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ABSTRACT
Air quality and preterm birth: distance to highways, exposure to wildfires, and

effect modification by COVID-19
Jean M. Costello

Preterm birth, defined as birth prior to 37 weeks of gestation, affects approximately 1 in

10 live births and is the leading cause of neonatal morbidity and mortality in the United

States. One known risk factor associated with preterm delivery is perinatal exposure to

air pollution, and more specifically, fine particulate matter (particulate matter <2.5µm in

diameter (PM2.5)).

In this dissertation, I present three retrospective cohort studies investigating the relationship

between PM2.5 and preterm birth. The full cohort consisted of all births in the state of

California, from 2007 to 2020. Data included maternal sociodemographic characteristics,

residential address at the time of delivery, hospital delivery records, and infant characteristics.

I combined this cohort data with publicly available data sources, including census data,

transportation data, and environmental data repositories.

In the first study (Chapter 2), I examined the role that exposure to major highways plays in

preterm birth risk. Comparing the risk associated with residential distance to major roads to

that of fine particulate matter exposure, I found that the latter was significantly associated

with preterm birth, while the former was not.

In the second (Chapter 3), I considered the impacts of wildfire-driven high PM2.5 values.

This study focused specifically on the San Francisco Bay Area during the 2018 California

Camp Fire. Both exposure to the wildfire smoke and the degree of wildfire smoke experienced

were significantly associated with preterm birth.

Finally, in the third study (Chapter 4), I investigated whether a positive test for SARS-CoV-

2 modified the association between PM2.5 and preterm birth. I found that such an effect

modification was not present.
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Chapter 1

Introduction

1.1 Preterm birth

Preterm birth (PTB) is defined as live birth prior to 37 completed weeks of gestation. Be-

cause of their interrupted fetal development, preterm infants face a range of complications.

Mortality among preterm infants is significantly higher than in their term counterparts.[1]

Preterm birth is also associated with a range of neonatal morbidities. Major examples include

respiratory distress syndrome[2] and necrotizing enterocolitis,[3] but acute complications are

wide-ranging, and may affect a variety of systems.[4]

Preterm birth is also associated with long-term health consequences. Studies investigating

the medical and social consequences of preterm birth have identified associations with a

range of conditions, including cognitive impairment, chronic lung conditions, cerebral palsy,

and severe medical disability.[5, 6]

The impacts of preterm birth are not limited to the newborn; preterm birth has been shown

to negatively impact the mental health of women and birthing people. Parents of preterm

infants are at higher risk of postpartum depression.[7]
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Given the risk associated with preterm birth and its prevalence (approximately 1 in 10 live

births in the United States[8]), much work has been done to understand the risks of deliv-

ering preterm. Some of these risk factors are related to the demographic characteristics or

socioeconomic status of the mother or birthing person. These include educational attain-

ment, race/ethnicity, and insurance status: those with fewer completed years of education

are at higher risk for delivering preterm than those with more completed years, those who

are Black face higher rates of preterm birth than those who are white, and those on public

insurance face higher rates than those on private insurance.[9] It is important to note that

these risk factors should not be taken as causes of preterm birth, and many of these variables

serve as well-recorded proxies for conditions that are more abstract or difficult to measure.

For instance, completing less than twelve years of education does not lead to preterm birth,

rather, it points to some level of socioeconomic deprivation that may have negative conse-

quences. Similarly, Black race is not a “risk" in and of itself. Instead, it serves as an indicator

of experienced stress and racism that may negatively impact outcomes.[10]

Some clinical factors also act as risk indicators for preterm birth. Among them are preexist-

ing and gestational hypertension, preexisting and gestational diabetes, and drug or alcohol

dependence or abuse.[9] Preterm birth is more common among twins and other multiple ges-

tations than it is among singletons;[11] however, the present work focuses solely on singleton

gestations, as the drivers of preterm birth in multiple gestations have been shown to be quite

different.[12]

In addition to clinical and sociodemographic characteristics, research has shown that envi-

ronmental exposures also present a risk for preterm birth. Perinatal exposure to lead, for

instance, has been linked with preterm birth.[13] Multiple studies have shown that perinatal

exposure to air pollution is associated with preterm birth.[14–16] Here, while investigating

the relationship between air pollution and preterm birth, I will focus specifically on partic-

ulate matter (PM).
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1.2 Particulate matter

Particulate matter (PM) is a mixture of solid particles and liquid droplets found in the

air. Natural sources of PM include wildfires, dust storms, and volcanoes.[17–19] Manmade

sources of PM include power generation, traffic, and agricultural emissions.[20–22]

PM can be classified in multiple ways. While the exact composition (or speciation) of PM

is useful for examining potential health effects, this is difficult to determine, and varies by

location and season.[23] In health contexts, it is common to consider the effects of “fine

particulate matter," defined as PM less than 2.5 microns in diameter (PM2.5). PM2.5 is

a concern because its small size allows it to penetrate into deeper parts of the lung and

even enter the bloodstream.[24] In addition, high concentrations of PM2.5 provide a large

surface area of interaction between PM and the lungs.[25] Unlike PM speciation, PM2.5

concentrations can be easily determined using scattering methods.

1.3 Biological pathways

While the focus of this dissertation is not the pathophysiology linking air pollution and

preterm birth, it is important to establish the biological plausability of such an association.

The pathway connecting PM2.5 exposure with preterm birth is not fully understood; however,

multiple mechanisms have been proposed. In their 2019 paper, Li and colleagues outlined

three possible mechanisms.[26] The first of these is oxidative stress: PM2.5 has been shown

to create an imbalance between oxidants and antioxidants, which in turn may be associated

with preterm birth.[27] The second proposed mechanism is mitochondrial DNA alteration

and DNA methylation. PM2.5 pollution has been linked with the methylation patterns of

genes in the circadian pathway;[28] disruption or alteration of circadian rhythms may affect

pregnancy processes. Finally, the authors propose that persistent organic pollutants (POPs)

and other components of PM2.5 can disrupt the endocrine system,[29] possibly leading to

3



preterm birth.

1.4 Dissertation overview

In this dissertation, I present three projects exploring the link between air pollution and

preterm birth. First, I consider the role of highways in relation to preterm birth to determine

whether distance to major highway serves as a proxy for PM2.5 in assessing preterm birth

risk.[30] Second, I investigate the impact of wildfire smoke from a 2018 California wildfire on

preterm birth rates in the San Francisco Bay Area. Finally, I present work examining whether

testing positive for COVID-19 modifies the association between PM2.5 and PTB.
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Chapter 2

Proximity to highways

2.1 Abstract

Background: While pollution from vehicle sources is an established risk factor for preterm

birth, it is unclear if distance of residence to the nearest major road or related measures like

major road density represent useful measures for characterizing risk.

Objective: To determine whether major road proximity measures (including distance to

major road, major road density, and traffic volume) are more useful risk factors for preterm

birth than other established vehicle-related measures (including particulate matter < 2.5µm

in diameter (PM2.5) and diesel particulate matter (diesel PM)).

Methods: This retrospective cohort study included 2.7 million births across the state of

California from 2011 - 2017; each address at delivery was geocoded. Geocoding was used to

calculate distance to the nearest major road, major road density within a 500m radius, and

major road density weighted by truck volume. We measured associations with preterm birth

using risk ratios adjusted for target demographic, clinical, socioeconomic, and environmental

covariates (aRRs). We compared these to the associations between preterm birth and PM2.5
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and diesel PM by census tract of residence.

Results: Findings showed that whereas higher mean levels of PM2.5 and diesel PM by

census tract were associated with a higher risk of preterm birth, living closer to roads or

living in higher traffic density areas was not associated with higher risk. Residence in a census

tract with a mean PM2.5 in the top quartile compared to the lowest quartile was associated

with the highest observed risk of preterm birth (aRR 1.04, 95% CI 1.04, 1.05).

Conclusions: Over a large geographical region with a diverse population, PM2.5 and diesel

PM were associated with preterm birth, while measures of distance to major road were not,

suggesting that these distance measures do not serve as a proxy for measures of particulate

matter in the context of preterm birth.

2.2 Introduction

Preterm birth (birth before 37 weeks of gestation) affects approximately one in ten newborns

in the United States.[1] Preterm birth is the leading cause of perinatal mortality and mor-

bidity, and has been implicated in long-term health problems, including neurodevelopmental

disabilities and psychological disorders.[2] Air pollution has been implicated as a risk factor

for preterm birth,[3, 4] and prior studies have found that emissions from sources including

coal power, oil and gas production,[5, 6] and traffic[7] are associated with a higher risk of

preterm birth.

Air pollution can be difficult to evaluate and measurements may be restricted to small

geographical areas near a monitor.[8] A widely applicable measure of exposure is distance to

a major road, which is of particular interest given that prior research has suggested traffic-

related pollutants are associated with preterm birth.[7]

Distance to major road has been examined in previous studies with mixed findings. A
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study in Taiwan showed a higher risk of preterm birth in women living <500 meters from

a major highway compared to women living 500 - 1,500 meters from the same highway.[9]

Researchers in Japan found higher risk when comparing women who lived <200 meters from

a highway to those who lived farther.[10, 11] A large cohort study in the state of North

Carolina found higher risk for preterm birth based on distance of residence to road.[12] By

contrast, investigators in Vancouver[13] and Rotterdam did not find an association with

preterm birth.[14]

A particular challenge in previous studies lies in acquiring a sufficient sample size while simul-

taneously incorporating both demographic and clinical covariates. Most of these studies did

not include clinical covariates associated with preterm birth, considered a small geographic

area, and examined major road proximity as the only measure of air pollution.

Here, we used a large cohort of births across the state of California, in combination with

state highway maps and traffic measures, to test whether living closer to major roads was

associated with a higher risk of preterm birth. We incorporated both demographic and

clinical covariates and assessed multiple measures of road and traffic exposure.

2.3 Methods

2.3.1 Cohort data

The sample was drawn from all California live-born infants between 2011 and 2017. Birth

certificates, maintained by California Vital Statistics, were linked to a hospital discharge,

emergency department, and ambulatory surgery records maintained by the California Office

of Statewide Health Planning and Development. We restricted to singleton births at 20 - 44

weeks of gestational age where the mother was 12 - 55 years old. Census-level environmental

data must be available (Figure 2.2). Our outcome of interest was preterm birth, defined as

a live delivery prior to 37 weeks of gestation. Best obstetric estimate of gestation at birth
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was obtained from birth certificate records.

2.3.2 Exposure variables

We considered six measures of exposure, detailed below. The first three (distance to major

road, major road density, and major road density with truck volume) are calculated at an

individual level; the remaining three are census tract-level.

Distance to major road

The address of residence was recorded at birth. Addresses were geocoded in ArcGIS[15]

using files from the US Census Bureau.[16] Distance to major road was determined by com-

puting the distance from each geocoded address to the nearest state highway (as defined by

CalTrans,[17] see Figure 2.1). We considered distance both as a continuous variable and as a

binary exposure (comparing those living <250m from a road to those living 250-500m from

a road, and those living <250m from a road to all others).

