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Several imaging modalities, including T1-weighted structural imaging, diffusion tensor

imaging, and functional MRI can show chronological age related changes. Employing

machine learning algorithms, an individual’s imaging data can predict their age with

reasonable accuracy. While details vary according to modality, the general strategy is

to: (1) extract image-related features, (2) build a model on a training set that uses those

features to predict an individual’s age, (3) validate the model on a test dataset, producing

a predicted age for each individual, (4) define the “Brain Age Gap Estimate” (BrainAGE)

as the difference between an individual’s predicted age and his/her chronological age,

(5) estimate the relationship between BrainAGE and other variables of interest, and

(6) make inferences about those variables and accelerated or delayed brain aging.

For example, a group of individuals with overall positive BrainAGE may show signs of

accelerated aging in other variables as well. There is inevitably an overestimation of the

age of younger individuals and an underestimation of the age of older individuals due

to “regression to the mean.” The correlation between chronological age and BrainAGE

may significantly impact the relationship between BrainAGE and other variables of

interest when they are also related to age. In this study, we examine the detectability

of variable effects under different assumptions. We use empirical results from two

separate datasets [training = 475 healthy volunteers, aged 18–60 years (259 female);

testing = 489 participants including people with mood/anxiety, substance use, eating

disorders and healthy controls, aged 18–56 years (312 female)] to inform simulation

parameter selection. Outcomes in simulated and empirical data strongly support the

proposal that models incorporating BrainAGE should include chronological age as a

covariate. We propose either including age as a covariate in step 5 of the above

framework, or employing a multistep procedure where age is regressed on BrainAGE

prior to step 5, producing BrainAGE Residualized (BrainAGER) scores.
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INTRODUCTION

Aging is a biological process that can affect behavioral and
cognitive dimensions. Biological age as measured by telomere
length deviates from an individual’s chronological age as
a result of environment, lifestyle, and genetics (Shammas,
2011). However, other measures of biological age that may be
particularly relevant to psychopathology can involve structural
and functional changes in the brain.

Several imaging modalities, including T1-weighted structural
imaging (Franke et al., 2010), diffusion tensor imaging (Han et al.,
2014; Lin et al., 2016), and functional MRI (Tian et al., 2016) have
been used in conjunction with machine learning algorithms to
predict an individual’s age. Recently, integration of neuroimaging
data of different feature types and across multiple modalities has
been shown to improve age prediction (Erus et al., 2015; Liem
et al., 2017; Gutierrez Becker et al., 2018). While the details vary
according to modality, the general strategy has been to (1) extract
image-related features, (2) build a model on a training set
composed of healthy participants using these features to predict
participant age, (3) apply that model to a testing set, producing
a predicted age for each individual, (4) compute the difference
between a participant’s predicted age and chronological age
(often referred to as Brain Age Gap Estimate, BrainAGE, or brain
predicted age difference, brain-PAD), (5) test for relationships
between other variables of interest and BrainAGE, and (6) make
inferences about accelerated or delayed brain aging (Cole and
Franke, 2017). Variables of interest have included physical fitness
(Ritchie et al., 2017), physical activity (Steffener et al., 2016),
cognitive impairment after traumatic brain injury (Cole et al.,
2015), mortality risk in elderly participants (Cole et al., 2018),
acute ibuprofen administration in healthy participants (Le et al.,
2018), or status of various diseases and disorders such as diabetes
(Franke et al., 2013), Alzheimer’s disease (Gaser et al., 2013;
Löwe et al., 2016), psychiatric disorders (Koutsouleris et al.,
2014; Nenadić et al., 2017), and human immunodeficiency virus
(Wilkins, 2017).

Support Vector Regression (SVR) with a radial kernel is

a commonly used machine learning algorithm to predict age
and compute BrainAGE (Franke et al., 2010), along with other
methods such as Gaussian process and relevant vector regression

(Drucker et al., 1997). The residual error of these age-predicting
models, BrainAGE, is necessarily correlated with age, which

results in an overestimation of the age of younger individuals
and an underestimation of the age of older individuals. This is
due to the fact that these algorithms, like all regression methods,
are subject to the fundamental phenomenon of “regression
toward the mean” (Galton, 1886). A theoretical basis for this
phenomenon is presented in section Theoretical Basis for the
Age-BrainAGE Correlation. In practice, the correlation between
chronological age and BrainAGE is visually evident in many
figures of chronological vs. predicted age (Franke et al., 2010;
Cole et al., 2018). While most studies involving BrainAGE
have not discussed the age-BrainAGE correlation, some have
accounted for this correlation by using predicted age as the
primary outcome, which is similar to the correction we propose
(Erus et al., 2015; Habes et al., 2016).

