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Abstract: Indiscriminate drug administration may lead to drug therapy results with varying effects
on patients, and the proposal of personalized medication can help patients to receive effective drug
therapy. Conventional ways of personalized medication, such as pharmacogenomics and therapeutic
drug monitoring (TDM), can only be implemented from a single perspective. The development of
pharmacometabolomics provides a research method for the realization of precise drug administration,
which integrates the environmental and genetic factors, and applies metabolomics technology to study
how to predict different drug therapeutic responses of organisms based on baseline metabolic levels.
The published research on pharmacometabolomics has achieved satisfactory results in predicting
the pharmacokinetics, pharmacodynamics, and the discovery of biomarkers of drugs. Among them,
the pharmacokinetics related to pharmacometabolomics are used to explore individual variability
in drug metabolism from the level of metabolism of the drugs in vivo and the level of endogenous
metabolite changes. By searching for relevant literature with the keyword “pharmacometabolomics”
on the two major literature retrieval websites, PubMed and Web of Science, from 2006 to 2023, we
reviewed articles in the field of pharmacometabolomics that incorporated pharmacokinetics into
their research. This review explains the therapeutic effects of drugs on the body from the perspective
of endogenous metabolites and pharmacokinetic principles, and reports the latest advances in
pharmacometabolomics related to pharmacokinetics to provide research ideas and methods for
advancing the implementation of personalized medication.

Keywords: pharmacometabolomics; pharmacokinetics; personalized medication; therapeutic
drug monitoring

1. Introduction

The greatest difficulty encountered in drug therapy is that one drug cannot be used in a
fixed dose and at the same time in an optimal regimen to treat all individuals suffering from
a disease. Individual patients exhibit varying responses to the same pharmaceutical agent:
some patients achieve efficacious treatment, while others show no therapeutic effects;
furthermore, certain individuals may even experience adverse drug reactions (ADRs).
These divergent drug responses arise as a consequence of the interplay between drug
metabolism and the physiological (and pathological) state of the patient. This can also be
construed as the amalgamation of the body’s disposition toward the drug and the drug’s
therapeutic effect on the body. The existence of such individual diversity in the course of
pharmaceutical therapy not only complicates treatment for certain patients but also poses
challenges to the later stages of clinical drug trials. The origins of individual diversity
predominantly stem from controllable factors, such as the patient’s lifestyle (smoking
and alcohol consumption, for example), and pharmaceutical disease-related factors (the
co-administration of medications and associated complications), as well as uncontrollable
factors, which encompass the patient’s genetic information, age, gender, and ethnic and
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racial attributes [1]. Figure 1 illustrates the schematic representation of the reasons behind
diverse drug responses. In response to the challenges posed by individual variability
leading to complexities in drug administration, researchers have proposed the targeted
approach of personalized dosing. Personalized dosing refers to tailoring monitoring or
preventive strategies for a particular ailment based on a patient’s distinctive physiological
condition, environmental exposures, and behavioral traits [2].

Figure 1. Reasons for different therapeutic responses to drugs.