Major road density

For each address, a density score was computed using the following model:

n∑
i

1

di
li,

where n is the number of roads within a 500m radius of the residence, di is the distance (in

meters) to the nearest point on road i, and li is the length (in meters) of road i that falls

within a 500m radius of the residence. The radius was chosen based on previously published

work covering a large geography.[12] For addresses with no roads nearer than 500m, the

major road density is 1/d, where d is the distance to the nearest major road.
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Figure 2.1: Major roads in California, as defined by Caltrans.
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Major road density with truck volume

An additional major road density measure was computed to incorporate truck volume.

Volume measures were obtained from CalTrans and represent annual average daily truck

traffic.[18] Scores were computed in the following manner:

n∑
i

1

di
livi,

where vi represents the truck volume of road i; all other variables are as described in the

previous model. To compute the contribution of road i, we used the volume measurement on

road i nearest to the residence. In a small number of cases, there were no volume measures

available for a particular highway. In these cases, the nearest volume measurement was

used. For addresses with no roads nearer than 500m, we instead computed v/d where d is

the distance to the nearest road, and v is the truck volume of that road.

Traffic

CalEnviroScreen provides a census tract-level measure of traffic concentration. Road seg-

ments falling within a 150m census tract buffer are linked to the most recent traffic volume

data (the latest year being 2013). The result is number of vehicles (adjusted by road segment

lengths) per hour per kilometer of roadways within the census tract buffer. Each tract is

assigned a percentile based on its rank in the statewide distribution.[19]

Particulate matter 2.5 (PM2.5)

PM2.5 refers to particles with a diameter of ≤2.5µg/m3. The specific composition of PM2.5 is

dependent on multiple factors, including location, season, and meteorologic conditions.[20]

Measures of census tract-level PM2.5 concentration come from CalEnviroScreen.[21] CalEn-

viroScreen computes these measures by using ordinary kriging to estimate quarterly mean

PM2.5 concentrations at the center of the census tract from nearby air monitors, then aver-
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aging quarterly means to annual means. The measure provided is the mean of three annual

averages (2012-14). Each tract is assigned a percentile based on its rank in the statewide

distribution.[19]

Diesel Particulate Matter (Diesel PM)

Measurements of diesel PM are provided by CalEnviroScreen on a census tract-level and

include both on-road and non-road sources. CalEnviroScreen computes this measure by first

taking county-wide estimates of diesel PM (from a weekday in July 2012); a measure is as-

signed to a census tract based on the overlap of diesel sources and the census tract population.

Each tract is assigned a percentile based on its rank in the statewide distribution.[19]

2.3.3 Covariates

We included a range of covariates in our models, which we identified based on previous

literature.[22] For our analyses, we grouped the covariates into four categories: demographic:

maternal age (<18 years or >34 years compared to 18-34 years), maternal body mass index

(BMI) (underweight (<18.5), overweight (25 - 30), or obese (>30) compared to normal (18.5

- <25)), maternal race/ethnicity (Black, Hispanic, Asian, or other compared to white non-

Hispanic), maternal birthplace outside the US compared to within the US, smoking, drug

abuse and alcohol abuse (defined by the presence of an ICD code from the following list on the

hospital discharge record: 648.3, 305.0, 305.2, 305.3, 305.4, 305.5, 305.6, 305.7, 305.8, 305.9,

304; 303 (ICD-9); F10, F11, F12, F13, F14, F15, F16, F18, F19 (ICD-10)), male infant sex

compared to female; clinical: nulliparity, interpregnancy interval (<6 months, 6-11 months,

12-17 months, 24-59 months, or >59 months compared to 18-23 months[23], mental disor-

der, maternal infection, preexisting diabetes, gestational diabetes, preexisting hypertension,

gestational hypertension, and adequacy of prenatal care (inadequate (care begun after 4th

month or <50% of recommended visits received) or intermediate (care begun by 4th month

and 50%-79% of recommended visits received) compared to adequate/adequate plus (care
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begun by 4th month and ≥80% of recommended visits received)[24]); socioeconomic: WIC

(Women, Infants and Children - a federal nutrition assistance program) enrolment compared

to none, public insurance for prenatal care compared to private insurance, and maternal

education (>12 years or <12 years compared to 12 years); and environmental: season of

conception (winter, spring, or autumn compared to summer), and urbanicity (Urban and

Large Rural compared to Small and Isolated Small Rural). Urbanicity was assigned at the

census tract-level using Rural-Urban Commuting Area Codes (RUCA).[25] We used a classi-

fication defined on the Rural Health Research Center’s website to group codes into the three

categories listed.[26]

2.3.4 Statistical analysis

We computed a correlation matrix to examine the relationship of exposures to one an-

other. We calculated unadjusted risk ratios to check whether covariates were associated

with preterm birth. To assess the relationship between each exposure and preterm birth, we

used multivariable log-linear models, adjusting for the covariates found to be associated with

preterm birth. Each exposure was considered independently. Covariates were introduced in

stages. The first model included only the exposure of interest. The second included the

exposure and demographic covariates. The third included the exposure and demographic

and clinical covariates. The fourth included the exposure and demographic, clinical, and

socioeconomic covariates. The fifth included the exposure and demographic, clinical, so-

cioeconomic, and environmental covariates. Adjusted risk ratios (aRR) and 95% confidence

intervals (95% CI) were computed in each phase. Statistical analyses were performed in R

(version 4.04).[27] To understand the role of race/ethnicity in our models, we repeated the

analysis steps for each category (Asian, Black, Hispanic, and White).
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2.3.5 Missing data

We successfully geocoded approximately 85% of all deliveries from the time period. For those

variables which have a code for “missing,” we display the percent of missing data in Table

2.1. Approximately 9% of people in our data sample were missing at least one covariate.

We performed a multiple imputation using the mice package in R[28]; we computed 50

imputations with 5 iterations each. Analysis results for both the original dataset and imputed

data are in Table 2.3. Results presented in the paper are from the original dataset.

Table 2.1: Missing data counts.

Variable Missing count Missing percent
Race/ethnicity 56197 2
Insurance 2914 0.1
Education 118513 4.2
Maternal Nativity 1042 0
Infant Sex 21 0
Parity 1767 0.1
Maternal Age 26 0
BMI 115158 4.1
Prenatal care 62366 2.2

2.3.6 Sensitivity analyses

We computed E-values to assess the robustness of our associations.[29] There are two types

of clustering in our data. Our dataset contains multiple singleton births to the same mother,

not all of which have been properly identified. We repeated the log-linear analysis selecting

only one birth from each mother and found this did not alter our results. Additionally, some

of our exposure variables are calculated on a census tract-level, while other covariates are at

the individual level. For the exposure PM2.5, we compared a single-level logistic regression

to mixed effects logistic regression on a subset of the data and found similar results.
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Figure 2.2: Sample selection

2.3.7 Ethics approval

Methods and protocols for the study were approved by the Committee for the Protection

of Human Subjects (CPHS) which serves as the institutional review board (IRB) for the

California Health and Human Services Agency (CHHSA).

2.4 Results

Among the eligible births (n = 2,809,902), the preterm birth rate was 6.6%, consistent with

California’s rate for singleton births. A plurality of our sample self-identified as Hispanic

(49.2%). Most were between the ages of 18 and 34 at the time of delivery (77.9%) and most

had more than 12 years of education (58.4%). Characteristics are displayed in Table 1.
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Table 2.2: Sample overview.

Characteristic Preterm Term
(n = 187,235) n = (2,622,667)

Maternal age
18-34 137,655 (73.5) 2,052,044 (78.2)
>34 45,976 (24.6) 527,419 (20.1)
<18 3,604 (1.9) 43,204 (1.6)

Race/Ethnicity
White 41,455 (22.1) 709,385 (27.0)
Hispanic 96,103 (51.3) 1,285,817 (49.0)
Black 13,440 (7.2) 124,512 (4.7)
Asian 26,116 (13.9) 374,150 (14.3)
Other 10,121 (5.4) 128,803 (4.9)

Maternal BMI
Normal 85,675 (45.8) 1,299,669 (49.6)
Underweight 7,494 (4.0) 97,133 (3.7)
Overweight 46,495 (24.8) 660,393 (25.2)
Obese 47,571 (25.4) 565,472 (21.6)

Mother born in US 116,344 (62.1) 1,604,394 (61.2)
Smoking status 9,377 (5.0) 74,670 (2.8)
Drug abuse 8,906 (4.8) 46,530 (1.8)
Alcohol abuse 753 (0.4) 4,871 (0.2)
Infant sex

Female 84,135 (44.9) 1,294,005 (49.3)
Male 103,100 (55.1) 1,328,662 (50.7)

Nulliparous 71,703 (38.3) 1,011,031 (38.5)
Mental disorder 18,780 (10.0) 145,232 (5.5)
Any infection 31,715 (16.9) 264,457 (10.1)
Gestational diabetes 30,091 (16.1) 269,299 (10.3)
Gestational hypertension 30,434 (16.3) 153,673 (5.9)
Interpregnancy interval (IPI)

18-23 months 7,733 (4.3) 139,936 (5.5)
<6 months 7,035 (3.9) 67,354 (2.7)
6-11 months 8,806 (4.8) 121,995 (4.8)
12-17 months 9,422 (5.2) 158,617 (6.3)
24-59 months 33,659 (19.0) 534,148 (21.4)
>59 months 31,014 (16.6) 358,706 (13.7)

Prenatal care
Adequate 150,476 (80.4) 1,980,213 (75.5)
Intermediate 15,496 (8.3) 374,176 (14.3)
Inadequate 21,263 (11.4) 268,278 (10.2)

Preexisting diabetes 5,110 (2.7) 20,726 (0.8)
Preexisting hypertension 13,716 (7.3) 48,368 (1.8)
Maternal education
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Characteristic Preterm Term
12 years 48,163 (25.7) 641,221 (24.4)
>12 years 102,907 (55.0) 1,539,378 (58.7)
<12 years 36,165 (19.3) 442,068 (16.9)

Public insurance 89,112 (47.6) 1,182,639 (45.1)
Birth season

Summer 48,765 (26.0) 696,994 (26.6)
Winter 45,593 (24.4) 631,994 (24.1)
Spring 45,888 (24.5) 636,131 (24.3)
Autumn 46,989 (25.1) 657,548 (25.1)

Urbanicity
Small & isolated small rural 2,684 (1.4) 37,473 (1.4)
Large rural 5,617 (3.0) 79,212 (3.0)
Urban 178,934 (95.6) 2,505,982 (95.6)

Correlations between the exposures are displayed in Figure 2.3. Distance to major road was

slightly negatively correlated with traffic and diesel PM, with coefficients of -0.35 and -0.29,

respectively. Major road density and major road density with truck volume were strongly

correlated with one another, but not correlated with other exposures.

