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Representing Images Using
Nonorthogonal Haar-Like Bases

Feng Tang, Student Member, IEEE, Ryan Crabb, Student Member, IEEE, and

Hai Tao, Senior Member, IEEE

Abstract—The efficient and compact representation of images is a fundamental problem in computer vision. In this paper, we propose

methods that use Haar-like binary box functions to represent a single image or a set of images. A desirable property of these box functions

is that their inner product operation with an image can be computed very efficiently. We propose two closely related novel subspace

methods to model images: The nonorthogonal binary subspace (NBS) method and the binary principal component analysis (B-PCA)

algorithm. NBS is spanned directly by binary box functions and can be used for image representation, fast template matching, and many

other vision applications. B-PCA is a structure subspace that inherits the merits of both NBS (fast computation) and PCA (modeling data

structure information). B-PCA base vectors are obtained by a novel PCA-guided NBS method. We also show that B-PCA base vectors

are nearly orthogonal to each other. As a result, in the nonorthogonal vector decomposition process, the computationally intensive

pseudoinverse projection operator can be approximated by the direct dot product without causing significant distance distortion.

Experiments on real image data sets show a promising performance in image matching, reconstruction, and recognition tasks with

significant speed improvement.

Index Terms—Nonorthogonal subspace, image representations, principal component analysis, image reconstruction.

Ç

1 INTRODUCTION

LINEAR data representations are widely used in signal

processing and data analysis. Representations such as

the Fourier transform [1] and the wavelet transform [2] are

designed for general data sets. Data specific subspace

representations, on the other hand, can capture the statistics

of particular data sets and are learned directly from the

training data by optimizing some error measure. Several

such methods include principal component analysis (PCA)

[3], independent component analysis (ICA) [4], sparse

coding [5], nonnegative matrix factorization (NMF) [6],

and nonorthogonal binary subspace [7]. High-dimensional

visual data often belongs to a low-dimensional manifold

with the dimension roughly corresponding to the number of

physical factors that affect the objects appearance. These

factors may include the viewing angles, the light source

directions, and the rigid or nonrigid motion of the object.

The linear subspace method is extensively used in computer

vision algorithms in order to obtain compact representa-

tions. Some of the many examples using this technique

include the Eigenface method [8], the EigenTracking

algorithm [9], illumination subspaces [10], [11], and the

nonnegative matrix factorization method [6].

In this paper, we will present two novel efficient and
compact subspace representations for a single image or a set
of images. The two key ingredients in the new approach are
the Haar-like box function approximation of the visual data
and the associated theory of nonorthogonal subspace.

1.1 Haar-Like Box Functions and Their Properties

In recent years, Haar-like box functions have become a
popular choice as image features due to the seminal work of
Viola and Jones [12], [13]. Examples of such box functions are
shown in Fig. 1. Formally, the binary function is defined as
fðu; vÞ 2 f0; 1g, 1 � u � w, 1 � v � h, where w and h are the
dimensions of the binary function. The single Haar-like box
function is defined as

fðu; vÞ ¼
1 u0 � u � u0 þ w0 � 1

v0 � v � v0 þ h0 � 1
0 otherwise;

8<: ð1Þ

where w0 and h0 are the size of the white box in Fig. 1, and u0

and v0 are the upper left corner of the white box. For some
symmetric objects like human faces, we can similarly define
the vertically symmetric two-box binary function as

fðu; vÞ ¼

1 u0 � u � u0 þ w0 � 1
v0 � v � v0 þ h0 � 1

1 w� u0 � w0 þ 1 � u � w� u0

h� v0 � h0 þ 1 � v � h� v0

0 otherwise:

8>>>><>>>>: ð2Þ

One obvious property of binary box bases is that they are not
necessarily orthogonal to each other. If the white boxes in two
box functions have overlapping areas, their dot product is not
zero. The main advantage of using these base functions is that
the inner product of a data vector with each of them can be
performed by several integer additions, instead ofN floating
point multiplications, where N is the dimension of the base
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vectors. This is achieved by computing the integral
image fiði; jÞ of the original image fði; jÞ, which is defined as

fiði; jÞ ¼
Xi
m¼1

Xj
n¼1

fðm;nÞ:

The dot product of an image with a one-box base function is
the summation of a rectangular area of the image, which
can be computed efficiently as

Xbottom
i¼top

Xright
j¼left

fði; jÞ ¼ fiðbottom; rightÞ � fiðbottom; left� 1Þ

� fiðtop� 1; rightÞ þ fiðtop� 1; left� 1Þ;

where fð�; �Þ is the image function, and fið�; �Þ is the integral
image of f . top, bottom, left, and right are the coordinates
that define the rectangular area. This technique has been
used in many applications [12], [13], [14], [7], [15], [16], [17].
These binary box functions are generally nonorthogonal
and span an nonorthogonal binary subspace (NBS). In the
applications that will be investigated in this paper, we will
show that a significant speedup can be achieved by using
NBS for image representation.

1.2 Related Work in Subspace Representation

Some subspace data representation methods have their roots
inneuralcomputingandhavebeenwidelyemployedinsignal
analysis. In sparse coding [5], the objective is to find a
decomposition in which the base vectors are representative
and sparse. Sparse coding yields base vectors closely
resembling simple-cell receptive fields in the mammalian
primary visual cortex. The closely related model of indepen-
dent component anaylsis (ICA) [4] was shown to give similar
results [18]. In standard sparse coding, the data is described as
a combination of base vectors involving both additive and
subtractive interactions. Lee and Seung proposed the non-
negative matrix factorization (NMF) in [6]. By minimizing the
reconstruction error while imposing the constraints that the
elements of base vectors and reconstruction coefficients are
nonnegative, the NMF produces a nonnegative representa-
tion of the data. Such a representation encodes the data using a
few “active” components, which makes the subspace easy to
interpret. However, because the sparseness given by NMF is
somewhatofaside-effect ratherthanagoal, it ishardtocontrol
the degree of sparseness of the bases. Hoyer [19] proposed to
combine these two methods into the so-called nonnegative
sparse coding by posing both nonnegative and sparse
constraints in the objective function. In sparse NMF, the
uniqueness of the resulting basis and coefficients holds if the
sparseness values are known. In [20], the authors use sparse
component analysis for blind source separation by constrain-
ing the signals to be as sparse as possible (as many zeros as
possible). In [21], Heiler and Schnorr proposed a method to

efficiently compute sparsity-controlled invariant image codes
by a well-defined sequence of convex conic programs. In [22],
instead of treating the image as a 1D vector in NMF, Hazan
etal. proposed a method to factorize the 3D tensor of the image
array with a nonnegative constraint to obtain a unique sparse
set of factors that correspond to the parts of the object. In [23]
and [24], the authors propose a basis pursuit (BP) approach to
find an overcomplete basis set (the number of base vectors is
larger than the data dimension) for general signals. In [25],
EladandAharonproposedamethodtoobtainbothsparseand
overcomplete image representations using K-SVD for image
denoising. The projection pursuit method [26] aims to find the
optimal projection to separate the data clusters. However, the
subspaces obtained by these methods are usually spanned by
floating point base vectors. This makes the dot product with
the data computationally expensive. In our work, we aim at
finding a compact and efficient image representation using
simple box functions. Generally, the number of base vectors is
much smaller than the data dimension. Another work related
to ours is [27], which approximates a matrix by a weighted
sum of outer products of vectors whose elements are�1 or 0,
with the application of data compression. Our work is to
represent data as a linear combination of a set of simple Haar-
like base vectors.