The age-BrainAGE correlation may affect the apparent
relationship between BrainAGE and variables of interest when
these other variables are also related to age. In the clinical
neuroscience domain, for example, we may be interested
in covariates including physiological variables such as body
composition or psychological measures of mood or testing
performance, some of which have clear relationships with age.
In this study, we examine the detectability of multiple covariate
effects in both real and simulated data. Using real data, we
characterized relationships between BrainAGE, age, and other
variables of interest. Then, we generated a known “ground truth”
with characteristics similar to what we observed in real data. In
our simulation model, age has a direct effect on the variables of
interest, which may in turn affect simulated imaging features. We
include both linear and nonlinear effects at each level.

The goals of the current study are: (1) to highlight the
universal correlation between chronological age and BrainAGE
in theory and practice and (2) develop a general framework for
simulating age-dependent data that can be used to investigate the
effect of the age-BrainAGE correlation in subsequent analyses.
One of the challenges of determining the best practices for
using BrainAGE in statistical modeling is related to the fact that
variables of interest may be related to age, but not directly related
to accelerated or delayed brain aging. In that case, spurious
relationships with BrainAGE may be observed. Our results
strongly support the proposal that models including BrainAGE
as an independent variable should be adjusted for chronological
age as well.

METHODS

We begin with a theoretical explanation for regression toward
the mean and the concurrent correlation between the residuals
and observed values for any regression. Then, we show in
our own data the relationships between chronological age,
BrainAGE, and other covariates of interest as a basis for
the parameters in our simulations. Finally, we describe a
simulation approach to generate data with a comparable age
effect on brain image features and show how the age-BrainAGE
correlation can contribute to observed relationships, even when
the simulated independent variables do not associate with
imaging features. The R scripts for simulation and analysis are
publicly available on the GitHub repository https://github.com/
lelaboratoire/BrainAGE-simulation.

Theoretical Basis for the Age-BrainAGE
Correlation
Regression Toward the Mean
Consider n data points

(

yi, xi
)

, i = 1, . . . , n used to fit a simple
linear regression y = α + βx + ε. Least-square estimation leads
to

β̂ = rxy
sy

sx
, α̂ = y− β̂x,

where rxy is the Pearson correlation between x and y, sx and sy
are the standard deviation, respectively. Substituting the formulas
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into the fitted values ŷ = α̂ + β̂x yields

ŷ− y

sy
= rxy

(

x− x

sx

)

.

In this setting, regression toward the mean refers to the
phenomenon that the standardized predicted value of y is closer
to its mean than that of x to its mean for any imperfect
correlation, −1 < rxy < 1. The weaker the correlation, the
greater the extent of regression toward the mean. For perfect
correlations (

∣

∣rxy
∣

∣ = 1), the standardized distance between the
predicted value in y to its mean equals that of x to its mean
and there is no regression toward the mean. The implication
for BrainAGE is that the age of younger individuals tends to
be overestimated and the age of older individuals tends to be
underestimated.

Partition of Variance or Analysis of Variance (ANOVA)
In the general setting y = f (X) + ε, where X can be any
dimension and f (·) can be any regression model, the variance
of y is partitioned into a part that can be explained by X, and a
part due to random error: σ 2

y = σ 2
X + σ 2

ε . Then

Cov
(

y, f (X)
)

= σ 2
X , Cov

(

y, ε
)

= σ 2
ε

Corr
(

y, f (X)
)

=
σ 2
X

√

σ 2
X + σ 2

ε

√

σ 2
X

=
σX

√

σ 2
X + σ 2

ε

,

Corr
(

y, ε
)

=
σε

√

σ 2
X + σ 2

ε

For ŷ = f̂ (X), y = f̂ (X) + ε̂ and

Corr
(

y, f̂ (X)

)

=
σ̂X

√

σ̂ 2
X + σ̂ 2

ε

, Corr
(

y, ε̂
)

=
σ̂ε

√

σ̂ 2
X + σ̂ 2

ε

where σ̂ 2
X = Var

(

f̂ (X)

)

= Var
(

ŷ
)

and σ̂ 2
ε = Var

(

ε̂
)

.