In unadjusted analyses, we found that women of color faced elevated risk of preterm birth;

Black women had the greatest relative risk, with an RR of 1.76 (95% CI 1.73, 1.80) compared

to white women. Hispanic women, who made up the majority of our sample, had an RR

of 1.26 (95% CI 1.25, 1.27). Other factors found to be associated with a higher risk of

preterm birth were an age <18 or >34 years at delivery, an overweight, obese, or underweight

BMI, smoking, drug/alcohol use, a short or long IPI, the presence of a mental disorder, an

infection, gestational and preexisting diabetes, gestational and preexisting hypertension, <12

years of education, WIC enrolment, and public insurance. All seasons of conception showed

very slightly higher risk compared to summer. Intermediate prenatal care and >12 years

of education reduced the risk of preterm birth with RRs of 0.56 (95% CI 0.55, 0.57), and

0.90 (95% CI 0.89, 0.91), respectively. Unadjusted risk ratios for all covariates are shown

in Figure 2.4. Urbanicity was not associated with preterm birth and was not included in

further analyses.
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Figure 2.3: Correlation matrix of the exposures.

Unadjusted and adjusted risk ratios for each measure of exposure are shown in Figure

2.5. Exposures were considered separately; each row of each panel represents a single log-

linear model. Panel A shows the unadjusted risk ratio for each exposure. The models

shown in Panel B consist of the exposure and demographic covariates. The fully adjusted

models are displayed in Panel C; each includes an exposure along with demographic, clinical,

socioeconomic, and environmental covariates. Both PM2.5 and diesel PM were associated

with preterm birth in the unadjusted and in all adjusted models. The aRR (per interquartile

increase) for PM2.5 was 1.08 (95% CI 1.07, 1.08), E-value = 2.57 (E-valuelower = 1.34) and

for diesel PM was 1.02 (95% CI 1.01, 1.03), E-value = 2.45 (E-valuelower = 1.11). Traffic,

as measured by CalEnviroScreen, was not associated with preterm birth in the unadjusted

or any adjusted model; the aRR (per interquartile increase) was .99 (95% CI .99, 1.00).

Major road density and major road density with truck volume were also not associated with

preterm birth; the aRRs (per interquartile increase) were .99 (95% CI .99, 1.00) and .99
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Figure 2.4: Forest plots for unadjusted associations between covariates and preterm birth.
Unadjusted risk ratios and 95% confidence interval are shown on a log scale.
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(95% CI .99, 1.00), respectively. Distance to major road (as a continuous variable) showed

a very slightly higher risk in the adjusted model, with an aRR of 1.01 (95% CI >1.00, 1.01)

per 1,000m increase in distance (Table 2.3).

Table 2.3: Original and imputed results.

Variable Original Results Imputed Results
aRR (95% CI) aRR (95% CI)

Distance to major road 1.01 (1.00, 1.01) 1.01 (1.00, 1.01)
Major road density 1.00 (0.99, 1.00) 0.99 (0.98, 0.99)
Major road density with truck volume 1.00 (0.99, 1.00) 0.99 (0.98, 0.99)
Traffic 0.99 (0.99, 1.00) 0.99 (0.99, 1.00)
Diesel PM 1.02 (1.01, 1.03) 1.02 (1.01, 1.02)
PM 2.5 1.08 (1.07, 1.08) 1.07 (1.06, 1.08)

Stratified analysis by race/ethnicity revealed different strengths and directions of effects

between groups. Traffic density was associated with a reduced risk of preterm birth in Asian

women (aRR 0.96, 95% CI 0.94, 0.98)), and a higher risk in Hispanic women (aRR 1.01,

95% CI >1.00, 1.03).

Distance to major road as a binary exposure was not found to be associated with preterm

birth in any model. Comparing births with addresses within 250m of a major road to all

others, the aRR was 1.00 (95% CI .98, 1.01). Comparing births with addresses within 250m

of a major road to those between 250m and 500m, the aRR was 1.00 (95% CI .99, 1.02).

2.5 Comment

2.5.1 Principal findings

Our findings show that, while census tract-level mean PM2.5 and diesel PM are positively

associated with preterm birth, this association is not seen in measures of distance to major

road. This suggests that, over a large geographical area, these are not equivalent measures

of pollution exposure when considering the risk of preterm birth. The association between

23



F
ig

u
re

2.
5:

E
ac

h
pr

ed
ic

to
r

is
co

ns
id

er
ed

se
pa

ra
te

ly
.

Fo
r

D
is

ta
nc

e
to

m
aj

or
ro

ad
,

th
e

ri
sk

s
ar

e
sh

ow
n

fo
r

an
in

cr
ea

se
of

10
00

m
.

Fo
r

al
l

ot
he

r
ex

po
su

re
s,

ri
sk

s
ar

e
sh

ow
n

fo
r

in
te

rq
ua

rt
ile

in
cr

ea
se

.
A

:
un

ad
ju

st
ed

ri
sk

ra
ti

os
.

B
:

ri
sk

ra
ti

os
ad

ju
st

ed
fo

r
m

at
er

na
l
ag

e,
m

at
er

na
l
B

M
I,

m
at

er
na

l
na

ti
vi

ty
,
sm

ok
in

g
st

at
us

,
dr

ug
ab

us
e

an
d

al
co

ho
l
ab

us
e.

T
he

‘A
ll’

ca
te

go
ry

is
al

so
ad

ju
st

ed
by

ra
ce

/e
th

ni
ci

ty
.

C
:

ri
sk

ra
ti

os
ad

ju
st

ed
fo

r
al

l
va

ri
ab

le
s

lis
te

d
in

B
as

w
el

l
as

in
fa

nt
se

x,
pa

ri
ty

,
in

te
rp

re
gn

an
cy

in
te

rv
al

,
m

en
ta

l
di

so
rd

er
,

m
at

er
na

l
in

fe
ct

io
n,

pr
ee

xi
st

in
g

di
ab

et
es

,
ge

st
at

io
na

l
di

ab
et

es
,

pr
ee

xi
st

in
g

hy
pe

rt
en

si
on

,
ge

st
at

io
na

l
hy

pe
rt

en
si

on
,p

re
na

ta
lc

ar
e,

m
at

er
na

le
du

ca
ti

on
,i

ns
ur

an
ce

st
at

us
,W

IC
en

ro
lm

en
t,

an
d

se
as

on
.

24



air pollution and preterm birth was not consistent across all race/ethnicity groups: neither

PM2.5 nor diesel PM showed an association with preterm birth in Asian women.

2.5.2 Strengths of the study

Major strengths of our study include access to both clinical and demographic information

for the mothers and a large and diverse sample. We were able to adjust for many established

risk factors of preterm birth, including preexisting conditions. We had residential addresses

recorded, so we were able to calculate distance to major road, major road density, and major

road density with truck volume for each individual. We were able to compare multiple

measures of major road proximity and air pollution in the same large cohort of births.

2.5.3 Limitations of the data

Despite these strengths, some study limitations are important to consider. A different defi-

nition of major roads may have shown an association between proximity and preterm birth.

While our large sample size was advantageous, we were not able to consider other potential

sources of background pollution. Waste sites, refineries,[30] or agriculture operations[31]

could alter pollution exposure independently of roadways. Meteorological patterns also con-

tribute to variation in background pollution. Addresses used in geocoding were recorded at

the time of delivery; there is no information on moves during pregnancy. However, one cohort

study in Texas found that, while between one quarter and one third of mothers moved during

pregnancy, the moves were short-distance and had minimal impact on pollution exposure.[32]

We performed sensitivity analyses to verify that data clustering did not materially change

our results, however, our use of single-level models remains a limitation.

Air pollution has been shown to have both chronic and acute effects on preterm birth.[33],[34]

Further work aiming to clarify the relationship between major road proximity and preterm

birth would benefit from additional large-scale studies which can use residential address
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history in combination with measures of air and background pollution on a finer temporal

scale.

2.5.4 Interpretation

Our finding of an association between PM2.5, diesel PM, and preterm birth is consistent with

the findings of several other investigative teams in[35, 36] and outside California.[37, 38] Our

results further expand on these findings, given the size of our sample and our ability to

test multiple risk factors. This suggests that these measures of air pollution are robust risk

factors in a number of geographies.

The lack of association between road distance (as a binary exposure) and preterm birth

echoes the results of some previous studies. In Rotterdam, researchers tested multiple dis-

tance cutoffs and did not find a significant association between road proximity and preterm

birth.[14] A study in Vancouver showed no association between road proximity and preterm

birth but did see an association between PM2.5 and preterm birth.[13] The summary mea-

sure of census tract-level PM2.5 served as a better metric than distance to major road for

evaluating air pollution as a risk factor for preterm birth.

Other studies have found an association between road distance and preterm birth. Generally,

these studies have considered the question of road exposure on a much smaller geographical

scale. Studies focused on a single city or highway found larger associations, with aRRs of

1.30 (95% CI 1.03, 1.65)[9], 1.14 (95% CI 1.02, 1.27)[39], and 1.5 (95% CI 1.3, 1.9).[9] The

largest geographical region represented in the previous work was North Carolina and this

study found a smaller association than those listed above, at an aRR of 1.04 (95% CI 1.01,

1.07).[12] The present study in California covers an area roughly three times larger. As area

increases, factors such as background pollution and access to care may play larger roles. Also

of note is that this previous largest study included fewer covariates known be associated with

preterm birth, such as maternal BMI and individual socioeconomic status. This suggests
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that previous studies focusing on major road proximity and preterm birth perhaps found

this association because they covered a smaller area and/or were less able to account for

other known risk factors for preterm birth.

Exposures that measured traffic density did not show an association with preterm birth in

the present study. This held true for the census-level exposure (traffic) and the exposures

calculated at the individual-level (major road density and major road density with truck

volume). The strong correlation between major road density with and without truck vol-

ume suggests that the volume measurements did not significantly alter the density score.

Traffic is positively correlated with diesel PM and PM2.5, but major road density and major

road density with volume are not. The lack of association between road and traffic density

measures and preterm birth echo the findings of van den Hooven, et. al.[14]

One interesting finding in the present study was that the association between distance to

major roads and preterm birth shifted from no association in the unadjusted model (Figure

2.5, Panel A) to an association in the first adjusted model (Figure 2.5, Panel B), wherein

further distance from major roads was found to be associated with preterm birth – a pat-

tern that was opposite to what we had hypothesized. While this pattern seems related to

race/ethnicity, it is essential that follow-up investigations more fully explore this possibil-

ity.

While it is not completely clear what may be driving the observed associations between

PM2.5, diesel PM, and preterm birth, one potential mechanism is oxidative stress,[40] which

leads to an inflammatory response that can have adverse effects in multiple organ systems.[41,

42] An imbalance between oxidants and antioxidants may be associated with preterm birth.[43]

Multiple studies have established a link between exposure to traffic-related particulate mat-

ter, such as black carbon and nitrous oxides, and elevated biomarkers of oxidative stress

and changes in DNA methylation.[44, 45] There is also increasing concern regarding the

effects of ultrafine particles, which are present in traffic-related air pollution,[46, 47] and
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have been shown to enter the bloodstream[48] and induce oxidative stress.[49] However, the

understanding and measurements are limited, and more research is required.

Particulate air pollution has been linked to preterm birth through other pathways as well.

A meta-analysis of air pollution and diabetes found that NO2 and PM2.5, among other pol-

lutants, were associated with higher risk of diabetes,[50] which has been established as a risk

factor for preterm birth.[51] Multiple studies have found that traffic noise and particulate air

pollution are associated with hypertension,[52, 53] another risk factor for preterm birth.[54]

We still see an association between our particulate exposures and preterm birth after ad-

justing for these clinical factors. This may indicate residual effects not due to hypertension

or diabetes.