1.3 Nonorthogonal Subspace and Matching Pursuit

A subspace can be represented using either orthogonal or
nonorthogonal base vectors. Orthogonal subspaces such as
DCT [28], Walsh-Hadamard transform [29], wavelet trans-
form [30], [31], and PCA [3] are most often used in vision
algorithms. Any pair of base vectors in an orthogonal
subspace is orthogonal. For a nonorthogonal subspace,
there exist one or more pairs of base vectors that are not
orthogonal to each other.

Base vectors for most orthogonal subspaces can be
obtained in a principled way with mathematical decomposi-
tions or factorizations. Unfortunately, the problem of search-
ing for the best subspace representation in a set of predefined
nonorthogonal base vector dictionary is known to be
NP-hard [32]. Two of the popular greedy solutions to this
problem include the MP [33] approach and the optimized
orthogonal matching pursuit (OOMP) method [34], [35].

Let D ¼ ½�1; �2; . . . ; �N � denote an arbitrary redundant
nonorthogonal base dictionary in a Hilbert space. The set
of base vectors selected to represent the data vector or a
set of data vectors x up to iteration k is denoted as
�k ¼ ½�1; �2; . . . ; �k�. The representation of x using �k is
denoted as R�k

ðxÞ ¼
Pk

i¼1 ci�i.

. The Matching pursuit (MP) method [33] sequentially
selects the base vector �k from D such that jcij ¼
jhx�R�k�1

ðxÞ; �kij is maximized. However, in each
iteration, the residual x�R�k

ðxÞ may not be
orthogonal to the subspace spanned by �k unless
the �is are orthogonal to each other. As a conse-
quence, the R�k

ðxÞ is not the best approximation of x
using k base vectors.

. Optimized orthogonal matching pursuit (OOMP)
[34], [35] uses a similar criterion as MP to select the
base vectors, but it maintains full backward ortho-
gonality of the residual in each iteration. Thereby,
the reconstruction of x using OOMP-selected base
vectors �k is orthogonal to the residual, hence, the
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Fig. 1. Three typical one and two-box functions. (a) and (b) are one-box

functions and (c) is a symmetric two-box function.



name orthogonal MP. In addition, OOMP selects the
base vector �i that minimizes the corresponding
residual error. Details of OOMP will be discussed in
Section 2.2.

In the rest of the paper, C ¼ ½c1; c2; . . . ; ck�T ¼ P�k
ðxÞ ¼

ð�T
k�kÞ�1�T

k x are the projection coefficients. Q ¼ ð�T
k�kÞ�1

�T
k is called the projection matrix for the subspace. As a

special case, when �is form an orthonormal system, the

projection process can be simplified as P�k
ðxÞ ¼ �T

k x. When

they are nonorthogonal, the projection process takes the

general form P�k
ðxÞ ¼ ð�T

k �kÞ�1�T
k x.

1.4 Contributions

In this paper, we propose NBS and the binary principal
component analysis (B-PCA) to represent an image or a set of
images. NBS is directly spanned by box functions and applied
to accelerate several commonly used computer vision
algorithms. NBS is then extended to B-PCA to capture the
structure information of the images. B-PCA spans a subspace
that approximates a PCA subspace. Each B-PCA base vector
is a linear combination of a small number of Haar-like box
functions. As the result, the dot product with each B-PCA
base vector can be computed very efficiently.

The main contributions of this paper are:

. A nonorthogonal binary subspace that can represent
images efficiently with box functions.

. A novel nonorthogonal image subspace representa-
tion called Binary Principal Component Analysis
(B-PCA) with each base vector as a linear combina-
tion of Haar-like box functions.

. A fast PCA-guided optimized orthogonal matching
pursuit (OOMP) algorithm for finding the B-PCA
base vectors, including a theoretical analysis of the
properties of B-PCA bases and the associated sub-
space projection.

. Applications of the proposed representations in
image matching, reconstruction, and object recogni-
tion tasks.

The rest of the paper is organized as follows: In Section 2,
we investigate the problem of representing an image or a set
of images using Haar-like box functions and propose the
nonorthogonal binary subspace (NBS) method. The applica-
tions of NBS in accelerating several widely used vision
algorithms are addressed in Section 3. In Section 4, we extend
the NBS to binary component anaylsis (B-PCA). The
implementation and experiments of NBS are given in
Section 5. In Section 6, we demonstrate the effectiveness of
the B-PCA method in image reconstruction and recognition.
Conclusion and future work are highlighted in Section 7.

2 NONORTHOGONAL BINARY SUBSPACE

2.1 The Problem Statement

We will denote the dictionary of all one-box and symmetric
two-box functions as D ¼ ½b1; . . . ;bN �, where each bi is a
column vector formed by reshaping the rectangular box
function formally defined in Section 1.1. For an image ofW �
H pixels, there are HðH þ 1ÞWðW þ 1Þ=4 and HðH þ
1ÞWðW � 1Þ=16 one-box and symmetric two-box functions,
respectively. D itself is a highly redundant nonorthogonal

base vector set. For a given image x 2 RN and the dictionary
D ¼ fbigi2I that consists of a set of binary box base vectors bi
and an index set as I ¼ f1; . . . ; Ng, x can be approximated
using base vectors as x̂ ¼

P
i2� cibi, where ci is the coefficient

of base vector bi, � is a set of indices of the vectors in D, and
� � I. Typically, j�j 	 N , so the representation is compact.
The subspace spanned byD� ¼ fbigi2� can be represented by

a matrix formed by the base vectors B� ¼ ½bl1 ; . . . ;blj�j �. The
subspace reconstruction operator is denoted as RB�

ð�Þ;
therefore, x̂ ¼ RB�

ðxÞ. For a nonorthogonal B�, the projection
coefficients are computed as

PB�
ðxÞ ¼ ½c1; . . . ; cj�j�T ¼ ðBT

�B�Þ�1BT
�x:

The reconstruction becomes

RB�
ðxÞ ¼ B�ðBT

�B�Þ�1BT
�x:

The goal of an optimal approximation algorithm is to
find the set of base vectors indexed by � so that the
following objective function is minimized:

arg min
�
kx�B�ðBT

�B�Þ�1BT
�xk þ �

X
i2�

costðbiÞ; ð3Þ

where B� ¼ ½bl1; . . . ;blj�j� is the set of base vectors for NBS.P
i2� costðbiÞ is the computational cost for the set of base

vectors �. To make the problem simpler, we assume that the

computation of all the boxes are the same, costðbiÞ ¼ 1, in
other words, the computation cost term grows linearly with

the number of base vectors. This is reasonable in our case
because the computational cost for the bases is either three
(one-box function) or seven operations (symmetric two-box

function). Obviously, selecting more base vectors will
reduce the residual, but on the other hand, more base

vectors increase the representation complexity. The optimal
solution is a trade-off of the two terms and is determined by

�, which is the weight to balance these two terms.
When a set of images X ¼ ½x1; . . . ;xS� are approximated

using nonorthogonal binary bases, the formulation is
identical except that the notations represent matrices
instead of vectors

arg min
�
kX�RB�

ðXÞk2
F þ �

X
i2�

costðbiÞ; ð4Þ

where k � k2
F is the Frobenius norm. Solving (1) and (2) is the

fundamental problem in the newly emerging research area of
highly nonlinear approximation. Solving the general form of
this problem has been proved to be NP-hard [32]. It has been
shown that even the verification of the optimal solution is
difficult. However, attempts have been made recently to
derive the performance bound under the assumption of low
coherence [36]. Suboptimal greedy algorithms that converge
to a local optimal solution exist and have been used
extensively. A family of these algorithms is based on the
celebrated matching pursuit method [33].

