
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Lost in Translation: A Post-translational Modification-inclusive Analysis of Infectious Diseases

Permalink
https://escholarship.org/uc/item/7x27s75z

Author
Wozniak, Jacob

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7x27s75z
https://escholarship.org
http://www.cdlib.org/


 

UNIVERSITY OF CALIFORNIA SAN DIEGO 
 
 
 
 
 

Lost in Translation: A Post-translational Modification-inclusive Analysis of 
Infectious Diseases 

 
 
 
 

 
 

A dissertation submitted in partial satisfaction  
of the requirements for the degree Doctor of Philosophy 

 
in 
 

Biomedical Sciences 
 

by 
 

Jacob M. Wozniak 
 
 
 
 
 
 
 
 

 
 

 
Committee in charge: 
 

Professor David J. Gonzalez, Chair 
Professor John Guatelli 
Professor Elizabeth Komives 
Professor Victor Nizet 
Professor Eugene Yeo 
 

 
 

2020 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Copyright 
 

Jacob M. Wozniak, 2020 
 

All Rights Reserved. 
 



 iii 

 
 
 
 
 
 

The dissertation of Jacob M. Wozniak is approved, and it is  
acceptable in quality and form for publication on microfilm  
and electronically: 

 
 
 
 
 

         

 

         

 

         

 

         

 

            

                 Chair 
 
 
 
 
 
 
 
 
 
 

University of California San Diego 
 

2020 



 iv 

DEDICATION 
 
 
This dissertation is dedicated to my family, friends and mentors who have made a lasting 
impact on my life. Without their help, this work would not have been possible.   
 
Mentors. To my mentors who have guided this incipient voyage of my scientific career. 
To my PI, David Gonzalez, who taught me to always strive for excellence and push the 
boundaries of what is known, but to have fun while doing it. To my post-doc mentors, 
John Lapek and Igor Wierzbicki, who not only taught me the majority of the experimental 
techniques included in this dissertation, but also how to think critically and communicate 
clearly. To the other faculty and mentors (particularly from the UCSD Pharmacology 
Department) that I had the pleasure of interacting with during my dissertation work, who 
are too numerous to mention by name, but nonetheless have contributed to my 
development as a scientist. Thank you. 
 
Friends. To my friends, new and old, who helped keep my morale high throughout 
graduate school. From the weekend camping getaways to explore the Californian 
wilderness to flying halfway around the world to visit Japan, these experiences have made 
me forever grateful. Having an enriched life outside of work has made long hours in the 
lab all the more manageable. Thank you.  
 
Family. To my parents, who raised me to be a curious individual and to always question 
the world around me. To my brothers, Giles and Lucas, who I grew up alongside and 
inspire me every day with their own achievements. To my girlfriend, Alice, who’s 
unconditional love and willingness for adventure kept my spirits high when things in lab 
were low. Thank you.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 v 

EPIGRAPH 
 
 
 
 
 
 
 
 
 
 

“We should not trust the masses who say only the free can be educated, but rather the 
lovers of wisdom who say that only the educated are free” 

----Epictetus 
 
 
 
 
 
 
 

“Sucking at something is the first step to becoming sorta good at something.” 
----Jake the Dog 

 
 
 
 
 
 
 

“Real artists ship.” 
----Steve Jobs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

TABLE OF CONTENTS 
 
 
Signature Page ………………………………………………………………………….…….. iii 

Dedication ………………………………………………………………………………..…….. iv 

Epigraph …………………………………………………………………………….………….. v 

Table of Contents ……………………………………………………….…………………….. vi 

List of Figures …………………………………………..……………….…………………….. vii 

Acknowledgements ………………………………………….………………..………………. ix 

Vita ………………………………………….…………………………………...…………….... x 

Abstract of Dissertation …………………..…………………………………...……………... xii 

Chapter 1 – General Introduction …………………………………………..………………... 1 

Chapter 2 – Discover and Characterization of Modified S. aureus Microproteins ……... 11 

Chapter 3 – A Computational Tool to Analyze PTM-containing Proteomic Data and 

Applications to a Chronic Chagas Disease Model ……………………………...……..….. 48 

Chapter 4 – Multi-omic Serum Analysis Reveals Early Predictive and Pathogenic 

Molecular Signatures for S. aureus Bacteremia ………………………………...……..….. 92 

Chapter 5 – Future Directions …………..………………………………...……...……..…. 137 

References ……………………..….……..………………………………...……...……..… 166 

 
 
 
 
 
 
 



 vii 

LIST OF FIGURES 
 

Figure 1-1 Comparison of LFQ and TMT-based serum proteomics ……………………… 6 

Figure 2-1 Overview of Peptides Secreted by S. aureus .…………………..………...….. 30 

Figure 2-2 Initial Characterization of Novel Microproteins …………………………….….. 34 

Figure 2-3 SAM1 Lyses Keratinocytes and Contributes to S. aureus Virulence 
Phenotypes   ……………….……………………….……………………….……………….. 37 
 
Figure 2-4 SAM2 Disrupts Keratin Networks and Enhances S. aureus Penetration into 
Underlying Tissue from Skin Lesion .…… ……….………………………..……………….. 40 
 
Figure 3-1 Workflow of PTMphinder R Package .… ……….………….………………….. 61 

Figure 3-2 Chronic Chagas Cardiomyopathy Model .……….…………………………….. 63 

Figure 3-3 Overview of Dual Proteome/Phospho-proteome Analyses .…………..…….. 65 

Figure 3-4 Total Proteome Perturbations Demonstrate Induction of Host Immune 
Response and Suppression of Mitochondrial Proteins .……………………….………….. 70 
 
Figure 3-5 Phospho-proteome Interrogation Reveals Alterations in Membrane and 
Cytoskeletal Protein Phosphorylation and Activation of p38 .…………………………….. 74 
 
Figure 3-6 Bioinformatic Kinase Prediction Uncovers Stimulation of JNK and DYRK2 and 
Suppression CK2 Activities .……………………………………………………………….... 79 
 
Figure 3-7 Druggable Network of Chagasic Hearts .………...……………………...…….. 82 

Figure 4-1 Multiomic Analysis of SaB Patient Serum .………………………………….. 103 

Figure 4-2 Definition of High-confidence Biomarkers for the Prediction of SaB Patient 
Mortality .……………………………...……………………………………………….…….. 106 
 
Figure 4-3 PTM-tolerant search enables deeper proteomic analysis and identification of 
disease-relevant PTMs .…………… …………………………………………………........ 110 
 
Figure 4-4 Mortality Associated PTM Signatures in SaB Patient Serum .………...….. 113 

Figure 4-5 Clustering of MS Data into Disease-relevant Modules .……………..…….. 116 

Figure 4-6 Detailed Analysis of Proteomic SaB Disease Modules .…………..…..…….. 118 

Figure 4-7 Detection of Metabolic Dysfunction in SaB Mortality Patients .………..….. 122 



 viii 

Figure 4-8 Knowledge-based Analysis of Cytokines Predicts Major Contributors to 
Proteomic Alterations and Identifies Core of Modulated Proteins .……..…..………….. 125 
 
Figure 4-9 Thyroid and Adiponectin Signaling Contribute to SaB Mortality in vivo ..... 129 

Figure 5-1 Basal and Induced Expression of Thyroxine Interacting Proteins  ... 144 

Figure 5-2 Basal and Induced Adiponectin Receptor Expression .………………….….. 152 

Figure 5-3 Predictive Model Performance of RISK-24 and RISK-48 Tests .…………….162 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

ACKNOWLEDGEMENTS 
 

A portion of the material within is reprinted from published and or submitted manuscripts 

where the dissertation author was the primary author. 

Chapter 2, in part, is a reprint of material submitted to Cell Reports, 2020 

(manuscript in revision), Jacob M. Wozniak, Julieta Aguilar., Dominic McGrosso, Igor H. 

Wierzbicki, Eri Nakatani-Webster, Michael R. Dores, Katrin Schilcher, Anvesh Macherla, 

Diana Dehaini, Xiaoli Wei, Ronnie H. Fang, JoAnn Trejo, Brian J. Werth, Abhinav Nath, 

Ross Corriden, Liangfang Zhang, Alexander R. Horswill, and David J. Gonzalez. The 

dissertation author was the primary author of this paper.  

Chapter 3, in part, is a combination of material as it appears in PeerJ, 2019, Jacob 

M. Wozniak and David J. Gonzalez, and PLOS Neglected Tropical Diseases, 2020, Jacob 

M. Wozniak, Tatiana Araújo Silva, Diane Thomas, Jair L. Siqueira-Neto, James H. 

McKerrow, David J. Gonzalez, Claudia M. Calvet. The dissertation author was the primary 

author of these papers. 

Chapter 4, in part, is a reprint of material submitted to Cell, 2020 (manuscript in 

press), Jacob M. Wozniak, Joshua Olson, JR Caldera, Robert H. Mills, Marvic Carrillo-

Terrazas, Chih-Ming Tsai, Fernando Vargas, Pieter C. Dorrestein, George Y. Liu, Victor 

Nizet, George Sakoulas, Warren Rose and David J. Gonzalez. The dissertation author 

was the primary author of this paper. 

 
 
 
 
 
 



 x 

VITA 
 

2015 - B.S. in Biochemistry and Molecular Biology, The Pennsylvania State University 
 
2020 - Ph.D. in Biomedical Sciences, University of California San Diego  
 
Publications 
 
1. Rojony, R., Danelishvili, L., Campeau, A., Wozniak, J.M., Gonzalez, D.J., and 

Bermudez, L.E. (2020). Exposure of Mycobacterium abscessus to Environmental 
Stress and Clinically Used Antibiotics Reveals Common Proteome Response 
among Pathogenic Mycobacteria. Microorganisms 8. 
 

2. Wozniak, J.M., Silva, T.A., Thomas, D., Siqueira-Neto, J.L., McKerrow, J.H., 
Gonzalez, D.J.*, Calvet, C.M.* (2020) Molecular Dissection of Chagas Induced 
Cardiomyopathy Reveals Central Disease Associated and Druggable Signaling 
Pathways. PLoS Negl Trop Dis 14, e0007980,  

 
3. Lin, Y.*, Wozniak, J.M.*, Grimsey, N.J.*, Girada, S., Patwardhan, A., Molinar-

Inglis, O., Smith, T.H., Lapek, J.D., Gonzalez, D.J., and Trejo, J. (2020). 
Phosphoproteomic analysis of protease-activated receptor-1 biased signaling 
reveals unique modulators of endothelial barrier function. Proc Natl Acad Sci U S 
A 117, 5039-5048. 
 

4. Mills, R.H., Wozniak, J.M., Vrbanac, A., Campeau, A., Chassaing, B., Gewirtz, A., 
Knight, R., and Gonzalez, D.J. (2020). Organ-level protein networks as a reference 
for the host effects of the microbiome. Genome Res 30, 276-286. 

 
5. Gauglitz, J.M., Aceves, C.M., Aksenov, A.A., Aleti, G., Almaliti, J., Bouslimani, A., 

Brown, E.A., Campeau, A., Caraballo-Rodriguez, A.M., Chaar, R., et al. (2020). 
Untargeted mass spectrometry-based metabolomics approach unveils molecular 
changes in raw and processed foods and beverages. Food Chem 302, 125290. 

 
6. Grainger, S., Nguyen, N., Richter, J., Setayesh, J., Lonquich, B., Oon, C.H., 

Wozniak, J.M., Barahona, R., Kamei, C.N., Houston, J., et al. (2019). EGFR is 
required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells. Nat 
Cell Biol 21, 721-730. 
 

7. Rojony, R., Martin, M., Campeau, A., Wozniak, J.M., Gonzalez, D.J., Jaiswal, P., 
Danelishvili, L., and Bermudez, L.E. (2019). Quantitative analysis of 
Mycobacterium avium subsp. hominissuis proteome in response to antibiotics and 
during exposure to different environmental conditions. Clin Proteomics 16, 39. 

 
8. Korandla, D.R., Wozniak, J.M., Campeau, A., Gonzalez, D.J., and Wright, E.S. 

(2019). AssessORF: combining evolutionary conservation and proteomics to 
assess prokaryotic gene predictions. Bioinformatics. 

 



 xi 

9. Gao, N.J., Al-Bassam, M.M., Poudel, S., Wozniak, J.M., Gonzalez, D.J., Olson, 
J., Zengler, K., Nizet, V., and Valderrama, J.A. (2019). Functional and Proteomic 
Analysis of Streptococcus pyogenes Virulence Upon Loss of Its Native Cas9 
Nuclease. Front Microbiol 10, 1967. 

 
10. Wozniak, J.M., and Gonzalez, D.J. (2019). PTMphinder: an R package for PTM 

site localization and motif extraction from proteomic datasets. PeerJ 7, e7046. 
 
11. Lapek, J.D., Jr.*, Jiang, Z.*, Wozniak, J.M., Arutyunova, E., Wang, S.C., Lemieux, 

M.J., Gonzalez, D.J., and O'Donoghue, A.J. (2019). Quantitative Multiplex 
Substrate Profiling of Peptidases by Mass Spectrometry. Mol Cell Proteomics 18, 
968-981. 

 
12. Al-Bassam, M.M., Kim, J.N., Zaramela, L.S., Kellman, B.P., Zuniga, C., Wozniak, 

J.M., Gonzalez, D.J., and Zengler, K. (2018). Optimization of carbon and energy 
utilization through differential translational efficiency. Nat Commun 9, 4474. 
 

13. Lapek, J.D.*, Jr., Mills, R.H.*, Wozniak, J.M., Campeau, A., Fang, R.H., Wei, X., 
van de Groep, K., Perez-Lopez, A., van Sorge, N.M., Raffatellu, M., et al. (2018). 
Defining Host Responses during Systemic Bacterial Infection through Construction 
of a Murine Organ Proteome Atlas. Cell Syst 6, 579-592 e574.  
 

14. McDonald, D., Hyde, E., Debelius, J.W., Morton, J.T., Gonzalez, A., Ackermann, 
G., Aksenov, A.A., Behsaz, B., Brennan, C., Chen, Y., et al. (2018). American Gut: 
an Open Platform for Citizen Science Microbiome Research. mSystems 3. 

 
15. Markmiller, S., Soltanieh, S., Server, K.L., Mak, R., Jin, W., Fang, M.Y., Luo, E.C., 

Krach, F., Yang, D., Sen, A., et al. (2018). Context-Dependent and Disease-
Specific Diversity in Protein Interactions within Stress Granules. Cell 172, 590-604 
e513.  

 
16. Lapek, J.D.*, Jr., Lewinski, M.K.*, Wozniak, J.M., Guatelli, J., and Gonzalez, D.J. 

(2017). Quantitative Temporal Viromics of an Inducible HIV-1 Model Yields Insight 
to Global Host Targets and Phospho-Dynamics Associated with Protein Vpr. Mol 
Cell Proteomics 16, 1447-1461 
 

 
 
 
 
 
 
 
 
 
 



 xii 

 
 
 
 
 
 
 
 
 
 

ABSTRACT OF DISSERTATION 
 

Lost in Translation: A Post-translational Modification-inclusive Analysis of Infectious 
Diseases 

 
By 

 
Jacob M. Wozniak 

 
Doctor of Philosophy in Biomedical Sciences 

 
University of California San Diego, 2020 

 
Professor David J. Gonzalez, Chair 

 
 

The overall theme of this dissertation is the use post-translational modification 

(PTM)-tolerant approaches to investigate infectious diseases. Chapter 1 contains 

background information regarding quantitative proteomics, PTMs and infectious disease, 

particularly the anti-microbial resistant pathogen, Staphylococcus aureus. This 

information is provided to introduce the reader with the fundamentals of the biology and 

the main techniques used during the doctoral studies. The following chapters describe 

primary author works (published or under review) completed by the author of this 

dissertation. 

Chapter 2 describes the discovery and characterization of modified microproteins 

produced by Staphylococcus aureus. These microproteins were discovered using an 
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unbiased peptidogenomic approach and characterized using in vitro and in vivo assays. 

One of the new microproteins functions similarly to previously described virulence factors, 

while to other appears to have distinct mechanisms of action in the skin. The further 

investigation of these microproteins may provide a more comprehensive understanding 

of the host-pathogen interaction.  

Chapter 3 introduces a computational tool, PTMphinder, created by the author of 

the dissertation. This tool enables the high-throughput localization of phospho-sites in full 

length proteins and the extraction of flanking sequences. The utility of this tool is 

demonstrated by applying it to gain a more comprehensive view of the in vivo host 

response to infection in a chronic Chagas disease model. Kinase-substrate pairs and drug 

targets are predicted from phospho-proteomic data, providing numerous hypotheses to 

further interrogate. 

Chapter 4 aims to set a new standard in the biomarker research field. By employing 

a multi-omic approach, >10,000 features were quantified from >200 S. aureus bacteremia 

(SaB) patient samples, including abundant post-translational modifications (PTMs). A 

model was constructed from the multi-omic data which provides the best predictive ability 

for mortality from any infection to date. Further, the host response to infection was detailed 

and used to predict treatment strategies, which were substantiated using animal models. 

Overall, Chapter 4 details a comprehensive molecular view of the early host response to 

infection. 

Lastly, Chapter 5 details experiments to further develop the research described in 

Chapter 4. This includes the development of a multi-marker immunoassay-based tool for 
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the prediction of SaB outcomes and experiments to further understand detailed 

mechanisms of the host response to S. aureus bacteremia. 
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Chapter 1 - General Introduction 
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Systems Biology and Quantitative Proteomics 
 

Conventional approaches, such as western blot and molecular biology, have been 

the foundation for answering biological questions. However, these methods only 

interrogate a few targets and even simple stimuli are known to induce drastic molecular 

alterations in complex biological milieux. Thus, systems level technologies have emerged 

as an effective tool to unbiasedly assess various disease conditions. These include 

approaches such as genomics, the complete sequencing and comparison of organisms’ 

genome, and transcriptomics, the measurement of the RNA transcripts in a sample, often 

produced in response to a stimulus. While these nucleic acid-based analyses have 

provided a wealth of data that has driven research across all realms of biomedical inquiry, 

from cancer genomics to microbiome meta-transcriptomics, they possess an inherent flaw 

in that they fail to provide direct measurements of the primary bioactive molecules: 

proteins and metabolites. Thus, these somewhat incomplete methods are challenged 

when answering particular questions, such as when molecules function in a specific 

environmental context (eg. functional molecules secreted into serum) or are influenced 

by the presence of post-translational modifications (PTMs). These areas of biological 

interest are more readily accessible by mass spectrometry (MS)-based approaches, such 

as metabolomics and proteomics. 

Throughout history, MS-based approaches have made significant contributions to 

biomedical research(1, 2). With the complete sequencing of thousands of organisms over 

the past 20 years, bottom up MS-based proteomics has become increasingly useful(3-5). 

Recent developments in analytical instruments and protein quantification methods(6-9) 

have only exponentially increased the value of MS applied to biology. While there are a 
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multitude of instrument types and quantification strategies, a few have emerged as 

workhorses for proteomics applications. These include various mass analyzers (eg. ion-

trap and Orbitrap) and quantification strategies (eg. label-free quantification (LFQ) and 

isobaric tags). As these are the primary tools utilized in this dissertation, a brief overview 

of the benefits and drawbacks of each approach is provided below. 

Mass analyzers function to directly detect molecular ions inside mass 

spectrometers. These analyzers can be grouped into low-resolution (eg. ion-trap) and 

high-resolution (eg. Orbitrap) based on their discriminating power of similar weight ions. 

Ion-traps typically have a resolution of ~2000, while Orbitraps can achieve a resolution of 

>100,000 depending on the duty cycle time. However, this increased resolution comes 

with the drawback of a reduced scan rate. Therefore, combination strategies, utilizing the 

high-resolution of the Orbitrap in conjunction with the rapid scan rate of ion-trap, have 

been employed to a great success. This co-operation of both the Orbitrap and ion-trap is 

unique to the architecture of the Fusion line of Thermo Fisher instruments (ie. Orbitrap 

Fusion, Lumos and Eclipse instruments), which are the primary instruments utilized in this 

dissertation. While this combination of mass analyzers is widely used for standard 

proteomic applications, specific focus areas, such as glyco-proteomics, benefit from only 

taking high-resolution scans in the Orbitrap, which enables enhanced PTM assignment 

and localization(10, 11). 

Another factor to consider when designing proteomics experiments is the method 

of quantification used. Quantification via MS can be either relative, where differences in 

abundance are compared between samples, or absolute, where the total abundance of a 

protein (eg. ug/ml) is determined. The vast majority of proteomic applications use relative 
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quantification as the latter requires the design, purchase and optimization of synthetic 

standards for every quantified target, drastically increasing cost and reducing throughput. 

Relative quantification strategies can be split into three groups: label-free quantification 

(LFQ), metabolic labeling (eg. Stable isotope labeling with amino acids in cell culture 

(SILAC)), and chemical labeling (eg. tandem-mass tags (TMT)). LFQ is the cheapest and 

quickest workflow for relative quantification, but it suffers greatly from missing values 

across distinct MS runs, limiting the throughput and statistical power. SILAC strategies 

benefit from early sample mixing in the workflow, which reduces the impact of sample 

preparation errors; however, this approach is generally restricted to cell-culture 

experiments, has a high cost association, and increases sample complexity, resulting in 

less efficient peptide identification. Finally, chemical labeling approaches, such as TMTs, 

offer a solution to the drawbacks associated to other quantification strategies. While there 

is still a high cost associated with purchase of the TMT labels, this is balanced by the 

increased throughput achieved via multiplexing up to 16 samples in a single MS run. 

Chemical labeling-based approaches also drastically reduce the number of missing 

values across samples and can be readily applied to any biological source material, 

included human samples. Importantly, due to the isobaric nature of the chemical tags, 

there is minimal increase in overall sample complexity. Therefore, the development of 

chemical labeling strategies, paired with improved instrumentation, is likely one of the 

greatest advances in proteomic quantification over the past ten years. 

To demonstrate the benefit of chemical labeling over LFQ analyses, we applied 

both approaches to human serum samples, a notoriously difficult sample to analyze via 

MS given the large dynamic range of proteins and prevalent PTMs. Overall, both methods 
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detected a similar number of unique peptides (LFQ: 6,919, TMT: 6,597; Figure 1-1A), but 

the TMT method quantified a larger number of proteins (LFQ: 888, TMT: 1,261; Fig 1-

1B), while encompassing the majority of the proteins from the LFQ method (~77%). 

Comparing the quantitation values from both experiments, we found that the fold-changes 

of infected vs. healthy patients from the distinct workflows were significantly correlated 

(Pearson Correlation: 0.713, Fig 1-1C), validating each approach. However, due to the 

proper design of the TMT experiments and the high number of missing values associated 

with LFQ, the TMT method had a drastically higher number of comparable proteins (ie. 

detected in at least three samples for each condition) between healthy and infected 

patients (Fig 1-1D). Therefore, TMT-based quantification is utilized for the majority of 

experiments in this dissertation. 
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Figure 1-1 Comparison of LFQ and TMT-based serum proteomics.  
 
Venn diagrams of unique peptides (A) and proteins (B) detected in each experiment. (C) 
Scatter plot of log2(infected/healthy) quantitation values of each protein detected in each 
experiment. (D) Number of comparable proteins detected in each experiment. 
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Post-translational Modifications (PTMs) 

The human genome contains tens of thousands of genes that encode for proteins, 

the functional unit of the cell. Protein activity can be modulated by many factors such as 

expression level, alternative-splicing, localization and post-translational modifications 

(PTMs). Common PTMs range from small molecules (phosphorylation(12, 13) and 

acetylation(14, 15)) to peptide features (ubiquitination(16, 17)) to sugars moieties 

(glycosylation(18, 19)). When PTMs are taken into consideration, the complexity of the 

proteome exponentially increases to over one million predicted protein products. 

Consequently, the analysis of protein PTMs has led to the deeper understanding of 

biological systems and development of therapies for a wide-range of maladies from 

cancer(20-22) to infectious diseases(23, 24) to auto-immune disorders(22, 25). Thus, 

assessing the PTM status of proteins under various physiological conditions and disease 

states has the potential to facilitate new biological discoveries. 

While many studies interrogate the PTM status of a single or a few proteins via 

conventional techniques (i.e. western blot), PTMs are rarely singular events and a simple 

stimulus can induce a massive number of alterations in protein modifications. In addition, 

conventional studies are limited by a lack of reliable antibodies for specific PTM site 

detection. To address these gaps, mass spectrometry-based proteomics has emerged as 

a powerful tool to simultaneously analyze the PTM status of thousands of proteins at tens 

of thousands of sites(26, 27). These approaches have led to many discoveries, from 

complicated signaling networks induced during infection(23, 24) to the identification of 

motifs recognized by particular kinases(28-30). With the further development of such 



 8 

technology, one can expect the depth of proteomic-based PTM analyses to increase 

substantially.  

To date, there are a number of tools available that allow users to analyze PTMs 

within proteomic data(29, 31, 32). These include both tools focused on increasing PTM 

identification and quantification, such as open database and PTM-tolerant searches and 

tools focused on increasing PTM interpretability, such as motif enrichment analyses and 

kinase predictions. While useful, many of these applications require significant 

preprocessing of raw data and substantial programming knowledge to implement. Thus, 

for biologists with limited programming experience, a gap in expertise and software exists 

to fully analyze the PTMs within proteomic data sets. These gaps in knowledge can lead 

to the misinterpretation or overlooking of biologically relevant data. Therefore, the 

development of new and easy to use computational tools for the analysis of PTM-

containing proteomic data can empowers researchers to fully analyze and interpret PTMs 

derived from proteomic data. 

 

Infectious Disease and Staphylococcus aureus 

Antibiotic resistance is one of the greatest contemporary challenges facing 

mankind, showing little sign of slowing without direct and precise intervention. Antibiotic 

treatments target essential metabolic functions of bacterial pathogens, applying high 

selective pressures that result in the development of resistance(33). Over and improper 

prescription of broad-spectrum antibiotics combined with patient non-compliance with 

therapeutic regimens further exacerbates this issue(34). Thus, bacterial pathogens are 

developing multi-drug resistance at an alarming rate(33). Over the past 60 years, highly 
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infectious, multidrug-resistant bacterial isolates that pose pressing threat levels across 

the United States (US) have emerged(33, 35, 36). An estimated one million Americans 

are afflicted with healthcare-associated (HA) bacterial infections each year(37), most of 

which are from antibiotic-resistant strains, resulting in up to 100,000 deaths and an 

economic burden of $21 to $34 billion annually(38). In addition, some bacteria are 

migrating from their typical HA niches and have become community-associated (CA), 

which are often more virulent than their HA counterparts. 

One the deadliest human microbial pathogens is Staphylococcus aureus. 

Infections can range from minor skin infections, readily treatable with over-the-counter 

antibiotics, to life-threatening S. aureus bacteremia (SaB), requiring intensive, 

intravenous therapy to properly treat. Severe disease states such as SaB carry alarming 

mortality rates ranging from 20 - 30%, which can increase in at risk populations and if the 

microbe is resistant to antimicrobials (eg. methicillin-resistant (MRSA)). However, even in 

infections caused by methicillin sensitive strains, clinical failure is common, revealing 

significant shortcomings in predictive power of standard antimicrobial susceptibility 

testing. Therefore, it is unsurprising that S. aureus has remained a prevalent pathogen 

and significant burden on society despite being highly studied for decades. Further, CA-

MRSA strains have emerged, which can cause more severe skin infections in younger, 

previously healthy individuals. This increased virulence has largely been attributed to the  

expression of additional virulence factors, such as the phenol-soluble modulins 

(PSMs)(39, 40).  

MS has been readily applied to the field of infectious disease(41-43).The unbiased 

nature and precise quantification of MS-based approaches, presents these techniques as 
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having the potential to guide the construction and prioritization of testable hypotheses. In 

order to combat the spread of problematic microbes, it is imperative to explore new 

avenues of antibacterial therapies; strategies that not only focus on the pathogen but also 

the host response to infection(44). Critical host responses modulated by interaction with 

an invading pathogen must be elucidated, not only as single entities, but how they function 

as a dynamic, concerted network. Merging the fields of analytical chemistry and 

microbiology can result in unprecedented views of microbial pathogenesis, ultimately 

leading to the enhancement of infectious disease treatments. This dissertation describes 

a number of unique vantage points of infectious diseases obtained through MS 

approaches including: 1) the functions of microproteins produced by CA-MRSA, 2) a 

global phospho-proteomic analysis of Tryponosoma cruzi infected murine hearts and 3) 

a multi-omic analysis of SaB patient serum. 
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Chapter 2 – Discovery and Characterization of Modified S. aureus 
Microproteins 
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Introduction 

Staphylococcus aureus is a commensal organism that persistently colonizes the 

skin and upper respiratory tract of an estimated 30% of humans(45-47). S. aureus can 

readily cause diseases ranging from skin lesions to invasive endocarditis, particularly 

during times of immunodeficiency(48). With the emergence of community-associated, 

methicillin-resistant S. aureus (CA-MRSA), a steady rise in the infection rate of healthy 

individuals lacking traditional risk factors has been observed(49, 50). Thus, substantial 

effort has been placed upon understanding the basis of S. aureus pathogenicity. The 

discovery of new virulence factors that contribute to the pathogenesis of S. aureus would 

represent a critical step towards the development of therapeutics against this prevalent 

human pathogen. To date there remains an unmet need for deeper comprehension of the 

molecular dynamics that govern the extraordinary virulence of S. aureus. 

Microproteins are peptide effector molecules that originate from small open 

reading frames (smORFs)(51). It is important to note that, while microproteins are peptidic 

by nature, they are distinct from functional peptides derived from larger proteins via 

cleavage events. The study of microproteins and their importance in biological systems 

has gained momentum in recent years(51, 52). In the realm of bacteria, the functions of 

microproteins range from signaling molecules to potent toxins(40, 53). One family of toxin 

microproteins, the phenol soluble modulins (PSMs), are well characterized S. aureus 

virulence factors with roles ranging from host cell lysis(40) to biofilm formation(54). 