2.6 Conclusions

Our results show that over large geographical areas, increased particulate matter concentra-

tions are associated with preterm birth. Our results suggest that living closer to major roads

or roads with heavy traffic does not serve as a proxy for particulate matter exposure as it

relates to the risk of preterm birth. These findings have important implications for efforts

focused on preventing preterm birth, including policies aimed at reducing air pollution.
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Chapter 3

Exposure to wildfire smoke

3.1 Abstract

Background: Long term studies have shown an association between wildfire smoke ex-

posure and preterm birth. However, there have been few studies examining the association

between an isolated wildfire event and subsequent preterm birth in a small region. Fur-

ther, past studies have not typically adjusted for chronic clinical conditions associated with

preterm birth.

Objectives: In a retrospective cohort study, we examine the association between wildfire-

driven high concentrations of fine particulate matter during the 2018 California Camp Fire

and preterm birth in the San Francisco Bay Area. This fire was the first to affect the Bay

Area in over a decade. We evaluate the risk of preterm birth based on smoke exposure and

examine whether the level of fine particulate matter (particulate matter less than 2.5µm in

diameter) was associated with preterm birth.

Methods: We obtained air quality data from Environmental Protection Agency sensors

and consumer-purchased pollution sensors from PurpleAir. We interpolated daily average
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fine particulate matter surfaces and assigned a mean pregnancy fine particulate matter value

to each study subject using residential address. Using pregnancies during the year prior as a

control, we used log-linear models to determine whether experiencing the fire was significantly

associated with preterm birth. We tested whether the severity of exposure during the fire was

associated with preterm birth. We adjusted for demographic and clinical conditions.

Results: Experiencing the wildfire was associated with preterm birth, with an adjusted

relative risk aRR) of 1.10 (95% confidence interval 1.03, 1.17). The level of fine particulate

matter exposure during the fire was associated with preterm birth: exposure in the highest

tertile compared to the lowest tertile resulted in an adjusted relative risk of 1.17 (95%

confidence interval 1.05, 1.29).

Conclusion: Experiencing the 2018 California Camp Fire was associated with increased

mean fine particulate matter exposure during pregnancy and with preterm birth among

pregnant people in the San Francisco Bay Area. Those with higher fine particulate matter

exposure during the fire had higher risk, even after adjusting for chronic conditions. This

provides stronger evidence for a connection between wildfire smoke exposure and preterm

birth.

Keywords: EPA, fine particulate matter, particulate matter PM2.5, PurpleAir, wildfire

smoke
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3.2 Introduction

Preterm birth (PTB), defined as birth prior to 37 weeks of gestation, is the leading cause of

neonatal morbidity and mortality and is associated with long-term health consequences.[1,

2] There are several known risk factors for PTB, including preexisting clinical conditions,

sociodemographic characteristics, and environmental exposures.[3, 4] Previous research has

identified high concentrations of fine particulate matter (PM2.5) as a risk factor for adverse

pregnancy outcomes, including PTB and small for gestational age.[5] As climate change

expands the duration, location, timing, and intensity of wildfires, exposure to PM2.5 will

increase.[6] Prior work examining the association between exposure to wildfire smoke during

pregnancy and adverse outcomes has tended to focus on birth weight.[7] Those studies that

have examined the association between either PM2.5 or wildfire smoke and PTB have tended

to investigate patterns over large geographic areas with multiple smoke events over a long

time frame.[8, 9] In this study, we consider a recent smoke exposure event from one wildfire

affecting an area without prior exposure to wildfire smoke and test for any association with

PTB.

The Camp Fire occurred in Butte County, California in November of 2018.[10] It began

November 8th, burned for 12 days through November 21st when it started raining, and was

declared officially contained on the 25th of November. This wildfire is of particular interest

for several reasons: it was caused by electric utility infrastructure in a remote mountainous

wildland area, but because it began during a high wind event which typically only occur in

the fall season, it quickly became a wildland urban interface fire and burned down most of

the town of Paradise, California (nearly 19,000 structures) within several hours.[11, 12]

This investigation evaluates the impact of the smoke from the Camp Fire on the SF Bay

Area, located about 200 miles southwest of Paradise, California. Severe wind pushed the

smoke plume directly to the SF Bay Area within a few hours of the fire starting, inundating

this population with wildfire smoke (see Figure 3.1) for several days of extreme pollution
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for the first time in many years. The typical coastal weather patterns of the SF Bay Area

generally keep the air relatively low in PM2.5[13]. Investigation from EPA and satellite smoke

data indicate that although California has experienced many large wildfires in the last two

decades, the most recent fire to have inundated the SF Bay Area with smoke (prior to the

Camp Fire) was in 1991. This means that for many long-term residents of the SF Bay Area,

there are no lingering physiological effects from previous major smoke exposures. The Camp

Fire provides an unusual opportunity to investigate how one severe wildfire and weather

event may affect a normally sheltered population.

Choosing to focus on the SF Bay Area presents additional advantages. First, the SF Bay

Area is a diverse and densely populated region. While areas nearer to the fire were exposed

to higher concentrations of fine particulate matter, these areas are rural; using the directly

affected population would mean a smaller and less diverse sample size. Second, while the SF

Bay Area experienced heavy smoke, it was not directly at risk from the fire, and consequently

was not under any evacuation orders. Additionally, the smoke exposure duration was so

long that temporary self-evacuation became impractical, so we expect that most residents

experienced high particulate matter. Third, the topography of the SF Bay Area is highly

varied, so even within this small region we expect that smoke exposure differed significantly

by location. We also chose the SF Bay Area because of its early adoption of the crowdsourced

laser pollution sensors made by PurpleAir.[14] We used EPA and PurpleAir sensors (with

careful data cleaning) to interpolate a pollution surface across the entire SF Bay Area.

There are previous studies examining the association between exposure to wildfire smoke

and adverse pregnancy outcomes. While most of these have focused on birth weight, there

have been few considering PTB.[15] In a recent study, Heft-Neal and colleagues found a

statistically significant association between wildfire smoke and PTB, when considering Cali-

fornia births from 2006 to 2011[8]. Similarly, a study from Abdo and colleagues found that,

when examining pregnancies in Colorado from 2007 to 2015, exposure to wildfire smoke
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in the second trimester of pregnancy was positively associated with PTB.[9] Both of these

papers considered long time frames rather than the impact of a single acute event. One pa-

per considering the association between a severe fire event in Victoria, Australia, and PTB

considered only the stress caused by the fire and did not address pollution.[16]

Here we address two main questions in a large, diverse population, with individual clinical

information available. First, we assessed whether there was any association between experi-

encing the 2018 Camp Fire and PTB among SF Bay Area residents. Second, we examined

whether experienceing higher concentrations of PM2.5 during the fire (compared to lower

PM2.5 concentrations during the fire) was associated with PTB among SF Bay Area resi-

dents. We hypothesized that there would be a positive association between fire exposure

and PTB and we hypothesized that worse air would be associated with an increased risk of

PTB.

3.3 Materials and Methods

Methods and protocols for the study were approved by the Committee for the Protection

of Human Subjects (CPHS) which serves as the institutional review board (IRB) for the

California Health and Human Services Agency (CHHSA).

3.3.1 Birth data

Our outcome of interest was PTB, defined as a live delivery prior to 37 weeks of gestation.

Our study population consisted of singleton births in the following six counties: Alameda,

Contra Costa, Marin, San Francisco, San Mateo, Santa Clara. Birth records from Califor-

nia Vital Statistics were linked to hospital records from the California Office of Statewide

Planning and Development. These data record diagnoses and other clinical information from

the birth. The records also contain residential address at the time of birth. We required

that addresses were valid and could be successfully geocoded to obtain a latitude and lon-
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gitude. Geocoding was performed in ArcGIS (version 10.7.1.11595).[17] All other geospatial

computation was performed in R (version 4.0.4).[18–20] Additionally, we required that the

gestational age (in weeks) of the infant must be known, so that we could use this information

to estimate a conception date. We obtained best obstetric estimate of gestation at birth from

birth certificates.

Our control group consisted of those pregnancies which overlapped with the same calendar

time a year before the wildfires, that is, those who were pregnant during Nov 09, 2017 to

Nov 21, 2017. We chose this group to control for seasonality. Since we are not considering

the possible triggering effect smoke exposure may have on preterm delivery, we discarded

those whose pregnancies only partially overlapped the fire.

3.3.2 PM2.5 Data

In California, two natural choices for air quality data are EPA sensors, which are spatially

sparse, and CalEnviroScreen measures, which do not account for acute exposures.[21, 22]

Another source is modelled pollution surfaces; while these can record acute exposures, there

is typically a lag period between a given year and the release of modelled surfaces. [23, 24]

The modeled data for the Camp Fire does not exist at the time of publication of this research.

Lastly, smoke plume coverage maps derived from satellite imagery are available, in particular

from the GOES, MODIS and VIIRS satellites; however, these do not measure pollution at

the ground level, which changes over the life of of the wildfire and and wind patterns. As

seen from Figure 3.1), smoke covered the Bay Area for the life of the burn period. The

objective of this paper is to use high resolution measured pollution values, which for the first

time exist for a study such as this.

In just the last few years, PurpleAir, a commodity air pollution sensor company, has sold

thousands of personal pollution sensors in the SF Bay Area. In November 2018, at the time of

the Camp Fire, there were approximately 250 PurpleAir sensors in our study area. These can
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complement the 12 EPA sensors and provide an opportunity to measure pollution exposure

in greater spatial resolution than before. However, due to the nature of these crowd-sourced

measurements, the quality of the measures can be variable. The EPA performed a study to

establish a method for adjusting for Purple Air data when compared to the well-calibrated

EPA sensors.[25]

PurpleAir sensors were identified using the PurpleAir API python package developed by

ReagentX.[26] We generated a list of outdoor sensors falling within the following coordi-

nates: north = 38.5, south = 36.55, east = -121.3, west = -122.93, covering the extent of

the metropolitan SF Bay Area. Daily average measures were downloaded from each outside

sensor’s parent channel going back to 2017. We first applied the EPA correction. We re-

quired that each sensor have at least one measurement during the fire period or at least 50

during the study period. PurpleAir sensors sometimes reported unrealistically high PM2.5

concentrations, even after the EPA correction. In order to remove these, we excluded Pur-

pleAir measurements that were more than four standard deviations above the average of

the SF Bay Area EPA sensors for that day. Similarly, PurpleAir sensors sometimes record

extremely low PM2.5 concentrations during severe smoke events. One possible explanation

for these low measures is that during severe smoke events, people may choose to move their

monitors to evaluate the quality of the air inside their homes. We applied the same process

to exclude low values wherein we removed values that fell below four standard deviations of

the EPA average for the day.