2.2 The Solution: OOMP

Finding the global optimal of (3) and (4) is NP-hard, and the
solution may not be unique because of the overcomplete-
ness of the base set. We employ a greedy algorithm (OOMP)
to find a suboptimal solution that guarantees that given a
parameter �, there is a unique solution to (3) and (4).
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In practice, the choice of � is not intuitive. However, we
find that if the computational cost is a convex function, there is
an equivalent and more intuitive parameter:N , the number of
base vectors to represent the signal; Fig. 2 shows the relation
between the reconstruction residual and computation cost.
The black solid curve is the reconstruction error decreasing
with the number of base vectors; we can easily see it is a
convex decreasing function (because the OOMP always
selects the base vector that reduces the residual most). The
dotted line is the computational cost term that grows linearly
with the number of base vectors. The slope of this line is
determined by �. The upper curve is the objective function,
which is the combination of the two curves below. As can be
observed, the objective function first decreases with the
number of base vectors because with more base vectors,
reconstruction error decreases, but at some point, the
objective function tends to increase because more base vectors
will increase the computation term. The optimal solution is
the minimal point of the red curve. Given a set of images to
approximate, the OOMP feature selection will decrease the
reconstruction error when the number of base vectors
increase; this curve is not affected by �. � only determines
the slope of the computation cost line; different � correspond
to different slopes (in Figs. 2a and 2b), and each� corresponds
to one unique N , the number of base vectors used to
approximate the input signal. Therefore, we can pick the
number of base vectors N instead of � to control the greedy
optimization. Another parameter that is adaptive to the data
is the error ratio, which sets a threshold on the ratio of the
residual and the original image. This method is discussed in
detail in Section 4.3. One thing to note is that in practice, the
binary box base vectors are not norm 1, but their norms can be
precomputed and stored for efficient computation.

Optimized orthogonal matching pursuit (OOMP) [35] is
a technique to compute adaptive signal representation by
iterative selection of base vectors from a dictionary. Given
the number of base vectors to be selected, the OOMP
algorithm iteratively finds base vectors B� ¼ ½bl1 ; . . . ;blj�j �
according to the following procedure. Suppose that after
iteration k� 1, the already selected k� 1 base vectors are
defined by the index set �k�1 ¼ ðliÞk�1

i¼1 . To find the base
vector in iteration k, the OOMP prescribes to select the
index lk ¼ i that minimizes the new residual, which is
equivalent to maximizing

jh�i; "k�1ij
k�ik

; k�ik 6¼ 0; i 2 ��k; ð5Þ

where "k�1 ¼ x�RB�k�1
ðxÞ is the reconstruction residual

using B�k�1
, and �i ¼ bi �RB�k�1

ðbiÞ is the component of bi
that is orthogonal to the subspace spanned by B�. RB�

ðxÞ ¼
B�ðBT

�B�Þ�1BT
�x is the reconstruction of the signal x using

the nonorthogonal bases indexed by �k�1. ��k�1 is the subset of

indices that are not selected in the previous k� 1 iterations,

that is, ��k�1 ¼ I � �k�1. The geometric interpretation of �i is

illustrated in Fig. 3. An effective implementation of this

optimization can be achieved by the forward adaptive

biorthogonalization technique [37]. In essence, OOMP is a

greedy algorithm that finds a suboptimal decomposition of a

data vector using a number of base vectors from a

nonorthogonal dictionary D.

3 APPLICATIONS OF NONORTHOGONAL BINARY

SUBSPACE

The power of NBS for representing visual data will be
shown in Section 5.1. In this section, we will show how NBS
can be applied to accelerate a wide variety of computer
vision algorithms such as normalized cross correlation
(NCC), and sum of squared distance (SSD)-based template
matching and recognition. Considerable work has been
done on fast template matching, but to our knowledge, few
of them use the binary box functions as image representa-
tion. In [38], a fast pruning method is proposed to reject
false matches for NCC. In [39], Kiltahau et al. presented a
method to accelerate the SSD using fast Fourier transform
(FFT). In [40], the authors present a method to accelerate
SSD using Walsh-Hadamard projection kernels and later
extend to the gray-code kernels [41] for efficient filtering.

3.1 Fast Normalized Cross Correlation

NCC is a popular method for matching 2D patterns in

images. When a ð2hþ 1Þ � ð2wþ 1Þ template y is correlated

with an image x at the image location ðu; vÞ, the NCC is

computed as

nccðu; vÞ ¼

Ph
i¼�h

Pw
j¼�w

Xði; jÞYði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
i¼�h

Pw
j¼�w

Xði; jÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh

i¼�h

Pw
j¼�w

Yði; jÞ2
s ð6Þ
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Fig. 2. Relation of the residual term and computation cost term in the
objective function. The black solid curves are the reconstruction error
versus the number of base vectors. The dotted curves are the
computational cost term with different �, the upper curves are the sum
of reconstruction residual and computational cost.

Fig. 3. Projection of a base vector bi into the subspace formed by

selected base vectors B�k
. The �i ¼ bi �RB�k

ðbiÞ is the component of

bi that is orthogonal to the subspace spanned by B�k
.



with

Xði; jÞ ¼ xðuþ i; vþ jÞ � �x;

Yði; jÞ ¼ yðhþ i; wþ jÞ � �y;

�x ¼ 1

ð2hþ 1Þð2wþ 1Þ
Xuþh
i¼u�h

Xvþw
j¼v�w

xði; jÞ;

�y ¼ 1

ð2hþ 1Þð2wþ 1Þ
Xh
i¼�h

Xw
j¼�w

yðhþ i; wþ jÞ:

ð7Þ

In [42], a fast algorithm was developed to compute the
denominator term

Xh
i¼�h

Xw
j¼�w
ðxðuþ i; vþ jÞ � �xÞ2: ð8Þ

This is achieved by observing that this term can be simplified
as

Ph
i¼�h

Pw
j¼�w xðuþ i; vþ jÞ2 � ð2hþ 1Þð2wþ 1Þ�x2. The

first term and the mean �x can be computed efficiently using
integral images of the original image and the squared image.
We can represent the template image using the proposed NBS
method to precompute

Ph
i¼�h

Pw
j¼�w Yði; jÞ2 and speed up

the numerator computation

y 

X

i2�
cibi: ð9Þ

The numerator can be expanded as

Xh
i¼�h

Xw
j¼�w
ðxðuþ i; vþ jÞ � �xÞðyðhþ i; wþ jÞ � �yÞ

¼
Xh
i¼�h

Xw
j¼�w

xðuþ i; vþ jÞyðhþ i; wþ jÞ

�
Xh
i¼�h

Xw
j¼�w

�xyðhþ i; wþ jÞ:

ð10Þ

The first term can be computed using (9) as
P

i2� cihxu;v;bii,
where xu;v is the image patch centered at ðu; vÞ. The dot
product with each base vector can be computed using three
or seven integer additions with integral image, depending on
one or two boxes in the base vector bi. Thus, the first term
needs j�j multiplications, between 3j�j and 7j�j additions.
The second term needs a single multiplication and a single
division because

Ph
i¼�h

Pw
j¼�w yðhþ i; wþ jÞ is constant

and can be precomputed; the computation of the �x needs a
single division. Therefore, the total computation for (8) is
j�j þ 1 floating point multiplications, one floating point
division and between 3j�j and 7j�j integer additions. Since
j�j 	 N ¼ ð2hþ 1Þð2wþ 1Þ, the computation saving is sig-
nificant compared to the cost without using NBS, which
needs N multiplications and 2N additions. We will show in
Section 5 how the number of base vectors used in
approximating the template affects the matching accuracy.

