational cost is almost three times
higher than that of LBM. However, the results of the PFM appear to be more accurate, in that
the spurious currents of the local kinetic energy created along the droplet interface were smaller
in PFM than in LBM by two orders of magnitude (see Scarbolo et al. 2013, figure 1).

3.2.3. Coalescence and breakup of large droplets in turbulent channel flow using the phase
field model. Scarbolo et al. (2015) used the above-described PFM in simulating droplets with
initial number N0 = 256 and volume fraction 	v = 0.054 in a DNS of a fully developed turbulent
channel flow at Reτ = 150. The objective was to study the interactions between the droplets. The
ratios of the liquid density and viscosity of the droplet to those of the carrier fluid were prescribed
to be equal to unity. The initial droplet diameter was do = 0.4H, where H is half the channel
height, and do/η ranged from 15.9 to 37. The interface thickness, ξ , was a constant prescribed via
the Cahn number, Ch = ξ/H = 0.0185, which resulted in η/ξ ranging from 0.36 to 0.84, thus
minimizing the smallest eddies’ effects on distorting the interface. The mass loss at the end of
the simulation varied from 2% to 10% for the range of 0.18 ≤ We ≤ 2.8. The results show that
under the selected conditions and fluid properties, droplets migrate away from the wall toward
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the channel center. The study identified two regimes of droplet interactions based on the Weber
number. For We < 1, the relatively large surface tension prevents droplet breakup and allows
coalescence events to prevail. Eventually, for t+ > 2,000 (in wall units), the number of the merged
droplets becomes <N0 and their separation distances increase, resulting in diminished collisions.

In contrast, for We > 1, the droplet breakup and coalescence processes occur simultaneously
during an early transition period. This is followed at large t+ by a dynamic equilibrium state, at
which the number of droplets reaches an asymptotic value that is about an order of magnitude
larger than that for the case of We < 1.

Scarbolo et al. (2016) performed DNS with the same flow conditions and fluid properties as
Scarbolo et al. (2015) to investigate turbulence modification by dispersed deformable droplets.
The results show that, for We > 1, the normalized wall shear stress or friction coefficient, Cf , for
the channel flow is not affected by the deformed droplets and that its temporal development is
nearly the same as that of the single-phase flow. However, for We < 1, the temporal development
of Cf shows a gradual increase at early times, reaching a peak at 1,000 ≤ t+ ≤ 2,000, followed by
a gradual reduction. The physical explanation for these observations was not provided.

Roccon et al. (2017) extended the DNS study of Scarbolo et al. (2016) by relaxing the restriction
of a unity viscosity ratio to examine the effects of varying the viscosity of the droplet. Five different
values of the dynamic viscosity ratio (μ̂ = 0.01, 0.1, 1, 10, and 100) and three values of Weber
number (We = 0.75, 1.5, and 3) were studied, providing a total of 15 test cases. The initial number
of droplets was N0 = 256, with volume fraction 	vo = 0.183 and initial droplet diameter 0.6H.
The results show that, for all test cases, the deformable droplets migrate away from the wall and
reduce the wall friction slightly, as indicated by a ∼2–4% increase of the average mean velocity in
the central zone of the channel.

Qualitatively, the results show that, as expected, increasing the droplet viscosity or surface
tension decreases the breakup rate. For the case of the highest surface tension, We = 0.75, the
droplets’ coalescence rate overtakes their breakup rate for all values of μ̂, resulting in a gradual
reduction of the number of droplets (Figure 5), which reaches an asymptotic value of ∼0.04N0

x

y

t+ = 300We = 0.75 t+ = 600

Turbulence kinetic energy (TKE)

0 2.5

t+ = 900

μ̂ = 0.01

μ̂ = 100

Figure 5
Temporal evolution of droplets for We = 0.75 and for two viscosity ratios, μ̂ = 0.01 (top row) and μ̂ = 100 (bottom row). Each panel
refers to a given time instant (t+ = 300, 600, or 900). Isocontours of turbulence kinetic energy computed on a plane passing through the
channel center are shown in gray scale. Figure adapted from Roccon et al. (2017) with permission from the American Physical Society.
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We = 3

x

y

t+ = 300 t+ = 600

Turbulence kinetic energy (TKE)