Thus, Corr
(

y, ε̂
)

> 0 unless f̂ (X) predicts y perfectly with
σ̂ε = 0. The correlation formulas suggest that the correlation
between residual and y decreases with the correlation between y

and ŷ, i.e., prediction accuracy of f̂ (X). Supplementary Figure 1

illustrates this phenomenon using a simple simulation where y
was a function of x plus random normal noise. As the noise
decreases (and fit increases), the correlation between y and the
residuals decreases as well.

In the context of BrainAGE, the goal is to find f̂ (·) that
best predicts chronological age (y) using brain measures as X,

and BrainAGE is computed as −ε̂ = ŷ − y. Because f̂ (X)

never predicts chronological age perfectly, BrainAGE remains
correlated with age. When BrainAGE is used as the response
variable in subsequent analyses to make inferences on a covariate
Z, it is important to check whether Z is associated with
chronological age. If Z is not associated with chronological age,
then one may simply evaluate the bivariate association between
BrainAGE and Z. On the other hand, if Z is associated with

both chronological age and BrainAGE, chronological age may
confound the relationship between BrainAGE and Z (Elwood,
1992) and should be taken into account. Confounding effects can
be addressed at study design (e.g., randomization and matching)
or in statistical analysis [e.g., stratification of the confounder or
including the confounder as a covariate (Pourhoseingholi et al.,
2012)]. For example, Franke et al. (2010) considered a variable
Z that represents two groups (ill vs. healthy) and selected two
groups of individuals with similar chronological age (so Z is not
associated with chronological age) to compare their BrainAGE.
In the current work, we include chronological age as a covariate
and evaluate this approach in the context of BrainAGE.

Empirical Data
We used two separate datasets to illustrate the correlation
between BrainAGE and chronological age and the effect this
can have on associations with covariates of interest. All data
were collected at the Laureate Institute for Brain Research
between 2009 and 2017. All protocols were approved by Western
Institutional Review Board (www.wirb.com). Participants signed
written informed consent and received financial compensation
for their participation.

Training Dataset
Structural MRI data were collected from 475 healthy volunteers
(mean age ± sd = 30.5 ± 10.3 years; age range = 18–60
years; 259 female) between 2009 and 2017. Each participant
was scanned in a 3T GE MR750 whole body scanner. Scans
were acquired using axial T1-weighted MP-RAGE sequences
with a 24 cm FOV, 256 × 256 acquisition matrix, 8-degree flip
angle and 0.9375 × 0.9375mm in-plane resolution with no gap.
Other parameters varied within the following ranges: 5.736 to
6.292ms TR, 1.896–2.104ms TE, 0.9–1.2mm slice thickness,
with either an 8- (General Electric, Milwaukee, WI) or 32-
(Nova Medical Inc., Wilmington MA) channel phased array coil.
Healthy neuropsychiatric status was assessed using either the
MINI-international Neuropsychiatric Interview (Sheehan et al.,
1998) or the Structured Clinical Interview for DSM-IV (First
et al., 2002).

Testing Dataset
Structural MRI data were collected from 489 (mean age ±

sd = 34.6 ± 10.6 years; age range = 18–56 years; 312 female)
participants as part of Tulsa 1000, a longitudinal observational
study including people with mood/anxiety, substance use,
eating disorders, and healthy controls. Inclusion criteria for the
participant populations were Patient Health Questionnaire ≥10,
Overall Anxiety Severity and Impairment Scale ≥8, Drug Abuse
Screening Test >3, or SCOFF ≥2. Exclusion criteria included
a history of significant brain trauma, neurological disorders,
change in medication within 6 week prior to scanning, bipolar
disorder, and schizophrenia. Scanning parameters for this dataset
were: 24 cm FOV, 256 × 256 acquisition matrix, 186 axial slices,
0.9mm slice thickness with no gap, TR/TE = 5/2.012ms, using
an 8-channel phased array coil (General Electric, Milwaukee,
WI). Testing and training sets differed on mean age (t = 6.2,
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p < 0.0001, mean difference 4.2 years) and sex composition
(χ2 = 8.2, p= 0.004).

All participants in the testing dataset also underwent an
intense battery of assessments including self-report, clinical
interviews, neuropsychological testing, and body composition
analysis. For full details, please see (Victor et al., 2018). From
these, we selected 154 measures, which were used to illustrate the
normal range of correlations with age and how these can affect
the relationship between BrainAGE and covariates of interest.