It should be noted here that the cost of building an
integral image is not significant because it is done only once
for the whole image and only needs 2W �H additions,
where W and H are the image width and height.

3.2 Fast Template Matching Using SSD

When the SSD is used as the error measure for template
matching, it is computed at each image location as

ssdðu; vÞ ¼
Xh
i¼�h

Xw
j¼�w
ðxðuþ i; vþ jÞ � yðhþ i; wþ jÞÞ2

¼
Xh
i¼�h

Xw
j¼�w

xðuþ i; vþ jÞ2þ
Xh
i¼�h

Xw
j¼�w

yðhþ i; wþ jÞ2

� 2
Xh
i¼�h

Xw
j¼�w

xðuþ i; vþ jÞyðhþ i; wþ jÞ:

ð11Þ

The first term can be computed efficiently using the
squared integral image, and the second term is constant,
which is precomputed. The last term can be computed
using the NBS method with j�j floating point multi-
plications and between 3j�j and 7j�j integer additions, as
discussed in the previous section.

3.3 Subspace Expansion and Residual
Computation

As mentioned in Section 2.1, the reconstruction of a data

vector x in the subspace B� isRB�
ðxÞ ¼ B�ðBT

�B�Þ�1BT
�x. To

compute BT
�x, between 3j�j and 7j�j additions are needed.

ðBT
�B�Þ�1 can be precomputed, and the product between

ðBT
�B�Þ�1 and BT

�x requires j�j2 multiplications. The product

of B� and ðBT
�B�Þ�1BT

�x can be efficiently computed using at

mostN j�j floating point additions, whereN is the dimension

of the data vector x. Therefore, a total of j�j2 floating point

multiplications, at most N j�j floating point additions, and

7j�j integer additions are needed. Without using NBS, the

total computation is 2Nj�jmultiplications and 2N j�j �N �
j�j additions. Similarly, to find the subspace reconstruction

residual, additionalN additions are needed. Note that we use

the original box functions here rather than the normalized

base vector; the reconstruction is the same as when the base

vector norm is 1. This reduces the floating point multi-

plication operations. The proof can be found in the

supplementary material.

3.4 Recognition in the Nonorthogonal Space

It is possible to perform object recognition directly using the
projection BT

�x because the difference between nonorthogo-
nal feature values and the feature values in the same subspace
but spanned by orthogonal coordinate axes is a linear
transformation. Two separable clusters remain separable
under a linear transformation. Therefore, instead of using
Nj�jmultiplications and ðN � 1Þj�j additions to compute the
projection, only j�j multiplications (for the normalization
coefficients) and between 3j�j and 7j�j additions are needed.
The computation saving is significant. An application of
using NBS for face recognition is shown in Section 5.

4 BINARY-PCA (B-PCA)

Our experiments show that the greedy search solution for
NBS can represent images very well in the sense of least
squares reconstruction error. However, for object recogni-
tion tasks, NBS has the following drawbacks:

. The NBS base vectors do not have an explicit physical
interpretation. Although some of the binary box
functions may have corresponding parts in the
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images, generally, each base vector lacks a meaningful
interpretation due to its oversimplified structure.

. The NBS base vectors are usually highly nonortho-
gonal to each other, which makes the L-2 norm in
NBS significantly deviate from the Euclidean dis-
tance. Therefore, it leads to numerical problems in
recognition. This phenomenon can be observed in
our experiments in Section 5.3.

. Compared to PCA, NBS uses more base vectors to
span approximately the same subspace. This is not a
problem in reconstruction, but recognition favors
fewer, more informative base vectors so that each
image can be represented by a small number of
coefficients. Because each test image will be projected
onto each of these base vectors, fewer bases need less
computation.

These problems with NBS have motivated us to find a
better subspace representation that is as computationally
efficient as NBS but with enhanced representation power
for the recognition task.

Principal component analysis is a widely used subspace
representation that captures the structure information of the
data, and the PCA base vectors can often be easily
interpreted. For example, the frontal face subspace base
vectors resemble different facial appearance variants. These
properties are just complement with NBS. The main
computation in PCA is the dot product of a data vector
with all the PCA base vectors. This can be computationally
expensive, especially when the original data dimension is
high because it involves many floating point multiplica-
tions. These inspired us to investigate the possibility of
finding a subspace representation that is similar to PCA in
terms of capturing the essential data structure while
avoiding the costly floating point dot product operations.

4.1 Background—Principal Component Analysis

A PCA subspace is spanned by orthogonal eigenvectors
corresponding to the largest eigenvalues of the data
covariance matrix. The PCA technique has been used in
Eigenface [8], subspace-based tracking [9], [43], [44], [45],
adaptive face shape and appearance model (active shape
model (ASM) and active appearance model (AAM)) [46], [47],
motion estimation and segmentation [48], [49], 3D appear-
ance space [50], and many other computer vision algorithms.

The intuition behind the PCA method is to find a set of
base vectors �n ¼ ½e1; e2; . . . ; en� that can explain the
maximum amount of variance of the data. PCA can be
defined with an incremental formulation. Suppose that we
have determined the first k� 1 principal components, the
kth principal component ek is determined as the principal
vector of the residual

arg max
e

Ef½eT ðX�R�k�1
ðXÞÞ�2g; ð12Þ

subject to : kek ¼ 1;

where x 2 RN denotes the data vector, and X ¼ ½x1;
x2; . . . ;xn� denotes a set of data vectors with zero mean.
The eis are orthogonal to each other.R�k�1

ðXÞ ¼ �k�1�
T
k�1X

is the reconstruction of the data using the first k� 1 principal
components. It has been proven that eis are the eigenvectors
of the data covariance matrixEðXXT Þ that correspond to the
ith largest eigenvalues.

Various extensions of PCA have been proposed. The
probabilistic PCA (P-PCA) [51] is proposed to handle noisy
data. The kernel PCA (K-PCA) [52] can be used to identify
the nonlinear manifold of the data. The generalized PCA
(G-PCA) [53] is proposed to handle cases where the data
may lie on the union of different linear subspaces; an
interesting extension of GPCA is a multiscale hybrid linear
representation of images [54]. Manifold pursuit [55] is an
extension of PCA, designed to handle the misaligned
training images. To our knowledge, our work is the first
that approximates the PCA using nonorthogonal binary box
functions for the purpose of efficient computation.