In light of the swift progress in DNA sequencing and related molecular biology
methodologies, the paradigm of ‘pharmacogenomics’ emerged as a concept by researchers
acknowledging the potential genetic impact on drug response phenotypes [3]. Pharmacoge-
nomics is the study of the genomic contributions to individual differences in drug response
phenotypes. Currently, research has been conducted to guide drug dosages by exploring
differences in genotypes. While metformin serves as a commonly employed frontline
medication in clinical diabetes treatment, notable differences in treatment responses prevail.
A diabetes pharmacogenomics research team based in the United Kingdom discovered a
mutation within the ATM gene (a gene involved in DNA repair and cell cycle regulation)
can modify an individual’s glycemic response to metformin [4]. Henricks et al. studied dose
individualization based on the DPYD genotype to reduce the toxicity induced by fluoropy-
rimidine and prevent deaths during the course of treatment [5]. Approximately 20% to 30%
of the individual variability in drug therapy is attributed to genetic factors [6], genes play a
decisive role in the upstream of life information transmission, and genetic polymorphisms
can lead to differences in the activities of certain drug-metabolizing enzymes [7], drug
transporter proteins [8], and drug targets [9], thereby affecting the body’s drug metabolism
capabilities. Nevertheless, genetic factors can only account for a small proportion of in-
dividual variability, and the entirety of variation in drug-responsive phenotypes cannot
be explained solely through genetics [10]. Organisms are defined as individuals exposed
to the environment, and in addition to the “innate” ability to metabolize drugs, the in-
dividual’s lifestyle and drug-related factors have a crucial impact on the downstream,
which is the ultimate expression of phenotypes in the transmission of life information.
Smoking [11], age [12], and drug-drug interactions [13] all affect drug metabolism in the
body to varying degrees. Metabolites serve as both intermediates and end products of
biological processes, functioning as a pivotal linkage between genetic determinants and
environmental influences. An organism’s metabolome comprises a diverse assembly of
metabolites originating from various sources, displaying distinct types and properties [14].
It reflects the fundamental metabolic state of the organism, serving as a foundational frame-
work for the organism’s drug clearance within a stable internal environment. The evolution
of metabolomics has furnished the scientific community with technological underpinnings
for the qualitative, quantitative, and dynamic characterization of metabolites. From eluci-
dating metabolic changes associated with treatment responses to achieving individualized
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dosing through population stratification based on metabolic phenotypes, the prospects
for the application of metabolomics are exceedingly expansive. Emerging as a novel sub-
field within metabolomics, pharmacometabolomics employs mathematical modeling to
anticipate therapeutic responses to drugs, with it being grounded in the comprehension of
individual metabolic phenotypes [15]. This approach introduces fresh research concepts
and offers technical underpinnings for investigating the distinct mechanisms underlying
diverse drug responses stemming from individual variability.

Furthermore, apart from investigating an organism’s drug disposition facilitated
by endogenous substance metabolism, a comprehensive understanding of the drug’s in-
trametabolic processes within the organism is essential. Variables, including the drug’s
physicochemical attributes, concentration, and dosage exert consequential influences on
therapeutic outcomes. The conventional method of drug administration is to use a fixed
dose and an undifferentiated administration method to guide patients to use drugs, ignor-
ing the metabolic variability of drugs among individuals. Consequently, this approach
may yield diverse therapeutic outcomes, including efficacy, inefficacy, and potentially
adverse reactions. With the establishment of characterization methods for drugs in vivo,
pharmacokinetics can effectively elucidate the dynamic transformations of drugs within
an organism, and it can be used for the quantitative study of the absorption, distribution,
metabolism, and excretion of drugs in the organism [16]. Pharmacokinetic parameters
utilize a number of mathematical principles and models to illustrate more intuitively how
drugs are metabolized in the body, in which the measurement of blood concentration is very
indispensable for the drugs that have a narrow therapeutic window and high individual
variability. The drug target needs to reach and maintain a certain concentration in order to
play a role in the efficacy of the drug, and at the same time, it is also necessary to ensure that
the drug concentration is within a safe range to prevent the development of toxic effects
and other side effects [17]. Therefore, the pharmacokinetics of drugs in vivo is an essential
aspect in our research on how to better implement personalized medication, which clearly
demonstrates how drugs are metabolized in the body with the progression of time and
provides a characterization method to reveal the reasons for the variability in drug delivery.