Image Processing
All images in both the testing and training sets were processed
using Freesurfer version 6.0.0 (Dale et al., 1999) in order to
produce gray/non-gray matter masks. Then, using a procedure
similar to Franke (Franke et al., 2010) but implemented in AFNI,
all gray matter masks were transformed to MNI space via affine
transformation, smoothed with an 8mm gaussian kernel, and
downsampled to 8 × 8 × 8mm voxels. This produced a set
of 3,707 voxels per participant, with the value at each voxel
representing the fraction of that voxel comprised of gray matter.

R (version 3.2.2) and R package caret (version 6.0.76) were
used to fit a support vector regression (SVR) model with radial
basis functions. The ε (tolerance margin) was fixed at and cost
parameters were tuned using 5 repeats of 10-fold cross validation
in the training set. The hyperparameter space was sampled using
a grid search that fixed ε at 0.000145 and allowed cost to vary
from 0.25 to 4,096. The final best model (cost = 2) was then
applied to the testing set to produce one predicted age for each
participant. BrainAGE was taken to be predicted age minus
chronological age.

Additionally, we define the Brain Age Gap Estimate
Residualized (BrainAGER) to be the residual of the regression of
BrainAGE on age to remove the remaining linear bias of age. This
way, we have a measure of deviation from expected age that is
linearly uncorrelated with chronological age.

Simulation
To investigate the effect of the age-BrainAGE correlation
on subsequent modeling results, we simulated hierarchical
correlation structures among brain features, chronological age
and covariates using a generative biological model (Figure 1).
We then generated two groups of independent variables. Within
each group of variables, some are dependent on age and others
are not. One group was used in the simulation of neuroimaging
features, while the other was not. We randomly split the data
set into two subsets, trained SVR on the training set and
computed BrainAGE on the testing set. On the testing set, we
conducted linear regressions of BrainAGE on all independent
variables, both with and without chronological age. With 1,000
replications, we assessed the significance of the contribution from
the independent variables by examining the distribution of the
resulting p-values.

Model Definition
A realistic simulation model should capture the properties
of normal age-related brain volumetric data, such as brain
region-dependent changes and nonlinear chronological age

dependence (Fjell et al., 2013). A realistic simulation should also
include the ability to generate age-dependent deviations from
the normal population and age-dependent covariates that may
influence BrainAGE nonlinearly. We consider a biological causal
path model and develop a novel age-basis-function approach
for simulating BrainAGE data with covariates (Figure 1 and
Supplementary Figure 2).

Denoting age by A, we assumed an underlying (unobserved)
biological process represented by m functions of age, denoted
as fm (A), which we referred to as age basis functions (ABFs).
Here, without a function space defined, the term “basis” is used
loosely to indicate the elementary functions that can be combined
linearly to form any variable of interest y:

y=
∑

m=1
wmfm (A)+ǫ. (1)

In this study, we implemented three monotone decreasing
ABFs that can generate a wide range of non-linear functions
(Supplementary Figure 3), and used these ABFs to simulate
covariates of interest and the features extracted from an imaging
modality.

Simulating covariates
A covariate of interest Zj for participant i with chronological age
Ai was generated by

Zij =
∑3

m=1
αmjfm (Ai) + ǫij (2)

where αmj is a covariate-specific weight and the covariate-specific

error ǫij∼N
(

0, σ 2
j

)

denotes a Gaussian noise with mean 0 and

standard deviation σj.

Simulating imaging modality
The proportional gray-matter volume for voxel k of a participant
i with chronological age Ai was generated by

vik =
∑3

m=1
wmikfm (Ai) + ǫi (3)

or, in short, vik = f (Ai) + ǫi, where ǫi represents Gaussian
noise with mean 0 and standard deviation σν . This setting
allows capturing within-participant correlations (4b) and spatial
dependence within participants (4c):

Var (vik) = Var
(

f (Ai)
)

+ σ 2
v (4a)

Cov (vik, vi′k ) = Cov
(

f (Ai) , f (Ai′)
)

+ σ 2
v (4b)

Cov (vik, vik′ ) = Var
(

f (Ai)
)

(4c)

Note that the weight function wmik (Ai) allows the weights of
ABFs to vary across individuals and volumes, and as a function
of an individual’s chronological age.