4.2 The Approach

Similar to PCA, B-PCA tries to find a set of base vectors that

encompasses most of the energy in a data set. However, an

additional requirement for B-PCA is that each base vector

has to be a linear combination of a small number of Haar-

like box functions. Like PCA, we formulate the B-PCA in an

incremental way: having first determined the ðk� 1Þ B-PCA

bases, the kth base vector  k is determined as

arg max
 

Ef½ T ðX�R�k�1
ðXÞÞ�2g � �costð Þ; ð13Þ

subject to : k k ¼ 1; ¼
XNk

j¼1
cj;kbj;k; bj;k 2 D;

where �k�1 ¼ ½ 1; . . . ;  k�1� is the set of B-PCA base vectors
selected up to iteration k� 1, and R�k�1

ðXÞ is the
reconstruction of the data X using the bases �k�1. Since
each B-PCA base vector is a linear combination of a small
number of binary box functions, they may not be
orthogonal to each other. As a result, the reconstruction
process becomes R�k�1

ðXÞ ¼ �k�1ð�T
k�1�k�1Þ�1�T

k�1X. The
term X�R�k�1

ðXÞ is the reconstruction residual. costð Þ is
the cost function associated with computing the dot
product between a data vector and  ; it is roughly
proportional to the number of binary box functions Nk that
are used to represent  k. Similar to the NBS, we enforce
approximation error constraints to avoid selecting too many
base vectors. � is a weight to balance the two terms. The
fact that each B-PCA base vector is represented in NBS is
reflected in the constraint  k ¼

PNk

j¼1 cj;kbj;k and bj;k 2 D.
Note that the cj;k is different from the direct NBS
approximation coefficients; they are normalized to enforce
the constraint k k ¼ 1.

The intuition behind this objective function is that the
new base vector  i needs to capture most of the data
variance (the first term) and, at the same time, be a linear
combination of a few binary box functions bj;k, which
makes it computationally efficient.

As can be observed, the main difference between PCA and
B-PCA is the additional constraint that B-PCA base vectors
need to be represented in NBS. These B-PCA base vectors are
in general nonorthogonal. Fig. 4 illustrates the relation
between a PCA subspace and a B-PCA subspace. The base
vectors of PCA are orthogonal to each other; the B-PCA base
vectors are generally nonorthogonal. Each B-PCA base vector
is a linear combination of binary box functions. However,
both of them represent roughly the same subspace.
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4.3 The Solution—PCA-Guided NBS

The search space for the optimization problem in (13) is
extremely large because the solution can be any base vector
that is a linear combination of box functions from the binary
dictionary D. Even for a small image of size 24� 24 used in
our experiments, there are 134,998 box functions in D.
Suppose that each B-PCA base vector is represented by
10 box functions, the number of possible choices of box
functions for a single B-PCA base vector isC10

134;998. It would be
an understatement to say that finding the global optimal
would be impractical.

One possible solution is to apply the PCA on the training
data to obtain k principal components ½e1; . . . ; ek�, then
employ NBS to approximate each of these principal compo-
nents with a given precision, and use the approximated
vectors as the B-PCA base vectors ½ 1; . . . ;  k�. The problem
with this solution is that the approximation errors ðei �  iÞ
are generally not represented by any of the B-PCA base
vectors; this leads to an inaccurate subspace.

To overcome this problem, we propose a PCA-guided NBS
method to find a suboptimal solution efficiently. In the PCA-
guided NBS, we denote the selected B-PCA base vectors up to
iteration k as �k ¼ ½ 1;  2; . . . ;  k�. This set is empty at the
beginning. We start from the original PCA procedure to
obtain the first principal component that captures the
majority of the data variance. We call the first principal
component the Pre-BPCA vector, denoted as  �1 . NBS is then
applied to approximate this vector as  1 ¼

PN1

j¼0 cj;1bj;1.
Then, in iteration k, the data X is projected to the subspace
spanned by the already selected B-PCA bases �k�1, and PCA

is applied on the residual of the data X�R�k�1
ðXÞ to obtain

the next Pre-BPCA  �k , which is again approximated using
NBS. The approximation of Pre-BPCA at iteration k is called
the kth B-PCA base vector. This procedure iterates until the
desired number of B-PCA bases have been obtained or an
error threshold is reached. The procedure of this optimization
is shown in Fig. 5.

Generally, it takes a large number of box functions to
represent each Pre-BPCA base vector perfectly. However,
we prefer a solution with fewer box functions to make the
representation computationally efficient. To make the
optimization simpler, we enforce the computational cost
constraint by finding the minimum number of box func-
tions that satisfy

1

N

XN
i¼1

ð �1 �  �1 Þi
ð �1 Þi

���� ���� � �; ð14Þ

where  �1 is the reconstruction of  �1 using binary box
functions. � 2 ½0; 1� is the approximation error threshold
that controls the precision. A smaller value of � leads to
produce a more accurate approximation. N is the dimen-
sion of the base vector, and ð�Þi refers to the ith element of a
vector. This constraint requires the elementwise approx-
imation error ratio to be within a threshold. It is stricter than
the norm constraint, which requires the difference in norm
to be smaller than a threshold. A comparison of PCA, Pre-
BPCA, and B-PCA base vectors are shown in Fig. 6.

4.4 Theoretical Analysis of the B-PCA Bases

As mentioned in the previous section, when the approxima-
tion error threshold � is 0, the B-PCA base vector is identical to
the PCA base vector. When � increases, B-PCA base vectors
deviate from the PCA bases and become more nonorthogo-
nal. Nonorthogonality, which is often measured using
coherence, will be defined in this section. We will prove that
by approximating the original projection process P�ðxÞ ¼
ð�T�Þ�1�Tx with the direct dot nonorthogonal projection
process (DNP): P�ðxÞ ¼ �Tx. The resultant distance error of
P�ðxÞ is related to coherence and, therefore, �. Based on this
property, we conclude that when � is small, the information
loss by using B-PCA and DNP is also small, and the
computational complexity is reduced significantly. This
was verified by our experiments on real data sets.
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Fig. 4. Relation of the PCA subspace and the B-PCA subspace. (a) is
the PCA base vectors, which are orthogonal to each other. (b) is the
B-PCA base vectors, which are approximations of the PCA bases using
NBS. We can observe block effect in the B-PCA base vectors, which is
the consequence of such an approximation.

Fig. 5. Flow chart of the PCA-guided OOMP.

Fig. 6. Approximations of the first 15 Pre-BPCA base vectors using
different thresholds �. (a) The PCA base vectors. (b) B-PCA base
vectors with � ¼ 0:2 Pre-PCA base vectors (first row) and B-PCA base
vectors (second row). (c) B-PCA base vectors with � ¼ 0:85, which has
an obvious block effect.



Definition 1. A �-coherent base vector set � with k ik ¼ 1 has
coherence � for 0 � � � 1 if jh i;  jij � � for all distinct  i,
 j 2 �. Intuitively, for a �-coherent dictionary, the angle
between any pair of base vectors or the negation of the vectors
has to be larger than j cos�1 �j. A 0-coherent base vector set is
orthogonal.

Lemma 1. If we denote B ¼ j�j and �B � 0:5, then there exists
a set of vectors ei; i ¼ 1; . . . ; B, such that

. the eis form an orthonormal system;

. Span ðe1; e2; . . . ; eBÞ ¼ spanð 1;  2; . . . ;  BÞ; and

. kei �  ik2 � 8�2B.

This lemma states that when the coherence satisfies the
above conditions, we can find an orthonormal system that
has the same span as the nonorthogonal base vectors. In
addition, these orthonormal base vectors are very close to
the original nonorthogonal ones. The distance between
corresponding base vectors is a function of coherence. The
proof can be found in [36].

Lemma 2. The angle �i between each nonorthogonal base vector
 i and its corresponding orthogonal base vector ei is smaller
than �max ¼ 2 sin�1ð2�2BÞ1=2, where B ¼ j�j.