To date, there have been over 260 published research articles and reviews in the field
of pharmacometabolomics, as evidenced by the results retrieved from PubMed. These
publications span a range of domains, encompassing diverse drugs and diseases. The
published review on pharmacometabolomics predominantly amalgamates elements of
pharmacokinetics, pharmacodynamics, and the discovery of biomarkers to elucidate the
relationship with precision medication. Nonetheless, specific research articles and reviews
that precisely target the realm of pharmacometabolomics within the domain of pharma-
cokinetics have yet to be published. Building upon the foundation of metabolic regulation
and drug metabolism, this review provides an overview of the evolution and utilization
of pharmacometabolomics. Pharmacokinetics-related to pharmacometabolomics employs
metabolomics as the analytical platform, using the baseline metabolic profile of an organism
to predict inter-individual variations in drug pharmacokinetics. This approach proactively
anticipates therapeutic outcomes of drugs by considering the physiological state of the
organism and its environmental context. We anticipate that this approach, by synergistically
considering alterations in endogenous metabolites and drug metabolism, will pave the way
for novel, precision-oriented drug delivery strategies. Personalized medicine, an inevitable
trajectory in future medical advancements, presents formidable implementation challenges.
Confronted with diverse hurdles and lofty aspirations, alongside traditional approaches
to personalized medication, there is an imperative for ongoing innovation and research
endeavors. These endeavors aim to establish a robust precision drug delivery framework,
enabling genuine personalization across multiple dimensions, encompassing genetics,
metabolism, and pharmaceuticals. This holistic approach seeks to maximize therapeutic
efficacy while mitigating the risks of adverse drug reactions and drug metabolism-related
issues for patients.
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2. Pharmacokinetics and Accurate Administration

In a systematic manner, the series of changes that occur within a biological organ-
ism following the introduction of a drug, whether stemming from the drug’s intrinsic
dynamic alterations or resulting from changes in its metabolites, are challenging to observe
directly. The dynamic alterations of a drug within an organism can be categorized into
four processes: absorption, distribution, metabolism, and excretion, collectively forming
the field of pharmacokinetics, which quantitatively investigates these processes within the
biological system [18]. As a discipline grounded in mathematical modeling for analyzing
the dynamic changes of drugs within biological systems, mathematical models constitute
a pivotal component. The processes of drug alteration within the body are quantified
using numerical representations, where parameters such as the drug concentration within
the body, the drug elimination half-life, the clearance rate, and the apparent volume of
distribution not only intuitively reflect the organism’s disposition to the drug but also
facilitate the application of mathematical knowledge to study the underlying patterns.