Interestingly, the PSMs are robustly produced by CA-MRSA relative to other MRSA 

strains, and often retain a formylated initiator methionine (fMet)(40, 55). It is predicted 

that bacteria produce a number microproteins in culture. However, smORFs that encode 
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for microproteins are often overlooked for two reasons: 1) their size is typically smaller 

than the lower limits of annotation for many genomic algorithms, or 2) they may be 

embedded within larger ORFs(56, 57). 

In this work, we define the microproteins and endogenous peptides detected in S. 

aureus TCH1516 (CA-MRSA) culture extracts and functionally characterize a bioactive 

subset. We report the high confidence identification of 57 peptides, encompassed by 115 

peptido-forms. This study focuses on the characterization of two newly discovered 

microproteins, S. aureus microprotein (SAM1) and 2 (SAM2), within this cohort. We report 

that the SAMs are regulated by the accessory gene regulator (agr) and that SAM1 has 

immuno-stimulatory and cytotoxic properties similar to the PSMs. Utilizing quantitative 

proteomics, we found that SAM2 affects host cells through a non-canonical mechanism, 

which appears to be disruption of host keratin networks. Finally, we show that the SAMs 

enhance S. aureus virulence and/or survival through distinct mechanisms both in vitro 

and in vivo. Overall, this study expands the current mechanistic understanding of 

microprotein virulence factors and offers a resource detailing the S. aureus peptidome 

that can be further explored. 

Microbial pathogenesis is a complex process that involves crosstalk between an 

array of host and pathogen factors. The understanding of how bacterial microproteins 

contribute to virulence is limited relative to larger protein and transcript studies. The 

human pathogen, Staphylococcus aureus, is known to produce a diverse array of 

virulence factors that contribute to its pathogenicity. However, many virulence factors, 

including microproteins and protein cleavage products, remain uncharacterized. To 

address these gaps, a peptidogenomic workflow was applied to S. aureus culture 
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supernatants. Overall, we identified 57 high-confidence, non-redundant peptides 

detected as approximately 115 peptido-forms. Within this group, we discovered two 

microproteins, SAM1 and SAM2, which are regulated by the classical S. aureus 

accessory gene regulator system. We find that SAM1 appears to act as a canonical 

cytolysin, reminiscent of the phenol-soluble modulins (PSMs), while SAM2 possesses 

unique bioactivity, the perturbation of keratin networks. Finally, we show that both SAMs 

can enhance S. aureus pathogenesis in vitro and in vivo through distinct mechanisms. 

This work highlights the value of studying the peptidome, a largely unexplored molecular 

space, and its contribution to bacterial virulence.  

 

Methods 

Peptide Extraction.  

Peptides were extracted from S. aureus TCH1516, LAC, or RN9120 alone or in 

the presence of 1.2 mg/L LL-37 or lipopolysaccharide using 1-butanol and ethyl acetate. 

The collected extracts were dried, resuspended in 5% acetonitrile/5% formic acid and 

analyzed via the standard MS2 method described below. 

Bacterial Growth Inhibition Assays.  

S. pyogenes strain M3 was grown overnight (O/N), diluted 1:100 and grown for 8 

hours (hrs) prior to experiments. The bacteria were then suspended to an OD600 of 0.4 

and diluted 1:10 in 10% BHI in RPMI media containing the a-hemolysin signal peptide 

derivative (50 µg/ml – TTLLLGSILMNPVANA) or a matched DMSO control. Growth 

curves were generated by measuring OD600 every 15 minutes (min) for 12 hrs using a 

plate reader.  



 15 

Monte Carlo Simulations.  

Monte Carlo simulations of peptides in 100 mM NaCl were performed using the 

MCPep webserver, specifying a 40 Å membrane consisting of a 30 Å hydrophobic region 

flanked by two 5 Å polar regions. A 15% charged lipid was used to mimic the lipid 

composition of human keratinocytes (58, 59). Three replicates consisting of 500,000 

Monte Carlo steps were performed for each peptide in each condition (membrane and 

aqueous). 

Construction of S. aureus Mutants.  

Accessory Gene Regulator (agr). The TCH1516 agr::tetM deletion mutant was 

generated by using phage φ11 to transduce the agr::tetM mutation from S. aureus strain 

RN6911 into TCH1516. TCH1516 agr::tetM has a complete deletion of the agr locus, 

which was confirmed by polymerase chain reaction (PCR) and sequencing using the 

primers KS111 and KS112 (Table S1).  

S. aureus Microprotein 1 (sam1). To construct the sam1 deletion plasmid, about 

1000 base-pair (bp) regions flanking the sam1 gene were amplified from S. aureus 

TCH1516 genomic DNA with primer pairs KS19/KS21 (for upstream homologous region; 

HR up) and KS20/KS22 (for downstream homologous region; HR down) (Table S1). The 

products were column purified, digested with SalI/XhoI (HR up), KpnI/XhoI (HR down) 

and ligated into pJB38 linearized with SalI and KpnI. The constructed plasmid was 

electroporated into E. coli DC10B cells and positive clones were selected on LB plates 

containing 100 µg/ml ampicillin at 37 ºC. The plasmid was isolated and directly 

electroporated into electrocompetent S. aureus TCH1516 cells. Cells carrying the plasmid 

were selected on TSA plates containing 10 µg/ml chloramphenicol at 30 ºC. Individual 
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colonies were then streaked on TSA chloramphenicol (10 µg/ml) plates incubated at 42 

ºC to select for homologues recombination into the chromosome. To promote a second 

round of recombination, single colonies were sub-cultured in TSB at 30 ºC for 3 days 

without addition of antibiotics. The cultures were then diluted 10-6 and plated on TSA 

containing 0.2 µg/ml anhydrotetracycline (ATc) to select for plasmid loss. Colonies were 

screened for resistance to chloramphenicol (10 µg/ml) and chloramphenicol sensitive 

colonies were verified by PCR and sequencing using primers KS31, KS32, KS35 and 

KS36 (Table S1).  

S. aureus Microprotein 1/2 (sam1/2). To construct the Δsam1/2 double mutant, a 

similar approach was undertaken. Briefly, 1000 bps up (JMW10 and JMW11) and 

downstream (JMW3 and JMW12) of the sam2 gene were amplified from S. aureus 

TCH1516 Δsam1 genomic DNA (Table S1). PCR products were column purified and 

ligated together utilizing a Gibson Assembly protocol according the manufacturer 

instructions. Gibson Assembly products were amplified and KpnI/EagI restriction sites 

were incorporated using primers JMW13 and JMW14 (Table S1). Assemblies were 

ligated into the pKOR1-MCS vector and transformed into E. coli NEB5a. Cells carrying 

the plasmids were selected for on THB plates containing 100 µg/ml Ampicillin. The 

resultant plasmids were subsequently isolated, confirmed via PCR and sequencing and 

transformed into E. coli DC10B. Cells carrying the plasmid were selected for on THB 

plates containing 100 µg/ml Ampicillin and 30 µg/ml Chloramphenicol. The plasmid was 

again isolated and electroporated into electrocompetent S. aureus TCH1516 Δsam1 cells. 

Cells carrying the plasmid were selected on THB plates containing 20 µg/ml 

chloramphenicol at 37 ºC.  Plasmid containing cells were grown for 24 hours at 43 ºC to 
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promote plasmid integration into the chromosome. Serial dilutions of 10-3 to 10-7 were 

prepared and plated on THB plates containing 20 µg/ml chloramphenicol and incubated 

at 43 ºC O/N. Large colonies were selected and inoculated at 30 ºC O/N to promote 

double-crossover events. The cultures were then diluted 10-1 to 10-5 and plated on THB 

plates containing 1 µg/ml ATc to select for plasmid loss. Colonies were screened for 

resistance to chloramphenicol (20 µg/ml) and chloramphenicol sensitive colonies were 

verified by PCR and sequencing using JMW7, JMW8, JMW9, JMW15 and JMW16 (Table 

S1). 

Quantative Reverse Transcription (qRT)-PCR.  

To determine sam1 and sam2 expression in TCH1516 wild-type (WT) and the 

isogenic agr::tetM mutant, three independent cultures were grown in TSB to OD600 of 4. 

Cells were pelleted and incubated briefly with RNA protect Bacterial Reagent. Cells were 

lysed with lysostaphin for 30 min at 37 ºC and then incubated with proteinase K for another 

30 min at 37ºC. RNA was purified using the RNeasy Plus Mini Kit and residual 

chromosomal DNA was removed using the Turbo DNA free kit according to the 

manufacturer’s protocol. DNase-treated RNA (2 µg) was used as a template to generate 

cDNA with the High-Capacity Reverse Transcription Kit. qRT-PCR was performed using 

SsoAdvanced Universal SYBR Green Supermix, 350 nM of each primer (Table S1) and 

10 ng cDNA. The expression was normalized to that of DNA gyrase (gyrB) and the fold 

change was calculated according to the Pfaffl analysis method (60). 

Neutrophil Isolation.  

Human research participants were consenting volunteers as approved under our 

local Institutional Review Board (IRB) protocol. Primary neutrophils were isolated from 
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venous blood collected from healthy volunteers, with heparin used as an anticoagulant. 

Blood was subjected to density gradient separation using Polymorphprep density 

gradient medium according to the manufacturer’s protocol. Subsequently, neutrophils 

were collected, counted, and resuspended in PBS at a concentration of 1 x 107 cells/ml 

prior to use in experiments.  

Neutrophil Chemotaxis.  

Corning Transwell Permeable Supports with 3.0 µm-pore polycarbonate 

membranes were used to perform neutrophil migration assays. The transwell inserts were 

removed and 650 µl of Hank’s Balanced Salt Solution (HBSS) + Ca2+/Mg2+ alone or with 

2 µg/ml PSMa3, mock-SAM, SAM1 or SAM2 was added to the lower wells. For the 

inhibitor assays, neutrophils in HBSS + Ca2+/Mg2+ were pre-incubated in siliconized tubes 

for 20 min with PBP-10 (10 µM). Following this incubation, neutrophils (1 x 106 cells in 

150 µl media) were added to upper wells and allowed to migrate for 1 hr. After migration, 

the inserts were removed and the cells in the lower wells were lysed by addition of 72 µl 

PBS containing 1% Triton X-100 for 10 min. 180 µl from each well was collected and 

added to a flat-bottom plate containing 20 µl 10 mM N-Methoxysuccinyl-Ala-Ala-Pro-Val 

p-nitroanilide. Following a 30 min incubation at room temperature (RT), absorbance at 

405 nm was measured in a plate reader to quantify relative cell migration. 

HaCaT LDH Release.  

HaCaT cells were grown to 80-90% confluence and plated at 2 x 104 cells per well 

for 48 hrs. For synthetic microprotein experiments, cells were pretreated with 20 mM 

Hepes and 10 µg/ml of BSA, 10% FBS or no supplement for 1 hr before adding PSMa3, 

mock-SAM, SAM1 or SAM2 for 4 hrs. For inducible expression experiments, plasmid-
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containing strains were grown in THB media supplemented with ATc (25 ng/ml) and 

chloramphenicol (10 µg/ml) for 16 hrs. Supernatants from the resulting cultures were 

passed through filter units and added to HaCaT cells for 6 hrs. HaCaT cell lysis was 

measured by release of lactate dehydrogenase (LDH) activity using an LDH Cytotoxicity 

Assay Kit according to manufacturer instructions. 

HaCaT Microscopy.  

For confocal microscopy experiments, circular glass coverslips that had been 

ethanol-dipped and dried were placed in 12-well polystyrene tissue culture plates. 

Coverslips were percolated with 300 μl fibronectin for 15 min at RT. HaCaT cells were 

plated on top of the coverslips (2 x 105 cells/well) and grown at 37 °C. After 48 hrs the 

cells were 80-90% confluent and pretreated with 20 mM Hepes and 10 μg/ml of BSA for 

an hour. PSMa3, mock-SAM, SAM1, SAM2 were added to the cells at 10 μg/ml for 4 hrs. 

Cells were then placed on ice, washed with PBS and stained. For micrographs in Figure 

3, cells were stained with DAPI, SYTOX-Green, and Alexa Fluor 555 Phalloidin. For 

micrographs in Figure 4, cells were fixed with 4% paraformaldehyde for 15 min, blocked 

with 1% BSA + 0.1% triton in 1X PBS, and stained with Rabbit Polyclonal anti-Wide 

Spectrum Cytokeratin antibodies in 1% BSA O/N at 4 °C. The next day, the primary 

antibody was aspirated, the cells were washed with 1X PBS, and incubated in the dark 

with Donkey anti-Rabbit IgG H&L (Alexa Fluor 647) for 1 hr at RT. Cells were washed 

again and mounted to microscopy slides using Flouromount with DAPI. Microscopic 

analysis was repeated at least three times and a representative image from each 

treatment are shown. Quantification of keratin area was performed by measuring the 

average area of keratin per cell of four replicates (ten cells each) using ImageJ. 
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Construction of sam1 Inducible Vector.  

To create an ATc-inducible sam1 plasmid (pKAS28), the sam1 gene was amplified 

from TCH1516 genomic DNA using the primers KS120 and KS121 which contain KpnI 

and SacI sites at their 5’ ends (Table S1). The resulting PCR product was ligated into 

pRMC2 (linearized with KpnI and SacI). The plasmid was electroporated into E. coli 

DC10B and positive clones were selected on LB ampicillin (100 µg/ml) and verified by 

PCR and sequencing using primer KS88 and KS89. The plasmid pKAS28 and the empty 

vector control pRMC2 were electroporated into TCH1516 carrying the chromosomally 

integrated pLL29 plasmid which confers resistance to tetracycline. 

HaCaT Infections.  

Standard Infection. HaCaT cells were grown in 12-well plates to 80-90% 

confluency for 48 hrs without antibiotics. S. aureus TCH1516 WT and Δsam1 containing 

pRMC2 and Δsam1 containing pKAS28 were grown in the presence of 25 ng/ml ATc 

(maintained for the duration of the experiment) at 37 °C O/N prior to experiments. On the 

day of infection, bacterial cultures were back-diluted 1:100 and incubated for 1 hr at 37 

°C. HaCaT cells were infected at an MOI of 1 for 4 hrs. At the 4 hr time point, Triton X-

100 (final concentration: 0.1%) was added and colony forming units (CFUs) were 

quantified by serial dilution. 

Intracellular Infection. Infections were repeated as above with the following 

additions. After the infection stage, extracellular bacteria were killed by addition of 20 

μg/ml lysostaphin and 50 μg/ml gentamicin for 1 hr. Antibiotics were then washed away 

and the intracellular infection was allowed to persist for 2 and 4 hrs (4 and 6 total hrs after 

the addition of bacteria, respectively). For EGTA supplementation experiments, 1 mM 
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EGTA was supplemented following antibiotic removal. At each time point, extracellular 

CFUs were quantified from the supernatants and intracellular CFUs were quantified after 

lysing the HaCaT cells with 0.1% Triton X-100 in PBS. CFUs were determined by serial 

dilution.  

Mouse Skin Lesion Experiments.  

Four-day Lesion Size Experiment. Six-week-old female BALB/c mice were shaved 

to remove the hair on their back. 100 μl of solution containing 6 x 109 CFUs/ml of S. 

aureus Δagr (RN9120) supplemented with DMSO, PSMα3, SAM1 or SAM2 to a final 

concentration of 10 μg/μl was then injected into the dorsal skin. The lesion of each mouse 

was monitored and reported as the area of the visibly affected area on day four post-

challenge (quantified using ImageJ). The mice were then euthanized, and the affected 

skin was carefully collected and processed for bacterial CFU enumeration with sterile 

ceramic beads. The sample size for each group was 5 mice. This experiment was 

repeated twice for a total of 10 replicates. 

Seven-day Lesion Penetration Experiment. The above infection experiments were 

repeated for a week-long experiment with the following changes.  First, only DMSO and 

SAM2 were used as supplements. Second, in addition to S. aureus RN9120, we included 

a strain of WT S. aureus (RN6607). Third, mouse weight was measured each day and, 

on the final day of the experiment, both the lesion and the underlying tissues were 

photographed and processed for bacterial CFU enumeration with sterile ceramic beads. 

Percent penetrated CFUs is reported (equation: CFUs/g in underlying tissue/ total CFUs/g 

recovered). Finally, relative inflammation was quantified by averaging the redness of the 
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pixels (equation: red / (red + blue + green)) of two lines drawn through the photographs 

of the underlying tissue using ImageJ. The sample size for each group was 5 mice. 

Microprotein Affinity Purification 

HaCaT cells (TMT experiment) were grown in 15 cm dishes to 80-90% confluency 

and HL-60 cells (reductive demethylation experiment) were grown in T175 flasks to 1 x 

106 cells/ml prior to experiments. Cells were washed with 1X PBS and lysed in a buffer 

composed of n-Dodecyl β-D-maltoside (DDM) 1% w/v, 100 mM NaCl, 10 mM sodium 

fluoride (NaF), 10 mM β-glycerophosphate, 10 mM sodium pyrophosphate (NaPP), 2 mM 

sodium orthovanadate (NaVO4) and 1X cOmplete EDTA-free protease inhibitor cocktail. 

Insoluble membranes were removed by centrifugation at 13,000 x g for 10 min at 4 °C. 

Affinity purification was performed using a Biotinylated Protein Interaction Pull-Down Kit 

according to manufacturer instructions. Beads were prepared as either empty, beads-

only controls, or with biotinylated PSMα3, SAM1 or SAM2. Prey proteins were eluted 

according to manufacturer instructions and processed for quantitative MS analysis. 

Western Blot. 

Proteins were isolated from the microprotein affinity purification experiments 

described above. Equal volumes of eluent from beads-only and SAM1 beads were 

subject to western blot analysis along with 10 μg of input material. Proteins were 

separated on a poly-acrylamide gel and transferred on to a nitrocellulose membrane. The 

nitrocellulose membrane was then blocked in 5% milk for 1 hr at RT before being washed 

and stained with Rabbit Polyclonal anti-BAP37 (PHB2) antibodies (1:500 in 5% milk) 

shaking O/N at 4 °C. The next day, membranes were washed and stained with Goat anti-

Rabbit IgG, HRP-linked antibodies (1:2000 in 5% milk) for 1 hr at RT. Membranes were 
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then washed and incubated in the dark with enhanced chemiluminescent substrate 

reagents for 1 min at RT. Light emission was measured using X-ray film developed in a 

dark room. Quantification of protein from three independent pulldowns was performed 

using ImageJ. 

Protein Digestion and Labeling. 

Protein Digestion. Proteins were isolated from HaCaT cells treated with 

microproteins for 0, 2, 4, 6 and 8 hrs or the microprotein affinity purification experiments 

described above. For microprotein treatment experiments, cells were washed with 1X 

PBS and lysed in a buffer containing: 75 mM NaCl, 3% sodium dodecyl sulfate (SDS), 1 

mM NaF, 1 mM β-glycerophosphate, 1 mM NaVO4, 1 mM NaPP, 1 mM 

phenylmethylsulfonyl fluoride, 1X complete EDTA-free protease inhibitor cocktail and 50 

mM HEPES(23). Proteins were reduced and alkylated with dithiothreitol (DTT) and 

iodoacetamide (IAA), respectively (61), then methanol/chloroform precipitated. Proteins 

were re-solubilized in 1 M urea in 50 mM HEPES, pH 8.5. and digested in a two-step 

process (LysC and Trypsin) before being desalted with C18 Sep-Paks (62). TMT 

Labeling. Samples were labeled with TMT 10-plex reagents (6, 8) for multiplexed 

quantitative proteomics. For microprotein treatment experiments, TMT reagents 126 and 

131 were reserved for “bridge channels”, and the remaining reagents were used to label 

digests in random order. Bridge channels consisted of 25 μg of each digest pooled 

together and then re-aliquoted into 50 μg portions for labeling. The bridge served as a 

means to control for experimental variation between mass spectrometry experiments. For 

microprotein affinity purification experiments, peptides were labeled directly following 

desalting to minimize sample loss. Labeling was conducted for 1 hr at RT and was 



 24 

quenched by addition of 9 μl of 5% hydroxylamine. Samples were then acidified by 

addition of 50 μl of 1% TFA and pooled. The pooled, multiplex samples were desalted 

with C18 Sep-Paks as described above. 

Reductive Dimethylation Labeling. Reductive dimethylation was conducted for 

beads-only and SAM1 microprotein affinity purification samples as previously described 

(62). Briefly, heavy (H) and light (L) formaldehyde (F) and sodium cyanoborodeuteride 

(R) solutions were prepared or purchased as follows; FH: 20% formaldehyde-d2, FL: 20% 

formaldehyde, RH: 5 M NaCNBd3 in 1 M NaOH, RL: 5 M NaCNBH3 in 1 M NaOH, and 

reagent buffer: 0.227 M Na2HPO4, 0.026 M citric acid, pH 5.39. Heavy and light wash 

solutions were made by combining 20 μl of FL + 12 μl of RL + 968 μl of reagent buffer. 

Immediately following digestion with trypsin, peptides were loaded onto C18 stage-tips, 

labeled by washing with the reagents made above, desalted, and pooled into appropriate 

duplex experiments prior to standard LC-MS2 analysis. 

Basic pH Reverse-phase Liquid Chromatography (bRPLC) Fractionation.  

Fractionation was carried out by bRPLC (63) with fraction combining as previously 

described (23, 62). Briefly, samples were solubilized in 110 μl of 5% formic acid in 5% 

acetonitrile and 100 μl was separated on a 4.6 mm x 250 mm C18 column on an Ultimate 

3000 HPLC. The resultant 96 fractions were combined into 24 distinct fractions and dried 

prior to multiplexed LC-MS2/MS3 analysis. 

LC-MS Analysis 

Standard MS2 Method. Peptides were resupsended in 5% acetonitrile/5% formic 

acid and analyzed on an Orbitrap Fusion Tribrid mass spectrometer with an in-line Easy-

nLC 1000 System. All data acquired were centrioded. Samples were loaded onto a 30 
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cm in-house pulled and packed glass capillary column (I.D. 100 μm, O.D. 350 μm). The 

column was packed with 0.5 cm of 5 μm C4 resin followed by 0.5 cm of 3 μm C18 resin, 

with the remainder of the column packed with 1.8 μm of C18 resin.  Following sample 

loading, peptides were eluted using a gradient ranging from 11-30% acetonitrile in 

0.125% formic acid over 85 min at a flow rate of 300 nL/minute and heating the column 

to 60 °C. Electrospray ionization was assisted by the application of 2,000 V of electricity 

through a T-junction connecting the column to the nLC.  

MS1 spectra were acquired in data dependent mode with a scan range of 500-

1200 m/z and a resolution of 60,000. Automatic gain control (AGC) was set to 2 x 105 

with a maximum ion inject time was 100 ms and a lower threshold for ion intensity of 5 x 

104. Ions selected for MS2 analysis were isolated in the quadrupole at 0.5 Th. Ions were 

fragmented using collision-induced dissociation (CID) with a normalized collision energy 

of 30% and were detected in the linear ion trap with a rapid scan rate. AGC was set to 1 

x 104 and a maximum inject time of 35 ms. 

Multiplexed MS3 Method. The multiplexed MS3 method settings are the same as 

the standard MS2 method above with the following additions. MS3 analysis was 

conducted using the synchronous precursor selection (SPS) option to maximize TMT 

quantitation sensitivity (9). Up to 10 MS2 ions were simultaneously isolated and 

fragmented with high energy collision induced dissociation using a normalized energy of 

50%. MS3 fragment ions were analyzed in the Oribtrap at a resolution of 6 x 104. The 

AGC was set to 5 x 104 using a maximum ion injection time of 150 ms. MS2 ions 40 m/z 

below and 15 m/z above the MS1 precursor ion were excluded from MS3 selection.  

Peptide Identification by Proteome Discoverer.  
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Peptidomic Experiments. Raw files were processed using Proteome Discoverer 

2.1. MS2 data were queried against two databases: the TCH1516 UniProt database 

(downloaded from UniProt on 12/30/2015) and a six-frame translated database generated 

from the TCH1516 genome (downloaded from EBI on 08/03/2016) using the Sequest 

algorithm (64). The six-frame translated database was made in R, utilizing the “marray” 

and “seqinr” packages (65). A decoy search was also conducted with sequences in 

reverse order (3, 66, 67). For MS1 spectra, a mass tolerance of 50 ppm was used and 

for MS2 spectra a 0.6 Da tolerance was used. Oxidation of methionine (+15.99492 Da) 

and formylation of the peptide N-terminus (+27.995 Da) were included as variable 

modifications. Enzyme digest specificity was set to ‘unspecific’ to account for all 

endogenous peptide cleavage sites. Data were filtered to a 1% peptide and protein level 

false discovery rate using the target-decoy strategy (66). For subsequent label-free 

quantitation (LFQ) of microproteins, raw files were processed as described above except 

the data were searched against the TCH1516 reference proteome with the SAMs 

appended. MS1 area under the curve (AUC) were used for quantitation. 

Proteomic Experiments. Resultant data files were processed using Proteome 

Discoverer 2.1. MS2 data were queried against the Uniprot human database 

(downloaded: 05/2017) using the Sequest algorithm (64). A decoy search was also 

conducted with sequences in reversed order (3, 66, 67). For MS1 spectra, a mass 

tolerance of 50 ppm was used and for MS2 spectra a 0.6 Da tolerance was used. Static 

modifications included TMT 10-plex reagents (+229.162932 Da) or dimethylation 

(+28.031300 Da) on lysine and peptide n-termini and carbamidomethylation of cysteines 

(+57.02146 Da). Variable oxidation of methionine (+15.99492 Da) was also included in 
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the search parameters. Data were filtered to a 1% peptide and protein level false 

discovery rate using the target-decoy strategy (3, 66, 67). For TMT experiments, reporter 

ion intensities were extracted from MS3 spectra for quantitative analysis. For reductive 

dimethylation experiments, relative abundances of peptides in the duplexed samples 

were quantified as the ratio of MS1 peak areas of heavy and light versions of the same 

peptide. Protein-level quantitation values were calculated by summing signal to noise 

values for all peptides per protein meeting the specified filters. Data were normalized in 

a two-step process as previously described (68). First, the values for each protein were 

normalized to the pooled bridge channel value (microprotein treatment experiment) or an 

in-silico average “bridge channel” of all the samples in the experiment (microprotein 

affinity purification experiments). Then, the values were normalized to the median of each 

reporter ion channel (for TMT) or sample MS1 AUC (for reductive dimethylation), as well 

as the entire dataset. 

 

Results 

Endogenous Peptides Detected in S. aureus Supernatants 

To investigate the microproteins and peptides secreted by S. aureus TCH1516, a 

mass spectrometry (MS) based peptidogenomic approach was employed (Fig 2-1A). In 

an effort to capture microproteins that may not present as annotated ORFs, the TCH1516 

reference genome was six-frame translated, creating a database that contains all possible 

ORFs with at least six amino acids. Using the TCH1516 Uniprot database and the custom 

six-frame translated database to match spectra, a total of 57 peptides represented by 115 

peptido-forms were identified at a peptide and protein level false discovery rate of < 1%.  
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Categorizing peptides based on their subcellular location confirmed the detection 

of peptides derived primarily from membrane and secreted proteins with minimal cytosolic 

contamination (Fig 2-1B). Most of the peptides identified correspond to known virulence 

factors, with hemolysins and PSMs being highly abundant (Fig 2-1C). All previously 

characterized PSMs were detected, except for PSM-mec, which is not encoded in the 

TCH1516 reference genome(55). Among the other virulence factors, a high number of 

peptides from accessory gene regulator D (agrD), immunodominant antigens A and B, 

and various IgG binding proteins were detected. While some of these variants were 

previously described(69), most of them, to our knowledge, have never been reported. The 

majority of these peptides contain the classical SPaseI “AXA” motif, and are presumably 

derived from the signal sequences that target these proteins to the membrane or 

extracellular space(70). However, the full N-terminal signal sequences for any of these 

proteins were not observed, suggesting additional proteolytic processing following 

SPaseI cleavage. Interestingly, most of the detected cleavages occur immediately after 

a lysine residue, which may play a role in cleavage specificity. While primarily functioning 

to target proteins for the membrane or extracellular space, alternative functions for signal 

peptides have been proposed(71, 72). Additionally, it has been reported that other peptide 

fragments produced by S. aureus possess antimicrobial effects(73, 74). With this in mind, 

we hypothesized that cleaved signal peptides could retain some bioactivity. We tested 

this with the a-hemolysin signal peptide derivative, and found that it inhibited the growth 

of Streptococcus pyogenes strain M3 in a liquid culture assay at a similar concentration 

as other S. aureus antimicrobial peptide fragments(73). Thus, we conclude that these set 
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of endogenous merit further studies to elucidate the precise cleavage mechanisms and 

any additional biological functions of these putative signal peptide derivatives.  
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Figure 2-1 Overview of Peptides Secreted by S. aureus. 
 
(A) Workflow for the identification of known and novel peptides secreted by S. aureus 
TCH1516. (B) Manual annotation of the locations of the peptides identified in this 
experiment. (C) Manual annotation of the functions of the peptides identified in this 
experiment.  
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Characterization of Novel S. aureus Microproteins 

In addition to the repertoire of known microproteins and peptides derived from 

larger proteins, two previously unidentified microproteins were identified only in the six-

frame translated database. These microproteins retain their formylated initiator 

methionine and are similar in length to the a-type PSMs. However, their genetic locus is 

distal from the a-type PSMs. We named these peptides S. aureus microprotein (SAM) 1 

and 2. In total, 11 and 7 high-confidence spectra were detected from SAM1 and SAM2, 

respectively. These assignments were verified by manual annotation of representative 

spectra.  Based on number of spectral matches, we estimate these peptides are produced 

in culture to a similar degree as the β-type PSMs(75).  