Proof. See the supplementary material, which can be found
at http://computer.org/tpami/archives.htm. tu

Theorem 1. By approximating the original projection process
P�ðxÞ ¼ ð�T�Þ�1�Tx with the direct dot nonorthogonal
projection process (DNP) bP�ðxÞ ¼ �Tx, the resultant
distance error of P�ðxÞ is bounded by a function of �, i.e.,

jj bP�ðxÞjj � jjP�ðxÞjj � gð�Þ ¼
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

c0i
2

r
� 1

!
jjxjj

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ðB� 1ÞK þBK2
p

� 1
�
jjxjj;

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2Bð1� 2�2BÞ

p
.

Proof. See the supplementary material, which can be found
at http://computer.org/tpami/archives.htm. tu

4.5 Speed Improvement of B-PCA

Suppose that the image size is m� n, TPCA denotes the time
for computing the PCA subspace projection coefficients, and
N denotes the number of PCA base vectors. It will take m�
n�N floating point multiplications and N � ðm� n� 1Þ þ
ðN � 1Þ floating point additions to perform the projection
operation

TPCA¼N �m� n� Tfmþ½N�ðm� n� 1ÞþðN � 1Þ� � Tfa;
ð15Þ

where Tfm is the time for a single floating point multi-
plication, and Tfa is the time for a single floating point
addition.

For B-PCA, the time for a single projection is denoted as

TBPCA, which consists of two parts. One part is Tii, the time to

construct the integral image. For an m� n image, it will take

m� n� 2 integer additions with recursive implementation.

This is performed only once for each image. The other part is

the time for the projection operation P�ðxÞ ¼ ð�T�Þ�1�Tx.

When the bases are nearly orthogonal to each other, we can

approximate the projection coefficient using the direct dot

product �Tx. The B-PCA base vector  ið1 � i � NÞ is

represented as a linear combination of Ni box functions,

 i ¼
PNi

j¼1 cjbj. The projection of x to  i can be written as

h i;xi ¼
PNi

j¼1 ci;jhbj;xi. Each box function bj has nj boxes,

where nj can be one or two. The hbj;xi can be performed

using 3� nj integer additions. Since cj is a floating point,

h i;xi needs Ni floating point multiplications and Ni � 1

floating point additions.

TBPCA ¼
XN
i¼1

XNi

j¼1

ð3� nj � Tia þNiTfm þ ðNi � 1ÞTfaÞ; ð16Þ

where Tia is the time for one integer addition. As we can
observe, TBPCA is only dependent on the number of binary
box functions, which is often much less than the dimension
of the image. For PCA, however, the time is proportional to
the image dimension. Since the number of operations in
B-PCA is much smaller than that in PCA, TBPCA is much less
than TPCA, and the speedup is more dramatic with higher
dimensional data.

Suppose that m ¼ n ¼ 24 and N ¼ 15, then TPCA needs

24� 24� 15 ¼ 8; 640 floating point multiplications to com

pute the projection coefficients. Suppose that the total

number of NBS base vectors used to represent all the

B-PCA base vectors is 200, that is,
PN

i¼1 Ni ¼ 200, then the

B-PCA projection only needs between
PN

i¼1 Ni ¼ 200 and

2�
PN

i¼1 Ni ¼ 400 floating point operations. The speedup is

significant.

5 IMPLEMENTATION AND EXPERIMENT RESULTS

FOR NBS

5.1 Representing a Single Image Using NBS

To demonstrate the effectiveness and generality of the
proposed NBS method, we applied it to model images
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Fig. 7. (a) The “Tsukuba” image taken from [56]. (b) A 25� 20 image
patch from this image. (c) The first 30 NBS base vectors used to
represent (b). (d) The reconstruction of (b) using 1-30 NBS base vectors.



widely used in computer vision applications. The test image
in Fig. 7 is from Tsukuba data set [56], which is commonly
used in stereo computation. In Fig. 7, we use the NBS
method to model a 25� 20 image patch in the image as
shown in Fig. 7b. The box functions used to represent each
image patch are shown in Fig. 7c. Fig. 7d shows the
reconstruction of the image using the 1-30 NBS base vectors.
Fig. 8 is the modeling of a pedestrian image taken from the
Massachusetts Institute of Technology (MIT) pedestrian
database [57]. Fig. 9 is the result for a rear view vehicle
image. As we can observe, NBS is capable of modeling a
wide variety of images effectively. With roughly 20 NBS
base vectors, the images can be represented very well.

5.2 Image Matching Using NBS

As described in Section 2, to compute the numerator for NCC

in (6), the template is first approximated using NBS. The

numerator is computed using (7) and (8), with j�j þ 1

multiplications and between 3j�j and 7j�j additions. In a

straightforward implementation, ð2hþ 1Þ � ð2wþ 1Þ multi-

plications and ð2hþ 1Þ � ð2wþ 1Þ � 1 additions are needed.

To test the matching performance, experiments on real

images were performed. Ten images of different scenes

(indoor, outdoor, from microscope, and so forth) were used as

the testing data set, and some of them are shown in Fig. 10 In

each image, 40 patches were chosen to be located using NCC.

In Fig. 11, an example is shown. Fig. 11a is the original image

with 480� 480 pixels. Fig. 11b is a 25� 20 pixel image patch

in the original image. It is approximated using up to 20 NBS

base vectors. Figs. 11c and 11d show the normalized

correlation matching result using the original image patch

and using the NBS template representation. Both of them

locate the correct object position. Table 1 shows the

computation cost for matching a 25� 20 patch in the test

image of size 480� 480 using NCC and NBS-NCC. The patch

is represented using 20 box functions. The preprocessing time

includes the computation of integral image, the squared

integral image, the reconstruction of the patch ð
P

i2� cibiÞ,
and the precomputation of

Ph
i¼�h

Pw
j¼�w yðhþ i; wþ jÞ andPh

i¼�h
Pw

j¼�w Yði; jÞ2, as discussed in Section 3.1. We

compared the speed for original NCC, fast NCC [42], and

our method. In the fast NCC, the integral image and squared

integral image are used for acceleration, and the convolution

is computed using FFT. According to our experiments, the

NCC and FFT-based fast NCC have almost the same

matching performance. The timing for fast NCC includes

the computation for image padding, FFT/inverse FFT of

template and image. The original NCC is the straightforward

implementation without using any acceleration. The experi-

ments are carried out on an Intel Pentium 4 3.2 GHz machine

with a 1-Gbyte RAM and C++ implementation. As we can

observe, a speedup factor of over 30 is achieved over the
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Fig. 8. (a) The “pedestrian” image of size 80� 35 taken from [57]. (b) The

first 30 NBS base vectors used to represent (a). (c) The reconstruction of

(a) using 1-30 NBS base vectors.

Fig. 9. (a) The original rear view vehicle image of size 20� 30. (b) The

first 30 NBS base vectors used to represent (a). (c) The reconstruction

of (a) using 1-30 NBS base vectors.

Fig. 10. Examples in the data set for template matching.

Fig. 11. (a) The original 480� 480 image. (b) Selected 25� 20 template

patch at a corner. (c) The position with the highest normalized

correlation score. (d) The result using NCC approximated by the

proposed NBS method.