3.3.3 PM2.5 Interpolation

Air pollution in the context of wildfire behaves differently than air pollution generated on

the ground from local sources. This fire was driven by wind gusts exceeding 35 miles per

hour at the site of its ignition.[27] Wind pushed smoke from Paradise, California to the

SF Bay Area within a few hours (Figure 3.1). As the wind patterns changed, the smoke
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Figure 3.1: Satellite imagery of the smoke plumes on November 8, 2018 (left) and November
15, 2018 (right).

sank when wind velocities decreased. Looking at figures from the Geostationary Operational

Environmental Satellite (GOES) satellite,[28] we see that much of California’s land mass was

covered by smoke from this fire. However, smoke plume coverage maps seen from satellite

do not effectively tell us what concentrations of PM2.5 are being measured on the ground

at different stages of the fire and smoke evolution. We used kriging as a standard spatial

interpolation method to calculate pollution values across the dense distribution of EPA and

Purple Air sensors instead of a modeled fluid dynamics air pollution dataset. We can do this

because the density of stations from Purple Air provides enough data to estimate exposures

across the region.

We evaluated the following interpolation methods: splines, kriging and inverse distance

weighting (IDW). We chose kriging because past experiments found this to be the most

accurate method [29, 30]. It adheres to the sensor value inputs, and it can derive values

greater than the inputs. It has also been used in many other pollution studies. [30–33]
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We performed kriging using a first-order polynomial: PM2.5 ∼ longitude + latitude. While

our focus was the SF Bay Area, we performed kriging over a larger area (north = 40.17,

south = 36.03, west = -123.35, east = -118.82) by adding in EPA sensors outside of our

study area. This helped us verify our air surfaces by identifying other adverse air events

outside the SF Bay Area.

We tested creating these continuous surfaces by regional watersheds to take into account the

topographic constraints. In doing so, we observed that the pollution stations were distributed

well enough to represent topographic variability already. Knowing the topographic and

climatic patterns in the SF Bay Area at the time of the wildfire has been used qualitatively

to validate the resulting pollution measures due to the spatial interpolation process.[34]

3.3.4 Exposure measures

We computed multiple measures of exposure. Our first measure was a binary indicator of

wildfire overlap; we assigned “exposed" to those whose pregnancies overlapped the full fire

period (12 days) and lived within the study extent. The study extent was covered in wildfire

smoke as seen from satellite images see Figure 3.1, and ground pollution sensors measured

increased smoke pollution throughout. “Unexposed" was assigned to all other pregnancies,

those pregnant during the same time period and study area but one year earlier, in November

2017. To assign the amount of PM2.5 exposures to each pregnancy, we extracted the PM2.5

concentrations for each day of the pregnancy from the kriged surfaces at the individual’s home

latitude and longitude. We computed the mean PM2.5 exposure over the whole pregnancy.

For those whose pregnancy overlapped the fire, we also computed the mean PM2.5 exposure

and the maximum PM2.5 during the fire.
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3.3.5 Statistical analysis

We first conducted a Welch two-sample T-test to determine whether the mean PM2.5 ex-

posure was the same for those who had experienced the fire and those who had not. To

determine whether experiencing the fire was a risk factor for PTB, we considered multiple

scenarios. We first computed a simple contingency table with the fire exposure as a binary

variable. We computed separate log-linear models for our two exposures of interest: fire

as a binary, and mean PM2.5 over the course of pregnancy. We adjusted these models in

stages; to see whether clinical covariates affected our results, we first added demographic

covariates only, then included clinical covariates. Our demographic covariates were: mater-

nal education (>12 years or <12 years compared to 12 years), maternal age (<18 years or

>34 years compared to 18-34 years), interpregnancy interval (very short (<6 months), short

(6-23 months), or long (>59 months) compared to normal (24-59 months)), insurance status

(public compared to non-public), race/ethnicity (Black, Asian, Hispanic, or other compared

to white non-Hispanic), and adequacy of prenatal care: inadequate (care begun after 4th

month or <50% of recommended visits received) or intermediate (care begun by 4th month

and 50%-79% of recommended visits received) compared to adequate/adequate plus (care

begun by 4th month and ≥80% of recommended visits received).[35] Our clinical covari-

ates were: the presence of a mental disorder, preexisting diabetes, preexisting hypertension,

nulliparous, drug abuse, alcohol abuse, smoking status, and asthma. We considered timing

subtypes of PTB: Very Early PTB (<28 weeks), Early PTB (28 - 32 weeks), and Late PTB

(36-37 weeks) as compared to term birth.

To verify our results, we grouped pregnancies into census tracts, then divided census tracts

into tertiles based on mean PM2.5 over two non-intersecting periods. We defined baseline

PM2.5 tertiles using a one-year period starting from 2017-03-20. We calculated fire tertiles

using the fire period (2018-11-09 to 2018-11-21). We assessed whether there was a difference

in PTB rates between high fire tertiles and high baseline tertiles prior in the control group.
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For additional testing, we performed Welch two-sample T-tests on the mean income levels of

the low baseline and low fire tertiles, as well as the high baseline and high fire tertiles.

We also tested for an association between PM2.5 exposure during the fire period and PTB.

For this analysis, we restricted our population to only birthing people who had experienced

the full fire period. We examined both the peak PM2.5 measure they experienced during the

fire as well as the mean PM2.5 during the fire period using log-linear models. As before, we

adjusted this model in stages, first adding in the exposure and demographic covariates, then

recomputing the model with clinical covariates added.

3.4 Results

Sample selection is shown in Figure 3.2. Population characteristics are displayed in Table

3.1. Our population wass largely Asian (30.3%), White (27.5%), or Hispanic (26.5%), with

Black birthing people making up less than 5% of our study population. Roughly half of the

mothers and birthing people in our study were born in the US. More than two-thirds of our

population had completed more than 12 years of education. While MediCal generally covers

approximately half the births in California,[36] only 20% of our population was covered by

MediCal; the majority of our sample used private insurance. This is likely due to the fact

that the SF Bay Area is comprised of the six wealthiest counties (by per-capita income)

in California. Figure 3.3 shows the timing of pregnancies in our control and exposed

population.

Table 3.1: Sample overview.

N 68,006
Race/ethnicity

White 20064 (29.5)
Hispanic 17826 (26.2)
Black 3084 ( 4.5)
Asian 19757 (29.1)
Other race 7275 (10.7)
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N 68,006
IPI

Normal IPI 47658 (70.1)
Very short IPI 773 ( 1.1)
Short IPI 11865 (17.4)
Long IPI 7710 (11.3)

Education
12 years 14946 (22.0)
<12 years 4949 ( 7.3)
>12 years 48111 (70.7)

Insurance
Other pay 52854 (77.7)
MediCal 14001 (20.6)
Self pay 1151 ( 1.7)

Prenatal care
Adequate plus 13480 (19.8)
Adequate 31780 (46.7)
Intermediate 17343 (25.5)
Inadequate 4640 ( 6.8)

Maternal age
18 to 34 45978 (67.6)
>34 21724 (31.9)
<18 304 ( 0.4)

Mental disorder 7532 (11.1)
Preexisting diabetes 1509 ( 2.2)
Preexisting hypertension 1368 ( 2.0)
Nulliparous 31864 (46.9)
Drug abuse 0.01 (0.12)
Alcohol abuse 0.00 (0.04)
Gestational diabetes 7771 (11.4)
Gestational hypertension 6354 ( 9.3)
Maternal asthma 4482 (6.6)
Maternal smoking 876 (1.3)

Weather data shows that the wind pushed smoke into the SF Bay Area for the first several

days of the fire. Wind patterns changed and the worst air pollution days were November

15th and 16th. Pollution spiked in all of the valleys around the SF Bay Area during the

peak pollution days. Pollution is lower in the hills and the coast. See Figure 3.4 for the

constructed air surface for November 16, 2018.
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Figure 3.2: Sample selection
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Figure 3.3: The plot is constructed of thin horizontal lines, each representing the duration
of a pregnancy, from conception on the left to delivery on the right. Pregnancies are vertically
ordered by start date. The orange rectangle represents the fire period (Nov 9 – 21, 2018).
The blue rectangle represents a year prior to the fire period (Nov 9 – 21, 2017). Those who
were exposed to the fire are colored by the trimester of exposure.
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Figure 3.4: Interpolated PM2.5 concentrations using kriging on corrected PurpleAir sensors
and EPA data.

There is a dramatic spike in the ownership of PurpleAir sensors shortly before and during

the wildfire. Prior to November 1, 2018, there were 128 eligible sensors; our total number

of eligible sensors (including all those added before and after November 1, 2018) was 234.

Approximately 8% of measurements during the fire period were removed for falling outside

of our allowable range (the mean of the EPA sensors ±4σ).

Pregnancy mean PM2.5 was 2.5% higher for those whose pregnancies overlapped the fire

period (mean of 9.56µg/m3) versus those whose pregnancies did not (mean of 9.33µg/m3)

(Figure 3.5). There was a positive association between experiencing the fire (as a binary

variable) and PTB (as a binary outcome), with crude relative risk equal to 1.15 (95% CI 1.08,

1.23). These associations remained statistically significant after adjustment for demographic

and clinical variables, just slightly attenuating to 1.13 (95% CI 1.06, 1.20) and 1.10 (95%

CI 1.03, 1.17), respectively. Exposure to the fire was not significant for the Very Early PTB

(aRR = .92 (95% CI .68, 1.26)) and Early PTB (aRR = 1.15 (95% CI 0.95, 1.40)) subgroups.
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Figure 3.5: Boxplot comparing pregnancy mean PM2.5 between the unexposed and exposed
groups. Mean of unexposed is 9.33µg/m3; mean of exposed is 9.57µg/m3.

Results are shown in Figure Figure 3.6 and Table 3.2. Mean PM2.5 concentrations over

the full pregnancy were also significant in all models; in the fully adjusted model, the aRR

is 1.17 (95% CI 1.15, 1.19). The aRR of pregnancy mean PM2.5 per 1µg/m3 increase in the

control group was 1.11 (95% CI 1.09, 1.14), and in the exposed group was 1.26 (95% CI 1.23,

1.29).

In the control group, there was no significant difference in PTB rates between the census

tracts in the highest fire tertile and the lowest fire tertile. Similarly, there was no significant

difference in PTB rates between the high fire tertiles to the high baseline tertiles in the

control group.
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Figure 3.6: Forest plot showing crude, partially adjusted, and fully adjusted relative risk
from separate log-linear models. The exposures shown are the pregnancy mean PM2.5 as
a continuous variable and exposure to fire as a binary variable. The partially adjusted
models are adjusted for demographic covariates (race/ethnicity, interpregnancy interval, ed-
ucation, insurance type, prenatal care, and maternal age); the fully adjusted models include
demographic and clinical variables (mental disorder, preexisting diabetes, preexisting hyper-
tension, parity, drug abuse, alcohol abuse, smoking, and asthma).
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Table 3.2: Table showing crude, partially adjusted, and fully adjusted relative risk from
separate log-linear models by timing of preterm birth. The exposures shown are the preg-
nancy mean PM2.5 as a continuous variable and exposure to fire as a binary variable. The
partially adjusted models are adjusted for demographic covariates (race/ethnicity, inter-
pregnancy interval, education, insurance type, prenatal care, and maternal age); the fully
adjusted models include demographic and clinical variables (mental disorder, preexisting di-
abetes, preexisting hypertension, parity, drug abuse, alcohol abuse, smoking, and asthma).
Preterm is birth <37 weeks, Very Early Preterm is birth <28 weeks, Early Preterm is birth
28 – 32 weeks, and Late Preterm is birth 36 – 37 weeks.