An initial genetic analysis was carried out to investigate the evolutionary 

conservation of the SAMs. Basic local alignment search tool (BLAST) analysis revealed 

that the SAMs are restricted to the Aureus-Epidermidis group of Staphylococci (Fig 2-

2A). While SAM1 is found in at least eight distinct species, SAM2 is only found in three, 

all on a single branch, suggesting more recent evolution. Notably, the strains encoding 

SAM2 are highly similar, with the distinction of S. aureus from S. argenteus and S. simiae 

only formally defined over the past 5 years. Thus, it appears that the SAMs are primarily 

encoded by more pathogenic Staphylococci (eg. S. aureus and S. epidermidis) rather 

than clinically irrelevant species (eg. S. carnosus and S. equorum). Furthermore, 

generating frequency plots uncovered residues in SAM1 (Fig 2-2B) and SAM2 (Fig 2-

2C) that are fully conserved across all the encoding Staphylococcal species, potentially 

signifying that these residues are essential for microprotein function.  
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Mapping the SAMs to the TCH1516 reference genome shows that they are located 

proximal to each other, separated by a single lipase gene (Fig 2-2D). The SAMs contain 

comparable hydrophobic side chains, share 33.3% sequence homology, and a positive 

net charge. Performing multiple sequence alignments of the SAMs and a-type PSMs 

demonstrates the similarity of their primary sequences (Fig 2-2E). Furthermore, Monte 

Carlo simulations predict that the SAMs have amphipathic features and moderate helical 

propensity, which would assume a largely helical structure upon binding to a lipid bilayer 

(Fig 2-2F). These traits highlight the relatedness of the SAMs to the PSMs and indicate 

they may function in a similar manner.   

 

The SAMs are Regulated by agr 

The agr of S. aureus is a quorum sensing system that controls the expression of 

genes, such as the PSMs and other crucial virulence factors, depending on local S. 

aureus cell density(53). We hypothesized our newly identified microproteins may also be 

under the control of agr. By repeating our peptidomic experiments using an additional 

wild-type (WT) CA-MRSA strain (LAC) and an agr-deficient strain (RN9120), we observed 

that SAM1 was expressed at a similar level in both of the WT strains but completely 

absent in the agr-deficient strain (Figure 2-2G). To validate these findings, we performed 

qRT-PCR on WT TCH1516 and an isogenic agr-deficient strain and found that the 

expression of both SAM mRNA are drastically reduced in the absence of agr (Figure 2-

2H). This observation is consistent in other strains of S. aureus that were tested. 

Regulation by agr lends further support to the idea that these microproteins are 

functionally important, particularly in times of high bacterial cell density. Based on the 



 33 

above observations, synthetic copies of the SAMs and PSMα3 were obtained to 

characterize and compare the effects of these microproteins in parallel. A synthetic, 

formylated “mock-SAM” microprotein with a scrambled sequence was utilized as a 

negative control. 
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Figure 2-2 Initial Characterization of Novel Microproteins 
 
(A) Conservation of SAMs across the Staphyloccocus phylogenetic tree. (B) SAM1 gene 
multiple sequence alignment across various staphylococcal species. (C) SAM2 gene 
multiple sequence alignment across various staphylococcal species. (D) Newly annotated 
SAM1 and SAM2 loci within the S. aureus TCH1516 genome (icaC – intercellular 
adhesion protein C; lip1 – lipase 1; hyp – hypothetical protein). (E) Multiple sequence 
alignment of a-type PSM and SAM protein sequences. (F) Top Panel: Comparison of 
molecular structures of PSMα3 and the SAMs derived from Monte Carlo simulations in 
the presence or absence of a keratinocyte-like lipid bilayer. Aliphatic hydrophobic 
residues are shown in gray, aromatic hydrophobic residues in tan, neutral polar residues 
in green, positively charged residues in blue, and negatively charged residues in red. 
Bottom Panel: Predicted mean helicity per-residue of free peptides (blue) and in the 
presence of keratinocyte-like membrane (black). (F) Relative SAM1 MS1 intensity in S. 
aureus TCH1516, LAC and RN9120 supernatants (left to right; nd - not detected). (G) 
Relative SAM mRNA levels in TCH1516 WT (+) and agr::tetM mutant (-). Both genes are 
normalized to the reference gene gyrB. (H) Migration of neutrophils treated with Mock-
SAM, PSMα3 or SAMs with or without pretreatment with the FPR2 inhibitor, PBP-10. (I) 
LDH release assay of HaCaT cells treated with Mock-SAM, PSMα3 or the SAMs. For all 
graphs, results are expressed as the median +/- the IQR (box) and max/min values 
(whiskers) of at least 3 independent experiments. Significance was determined by one-
way ANOVA with Dunnett’s multiple comparison test (****p < 0.0001; **p < 0.01; ns - not 
significant). 
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SAM1 Stimulates Neutrophil Migration and Lyses Human Keratinocytes in vitro 

Neutrophils are highly abundant at the site of infection and function by recognizing, 

phagocytosing and eradicating pathogens by regulating an effective immune 

response(76, 77). It has been proposed that S. aureus actively recruits neutrophils via 

microprotein secretion for subsequent lysis and induction of tissue damage, a process 

that can be mediated by the PSMs (78). Therefore, we hypothesized the SAMs may also 

contribute to the excessive influx of neutrophils at the site of infection. Upon examination, 

SAM1 stimulated the migration of primary human neutrophils to a comparable extent as 

PSMa3 (Figure 2-2I). No appreciable migration was observed for SAM2 or the mock-

SAM. Neutrophils express both a formyl peptide receptor, fMet-Leu-Phe receptor (FPR1), 

which recognizes various formylated peptides, and FPR1-related formyl peptide receptor 

2 (FPR2), which is the major receptor for PSMs(78, 79). We observed that SAM1-induced 

migration was completely abolished when neutrophils were pre-treated with the selective 

FPR2 inhibitor PBP-10 (Figure 2-2I), suggesting that SAM1 induces neutrophil migrations 

in an FPR2 dependent manner.  

Keratinocytes represent the major cell type of the human epidermal skin layer and 

comprise the first line of defense against invading pathogens(80). S. aureus in particular 

is a leading cause of skin and soft tissue infections (SSTIs) in the United States(36). 

Therefore, the toxicity of the SAMs was assessed in a keratinocyte cell line via an LDH 

release assay. We found that SAM1 treatment induced LDH release in a concentration-

dependent manner while no lysis was observed for the mock-SAM or SAM2 (Fig 2-2J). 

The above results demonstrate that SAM1 appears to function in a similar manner to the 

a-type PSMs, while SAM2 may possesses distinct mechanisms of action. 
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SAM1’s Cytolytic Ability is Inhibited by Serum and Enhances S. aureus Virulence 

To confirm the cytolytic activity of SAM1, confocal fluorescence microscopy using 

SYTOX green staining was employed. We found that both PSMa3 and SAM1 induce high 

amounts of membrane permeability (Fig 2-3A), supporting the results in Figure 2-2J. As 

expected, mock-SAM did not show any significant alteration to the keratinocyte 

membranes. Recent studies on the a-type PSMs demonstrate that they are sequestered 

and inhibited by serum lipoproteins, suggesting they have an intracellular role(81, 82). 

Thus, we were curious if the presence of serum would also dampen the effect of SAM1 

on host cells. We found that including serum in the treatment media with SAM1 drastically 

reduced host cell lysis (Figure 2-3B), indicating that the SAMs may also function 

intracellularly or at a body site devoid of serum lipoproteins (ie. the skin). Again, PSMa3 

was used as a positive control and demonstrated the expected lytic phenotypes. 
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Figure 2-3 SAM1 Lyses Keratinocytes and Contributes to S. aureus Virulence 
Phenotypes 
 
(A) Confocal microscopy images of HaCaT cells treated with PSMα3, Mock-SAM, and 
SAM1. (B) Relative cell lysis of HaCaT cells treated with SAM1 in the presence of FBS, 
BSA or no supplement (-). (C) Percent cytotoxicity of HaCaT cells treated with bacterial 
media or culture supernatants from WT S. aureus cells containing pRMC2-empty (-) or 
pRMC2-SAM1 (S1) induced with anhydrotetracycline. (D) CFUs recovered from in vitro 
infections of HaCaT cells infected with WT or Δsam1 containing an empty vector (-), or 
Δsam1 containing pRMC2-SAM1 (S1) S. aureus induced with anhydrotetracycline. (E) 
Lesion sizes from mouse skin infections with WT, Δsam1, Δpsmα3 bacteria 
supplemented with SAM1, PSMα3 or a vehicle control (DMSO). For all graphs, results 
are expressed as the median +/- the IQR (box) and max/min values (whiskers) of at least 
4 independent replicates. Animal experiments contained 5 replicates. For B, C and D, 
significance was determined by one-way ANOVA with Dunnett’s multiple comparison test 
(***p < 0.001; **p < 0.01; *p < 0.05; ns - not significant). For E, significance was 
determined by a Student’s t-test (***p < 0.001; **p < 0.01; *p < 0.05; ns - not significant). 
Welch’s correction was used for comparisons with unequal variance.  
 
 
 
 
 
 
 
 
 
 



 38 

Given the above results, we made constructs that would allow the study of SAM1 

produced from S. aureus in the context of other secreted protein/peptides, rather than a 

synthetic version of the peptide. Utilizing the inducible expression vector pRMC2(83), 

strains of WT S. aureus carrying either an empty vector or a SAM1-containing plasmid 

were generated. We found that inducing SAM1 expression resulted in significantly more 

LDH release from human keratinocytes than the empty vector or media treated controls 

(Figure 3C). Subsequently, we generated an isogenic deletion strain for SAM1 to 

determine whether loss of this factor would reduce S. aureus virulence. We challenged 

this strain in an in vitro skin infection model and found that it had reduced fitness relative 

to the WT strain (Figure 3D). This reduction in bacterial CFUs could be rescued using 

the inducible vector constructed above, supporting SAM1’s role in this process (Figure 

3D). The above results indicate that the data generated from the synthetic microprotein 

were not simply features of the purified molecule and that SAM1 may function during 

infection.  

Next, we aimed to assess the impact of the SAMs in vivo. Therefore, we performed 

murine skin infection experiments using a isogenic deletion strains that were 

supplemented with microproteins as previously described(69). WT S. aureus and PSMa3 

isogenic deletion strains were used as controls. We found that deletion of SAM1 resulted 

in significantly smaller lesion sizes compare to WT controls, similar to the effects 

observed upon deletion of PSMa3. As expected, supplementation of each deletion strain 

with its corresponding microprotein were able to rescue the lesion size defect. Overall, 

these results demonstrate a significant contribution of SAM1 to S. aureus pathology in 

vitro and in vivo.  
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SAM2 Interacts with and Disrupts Keratin Networks in vitro 

Given that we could not assign a function to SAM2 using standard assays, 

quantitative proteomic techniques were employed to gain insight into potential 

mechanisms of action. First, we characterized the host protein interactome of SAM2 using 

a biotinylated microprotein as bait (Table S3). We found that SAM2 interacted highly with 

keratin intermediate filaments as well as related desmosome proteins (Figure 4A). As 

controls, we assessed the interactions of host proteins with PSMa3 and SAM1 and noted 

that host interactome of each microprotein is highly specific (Table S3, Figure S4A). It 

was observed that PSMa3 interacts significantly with proteasome and Rab proteins 

(Figure S4B), while SAM1 primarily interacts with prohibitin (PHB) proteins and 

karyopherins (Figures S4C, G-H). In parallel, we assayed the temporal protein dynamics 

of keratinocytes treated with SAM2 for a 2, 4 and 8 hours (Table S4). Supporting our 

interactome results, it was found that SAM2 significantly perturbs keratin protein 

expression (Figure 4B). Again, we also performed these experiments using PSMa3 and 

SAM1 and determined that each microprotein differentially altered the host proteome 

(Table S4, Figure S4D) in ways that validate the interaction data (Figures S4E-F). Taken 

together, these unbiased analyses corroborate each other and suggest a specific 

mechanism of action for SAM2, disruption of the keratin network. Furthermore, these 

results highlight the differential effects of S. aureus microproteins on host cells and offer 

PSMa3 and SAM1 interaction candidates for subsequent biological validation. 
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Figure 2-4 SAM2 Disrupts Keratin Networks and Enhances S. aureus Penetration into 
Underlying Tissue from Skin Lesion. 
 
(A) Volcano plot of potential host interactors of SAM2 depicting the log2(fold-change) for 
each protein on the x axis and the −log10(p-value) for each protein on the y axis. 
Comparisons were performed for SAM2 vs. SAM1, PSMa3 and a beads-only bait 
(Control). A Student’s t-test was used to calculate p-values and Welch’s correction was 
used for comparisons with unequal variance. Keratin (light green) and desmosome 
proteins (dark green) are highlighted. (B) Relative abundance of keratin proteins during 
the treatment of HaCaT cells with SAM2. (C) Confocal microscopy of HaCaT cells treated 
with DMSO, SAM2 and EGTA. (D) Relative keratin area per cell of HaCaT cells treated 
with DMSO or SAM2 compared using a Student’s t-test. (E) Relative extracellular CFUs 
recovered from in vitro intracellular infections of HaCaT cells infected with WT, Δsam1, 
and Δsam1/2 S. aureus and Δsam1/2 S. aureus infections treated with EGTA. Results 
are expressed as the mean +/- the standard error of the mean of at least 5 independent 
replicates and compared using a two-way ANOVA with Tukey’s multiple comparison test. 
(F-K) Mice were infected intradermally with WT or Δagr S. aureus supplemented with 
DMSO or SAM2. A PBS mock infection was used as a control. (F) Body weight of mice 
during the WT infection time course. Results are expressed as the mean +/- the standard 
deviation of 5 independent replicates and compared using a two-way ANOVA with 
Tukey’s multiple comparison test. (G) Average body weight for mice on each day of the 
WT infection time course compared using a paired t-test. (H) Percent of bacterial CFUs 
that penetrated the underlying tissue compared using a Mann-Whitney test. 
Representative photographs of underlying tissue from infections supplemented with (I) 
DMSO or (J) SAM2. (K) Relative inflammation of underlying tissue compared using a two-
way ANOVA with Tukey’s multiple comparison test. Unless otherwise noted, results are 
expressed as the median +/- the IQR (box) and max/min values (whiskers) of at least 4 
independent replicates (****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns - not 
significant).  
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To validate the mechanism of SAM2, we interrogated any visible effects that SAM2 

had on the host keratin network. Using a pan-keratin fluorescent antibody, we observed 

that treatment with SAM2 induced perturbations of the keratin network compared to a 

vehicle treated control (Figure 4C). This resulted in a significant decrease in the average 

keratin area per cell (Figure 4D). The observed disruption is similar to an effect observed 

from EGTA treatment (Figure 4C), a known keratin perturbing agent(84, 85). These 

microscopy results substantiate our proteomics findings and further support the 

mechanism of SAM2. 

SAM2 Contributes to S. aureus Escape from Host Keratinocytes in vitro and 

Dissemination from Skin Lesions in vivo 

As mentioned above, keratinocytes play a major barrier role in defending against 

invading pathogens. We hypothesized that the disruption of host keratin by SAM2 could 

facilitate S. aureus penetration through this barrier. Therefore, we tested whether or not 

SAM2 contributes to S. aureus invasion into, or escape from, keratinocytes using an 

intracellular infection assay. Using an isogenic deletion strain of SAM2, we observed that 

there was no difference in keratinocyte invasion, but strains lacking SAM2 could not 

escape host cells as readily (Figure 4E). This defect in exiting host cells came along with 

a slight, albeit not statistically significant, reduction in host cell cytotoxicity, suggesting it 

is a rather subtle process. As the single Δsam1 mutant was able to escape to the same 

extent as the WT strain, we believe this process mediated through the interaction of SAM2 

with the keratin-desmosome network. To interrogate this hypothesis further, we 

intentionally disrupted the keratin network via EGTA treatment (Figure 4E) and found that 
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it rescued the escape defect, providing additional evidence that the keratin network 

contributes to containment of S. aureus intracellularly. 

The in vitro infection results above, paired with our initial in vivo microprotein 

supplementation experiments using SAM2 (Figure S3), demonstrate that this 

microprotein may contribute to bacterial penetration through the epidermal layer into the 

underlying tissue. To test this hypothesis directly, we repeated the microprotein 

supplementation experiment with SAM2 and assessed mouse weight during the course 

of infection. Both a WT and Δagr strain were used in these experiments. At the end of the 

time course, both the lesions, as well as the underlying tissue, were imaged and 

processed for CFU enumeration. We found that S. aureus supplemented with SAM2 

induced a more significant reduction in body weight than their vehicle control counter 

parts (Figure 4F). For nearly every day of the time course, the weight of the SAM2 

supplemented mice was noticeably less than the control mice (Figure 4G). Quantifying 

CFUs in both the lesion and the underlying tissue revealed that, when S. aureus is 

supplemented with SAM2, bacterial cells can penetrate into the mouse tissues more 

effectively (Figure 4H), likely resulting in the observed exacerbation of weight loss. To 

support this hypothesis, we photographed the underlying tissue from these experiments 

(Figures 4I and J) and observed an increase in damage and inflammation (Figure 4K). 

Overall, these results lend further support to SAM2 acting upon keratin networks and 

demonstrate that the increased production of this peptide at the lesion can enhance the 

pathogenicity of S. aureus.  
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Discussion 

Our results highlight the potential of applying peptidogenomics to discover new 

bioactive molecules in a prevalent, highly-studied pathogen, S. aureus. The majority of 

peptides identified in this study originated from known, secreted virulence factors, such 

as PSMs(40), hemolysins and variant forms of agrD(69). Many of the endogenous 

peptides that were detected are derived from larger protein ORFs that possess the 

SPaseI “AxA” cleavage motif(70). It is unclear why these putative signal peptide 

fragments were consistently identified when the remainder of the signal sequences were 

not detected. High concentrations of signal peptides are known to impair proper protein 

secretion in Escherichia coli(86). If signal peptides are no longer needed following 

cleavage or are actively removed to ensure proper protein secretion, why do these 

peptides remain readily detectable? While it is possible that post-translational 

modifications may have made it difficult to match spectra to the N-terminus of the signal 

peptides, we cannot rule out the possibility that these C-terminal signal peptide fragments 

retain bioactivity and are stably expressed for a purpose. As we have determined that the 

a-hemolysin signal peptide derivative has antimicrobial effects, this dataset offers 

additional peptides to follow up with biological assays. Further studies are needed to fully 

assess the function of these molecules in the context of S. aureus pathology. 

In addition to peptides that mapped to predicted ORFs, the discovery of two novel, 

conserved microproteins, SAM1 and SAM2, originating from previously unannotated 

smORFs is reported. These factors were only identified when using a six-frame translated 

genome database to match mass spectra. We believe this approach results in a more 

comprehensive survey of complex systems when compared to only using a predicted-
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ORF database and will yield intriguing results when applied to other pathogens. Of note, 

these two new microproteins highly resemble the a-type PSMs in their primary sequence, 

predicted secondary structures and regulation by agr.  

Stemming from this data, we investigated whether the SAMs possess bioactivity 

against human cells. While we could not assign a function to SAM2 with our initial assays, 

it was observed that SAM1 stimulated neutrophil migration and lysed human 

keratinocytes. We further found that the SAM1 induction of neutrophil migration functions 

through an FPR2-dependent mechanism, similar to the previously reported S. aureus 

microproteins(78). This data demonstrates redundant mechanisms for neutrophil 

recruitment by a variety of microproteins produced by S. aureus. Given that the same 

receptor recognizes all of these bacterial factors, this mechanism may be exploited in the 

development of targeted therapeutics. Additionally, we found that SAM1 readily caused 

lysis of human keratinocytes, in both a synthetic form and when overexpressed in culture, 

and that this activity could be inhibited by serum. These data argue that SAM1 functions 

in areas where there is no serum, such as on the skin or within human cells. Furthermore, 

the increased expression of SAM1 during in vitro infections could rescue an observed 

Δsam1 deficiency in propagation, indicating it is important for S. aureus pathogenesis. 

We validated these results in animal studies where supplementing skin infections with 

SAM1 resulted in the exacerbation of S. aureus virulence phenotypes. These results 

constitute the current knowledge pertaining to SAM1 bioactivity and suggests that this 

microprotein can effectively enhance S. aureus pathology. 

As we could not define any SAM2 bioactivity through standard in vitro experiments, 

we employed a quantitative proteomics approach to investigate its mechanism(s) of 
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action. We found that SAM2 could interact with and perturb the keratin networks in vitro, 

which appears to facilitate the escape of S. aureus from human keratinocytes. We 

followed up these studies by demonstrating that the supplementation of SAM2 in skin 

infections in vivo resulted in increased bacterial penetration into the underlying tissue and 

an exacerbation of disease burden. Together, these studies suggest that SAM2 can 

disrupt keratin networks in the skin, enabling dissemination of the bacteria from the lesion. 

To our knowledge, this is the first S. aureus virulence factor reported to function in this 

manner. It has not escaped our notice that this mechanism may play a role in the transition 

of S. aureus from a commensal microbe, asymptomatically carried by up to 30% of the 

population, into an invasive pathogen. Thus, the further interrogation of this process can 

lead to the development of therapeutics to prevent S. aureus dissemination from its 

residence on the skin, or from superficial lesions, into the organism, effectively impeding 

this crucial step in pathogenesis. 

Distinct and diverse functions appear to be a hallmark of the PSM-family as 

different members and variants have been linked to cytotoxicity(40, 87), immune 

stimulation(40, 87), antimicrobial effects(73, 74), and biofilm formation(54). This dogma 

is further supported by the distinct bioactivity and mechanisms found for the SAMs. Thus, 

our study paves the way for additional experimentation to fully assess the importance of 

the SAMs during infection and to further delineate mechanisms of action. Additional 

questions into the basic biology regarding these microproteins, as well as their clinical 

relevance, can be raised. For example, what are the production levels of these 

microproteins across different S. aureus strains? Are they solely dependent on agr or are 

there other factors influencing their expression? Is their secretion dependent on the same 
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machinery as the PSMs(88)? In the realm of clinical importance, what other virulence 

phenotypes do these microproteins manifest? Can we block the activity or secretion of 

these peptides as an anti-virulence therapeutic strategy? Are the interactions of PSMa3 

and SAM1 with their respective host proteins clinically relevant? Further studies into these 

microproteins should be performed to address these questions, among others. In 

conclusion, our investigations into the S. aureus peptidome is highlighted by the intriguing 

bioactivity of two novel S. aureus microproteins, SAM1 and SAM2. The additional 

characterization of these molecules, as sole entities and in conjunction with other 

virulence factors, can contribute to a better understanding of S. aureus pathogenesis and 

lead to the development of new therapeutics. 

 

Chapter 2, in part, is a reprint of material submitted to Cell Reports, 2020 

(manuscript in revision), Jacob M. Wozniak, Julieta Aguilar., Dominic McGrosso, Igor H. 

Wierzbicki, Eri Nakatani-Webster, Michael R. Dores, Katrin Schilcher, Anvesh Macherla, 

Diana Dehaini, Xiaoli Wei, Ronnie H. Fang, JoAnn Trejo, Brian J. Werth, Abhinav Nath, 

Ross Corriden, Liangfang Zhang, Alexander R. Horswill, and David J. Gonzalez. The 

dissertation author was the primary author of this paper.  
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Introduction 

As mentioned above, a key advantage of MS-based proteomics is the ability to 

detect protein post-translational modifications (PTMs) and localize them to specific amino 

acid residues. These approaches have led to many significant findings in a wide range of 

biological disciplines, from developmental biology to cancer and infectious diseases. 

However, PTMs in proteomic data are often ignored in standard search algorithms and 

there is a current lack of tools available to connect raw PTM site information to biologically 

meaningful results in a high-throughput manner. Furthermore, many of the available tools 

require significant programming knowledge to implement.  

Here, we describe the R package PTMphinder, which enables a more complete 

analyses of PTM-containing proteomic data. To demonstrate functionality of this tool, we 

apply it to an in vivo infection model, hearts isolated from mice with chronic Chagas 

disease. We utilize PTMphinder to localize phospho-sites within their respective full-

length proteins and extract flanking amino acid sequences. These extracted sequences 

are readily input into additional computational tools to identify enriched motifs, predict 

causal kinases and suggest potential therapeutics.  

Chagas disease is the manifestation of an infection by the protozoan parasite 

Trypanosoma cruzi. First described in 1909 by a Brazilian physician, Carlos Chagas(89), 

this disease is a significant health concern, particularly in areas with low socio-economic 

status. Facilitated by human population flow, Chagas disease has spread out of endemic 

areas into more developed countries, with more than 100,000 cases in Europe(90) and 

200,000 - 300,000 in the United States(91, 92) reported. Infected insect vectors and 

congenital transmission are the most common means of disease spread, accounting for 
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up to ~96% of recorded cases (70% insect vectors, 26% congenital); blood transfusion, 

organ transplantation and consumption of contaminated foods also contribute to T. cruzi 

dissemination(93). Historically overlooked, Chagas disease is classified as a neglected 

tropical disease by the world health organization(94) and is estimated to result in a global 

economic burden of > $7 billion (USD) per year(95). Thus, Chagas disease is a major 

human health concern that causes significant morbidity and mortality worldwide. 

The progression of Chagas disease can be classified into two phases, the acute 

phase and the chronic phase(96, 97). The acute phase is asymptomatic in most cases, 

lasts approximately 1 - 2 months and usually resolves spontaneously(96). However, if left 

untreated, patients can remain chronically infected, resulting in critical health concerns 

later in life(96). These delayed adverse effects occur in approximately 30% of the infected 

individuals and include cardiac and visceral involvement, with cardiomyopathies being 

the most severe and frequent manifestation(96, 97). Interstitial fibrosis of the heart is 

thought to be a major determinant factor for the pathogenesis of Chagas disease(93). In 

fact, even after successfully lowering parasite loads with the current standard of therapy 

(ie. benznidazole), patients with advanced cardiomyopathies remained under high 

disease burden(97). The reason for this is currently unclear, but suggestions have ranged 

from auto-immune responses(98, 99) to dormant, low-proliferating forms of T. cruzi that 

are resistant to anti-trypanosomals(100). Regardless, directing therapies against fibrotic 

phenotypes of heart, in combination with trypanocidal agents, have great potential to 

effectively treat this disease.  

Chronic Chagas disease in the heart is driven by an intense inflammatory response 

and excessive immune infiltration(93, 101). Cytokines and chemokines, secreted by both 
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cardiomyocytes(102) and invading immune cells(103), stimulate a wound-healing 

response (eg. extracellular matrix (ECM) deposition) from fibroblasts to repair the 

damaged tissue(93). Specifically, transforming growth factor β (TGF-β)(104), tumor 

necrosis factor-α (TNF-α)(102), and interferon gamma (IFN-γ)(103) are central to the 

immune response and pathology of Chagas disease. These effectors induce a myriad of 

downstream signaling cascades, resulting in diverse functional outcomes from 

apoptosis(105) to accumulation of ECM(104, 106). The potential intracellular signaling 

pathways include c-Jun N-terminal kinase (JNK)(107) and p38(108). Recent reports from 

in vitro models of T. cruzi-host cell interaction demonstrated that cardiac fibroblasts 

display an increase in phosphorylation of p38 and c-Jun after infection(109). 

Transcriptomic analysis showed that T. cruzi infection upregulates the JUNB gene and 

results in translocation of JunB to nuclei of primary human cardiomyocytes(107). In line 

with this hypothesis, treatment of mice with genistein(110), a tyrosine kinase inhibitor, 

lowered TAK1 and JNK activity and decreased cardiac fibrosis in a hypertension 

model(111), suggesting this pathway is associated with cardiac remodeling. Further, 

SP600125(112), a canonical JNK inhibitor, is well tolerated by mice and provides 

protective effects for hearts in damaging conditions(113). Despite these developments, 

Chagas disease progression results in alterations of other signaling pathways(108, 114) 

that should not be overlooked as therapeutic targets. (23). A phospho-proteomic 

approach applied to Chagas disease models in the heart has not been attempted to our 

knowledge and thus has the potential to deepen the understanding of global signaling 

pathways affected by chronic T. cruzi infections. 



 52 

In this study, we apply a phospho-proteomic workflow to interrogate chronic 

Chagas disease progression. This investigation constitutes a foundational examination of 

the global phospho-signaling response to T. cruzi in the primary affected organ, the heart. 

Our analyses uncover both known and previously uncharacterized alterations in total 

protein abundance and phosphorylation status. As expected, we captured the classical 

induction of IFN-mediated signaling pathways(103) and repression of mitochondrial 

function(115, 116). Of significance, our unbiased approach identified new players that 

may have a role in disease progression including Immunity Related GTPase M (IRGM) 1 

and 2 and the immune-associated, guanylate binding proteins (GBPs). In addition to total 

protein abundance changes, we uncovered a vast signaling network of plasma membrane 

and intermediate filament proteins with perturbed phosphorylation status following 

infection. These include new targets such as Striated Muscle Enriched Protein Kinase 

(SPEG), Tensin 1, BCL2 Associated Athanogene 3 (BAG3), Sorbin and SH3 domain-

containing protein (SORBS) 1/2 and myosin-family proteins in addition to the previously 

described p38 axis. Further, we applied bioinformatics to predict active kinases, 

supporting the involvement of JNK and identification of new activated (DYRK2 and 

AMPKA2) and repressed (casein kinase family) kinases in the host response to T. cruzi 

infection. Finally, through the creation of a druggable disease network, we propose a 

number of FDA approved drugs that may be repurposed for the treatment of Chagasic 

cardiomyopathy. Overall, this study reveals new signaling pathways modulated during 

chronic Chagas disease that expand the understanding of molecular mechanisms of 

pathogenesis and inform rational drug design. 
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Methods 

PTMphinder 

Data Sources. The example Human proteome used in this study was downloaded 

from Uniprot on 12/12/18 (https://www.uniprot.org/proteomes/UP000005640). The 

example shotgun proteomics data used in this study was published previously(23). The 

rmotix package(30) was downloaded from GitHub 

(https://github.com/omarwagih/rmotifx). 