TABLE 1
Time Comparison between the Original NCC and NBS-NCC



original NCC and over 7 times faster than the FFT-based fast

NCC method for our testing scenario.
Appearances of a template in an image may vary due to

noise, quantization, compression, and transformation errors.
In the following experiment, various levels of Gaussian noise
were added to images. Fig. 12 is a noisy image with a zero
mean Gaussian noise of variance 15 (image intensity scale is
0-255). The template is matched against the noisy images

using FFT-based fast NCC and our NBS-NCC method. The
performance comparison is shown in Fig. 13.

5.3 Representing a Set of Images Using NBS

The NBS method described in Section 2 was implemented to
construct the rear view vehicle subspace and frontal face
subspace. For the vehicles data set, we used 1,200 aligned
vehicle rear view images; each is of size 20� 30. The data set
is shown in Fig. 14. Then, the NBS subspace is trained using
800 images, and the rest are used for testing the reconstruc-
tion error. Fig. 15 shows the first 40 binary base vectors
selected using NBS and the reconstruction of a particular
image using the learned subspace. Note the difference of the
base vectors with those in Fig. 9. The reconstruction
performance of the rear view vehicles is shown in Fig. 16.

Face modeling is a very challenging task in computer
vision, because of its extensive variations and due to the fact
that humans are very sensitive to artifacts in face images. To
model a face subspace, 500 spatially aligned frontal view
images from the FERET database [58] were used. Each of
these aligned images is then scaled down to 24� 24 pixels.
Using these 500 data samples, the NBS base vectors are
computed. The first 30 of these vectors are shown in Fig. 17a. It
can be observed that many of these base vectors are
symmetric. The asymmetric ones may be caused by the
illumination bias in the relatively small data set. The
incremental reconstruction of a single face image using these
30 base vectors is shown in Fig. 17b. With each additional base
vector, more details are added to the reconstructed image.
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Fig. 12. Testing image with added zero mean Gaussian noise

ðvariance ¼ 10Þ.

Fig. 13. Matching performance comparison between NBS-NCC and

FFT-NCC under Gaussian noise (variance ¼ 10 and 15).

Fig. 14. Samples from the “rear view vehicle” data set with 1,200 images.

Each image is of size 20� 30.

Fig. 15. (a) The first 40 NBS base vectors computed using the rear view

vehicle data set. (b) The reconstruction of a particular vehicle image,

using 1-40 of the base vectors.

Fig. 16. Approximation error as a function of the number of base vectors

for the rear view vehicle data set.

Fig. 17. (a) The first 30 nonorthogonal binary base vectors for frontal

face subspace. (b) An input face image and the reconstructed face

images using 1-30 of the base vectors.



5.4 Training Time

In each iteration of the OOMP feature selection process, all the
remaining features in the dictionary have to be projected to
the subspace spanned by the previously selected features.
This process is very time consuming because it involves
computing the matrix pseudoinverse. This limits its use in
real-time applications. However, we found that MP [33] can
be implemented much faster than OOMP without sacrificing
much accuracy. This is because in each iteration of MP, the
residual is projected to all the remaining features without
considering the previously selected features; thus, no matrix
pseudoinverse calculation is involved. In addition, this
projection process can be accelerated by building an integral
image for the residual image. The timing comparison is given
in Table 2, and the performance comparison in terms of
reconstruction error for the face data set is shown in Fig. 18.
For time-critical applications such as tracking, we can use MP.
On the other hand, for applications such as recognition that
are not time critical on bases finding, we can use OOMP.

5.5 Face Recognition

As has been discussed in Section 3.4, it is possible to do
recognition directly in NBS. We tested this in face
recognition. The test database comprises 64 aligned face
images in the FERET database. Each image is projected to
the face NBS learned in the previous section. The projection
of a face image in NBS takes the form BT

�x. A simple nearest
neighbor method is used for finding the best match as the
recognition result. The NBS recognition performance is
shown in Fig. 25 and compared with B-PCA method.

6 EXPERIMENTS FOR B-PCA

We applied the proposed B-PCA method to solving
modeling and recognition problems of faces and vehicles.
Promising results have been achieved and are demon-
strated in this section.

6.1 Effectiveness of B-PCA for Reconstruction

The PCA guided NBS method described in Section 4 was
implemented to obtain the B-PCA face subspace. The

training set is the same as that used in NBS subspace
computation. Using 500 training samples, the B-PCA base
vectors are computed. The first 15 of these vectors are
shown in Fig. 6. It can be observed that like PCA, B-PCA
base vectors can capture the face structure. Each individual
base vector resembles some face shape. However, there is
some blocky appearance in the B-PCA base vectors due to
the approximation error using box functions.

The B-PCA bases coherence and reconstruction perfor-
mance are directly influenced by the approximation thresh-
old � in the PCA-guided NBS. With a higher threshold,
which implies a less accurate approximation, the coherence
will increase, and the bases become less orthogonal. When
the base vectors are more orthogonal (smaller �), the
reconstruction error will be smaller, because B-PCA base
vectors become more similar to PCA base vectors. We have
listed the coherence of the B-PCA base vectors with
different approximation thresholds in Table 3. The recon-
struction performance using different approximation
thresholds are shown in Fig. 19.

To demonstrate the effectiveness of DNP, we compute the
distortion, which is defined as the ratio of the reconstruction
error and the orthogonal reconstruction kx� �xk=kxk, where
�x is the reconstruction using DNP, and x is the reconstruction
using orthogonal base vectors—PCA bases. When the B-PCA
base vectors are more orthogonal to each other, this distortion
tends to be smaller. We tested the distortion using 15 B-PCA
base vectors for frontal face image reconstruction. The
distortion versus the approximation error � are listed in
Table 4. As we can observe, the more orthogonal the B-PCA
bases, the less is the distortion. This experimentally proved
the theorem in Section 4.4.
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TABLE 2
Speed Comparison of MP and OOMP for Selecting 20 Features

Fig. 18. Reconstruction performance comparison of OOMP and MP.

TABLE 3
B-PCA Base Vectors Orthogonality with Different

Approximation Thresholds

Fig. 19. Reconstruction error using different approximation errors for

faces.

TABLE 4
Distortion for B-PCA Reconstruction Using

15 B-PCA Base Vectors with Different
Approximation Errors for the Frontal Face Data Set



To demonstrate the generality of the B-PCA subspace,
we performed another experiment to model the rear views
of vehicles. The data set is shown in Fig. 14. Then, we
trained the B-PCA subspace using 800 images and used the
other 400 images for testing the reconstruction error. The
first 10 PCA, Pre-PCA, and B-PCA are visualized in Fig. 20,
and Fig. 21 shows that the first three B-PCA base vectors
and the corresponding box functions used to represent
them. A comparison of the reconstruction performance
between PCA and B-PCA with varying approximation
errors is illustrated in Fig. 22.

6.2 B-PCA for Face Recognition

To demonstrate the effectiveness of the proposed B-PCA
method, we applied it to face recognition. The result is
compared with that of the “Eigenface.” The test database
comprises 64 aligned face images in the FERET database.
Each image is projected to the PCA and B-PCA subspaces,
and the projection coefficients of the image onto each base are
used as the features; the best match in a nearest neighbor
classifier is used as the recognition result. We compared
the PCA with B-PCA using the original projection process
that has the pseudoinverse ð�T�Þ�1�Tx and also that of
DNP �Tx for recognition; the results are shown in Figs. 23a
and 23b. In Fig. 23a, the approximation threshold � is set to 0.9,
and in Fig. 23b, � is 0.2. As can be observed, when � ¼ 0:2,
which means the B-PCA base vectors are more orthogonal,
the difference between recognition rates using pseudoinverse
and DNP is very small. The DNP �Tx is computationally

much cheaper because it only needs several additions. The
difference between ð�T�Þ�1�Tx and �Tx is small when the
B-PCA base vectors are more orthogonal (smaller �), and it is
larger when the base vectors are less orthogonal (larger �). As
we can observe, when the approximation threshold � is small,
the difference between B-PCA and PCA base vectors is small,
the difference between DNP and pseudoinverse projection is
also small.