Timing Exposure adjustment RR 95% CI p value
Preterm Exposed to fire Unadjusted 1.15 (1.09, 1.23) 4.29E-06
Preterm Exposed to fire Fully adjusted 1.12 (1.05, 1.19) 4.71E-04
Preterm Exposed to fire Partially adjusted 1.13 (1.06, 1.20) 1.11E-04
Preterm Mean PM2.5 Unadjusted 1.21 (1.18, 1.23) 4.45E-94
Preterm Mean PM2.5 Fully adjusted 1.18 (1.16, 1.21) 1.35E-74
Preterm Mean PM2.5 Partially adjusted 1.20 (1.17, 1.22) 8.39E-83
Early Preterm Exposed to fire Unadjusted 1.17 (0.97, 1.41) 1.08E-01
Early Preterm Exposed to fire Fully adjusted 1.11 (0.92, 1.34) 2.66E-01
Early Preterm Exposed to fire Partially adjusted 1.13 (0.93, 1.36) 2.13E-01
Early Preterm Mean PM2.5 Unadjusted 1.44 (1.36, 1.52) 2.09E-40
Early Preterm Mean PM2.5 Fully adjusted 1.42 (1.34, 1.50) 2.33E-35
Early Preterm Mean PM2.5 Partially adjusted 1.44 (1.36, 1.52) 4.22E-38
Late Preterm Exposed to fire Unadjusted 1.18 (1.08, 1.30) 2.56E-04
Late Preterm Exposed to fire Fully adjusted 1.16 (1.06, 1.27) 1.39E-03
Late Preterm Exposed to fire Partially adjusted 1.16 (1.06, 1.27) 1.12E-03
Late Preterm Mean PM2.5 Unadjusted 1.13 (1.10, 1.16) 3.72E-19
Late Preterm Mean PM2.5 Fully adjusted 1.13 (1.10, 1.16) 8.54E-18
Late Preterm Mean PM2.5 Partially adjusted 1.13 (1.10, 1.17) 3.09E-19
Very Early Preterm Exposed to fire Unadjusted 1.02 (0.76, 1.38) 8.82E-01
Very Early Preterm Exposed to fire Fully adjusted 0.96 (0.71, 1.30) 7.94E-01
Very Early Preterm Exposed to fire Partially adjusted 0.98 (0.73, 1.33) 9.05E-01
Very Early Preterm Mean PM2.5 Unadjusted 1.80 (1.65, 1.96) 5.00E-42
Very Early Preterm Mean PM2.5 Fully adjusted 1.80 (1.65, 1.96) 1.89E-38
Very Early Preterm Mean PM2.5 Partially adjusted 1.82 (1.67, 1.99) 4.40E-40

3.4.1 Differential exposure during the fire

Among those whose pregnancies overlapped the fire, the range of peak PM2.5 concentrations

experienced was 76.4 to 202.6µg/m3. The mean PM2.5 over the fire period ranged from 42.3

to 91.0µg/m3. For the fire period, the air quality tertile cutoffs were [42.3, 60.0), [60.0, 65.9),
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and [65.9, 91.0] µg/m3.

Mean exposure over the full pregnancy was statistically significantly associated with PTB

in the fully adjusted model, with an aRR of 1.25 (95% CI 1.22, 1.28) per 1µg/m3 increase.

In the unadjusted model, the risk associated with the comparison of the middle tertile to

the lowest was not significant (RR = 1.07 (95% CI 0.97, 1.18)); however, this change was

significant in the partially and fully adjusted models (aRR = 1.17 (95% CI 1.05, 1.29) and

aRR = 1.15 (95% CI 1.04, 1.28), respectively). The risk associated with the comparison of

the highest tertile to the lowest was significant in all three models, with an aRR of 1.17 (95%

CI 1.05, 1.29) in the fully adjusted model. Tertile changes were not significant among the

Very Early PTB or Early PTB subgroups; pregnancy mean PM2.5 was significant among all

subgroups. Results are shown in Figure Figure 3.7 and Table 3.3.

Table 3.3: Table showing crude, partially adjusted, and fully adjusted relative risk from sep-
arate log-linear models by timing of preterm birth. The exposures shown are the pregnancy
mean PM2.5 as a continuous variable and the air quality tertile during the fire. The partially
adjusted models are adjusted for demographic covariates (race/ethnicity, interpregnancy in-
terval, education, insurance type, prenatal care, and maternal age); the fully adjusted models
include demographic and clinical variables (mental disorder, preexisting diabetes, preexist-
ing hypertension, parity, drug abuse, alcohol abuse, smoking, and asthma). Preterm is birth
<37 weeks, Very Early Preterm is birth <28 weeks, Early Preterm is birth 28 – 32 weeks,
and Late Preterm is birth 36 – 37 weeks.

Timing Exposure adjustment RR 95% CI p value
Preterm Mean PM2.5 Unadjusted 1.28 (1.25, 1.31) 8.06E-84
Preterm Mean PM2.5 Fully adjusted 1.25 (1.22, 1.28) 3.47E-67
Preterm Mean PM2.5 Partially adjusted 1.27 (1.23, 1.30) 8.76E-74
Preterm Medium fire tertile Unadjusted 1.02 (0.92, 1.12) 7.67E-01
Preterm High fire tertile Unadjusted 1.09 (0.98, 1.20) 1.04E-01
Preterm Medium fire tertile Fully adjusted 1.11 (1.01, 1.23) 3.86E-02
Preterm High fire tertile Fully adjusted 1.15 (1.03, 1.27) 1.00E-02
Preterm Medium fire tertile Partially adjusted 1.12 (1.01, 1.24) 3.15E-02
Preterm High fire tertile Partially adjusted 1.17 (1.05, 1.29) 3.57E-03
Early Preterm Mean PM2.5 Unadjusted 1.59 (1.47, 1.72) 1.68E-31
Early Preterm Mean PM2.5 Fully adjusted 1.57 (1.44, 1.70) 2.12E-26
Early Preterm Mean PM2.5 Partially adjusted 1.58 (1.45, 1.71) 1.20E-27
Early Preterm Medium fire tertile Unadjusted 1.09 (0.78, 1.52) 6.12E-01
Early Preterm High fire tertile Unadjusted 1.18 (0.85, 1.64) 3.30E-01
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Timing Exposure adjustment RR 95% CI p value
Early Preterm Medium fire tertile Fully adjusted 1.28 (0.91, 1.79) 1.57E-01
Early Preterm High fire tertile Fully adjusted 1.24 (0.89, 1.75) 2.05E-01
Early Preterm Medium fire tertile Partially adjusted 1.26 (0.90, 1.76) 1.76E-01
Early Preterm High fire tertile Partially adjusted 1.27 (0.90, 1.78) 1.71E-01
Late Preterm Mean PM2.5 Unadjusted 1.20 (1.16, 1.25) 2.75E-21
Late Preterm Mean PM2.5 Fully adjusted 1.19 (1.14, 1.24) 1.48E-18
Late Preterm Mean PM2.5 Partially adjusted 1.19 (1.15, 1.24) 2.47E-19
Late Preterm Medium fire tertile Unadjusted 1.07 (0.92, 1.24) 3.58E-01
Late Preterm High fire tertile Unadjusted 1.10 (0.95, 1.28) 2.00E-01
Late Preterm Medium fire tertile Fully adjusted 1.16 (1.00, 1.35) 5.24E-02
Late Preterm High fire tertile Fully adjusted 1.16 (1.00, 1.35) 5.21E-02
Late Preterm Medium fire tertile Partially adjusted 1.16 (1.00, 1.35) 4.85E-02
Late Preterm High fire tertile Partially adjusted 1.18 (1.01, 1.37) 3.20E-02
Very Early Preterm Mean PM2.5 Unadjusted 2.22 (1.98, 2.49) 1.29E-42
Very Early Preterm Mean PM2.5 Fully adjusted 2.33 (2.05, 2.65) 9.36E-39
Very Early Preterm Mean PM2.5 Partially adjusted 2.28 (2.02, 2.58) 1.57E-39
Very Early Preterm Medium fire tertile Unadjusted 0.87 (0.51, 1.47) 6.04E-01
Very Early Preterm High fire tertile Unadjusted 1.23 (0.76, 2.00) 3.94E-01
Very Early Preterm Medium fire tertile Fully adjusted 1.07 (0.63, 1.82) 8.06E-01
Very Early Preterm High fire tertile Fully adjusted 1.37 (0.83, 2.25) 2.14E-01
Very Early Preterm Medium fire tertile Partially adjusted 1.01 (0.60, 1.71) 9.72E-01
Very Early Preterm High fire tertile Partially adjusted 1.30 (0.79, 2.13) 3.05E-01

3.5 Comment

3.5.1 Principal Findings

In this study, we examined the impact of one of the largest and deadliest fires in northern

California history on PTB. After adjusting for demographic and clinical covariates, we found

an approximate 10% increased risk of PTB by wildfire exposure.

The risk associated with mean pregnancy PM2.5 and PTB was higher in the exposed group

alone than it was in the full analysis. We also observed a difference in risk comparing those

above our mean exposure to those below (regardless of exposure status), suggesting it is at

least partially driven by a non-linear association between mean PM2.5 and PTB risk. In

addition, the composition of wildfire PM2.5 may be particularly bad for human health.[37]
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Figure 3.7: Forest plot showing crude, partially adjusted, and fully adjusted relative risk
from separate log-linear models. The exposures shown are the pregnancy mean PM2.5 as
a continuous variable and the air quality tertile during the fire. The partially adjusted
models are adjusted for demographic covariates (race/ethnicity, interpregnancy interval, ed-
ucation, insurance type, prenatal care, and maternal age); the fully adjusted models include
demographic and clinical variables (mental disorder, preexisting diabetes, preexisting hyper-
tension, parity, drug abuse, alcohol abuse, smoking, and asthma).

57



It could also be that PM2.5 in our exposed group is serving as an indicator of stress (a risk

factor for PTB[38]), or some other measure associated with the fire. Among those exposed

to the wildfire, mean PM2.5 had a higher risk than tertiles of exposure during the wildfire.

This may suggest that it is cumulative, rather than acute exposures driving the association

between mean PM2.5 and PTB. It may also be driven by limited variation in the exposed

group. We did not see major differences in timing of PTB.

Of interest is that in their work, Heft-Neal and colleagues found that baseline PM2.5 levels

were higher in lower-income ZIP codes, but these ZIP codes faced less wildfire smoke. On the

other hand, higher-income ZIP codes had lower baseline PM2.5 concentrations, but experi-

enced more wildfire smoke. The authors proposed this situation may be due to wealthy rural

landowners.[8] In our own study, the mean median income of low-baseline tracts was higher

than that of high-baseline tracts. However, there was no significant difference in income

between the low-fire tracts and the high-fire tracts.