The current clinical approach to implementing personalized medication is mainly
therapeutic drug monitoring (TDM), which is defined as “individualizing drug dosage by
maintaining plasma or blood drug concentrations within the targeted therapeutic range or
window” [19]. As opposed to a fixed administered dose of a drug, blood concentrations
correlate with exposure to the drug’s target and therefore better quantify the drug’s efficacy
or toxicity [20]. Clinicians or pharmacists, based on the results of blood concentration
measurements and pharmacokinetic principles, combined with the patient’s age, body
weight, physiological (pathological) state, and other individual factors, can formulate a
tailored drug regimen for this approach [21]. TDM is frequently used to monitor the fol-
lowing drugs: (1) drugs with no obvious pharmacodynamic indicators; (2) drugs with a
narrow safety window where the therapeutic and toxic dosage ranges are in close prox-
imity to each other; (3) drugs with poor patient compliance (medication for patients with
psychiatric disorders); and (4) drugs prone to causing adverse reactions. For these drugs,
their pharmacokinetics are more susceptible to variations in individual patient factors,
resulting in a failure of the therapeutic response of the drug to achieve the desired effect
or it even threatening the life of the patient. Consequently, there arises a necessity for
the implementation of TDM. The persistent escalation of antibiotic drug resistance has
been a major reason why antibiotic dosing needs to be optimized, especially for at-risk
populations such as the elderly and critically ill patients [22]. Vancomycin and β-lactam
antibiotics have toxic side effects; as such, the clinical use of drugs needs to be implemented
for personalized medication [23]. Accurate determination of antibiotic concentrations in
organisms holds paramount significance in the successful implementation of TDM, and the
details of determining concentrations can exert a notable influence on the outcomes of TDM.
Sofie Dhaese et al. [24] summarized the significance of monitoring the TDM of β-lactam an-
tibiotics in critically ill patients, the targets of implementation, microbiology and sampling
considerations, and proposed the limitations and solutions of the current TDM of antibiotic
drugs, which holds significance in advancing the practice of tailoring antibiotic dosing
guidance on an individualized basis. The TDM of antineoplastic drugs has been the focus
of attention for personalized medication; this heightened focus is driven by the potential
toxicity associated with antineoplastic drugs and the critical importance of monitoring
clinical symptoms. Irinotecan is a topoisomerase I inhibitor used in the treatment of solid
malignancies, and its therapeutic profile is characterized by a high degree of toxicity and
a high degree of individual variability in pharmacokinetics [25]. Femke M de Man and
colleagues conducted a comprehensive review encompassing the pharmacokinetic and
pharmacodynamic characteristics of the medication, linked genetic polymorphisms with
its pharmacokinetics and efficacy of irinotecan, and explored the individualized treatment
of this medication from multiple perspectives [26]. As a first-line clinical antitumor drug,
doxorubicin is highly effective. However, its utility is constrained by considerable toxic-
ities and substantial pharmacokinetic variability. Despite efforts to consider recognized
individual covariates, doxorubicin continues to exhibit notable pharmacokinetic variability
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and intricate metabolic behavior. Consequently, researchers are actively engaged in the
pursuit of safer and more efficacious personalized dosing protocols for this drug [27].
Frederike K Engels and other scholars [28] designed a prospective randomized controlled
trial with the aim of using AUC targeting to guide the therapeutic outcome of docetaxel
administered every three weeks, with Bayesian analysis of docetaxel clearance and iterative
adjustment of the dose to predict the subsequent AUC following administration. The
results demonstrated that personalized medication of docetaxel based on TDM is clinically
feasible and that it reduced inter-individual PK variability. TDM with pharmacokinetics as
the guiding principle is an essential implementation tool to guide personalized medication.
The continual advancement of technological innovations and theoretical innovations, more
and more instrumentation, statistical methods and information transformation methods,
all contribute to the refinement and expansion of personalized medication approaches.
Nevertheless, relying solely on TDM as a single method does not achieve the goal of precise
drug delivery, and TDM, in monitoring only blood concentrations, ignores the effect of
individual endogenous variability on drug therapy and is not able to provide a comprehen-
sive and accurate response to drug efficacy. We believe that it is not enough to optimize
the degree of precision solely from the disposition process of the organism to the drug, but
rather that there is also a need to explore the implementation of precision drug delivery
from multiple perspectives in conjunction with the treatment of the organism with the drug.
Relying solely on TDM and pharmacogenomics for personalized drug administration still
presents certain challenges. In guiding personalized medication, it is essential to compre-
hensively integrate various technical approaches and data information, allowing different
personalized drug administration methods to complement and validate each other. This
approach facilitates more precise predictions of drug responses and monitoring of drug
metabolism, advancing the implementation of personalized medication.

3. Endogenous Metabolites and Pharmacometabolomics

Endogenous metabolites are compounds produced by the body with a molecular
weight of less than 1000 Da, such as amino acids, peptides, sugars, organic acids, lipids,
vitamins, growth factors, nucleosides, and nucleotides [29]. The composition of endogenous
metabolites is influenced by a variety of factors such as genomics, proteomics upstream of
life information transmission, the environment in which the organism is located, diseases,
and drugs. Endogenous metabolites are also an intuitive reflection and an important basis
for our evaluation of the metabolic status of an organism.