0 2.5

t+ = 900

μ̂ = 0.01

μ̂ = 100

Figure 6
Temporal evolution of droplets for We = 3 and for two viscosity ratios, μ̂ = 0.01 (top row) and μ̂ = 100 (bottom row). Each panel refers
to a given time instant (t+ = 300, 600, or 900). Isocontours of turbulence kinetic energy computed on a plane passing through the
channel center are shown in gray scale. Figure adapted Roccon et al. (2017) with permission from the American Physical Society.

after t+ = 1,000. For the lowest surface tension, We = 3, the effect of varying μ̂ becomes more
pronounced (Figure 6). For μ̂ ≤ 1, the breakup rate increases, and the asymptotic number of
droplets is ∼0.4N0. For μ̂ = 10, the breakup rate decreases, and the number of droplets reaches
0.1N0. For μ̂ = 100, the coalescence rate prevails, and the number of droplets diminishes to
0.01N0.

These results show that lowering the droplet viscosity (relative to that of the carrier fluid), at a
fixed surface tension, enhances the droplet deformation and the eventual breakup. The results also
show that, as expected, the mean curvature of the interface between the droplet and the carrier
fluid depends on μ̂. The interface is defined as the isosurface of the scalar phase field function,
φ(x, t) = 0, and its mean curvature is κ = ∇ · (−∇φ/|∇φ|) (Sun & Beckermann 2007). The case of
lowest surface tension, We = 3, and smallest viscosity ratio, μ̂ = 0.01, resulted in strong curvature
and breakup, leading to the creation of small droplets (Figure 6). In contrast, for the same surface
tension and a viscosity ratio of μ̂ = 100, large elongated droplets with relatively small curvatures
were created (Figure 6).

3.2.4. Dispersion of liquid droplets in isotropic turbulence using the lattice Boltzmann
method and phase field model. Komrakova et al. (2015) used the free-energy LBM of Swift
et al. (1996), in which the diffuse interface evolves naturally according to thermodynamics. This
free-energy LBM is a hybrid of LBM and PFM. As described earlier in Section 1, two probability
density functions, f n

i (x, t) for n = 2, were used: one to solve the continuity and Navier–Stokes
equations for the carrier fluid and another to solve the Cahn–Hilliard equation (Cahn & Hilliard
1959). A single relaxation time collision operator (Bhatnagar et al. 1954) was used in the solution.

The D3Q19 lattice (Section 3.2.1) was used to perform DNS of stationary isotropic turbulence
generated by the linear forcing method of Lundgren (2003). The periodic cubic computational
domain contained a maximum of 1,0003 dimensionless lattice units (lu), where the Kolmogorov
length scale η is ∼1–10 lu. The Reynolds number, Reλ, could not be prescribed as an input
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parameter since the velocity, urms, is not known a priori. Only three parameters were used to
prescribe the turbulent two-phase flow: the droplets volume fraction, 	vo, the viscosity ratio, μ̂,
and the capillary number, Ca = τ/τK = (η μf )/(στK), where μf is the dynamic viscosity of the
carrier fluid. The density ratio of the droplet to that of the carrier fluid was set to unity, and
the viscosity ratio was 0.3 ≤ μ̂ ≤ 1. The DNS starts at t = 0 with a single droplet placed in
the computational domain with a volume fraction range 0.001 ≤ 	vo ≤ 0.2. The initial droplet
diameter was in the range of 20–30η. The droplet breaks up due to the turbulent stresses in
the carrier fluid, as shown in Figure 7. The Reynolds number was computed from the DNS

1τK 12τK

20τK 36τK

Figure 7
Isosurfaces of the scalar phase field φ = 0 representing the surface of the dispersed liquid droplet and velocity vectors at different time
instants relative to the Kolmogorov timescale, τK, for the case with η = 1 (lattice units), viscosity ratio μ̂ = 1, density ratio = 1, and
capillary number Ca = 0.1. The dispersed phase volume fraction is 	v = 0.03. The initial single droplet is placed in the isotropic
turbulence at t = 0. Figure adapted from Komrakova et al. (2015) with permission from AIChE Journal.
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results for the case shown in Figure 7 as Reλ = 42 (A.E. Komrakova, personal communication).
The study points out the following limitations of the DNS using LBM-PFM: (a) Coalescence
occurs when the interfaces of multiple droplets occupy the same computational cell. Thus, in
order to suppress unphysical coalescence, it is necessary to resolve the liquid film between the
droplets, which requires prohibitive mesh refinement (Shardt et al. 2013). (b) Dissolution of small
droplets is an inherent property of the numerical method (Keestra et al. 2003). The dissolution
rate increases as the droplet size decreases. To minimize the dissolution, one needs to increase
the resolution by keeping the droplet diameter in the range of 20–30η. (c) It is not possible to
obtain an accurate TKE spectrum of a two-phase turbulent flow. It is known that LBM is prone to
generate spurious currents due to discretization of the velocity space. The order of magnitude of
the spurious currents can be the same as that of the actual velocity field. In addition, the spurious
currents appear within the diffuse interface and interact with the small-scale motion, leading to a
significant unphysical energy gain at high wave numbers.