PTM Localization Methodology. All software was written in the R programming 

language. The algorithm for PTM localization and motif extraction receives the 

experimentally determined peptide sequence, total number of modifications, and 

potential PTM locations and scores as input. The program then extracts the represented 

proteins from a parsed proteome database, scans the full protein sequences for the 

detected peptides, and outputs the location in the full protein along with the flanking 

sequences. The extracted data is formatted into a new data table that can be exported 

or analyzed further within the R framework.  

PTM Localization Validation. For initial validation of the package, a pseudo-dataset 

(Supplemental Table 1) was created using Microsoft Excel to match the format of the 

phindPTMs function input. Second, a previously published phospho-proteomic dataset 

was used to validate the use of the package on real-world data. The second dataset 

contained PTM information in the form of ptmRS output, which has to be modified prior 

to input into phindPTMs. The data was reformatted to match the phindPTMs function input 

using the text-to-column and find/replace functions in Microsoft Excel. This reformatted 
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input table is provided as an example file with the PTMphinder package 

(phindPTMs_Input_Example.csv). 

Assessment of Time of Motif Extraction. The time of motif extraction was measured 

for manual extraction and using PTMphinder with a previously published data set(23). 

First, the time of extraction per peptide was measured when manually extracting flanking 

sequences for five randomly selected peptides using standard spreadsheet and text 

editor software. Next, the time of extraction per peptide was measured when using 

PTMphinder within R. The starting point for each method was the same input file 

(phindPTMs_Input_Example.csv) and protein database 

(Human_Uniprot_Parsed_Example.txt). 

Code Availability. An open source version of PTMphinder is freely available for 

download from GitHub (https://github.com/jmwozniak/PTMphinder). 

 

Chronic Chagas Disease Model and Assessment 

Animals. Six week old female C57Bl/6 mice, weighing 16 - 18 g were used for the 

animal experiments. Mice were housed and kept in a conventional room at 20 to 24 °C 

under a 12 hour (hr)/12 hr light/dark cycle. The animals were provided with sterilized water 

and chow ad libitum. All procedures involving animals were approved by the Institutional 

Animal Care and Use Committee at UCSD (Protocol #14187 - Jair L. Siqueira Neto). 

Chagas Disease Infection Model. T. cruzi Sylvio X10/4 was maintained in C2C12 

myoblasts culture. After 5-7 days of passage of cells and parasites, trypomastigotes 

released in the supernatant were collected after centrifugation for 15 minutes (min) at 

3300 rpm, re-suspended in Dulbecco’s Modified Eagle Medium (DMEM), and used to 
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infect mice by intraperitoneal injection with 1x106 trypomastigote form of T. cruzi/mouse. 

The infected groups were age and sex matched with uninfected controls and kept under 

the same conditions. The general health of the mice was evaluated weekly for one year. 

At 1-year post infection, the development of heart disease was monitored by 

electrocardiography at Seaweed Canyon Cardiovascular Physiology Laboratory, Institute 

for Molecular Medicine, UCSD. After ECG analysis of the mice, heart tissue was collected 

for further analysis. 

Surface ECG. Adult mice were anesthetized with isoflurane (5% induction, 1-1.5% 

maintenance in 100% oxygen) and placed on a warming pad (35 °C – 37 °C). Needle 

electrodes made of 27-gauge needles were inserted subcutaneously into each of the four 

limbs and the chest area. Simultaneous standard ECG leads I, II, and chest leads were 

recorded at a frequency response of 0.05–500 Hz. The signal was digitized and recorded 

at 2,000 Hz on LabChart (ADinstruments). 

Histology. Upon euthanasia, the hearts were collected from the mice and cut in 

half in the sagittal orientation, placed in cryomolds, embedded in Tissue-Tek (O.C.T., 

Sakura Finetek) and snap frozen in liquid nitrogen. Samples were sectioned in a cryostat, 

fixed in buffered formalin and stained with hematoxylin and eosin or Sirius Red/Fast 

Green to stain collagen fibers. The slides were scanned using Nanozoomer Slide Scanner 

(Hamamatsu Photonics, NJ, USA) and images were obtained through NDP viewer 

software (Hamamatsu Photonics, NJ, USA).  

Histopathology analysis. Levels of inflammation and fibrosis were quantified as 

previously described(117). Briefly, 5 random images of mouse hearts (10X magnification) 

were obtained from each animal, comprising most of the heart section area. Lymphocyte 
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nuclei was segmented through the Particle Analyzer Image processing plugin from FIJI 

software(118), and lymphocyte nuclei were counted. To measure fibrosis, the red staining 

of collagen fibers was segmented through color thresholding, and the area fraction of 

collagen was measured in the generated binary image after segmenting.  

 

Proteomic LC-MS2/MS3 Analysis 

Proteomics analyses were conducted as described above with the following alterations.  

Tissue Lysis. Heart tissue was homogenized in a buffer consisting of 3% SDS, 75 

mM NaCl, 1 mM β-glycerophosphate, 1 mM NaF, 1 mM Na3VO4, 10 mM Na4P2O7, 1 mM 

phenylmethanesulfonyl fluoride and 1X Roche cOmplete mini EDTA free protease 

inhibitor in 50 mM HEPES, pH 8.5. Homogenization was conducted using a bead beater 

3X for 1 min each time with a 1 min rest in between each session. Homogenates were 

sonicated for 5 min in a water bath sonicator to ensure complete lysis. Lysate 

supernatants were transferred to a new tube and any remaining cellular debris was 

pelleted via centrifugation (5 min, 16,000 x g, 4 °C). The resulting, clarified supernatant 

was processed for downstream analysis.  

Enrichment of Phospho-peptides. Phospho-peptides were enriched by TiO2 beads 

as previously described(119). Briefly, the following buffers were made. Binding buffer: 2 

M lactic acid, 50% acetonitrile; wash buffer: 50% acetonitrile/0.1% trifluoracetic acid; 

elution buffer: 50 mM KH2PO4, pH 10. TiO2 beads were washed (once with binding buffer, 

once with elution buffer and twice with binding buffer). Peptides were resuspended in 

binding buffer, mixed with beads at a ratio of 1:4 (peptides to beads) and vortexed at RT 

for 1 hr. Beads were then washed three times with binding buffer, followed by three times 
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with wash buffer. Phospho-peptides were eluted from the beads with elution buffer (two 

5 min incubation while vortexing). Enriched peptides were desalted with solid-phase 

extraction columns then lyophilized and stored at −80 °C until they were labeled for 

quantitation. 

Data Processing and Analysis. Variable phosphorylation of serine, threonine and 

tyrosine residues were also included in the search parameters. Phospho-peptides were 

normalized the same with the following changes. First, phospho-peptides were summed 

to the unique peptide level rather than protein level. Second, phospho-peptide abundance 

was normalized to their respective total protein abundance from the standard proteomic 

experiments. Pi score(120) was used as a final measure of significance. Gene 

ontology(121, 122) and functional protein association networks(123) were used to identify 

enriched groups of related proteins. PTMphinder(124) was used to extract protein 

locations and flanking motifs and motif-x(30, 31) was used to identify enriched motifs. 

GPS(125) was used to predict active kinases and their corresponding sites on target 

proteins.  

 

Results 

PTMphinder 

Format a Uniprot Database. The parseDB function reformats a proteome database 

for subsequent input into the phindPTMs and extractBackground functions (Fig 3-1). This 

function extracts the protein ID and full protein sequence from the provided database and 

creates a data table with those two columns, respectively. The resultant data table can 

be further analyzed with R using various functions or written to a file and opened in a text 
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or spreadsheet editor. This function is capable of handling two of the most common 

proteome databases used, Uniprot and RefSeq, as well as homemade databases 

provided the protein ID is the only value in “.fasta” description lines. Users can specify 

their database sources using the database source option (“db_source”). We recommend 

that users remove any redundant, reverse or contaminant sequences from the database 

prior to parsing. However, for convenience, we have included an option to remove any 

entries that start with “reverse” or “contaminant” if the filter option (“filt”) is set to TRUE. 

We have provided both an unformatted and parsed Human Uniprot database as 

examples. 

Localize PTM sites and Extract Motifs. Many proteomic workflows export PTM data 

that is difficult to manipulate and format properly for subsequent analysis. The phindPTMs 

function reads in experimentally acquired proteomic data, as well as a parsed reference 

database, to localize the detected PTMs in their respective proteins and extract relevant 

motifs. Users should re-format the proteome database used to search the mass 

spectrometry data with the above parseDB function prior to running phindPTMs. The 

experimentally acquired proteomic data must have the following six columns: Identifier, 

Protein_ID, Peptide_Seq, Total_Sites, PTM_Loc, and PTM_Score. Column headers 

need to be spelled exactly as above for proper import of data. For peptides with multiple 

modifications, the PTM_Locs and PTM_Scores should be separated by a semi-colon (“;”). 

phindPTMs returns a data table with the following eight columns: Identifier, Protein_ID, 

Pep_Loc, Prot_Loc, Score, Flank_Seq, Ambiguity, Prot_Seq. The location of the PTMs 

in the full protein (Prot_Loc) can be further analyzed in the context of previous knowledge 

regarding that site using tools specific to the PTM of interest, such as 
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PhosphoSitePlus(126) or KinaseNet (http://www.kinasenet.ca/) in the case of 

phosphorylation events. The flanking sequences of each modified site (Flank_Seq) can 

be used as input into the a motif-finding tool (such as motif-x, see below) for subsequent 

motif enrichment analysis.  

Validation of the phindPTMs Function. To validate the results of the phindPTMs 

function, two approaches were undertaken. First, a hypothetical pseudo-dataset was 

generated, which contained a variety of PTMs and scores that resemble the output from 

common proteomics software. This data set was input into phindPTMs function and the 

results were manually verified. We found that phindPTMs correctly localized and 

extracted the flanking sequences of 100% of the modified sites contained within the 

pseudo-dataset. Next, a real-world, phospho-proteomic data set was analyzed using the 

phindPTMs function. Again, manual validation found that the software correctly localized 

and extracted the flanking sequences of 100% of the modified sites. These results 

demonstrate that users can confidently trust the output of the package using data 

containing various PTMs and from real-world experiments. 

Extract Proteome-specific Background Motifs. In order to properly perform motif 

enrichment analyses, a set of background motifs needs to be provided for statistical 

reasons. The motifs around every occurrence of a particular amino acid are commonly 

used as background for this purpose. However, many motif tools have limited proteome 

backgrounds to choose from(29, 31) or simply use 10,000 random sites(30). Using 

another species background or a small background set may result in abberent enrichment 

results. By using the extractBackground function contained in this package, users can 

generate their own background datasets from any proteome database. Furthermore, this 
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function gives the user the flexibility to specify the width and central character of the 

background motifs. This tool simply reads in a parsed proteome database (from the 

parseDB function above), the central character and the width of the desired motifs. The 

output can be directly input into a motif enrichment tool, such as motif-x, as a list of 

background sequences (see below).   

Integration with Existing Tools. As with any new software, intergration with existing 

tools drastically increases its applicability to a variety of problems and accessibility to 

different users. Therefore, we designed the output of our tool to interface directly with 

existing tools for motif enrichment analysis, such as motif-x. With minimal reformatting, a 

user can simply use the output from the phindPTMs and extractBackground functions as 

input into motif-x (Figure 1). Fully-documented code to implement this workflow with the 

example files is provided as an “.R” script. This example uses real-world phospho-

proteomic data previously published from our lab(23). Through implementing this 

package, a user can replicate the results reported in the previous publication in a simpler, 

more high-throughput manner.  

Comparison with Existing Tools. While there is no open-source tool to our 

knowledge that performs the functions of PTMphinder, we compared the efficiency of 

PTMphinder to the manual extraction of motifs. We found that using PTMphinder resulted 

in a decrease in motif extraction time of over two orders of magnitude compared to 

manually extracting the sequences. Additionally, PTMphinder provides the location of the 

modified site in the full-length protein and reduces the potential of human error, effectively 

enhancing research reproducibility. 
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Figure 3-1 Workflow of PTMphinder R Package 
 
Blue boxes indicate PTMphinder functions while grey bocks indicate functions outside of 
PTMphinder. Pipeline simply requires 1) the user’s proteomic dataset, 2) a proteome 
database and 3) additional, minor user-defined parameters. 
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Phospho-proteomics Applied to a Chagas Disease Model 

Mouse Model of Chagas Disease. To ensure that our infection model properly 

reflects Chagas disease symptoms, we performed electrocardiography and histological 

analyses of the infected hearts (Figure 1A). We found that mice infected with T. cruzi 

presented heart arrhythmias (Fig 1B-C), a lower heart rate (Fig 1D) and AV block (Fig 

1C, E), which mimics human Chagasic hearts(127) and are in accordance with previous 

mouse models of chronic T. cruzi infection using different strains of the parasite(128). The 

extended QT interval observed in previous mouse infections(128) was also captured in 

our model (Fig 1F). These phenomena usually occur in parallel with interstitial fibrosis 

and inflammation(93). Therefore, we performed histological analyses and confirmed that 

these mice displayed intense cardiac inflammation (Fig 1G), quantified by % area of cell 

nuclei (Fig 1I), and increased collagen deposition (red staining, Fig 1H) in the heart 

tissue. In agreement with human clinical symptoms(129), quantification of the fibrotic area 

demonstrated a 3-fold increase in the area occupied by collagen in cardiac sections from 

T. cruzi infected animals (Fig 1J). Together, this data validates the establishment of an 

in vivo model of chronic Chagas disease cardiomyopathy that shows clinical symptoms 

of heart disease similar to those observed in human patients, providing a strong 

foundation for subsequent analyses. 
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Figure 3-2 Chronic Chagas Cardiomyopathy Model 
 
(A) Schematic of model infection and analyses. (B) Representative one-second ECG 
trace from uninfected mouse. (C) Representative one-second ECG trace from infected 
mouse. (D) Average heart rates from uninfected and infected animals during ECG 
analysis. (E) Average PR intervals from uninfected and infected animals during ECG 
analysis. (F) Average QT intervals from uninfected and infected animals during ECG 
analysis. (G) Representative images of cell nuclei staining in hearts of uninfected and 
infected animals. Bar=100µm. (H) Representative images of collagen staining in hearts 
of uninfected and infected animals. Bar=100µm. (I) Quantitation of areas of cell nuclei. 
(J) Quantitation of areas of collagen staining. For all graphs, significance was determined 
using an unpaired Student’s t-test (*p < 0.05, **p < 0.01, ****p < 0.0001). 
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General Overview of Phospho-proteomic Results. The applied phospho-proteomic 

workflow (Fig 2A) identified and quantified 4,622 proteins (Table S1) and 6,807 unique 

phospho-peptides at a false discovery rate (FDR) of < 1%. Our analyses revealed a high 

overlap of phospho-peptides that were matched to total protein abundances (Fig S1A). 

Thus, we were able to normalize 4,526 phospho-peptides to their respective total protein 

levels (Table S2). Subsequent phospho-analyses were performed on the protein-

normalized, phospho-peptide dataset. We found that the biological replicates of both the 

proteomic and phospho-proteomic data had low inter-replicate variation (coefficient of 

variation (CV) < 15% for all replicates; Fig S1B) and high correlation (Fig S1C-D), 

endorsing the reproducibility of the Chagas disease model and proteomic methods. In 

line with previous TiO2-enriched phospho-proteomic studies (119, 130), we primarily 

detected serine phosphorylation (81%), followed by threonine (16%) and tyrosine (3%) 

residues (Fig 2B). The majority of the detected phospho-peptides had only one 

phosphorylation event (80%) but a notable fraction possessed 2 or more events (20%) 

(Fig 2C). Overall, we found significant changes (pi score < 0.05)(120) in 394 proteins 

(238 increased, 156 decreased) and 353 phospho-proteins (133 increased, 159 

decreased, 61 both) (Fig 2D, Fig S1E-F). There was low overlap between the proteins 

found to be significantly altered by total abundance and phosphorylation events, 

suggesting distinct pathway involvement (Fig 2E). The phospho-sites quantified in the 

experiments were primarily evenly distributed across the total protein length, with a slight 

bias for protein C-termini (Fig 2F). These broad analyses demonstrate high quality results 

and that chronic Chagas disease induces a vast rearrangement in host proteins and 

phospho-sites in the heart.  
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Figure 3-3 Overview of Dual Proteome/Phospho-proteome Analyses 
 
(A) Schematic of phospho-proteomic analysis workflow. (B) Distribution of phospho-sites 
detected in this experiment. (C) Multiplicity of phospho-peptides detected in this 
experiment. (D) Numbers of significantly altered (pi score < 0.05) proteins and phospho-
proteins. (E) Venn diagram of significantly altered proteins and phospho-proteins. (F) 
Relative protein locations of phospho-sites detected in this experiment. 
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Chronic Chagas Disease Induces an IFN-mediated Immune Response and 

Represses Mitochondrial Proteins. We focused our initial analysis on the total protein 

abundance changes following chronic Chagas disease. We found that total levels of 394 

proteins were significantly altered during infection (Fig 2D, Fig S1E). To gain a deeper 

understanding of the functional outcome of this proteome perturbation, significantly 

altered proteins were subject to functional protein association network and gene ontology 

(GO) analyses using String-DB(123) and DAVID(121, 122), respectively. We observed 

that the altered proteins formed a highly interconnected network consisting of two primary 

clusters of proteins with increasing and decreasing abundance (Fig 3A). Interestingly, 

proteins altered in the opposite directions were located within the primary clusters, 

suggesting that an increase of abundance of one protein may be related to the decreased 

abundance of another. GO analysis revealed proteins with increased abundance were 

primarily secreted glycoproteins involved in generating an effective immune response 

against protozoan invaders (Fig 3B; Table S3). These changes appeared to be primarily 

driven by IFN-mediated signaling pathways, supporting previous studies(103). Lysosomal 

proteins and antigen processing pathways were also increased (Fig 3B), again consistent 

with an IFN-driven immune response(131, 132). In contrast, proteins with decreased 

abundances were primarily derived from the mitochondria (Fig 3C). Specifically, 

transmembrane proteins associated with electron transport and redox reactions were the 

most enriched among the decreased proteins. Peroxisomal proteins and lipid metabolic 

processes were also significantly reduced in the infected mice (Fig 3C). While it should 

be noted that GO analysis are not experimental and need to be validated further, the total 
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protein level alterations during Chagas disease suggest a strong immune response and 

suppression of general host metabolism. 

To validate the proteomic studies, we cross-examined our data against the current 

knowledge regarding the impact of T. cruzi infections on host cells (Fig S2A-B). It has 

been reported that chronic Chagas disease is associated with increased chemokine (eg. 

CCL2(133) and CCL5(134)) and adhesion molecule (eg. ICAM1 and VCAM1)(135) 

expression in the heart leading to an infiltration of pro-inflammatory immune cells. In the 

experiments herein, we found a significant increase in both VCAM1 and ICAM1 (Fig S2A) 

but the chemokines CCL2 or CCL5 were not identified. However, we did identify CCL8, 

which had an ~6-fold increase in expression (Fig 3D). T. cruzi infections have also been 

associated with increased STAT1(136), caspase(137) and MHC class I(138) expression, 

all of which were detected in our data (Fig S2A). These results suggest highly 

inflammatory conditions and excessive immune cell influx. To strengthen this notion, the 

data was mined for proteins that are primarily expressed in immune cells and should be 

absent in normal heart tissue to use as markers for immune invasion. We found an 

increase in expression of a number of immune-cell enriched markers such as: Klra2 

(killer-cells), LSP1 and Fas (lymphocytes), TGTP1 (T-cells), MHC class II (antigen 

presenting cells) (Fig S2B) in our heart samples, suggesting a notable association of 

these cells with the heart tissue.  

To put our study in the context of the current understanding of T. cruzi infections 

and heart disease, we performed an in-depth comparison with previous -omic studies. 

First, a recent genome-wide association study (GWAS) identified numerous single-

nucleotide polymorphisms (SNPs) with significant relationships to Chagas 
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cardiomyopathy in humans(139). Comparing our list of significant proteins to the GWAS 

findings, we identified a number of proteins (Fig S2C) that were detected in the distinct 

experiments. We found proteins with both increased expression (SMAP2, RBP1, 

COL14A1 and TGM2) and decreased expression (THBD and GNG7) to have SNPs 

associated with Chagas-induced cardiomyopathy. The concurrent associations of SNP 

variation and expression level of these proteins with Chagas disease offers support for 

their distinct involvement in disease progression.  

A survey of the literature showed that no prior proteomic studies of Chagasic 

hearts had been reported. However, recent transcriptomic analyses have focused on 1) 

organ-level host responses to T. cruzi infection(140, 141) and 2) the effects of a 

genetically-induced cardiomyopathy(142). These host responses may provide a means 

to validate the current proteomic results and be a useful comparison to our dataset. We 

hypothesized that a similar modulation of gene expression may be present in various 

organs affected by T. cruzi as well as distinct cardiomyopathy models. Indeed, we 

observed a notable correlation of protein levels from our study with significantly altered 

transcripts in both Chagasic hearts (R = 0.630, p < 0.001; Fig S2E) and placentas (R = 

0.598, p < 0.001; Fig S2F). Further, we found that the correlation of gene expression 

between Chagasic hearts and genetically driven, dilated cardiomyopathy (R = 0.417, p < 

0.001; Fig S2G) and heart failure (R = 0.425, p < 0.001; Fig S2H) was also significant, 

albeit with lower correlation values. Strikingly, 80-90% of the significant genes identified 

in both studies were altered in the same direction (Fig S2E-H), suggesting there are 

similar mechanisms involved in these distinct models. As expected, this proportion was 

highest for proteins (this study) and transcripts from Chagasic hearts (>96% agreement; 
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Fig S2E). Together, the above analyses demonstrate the concordance of our results with 

previous studies, supporting the validity of our findings.  
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Figure 3-4 Total Proteome Perturbations Demonstrate Induction of Host Immune 
Response and Suppression of Mitochondrial Proteins 
 
(A) Functional protein association network of all significantly altered proteins detected in 
the standard proteomic workflow. (B) GO results of significantly increased proteins. (C) 
GO results of significantly decreased proteins. (Significance of enrichment is shown in 
parenthesis to the right of the bars). (D) Selected increased and decreased proteins 
detected in the standard proteomic workflow. Significance is noted in reference to the pi 
score cutoffs for respective significance thresholds (* - α < 0.05; ** - α < 0.01; *** - α < 
0.001; **** - α < 0.0001). (E) Western blot validation of IRGM1 expression (R1 – replicate 
1, R2 – replicate 2). (F) Differentially expressed GBPs detected in the standard proteomic 
workflow. (G) Differentially expressed NDUFs detected in the standard proteomic 
workflow. (H) Differentially expressed CoA-containing enzymes detected in the standard 
proteomic workflow. For differentially expressed families of proteins (F-H), a paired T-test 
was used (*** - α < 0.001; **** - α < 0.0001).  
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In addition to previously known associations to T. cruzi infections, our unbiased, 

systems-level assessment found a number of proteins that have not yet been interrogated 

in the context of Chagas disease. Interesting proteins were ranked by pi-score, a metric 

that combines both fold-change and p-value. For example, we found additional, immune-

related proteins increased in response to T. cruzi infection including: IRGM1/2, IIGP1, 

CCL8, C6, C9 (Fig 3D-E), among others. We also noted an increase in all of the 

guanylate-binding proteins (GBPs) detected in our analysis (Fig 3F).  On the other hand, 

we detected a decrease in abundance of proteins with no prior association to Chagas 

disease or immune responses. The most significantly altered among these include: 

PLPP7, A1BG, SYNGR3, CTCF and TRDN (Fig 3D). As mentioned above, our GO 

pathway analysis highlighted a decrease in mitochondrial proteins related to redox and 

electron transport (Fig 3C). Specifically, we noted a decrease in nearly all of the NADH 

dehydrogenases (NDUFs) (Fig 3G) and coenzyme A-containing proteins (Fig 3H) 

detected in our experiments. These findings are in-line with previous reports of decreased 

mitochondrial function(115) and identify the major protein families affected. These 

analyses demonstrate that chronic Chagas disease drives an IFN-mediated immune 

response and suppresses mitochondrial pathways in murine hearts. Our global proteomic 

data are substantiated by comparisons with previous studies and western blot validation. 

These results also highlight new proteins that may be involved in Chagas disease 

progression. 

The Phospho-proteome of Chagasic Hearts. While total protein abundances 

provide useful information, many cellular signaling pathways are mediated via 

phosphorylation, with minimal alterations in total abundance. Therefore, we employed a 
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phospho-proteomic approach to dissect signaling pathways affected by chronic Chagas 

disease. We found that phospho-sites on 353 phospho-proteins were significantly altered 

following infection. The majority (83%) of these phospho-proteins had only increased 

(159) or decreased (133) phosphorylation, but a subset had both increased and 

decreased phospho-sites (61) (Fig 2D). Creating a functional protein association 

network(123) (Fig 4A), we observed that proteins with opposite directions of 

phosphorylation abundance were highly interconnected, indicating that the increase of 

phosphorylation of one protein is associated with a decrease in phosphorylation of related 

proteins, and vice-versa. While the majority of phospho-proteins possessed only one 

significantly altered phospho-peptide, ~40 proteins had five or more significantly altered 

phospho-peptides (Fig 4B). Interestingly, most of these proteins had both increasing and 

decreasing phosphorylation sites (Fig 4C) and were centrally located in our network, 

putting forth their roles as key signaling hubs in Chagas-induced cardiomyopathy.   

Chronic Chagas Disease Alters Membrane Protein and Microtubule 

Phosphorylation. To determine the global signaling pathways altered during chronic 

Chagas disease, we performed GO analysis on all of the phospho-proteins with 

significantly altered phospho-sites (Fig 4D; Table S4). We found highly significant 

enrichments for proteins localized to the plasma membrane, adherens junctions and 

intermediate filaments. As expected, we noted significant enrichments for many proteins 

involved in intracellular signaling such as kinases, calmodulin-binding proteins, and 

GTPases. Protein domains that govern signaling pathways from the plasma membrane 

through the cytoskeleton, such as pleckstrin-homology, PDZ and SH3 domains, were also 

enriched in this dataset. These results indicate that chronic Chagas disease has the most 
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significant effects on intracellular signaling pathways bridging the plasma membrane and 

the cytoskeleton. 
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Figure 3-5 Phospho-proteome Interrogation Reveals Alterations in Membrane and 
Cytoskeletal Protein Phosphorylation and Activation of p38. 
 
(A) Functional protein association network of all proteins with significantly altered 
phospho-peptides. (B) Bar graph of proteins with 5 or more significantly altered phospho-
peptides. (C) Pie chart depicting the phospho-peptide direction shifts of proteins with 5 or 
more significantly altered phospho-peptides. (D) GO results of all proteins with 
significantly altered phospho-peptides. Graph depicts the number of phospho-proteins in 
the respective ontology with enrichment p-values displayed above the bar. (E) Bar graphs 
of significantly altered SPEG phospho-peptides. (F) Bar graph of total SPEG protein. (G) 
Bar graphs of significantly altered TNS1 phospho-peptides. (H) Bar graph of total TNS1 
protein. (I) Bar graphs of significantly altered BAG3 phospho-peptides. (J) Bar graph of 
total BAG3 protein. (K) Bar graphs of significantly altered p38 phospho-peptides. (L) Bar 
graph of total p38 protein. (M) Western blot validation of p38 phosphorylation status. (N) 
Bar graphs of significantly altered NDRG2 phospho-peptides. (O) Bar graph of total 
NDRG2 protein. (P) Western blot validation of NDRG2 phosphorylation status. For 
western blot figures, R1 – replicate 1 and R2 – replicate 2. Significance is noted in 
reference to the pi score cutoffs for respective significance thresholds (* - α < 0.05; ** - α 
< 0.01; *** - α < 0.001; **** - α < 0.0001) 
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Specific proteins of interest were prioritized based on 1) the number and 

significance of altered phospho-sites, 2) their involvement in plasma membrane and 

cytoskeletal signaling, and 3) their relationship to previously described Chagas disease 

processes or other cell stresses. These include: striated muscle preferentially expressed 

protein kinase (SPEG), Tensin 1, BCL2 Associated Athanogene 3 (BAG3), Sorbin and 

SH3 domain-containing protein (SORBS) 1/2 and a number of myosin-related proteins 

(MYH6, MYBPC3, MYO18A, MYL2, MYOM1, MYOZ2). SPEG had the highest number of 

significantly altered phospho-peptides (23 phospho-peptides; Fig 4B, E-F) followed by 

Tensin 1 (16 phospho-peptides; Fig 4B, G-H). Both of these proteins had phospho-sites 

that increased or decreased in abundance, suggesting distinct kinases/phosphatase 

regulation of these proteins. BAG3 contained 11 significantly altered phospho-peptides 

that were all increased (Fig 4B, I-J). SORBS1/2 (Fig S3A-D) and a number of myosin 

proteins (Fig S3E-P) also had multiple, significant phosphorylation shifts in response to 

T. cruzi infection. The fact that we captured multiple members of these protein families 

argues for their importance in the host response to T. cruzi.  

In accordance with previous in vitro studies with cardiac fibroblasts(109) and colon 

cells(108), we detected an increase in p38 Y182 phosphorylation following chronic T. 

cruzi infection in mice (Fig 4K-M). Interestingly, we also detected a significant decrease 

in singly phosphorylated p38 T180 peptides (Fig 4K). Residues T180 and Y182 of p38 

are sequentially phosphorylated in response to pro-inflammatory conditions(143). The 

observed decrease in singly phosphorylated p38 T180 peptides may be a result of an 

increase in the doubly phosphorylated species, which was not detected in our phospho-

proteomic data. To clarify these findings, we performed western blot of p38 Y182 (Fig 
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4M), confirming its increased phosphorylation status. We also detected increased 

phosphorylation of N-Myc Downstream-Regulated Gene 2 (NDRG2) (Fig 4N-P), which 

can act upstream of p38(144, 145). These results further support the activation of this 

pathway in the host response to infection. Overall, the above analyses highlight global 

pathways and specific proteins whose phosphorylation status is modulated during chronic 

Chagas disease.  