3.5.2 Clinical Implications

Air chemistry is an important component that is not yet fully understood. Here we measure

PM2.5, which serves as a proxy for the chemistry of the pollutants. Prior work suggests that

wildfire smoke may be particularly bad for human health.[37] The Califoria Air Resources

Board performed a chemical analysis of the smoke showing that dangerous levels of toxic

metals including lead were present in the wildfire smoke of the Camp Fire, having burned

most of downtown Paradise, California. This further supports that this wildfire may have

had unique health effects and indicates that future wildland-urban interface fires could have

similar increased threats to human health over vegetation-based wildfires.[12] While different

types of particulate matter may have different effects on the body, one commonly-proposed

pathway from fine particulate matter to PTB is via oxidative stress. Studies have shown

that wildfire combustion has high oxidative potential[39] and that wildland firefighters may
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show increased biomarkers of oxidative stress.[40] However, it is important to note that

biomarkers of increased oxidative stress in non-firefighters have yet to be confirmed during

a real wildfire event.[41] Biomarkers of oxidative stress have been linked to PTB;[42]. In a

systematic review of the literature, Moore and colleagues concluded that an imbalance of

oxidants and antioxidants may be linked to PTB.[43] Further research is required to better

understand potential pathways on influence in fire—PTB relationships.

3.5.3 Strengths and Limitations

A major strength of our study is the inclusion of clinical covariates, which is not typical of

large population-based studies focused on air pollution and PTB.[15] In addition, we used

a spatially and temporally dense map of air sensors to compute a well-resolved map of air

quality. This allowed us to look not only at the effects of experiencing the fire, but also the

degree to which the air was affected.

One limitation of our study is our inability to differentiate the effects of smoke and non-

wildfire particulate matter. We addressed this by computing baseline PM2.5 means by census

tract and using those for comparisons. By comparing individuals from the same geographic

area, we are able to control for some of the impact of background particulate matter. In

addition, we compared demographics and PTB rates between census tracts in the highest

fire tertile and the lowest fire tertile in our control group (those who delivered prior to the

fire). We found that while the tertiles were significantly different in demographics, the PTB

rates were not significantly different between the high and the low PM2.5 tracts.

We were also not able to differentiate the effects of bad air and those of stress. Other studies

have found increases in PTB following environmental disasters where pollution was not a

major concern.[44] This raises the question of whether stress or exposure is a driving factor

in our results. We restricted our study area to a relatively small region well away from the

fire, which was never under threat of evacuation (some people may have been able to leave;
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we adjusted for socioeconomic status, which may not address this fully). It is important to

note that we did see a range of exposures in our area, and as such, it is possible that those

facing higher PM2.5 concentrations also experienced increased stress. It will be important

that future studies more fully investigate stress as a driver of PTB in pregnant people facing

fire-related smoke exposure.

We also based exposure calculations based on residential address and did not have informa-

tion on residential moves or workplace. While a past study has found that moves during

pregnancy did not result in dramatic differences in exposure [45], this may not hold true

in acute, high-pollution events and as such, represents another important area for future

inquiry.

3.5.4 Research Implications

Wildfires pose an increasing threat to human health, and further work in this field is critical.

The methods presented here allow for near real-time air pollution surface construction. The

field will benefit from up-to-date studies on recent fire seasons. California is seeing increasing

numbers of large wildfires since the Camp Fire of 2018, validating this “new normal" of

climate change. One study projects that massive wildfires will continue in the west for

roughly the next 10 years.[46] The 2020 California fire season was particularly prolonged

and should be examined, especially since residential addresses may better reflect the usual

location of residents, due to individuals working from home during COVID-19. The wildfires

of 2020 (including August complex, North Complex, CZU complex) and the 2021 fires to

date (Dixie, Monument, Caldor, French, and many others) provide ample opportunity to test

how much sustained exposure affects pregnant people and infants and to what extent.

In addition, the effects of wildfire smoke on respiratory outcomes in infants is an important

question that may help develop policy and health care procedures. Given that preterm

infants are at higher risk for adverse respiratory outcomes than term infants, this is vital to
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consider in the context of extremely short-term results of smoke exposure, which we did not

consider in this study.

This study has implications for influencing policies around mitigating smoke in homes or to

build public health programs to provide air purifiers for sustained smoke exposure.

3.5.5 Conclusion

This study found that exposure to wildfire smoke from the 2018 Camp Fire is associated

with an increased risk of preterm birth in the SF SF Bay Area, even after accounting for

chronic clinical conditions of the pregnant person. Since this study found that PM2.5 ex-

posure posed a higher risk in the exposed group, future research should investigate wildfire

smoke composition and mechanistic pathways. In addition, further work should examine the

relationship of stress and smoke as combined drivers behind the association.
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Chapter 4

COVID, Air quality, and Preterm

birth

4.1 Abstract

Background: Previous studies have demonstrated an association between fine particulate

matter (particulate matter ≤2.5 µm in diameter, PM2.5) and preterm birth (PTB). Some

risk factors for PTB have been shown to modify this association. Whether the PM2.5 – PTB

association is modified by SARS-CoV-2, however, remains unknown.

Objective: Determine whether the association between PM2.5 and PTB is modified by

testing positive for SARS-CoV-2.

Methods: We performed a retrospective cohort study on nearly 200,000 pregnant people

in California, USA. COVID status was obtained from birth records. Each individual was

assigned a pregnancy-wide average PM2.5 exposure by residential location at time of delivery.

We applied separate Cox models, adjusted for potential confounders, to those who tested
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positive and negative and compared the resulting hazard ratios (HRs).

Results: We found a non-linear relationship between PM2.5 and PTB in our population.

While the HR curves showed different shapes, they were not significantly different.

Conclusion: We found that testing positive for SARS-CoV-2 did not modify the relation-

ship between PM2.5 and PTB.

4.2 Introduction

Preterm birth (PTB), defined as a live birth prior to 37 weeks of gestation, is the leading

cause of neonatal mortality and morbidity in the United States. The consequences of preterm

birth can be both acute, such as respiratory distress syndrome[1], and long-term, including

diabetes mellitus (DM)[2] and severe medical disability.[3, 4] Air pollution has been linked to

increased risk of PTB in multiple studies.[5–7] While further research is needed to definitively

understand the biological pathways linking air pollution and PTB, Kannan and colleagues

propose that oxidative stress and inflammation, among other effects, play a role.[8] During

the COVID-19 pandemic, some regions experienced improved air quality[9] and/or reduced

preterm birth rates.[10] However, these changes are not universal[11, 12] and the risk between

exposure to air pollution and PTB likely remains.

Pregnant people are at higher risk for developing severe COVID-19,[13] which in turn is a

risk factor for preterm birth.[14] While it was initially thought that much of this risk was due

to medically indicated deliveries,[14] recent studies have demonstrated that infection with

SARS-CoV-2 is associated with spontaneous preterm birth as well[15]. COVID-19 causes

inflammation in multiple systems,[16] increasing the risk for preterm birth.[17, 18] A COVID-

19 positive status may also act as a marker of medical vulnerability. Several risk factors for

SARS-CoV-2 severity, such as smoking, DM, and obesity,[19, 20] are known risk factors for

preterm birth.[21] SARS-CoV-2 may also act on preterm birth by inducing stress, another
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risk factor for preterm birth.[22] A positive COVID-19 result and subsequent quarantine

during the prenatal period may induce anxiety,[23] further impacting birth outcomes.

Prior work has identified that certain risk factors for PTB, such as maternal DM[24] can be

effect modifiers of the relationship between PM2.5 and PTB. Since DM is linked with the

severity of COVID-19, this raises the question of whether infection with SARS-CoV-2 may

also act as an effect modifier on the PM2.5 – PTB association.

In this retrospective cohort study, we examined whether testing positive for SARS-CoV-2

modifies the association between PM2.5 exposure and PTB. Given the similar mechanisms of

actions between the two risk factors, we expect the virus to amplify the existing relationship

between PM2.5 and PTB. We rely on California birth certificate data from 2019-08-15 to

2020-04-30, which cover a large and diverse population and contain individual-level data on

COVID-19 status and comorbidities.

4.3 Methods

Methods and protocols for the study were approved by the Committee for the Protection

of Human Subjects (CPHS) which serves as the institutional review board (IRB) for the

California Health and Human Services Agency (CHHSA).

4.3.1 Study population

California birth certificate data on births conceived between 08-15-2019 and 04-30-2020 pro-

vided information on our outcome of interest (PTB) and individual covariates. Our date

range was chosen to ensure we would have the full records for infants born between 20 and

41 weeks, thus avoiding fixed cohort bias. We restricted to singleton births. Multiple births

to the same person were included; given our date range, this number is expected to be quite

small.
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4.3.2 Outcome assessment

Gestational age is recorded as best obstetric estimate, and preterm birth is defined as live

birth prior to 37 weeks of gestation. Term birth was defined as birth between 39 and 41

gestational weeks.

4.3.3 Exposure assessment

PM2.5 was calculated as a pregnancy-wide average for each individual. Latitude and lon-

gitude were pulled from birth records; 3.4% of births were missing these. We calculated

PM2.5 exposure using well-validated predictions.[25] These predictions are constructed from

ground and satellite observations, in combination with a chemical transport model to repre-

sent a finely-resolved summary of PM2.5 concentrations. This model yields highly spatially

resolved predicted concentrations, at 1 km2 resolution, and good predictive accuracy (R2 =

0.70). The most recent available predictions are from 2018; to estimate exposures in 2019 and

2020, we obtained daily mean PM2.5 concentrations from EPA’s Air Quality System (AQS)

database at all available monitoring locations in CA, which we subsequently averaged at the

county level, if more than one monitoring site were present in a county. Seven counties did

not have any monitoring sites; for these counties we used the concentration measured at the

site nearest to the county centroid. We then multiplied the predicted concentrations within

each county with the ratio of the daily county average PM2.5 concentrations over the county

average annual PM2.5 predictions, to obtain daily finely resolved PM2.5 concentrations in

2019 and 2020. For each person, we estimated pregnancy-wide average PM2.5 concentrations

at the delivery residential location. A small number of addresses were geocoded to locations

that fell just outside the bounds of the raster; exposure for these addresses was based on the

nearest raster cell.
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4.3.4 COVID-19 status

Beginning in July 2020, COVID-19 status was recorded on birth certificates as “confirmed” or

“presumptive.” A “confirmed” diagnosis indicated that the positive test result was confirmed

by a Centers for Disease Control and Prevention (CDC) laboratory, while a “presumptive”

diagnosis was used for positive results from state or local laboratories. We considered both

confirmed and presumptive cases as testing positive for COVID-19.

4.3.5 Covariate data

We added a binary variable to show whether any day during pregnancy exceeded 50µg/m3;

this serves as a wildfire indicator. Additional covariates included were: maternal educa-

tion (12 years, <12 years, >12 years), maternal age (<18 years or >34 years compared to

18-34 years), infant sex, interpregnancy interval (IPI) (normal (24-59 months), very short

(<6 months), short (6-23 months), or long (>59 months)), insurance status (public vs. non-

public), race/ethnicity (white non-Hispanic, Black, Asian, Hispanic, or other), and adequacy

of prenatal care: adequate (care begun by 4th month and 80%-109% of recommended visits

received[26]), inadequate (care begun after 4th month or <50% of recommended visits re-

ceived), intermediate (care begun by 4th month and 50-79% of recommended visits received)

or adequate plus (care begun by 2nd month and ≥110% of recommended visits received). A

census tract-level poverty indicator (percent of the population living in poverty) was obtained

from the American Community Survey (2015–19).