With the evolution of the field of metabolomics, coupled with advancements in its
analytical techniques, significant strides have been achieved in the profiling and quantifi-
cation of endogenous metabolites and metabolic mechanisms in vivo, as shown by other
studies [30]. Through the identification and quantification of endogenous metabolites,
a number of research papers have reported and found that endogenous metabolites can
influence and regulate metabolic phenotypes. For example, macrophages are an important
component of the immune system and are key cells with multiple functions such as the
regulation of inflammatory responses and phagocytosis; in addition, they are a class of
cells with plasticity and a variety of phenotypes [31]. Shilpi Saha et al. [32] provided an
extensive review elucidating the burgeoning significance of cellular metabolism and its as-
sociated metabolites as influential modulators of macrophage functionality and phenotypic
attributes. Their comprehensive insights underscore the importance of comprehending
the intricate interplay between metabolites, cellular function, and phenotype, which holds
promise for informing subsequent investigations aimed at leveraging metabolism for the
deliberate exploration of disease mechanisms and therapeutic interventions. Furthermore,
metabolomics samples are more readily available compared to genomics and proteomics
samples, rendering them universally applicable across a spectrum of biological research
endeavors. For endogenous metabolites, drugs are also an external intervening factor of
influence. As a branch in the development of metabolomics, pharmacometabolomics was
born to explore the influence of environmental factors (lifestyle, environmental exposure,
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age, gender, drugs, etc.) in addition to genetic factors on the individual variability of drug
therapy, which uses metabolomics as a technical support and drugs as the study variable to
predict the therapeutic response to drugs by identifying individual metabolic characteristics
represented by endogenous metabolites [33].

The formal inception of pharmacometabolomics dates back to the year 2006, marked
by the pioneering work of T. Andrew Clayton and colleagues. Their seminal investigation
demonstrated the composition of pre-dose urine in rats held predictive capabilities regard-
ing the magnitude of liver injury subsequent to acetaminophen administration [34]. The
general study procedure was as follows: firstly, urine samples were collected from rats
before and after drug administration, respectively; four endogenous metabolites related to
acetaminophen were found through 1H NMR analysis; then, the number and relative pro-
portion of relevant acetaminophen metabolites and the degree of hepatic injury (expressed
as MHS) after drug administration were determined for each rat; and histopathology and
pre-dose metabolomics datasets were integrated to establish the predictive model, which
was validated for stability and accuracy. In this work, not only was the concept of pharma-
cometabolomics demonstrated for the first time, but “Pharmacometabolomics” was defined
for the first time as “the prediction of the outcome (e.g., efficacy or toxicity) of a drug or
xenobiotic intervention in an individual, based on a mathematical model of ‘preintervention’
metabolite signatures”. Subsequently, the feasibility of the pharmacometabolomics concept
was also validated in actual clinical samples in humans [35]. Thus, the field of pharma-
cometabolomics research began, wherein the principal analytical tools encompass nuclear
magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). NMR is a widely
used analytical technique in metabolomics research. NMR emerged as the initial technology
of preference for advancing the domain of pharmacometabolomics due to its exemption
from the necessity for standards [36] and chromatographic separations when ascertaining
the identification and quantification of target compounds [37]. Presently, it finds extensive
utility in disease diagnosis, biomarker exploration for drug-induced toxicity [38,39], the
prediction of metabolic profiles and PK variability of drugs [40,41], and the identification
of metabolic phenotypes for effective drug response during the treatment of disease [42].
Compared with NMR, MS enjoys broader utilization in the progressive advancement of
metabolomics, primarily attributable to its heightened throughput capabilities and en-
hanced sensitivity [43]. MS is always used as a detector coupled with chromatography, and
common analytical systems include gas chromatography (GC-MS) and liquid chromatogra-
phy (LC-MS). In recent years, MS-related drug metabolomics studies have covered multiple
research directions [15], multiple diseases [10], multiple drugs [44], and multifaceted appli-
cations [33]. Table 1 shows the articles published from 2006 to the present day obtained
by searching PubMed with the keyword “Pharmacometabolomics”, and summarizes the
different diseases, drugs, research directions, and applications involved. Currently, the
trajectory of pharmacometabolomics research is predominantly oriented toward pharma-
cokinetics, drug response (pharmacodynamics and drug toxicity), and biomarker discovery.
The objects of study have also evolved from animals to healthy volunteers and then to
clinical patients, and the published studies of pharmacometabolomics on animal models
and human beings have involved acute and chronic diseases, including but not limited to
tumors, psychiatric disorders, cardiovascular diseases, and metabolic syndrome; also, the
studies on drugs have mainly focused on drugs that have a narrow therapeutic window, a
wide range of individual differences in drug metabolism, an unclear target of action, as well
as related mechanisms of action. Regarding its practical utility, pharmacometabolomics is
primarily deployed either in parallel or in synergy with pharmacogenomics to facilitate per-
sonalized drug administration [45,46]. In addition, pharmacometabolomics is also applied
during early drug development aspect [33,47], and its main role is to help to determine the
safety and efficacy of drugs by predicting the drug delivery response (toxicity window and
efficacy window) in conjunction with PK/PD in the late-stage clinical trial process of new
drugs. In summary, pharmacometabolomics, as an emerging facet within the domain of
metabolomics, has exhibited swift and substantial growth within a span of less than two
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decades. This expansion owes itself not only to the underpinning of sophisticated analytical
methodologies but also to its prospective applicability across diverse domains within drug
research. Importantly, it offers significant untapped potential in the realm of personal-
ized drug administration, a prospect that warrants systematic examination and practical
integration to contribute substantively to the ongoing advancement of human healthcare.