To further make the imaging modality dependent on some
covariates, we let

wmik = wmk + Di (5)
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FIGURE 1 | BrainAGE simulation and analysis framework (Equations 2–4). (A) Linear and non-linear age basis functions (ABFs) fi (orange, black, and blue lines). For a

particular individual i, the ABFs are combined to create volume k’s gray matter proportion vik (orange, black, and blue arrows) and age-dependent covariates of

interest, Zij (A) with a different set of coefficients αj . (B) Some of the Zij are then fed back into the wik when generating volume vik , which leads to two levels of age

association between covariate and BrainAGE. (C) Proportional gray matter volume (volumetric data) generated from non-linear combinations of ABFs. (D)

Predicted-age and BrainAGE computed from simulated volumetric data and simulated chronological age with Support Vector-based regression; (E) Test for

association between BrainAGE and covariates of interest.

where wmk is the population mean weight for ABF fm at voxel
k, and the participant level departures Di depends on the first q
variables (covariates):

Di = γ
∑q

j=1
Zij(Ai) (6)

Other measurable variables, Zj>q, do not contribute to the
weights deviation. In addition to the age-related imaging
features that are generated from the ABFs, we also added 25%
“background” features that do not correlate with age. Other
parameters such as standard deviation of the noise ǫ were
chosen with the objective of yielding R2 and MAE values that
closely match our empirical results when the volumetric features
were used as inputs to the support vector regression (SVR)
model to estimate chronological age. Nevertheless, the choice
of parameters and even the simulation design matrix do not
affect the overall improvement in the regression that includes
age as an explanatory variable from the regression without
age.

Finally, we carried out linear regressions of the covariates
of interest on BrainAGE, with and without including age as
an explanatory variable in the model. Over 100 replications,
we assessed the detectability of the covariates as significant
contributors to BrainAGE by examining their p-value
distributions. In the ideal case, we should detect relationships
between BrainAGE and covariates Z′

js.

Simulation Steps
1. Draw 1,000 age values from the uniform distribution

U(20, 80).
2. For eachm = 1, 2, 3, draw 100 wmik values from N(0, σw) for

each region k.
3. Set αmj = 0 for some m and j (Supplementary Table 1).

Randomly draw the remaining αmj from the uniform
distribution U(−2, −1) to construct the j covariate for each
participant i (Equation 4).

4. Construct the volumetric data set. For each imaging feature
k of participant i (Equation 2), add noisy volumetric features
that do not correlate with age.

5. Randomly apply 50% of the (age, volumetric) data for training

and 50% for validation. Train the SVR model using the R
package e1071 with hyperparameters set as default on the

training set and apply the model on the validation set to
compute the BrainAGE scores.

6. On the testing set, run linear regressions of BrainAGE on all

covariates, with and without age.
7. Assess the significance of the covariates by looking at the

confidence intervals of their coefficients as well as the
distribution of the resulting p-values.

In steps 3 and 4, we simulated 16 covariate types in each of 1,000

replicate data sets (Supplementary Table 1). The 16 variables
were simulated by using all 8 possible combinations of the three
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FIGURE 2 | Similar out-of-sample R2 when applying SVR to predict age as well as negative correlation between BrainAGE and chronological age between T1000

data and simulated data. (a,b) Chronological age vs. predicted age in the testing dataset, with a mean absolute error (MAE) of 4.78 years and R2 = 0.65 in (a) and

MAE = 5.15, R2 = 0.841 in (b). Overlaying black 45-degree line and blue regression line showed regression toward the mean. (c,d) Chronological age vs. BrainAGE

(r = −0.63). Negative correlation between BrainAGE and chronological age indicates younger participants tend to have positive BrainAGE and old participants tend to

have negative BrainAGE. (e,f) After removing the linear trend in (b,c), there is no relationship between age and BrainAGER (r = 0.001). BrainAGER has an expected

value of 0, regardless of chronological age.

age basis functions. Half of them contributed to the weights wmik

(A), which consequently affected the gray matter density. For
example, Z2 and Z10 were both derived from only the linear basis
function f1, but Z10 does not influence the aging.

Additionally, the complete simulation procedure was carried
out for two scenarios: one with relatively large and another with
relatively small effects of the covariates on BrainAGE. This was
achieved by modifying the constant γ in Equation (3) so that, in

one case, the final weights wmik have a larger fold change on the
original weights. In particular, the fold change is computed as

FC =
wmik

wmk
=

wmk + Dmik

wmk
, (7)

where Dmik is the average of Dmik(A) across all ages.
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FIGURE 3 | Relationship between age-covariate correlation and the difference in measured correlation. The difference between using BrainAGE and BrainAGER

depends on the age-covariate relationship. (A) Covariate-BrainAGER correlations as a function of the covariate-BrainAGE correlation, with points colored according to

the Age-Covariate correlation. The 45-degree line is shown, and covariates more strongly related to age are further from the line. (B) The squared difference in r

between using BrainAGE and BrainAGER as a function of the variance explained by age.