Prediction of Kinase Activity During Chronic Chagas Disease Reveals Increased 

JNK/DYRK and Decreased CK2 activity. Detecting alterations in phospho-site 

abundances is crucial to understanding the ultimate outcomes of various signaling 

processes. However, linking phospho-site abundance to specific kinases provides more 

mechanistic insight into the underlying biology and can identify potential drug targets. 

Therefore, in an effort to identify kinase-substrate interactions with increased and 

decreased activity during Chagas disease progression, we undertook a two-pronged 

approach.  

First, we used the group-based prediction (GPS) tool(125) to predict the kinases 

that target the significant phosphorylation sites detected in our experiments. This analysis 

predicted substrates for 125 kinases within our dataset (Table S5), with AGC-group 

kinases having the most unique members (25 kinases; Fig S4A) and CMGC-group 

kinases targeting the most sites (422 sites; Fig S4B). We then compared which kinases 

were predicted for phosphorylation sites with increased vs. decreased abundance (Fig 

5A; Fig S4C-F). We found that more site-kinase pairs were predicted to have increased 

activity in the infected samples than in the controls (Fig S4C). Stratifying predicted 

kinases by kinase groups and families suggests that there is a significant increase in 
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activity from the CAMK, CMGC and TKL groups (Fig S4D) and MAPK, PKC, MAPKAPK, 

DYRK and LISK families (Fig S4E). Individual kinases with increased activity include: 

IKKB, CDC28, MNK1, AMPKA2, MARK1, LIMK, ERK1, MAPK2K2, JNK2 and DYRK2 

(Fig 5A, Fig S4F). In contrast, the kinases with the most decreased activity are VRK2, 

CSNK1D, TTBK1 and ROCK. Interestingly, we identified kinases that are predicted to 

target phospho-sites with both increased and decreased abundance, such as FRAP, 

PIM1, PAK1 and RAF, suggesting that the specificity of these kinases may be modulated 

as opposed to overall activity.  
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Figure 3-6 Bioinformatic Kinase Prediction Uncovers Stimulation of JNK and DYRK2 
and Suppression CK2 Activities. 
 
(A) Kinases with significant proportions (Chi-squared p-value < 0.05) of differentially 
expressed phospho-sites. (B) Logo of enriched motif “PxSpP” (top) with bar graph of the 
number of predicted kinase sites (bottom left) and list of target proteins (bottom right). (C) 
Logo of enriched motif “RxxSpP” (top) with bar graph of the number of predicted kinase 
sites (bottom left) and list of target proteins (bottom right). (D) Logo of enriched motif 
“SPxxSp” (top) with bar graph of the number of predicted kinase sites (bottom left) and list 
of target proteins (bottom right). (E) Logo of enriched motif “SpxxE” (top) with bar graph 
of the number of predicted kinase sites (bottom left) and list of target proteins (bottom 
right). 
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Second, we extracted the flanking sequences of each phospho-site using the 

PTMphinder R package(124) and used the motif-x algorithm(29, 30) to identify enriched 

peptide motifs that were either increased or decreased during infection (Table S6). 

Through this analysis we found that phospho-sites within the motifs: PxSpP (Fig 5B), 

RxxSpP (Fig 5C) and SPxxSp (Fig 5D) were increased following infection and phospho-

sites within the SpxxE motif (Fig 5E) were decreased following infection. We then linked 

the phospho-sites within these motifs to their predicted kinases from the GPS analysis to 

create putative kinase-substrate interactions (Figs 5B-E; Table S7). This dual prediction 

approach provides further evidence for an activation of JNK/p38 family kinases and 

downstream MNK kinases, but also uncovers unexpected kinases such as DYRK2 

(increased activity) and CK2 (decreased activity). Overall, both known (eg. JNK) and 

previously unknown (eg. DYRK2, CK2) kinases were predicted to be differentially 

activated in response to T. cruzi infection. We also identified their respective substrates 

for further validation as functional players in Chagas disease progression.  

The Druggable Network of Chagasic Hearts. To elucidate druggable signaling 

pathways that can be further explored for their therapeutic potential, we linked the 

significant proteomic, phospho-proteomic and kinase prediction results to known drug 

targets within the DrugBank database(146, 147) (Table S8). Visualizing these druggable 

proteins using functional protein association analysis, we found that they formed a highly 

interconnected network with the predicted kinases at the center, closely followed by 

phospho-proteins, and the standard proteins residing in the distal regions (Fig 6A). Gene 

ontology analysis revealed that the most druggable pathways are mitochondria, secreted 

proteins, kinases and cell-cell adherens junctions (Fig 6B; Table S9), all of which are 
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intimately linked to T. cruzi infections and heart disease. Strikingly, more than 80% of the 

proteins in our network are known interactors with FDA approved drugs (Fig 6C); 

approximately 35% of which are linked to the intended, on-target effects (Fig 6D). To 

identify drugs that could broadly impact multiple proteins altered during chronic T. cruzi 

infections, putative therapeutics were ranked based on the total number of targets present 

in the network (Fig 6E). We found that Fostamatinib, Artenimol, metals bound by secreted 

immune proteins (zinc and copper) and NADH may have a strong influence on the 

outcomes of T. cruzi infections. Of note, acetylsalicylic acid (aspirin), emerged as one of 

the most influential drugs in our network, and has been demonstrated to be beneficial for 

the host during T. cruzi infections (148, 149), specifically at later stages of the 

disease(148).  
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Figure 3-7 Druggable Network of Chagasic Hearts 
 
(A) Functional protein association network of significantly altered proteins, phospho-
proteins and predicted kinases that are known interactors of drugs from DrugBank. (B) 
GO analysis of proteins in the druggable network. Pie charts of the (C) approval status 
and (D) intended target status of drugs that interact with proteins in the druggable 
network. (E) Bar chart of drugs with 5 or more targets in the druggable network. 
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Discussion 

Cardiomyopathy is the most common and severe pathological result of chronic 

Chagas disease(93, 96, 101). While studies focusing on individual host factors have 

provided insight into specific mechanisms of pathogenesis, proteins typically work in co-

regulated networks with significant involvement of PTMs, which are often overlooked in 

standard assays. Therefore, a systems-level analysis would represent a significant step 

toward understanding the signaling pathways and molecular mechanisms underlying 

disease progression. Previous studies applying proteomics to investigate Chagas 

disease have mostly been focused on serum, looking for disease progression markers 

using two-dimensional gel electrophoresis prior to mass spectrometry in rats(150) and 

human patients(151, 152). Also, proteomic and phospho-proteomic approaches have 

been targeted toward the parasite itself, describing its response to nutritional stress(153) 

and proteins modulated during the differentiation process(154, 155). However, a large-

scale, phospho-proteomic analysis of Chagasic hearts, one of the most affected organs, 

has not been performed. To address this gap in knowledge, we performed a multiplexed, 

quantitative phospho-proteomic analysis of an in vivo murine model of Chagas-induced 

cardiomyopathy. We find that our model possesses common clinical symptoms of 

Chagasic hearts(127, 128), indicating that it accurately reflects human biology. While this 

manuscript describes findings based on two, independent, biological replicates, we 

believe that the agreement in our replicates (Fig S1), particularly in the proteins/phospho-

sites displayed in the figures, and comparisons to previous studies (Fig S3), largely 

substantiate the dataset.  
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We compared our proteomic expression results to previously published studies 

including conventional assays (eg. western blot and histology) as well as GWAS and 

transcriptome analyses. Together this helped validate our proteomic and prioritize 

interesting proteins for analysis. From this meta-analysis, we found that the host response 

to T. cruzi is significantly correlated across distinct organs and that Chagasic hearts follow 

gene expression profiles similar to other cardiomyopathies. We also found a number of 

proteins that were differentially expressed in our proteomic data and possessed SNP-

associations to Chagas disease progression. Notable among these is retinol-binding 

protein 1 (RBP1), which was significantly increased upon infection and linked to Chagas 

cardiomyopathy through GWAS studies(139). Rbp1 functions in the uptake and storage 

of retinol (vitamin A)(156), a molecule with anti-oxidant(157) and immune-related(158) 

activities. Further, isotretinoin, a naturally-occurring derivative of retinol(159) has been 

shown to have promising trypanocidal effects in the nanomolar concentration range(160). 

Due to the high structural similarity of retinol and isotretinoin, it seems plausible that 

increased Rbp1 could also increase intracellular isotretinoin concentrations, acting as a 

host defense mechanism against T. cruzi or chronic inflammation. Treatment of T. cruzi 

infections with vitamin C has been shown to have myocardial protective effects(161) and 

retinol can help defend against many forms of cardiovascular disease(157), however, 

treatment of T. cruzi infections with either retinol or isotretinoin has not yet been tested. 

Other interesting groups of proteins include immune-related proteins, with both 

described and previously undescribed associations with Chagas disease. For example, 

we verified previous reports of an upregulation of the adhesion molecules VCAM1 and 

ICAM1(135) and the chemokine CCL8(141) which is thought to enable excessive immune 
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infiltration. Previous studies identified CCL5 as a primary contributor to immune 

influx(134). Both CCL5(162) and CCL8(163) can interact with CCR1, CCR3 and CCR5 

on target cells inducing immune recruitment to the site of inflammation. Their co-

expression increase suggests a redundant mechanism in the chemotaxis and could result 

in excessive immune infiltration. 

A striking finding in our standard proteomic data was the increase in nearly the 

entire family of guanylate binding proteins (GBPs). Previous studies have indicated an 

increase of expression of GBP2 and GBP6 following T. cruzi infection in both the heart 

and the placenta(140, 141), but not in response to genetic cardiomyopathies(130). 

However, our findings include the additional family members: GBP2B, GBP4, GBP5, 

GBP7 and GBP9. GBPs are induced by IFN-γ as a host defense against invading 

pathogens(164, 165) and are thought to function as a complex, supporting the precise 

co-regulation observed in the present study. Of note, GBP1, along with GBP2, 4 and 5, 

has been shown to localize to T. gondii containing vacuoles(166). Further, it has been 

shown that mice deficient in GBP2 are highly susceptible to T. gondii infections(167). 

While GBP1 was demonstrated to not co-localize with T. cruzi(166), the alternate GBPs 

detected in our experiments might be involved in host recognition of T. cruzi. This data 

demonstrates a mechanism of host response to T. cruzi that is conserved in multiple 

organs and highlights the additional proteins that are co-regulated in the heart. These 

results warrant further investigation into which specific GBPs functionally respond to T. 

cruzi and the ultimate consequences of this interaction. 

In contrast to the proteins with increased abundance mentioned above, we 

detected a strong signature of mitochondrial proteins being significantly downregulated 
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following infection. The dysfunction in mitochondria following T. cruzi infections is well 

known(115), but poorly understood. Previous studies have exhibited T. cruzi co-localizing 

with mitochondria via their single flagella(168). Mitochondrial dysfunction is described to 

start in the acute phase of the infection, continuing to a reduction of oxidative 

phosphorylation capacity in the heart of mice during chronic infection(169). In addition, a 

decline in the activities of the respiratory complex III and antioxidant enzymes (MnSOD 

and GPX) as well as in GSH contents has been observed in chronic Chagas 

patients(170). With respect to chronic T. cruzi mouse infections, the current study, 

supported in part by previous transcriptome analyses(141), have demonstrated a 

decrease in many mitochondrial proteins. Our analyses have identified NDUFs and CoA-

containing enzymes as primary contributors to this observed mitochondrial signature. 

NDUFs and CoA-containing enzymes are involved in many metabolic functions including 

electron transport and fatty acid synthesis. Intriguingly, it has been demonstrated that T. 

cruzi actively scavenges host long-chain fatty acids to promote its intracellular survival, a 

mechanism that was further validated by showing reduced parasite proliferation in 

fibroblasts lacking de novo triacylglycerol biosynthesis(171). The downregulation of 

NDUFs and CoA enzymes in the heart may reflect a host effort to effectively starve out 

the parasite. Unfortunately, this decrease in mitochondrial function can also contribute to 

cardiomyopathy progression(172). By identifying the specific proteins involved, it may be 

possible to target therapeutic approaches that enhance myocyte function and survival 

while simultaneously starving the parasite. As such, our studies reinforce previously 

described interplays of host-parasite lipid metabolism and highlight specific host proteins 

likely to be involved.  
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In addition to total protein expression, our analysis captured the first shotgun, 

phospho-proteomic analysis of the interaction of T. cruzi with host cells in vivo. We found 

drastic alterations in host phosphorylation status following infection as evidenced by 

significant changes of phospho-site abundance in 353 unique phospho-proteins. 

Functional protein association analysis(123) highlighted potential key players, which sat 

central to the network with large numbers of phosphorylation changes (up to 23 distinct 

phospho-peptides significantly altered). Specifically, SPEG, Tensin 1, BAG3, SORBS1/2 

and a number of myosin-related proteins (MYH6, MYBPC3, MYO18A, MYL2, MYOM1, 

MYOZ2) emerged as integral components of this network. Of note, all of these proteins 

have been linked to proper heart function and/or implicated in the development of 

cardiomyopathies(173-182). Thus, their differential phosphorylation in response to T. 

cruzi may be mechanistically related to the development of severe disease states. 

Chronic Chagas disease drives severe inflammation and fibrosis in the heart, and 

our phospho-proteomic analyses found substantial evidence that the primary implicated 

intracellular signaling pathways are c-Jun N-terminal kinase (JNK) and p38.  First, we 

found elevated phosphorylation of p38 at Y182, a known activation site. Second, we 

detected an increase in phosphorylation of NDRG2, a cell-stress related protein. 

Phosphorylation of p38 has been described for in vitro models of T. cruzi infection in colon 

cells (18) and cardiac fibroblasts(109). p38 was also found increased during T. cruzi acute 

infection(183), but our data shows for the first time that p38 might be implicated in chronic 

Chagas cardiomyopathy in a model that displays clinical symptoms of heart failure.  

Overexpression of NDRG2 has been shown to increase p38 phosphorylation(145), 

suggesting it can function upstream. The observed increase in phosphorylation of NDRG2 
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provides further evidence for activation of this pathway. Finally, our dual kinase-substrate 

prediction analysis reported an increase in JNK activity, particularly at phospho-sites 

within the motifs PxSpP and SPxxSp. Of note, many of the highly altered phospho-proteins 

of interest mentioned above possess predicted JNK target sequences, suggesting 

downstream involvement in this signaling pathway. Together, this data supports a central 

role of JNK and p38 signaling pathways in Chagas disease progression and identifies 

new components both up- and downstream.  

In addition to activation of JNK and p38 pathways above, our analysis predicted 

an activation of IKKB, MNK1 and DYRK2 and suppression of CK2, CSNK1D and VRK2. 

Activation of IKKB and MNK1 is logical given the highly inflammatory conditions and 

activation of JNK/p38 described above(184, 185). IKKB phosphorylates the NFKB 

Inhibitor Alpha in the NFKB complex, causing dissociation of the inhibitor and activation 

of NFKB in response to pro-inflammatory stimuli(186). MNK1 is a MAPK activated protein 

(MAPKAP) and functions downstream of p38(187). Upon activation, MNK1 

phosphorylates downstream substrates, primarily involved in translational regulation, 

including eIF4E and eIF4G(187, 188). While we didn’t detect any spectra assigned to 

eIF4E, we detected significant increases in phosphorylation of eIF4G at both S1231 and 

S1238, further reinforcing activation of this pathway. DYRK2 functions to regulate cell 

cycle and proliferation(189), apoptosis(190) and organization of the cytoskeleton(191). 

We predicted DYRK2 to phosphorylate a number of interesting proteins from our 

phospho-hits including SPEG, BAG3, NDRG2, MYBPC3 and MYO18A. The potential for 

DYRK2 to phosphorylate these central proteins and also affect cytoskeletal organization 

make it an interesting finding for further interrogation. Finally, we noted an intriguing 
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downregulation of CK2, CSNK1D and VRK2 activity, all kinases related to casein kinase 

families. VRK2 has been previously shown to downregulate JNK activity(192, 193). 

Further, CSNK1D has been hypothesized to be phosphorylated by p38 at a regulatory 

site, reducing its activity(194). Thus, the inactivation of these kinases further supports 

JNK and p38 activation in our model. On the other hand, there are conflicting reports on 

the impact of CK2 on JNK activity in response to inflammation(195-198). It is important to 

note that, while CK2 activity was predicted to decrease, this finding was primarily linked 

to sites within SpxxE motifs. A nearly equivalent number of other CK2-predicted sites were 

found to be increased; however, they showed no bias toward the SpxxE motif. These 

results demonstrate a decrease in CK2 activity against specific sites, suggesting the 

specificity of CK2 may be altered rather than a global decrease in activity.  

We conclude our study by identifying FDA approved drugs that could be 

repurposed for the treatment of Chagas disease in the chronic phase. This analysis 

indicates that therapeutic targeting of the central kinases highlighted herein (such as JNK, 

p38 and IKKB) could be an effective means to influence a variety of downstream 

proteomic and phospho-proteomic alterations. Fostamatinib, a kinase inhibitor recently 

approved for rheumatoid arthritis and immune thrombocytopenic purpura(199), has 

affinity for all these targets and thus represents a means to simultaneously disrupt these 

key signaling pathways. On the other hand, targeting a particular group of downstream 

effectors (eg. complement proteins, NDUFs, and the proteasome) could be implemented 

as a more focused therapy. For example, zinc supplementation has been shown to 

reduce complement activity in age-related macular degeneration(200). Effectively 

blocking complement deposition could reduce the disease burden associated with high 
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inflammatory conditions of the Chagasic heart. Interestingly, we identified a large number 

of antibody-based, anti-inflammatory therapeutics (Efalizubmab, Natalizumab, etc.) that 

also interact with complement proteins (C1QA and C1QB), as well as EGFR and immune 

adhesion molecules (ICAM1, ITGAL). These targeted therapies may be useful in reducing 

the inflammatory conditions of the heart, particularly when used in combination with zinc 

or other immuno-modulatory agents. As with any immune suppressing drugs, there is an 

increased risk of infection for patients taking the medication(201). Further, excessive zinc 

can also lead to immune dysfunction(202). Determining which approach would be most 

effective at reducing disease burden, while simultaneously preserving normal cardiac 

function and immune system health, would represent a critical step toward developing 

new therapeutic options for Chagas cardiomyopathies. A thorough assessment of the 

impact of the identified pharmacological agents on disease progression should be 

pursued to build further evidence for the roles of these proteins and tease out precise 

mechanisms of action.  

Overall, this study presents a comprehensive view of the molecular underpinnings 

of Chagasic hearts. We identify specific host pathways and proteins that respond to T. 

cruzi infections at both the raw protein and phospho-site abundance levels. As expected, 

we found a predominantly IFN-driven immune response as evidenced by infiltration of 

immune cells and activation of the JNK and p38 pathways. We also found a 

downregulation of many mitochondrial proteins which may be linked to the known 

mitochondrial defects observed in T. cruzi infections. Our phospho-proteomic analyses 

revealed potential up- and downstream mediators of JNK, p38 and NDRG2 signaling and 

identified additional kinase families that may be activated or repressed. Finally, we 



 91 

highlight and discuss the potential repurposing of FDA approved drugs for the reduction 

of Chagas disease burden. Together, these studies provide a systems-level overview of 

Chagasic hearts and sets the groundwork for future studies to validate the functional 

consequence of these alterations.  

 
Chapter 3, in part, is a combination of material as it appears in PeerJ, 2019, Jacob 

M. Wozniak and David J. Gonzalez, and PLOS Neglected Tropical Diseases, 2020, Jacob 

M. Wozniak, Tatiana Araújo Silva, Diane Thomas, Jair L. Siqueira-Neto, James H. 

McKerrow, David J. Gonzalez, Claudia M. Calvet. The dissertation author was the primary 

author of these papers. 
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Introduction 

Staphylococcus aureus bacteremia (SaB) causes significant mortality in a wide 

range of patient populations. Due to medical advances that support increasingly 

immunocompromised hosts, invasive surgical procedures and indwelling medical 

devices, underlying risk factors for serious S. aureus infections are expanding(47). 

Overall mortality rates for SaB range from 20 - 30%(203-205), however SaB patients 

display a highly heterogeneous array of disease severity and patient outcomes(206, 207). 

Whereas some patients clear the infection promptly on first-line antibiotic therapy, others 

fail to properly eradicate the pathogen. Extended bacteremia leads to dysregulation of the 

host immune response, which is highly correlated with patient mortality(208-210). This 

heterogeneity in SaB disease progression complicates the determination of optimal 

treatment strategies. Current standard of care is to administer broad-spectrum antibiotics 

while awaiting pathogen susceptibilities to guide treatment decisions; however, blood 

cultures are not always attainable, and it may take days to fully deduce antibiotic 

susceptibilities. Any delay in time-to-diagnosis and initiation of appropriate therapy 

exacerbates patient mortality, especially in sepsis(211, 212). Furthermore, in the case of 

the first-line antibiotic vancomycin, while drug resistance is rare, clinical failure is 

common, revealing significant shortcomings in predictive power of standard antimicrobial 

susceptibility testing(213). Here we explore if the host response measured within hours 

of clinical presentation can accurately predict mortality risk, which could ultimately help 

clinicians optimize more appropriate and personalized therapeutic regimens.   

Previously, our group identified robust immunological biomarkers for SaB 

mortality, e.g. elevated interleukin-10(208, 210) and prolonged bacteremia, e.g. reduced 
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interleukin 1β(210), which were subsequently corroborated in independent studies(209, 

214). While these findings represent starting points for ‘precision medicine’ to 

individualize intensity of SaB monitoring and therapy based on predicted patient outcome, 

the host response to infection is highly complex and extends beyond just immunological 

parameters. For example, lactic acidosis and acute kidney injury are associated with 

increased SaB mortality, and are potential markers of mitochondrial dysfunction, 

reflecting profound effects on host metabolism(215-217). Thus, a comprehensive and 

unbiased assessment of host factors altered in response to SaB may elucidate additional 

key features that can help predict patient outcomes and guide development of novel 

therapeutics. In this context, critical host responses modulated by interaction with an 

invading pathogen must be elucidated, not only as single entities, but how they function 

as a dynamic, concerted network.   

Here, we construct a comprehensive bioanalytical snapshot of SaB patient serum 

collected immediately upon clinical presentation, providing the earliest view possible of 

the in vivo human response to infection. Using metabolomics and multiplexed quantitative 

proteomics in tandem, we analyzed samples from two cohorts totaling >200 individuals, 

including healthy and hospitalized uninfected controls. By conducting multiple rounds of 

biomarker analyses, we defined new features with strong individual predictive value that 

can be further used concert to increase predictive confidences. The depth of our analysis 

was increased through advanced computational methods, which identified prevalent post-

translational modifications (PTMs) and inferred underlying cytokine signaling networks. 

These techniques pinpointed glycopeptides as more precise biomarkers and uncovered 

widespread carbamylation on abundant serum proteins in patients who succumbed to 
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infection. Ultimately, these data provide a starting point for the development of a rapid 

clinical test for identifying patients at high mortality risk. Further investigation on these 

findings would allow clinicians to identify patients who need intensified monitoring and 

therapy when it is most critical for a successful outcome, rather than responding post-hoc 

to failures in standard of care. 

 

Methods 

Patient and Isolate Identification and Collection. Patients were identified with SaB 

for study inclusion by electronic notification of blood cultures growing S. aureus, identified 

by Matrix Assisted Laser Desorption/Ionization, Time-of-Flight (MALDI-TOF, Bruker 

Scientific LLC, Billerica, MA, USA).  Methicillin-resistance was identified using 

GeneXpert® test (Cepheid, Sunnyvale, CA, USA). Patients were included if at least two 

positive blood cultures were identified, or one positive culture was congruent with a 

clinical diagnosis of SaB from an Infectious Diseases Physician Specialist. This study did 

not analyze consecutive samples from SaB patients, but rather outcomes of death (n=76) 

and survival (n=99) were selected from the SaBIR biobank for multi-omic serum analysis.  

The other subject groups included non-hospitalized, non-infected healthy volunteers 

(n=15), and hospitalized, non-infected patients (n=10) at UW Health identified through the 

electronic medical record.   

Patient serum samples were obtained on the same day of initial presentation of 

SaB, before antibiotic therapy initiation and often within 1 hour of blood culture. The 

samples were stored at -80 °C until analysis. 
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Clinical Measurements and Outcomes. Patient electronic medical records were 

reviewed to collect basic demographics.  The mean age was 58.7±15.5 years and 49.1% 

of patients were male. In the SaB patient group, 33.2% were infected with MRSA and 

66.8% had MSSA bacteremia, identified as above and confirmed by routine antimicrobial 

susceptibility testing in the clinical microbiology laboratory. Total duration of bacteremia 

included cases of persistent bacteremia (consecutive days of positive blood cultures) and 

in-hospital microbiologic relapse defined as recurrence of a positive blood culture after 

the first negative culture while receiving appropriate antibiotic. The median duration of 

bacteremia duration was 2 days with an interquartile range of 1-4 days.  All included 

patients received appropriate antimicrobial therapy for the treatment of MSSA (anti-

staphylococcal β-lactam or vancomycin/daptomycin where needed for β-lactam allergic 

patients) and MRSA bacteremia (vancomycin or daptomycin).   

Serum Metabolite Extraction. All steps for this protocol are to be done on ice. 

Serum samples (100 μl) were thawed for 30 mins, then 400 μl of prechilled extraction 

solvent (100% MeOH with 1μM sulfamethazine as a synthetic standard) was added to 

each sample. Samples were mix using a vortexer for 2 minutes (min) then incubated at -

20 °C for 20 min to aid in protein precipitation. Samples were centrifuged the samples at 

16,000 x g for 15 min to pellet the protein precipitate. The supernatant was transferred 

into 96-Well DeepWell, dried using centrifugal low-pressure system and stored at -80 °C 

once dry. 

Metabolomic LC-MS2 Analysis. Metabolomic LC-MS2 was performed on a Bruker 

Daltonics® Maxis qTOF mass spectrometer (Bruker, Billerica, MA USA) with a Thermo 

Scientific UltiMate 3000 Dionex UPLC (Fisher Scientific, Waltham, MA USA). Metabolites 
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were separated using a Phenomenex C18 core shell (50 x 2 mm, 1.7 µm particle size) 

UHPLC column fitted with a C18 guard cartridge. The mobile phase solvents (solvent A, 

water-0.1% formic acid; solvent B, acetonitrile-0.1% formic acid) were run at a flow rate 

of 0.5 ml/min and chromatographic separation was achieved using the following elution 

gradient: 0 to 1 min 5% B, 1 to 10 min a linear increase from 5 to 100% B, 10 to 12 min 

held at 100% B, 12 to 12.5 min a linear decrease from 100 to 5% B, and 12.5 to 13 min 

maintained at 5% B. The mass spectrometer was calibrated twice daily using Tuning Mix 

ES-TOF (Agilent Technologies). For accurate mass measurements, lock mass internal 

calibration used a wick saturated with hexakis (2,2-difluoroethoxy)phosphazine 

(Synquest Laboratories, m/z 622.0289) located within the source. Ions were generated 

using the following parameters: nebulizer gas pressure, 2 Bar; Capillary voltage, 3,500 V; 

ion source temperature, 200°C; dry gas flow, 9 l/min; spectra rate acquisition, 3 spectra/s. 

Full scan MS spectra (m/z 50 – 1500) were acquired in the qTOF and the top five most 

intense ions in a particular scan were fragmented using a ramped collision induced 

dissociation (CID) energy from 10 - 50 eV. Data dependent automatic exclusion protocol 

was used so that an ion was fragmented when it was first detected, then twice more, but 

not again unless its intensity was 2.5x the first fragmentation. This exclusion method was 

cyclical, being restarted after every 30 seconds. 

Metabolite Molecular Networking and Identification by GNPS. Metabolomics data 

files were converted to the .mzXML format using the Bruker Data Analysis software and 

uploaded to GNPS(218) through the MassIVE server (MSV000083593). Molecular 

networking was optimized as previously described(219) to an estimated false discovery 

rate of 1%. The data was filtered by removing all MS2 fragment ions within +/- 17 Daltons 
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(Da) of the precursor m/z. MS2 spectra were window filtered by choosing only the top 6 

fragment ions in the +/- 50 Da window throughout the spectrum. The precursor ion mass 

tolerance was set to 0.05 Da and an MS2 fragment ion tolerance of 0.05 Da. A network 

was then created where edges were filtered to have a cosine score above 0.59 and more 

than 6 matched peaks. Spectra were searched against the spectral libraries contained 

within GNPS. The library spectra were filtered in the same manner as the input data. All 

matches kept between network spectra and library spectra were required to have a score 

above 0.7 and at least 6 matched peaks.  

Area under the curve feature abundances were calculated to produce a 

metabolome bucket-table with the mzMine software(220). MzMine modules were used 

with the following settings. Peak mass detection: 1E3 MS1 noise level, 1E2 MS2 noise 

level. Chromatogram deconvolution: Local minimum search algorithm: 0.2 min minimum 

retention time (RT) range, 3 min ratio of peak top/edge, 0.05 – 0.5 min peak duration 

range, 0.05 Da m/z range for MS2, and 0.2 min RT range for MS2. Isotopic peak grouper:  

0.05 m/z tolerance, 0.1 min RT tolerance, maximum charge 4. Join aligner: 0.01 m/z 

tolerance, 0.3 min RT tolerance, 75% weight for m/z, 25% weight for RT, 2 minimum 

peaks per row. Gap filling: 20% Intensity tolerance, 0.01 m/z tolerance, 0.2 min RT 

tolerance. Peak filter: Area 1E3 – 1E12. The abundances of each feature in the final 

bucket-table were normalized first by abundance of the internal standard within each 

sample and next by the total ion intensity of each sample. 