Table 1. Articles published from 2006 to the present day obtained by searching PubMed with the
keyword “Pharmacometabolomics”.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

1 2010 Tacrolimus Healthy human
volunteers LC-MS Predicting individualized PK of

tacrolimus [48]

2 2012 Triptolide Rats GC-MS
Predicting the PK of Triptolide in in

rats with different metabolic
patterns [49]

3 2013 Midazolam Healthy male volunteers GC-MS Establishing the CL equation for
predicting midazolam [50]

4 2015 Atorvastatin Healthy Volunteers LC-MS
Predicting pharmacokinetic
differences of atorvastatin in

individuals [51]

5 2016 Busulfan
Allogeneic

hematopoietic cell
transplant recipients

LC-MS Establishing a model for predicting
the clearance rate of busulfan [52]

6 2016 Midazolam Healthy female
volunteers LC-MS

Predicting the activity of liver CYP
in women under

different states [53]

7 2017 Busulfan
Paediatric

haematopoietic stem cell
transplantation patients

LC-MS Potential biomarkers for predicting
exposure to busulfan [54]

8 2017 Methotrexate Patients treated with
high-dose methotrexate GC-MS Predicting the clearance rate of

methotrexate [55]

9 2017 Cholic acid Rats LC-MS Using bile acid as an example to
predict individualized PK [56]

10 2017 Everolimus Heart transplant
recipients UPLC-MS/MS

Evaluating the factors affecting the
metabolism of Everolimus and

determine metabolic
biomarkers [57]

11 2018 Zonisamide Healthy human
volunteers LC-MS

Identification of endogenous
metabolites that can predict the
distribution of zonisamide [58]

12 2018 Losartan Healthy male volunteers NMR Predicting individualized PK
characteristics of losartan [40]

13 2018 New candidate
drug Human LC-MS

Explaining the pharmacokinetic
and pharmacodynamic

characteristics of new candidate
drugs [47]

14 2019 Midazolam Healthy human
volunteers GC-MS LC-MS

Establishing an equation for
predicting the clearance rate of

midazolam [59]

15 2020 Faropenem Healthy male volunteers GC-MS LC-MS Predicting individual PK
parameters of Faropenem [60]
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Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

16 2020 Celecoxib Healthy human
volunteers UPLC-MS/MS Monitoring PK of celecoxib and

establishing prediction models [61]

17 2021 Paroxetine Healthy human
volunteers LC-MS

Screening and identification of
endogenous markers that can

predict paroxetine PK [62]

18 2021 Rosuvastatin Healthy human
volunteers LC-MS Predicting PK parameters of

rosuvastatin [63]

19 2021 Paclitaxel
Female patients with
oligometastatic breast

cancer
LC-MS

Identification of pretherapeutic
metabolites that may be associated
with PK variability in paclitaxel [41]