TABLE 1 | Correlation and significance after FDR adjustment of each covariate with BrainAGE (rBrainAGE , pBrainAGE ) or BrainAGER (rBrainAGER, pBrainAGER).

rBrainAGE pBrainAGE rBrainAGER pBrainAGER rage

PROMIS_PainInterfTscore −0.128 0.047 0.021 0.91 0.227

PhysFunc 0.162 0.006 −0.061 0.655 −0.331

BAS_FunSeeking 0.159 0.007 0.047 0.7 −0.201

TES_TotalOccurrence −0.14 0.025 0.01 0.971 0.226

IRI_EmpaConcern −0.145 0.019 −0.086 0.416 0.11

IntSexAct 0.151 0.011 0.021 0.91 −0.22

UPPSP_SensSeek 0.181 0.002 0.053 0.655 −0.231

CDDR_PosReinforcement 0.151 0.047 0.128 0.238 −0.073

PROMIS_AlcoholNegConsqTscore 0.172 0.004 0.147 0.03 −0.095

PROMIS_AlcoholPosConsqTscore 0.176 0.003 0.071 0.545 −0.193

PROMIS_AlcoholPosExpectTscore 0.127 0.047 0.081 0.455 −0.098

PROMIS_AlcoUseTscore 0.169 0.004 0.124 0.108 −0.112

DryLeanMass 0.095 0.17 0.162 0.017 0.042

FatMass −0.155 0.009 0.02 0.91 0.26

LeanBodyMass 0.091 0.183 0.166 0.017 0.052

PercentBodyFat −0.202 <0.001 −0.051 0.655 0.251

Water 0.09 0.191 0.167 0.017 0.056

W.HRatio −0.019 0.834 0.154 0.03 0.223

PercentWater 0.2 <0.001 0.054 0.655 −0.245

PercentDryLean 0.207 <0.001 0.044 0.727 −0.267

CW_ColorNamingScaled −0.092 0.196 −0.151 0.03 −0.041

CW_InhibitionVsColorNamingScaled 0.135 0.04 0.086 0.416 −0.108

The last column contains the direct correlation between each covariate and age (rage). For BrainAGE, where age is not considered there are 17 covariates with FDR adjusted p < 0.05

and for BrainAGER, which is residualized on age, there are six covariates with adjusted p < 0.05. Cells with p < 0.05 are bold.

RESULTS

Empirical
Covariate Correlations With Age
Observed Pearson correlations between age and the 154 clinical
variables ranged from−0.33 (PROMIS physical function) to 0.29
(waist circumference) (Supplementary Figure 4). Because any
confounding effect of the correlation between age and covariates

of interest is likely to be worse with larger correlations, we
focused on simulated covariates that correlated with age with an
r of up to 0.3.

Age Prediction Accuracy and Bias
After fitting on the training dataset, SVR achieved a mean
absolute error of 4.84 years and explained 64% of the variance
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in age in the testing dataset (Figure 2a). This is comparable to
the cross-validated performance on the training set, where MAE
was 5.1 years and R2 was 0.59. The correlation between age and
predicted age was 0.82. On the other hand, regression toward the
mean lead to a negative relationship between age and BrainAGE
(r = −0.63, Figure 2c). After removing the linear trend as
shown in Figure 2c, we observed no relationship between age and
BrainAGER (r = 0.001, Figure 2e). More explicitly, BrainAGE
had a positive expected value at low chronological age and
a negative expected value at high chronological age, while
BrainAGER has an expected value of 0 regardless of actual age.

Relationships Among Age-Covariate,

Covariate-BrainAGE, and Covariate-BrainAGER

Correlations
In order to investigate the effect that the correlation between
BrainAGE and chronological age can have on the conclusions of
an imaging study, we computed the correlations between each
of the covariates and age, BrainAGE and BrainAGER. Larger
age-covariate correlations lead to larger differences in measured
correlation between that covariate and BrainAGER or BrainAGE
(Figure 3A, colored points far from the 45◦ line). When age did
not correlate with a covariate, BrainAGE, and BrainAGER tended
to give similar results (gray points, near the 45◦ line). When
age positively correlated with covariates (e.g., BMI), BrainAGER
gave more positive values, and when age negatively correlated
with covariates (e.g., PROMIS physical function), BrainAGER
yields more negative values. Similarly, the greater the variance
explained by age, the greater the squared difference in r between
using BrainAGE or BrainAGER (Figure 3B).