3.2.5. The interaction between 3,130 fully resolved droplets and isotropic turbulence using
volume of fluid. Dodd & Ferrante (2016) performed DNS of decaying isotropic turbulence, at
an initial Reλ = 83, laden with 3,130 nonvaporizing droplets of size d ≈ 20η ≈ λ. The ranges
of the density and dynamic viscosity ratios were 1 ≤ ρ̂ ≤ 100 and 1 ≤ μ̂ ≤ 100, respectively.
The Weber number based on the root mean squared velocity of the carrier fluid was in the range
0.1 ≤ Werms ≤ 5. The volume fraction of the droplets was 	v = 0.05, and the mass fraction
ranged from 0.5 to 5.

Before discussing the results of the simulations, it is worth describing the novel method de-
veloped by Dodd & Ferrante (2016) for solving the Poisson equation for the pressure in incom-
pressible immiscible two-fluid flows with large density and dynamic viscosity ratios. The method
is described in detail by Dodd & Ferrante (2014). It is well known that the numerical solution
of the Navier–Stokes equations of two-fluid flows with nonuniform density requires solving a
variable-coefficient Poisson equation for the pressure of the form

∇ ·
(

1
ρn+1

∇pn+1
)

= 1
�t

∇ · u∗, 10.

where u∗ is the approximate fluid velocity at time step n+1. Solving Equation 10 is conventionally
performed using iterative multigrid methods (Gueyffier et al. 1999) or multigrid-preconditioned
Krylov methods (Sussman & Puckett 2000). All these methods are much slower than the fast
Poisson solvers (e.g., fast Fourier transform). However, these require the coefficient of ∇pn+1 to
be a constant, whereas the coefficient 1

ρn+1 on the left-hand side of Equation 10 varies in space and
time. To overcome this problem, Dong & Shen (2012) split the product inside the parenthesis in
Equation 10 in such a way as to render the variable coefficient of ∇pn+1 a constant. The first step
is to approximate the product on the left-hand side of Equation 10 as

1
ρn+1

∇pn+1 ≈ 1
ρ0

∇pn+1 +
(

1
ρn+1

− 1
ρ0

)
∇p∗, 11.

where ρ0 = min(ρ1, ρ2) and p∗ = 2pn − pn−1. Then, substitution of Equation 11 into
Equation 10 results in

∇2 pn+1 = ∇ ·
[(

1 − ρ0

ρn+1

)
∇p∗

]
+ ρ0

�t
∇ · u∗, 12.

which can be solved using fast Poisson solvers. Dodd & Ferrante (2014) compared the accuracy
and speed of solving Equations 10 and 12 for several canonical two-phase flows at density and
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εd
Viscous dissipation

Carrier fluid

Tν,c

Tp,c

Tν,d

Tp,d

Interface

εc

Ψσ

Interfacial surface
energy

Turbulence kinetic
energy

Internal
energy

Power of the surface tension
(droplet deformation,

breakup, and coalescence)

TKEc and TKEd
transport due to
pressure and
viscous stress

Viscous dissipation

Droplet fluid

Figure 8
Schematic showing turbulence kinetic energy (TKE) exchanges between the droplets and carrier fluid
turbulence. The three bounding rectangles from left to right represent the interactions between interfacial
surface energy, TKE, and internal energy. The blue arrow represents the two-way exchange between TKE
and interfacial surface energy by the power of the surface tension, �σ . The green arrows denote the
transport of TKE between the two fluids while exchanging TKE for surface energy via �σ . The subscripts c
and d in the figure denote the carrier fluid and droplets, respectively. The red arrows represent the
transformation of TKE of the carrier fluid and droplet into internal energy by viscous dissipation. Figure
adapted from Dodd & Ferrante (2016) with permission from Cambridge University Press.

dynamic viscosity ratios up to 104. They concluded that the new split method is at least an order
of magnitude faster than that of Equation 10 for the same accuracy level.