PTM-tolerant Proteomics Workflow. Proteomics analyses were conducted as 

described above with the following alterations. For high-resolution spectra (fourteen 10-

plexes), ions were fragmented using higher-energy collision-induced dissociation (HCD) 
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with a normalized collision energy of 30% and were detected in the Orbitrap with a 

resolution of 3 x 104. High resolution MS2 data from proteomic experiments were 

submitted to molecular networking via GNPS as described above. Overrepresented mass 

shifts, as determined by the total number of network edges corresponding to each mass 

shift, were selected as modifications to include in a PTM-tolerant search. MS2 data were 

queried against a focused human serum proteome database (proteins detected in 

standard search, 1,088 entries) using Byonic. A decoy search was also conducted with 

sequences in reversed order (3, 66, 67). For MS1 spectra, a mass tolerance of 50 ppm 

was used and for MS2 spectra a 0.05 Da tolerance was used. Static modifications 

included TMT 10-plex reagents (+229.162932 Da) on peptide n-termini and 

carbamidomethylation of cysteines (+57.02146 Da). Variable modifications were 

specified using Modification Fine Control. Variable modifications included: deamidation 

(+0.984016 Da) of asparagine and glutamine, oxidation (+15.99492 Da) of methionine, 

tryptophan and histidine, formylation (+27.994915 Da) of lysine, dioxidation (+31.989829 

Da) of tryptophan, carbamylation (+43.005814) of lysine and arginine and 

dihydroxyimidazolidine (+72.021129 Da) of arginine. Spectra that contained low-mass 

glycan reporter ions as determined by the IMP-glycan reporter node were submitted to a 

glyco-peptide search with the following modification parameters. Static modifications 

included: TMT 10-plex reagents (+229.162932 Da) on peptide n-termini and lysines and 

carbamidomethylation of cysteines (+57.02146 Da). Variable modifications included: 

oxidation (+15.99492 Da) of methionine and glycosylation (57 common human N-glycans 

– various Da) of asparagine. Reporter ion intensities for modified peptides were summed 

to the unique peptide level then normalized as above. PTMs were localized in the context 
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of the total protein length and flanking sequences were extracted using the PTMphinder 

R package(124). 

Mouse Model of SaB. 8-week old female CD1 mice were used for all animal 

experiments. Mice were treated before infections as follows or with vehicle controls. 

Hyperthyroid mice were given I.P. injections of 100 μg thyroxine (T4) once daily for the 

three days prior to infection. Hypothyroid mice were given drinking water containing 

hypothyroid treatment (1% (wt/vol) sodium perchlorate and 0.1% (wt/vol) methimazole) 

for three weeks prior to infections. Adiponectin mice were given I.P. injections of 1 mg/kg 

AdipoRon one day prior infection, then injected daily with AdipoRon for the duration of the 

experiment. Mice were then I.V. infected with S. aureus LAC (high dose (Fig 7B): 1x108 

CFUs, low dose (Fig 7C-H): 5x107 CFUs) and survival was monitored every 12 hours. For 

CFU burden experiments, mice were treated and infected as above, then euthanized 48 

hours post-infection and organs were harvested for quantitation of bacterial burden. 

 

Results 

Overview of Multi-omic SaB Patient Serum Analysis. We employed a multi-omic 

approach to gain a comprehensive view of the SaB host-pathogen interaction (Fig 4-1A). 

First, a small discovery cohort was analyzed by standard multiplexed proteomic 

techniques to assess and optimize the ability of serum protein biomarkers to predict SaB 

patient phenotypes. This initial analysis identified 1,405 proteins with a false discovery 

rate (FDR) <1%, and yielded biomarker candidates associated with various disease 

features including infection, mortality and duration of bacteremia (Table S1). To verify 

these initial markers and deepen our comprehension of the molecular features related to 
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this disease state, an expanded cohort was analyzed through both proteomic and 

metabolic approaches (Fig 4-1A). In the extended cohort, standard proteins were 

identified by a conventional database search. Metabolomics data were interrogated for 

small molecules using MZmine(221) and Global Natural Products Social Networking 

Molecular Networking (GNPS)(218). Modified proteins, including glycoproteins, were 

identified by combining molecular networking with a PTM-tolerant database search 

through Byonic(222). Importantly, all of the modified protein identifications were derived 

from high-resolution MS2 scans. Overall, 1,088 proteins, 5,280 metabolomic features and 

6,700 modified peptides were quantified in this experiment. The resultant >10,000 

molecular features were statistically analyzed with binary comparisons to identify 

biomarkers, and through clustering and network based approaches to define disease 

associations within our primary sample groups (Control groups: NN – Non-hospital, Non-

infected, HN – Hospital, Non-infected; Infection groups: HS –Hospital, Survival, HM – 

Hospital, Mortality).  

An initial hierarchical clustering analysis of the standard proteomics data showed 

clear segregation of the control samples from the infected samples (Fig 4-1B). In contrast, 

SaB survival and mortality groups were highly intermixed, indicating that the differences 

between death and survival in SaB infections were subtle. Nevertheless, stratification of 

death and survival groups was observed in the clustered dendrogram, indicating the 

potential within this data to probe for mortality biomarkers. As a proof-of-principle for 

distinguishing disease states, we first selected a highly discriminating protein for 

predicting infection, rather than mortality. SERPINA5 emerged as a top hit (Fig 4-1C), 

with a receiver operator characteristic (ROC) curve area under the curve (AUC) of 0.9891 
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(Fig 4-1D). This protein had a higher AUC than the commonly used clinical marker for 

infection, C-reactive protein (CRP)(223), in the current dataset (AUC = 0.9691) as well as 

values reported in the literature (maximum AUC = 0.92)(224-226). This example 

demonstrates the power of unbiased proteomics for biomarker discovery. 
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Figure 4-1 Multiomic Analysis of SaB Patient Serum 
 
(A) Workflow for multi-omic analysis of SaB patient serum. (B) Unbiased hierarchical 
clustering based on Pearson correlation values for proteins detected across all samples. 
(C) Relative protein abundance of SERPINA5 in control and infected samples. (D) ROC 
curve of SERPINA5 abundance discriminating between control and infected samples. 
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Definition of High-confidence Biomarkers to Predict SaB Patient Mortality. Our first 

goal was to define high-confidence biomarkers to predict SaB patient mortality. To rank 

biomarkers, we took an ensemble feature selection (EFS) approach(227), which applied 

multiple feature selection algorithms, then aggregated and ranked the results. This 

method can avoid biases associated with individual feature selection algorithms(228). 

This workflow was applied to the two primary datasets and used to rank the top 

biomarkers (Proteomics – Fig 4-2A; Metabolomics – Fig 4-2D). The highest ranked 

protein biomarkers were fetuin B (Fig 4-2B), heparin cofactor II (encoded by the 

SERPIND1 gene, Fig S1A), and insulin-like growth factor binding protein 3 (IGFBP-3, Fig 

S1B), all with decreased serum levels. The decrease in serum fetuin B was also captured 

in the initial cohort, despite a low number of mortality samples analyzed (Fig S1C). Our 

top biomarkers with increased serum levels were insulin-like growth factor binding protein 

2 (IGFBP-2, Fig 4-2C), adiponectin (encoded by the ADIPOQ gene, Fig S1D) and EGF-

containing fibulin-like extracellular matrix protein 1 (EFEMP1, Fig S1E). Applying a similar 

approach to the metabolomics data, we found that all of the top-ranked biomarkers were 

unidentified MS features (Fig 4-2D). However, these molecules showed considerable 

predictive utility (Fig 4-2E and F), similar to our top-ranked protein biomarkers (ROC AUC 

= ~0.75; p-value < 0.0001).  

The ensemble feature selection approach ensures that the top-ranked biomarkers 

are not correlated to one another and therefore could be used in combination for the 

enhanced prediction of SaB patient mortality(229). Using the top two markers from both 

workflows significantly enhanced the predictive power relative to the individual markers 

alone (Fig 4-2G). To support the proteomics workflow, we validated fetuin B (Fig 4-2H) 
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and other top biomarkers (Fig S1F-G) in a subset of our samples using enzyme-linked 

immunosorbent assays (ELISAs) (Fetuin B AUC = 0.8945). Our results indicate that 

patients with low fetuin B levels (< 2.2 μg/ml) had significantly reduced survival compared 

to patients with high concentrations of fetuin B (Fig 4-2I).  

An important factor to consider when performing biomarker analyses is the 

influence of confounding factors on the proposed biomarkers(230). To investigate this 

issue, we performed a metadata-wide association assessment for every protein and 

metabolite detected in our experiments (28 total metadata variables). Using an 

appropriate statistical test for each variable type (ie. Mann-Whitney U test for binary 

categorical metadata, Kruskall-Wallis test for >2 categorical metadata and Pearson 

correlation for continuous metadata), the association of any particular feature with every 

measured metadata variable can be determined. Through this approach, we found that 

all top biomarkers, both up and downregulated, are predominantly associated with 

infection and mortality, with minimal associations to other metadata (Proteomics - Fig 4-

2J, S2A-G; Metabolomics – Fig S2H-M). The next most common metadata associated 

with the top biomarkers are dialysis and serum creatinine levels, both related to kidney 

function(231) and mortality in bacteremia(232, 233). This analysis verified that there was 

negligible influence of typical confounding variables (such as age, gender, hospitalization, 

etc.) on the top SaB mortality-related biomarkers. Overall, the above results provide a 

comprehensive list of biomarkers associated with SaB mortality risk. 
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Figure 4-2 Definition of High-confidence Biomarkers for the Prediction of SaB Patient 
Mortality 
 
(A) Top 25 EFS ranked protein biomarkers for discriminating patient survival vs. mortality. 
(B) Relative protein abundance and ROC curve of Fetuin B discriminating between 
survival and mortality samples. (C) Relative protein abundance and ROC curve of 
IGFBP2 discriminating between survival and mortality samples. (D) Top 25 EFS ranked 
metabolite biomarkers for discriminating patient survival vs. mortality. (E) Relative protein 
abundance and ROC curve of metabolite ID 349 discriminating between survival and 
mortality samples. (F) Relative protein abundance and ROC curve of metabolite ID 854 
discriminating between survival and mortality samples. (G) Dual-omic ROC curve for 
discriminating between survival and mortality samples (H) Absolute protein abundance 
and ROC curve of Fetuin B discriminating between survival and mortality samples 
measured via ELISA. (I) Survival curves of Fetuin B high (> 2.2 μg/ml) and low (< 2.2 
μg/ml). (J) Metadata assessment of Fetuin B protein levels measured via proteomics. 
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PTM-tolerant Analysis of Serum Samples Enables the Identification of Disease-

associated PTMs. Serum is a notoriously difficult sample to analyze via proteomics(234, 

235), attributable to a large dynamic range of protein concentrations and high numbers 

of PTMs, such as glycosylation. Thus, standard proteomic searches fail to identify greater 

than 90% of the spectra acquired from mass spectrometry (MS)-based shotgun 

proteomics of serum(236). We hypothesized that if we could predict highly abundant 

protein PTMs, we could perform a PTM-inclusive database search and match more 

spectra per sample. To identify the most wide-spread protein modifications in the serum 

proteome data, we used GNPS-based molecular networking to group similar spectra that 

differ by regular mass shifts. Overall, we were able to network >80% of the MS/MS 

spectra (Fig 4-3A), suggesting that many of the peptides identified in the standard 

database search may also be present as modified variants. Displaying the total number 

of mass shift occurrences in a histogram, we can observe highly abundant PTMs present 

in our data (Fig 4-3B). These include expected artifacts such as oxidation of methionine 

(+15.99), carbamidomethylation of cysteine (+57.02), and deamidation (+0.984), but also 

unanticipated modifications such as carbamylation (+43.005), dioxidation (+31.99), and 

formylation (+27.99). Of note, the glycan moieties fucose (+146.06), hexose (+162.05), 

and sialic acid (+291.1) were also highly abundant. This suggests that the peptides 

captured in our MS analysis are rich in PTMs, complicating identification through 

traditional strategies. 

To address this issue and take these modifications into account, we employed a 

PTM-tolerant search strategy. First, we focused the serum proteome database, including 

only proteins that were matched in the initial, standard search. Then, we used the Byonic 
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search algorithm(222), whose Modification Fine Control feature allows specifying high 

numbers of modifications and can also match intact glycopeptides. Including the top 

predicted modifications and common human plasma glycans, we achieved a doubling of 

the serum spectral match rate (Fig 4-3C). Low-weight modifications ultimately called in 

the PTM-tolerant search correlated highly with the number of edges of the corresponding 

mass shifts from the initial GNPS analysis (Fig 4-3D). Further, the vast majority (> 85%) 

of glycosylation sites identified have been previously reported in Uniprot (Fig 4-3E), 

authenticating their identification as true glycopeptides. The distribution of mass errors 

from the modified peptides identified in the PTM-tolerant search was nearly identical to 

the standard search (Fig 4-3F), suggesting there is minimal loss in spectral identification 

quality. We also found that the total peptide-spectrum matches (PSMs) and unique 

peptides per protein were highly correlated between the standard search and the PTM-

tolerant workflow (Fig 4-3G-H). One of the initial benefits noted from the PTM-tolerant 

search was an increased number of unique peptides detected for low-abundant proteins. 

Proteins with the smallest number of unique peptides in the standard search gained a 

higher proportion of unique peptides in the PTM-tolerant search than those proteins that 

had more unique peptides originally detected (Fig 4-3I). Gene ontology (GO) 

analysis(237) revealed that the majority of proteins with boosted unique peptides were 

immunoglobulins (Fig 4-3J), but a number of intracellular proteins also showed large 

gains in unique peptides (Fig 4-3K). While some of these proteins had minimal 

abundance changes among groups, there are others that demonstrate significant 

associations to hospitalization (Fig 4-3L) and infection (Fig 4-3M). Our initial results 

demonstrate that predicting highly abundant modifications can inform subsequent search 
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strategies, yielding higher spectrum match rates and increased confidence in low-

abundant proteins while also identifying disease-associated PTMs. 
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Figure 4-3 PTM-tolerant search enables deeper proteomic analysis and identification of 
disease-relevant PTMs 
 
(A) Pie chart of MS2 spectra incorporated into GNPS network. (B) Edge histogram from 
GNPS with top mass shifts highlighted. (C) Percent of MS2 spectra matched in standard 
and PTM-tolerant workflows. (D) Correlation of GNPS edges and PTMs detected in PTM-
tolerant workflow. (E) Proportion of detected glyco-sites present in Uniprot. (F) MS1 mass 
errors for standard and PTM-tolerant database searches. Correlations of total PSMs (G) 
and unique peptides (H) per protein detected in the standard and PTM-tolerant database 
searches. (I) Unique peptides detected in the standard and PTM-tolerant database search 
ranked by number of unique unmodified peptides then number of unique modified 
peptides. Pie charts depict unique peptide proportions of top and bottom 50% of proteins 
detected in the standard and PTM-tolerant workflows. (J) GO analysis of proteins with 
bottom 50% of unique peptides in the standard search. (K) Proteins with the largest gain 
in unique peptides detected in the PTM-tolerant search. (L) Relative abundance of 
modified ILK peptides detected in PTM-tolerant search. (M) Relative abundance of 
dioxidation of SPSB4 104W detected in PTM-tolerant search.  
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We reasoned that some modified peptides might represent high quality biomarkers 

for predicting infection or SaB mortality. Due to the incompatibility of the higher number 

of missing values for the modified peptides and the EFS approached utilized above, we 

ranked biomarkers simply on Mann Whitney U test p-values. Interestingly, the top 

biomarkers for infection and mortality were both glycan PTMs of alpha-2-HS-glycoprotein 

(AHSG), also known as fetuin A (Fig 4-4A-B). The support for these two glycans is strong 

as evidenced by >50 unique PSMs detected for each peptide, some of which have Byonic 

scores of greater than 400 (corresponding to an FDR <0.1%)(222). Individually, these 

biomarkers demonstrated higher ROC curve AUC values than our top unmodified 

biomarker identified in the standard search (0.9981 vs. 9891 for infection and 0.8066 vs. 

0.7548 for mortality, Fig 4-4A-B). Unmodified fetuin A was also a top biomarker for both 

infection and mortality (Fig 4-2A), although the observed fold-change was higher for the 

glycans than the total protein (Fig 4-4C). Again, we assessed the relation of these 

biomarkers to the collected metadata and primarily found associations with infection and 

mortality (Fig 4-4D). Together, this suggests that these glycans may yield better 

predictive value than the total protein alone. When used in concert with our top unmodified 

protein and metabolite biomarkers (nine total molecular features), these PTMs further 

enhanced predictive power (AUC = 0.92, Fig 4-4E).  To our knowledge, this approach 

generated the best model, based on AUC and n, for predicting mortality from any infection 

using patient-derived biomarkers. 

The above PTM analysis was performed on the normalized raw abundances for 

each modified peptide without consideration for the change in total protein levels. 

However, the modified peptide abundances can also be normalized to the total protein 
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level to investigated potential divergent regulation of protein and PTM. Overall, we found 

that the majority of modified peptides had a positive correlation to their respective total 

protein levels. Correspondingly, when we compare the fold-changes of the modified 

peptide abundance to the protein normalized values for infection and mortality changes, 

we observe highly similar results (Fig4-4F-G); however, there were some exceptions. To 

better understand which modifications deviated from their total protein level, we first 

filtered the protein-normalized PTMs with significant alterations in any of the primary 

sample groupings (ie. NN, HN, HS, HM) using ANOVA (p < 0.05). Then, we clustered the 

significantly altered features using the K-means algorithm. Most striking among these was 

a cluster of modifications that showed a stark increase in abundance only in the mortality 

samples (Fig 4-4H). Interestingly, nearly half (46%) of the modified peptides in this cluster 

were assigned to only two proteins: albumin and serotransferrin (Fig 4-4I). Moreover, the 

modifications on these peptides were primarily carbamylation and formylation (Fig 4-4I). 

Comparing the relative changes in the modified peptide to the total protein abundance for 

albumin (Fig 4-4J), it was observed that, while total albumin levels dropped upon infection 

and were reduced further in mortality patients, albumin was modified at a higher level in 

mortality patients compared to all other groups (Fig 4-4J). Modifications on 

serotransferrin demonstrated a similar trend (Fig 4-4K). Together, this analysis enabled 

a deeper interrogation of serum-derived proteomics data and linked multiple, distinct 

PTMs, including specific glycosylation and carbamylation sites, to increased mortality in 

SaB patients.  
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Figure 4-4 Mortality Associated PTM Signatures in SaB Patient Serum 
 
(A) Relative peptide abundance and ROC curve of AHSG N156 
HexNAc(4)Hex(5)NeuAc(2) discriminating between control and infected samples. (B) 
Relative peptide abundance and ROC curve of AHSG N156 HexNAc(4)Hex(5)NeuAc(1) 
discriminating between survival and mortality samples. (C) Relative fold-changes of total 
AHSG protein and glycosylations of N156 for infection and mortality samples. Depicted 
glycan structures were inferred from the monosaccharide compositions in accordance 
with common serum glycans. (D) Metadata assessment of top modified biomarkers for 
infection and mortality. (E) Multi-omic ROC curve for discriminating between survival and 
mortality samples. Scatter plot of fold-changes comparing (F) control vs. infected and (G) 
survival vs. mortality. (H) Relative abundance of modified peptides assigned to mortality-
specific expression cluster (Control groups: NN – Non-hospital, Non-infected, HN – 
Hospital, Non-infected; Infection groups: HS –Hospital, Survival, HM – Hospital, 
Mortality). (I) Distribution of peptide counts and modifications types of albumin (ALB) and 
serotransferrin (TF) detected in PTM tolerant workflow. (J) Albumin mortality associated 
PTM plot depicting modified peptide abundance (left) and modified peptide abundance 
normalized to total protein levels (right). (K) Serotransferrin mortality-associated PTM plot 
depicting modified peptide abundance (left) and modified peptide abundance normalized 
to total protein levels (right). 
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Unbiased Clustering of SaB Disease Modules. While our primary goal was to 

define biomarkers for the prediction of SaB mortality, our cohort represents the largest 

serum-focused bioanalytic experiment of human S. aureus infection to date. Therefore, 

we sought to further understand the effects of S. aureus infection on the human serum 

landscape using our two primary datasets, the standard proteomics and metabolomics 

findings. Performing a similar clustering approach used for the PTM analysis above, the 

proteomics data was grouped into 6 clusters (Fig 4-5A) and the metabolomics data 

grouped into 7 clusters (Fig 4-5D).  

Simply observing the proteomic clusters, we found some interesting trends in the 

expression profiles (Fig 4-5A). Specifically, proteomics cluster 2 (C2 - orange) captured 

the host response to infection, regardless of mortality status. Within this cluster we found 

C-reactive protein and serum-amyloid proteins 1 and 2, along with other major 

components of the acute-phase response (Fig 4-6A-E). Other interesting clusters include 

clusters 4, 5 and 6, which showed increases (cluster 5) and decreases (clusters 4 and 6) 

in the mortality group making them prime clusters for further investigation. Clusters 1 and 

3 were largely healthy control-specific and hospital control-specific, respectively, but did 

not demonstrate a strong association with infection or mortality. For the sake of clarity, 

the mortality-associated proteomics clusters were renamed according to their expression 

direction and magnitude compared to control samples (C4: pMortality-, C5: pMortality+, 

C6: pMortality--; p signifies “proteomics”). 

To gain a deeper understanding of the crosstalk of proteins between clusters, we 

submitted all of the clustered proteins to a protein association network analysis on String-

DB(123) (Fig 4-5B). Interestingly, we found the largest number of connections between 
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proteins within the pMortality+ and pMortality-- clusters (Fig 4-5C), despite the fact that 

they change in opposite directions relative to the control patients. This suggests that 

proteins that increase in expression may be related to the decrease in expression of 

another protein, and vice-versa. 
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Figure 4-5 Clustering of MS Data into Disease-relevant Modules 
 
(A) K means clustered heatmap, (B) protein association network, and (C) module cross-
talk network of all significantly altered proteins (ANOVA p < 0.05) across the four primary 
groups (Control groups: NN – Non-hospital, Non-infected, HN – Hospital, Non-infected; 
Infection groups: HS –Hospital, Survival, HM – Hospital, Mortality). In B and C, nodes are 
colored according to cluster designations in A. (D) K means clustered heatmap, (E) 
molecular networking overview, (F) within network co-regulation pie chart, and (G) 
module cross-talk network of all significantly altered metabolites (ANOVA p < 0.05) across 
the four primary groups. In E and G, nodes are colored according to cluster designations 
in D. 
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Due to their prominent association with SaB mortality, we delved further into the 

major groups of proteins within the mortality-associated clusters using GO analysis (Fig 

4-6F-H). While the pMortality- cluster had few, low-significant enrichments (Fig 4-6F), the 

pMortality+ and pMortality-- clusters had multiple, highly significant protein groups 

enriched. Cluster pMortality+ is dominated by extracellular matrix (ECM) and insulin-like 

growth factor binding proteins (IGFBPs) and has a moderate enrichment for tumor 

necrosis factor (TNF)/ interleukin-1 (IL1) response (Fig 4-6G). The ECM adhesion 

proteins ICAM1 and VCAM1 have previously been shown to be elevated in SaB patients, 

particularly those with endocarditis(238), and TNF can be used as mortality biomarkers 

in humans(208). However, the striking enrichment for IGFBPs in this cluster represents a 

novel finding in our data. In contrast, pMortality-- was highly enriched for protease 

inhibitors, complement/coagulation cascade members and lipoproteins (Fig 4-6H). A 

decrease of lipoproteins is well described in septic patients(239) and the reduction in 

complement/coagulation proteins is consistent with the activation of these proteins by 

proteolytic cleavage. We also noted that a subset of IGFBPs were present within this 

cluster and possessed some of the most significant ANOVA p-values, which is particularly 

interesting given the upregulation of other family members observed in pMortality+. The 

divergent regulation of distinct IGFBP family members is discussed further below. 
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Figure 4-6 Detailed Analysis of Proteomic SaB Disease Modules 
 
(A-E) Individual plots for major acute-phase reactant proteins contained within proteomics 
infection-associated cluster 2 from Fig 4A including: (A) CRP, (B) SAA1, (C) SAA2, (D) 
ORM1, and (E) ORM2. (F-H) GO analysis of proteomics mortality-associated clusters: 
pMortality- (F), pMortality+ (G) and pMortality-- (H). 
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Similar to the proteomics clusters, biological associations could be defined for our 

metabolite clusters based on their expression profiles (Fig 4-5D). For example, clusters 

1 and 3 showed increased expression in the mortality group relative to other cohorts. In 

contrast, cluster 2 showed an increase in the survival group relative to mortality and 

cluster 4 showed a decrease in expression with infection, which went down further if the 

patient died. Cluster 5 had a strong healthy association and clusters 6 and 7 showed 

increased expression in the hospitalized, non-infected group. Again, we renamed the 

most interesting clusters according to their mortality expression directions and magnitude 

(C1: mMortality++, C3: mMortality+, C4: mMortality-; m signifies “metabolomics”). 

While an association analysis tool like String-DB does not exist for metabolic data 

interpretation, metabolites can be grouped based on the similarity of their MS/MS spectra 

using a molecular networking approach(218). This analysis results in the formation of 

metabolite networks, ranging from 1 – 100 individual metabolites, that bear some 

structural similarity. To visualize our data more clearly, we overlaid the K-means cluster 

color onto the individual metabolites in these networks (Fig 4-5E). Taking a bird’s eye 

view of this data, we noted that nodes within a specific network were commonly assigned 

to the same expression cluster. In fact, >95% of all of our molecular networks had at least 

half of their nodes co-regulated (Fig 4-5F). We also noted that some clusters of similar 

expression profiles were often contained within the same networks, such as mMortality+ 

and mMortality++ (increased in infection/mortality) and clusters 6 and 7 (increased in 

hospitalization) (Fig 4-5G). Together these findings suggest that structurally related 

metabolites are often co-regulated, offering more support for their importance in the host 

response to infection and mortality.  
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Global Characterization of Metabolic Dysfunction in SaB Mortality Patients. As 

noted above, we detected a divergent regulation of IGFBPs in our mortality-associated 

protein modules. Specifically, we found that IGFBP1, 2, 4 and 7 were assigned to the 

pMortality+ cluster and thus had higher expression in mortality patients compared to 

controls and survival patients (Fig 4-7A). In contrast, IGFBP3, 5 and IGFALS were in 

pMortality--, demonstrating an opposite trend in expression (Fig 4-7B). IGFBPs function 

by binding to and stabilizing IGF-I and II in serum(240). The binding of IGFs to IGFBP1, 

2, 4 or 7 results in the formation of binary complexes that extend the half-life of the IGF 

molecules from 2 - 30 minutes. However, if both IGFBP3 and IGFALS bind IGFs, forming 

a ternary complex, this stabilization is increased up to 24 hours. IGFBP5, can also form 

a ternary complex with IGFALS, albeit to a lesser extent than IGFBP3. Given the 

expression patterns above, we would expect the amount of IGFs in the blood to decrease 

as the constituents of the ternary complex decrease. Indeed, we noted a significant 

decrease in IGF-II with increasing disease severity and a similar trend with IGF-I, although 

the latter results did not attain statistical significance, likely due to the high number of 

missing values (Fig 4-7C). Further, a formal comparison of the correlations between IGFI 

and II with all the IGFBPs detected in our dataset revealed positive correlations of IGFs 

with IGFBP3, 5 and ALS, but mostly negative correlations with the rest of the IGFBPs 

(Fig 4-7D). Together, these data suggest that SaB mortality is associated with a decrease 

in the IGFBP ternary complex and an increase in binary complexes, ultimately resulting 

in lower levels of circulating IGF proteins.  

Given the striking association of the IGF system with SaB mortality risk and the 

role of IGFs in host metabolism, we sought to further understand this metabolic 
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dysfunction. Thus, we mined the data for other molecular features related to general host 

metabolism. An obvious signature, derived from the GO analysis of our mortality-

associated clusters, is the general decrease in apolipoproteins upon infection, which 

further decreases in SaB mortality patients (Fig 4-7E). A depletion of lipoproteins in 

response to infection is well known and has been proposed as a prognostic marker for 

severe sepsis(241, 242). Our results reinforce these findings further and establish a link 

between this phenomenon and SaB in addition to non-specific sepsis.  

We also uncovered evidence for host metabolism dysfunction within our 

metabolomics dataset. The most prominent single feature we found was thyroxine (T4), 

a master regulator of host metabolism. T4 was assigned to cluster mMortality- and thus 

had a significant decrease in expression with infection, further extended in the mortality 

group (Fig 4-7F). In fact, T4 was our highest ranked, identified biomarker from our 

metabolomics screen. We also noted a similar trend in SERPINA7 (assigned to 

pMortality- cluster; Fig 4-7F), also known as thyroxine-binding globulin, which binds to 

and stabilizes T4 in circulation(243), further supporting the observed reduction in free T4 

levels. Thyroid hormone dysfunction during non-specific sepsis, also known as euthyroid 

sick syndrome, is well characterized(244, 245); however, it has not been previously 

associated specifically with SaB infections nor mortality. 
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Figure 4-7 Detection of Metabolic Dysfunction in SaB Mortality Patients 
 
(A) Relative protein abundance of IGFBP binary complex members. (B) Relative protein 
abundance of IGFBP tertiary complex members. (C) Relative protein abundance of IGF 
hormone molecules. (D) Correlation matrix of all IGFBP system family members. (E) 
Heatmap of relative apolipoprotein abundance. (F) Relative metabolite abundance of 
thyroxine signaling components. (G) Molecular network and (H) relative metabolite 
abundance of acyl-carnitines. In G and H, nodes and points are colored according to 
cluster designations in Fig 4D. 
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Another evident association of host metabolism with SaB mortality is the increase 

in decanoyl-carnitine abundance in mortality patients, which was our highest ranked, 

identified, metabolite biomarker with increasing expression (assigned to mMortality+ 

cluster). Decanoyl-carnitine is involved in fatty acid metabolism(246). Unlike T4, which 

was not grouped into a molecular network; rather, deconyl-carnitine was found to be part 

of larger network of related metabolites (Fig 4-7G). Observing this network as a whole, 

we found that the majority of nodes were assigned to mMortality+ (yellow) and 

mMortality++ (red) (Fig 4-7G), which increase in abundance with disease severity (Fig 4-

7H). Most of these nodes were not identified in our initial GNPS analysis; however, we 

noted a large number of mass shifts of 28 Da, corresponding to two links in a fatty acid 

chain (Fig ie CH2-CH2). By following the mass shifts through the molecular network, we 

can assign identities to additional nodes such as hexanoyl-carntine and octanoyl-

carnitine, which have stronger associations to mortality than the initially identified 

decanoyl-carnitine. Interestingly, there is a subset of this network that is moderately 

related to acyl-carnitines, which also demonstrates a strong association with SaB 

mortality and possess the 28 Da mass shifts suggestive of a fatty acid chain (Fig 4-7G – 

circle). Determining the molecular structures of these compounds and how they impact 

fatty acid metabolism would give us a deeper understanding of this metabolic dysfunction 

phenotype. Together, the above data indicate that the host metabolism dysfunction 

resulting from SaB may be predictive of patient outcomes.  