4.3.6 Statistical Analysis

To determine whether COVID status was an effect modifier of the overall association between

PM2.5 and preterm birth, we constructed two separate Cox models: one for COVID positive

and one for COVID negative pregnant individuals. We stratified models by race/ethnicity,

insurance, and adequacy of prenatal care. We selected covariates a priori based on previously
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identified confounders for preterm birth. We adjusted for interpregnancy interval, maternal

age, infant sex, season, whether PM2.5 exceeded 50µg/m3on any day during the pregnancy,

and census tract-level poverty. We also included a fixed effect for county to account for

differences by county in COVID spread and preventative measures. PM2.5 and the month of

conception—to adjust for seasonality—were included as natural splines with three degrees

of freedom. We selected the degrees of freedom based on the Akaike information criterion

(AIC) and simplicity of the model.

We then compared the hazard ratios for PM2.5 between the two by assessing the difference

in hazard ratio at specific PM2.5 intervals.

Analysis was performed in R version 4.0.4.[27]

4.3.7 Sensitivity Analysis

Both PM2.5 sources and concentrations, as well as SARS-CoV-2 spread, differ by urbanic-

ity. We tested adjustment by multiple measures of ruralness and the availability of med-

ical care. These were: rural vs urban census tract, urban area compared to large rural

city/town and small & isolated small rural town (as defined by the Rural Urban Commuting

Area Codes[28]), distance from county centroid to the nearest Neonatal Intensive Care Unit

(NICU), and physician-to-population ratio based on Medical Service Study Area.

4.4 Results

Our study population was largely Hispanic (48.1%). White was the second largest race/ethnicity

grouping at 26.6%, and 5.1% of our sample identified as Black. Most of our sample (57.1%)

had more than 12 years of education and the majority (74.5%) were within 18–34 years of

age (Table 4.1). Our final sample consisted of 69,141 births conceived between 2020-02-12

and 2020-04-30 (Figure 4.1).
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All births, 2020-01-01
to 2020-12-31: 441164

Singletons
428427

Multiples
12737

Geocoded; in California
412833

Not geocoded or outside CA
15594

Conception date between
2020-02-12 and 2020-04-30

69285

Conception date outside range
343548

Gestational weeks 20 - 41
69141

Gestational age <20 or >41
144

Figure 4.1: Sample selection

Table 4.1: Sample overview

Variable Lower PM2.5 quartiles Highest PM2.5 quartile p-value
N 29596 39541
Race/ethnicity (%) <0.001

White 9115 (30.8) 9305 (23.5)
Hispanic 12351 (41.7) 20932 (52.9)
Black 1240 ( 4.2) 2259 ( 5.7)
Asian 4217 (14.2) 4826 (12.2)
Other 2673 ( 9.0) 2219 ( 5.6)

Prenatal care (%) <0.001
Adequate 12536 (42.4) 17460 (44.2)
Adequate+ 7315 (24.7) 10363 (26.2)
Intermediate 6747 (22.8) 7597 (19.2)
Inadequate 2998 (10.1) 4121 (10.4)

MediCal 10388 (35.1) 18775 (47.5) <0.001
Interpregnancy interval <0.001

Normal 28538 (96.4) 38342 (97.0)
Very short 525 ( 1.8) 579 ( 1.5)
Short 438 ( 1.5) 487 ( 1.2)
Long 95 ( 0.3) 133 ( 0.3)

Maternal age (%) <0.001
18 - 34 21424 (72.4) 30092 (76.1)
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Lower PM2.5 quartiles Highest PM2.5 quartile p-value
>34 7931 (26.8) 9053 (22.9)
<18 241 ( 0.8) 396 ( 1.0)

Male infant (%) 15248 (51.5) 20117 (50.9) 0.095
Education (%) <0.001

12 years 8745 (29.5) 13355 (33.8)
< 12 years 2817 ( 9.5) 4715 (11.9)
> 12 years 18034 (60.9) 21471 (54.3)

PM2.5 >50 20432 (69.0) 36033 (91.1) <0.001
COVID+ 1636 ( 5.5) 2324 ( 5.9) 0.052
Poverty (mean (SD)) 12.24 (8.86) 16.92 (10.80) <0.001

A map of the PM2.5 predictions for December 31, 2020 is shown in Figure 4.2. There were

141 individuals along the coast who fell just outside the raster area; these were mapped to

the nearest raster pixel. 81.7% people in our sample experienced a day with mean PM2.5

> 50µg/m3 during their pregnancy. Of those, the mean number of days above 50µg/m3

was 8.4. The mean pregnancy-wide PM2.5 average was 10.8 µg/m3, with a minimum of 1.7

µg/m3 and a maximum of 39.8µg/m3. A map of average PM2.5 exposure by county is shown

in Figure 4.3.

The overall preterm birth rate was 8.4%; among those in the highest PM2.5 quartile, the rate

was 9.4%. PTB rates by county are displayed in Figure 4.3. There were 3960 people in our

sample with a presumed or confirmed COVID-19 diagnosis, representing 5.7% of the study

population.

The exposure-response curves for the COVID- and COVID+ populations are presented in

Figure 4.4. The lowest points on the HR curves for both the COVID- and COVID+

populations occurred between 10 µg/m3 and 15 µg/m3. The average exposure was lower

for the COVID- group than for the COVID+ group, but the range of the COVID- group

extended higher. Setting our reference PM2.5 level at 10µg/m3 (Figure 4.5), we found that

a PM2.5 level of 5µg/m3 resulted in a hazard ratio of 1.26 (95% CI 0.99, 1.60) in the COVID-

group and 2.49 (95% CI 0.86, 7.20) in the COVID+ group. At a PM2.5 level of 15µg/m3,
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Figure 4.2: Predicted PM2.5 surface for 2020-12-31

Figure 4.3: Counties are colored by quantile. Counties showing NA had fewer than 20
births.
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Figure 4.4: Comparison between those who tested positive for COVID-19 (orange), and
those who did not (purple). The Cox model was stratified by race, insurance, and prenatal
care, and adjusted for interpregnancy interval, age, infant sex, education level, month of
conception, a binary indicator for PM2.5 above 50µg/m3, census tract poverty, and region.

the COVID- group had a hazard ratio of 0.99 (95% CI 0.90, 1.08), while the COVID+ group

had a hazard ratio of 1.23 (95% CI 0.85, 1.77).

Table 4.2: The reference point is at PM2.5 = 10µg/m3. These values are plotted in Figure
4.5.

PM2.5 COVID status Hazard ratio 95% CI
5 COVID- 1.26 (0.99, 1.6)
5 COVID+ 2.49 (0.86, 7.2)

10 COVID- 1 (1, 1)
10 COVID+ 1 (1, 1)
15 COVID- 0.99 (0.90, 1.08)
15 COVID+ 1.23 (0.85, 1.77)
20 COVID- 1.06 (0.91, 1.24)
20 COVID+ 1.45 (0.76, 2.76)
25 COVID- 1.17 (0.94, 1.46)
25 COVID+ 1.23 (0.33, 4.55)
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Figure 4.5: Comparison between those who tested positive for COVID-19 (orange), and
those who did not (purple). The reference point is at PM2.5 = 10µg/m3. Values are shown
in Table 4.2.

4.5 Discussion

Overall, we observed a nonlinear relationship between PM2.5 and risk of PTB in California.

We also found that testing positive for COVID-19 did not modify the association between

PM2.5 exposure and PTB.

Few other studies have used splines to investigate the association between PM2.5 and PTB.

One study examining the associations between nitrogen dioxide, sulfur dioxide, and carbon

monoxide (CO) and PTB found non-linear patterns emerge for each pollutant. In particular,

CO exhibited a J-shape similar to our COVID- curve, with an elevated odds ratio for PTB

at the low-exposure end. Nonetheless, the hazard ratio curve we observed for PM2.5 in

2020 was unexpected in that the lowest HR was between 10µg/m3 and 15µg/m3. In our

sensitivity analyses, we tested adjustment by several variables of ruralness we thought may

act as confounders, but none of these changed the HR curve shape or the low point. This
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may be due to the higher than expected ranges of PM2.5. Our pregnancy-wide mean PM2.5

range extended very high, to nearly 40µg/m3. 6.1% of our sample had a mean exposure

≥20µg/m3. These high numbers may have affected the shape of our expected distribution of

the exposure-response curve. Most of California experienced a long wildfire period, causing

weeks of increased PM2.5, which in some cases overlapped with a heat wave, both of which

are associated with preterm birth.[29, 30]

Previous studies investigating effect modification on the relationship between air quality and

preterm birth have found that some risk factors are effect modifiers, while for some there

is no evidence. Lavigne and colleagues found that DM, a risk factor for PTB, modified the

association between PM2.5 and PTB.[24] Similarly, a study found that advanced maternal age

acted as an effect modifier.[31] However, when investigating whether hypertension, another

PTB risk factor, modified the effect between air pollution and PTB, Weber and colleagues

found that it generally did not.[32] Given these results, we expected that testing positive for

SARS-CoV-2 would modify the association between PM2.5 and PTB. However, our results

showed no such effect modification.

A major strength of our study is that both of our primary exposures (COVID-19 status

and PM2.5 exposure) are measured at the individual-level. We had a large sample size of

individuals across the state of California who were universally screened for SARS-CoV-2 at

delivery. Many other studies examining the COVID-19 impacts and outcomes have relied

on county-level data, which does not fully account for intra-county variation.

There are several important limitations to note. In assessing exposure, we assume that pollu-

tion spatial patterns did not change significantly, which may result in exposure measurement

error. Our outcome is based on best obstetric estimate; errors are unlikely to differ by expo-

sure. Unmeasured confounding may be present, which may have affected our results. Testing

and reporting practices vary by location and evolved during the pandemic. While COVID-19

reporting inconsistencies, errors, and incompleteness may have affected our results, we have
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no reason to believe this misclassification would have been differential with respect to either

exposure or outcome. Information regarding the timing of testing positive for COVID-19

was limited and information regarding infection severity was unavailable. Since long-term

air pollution exposure has been linked with SARS-CoV-2 severity,[33] future studies with

available data could stratify by severity to assess whether the relationship is modified for

only severe or only mild cases. In particular, the relationship may change depending on

whether the person experiences respiratory symptoms.

4.6 Conclusion

In this study of nearly 70,000 births that took place in California during the COVID-19 pan-

demic we found that testing positive for COVID-19 did not amplify the association between

PM2.5 and preterm birth. Given that those who experience the highest long-term levels of

air pollution likely face the compound risk of lower socioeconomic status and increased risk

of contracting COVID-19, this result, while preliminary until evaluated in additional pop-

ulations and time periods, provides important evidence around the interaction between air

pollution and COVID-19.
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