Table 1 shows the top 22 variables that are significantly
correlated with either BrainAGE or BrainAGER after FDR
correction for 154 tests. Notably, 17 variables were related to
BrainAGE, and the strongest relationships were among variables
strongly correlated with age, including body composition
(percent body fat r = −0.2, percent body water r = 0.2, percent
dry lean mass r = 0.2) and sensation seeking (r = 0.18).
BrainAGER was only significantly correlated with six variables
including waist to hip ratio (r = 0.15), color naming scaled
(r =−0.15), and lean body mass (r = 0.17).

Simulation
Negative Correlation Between BrainAGE and

Chronological Age in Simulated MRI Data
We set the parameters of our simulation algorithm to achieve
realistic characteristics of experimental data, such as correlation
distribution between volumes and chronological age and
the negative correlation between computed BrainAGE and
chronological age. This negative correlation was also present
in previous models such as with Gaussian Process Regression
(Cole et al., 2018) and Relevant Vector Regression (Franke
et al., 2010). Simulated results closely mirrored empirical
results. The simulated testing data had MAE of 4.58 years
and R2 of 0.71 (Figure 2b). In our simulated data, we
observed an overestimation of younger participant’s ages and
an underestimation of older participant’s ages (Figure 2d).
After removing the effect of age on BrainAGE, simulated

BrainAGER had an expected value of 0 regardless of actual age
(Figure 2f).

Reduction of False Discoveries in Regression That

Include Age as Explanatory Variable
In the linear models regressing BrainAGE on the 16 covariates
of interest with simulated large effect sizes (FC = 1.255), we
observed the following: when age was not included as an
explanatory variable, many age-related covariates were shown
to have statistically significant association with BrainAGE
(Figures 4A,C), even when they did not contribute to the weights
that made up the neuroimaging features (Figure 4, orange

boxplots above the horizontal). These false positives (FP) were
simply the result of the relationship between these covariates
and chronological age that are part of the BrainAGE’s defining
formula. Moreover, several covariates that were simulated to
contribute to the brain structure volumes had p-values on average
above 0.05 (Figure 4, blue boxplots below the horizontal).

When age was included in the regression as an extra
explanatory variable, the significance increased (p-values
decreased) for all variables that were generated to have an
association with the imaging features, even variables that
were already detected in the previous regression without age
(Figures 4B,D). Further, the decrease in significance (increase in
p-values) for unrelated covariates indicated a significant decrease
in the number of false positives. Variation in the p-values across
covariates came from their different (linear and nonlinear)
age dependencies and effects on volumetric variation. In other
words, the real “significance” of a covariate depended on from
which age basis functions it was generated and how it affected the
brain features (w1k,w2k, orw3k). Simulations with a smaller effect
size (FC = 1.170, Figures 4C,D) showed a similar effect, though
attenuated, for covariates that were contributors to wmk. The
positive rate (true and false) across 100 replications is quantified
in Supplementary Table 2. Values in this table represent the
portion of each boxplot above the horizontal line, which is the
TP rate for covariates that had an influence on imaging features
and FP rates for covariates that did not.

DISCUSSION

This study aims to highlight the relationship between
chronological age and BrainAGE and its transitive effect on
the relationship between BrainAGE and covariates of interest
that are also related to age. We propose a solution to this
problem: either use BrainAGER, or in the simple case of post-
hoc linear regression, use chronological age as a covariate in
subsequent analyses. We developed a simulation framework to
generate data with complex, but known, relationships between
the original imaging features, age, and a set of covariates that
may also be related to age. Then, we were able to quantify the
effect that accounting for age has on the ability to detect actual
and spurious correlations with covariates in subsequent analyses.

Ourmain findings can be separated into three parts: analytical,
empirical, and simulated data results. The analytical results
provide a theoretical basis for the age-BrainAGE correlation,
and the analyses using real and simulated data demonstrate
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FIGURE 4 | Significance of linear regression of covariates with BrainAGE for 100 replicate simulations. Each data set contains 16 age-dependent covariates with

differing age dependencies (linear and nonlinear) and effects on volumetric variation. Blue boxes are variables that have a direct (TRUE) effect on BrainAGE, orange

boxes are variables that do not have a direct effect on BrainAGE (FALSE), and this effect is relatively large in the top (A,B) and small in the bottom (C,D) plots.