Knowledge-based Analysis of Proteome Alterations Captures Underlying Cytokine 

Mortality Signatures. The above results describe a comprehensive assessment of the 

major molecular features associated with SaB mortality that are amenable to MS-based 
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analyses. However, major cytokine families, the focus of most infectious disease 

biomarker studies, were underrepresented in our dataset. These signaling molecule fall 

below the standard limit of detection in typical serum proteomic experiments(234), even 

in recent attempts at ultra-deep serum proteome coverage(236, 247), but have been 

shown to play major roles in disease, despite their low concentrations. Therefore, we 

designed a computational approach to infer the relative importance of major cytokine 

families from our proteomics data using functional protein association networks (Fig 4-

8A – step 1). This analysis involves submitting a list of significantly altered proteins, along 

with lists of major cytokine families (eg. ILs, CXCLs, etc.), to the String-DB tool, resulting 

in a large network including both experimentally derived proteomic data and any known 

associations to cytokines. We can then determine which cytokines have the largest 

number of connections to proteins within our network, in specific expression clusters of 

interest (Fig 4-8A – step 2). By regenerating the networks using only the cytokines most 

associated with the clusters of interest, we can refine our networks to show the most likely 

underlying contributors to the observed protein expression (Fig 4-8A – step 3). 
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Figure 4-8 Knowledge-based Analysis of Cytokines Predicts Major Contributors to 
Proteomic Alterations and Identifies Core of Modulated Proteins 
 
(A) Schematic for analysis of proteins that go undetected in proteomic analyses. (B) 
Inferred cytokines ranked by number of total mortality connections. (C) Connections of 
the top 3 ranked cytokine to each mortality-associated K means cluster. (D) Refined 
network of top 3 ranked cytokines and pMortality+ cluster proteins. In A, C, and D, 
heatmap, bars and circular nodes are colored according to cluster designations in Fig 4A. 
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In this experiment, we used complete lists of all the ILs, CXCLs, CCLs, IFNs, TNFs 

and TGFbs as our cytokine input lists. We then assessed which cytokines had the highest 

number of connections to the mortality-related proteomic profiles (ie. pMortality+, 

pMortality-, and pMortality--). We found that IL6, TNF, IL10, CXCL8, CCL5 and CXCL12 

had the highest number of connections to our mortality networks (Fig 4-8B), suggesting 

they play a large role in the observed proteome. Notably, the top four inferred cytokines 

have demonstrated strong associations with SaB mortality in previous studies (TNF and 

IL10(208, 210); IL6 and CXCL8(214)), providing validation for this approach. This analysis 

further indicates that CCL5 and CXCL12 may also be linked to SaB mortality and merit 

further study. Focusing in on the top 3 cytokines predicted from this analysis (IL6, TNF 

and IL10) we found that the majority of the connections were to proteins in pMortality+ 

(Fig 4-8C). Regenerating a functional protein association network using only proteins 

from pMortality+ that are directly linked to a top 3 cytokine yielded a refined network (Fig 

4-8D) that was much easier to interpret than the large, unwieldy networks initially 

generated. Similar networks can be generated with the proteins with reduced expression 

in mortality patients. Delving into the pMortality+ network, we found that ~50% of the 

proteins were connected to all of the top 3 cytokines (Fig 4-8D – black circles), suggesting 

they may be the most interesting proteins for further study. These include a number of 

proteins that contribute to the resolution of inflammation (eg. ADIPOQ, TIMP1, MRC1, 

CD163) and may represent actionable targets for new therapeutic interventions. 

Together, this analysis predicted the top cytokines that influence to the observed 

proteome landscape and enables researchers to start defining disease-associated 

pathways to biologically test in subsequent studies.  
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T4 and Adiponectin Signaling Influence SaB Outcomes in vivo. While the analyses 

above detail the biomarkers and pathways altered during SaB, it is unclear whether they 

are simply bystander markers or functionally contribute to disease outcomes. To address 

this gap, we utilized a mouse model of SaB to assess the influence of key features 

identified in the above data and determined their effects on bacterial burden and overall 

survival. We focused on two areas derived from the multi-omic analysis: thyroid hormones 

and adiponectin signaling. 

Our multi-omic analysis captured a striking dysregulation of general host 

metabolism (Fig 4-7), including reduced levels of T4 in mortality patients. Exogenously 

administered T4 has been previously shown to be protective in mouse and rat models of 

polymicrobial sepsis(248); however, its contributions to SaB mortality remain unclear. 

Further, the impact of a hypothyroid state on SaB infections has not been tested. To 

address these questions, we designed an animal experiment to test whether 

pharmacologically altering T4 levels could affect survival in a SaB mouse model of 

infection (Fig 4-9A). We treated mice with either 1) a hypothyroid treatment (MMI and 

NaClO4) in their drinking water or 2) supplemental T4 through intraperitoneal (I.P.) 

injections to induce hyperthyroidism. Following these previously described treatment 

regimens(248, 249), we intravenously infected the mice with S. aureus and assessed 

survival. We found that hypothyroid mice had higher mortality rate than the control mice 

while the hyperthyroid group demonstrated four-time greater survival at 48 hours post-

infection (p.i.) than the control group. It is worth noting that while the hypothyroid mice 

died more rapidly than control, control animals also succumbed to infection, leaving a 

marginal window to observe a significant difference between the groups. To interrogate 
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this finding further, we repeated the hypothyroid infection with a lower dose of S. aureus 

(50% original inoculum) and harvested organs for bacterial enumeration. Again, the 

hypothyroid mice had increased mortality than the control group (Fig 4-9C), and, 

consistently, the mice surviving at 48 hours p.i. had increased bacterial load in their hearts 

(Fig 4-9D) and kidneys (Fig 4-9E), indicating a defect in bacterial clearance.  

Increased IL10 has emerged as a high confidence biomarker for the prediction of 

SaB patient mortality, which has been validated based on several studies from multiple 

groups, including our own. Through the cytokine-inference approach described above 

(Fig 4-8), we similarly predicted a significant contribution of IL10 to specific proteomic 

alterations. In particular, the IL10-linked, anti-inflammatory proteins may play a role in 

suppressing the overwhelming immune response observed in bacteremic patients. One 

of these anti-inflammatory proteins, adiponectin, had not previously been linked to SaB, 

but it is known to induce IL10 expression in human leukocytes(250). Given that IL10 is 

protective in a mouse SaB infection(251), we hypothesized that targeting adiponectin 

could also improve survival outcomes. To test this hypothesis, we treated mice with a 

commercially available small-molecule activator of the adiponectin receptor, AdipoRon, 

or vehicle control (Fig 4-9A), and utilized the same experimental scheme described 

above for the T4 experiments. Treatment with AdipoRon also markedly enhanced mouse 

survival (Fig4-9F) and induced significant decreases in organ CFUs (Fig 4-9G-H). 

Altogether, these in vivo studies demonstrate that stimulation of both the thyroid hormone 

system and the adiponectin receptor are protective in a mouse model of SaB. 
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Figure 4-9 Thyroid and Adiponectin Signaling Contribute to SaB Mortality in vivo 
 
(A) Schematic for treatment plan and mouse model of SaB. (B) Survival curve of mice 
given hyperthyroid, hypothyroid or control treatments then infected with 1x108 CFU S. 
aureus LAC. (C) Survival curve of mice given hypothyroid or control treatments then 
infected with 5x107 CFU S. aureus LAC. Bacterial CFUs recovered from the kidney (D) 
and heart (E) in hypothyroid or control mice 48 hours after infection with 5x107 CFU S. 
aureus LAC. (F) Survival curve of mice given AdipoRon or control treatments then 
infected with 5x107 CFU S. aureus LAC. Bacterial CFUs recovered from the spleen (D) 
and heart (E) in AdipoRon or control mice 48 hours after infection with 5x107 CFU S. 
aureus LAC. 
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Discussion 

The traditional strategy for establishing prognostic biomarkers for infectious 

diseases has been based on analyses of a small subset of immunological response 

metrics such as cytokines. The current study sought to establish a new standard of 

infectious disease biomarker assessment by examining a much broader profile of the host 

response, eliminating the assumption that all clinically relevant responses to SaB are 

immunological. Beginning with a solid foundation of a large cohort with matched metadata 

in conjunction with a multi-omic approach, we defined numerous features whose 

predictive abilities equal or surpass that of previously published biomarkers(208-210, 

214). In addition, the systems level of the analysis naturally led to the construction of 

multivariate models using combinations of biomarkers with predictive abilities that clearly 

outperform the current standard in the field. Importantly, this unbiased analysis uncovered 

features that would not be typically tested in the context of infection. Further, we 

associated all of the quantified features with all of the recorded metadata, thus laying the 

groundwork for subsequent follow-up studies in a variety of focus areas. While most 

biomarker studies may have stopped after simply defining predictive features, we 

expanded this study further through the application of additional computational analyses, 

an in-depth interrogation of disease-relevant host factor alterations, and validation of 

therapeutic relevance in an animal infection model.  

Crude predictors of mortality in SaB can be based upon clinical, 

echocardiographic, and radiographic assessments of the patient(252, 253); however, 

they lack sufficient sensitivity and specificity to serve as reliable stratification methods 

upon which to individualize, de-escalate or stop therapy. Due to this ambiguity in 
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stratification, antimicrobial therapy selection and duration in SaB is largely based upon 

‘one size fits all’ protocols whose foundations originate from the empiricism of clinical 

experience in the second half of the 20th century, when the antibiotic era was 

established(254). Clinical trials of SaB fail to discriminate the heterogenous patient types 

that make up a SaB clinical cohort and therefore have lacked sufficient granularity to 

enable clinically meaningful progress in an era of more potent antimicrobial therapy, 

particulary against MRSA(255). As a result, improvements in mortality in MRSA 

bacterema have not kept pace with progress in other fields of medicine over the past 

three decades, despite better drugs and faster diagnostics(255, 256). 

Combination therapies offer an appealing approach to improve patient outcomes 

in SaB. For example, SaB patients with a higher mortality risk predicted by biomarker 

concentrations at the time of admission to the hospital may be candidates for daptomycin 

plus ceftaroline combination therapy. This combination therapy was recently to 

significantly reduce 30-day mortality compared to standard monotherapy (vancomycin or 

daptomycin) in a small prospective randomized trial, particularly in patients with elevated 

IL-10(257). The current challenge facing clinicians is that the cost of daptomycin plus 

ceftaroline is > 50 times that of vancomycin, posing considerable hospital pharmacy 

economic constraints. Attempts at developing less costly combinations have been 

wrought with drug toxicity(258-260). Therefore, utilizing the biomarkers uncovered herein 

to identify the 20 - 30% of patients with high SaB mortality risk on standard therapy would 

provide a compelling advance in the management of this disease.  

In addition to defining standard protein and metabolite biomarkers for SaB 

mortality, this study utilized two advanced computational strategies to deepen the 
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analysis of proteomics data. First, a workflow was employed for the prediction and 

identification of PTMs from high-resolution proteomic datasets. Borrowing techniques 

used in the metabolomics field, molecular networking revealed that the paucity of 

identifications in serum datasets likely derives from the presence of highly modified 

peptides, including both serum glycoproteins and unexpected small PTMs. Using refined 

database searching techniques enabled us to match these modified features with high 

confidence. This approach resulted in the identification of our top predictive biomarkers, 

glycosylated peptides derived from fetuin A. Glycosylation has been used as biomarkers 

for various diseases, including cancer(261), Alzheimer’s disease (262) and chronic 

inflammatory conditions(263). However, this is the first time that host glycosylation 

patterns have been linked to human SaB mortality. Specific interrogation of serum protein 

glycosylation patterns associated with mortality could provide a useful clinical tool in the 

future.  

Intriguingly, our top unmodified biomarker was fetuin B and our top modified 

biomarker was glycosylation of fetuin A. Fetuins belong to the cystatin superfamily of 

proteins(264, 265) and can transport free fatty acids in the bloodstream(266). Both fetuin 

A and B are commonly studied in metabolic disorders such as obesity and diabetes, but 

fetuin A has also been shown to exert anti-inflammatory effects(267). Notably, fetuin A 

supplementation is protective in mouse models of systemic inflammation(266). Thus, 

defining the role of fetuin B in this process and whether glycosylation of either of these 

proteins impacts their activity could be of significant interest to the infectious and 

inflammatory disease communities. Regardless, both proteins can now be classified as 

high quality biomarkers of SaB patient mortality. 
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Another striking PTM finding uncovered in this dataset was a widespread increase 

in carbamylation of albumin and serum transferrin in mortality patients. Protein 

carbamylation is a non-enzymatic PTM(268) that is related to a number of pathological 

processes, including chronic kidney disease(269) and rheumatoid arthritis(270). In fact, 

multiple studies have proposed carbamylation of albumin as a prognostic factor for 

mortality in patients with kidney failure(269, 271). Of course, kidney disease and SaB are 

intimately related(232, 272), but the common signature of carbamylation suggests an 

underlying pathological process. Further, patients with rheumatoid arthritis, which can 

also be linked to S. aureus infections(273) and colonization(274), are reported to have 

higher levels of anti-carbamyl antibodies(275). Whether this modification is pathological 

or simply a marker of disease severity requires additional experimentation; nevertheless, 

it appears intimately linked with a variety of disease states, warranting further 

interrogation.  

The second computational advancement in serum bioanalytics utilized in this study 

is the inferring of underlying cytokines signatures from serum proteomics data. A common 

drawback to unbiased proteomic approaches is when crucial proteins, known to be 

associated with a particular disease, go undetected in the MS data. This problem is 

exacerbated when analyzing serum samples due to the extreme dynamic range in protein 

concentrations. To mitigate this issue, we reasoned that relevant proteins could be 

predicted simply based on the observed proteomic alterations using a knowledge-based 

networking strategy. To demonstrate the application of this approach, we use our 

detected proteins to predict underlying cytokine signatures, which fall beneath the lower 

limit of detection in typical proteomic analyses(234, 236, 247). This analysis predicted 
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major alterations in TNF, IL6, IL10 and CXCL8 in mortality samples, all of which have 

exhibited strong associations to SaB human mortality in previous studies(208-210, 214), 

validating the method. This approach also enables researchers to link these major 

cytokine players to the observed proteomic alterations, facilitating the construction of new, 

readily testable hypotheses (such as the impact of adiponectin signaling in SaB). 

Additionally, we predict that CCL5 and CXCL12 may also play significant roles in the host 

response to SaB. Interestingly, receptors for both CCL5(276) and CXCL12(277) (CCR5 

and CXCR4 respectively) are targets of S. aureus toxins that reduce host cell signal 

transduction and migration in vitro, further supporting their critical roles in host defense. 

Together, this method reinforced previous findings from the literature, further refined host 

response pathways and identified new potential players in disease. 

In addition to defining high confidence biomarkers for the prediction of SaB 

mortality, we sought to gain a deeper understanding of the underlying biology leading to 

death. To do this, we parsed our multi-omics data into groups with similar expression 

profiles and performed a thorough interrogation of the mortality relevant clusters. 

Unexpectedly, the most striking findings from this were not related to the immune system, 

but rather a systemic dysfunction of host metabolism. While some of our findings have 

been previous described, such as the suppression of serum lipoproteins and T4 during 

severe infections, we also captured novel signatures of metabolic dysfunction, specifically 

linked to mortality. The most salient of these was the apparent shift from ternary to binary 

IGF-IGFBP complexes, resulting in lower circulating IGF levels, and the increase of acyl-

carnitines and related molecular species in SaB mortality patients. The ultimate functional 

outcome of these perturbations is unclear; however, they may help uncover alternative 
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therapeutic avenues by which to stabilize patients while providing standard antimicrobial 

treatments.  

Finally, we demonstrated that stimulation of both thyroid and adiponectin signaling 

pathways can enhance mouse survival in experimental SaB. Previous studies into thyroid 

signaling suggest that it’s inhibition of macrophage migration inhibitory factor(248) or 

enhancement of intracellular bacterial killing(278) are responsible for its protective effects. 

In contrast, adiponectin is an adipokine (ie. produced primarily by adipocytes) that is 

mainly studied for its role in insulin resistance and diabetes(279). However, adiponectin 

also has anti-inflammatory, cardioprotective and vasoprotective effects(279) and 

adiponectin KO mice are more susceptible to polymicrobial sepsis(280). In line with these 

findings, our data indicate a protective role for adiponectin signaling in SaB infection 

models. Importantly, both T4(281) and AdipoRon(282) are orally bioavailable and T4 is 

already FDA-approved. If T4 or AdipoRon could offer similar protection in humans, they 

may be explored as adjunctive approaches to antibiotics for reducing SaB mortality.  

Overall, our study aimed to set a new standard in the infectious disease biomarker 

field. We provide the best model for predicting SaB mortality reported to date and explore 

the use of computational approaches to enable a more complete analyses of our 

proteomic dataset. Conducting future studies to the same depth and rigor will likely 

uncover additional clinically useful findings and lead to a deeper understanding of 

mortality in infection. Ultimately, this study sets the groundwork for a multi-marker based 

tool for the rapid prediction of SaB patient mortality risk and patient stratification at the 

time of clinical presentation – a ‘Rapid SaB Death Test’. 
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Chapter 4, in part, is a reprint of material submitted to Cell, 2020 (manuscript in 

revision), Jacob M. Wozniak, Joshua Olson, JR Caldera, Robert H. Mills, Marvic Carrillo-

Terrazas, Chih-Ming Tsai, Fernando Vargas, Pieter C. Dorrestein, George Y. Liu, Victor 

Nizet, George Sakoulas, Warren Rose and David J. Gonzalez. The dissertation author 

was the primary author of this paper. 
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Chapter 5 – Future Directions 
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Summary 

The above work represents foundational studies in a variety of research areas 

linked through the common theme of applying mass spectrometry-based approaches to 

better understand infectious diseases. The power in these techniques lies in their ability 

to identify and quantify thousands of molecular features in physiologically relevant 

compartments (ie. human serum, bacterial secretions, etc.) and the unbiased nature of 

data collection, which can include biologically relevant modified peptides and metabolites. 

Importantly, the biological significance of number of the identified features was validated 

through various in vitro and in vivo experiments. However, the systems level scale also 

enables to construction of numerous additional hypothesis that can be interrogated. 

Therefore, the Future Directions chapter of this thesis is presented in the form of a grant 

application to further investigate the findings above.  
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AIM 1: The human metabolome is a driver of SaB-induced death 
1.1 Establish optimal timing and effective concentration of T4 SaB therapy 

Rationale. Our preliminary data demonstrates that increased levels of T4 signaling 

is protective to the host during SaB infections, both in regard to mouse survival (Fig 21B-

C) and organ CFU burden (Fig 21D-E). Other groups have reported T4 administration 

following infection to also be protective against other pathogens(248, 278). However, the 

pharmacokinetics of T4 were ill-defined in these studies. Therefore, to verify and further 

understand the contributions of T4 signaling in SaB, we aim to precisely define thyroid 

hormone pharmacokinetics during modulating treatments and SaB. This will allow us to 

properly understand the effects of maximal and minimal levels of T4 signaling in relation 

to SaB in subsequent experiments, which can subsequently be used to optimize drug 

administration regimens for favorable SaB outcomes.  

Experiment 1.1.1 – Define thyroid hormone kinetics during thyroid modulating 

treatment. With the ultimate goal of establishing the effective concentration of T4, we will 

first need to define thyroid hormone kinetics during thyroid modulating treatment. Mice (n 

= 5) will be separated into hyperthyroid (T4+), hypothyroid (T4-) and control groups and 

treated as follows. T4+ mice will receive hyperthyroid treatment (I.P. injections of T4 once 

daily) for 1 week. T4- mice will receive hypothyroid treatment (MMI in drinking water) for 

3 weeks. Control mice will receive standard drinking water and injections of 1X PBS at 

identical time points to the T4+ mice. T3 and T4 levels will be measured twice daily (12 

hr apart) by taking facial bleeds and analyzing via ELISA assays. The minimum and 

maximum levels of T4 observed in this experiment will be hereafter referred to as T4min 

and T4max, respectively.  
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Experiment 1.1.2 – Determine T4 effective concentration range. Once the optimal 

treatment strategies to generate T4min and T4max have been established, we will attempt 

to define the effective concentration of T4 in the blood. To do this, we will then select six 

concentrations representing an even distribution over the T4 range (ie. 0%, 20%, 40%, 

60%, 80% and 100% of T4max – T4min). We will treat mice (n = 60; 10 mice each condition) 

with thyroid modulating therapy to achieve the desired T4 concentrations and infect mice 

with S. aureus. As in our preliminary studies, both survival and CFU burden experiments 

will be performed. For survival experiments, mice will be infected with a high dose of S. 

aureus (1x108 CFUs) and weight change and survival will be monitored every 12 hours 

for 5 days post infection (P.I.). For CFU burden experiments, mice (n = 30; 5 mice each 

condition) will be infected with a low dose of S. aureus (1x107 CFUs) and then euthanized 

48 hrs P.I. for organ harvesting and CFU enumeration. The T4 levels that result in the 

best and worst outcomes (as determined by both survival and CFU burden) will be 

hereafter referred to as “optimal T4 SaB treatment”. 

Experiment 1.1.3 – Assess the combinatorial effects of T4 plus standard SaB 

therapy. Once we have optimized T4 SaB treatment, we will explore the use of 

combinatorial therapy to more accurately replicate clinical settings. We will treat mice (n 

= 40; 5 mice each condition) with optimal T4 SaB treatment, infect mice as above for 

survival experiments and treat with common antibiotics used in the clinic. We will infect 

mice (n = 10 each) with both methicillin sensitive and methicillin resistant strains and treat 

with the appropriate antibiotic (flucloxacillin for MSSA and vancomycin for MRSA, n = 5 

each). Untreated (n = 5 each strain) and monotherapy antibiotics (n = 5 each strain) will 
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be used as controls. Mice will be monitored and assessed for their response to SaB as in 

Experiment 1.1.2. 

Anticipated results, potential pitfalls and alternative approaches. Based on 

previous studies, we expect the murine T4 levels range from 1 – 100 pg/L. Upon 

completion of this aim, we hope to have established a kinetic profile of thyroid hormone 

levels during thyroid modulating treatment. Utilizing these profiles, we also plan to identify 

the thyroid hormone levels that provide the best protection and worst outcomes. This 

information can be used in subsequent experiments investigating T4 protective effects 

and can be extrapolated and compared to human T4 levels to guide potential therapies 

in the clinic. It is possible that the above experiments do not deviate significantly from our 

preliminary models of T4 modulating treatment. If this is the case, it suggests that our 

current treatment therapy already represents the “optimal T4 SaB treatment”.  

1.2 Define the contribution of macrophages to T4 protective effects  

Rationale. T4 signaling has been shown to be protective for multiple 

infections(248, 278). These studies linked the protection to macrophages, either through 

direct effects on cell function(278) or through blocking interaction with serum 

components(248). One study found minimal basal levels of THRA in macrophages, but 

that expression could be induced following exposure to pathogens(278). However, 

through the use of inhibitor studies, the authors attributed the effects of T4 to non-

canonical signaling through ITGAV/B3 – PI3K – ERK1/2 pathway(283). Consistent with 

these findings, Human Protein Atlas (HPA)(284) data indicated basal expression of THRA 

and THRB is minimal in immune cells (Fig 5-1A), but, conflictingly, so are ITGAV and 

ITGB3 (Fig 5-1A). Another data resource (the DICE database(285)) confirmed low 
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immune cell expression of THRB (Fig 5-1B), ITGAV and ITGB3 (data not shown), but 

found appreciable levels of THRA (Fig 5-1C) in specific immune cells, such as T cells 

and NK cells. Interestingly, we found the expression of ITGAV/B3 (Fig 5-1D) to increase 

in THP1-derived macrophages following infection with S. aureus, similar to THRA in 

response to other pathogens(278). Therefore, it is clear that various immune cells express 

receptors for T4, either basally (T and NK cells) or induced (macrophages) which could 

contribute to the protective effects of T4 in vivo. With the wealth of data linking T4 

protective signaling to macrophages, we will interrogate if macrophages play a similar 

role in the context of SaB infections in vivo. In parallel, we will characterize the impact of 

T4 on macrophage cell function and anti-S. aureus defense mechanisms in vitro.  

Experiment 1.2.1 – Determine the role of macrophages in T4 SaB protective 

signaling. To investigate the contribution of macrophages to T4 SaB protective signaling, 

we will perform murine macrophage depletion/adoptive transfer experiments while 

simultaneously providing optimal T4 SaB therapy as described above. Mice (n = 30; 10 

of each control, T4+ and T4- mice) will be depleted of macrophages using clodronate 

liposomes(286). Depletion of macrophages will be assessed by histological staining for 

the macrophage marker F4/80 in the liver, spleen and colon(286). Following optimal T4 

SaB therapy and immune depletion, mice will be infected as above for survival and CFU 

burden experiments. In half of the depleted mice (n = 15; 5 of each control, T4+ and T4- 

mice), macrophages will be reconstituted through adoptive transfer experiments to control 

for the clodronate liposome-mediated depletion of other professional phagocytes(286). 

An additional control group of un-depleted mice (n = 15; 5 of each control, T4+ and T4- 

mice) will also be included.  
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Experiment 1.2.2 – Interrogate T4-treated macrophage activation. To interrogate 

effects of T4 on macrophage activation, three separate sources of cells will be utilized. 

For the first source, mice (n = 15; 5 of each control, T4+ and T4- mice) will be treated with 

optimal T4 SaB therapy and peripheral blood mononuclear cells (PBMCs) will be isolated 

from whole blood and differentiated into macrophages using described cytokines(287). 

For the second source, PBMCs will be isolated from untreated mice and differentiated 

into macrophages, but then treated ex vivo to mimic optimal T4 SaB therapy (n = 15; 5 of 

each control, T4+ and T4- mice) for 24 hours prior to experiments. The third source of 

macrophages will be differentiated from PBMCs isolated from human whole blood and 

treated ex vivo with T4 as above (n = 15; 5 of each control, T4+ and T4- mice). 

Macrophages will then be challenged with either IFN-γ (50 ng/ml) and LPS (10 ng/ml) to 

induced M1 polarization or with IL-4 (20 ng/ml) to induce M2a polarization(287). 

Transcript (Il12b and Ptgs2 for M1 and Klf4 and Irf4 for M2a), measured via quantitative 

polymerase chain reaction (qPCR), and cytokine markers (TNF and IL6 for M1 and IL10 

and TGFb for M2a), measured via ELISA, will be used to assess activation(287). 
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Figure 5-1 Basal and Induced Expression of Thyroxine Interacting Proteins 
 
(A) Expression of known T4 receptors in various tissues (HPA). Expression of THRA (B) 
and THRB (C) in various immune subsets (DICE database). (D) Expression of ITGAV/B3 
in THP1-derived macrophages upon exposure to S. aureus. Serum protein expression of 
(E) MIF, (F) SERPINA7, and (G) TTR in various human samples. 
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Experiment 1.2.3 – Interrogate T4-treated macrophage migration. To interrogate 

effects of T4 on macrophage migration, three cohorts of immune cells will be prepared 

for experiments as described in Experiment 1.2.2. However, instead of measuring 

activation markers, we will assess macrophage migration in transwell assays. 

Complement component 5a (C5a - 100 nM), to which both M1 and M2 macrophages are 

responsive, will be used as a chemoattractant, and migration quantified by lysing cells in 

both chambers and measuring relative lactate dehydrogenase (LDH) concentrations in 

the bottom chamber.  

Experiment 1.2.4 – Interrogated the effects of T4 on macrophage S. aureus 

opsonization, phagocytosis and killing. To interrogate effects of T4 on macrophage 

interaction with S. aureus, again three cohorts of macrophages will be prepared for 

experiments as described above. However, these cells will now be infected with 

inoculums of S. aureus (MOI 10:1 bacteria:host cells) and phagocytosis and killing assays 

will be performed(288). Phagocytosis by macrophages will be determined by incubating 

S. aureus with macrophages for 0.5, 1 and 2 hrs then killing extracellular bacteria with 

antibiotics for 1 hr then immediately quantifying intracellular bacteria(289). To test for S. 

aureus killing, macrophage experiments will be carried out as above, but extending the 

time course to 4, 8, and 16 hrs P.I. In both experiments, host cell viability will be assessed 

using LDH released into the supernatant and S. aureus phagocytosis/viability will be 

assessed by serial dilution and CFU enumeration.  

Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we anticipate having determined if macrophages are essential for the 

protective effects of T4 against SaB infections in vivo. We also hope to confirm and further 
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interrogate these cellular mechanisms of action using in vitro experiments. Once the 

contribution of macrophages has been verified, precise signaling mechanisms can be 

interrogated with conventional inhibitor and knockdown studies in cell lines and primary 

cells. For example, whether T4 SaB protective signaling is mediated by canonical 

receptors (ie. THRA and THRB) or non-canonical mechanisms (eg. ITGAV/B3 – PI3K – 

ERK1/2) can be determined. Once precise signaling mechanisms are pinpointed in vitro, 

we will validate their in vivo relevance using the SaB animal model described above. 

Since exposure to pathogens can induce T4 receptor expression, it is possible that 

additional cell types could mediate the protective effects of T4, such as other innate cells, 

adaptive immune cells or systemic components (eg. the serum or vasculature). If we are 

unable to assign the protective effects of T4 to macrophages in the experiments described 

above, we will begin to interrogate other immune responses using mice deficient 

neutrophils(290), NK cells(291) or adaptive immune cells (eg. Rag-I mice).  

1.3. Define the serum contributions of the T4 protective mechanism 

Rationale. In addition to the potential direct effects on macrophages as described 

above, T4 is known to interact with serum components such as thyroxine-binding globulin 

(SERPINA7), transthyretin (TTR) and macrophage inhibitory factor (MIF). Interestingly, 

we observed opposite trends in expression for these two proteins during SaB infection 

(Fig 5-1 E-G). T4-mediated antagonism of macrophage inhibitory factor (MIF) has been 

proposed to be beneficial for the host during polymicrobial sepsis(248). We hypothesize 

that, in addition to direct effects on immune cells, T4 imparts protective systemic effects 

during SaB, which can be mediated via serum components. The following experiments 



 147 

are designed to interrogate if T4 protective signaling is also mediated through 

components in the serum, with a specific focus on MIF.  

Experiment 1.3.1 – Interrogate the effects of T4 on S. aureus growth in serum. 

Serum has been shown to possess bacteriostatic effects on S. aureus growth in a dose 

dependent manner(292). To determine if T4 has any direct effects on serum that may 

contribute to the ability for S. aureus to survive in vivo, we will assess the ability of S. 

aureus to survive in serum under various conditions. First, mice will be treated with 

optimal T4 SaB therapy (n = 15; 5 of each control, T4+ and T4-) and serum will be 

collected for further experiments. Serum will be serially diluted to assess the dose-

dependency of any observed effects. In tandem, mouse and human serum treated ex 

vivo to mimic optimal T4 SaB therapy (n = 15; 5 of each control, T4+ and T4-) will be 

interrogated for S. aureus bacteriostatic effects. S. aureus bacteriostatic effects will be 

assayed by incubating bacteria in serum at a concentration of 107 CFUs/ml for 2, 4, 6 and 

8 hr. Following incubations, surviving S. aureus will be determined by serial dilution and 

CFU plating. An anti-MIF blocking antibody(293) (0.5 mg/mouse) and the MIF inhibitor, 

Z-590(294) (9 mg/kg), will be used to determine if any effects are related to MIF activity.  

Experiment 1.3.2 – Interrogated the effects of T4 on S. aureus whole-blood 

survival. Whole blood contains both serum components and innate immune cells and 

therefore can be used to interrogate potential serum-mediated mechanisms. To 

determine in T4 has any effects on S. aureus whole-blood survival, whole blood will be 

prepared from three sources as the serum in Experiment 1.3.1 (ie. from mice receiving 

optimal T4 therapy and whole blood from untreated mice and humans spiked with T4 ex 

vivo). S. aureus survival will be assayed by incubating bacteria in the variously treated 
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whole blood at a concentration of 107 CFUs/ml for 2, 4 and 6 hours. The contributions of 

MIF will be interrogated as in Experiment 1.3.1.  

Experiment 1.3.3 – Interrogated the effects of T4 on serum-enhanced, S. aureus 

opsonization, phagocytosis and killing. To verify and pinpoint the contributions of specific 

immune cells to T4 SaB protective effects, phagocytosis and killing assays will be 

performed as described in Experiment 1.2.3. However, this the current experiment, S. 

aureus will be opsonized in serum from various sources prior to co-culture with 

macrophages. Again, macrophages and serum will be prepared from three sources as 

described in Experiments 1.2.2 and 1.3.1, respectively. Macrophages and serum will be 

inter-mixed in all possible combinations (eg. control, T4+ and T4- macrophages each with 

control, T4+ and T4- serum). Phagocytosis and killing of S. aureus, and viability of host 

cells, will be assessed as in Experiment 1.2.3. The contributions of MIF will be 

interrogated as in Experiment 1.3.1. 

Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we expect to have determined if T4 mediates protective effects through serum-

mediated mechanisms. Guided by previous literature, we also anticipate confirming if any 

of the protective effects require MIF activity. However, it is possible that we will be unable 

to define significant contributions of T4 to serum-mediated mechanisms in the above 

experiments. T4 can also have general effects that promote cardiovascular health(295), 

which plays a large role in regulating sepsis-induced organ failure. Therefore, the 

cardiovascular system offers another avenue from which to explore T4 SaB protective 

signaling. If there is any residual protection of T4 that cannot be explained by immune 

cells (Subaim 1.2) or serum components (Subaim 1.3), we will turn our investigation to 
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the endovascular system.  

Aim 2: The human proteome is a driver of SaB-induced death    

2.1. Verify the protective contribution of adiponectin signaling in vivo 

Rationale. Our preliminary data (Fig 4-8C) suggested anti-inflammatory proteins 

linked to multiple critical SaB cytokines may represent actionable targets for therapeutic 

interventions. We validated one of these targets, adiponectin, and demonstrated that 

increased adiponectin signaling is protective to the host during SaB infections, both in 

regard to mouse survival (Fig 4-9F) and organ CFU burden (Fig 4-9 G-H).  However, our 

data is based on studies using a small molecule agonist (AdiopoRon(282)) of the 

adiponectin receptors (AdipoR1 and AdipoR2) and not adiponectin itself. To verify and 

further understand the contributions of adiponectin signaling, we will test if adiponectin 

itself can also impart protective effects during SaB infections. Additionally, while the 

adiponectin receptors are highly similar in primary sequence as well as crystal 

structures(296), they exhibited markedly different expression patterns across various 

tissues, with immune cells exhibiting high expression of ADIPOR1 and nearly 

undetectable expression of ADIPOR2(284) (Fig 5-2 A-B). Therefore, we will interrogate 

the receptor specificity of this signaling using knockout mice, which may also provide hints 

toward the cell types mediating these protective effects.  

Experiment 2.1.1 – Confirm the protective contribution of adiponectin in SaB 

infections. While the small molecule AdipoRon is orally bioavailable, adiponectin protein 

needs to be administered intravenously (I.V.). Therefore, to assess the protective 

contributions of adiponectin in SaB infections, we will administer adiponectin 

[concentration] via I.V. 24 hours prior to infection with S. aureus. As in Experiment 1.1.2, 
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both survival and CFU burden experiments will be performed. For survival experiments, 

mice (n = 20; 10 control and adiponectin) will be infected with a high dose of S. aureus 

(1x108 CFUs) and weight change and survival will be monitored every 12 hours for 5 days 

post infection (P.I.). For CFU burden experiments, mice (n = 10; 5 control and 5 

adiponectin) will be infected with a low dose of S. aureus (1x107 CFUs) and then 

euthanized 48 hrs P.I. for organ harvesting and CFU enumeration. Additionally, to 

determine the impact of adiponectin on central SaB perturbed cytokines (IL6, TGFB1, 

TNF, IL1b and IL10), we will probe for these cytokines in the CFU burden experiment 

mouse serum using ELISA assays.  

Experiment 2.1.2 – Determine receptor specificity of protective adiponectin 

signaling. Adiponectin can signal through either AdipoR1 or AdipoR2. To determine which 

receptor is required for protective adiponectin signaling, we will utilize knockout mice of 

the AdipoR1 and AdipoR2 receptors. We will treat WT and knockout mice with 

adiponectin (I.V.) or AdipoRon (oral) 24 hours prior to infection with S. aureus. As above, 

both survival (n = 30; 10 control, adiponectin and AdipoRon) and CFU (n = 15; 5 control, 

adiponectin and AdipoRon) burden experiments will be performed (along with central 

cytokine interrogation).  

Experiment 2.1.3 – Assess the combinatorial effects of adiponectin signaling plus 

standard SaB therapy. Once we have confirmed adiponectin protective monotherapy in 

SaB, we will explore the use of combinatorial therapy to more accurately replicate clinical 

settings. We will treat mice (n = 40; 5 mice each condition) with AdipoRon or adiponectin, 

infect mice as above for survival experiments and treat with common antibiotics used in 

the clinic. We will infect mice (n = 10 each) with both methicillin sensitive and methicillin 
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resistant strains and treat with the appropriate antibiotic (flucloxacillin for MSSA and 

vancomycin for MRSA, n = 5 each). Untreated (n = 5 each strain) and monotherapy 

antibiotics (n = 5 each strain) will be used as controls. Mice will be monitored and 

assessed for their response to SaB as in Experiment 2.1.1. 

Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we anticipate having verified the SaB protective effects of the adiponectin 

protein itself as well as pinpointed the receptor specificity of these effects. If adiponectin 

and AdipoRon appear to have the same therapeutic value for murine SaB, we will 

continue to use AdipoRon due to its ease of administration and cost benefit. However, 

there is the possibility that adiponectin does not provide the same protective effects of 

AdipoRon. If this is the case, we will explore the use of higher doses of adiponectin to 

determine any potential therapeutic relevance. If we are still unable to assign any 

protection to adiponectin administration, the mechanisms of AdipoRon will be interrogated 

in subsequent assays and compared to adiponectin as a negative control. Since AdipoR1 

and AdipoR2 exhibit distinct cell type enrichments, determining the receptor specificity 

will likely hint at the important cell populations (eg. immune vs other). However, it may be 

the case that signaling through both receptors is required for protection, or, alternatively, 

protection may be mediated through non-canonical mechanisms. Since we cannot rule 

out these possibilities at this time, Subaims 2.2 and 2.3 of the current proposal seek to 

define the immune and cardiovascular components of adiponectin SaB protective 

signaling, respectively. The completion of these aims will enable specific, protective, 

adiponectin (or AdipoRon if different) mechanisms to be further interrogated. 
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Figure 5-2 Basal and Induced Adiponectin Receptor Expression 
 
(A) ADIPOR1 and ADIPOR2 expression in various tissues (HPA). (B) Correlation of 
ADIPOR1 and ADIPOR2 expression in various tissues (HPA). Expression of ADIPOR1 
(C) and ADIPOR2 (D) in various immune subsets (DICE database). (E) Expression of 
ADIPOR1/2 in THP1-derived macrophages upon exposure to S. aureus. (F) Adiponectin 
receptor expression on EA.hy926 endothelial cell line from two different MS experiments 
(E1 and E2). 
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2.2 Define the immune-mediated contributions of AdipoRon protective signaling  

Rationale. As mentioned above, AdipoR1 is highly expressed on innate immune 

cells and, as such, is poised to mediate adiponectin mediated protection against infection. 

Adiponectin has been demonstrated to affect a variety of innate immune cells(297), 

including macrophages, neutrophils, dendritic cells and NK cells, which are critical in the 

host response to S. aureus(298, 299). The DICE database(285) confirmed the high 

expression of ADIPOR1 in immune cells, specifically in macrophages (Fig 5-2C), and 

indicated macrophages and NK cells expressed appreciable levels of ADIPOR2 (Fig 5-

2D). Further, we detected a time-dependent decrease in ADIPOR2 expression in 

macrophages upon exposure to S. aureus, while ADIPOR1 expression remained stable 

(Fig 5-2E). However, there is currently a gap in knowledge as to what, if any, innate 

immune cells mediate adiponectin protection in SaB. We hypothesize that adiponectin 

could signal through any of the above cell types, so we will interrogate if any play a role 

in the context of SaB infections in vivo using depletion and adoptive transfer experiments 

and in vitro using purified cell populations. 

Experiment 2.2.1 – Determine the role of various innate immune cell subsets in 

AdipoRon SaB protective signaling. Similar to Experiment 1.2.1, we will deplete mice of 

immune cells while simultaneously treating mice with protective SaB therapy to 

investigate the contribution of various innate immune cell subsets to adiponectin SaB 

protective signaling. We will focus our initial analyses on the major types of innate immune 

cells as they have been previously shown to respond to adiponectin and are likely most 

important for single-challenge mouse models of SaB infection. The following innate 

immune cell subsets will be depleted in this assay as previously described: macrophages 
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and dendritic cells (clodronate liposomes(286)), neutrophils (anti-Lys6G antibody(290)), 

NK cells (anti-NK1.1 antibody(291)). Depletion/adoptive transfer will be confirmed for 

each cell type as follows (macrophage/dendritic cells - F4/80+ cells in spleen(286); 

neutrophils - whole blood absolute neutrophil counts; NK cells - NKp46+ cells in 

spleen(300)). Since both macrophages and dendritic cells are depleted via clondronate 

liposomes, the specific contributions of each cell type will be verified by adoptive- transfer 

experiments. As in Experiment 2.1.1, both survival and CFU burden experiments will be 

performed (n = 40 each for survival and CFU burden; 5 untreated control and 5 AdipoRon 

for each depletion (3 total) and an un-depleted control). To verify cell type contributions, 

each depletion will be repeated, and adoptive transfer experiments will be performed with 

the respective depleted cells (n = 40 for each survival and CFU burden; 5 for each cell 

type (4 total) for both untreated control and AdipoRon). For any cell type showing 

significant differences in the first round of experiments, this experiment will be repeated 

three independent times (n = 5 each condition).  

Experiment 2.2.2 – Interrogate AdipoRon-treated innate immune cell activation. To 

further interrogate adiponectin cellular mechanisms, we will assess the effects that 

adiponectin has on innate immune cell activation in vitro. Similar to Experiment 1.2.2, we 

will purify innate immune cells from three distinct sources (ie. from mice receiving optimal 

adiponectin therapy and from untreated mice and humans spiked with adiponectin ex 

vivo), challenge them in vitro with their respective activating ligands and measure specific 

cell markers to assess activation. Primary neutrophils will be isolated from whole blood 

and dendritic cells(301) and NK cells(302) isolated from PBMCs. Macrophages will be 

differentiated from PBMCs as previously described (Experiment 1.2.2). Cell activating 
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ligands and markers are previously described (macrophages(286), neutrophils(303), 

dendritic cells(304), NK cells(305)). Individual experiments will be conducted on cells 

isolated from n = 5 samples.  

Experiment 2.2.3 – Interrogate AdipoRon-treated innate immune cell migration. To 

further interrogate adiponectin cellular mechanisms, we will assess the effects that 

adiponectin has on innate immune cell migration in vitro using transwell assays. Cells will 

be isolated/differentiated as in Experiment 2.2.2. Following differentiation, cells will be 

assessed for migratory potential toward ligands for each cell type (macrophages: 

C5a(306), neutrophils: fMLP(307), dendritic cells: CCL19(308), and NK cells: 

CXCL9(309)). Migration quantified by lysing cells in both chambers and measuring 

relative LDH concentrations in the bottom chamber. Individual experiments will be 

conducted on cells isolated from n = 5 samples.  

            Experiment 2.2.4 – Interrogate AdipoRon-treated innate immune cell interaction 

with S. aureus. To further interrogate adiponectin cellular mechanisms, we will assess the 

effects that adiponectin has on innate immune cell interactions with S. aureus using in 

vitro killing assays. Cells will be isolated/differentiated as in Experiment 2.2.2. Both 

macrophages(289) and dendritic cells(310) can kill S. aureus through phagocytosis and 

intracellular anti-microbial activity, which will be assessed with phagocytosis and killing 

assays as described in Experiment 1.2.4. Neutrophils will be assessed for their ability to 

kill S. aureus through both intracellular and extracellular mechanisms in a single 

assay(311). Finally, while NK cells do not directly kill S. aureus, they can enhance anti-

staphylococcal activity of macrophages in co-culture experiments(312), which will be 

performed as previously described. Again, an MOI of 10:1 bacteria:host cells will be used. 
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Individual experiments will be conducted on cells isolated from n = 5 samples. Host cell 

viability will be assessed using LDH released into the supernatant and S. aureus viability 

will be assessed by serial dilution and CFU enumeration.   

Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we hope to construct an innate immunological profile of the protective effects 

of adiponectin in response to SaB. We aim to pinpoint specific innate immune subsets 

that are required for adiponectin’s protective effects and delineate the cellular 

mechanisms that mediate this protection. By unbiasedly assessing four major innate 

immune subsets, we will be able to determine if multiple cellular mechanisms exist. Once 

precise signaling mechanisms are pinpointed in vitro, we will validate their in vivo 

relevance using the SaB animal model described above. However, it is possible that 

adiponectin mediates SaB protection by other routes, such as adaptive immune cells or 

systemic components (eg. serum, vasculature, etc.). If we are unable to assign AdipoRon 

protection to any innate immune cells, we will explore the possibility of adaptive immune 

system contributions (eg. using RagI mice). Further, we plan to interrogate any protective 

effects mediated through the vasculature in Subaim 2.3 and present the interrogation of 

serum components as an alternative approach in that Subaim.  

2.3. Define the systemic contributions of AdipoRon protective effects 

Rationale. S. aureus is a leading cause of infective endocarditis(207, 313) and SaB 

causes severe damage to the vasculature(207, 210), both of which can contribute to 

multi-organ dysfunction, failure and, ultimately, death(314). While it is likely that 

adiponectin can improve the host response to SaB by signaling through AdipoR1 on 

innate immune cells, adiponectin is also noted for its cardio and vaso-protective 
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activity(279, 315), and we have detected AdipoR2 protein expression in endothelial cells 

in multiple experiments (Fig 5-2F). In fact, the decreased adiponectin observed in obese 

individuals is linked to cardiovascular risk and exogenous adiponectin has therapeutic 

value in rat models of macrovascular disease(315). The mechanisms of adiponectin-

mediated protective effects vary depending on the target cell type and tissue, but 

evidence of action on endothelial cells and cardiomyocytes is strong(279, 280, 315). This 

includes preliminary data from our demonstrating that AdipoRon treatment reduced 

bacterial CFU burden in hearts of infected mice (Fig 4-9H). Therefore, adiponectin sits in 

a prime position to act on two primary sites of SaB-induced host damage, the heart and 

vasculature, which may underlie its therapeutic value. To interrogate these cellular 

mechanisms, we will monitor cardiovascular health during SaB infections in mice treated 

with AdipoRon and investigate cell-specific signaling events using phospho-proteomic 

approaches.  

Experiment 2.3.1 – Monitor hemostasis during AdipoRon SaB treatment. We will 

assess the effects that adiponectin signaling has on hemostasis by monitoring blood 

pressure, heart rate and coagulation status during a SaB infection. Mice (n = 20; 10 

control and 10 AdipoRon) will be infected with a low dose of S. aureus for 48 hr as in CFU 

burden experiments (Experiment 2.1.1). During the infection, blood pressure, heart rate 

and temperature will be measured every 6 hr using tail cuff systems(316). Following the 

infection time course, whole blood will be harvested and the coagulation of the mice will 

be assessed using thrombelastography(317, 318).  

Experiment 2.3.2 – Interrogate cardiac health during AdipoRon SaB treatment. We 

will assess the effects that adiponectin has on cardiac health during a SaB infection using 
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classical histological techniques. Hearts will be harvested from the same animals used in 

Experiment 2.3.1 and snap frozen in liquid nitrogen. Hearts will then be section and 

stained for both fibrosis (Sirius Red/Fast Green Collagen Stain) and immune cell 

infiltration (hematoxylin and eosin stain followed by counting immune cell nuclei).  

Experiment 2.3.3 – Measure endovascular permeability during AdipoRon SaB 

treatment. We will assess the effects that adiponectin has on endovascular permeability 

during an SaB infection using Evans blue dye(319). Mice (n = 20; 10 control and 10 

AdipoRon) will be infected with a low dose of S. aureus as above for 48 hr. Thirty minutes 

prior to euthanization, mice will be injected with Evans blue dye (1% in 0.9% saline – 2 

mg/kg tail vein). Following euthanization, mice will be perfused with saline, and organs 

(heart, liver, lung, kidney, and spleen) will be harvested, weighed and prepared for 

permeability quantification as previously described. Final comparisons will be between ug 

Evan’s blue dye/ug total organ protein for each isolation.  

Experiment 2.3.4 – Profile the cell-specific phospho-proteomic signaling during 

AdipoRon SaB treatment. To support the above results and identify proteins involved in 

Adiponectin-promoted endothelial barrier stability and heart function, we will comparative 

profile both endothelial cell and cardiomyocyte protein expression and phosphorylation 

dynamics during S. aureus model infections. To provide enough starting material for the 

phospho-proteomic workflow, we will use human umbilical vein endothelial cells 

(HUVECs(320)) as a source of endothelial cells and human pluripotent stem cell-derived 

cardiomyocytes (hPSC-CMs(321)) as a source of cardiomyocytes. These cells will be 

cultured in vitro, treated with AdipoRon or a vehicle control and infected with S. aureus at 

an MOI of 1:1 bacteria:human cells. Infections will be allowed to persist for 2, 4, 8 and 16 
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hr P.I. and, at each time point, cells will be washed, harvested and processed for 

phospho-proteomic analysis as previously described(322). Differentially expressed 

proteins will be identified via ANOVA (p < 0.05), clustered using the k means algorithm 

and interrogated for functional group using gene ontology(122) and STRING-db(123).  

Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we hope to determine if adiponectin signaling protects the heart and/or 

vasculature during SaB infections. By merging classical interrogation of cardiovascular 

health with state-of-the-art phospho-proteomic analyses, we anticipate building a multi-

scale model of AdipoRon SaB treatment, from overt clinical features (eg. blood pressure) 

to molecular signaling pathways (ie. the phospho-proteomic analysis). Once this 

information is obtained, knockout and inhibitor studies can be planned to directly 

interrogate the prioritized pathways. While it is likely that the effects of adiponectin 

signaling on the vascular have some effects in SaB, it is possible that they may not 

significantly influence infection outcomes. If this is the case, we will profile the serum 

component, as in subaim 1.3.3, for any contributions to AdiopoRon-mediated protective 

effects. 

Aim 3: The Rapid Index of SaB Mortality Kinetics (RISK) test 

3.1. Construct and validate the RISK-24 test 

Rationale. In our preliminary experiments, we used MS-based approaches to 

identify high-confidence biomarkers for the prediction of SaB patient mortality. These 

markers can be used in combination to enhance predictive abilities (Fig 5-3A). While 

some hospital labs may be able to rapidly conduct MS-based workflows, immune-based 

assays, such as enzyme-linked immunosorbent assays (ELISAs), are routinely used in a 
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clinical setting and offer an attractive approach to reduce operator training and analysis 

times to clinically tractable quantitative values. However, while patient serum is routinely 

used as a source of biomarkers, preparation of serum from whole blood can be variable 

depending on the hospital, lab or individual technician involved. The use of whole blood 

as a source of biomarkers can remove the variation induced by serum preparation. The 

goal of this subaim is to verify top SaB biomarkers, from our dataset, as well as literature 

reported cytokines, using ELISAs, and construct a multiplexed assay that could be 

conducted in-clinic within a 24 hr period. 

Experiment 3.1.1 – Verify top biomarkers via immuno-assays. We hypothesize that 

the top biomarkers captured in our proteomics data are amenable to rapid analysis via 

immuno-assays. To test this hypothesis, we have selected 10 biomarkers (5 cytokines 

from the literature and 5 proteins from our preliminary data) for verification via 

commercially available ELISA kits. We will interrogate these markers in a cohort of 100 

SaB patients (50 survival and 50 mortality) as well as 30 control samples (15 non-

hospitalized, non-infected, 15 hospitalized, non-infected). Biomarker concentrations will 

be assessed for their predictive abilities using Mann-Whitney U, ROC curves and logistic 

regression analyses and profiled against all available metadata to control for confounding 

variables (eg. age, gender, etc.). 

 Experiment 3.1.2 – Define biomarker linearity and LOD in serum and whole blood. 

We hypothesize that some of the biomarkers verified in serum will also be measurable in 

whole blood. To test this hypothesis, we will separate 20 human blood samples (obtained 

from de-identified individuals at the SD Blood Bank) into two aliquots. One aliquot will be 

retained for biomarker analysis in whole blood while serum will be prepared from the 
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second aliquot. Absolute concentrations and coefficients of variation will be determined 

for each marker in both whole blood and serum. Following the determination of average 

human levels of each biomarker, the samples will be diluted and re-analyzed to determine 

the linearity and LOD in both whole blood and serum. 

Experiment 3.1.3 – Construct and validate a multiplexed, immuno-assay-based 

RISK-24 test. Once biomarkers have been confirmed, we will exhaustively compare all 

combinations of up to 5 biomarkers using multivariate logistic regression. The optimal 

combination, as determined by ROC AUC, will be used to construct a multiplexed, 

immuno-assay-based test. This test, termed the RISK-24 test, will have an approximate 

completion time of 3-4 hrs. Together, with the additional time requirements of clinical 

laboratories (eg. sample preparation, transport and batching), this test could reasonably 

occur, and clinicians could make an informed intervention, within a 24 hr period (or earlier 

depending on sample priorities). We will first verify this test on our optimization cohort 

used above. Then, we will ship these tests to independent infectious disease clinicians 

(established by our co-I Warren Rose; see LOC) for use by diverse personnel groups in 

a multi-center prospective study. Ultimate functionality of the test will be determined by 

Mann-Whitney U tests, ROC curves, logistic regression and % of tests completed within 

24 hrs on a per center and total study basis. 

 
 
 
 
 
 
 
 
 

 
 



 162 

 
Figure 5-3 Predictive Model Performance of RISK-24 and RISK-48 Tests 
 
(A) RISK24 predictive model based on the expression of seven proteins. (B) RISK48 
predictive model based on the expression of four modified proteins and two metabolites. 
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Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we anticipate the construction of a high confidence, multiplexed, immuno-

assay that can predict SaB patient mortality within a 24 hr period. This time prediction is 

based on extensive literature of clinical laboratory testing. Potential pitfalls include being 

unable to validate our biomarkers using immuno-assays or the multiplexed tests. If any 

biomarker doesn’t validate at any stage, the biomarker will be discarded, and the next top 

biomarker will be included.  

3.2. Construct and validate an MS-based, RISK-48 test: 

Rationale. While our efforts in Subaim 3.1 seek to provide the field with a clinically 

applicable, immuno-assay-based test, our preliminary data demonstrated that the 

predictive strength of multi-marker assays can be increased by including PTMs or yet-to-

be-identified metabolomic features (Fig 5-3B). Measuring these types of markers is more 

amenable via MS, which can be targeted to quantify specific peptides (with and without 

modifications) or simply m/z ratios (even if the identity of the feature is unknown). 

Provided the infrastructure for targeted proteomics and metabolomics analyses is 

present, clinical labs should be able to quantify any reasonably abundant serum ion within 

this time frame. Therefore, this aim will establish MS-based tests for unconventional 

biomarkers not accessible via immuno-assays that could be conducted in-clinic within 48 

hr.  

Experiment 3.2.1 – Verify top biomarkers via targeted MS methods. Based on our 

preliminary results, specific protein PTMs and unidentified metabolites can be combined 

with total protein abundances to enhance SaB mortality predictions. To verify these 

markers, we will establish targeted MS-based assays (ie. parallel reaction monitoring - 
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PRM) for their quantification. For PTM quantification (5 markers), synthetic, heavy 

peptides (both the modified and unmodified forms) will be purchased and used as 

standards. For unidentified metabolite quantification (20 markers), m/z values will be 

targeted and compared to standard MS markers. We will interrogate these markers in the 

same cohort as described in experiment 3.1.1. Biomarker concentrations will be assessed 

for their predictive abilities as described in experiment 3.1.3.   

 Experiment 3.2.2 – Define biomarker linearity and LOD in serum and whole blood. 

We hypothesize that some of the biomarkers verified in serum will also be measurable in 

whole blood. To test this hypothesis, we will separate 20 human blood samples (obtained 

from de-identified individuals at the San Diego Blood Bank) into two aliquots. One aliquot 

will be retained for biomarker analysis in whole blood while serum will be prepared from 

the second aliquot. Absolute concentrations and coefficients of variation will be 

determined for each marker in both whole blood and serum. Following the determination 

of average human levels of each biomarker, the samples will be diluted and re-analyzed 

to determine the linearity and LOD in both whole blood and serum. 

 Experiment 3.2.3 – Construct and validate a multiplexed, MS-based RISK-48 test. 

Once biomarkers have been rigorously confirmed in our targeted cohort, we will 

exhaustively compare all combinations of up to 10 biomarkers using multivariate logistic 

regression. The optimal combination, as determined by ROC AUC, will be used to 

construct a multiplexed, MS-based test. This test, termed the RISK-48 test, will have an 

approximate completion time of 36 hrs. Together, with the additional time requirements 

of clinical laboratories (eg. sample preparation, transport and batching), this test could 

reasonably occur, and clinicians could make an informed intervention, within a 48 hr 
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period (or earlier depending on sample priorities). We will first verify this test on our 

optimization cohort used above. Then, we will ship these tests to infectious disease 

clinicians and assess them as described in experiment 3.1.3. 

Anticipated results, potential pitfalls and alternative approaches. Upon completion 

of this aim, we anticipate the construction of a high confidence, multiplexed, MS-based 

test that can predict SaB patient mortality within 48 hrs. Potential pitfalls include being 

unable to validate our biomarkers using targeted MS approaches or in the multi-target 

approach. If any biomarker doesn’t validate at any stage, the biomarker will be discarded, 

and the next top biomarker will be included. Another hurdle is that the in-clinic turnaround 

time may be longer than 48 hrs. If this is the case, we will explore the use of rapid 

proteomic methods (eg. RapidFire MS) for sample preparation, gradient reductions and 

additional computational approaches to improve the turnaround time of the assay.  
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