We also compared the B-PCA performance with K-PCA,
which has empirically shown to have superior performance
in PCA-related recognition algorithms. A detailed descrip-
tion of K-PCA can be found in [52]. The performance
comparison between PCA, B-PCA, and K-PCA (Gaussian
kernel) is shown in Fig. 24. As can be observed, K-PCA has
a better recognition rate than PCA and B-PCA; this is
congruent with the result in [59]. However, the computation
of K-PCA feature extraction is significantly higher than
PCA and B-PCA because the algorithm needs to compute
the kernel matrix, which involves the kernel computation
between a testing image and all of the training images. As
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Fig. 20. Comparison of different bases (PCA, Pre-BPCA, and B-PCA)

for rear view vehicles. The first row are the PCA base vectors, the

second row are the Pre-BPCA base vectors, and the third row are the

B-PCA base vectors ð� ¼ 0:4Þ.

Fig. 21. B-PCA base vectors and their corresponding box functions for

vehicle modeling.

Fig. 22. Reconstruction error using different approximation errors.

Fig. 23. (a) Recognition performance for the face data set with � ¼ 0:9.

(b) Recognition performance for the face data set with � ¼ 0:2.

Fig. 24. Performance comparison between PCA, B-PCA, and K-PCA

using different numbers of base vectors. In the B-PCA recognition, the

approximation threshold is set to � ¼ 0:4 and DNP is used.



the result, the K-PCA computation cost is not only related to
the number base vectors but also to the number of training
images. Usually, the K-PCA feature extraction is hundreds
or thousands times slower than PCA depending on the
number of training images used and the kernel type.

6.3 Speed of B-PCA

The experiment for speed improvement is carried out on a
Pentium 4 3.2 GHz 1 Gbyte RAM machine using C++ code.
Fifteen base vectors are computed for both PCA and B-PCA,
and the time to project images onto each subspace is
observed. The projection for PCA is hei;xi; for B-PCA, it is
h i;xi ð1 � i � NÞ. For B-PCA, the dot product between
each of its NBS base vectors and the image x is computed
using integral image with several additions. We tested the
PCA projection and B-PCA projection with 1,000 images,
and the time for a single projection is computed as the
average. In Table 5, we can observe that the B-PCA
projection process �Tx is over 50 times faster than direct
PCA projection operation. The improvement is even more
dramatic if more base vectors are used for comparison. Note
that 1) for the PCA projection test, the image data is put in a
continuous memory space to avoid unnecessary memory
access overhead, 2) the integral image computation is very
fast, because it can be computed efficiently with a recursive
implementation using only integer additions, and 3) the Tii
is distributed into each base vector projection operation to
make the comparison fair, because the integral image only
needs to be computed once.

6.4 Parameter Choosing for B-PCA

For a given number of B-PCA base vectors, the only
parameter in B-PCA is the approximation threshold �. A
smaller � usually gives better results because the approxima-
tion is more accurate. However, on the other hand, more
accurate approximations need more NBS base vectors and,
thus, more computation. Therefore, the goal is to choose a �
that can trade off between accuracy and efficiency. Although

different tasks may have different requirements, the B-PCA
method provides a simple and flexible way to balance these
two factors. For reconstruction tasks, accuracy is usually
weighted more heavily, so a smaller �, for example, 0.2 might
be chosen. However, for the recognition task, both accuracy
and speed are of concern, and according to our experiments in
Sections 6.2 and 6.4, � ¼ 0:6 is a good trade-off.

6.5 Relation between B-PCA and NBS

B-PCA and NBS are closely related; each B-PCA base vector
is represented in NBS. Still, they do differ from each other.
One of the main differences is the ability to represent global
image structure information. NBS base vectors do not have
a meaningful interpretation of the images, but B-PCA base
vectors can capture the global image structure.

Another major difference is the orthogonality of the base
vectors. As has been discussed in Section 3, B-PCA base
vectors are nearly orthogonal to each other (that is, with
small coherence), whereas NBS base vectors are highly
nonorthogonal. To show the orthogonality of base vectors,
we visualize the mutual coherence matrix for the NBS and
that of B-PCA (with approximation threshold � ¼ 0:2) in
Fig. 25. Each element at ði; jÞ of the matrix is the dot product
between base vector �i and �j (for NBS) or  i and  j (for
B-PCA). The orthogonality, as depicted, ranges from zero to
one, where completely black elements represent orthogonal
vectors, and identical vectors are completely bright (hence,
the diagonal line).

The recognition task favors base vectors with low
coherence, because it will make the distance closer to the
euclidean distance. Since B-PCA base vectors are more
orthogonal than NBS, with the same number of base
vectors, B-PCA performs better than NBS in the task of
recognition. To verify this, we made an experiment to
compare the recognition rates between NBS and B-PCA, the
test settings are the same as B-PCA recognition, the result is
demonstrated in Fig. 26.
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TABLE 5
Comparison of the Computational Cost between PCA and B-PCA Projection Operations

Fig. 25. (a) Mutual coherence matrix of NBS with 50 base vectors for the
face data set. (b) Mutual coherence matrix for the B-PCA base vectors
using the same training data.

Fig. 26. Recognition performance comparison for B-PCA and NBS with
different numbers of base vectors. B-PCA is computed using the
approximation threshold 0.4 with direct dot product.



7 CONCLUSIONS AND FUTURE WORK

We have developed, in this paper, novel efficient repre-

sentations for a single image or a set of images using Haar-

like box functions. Using the integral image trick, the inner

product with these 2D box functions can be performed

using only several additions. This property makes the

proposed NBS and B-PCA representations suitable for

speed critical applications. The proposed NBS method can

effectively represent images for a variety of matching and

reconstruction tasks including NCC and SSD with a

significant speedup. The proposed B-PCA subspace inherits

the properties of PCA in terms of capturing the main

structure of the data set while taking advantages of the

computational efficiency of nonorthogonal binary bases. A

PCA-guided OOMP method is proposed to obtain the

B-PCA base vectors. We have applied the B-PCA method to

the image reconstruction and recognition tasks. Promising

results are demonstrated in this paper. Some of our future

work includes the following:

. We would experiment on setting different approx-
imation thresholds for different B-PCA base vectors.
This is motivated by the observation that the first
several B-PCA base vectors mainly capture the
general structure of the data, whereas later base
vectors capture the high-frequency details. The high-
frequency information requires more binary base
vectors to approximate. An adaptive scheme is
needed to adjust the approximation threshold to
obtain the best B-PCA both in terms of approxima-
tion accuracy and computational complexity.

. We would study the effectiveness of the proposed
B-PCA method on different types of objects. Human
faces and rear view of vehicles are tested in this
paper. More experimental results on pedestrians and
other types of objects will establish the proposed
method as a valid alternative to the extensively used
PCA method.

. We would try to apply more sophisticated classifica-
tion methods to enhance the recognition perfor-
mance since only a simple nearest neighbor classifier
is used in the B-PCA recognition experiment.
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