Boxplots on the left (A,C)do not use age as an explanatory variable and models on the right (B,D) include age as an explanatory variable. “Significance” was

measured by –log(p). Horizontal line is at –log(0.05).
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this effect in practice. For the empirical data, there were three
main findings: (1) many variables that may be of interest are
correlated with age with Pearson coefficients of up to r = 0.3,
(2) BrainAGE is strongly negatively correlated with chronological
age (r = −0.63 in our dataset), (3) BrainAGER provides a
measure of deviation between predicted and actual age that is
not dependent on age, and has substantially different correlations
with covariates that are correlated with age when compared to
BrainAGE.

Since it is unknown which covariates are actually related to
premature aging, we then developed a simulation framework
to generate synthetic data. Simulated data showed: (1) similar
characteristics to actual data when used to train and test a
model on separate datasets, and (2) increased detectability of
true positives and decreased occurrence of false positives when
accounting for the age-covariate relationship, with this being
modulated by the size of the simulated effect on physiology.

Based on our observations in both real and simulated data,
we recommend that the relationship between chronological age
and BrainAGE should be accounted for. The two methods
proposed in this study are either: (1) regress age on BrainAGE,
producing BrainAGER, which is centered on 0 regardless of a
participant’s actual age or (2) include age as a regressor when
doing follow-up analyses. In fact, these twomethods will produce
the same coefficients in the case of linear regression, with slightly
larger t-statistics in the second case. The advantage of using
BrainAGER is simplicity and generalizability; it could be used
as the dependent variable in any arbitrary model, rather than
being confined to simple linear regression. While the focus of
this study is not to show specific correlates of premature aging,
it is worth noting that 17 variables significantly correlated to
BrainAGE whereas only 6 were related to BrainAGER, with 1
variable (PROMIS Alcohol Negative Consequences) overlapping
between the two sets (Table 1). Thus, accounting for the age-
BrainAGE relationship results in a vastly different set of positive
findings and would lead to a remarkably different interpretation
of these data. More explicitly, not correcting the age-BrainAGE
correlation would lead to an extensive set of spurious results in
this dataset.

Limitations
There are a few cases where the age-BrainAGE correlation is
not relevant. When comparing two groups with matched age,
any differences in BrainAGE are not likely to be caused by the
relationship with age. When the individuals being examined
are in a restricted age range, there is not likely to be much
contribution from the age-BrainAGE correlation. Also, when the
variable of interest is not related to age, removing the effect of age
makes almost no difference (Figure 3B). However, when these
cases are not true, our findings suggest that we should include
age as an explanatory variable in a final model that aims to detect
association of brain anomalies with covariates of interest.

The magnitude of the age-BrainAGE correlation is directly
related to the accuracy of the prediction model. The fact that the
residuals are correlated with observed values is a characteristic
of regression in general, regardless of the specific data domain,
and has a theoretical basis described in section Theoretical Basis

for the Age-BrainAGE Correlation. Several factors may decrease
the model performance on our testing set, and thereby increase
the age-BrainAGE correlation. Specifically, the distribution of
age ranges in our samples is non-uniform, which may lead to
more weight being given to the middle of the distribution. There
are substantial differences between the testing and training sets
we used including age, sex, and diagnosis. It may therefore be
possible to improve model performance on the testing set by
subsampling the training set to have a more uniform distribution
of ages and to match the testing set on several factors. However,
model performance is already comparable across testing and
training sets (R2 of 0.59 and MAE of 5.1 years, compared to
0.64 and 4.84) and is comparable with what has been previously
reported.

Although the simulation was carefully designed and executed,
because of the model’s complexity, we have not fully explored
all scenarios with different simulation parameters. However,
we have identified effect size as the most important parameter
and showed how it influenced the results. When varying other
parameters, we still observed a reduction in the number of
false positives when age is included as an explanatory variable
in the final regression (results not shown). Moreover, while
determining the parameters, we aimed to obtain realistic patterns
as we observed in real data, such as similar distributions of the
correlation values.

By constructing and studying an appropriate generative
model containing covariates that have linear and non-linear
relationship with age, we demonstrated that the correlation
between covariates and age should be considered when making
inferences about the relationship between BrainAGE and these
covariates.
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