To explain the TKE exchanges between the droplets and the carrier fluid, Dodd & Ferrante
(2016) derived three TKE transport equations for the droplet phase, the carrier fluid, and the
combined two-fluid flow (see Dodd & Ferrante 2016, equations B19, B20, B21, and C8). For the
first two equations, the TKE decay rate is governed by the sum of the viscous dissipation rate, −ε,
the viscous power, Tν , and pressure power, Tp . For the combined two-fluid flow, the TKE decay
rate equals the sum of the viscous dissipation rate and the power due to surface tension, �σ , which
is the rate of work done by the surface tension forces on the fluid. Surface tension �σ can be a
source or sink of TKE, depending on whether the total surface area of droplets decreases (e.g.,
coalescence) or increases (e.g., breakup), respectively. Figure 8 shows a schematic of the TKE
exchanges according to the three TKE transport equations.

Dodd & Ferrante performed DNS for seven cases, A through G, by varying Werms; the density
ratio, ρ̂; or the dynamic viscosity ratio, μ̂. Increasing Werms from 0.1 in case B to 5 in case D
showed that at the end of the simulation the number of droplets decreased due to coalescence
relative to their initial number by about 20% in case B and increased due to breakup by about
27% in case D. In case B, the power �σ due to coalescence represents a source of TKE equal to
about 50% of the magnitude of the viscous dissipation rate.

Figure 9 compares the viscous dissipation rate for cases E and F, where both have the same
dynamic viscosity ratio, μ̂ = 10, but their density ratios ρ̂ were 1 and 100, respectively. The
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Figure 9
Comparison of the viscous dissipation rate in Dodd & Ferrante’s (2016) case E (a) and case F (b). Both cases have the same dynamic
viscosity ratio, μ̂ = 10, but case E has a density ratio of ρ̂ = 1, whereas we have ρ̂ = 100 in case F. Figure adapted from Dodd &
Ferrante (2016) with permission from Cambridge University Press.

response time, τd, of the denser droplets in case F is 100 times that of the droplets in case E. Thus
the F droplets generate higher fluid strain rates near their surfaces than do the E droplets, and
hence the dissipation rates are higher in F, as shown in Figure 9.

SUMMARY POINTS

1. Significant progress has been made during the past 20 years in direct numerical sim-
ulation (DNS) of turbulent flows laden with droplets or bubbles. This progress is due
to continuing development of the numerical methods discussed above and advances in
supercomputer hardware and software.

2. The phenomenological equation of Maffettone & Minale (1998) provides a powerful
tool for accounting for shape changes of deformable bubbles or droplets smaller than the
Kolmogorov length scale, η.

3. All the reviewed DNS studies of fully resolved droplets or bubbles, except that of Dodd
& Ferrante (2016), restricted the density and viscosity ratios of the two interacting phases
between 1 and 10. Both the density and viscosity ratios were equal to 102 in Dodd &
Ferrante’s (2016) study. Furthermore, Dodd & Ferrante (2014) validated their numerical
method with Prosperetti’s (1981) analytical solution of the capillary wave for density and
viscosity ratios up to 104 and with the experimental data of Beard (1976) for a falling
droplet with a density ratio of 103.
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4. The phase field model (PFM) provides qualitatively interesting results; however, it suffers
from the following drawbacks: (a) The large width of the interface region (4–8 cells) leads
to errors in the curvature ( Jacqmin 1999). (b) Mass conservation is not satisfied (Yue et al.
2007), as confirmed by Scarbolo & Soldati (2013) and Scarbolo et al. (2015), who showed
in their studies that the mass loss at the end of the simulation varied from 4% to 14% and
from 2% to 10%, respectively. This inability to conserve mass renders the PFM quite
inaccurate for cases involving vaporization or condensation, as well as droplet motion,
in highly vortical flows.

FUTURE ISSUES

1. Due to the complexity of turbulent flows laden with droplets or bubbles, the experi-
mental data needed to validate the DNS results are virtually nonexistent. The needed
experimental data should provide local instantaneous measurements of the velocity fields
of both the carrier fluid and the dispersed phase in addition to instantaneous images of
shape changes of the latter.

2. Since large-eddy simulation will be used for the foreseeable future to predict turbulent
multiphase flows at practical Reynolds numbers, accurate subgrid scale (SGS) models
need to be developed and validated by DNS results, such as those described above.
Accurate SGS models do not presently exist.
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