20 2021 Gefitinib Mice UPLC-IM-MS Analyzing the urine profile of
gefitinib and analyzing PK [64]

21 2022 Remdesivir Rats LC-MS Predicting AUC and Cmax
of drugs [65]

22 2022 Sotorasib Rats LC-MS Predicting drug exposure/toxicity
biomarkers [66]

23 2022 Metformin Healthy human
volunteers UPLC-QTOF-MS Predicting the dose of drugs in

clinical trials [67]

24 2023 Busulfan
Patients receiving HCT

conditioning with
Busulfan

LC-MS Predicting the clearance rate of
busulfan [68]

Pharmacometabolomics related to drug administration response (effective, ineffective and toxic)

1 2006 Paracetamol Rats NMR
Predicting the degree of liver injury

after paracetamol
administration [34]

2 2009 Paracetamol Healthy male volunteers NMR
Determination of predictive factors
for common metabolites based on

urine metabolism profiles [35]

3 2010 Paracetamol Healthy human
volunteers NMR

Identification of relevant
metabolites to distinguish

susceptibility to acetaminophen
induced liver injury [69]

4 2011 CYP3A4 inducer Healthy human
volunteers NMR

Predicting metabolic characteristics
related to induced changes in

CYP3A4 activity [70]

5 2011 3-
Hydroxykynurenine

Patients with
schizophrenia in first

episode
LCECA

Predicting the severity of clinical
symptoms in the early stages of the

disease and before exposure to
antipsychotic drugs [71]

6 2011 Sertraline Patients with major
depression LCECA Predicting whether depression

patients respond to sertraline [72]

7 2011 Cisplatinum Rats NMR
Idiopathic and pre administration

prediction of cisplatin induced
nephrotoxicity [73]

8 2011 Capecitabine Patients with colorectal
cancer 1HNMR

Predicting the toxicity of
capecitabine in patients with

advanced colorectal cancer [74]
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Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

9 2012 Simvastatin Healthy, first treatment
drug patients GC-MS Identifying metabolites that can

predict LDL-C responses [75]

10 2012 Galactosamine Rats 1HNMR

Analyzing the metabolic spectrum
before and after administration to
understand the variable response

phenotype induced by
galactosamine [76]

11 2013
anti-tumor

necrosis factor
(ANF)

Patients with two types
of arthritis NMR

Predicting the response of patients
with rheumatoid arthritis and

psoriatic arthritis to TNF
antagonists [77]

12 2013 Sertraline Patients with major
depression GC-TOF

Biomarkers found to separate
responders and non-responders to

sertraline treatment [78]

13 2013 Sertraline Patients with major
depression

LCECA,
GCTOF-MS

Distinguishing between responders
and no-responders of sertraline or

placebo [79]

14 2014 Aspirin Healthy human
volunteers LC-MS

Identification of serotonin
associated with aspirin response

variability [80]

15 2014 Ergone Rats UPLC-
QTOF/HDMS

Metabolic analysis of adenine
induced chronic kidney disease [81]

16 2015 L-Carnitine Septic patient NMR

Identification of endogenous
biomarkers for distinguishing

between response to L-carnitine
treatment in sepsis [82]

17 2015 Atenolol and
Hydrochlorothiazide Hypertensive patient GC-MS

Identifying the characteristics of
metabolites related to the treatment

of two drugs and establishing
predictive models [83]

18 2015 Aspirin Healthy human
volunteers LC-MS/MS

Studying the metabolic
characteristics of aspirin exposure

and evaluate changes in related
reactions [84]

19 2016 Atenolol Hypertensive patient LC-MS

The relationship between baseline
serum acylcarnitine levels and

cardiometabolic responses after
exposure to atenolol

was studied [85]

20 2016 Metformin Non-diabetic GC-TOF

Identification of metabolic
characteristics of metformin

exposure and its pharmacological
effects on oral glucose tolerance [86]

21 2017 Clopidogrel CAD patient NMR

Identification of endogenous
metabolites associated with

clopidogrel HTPR in urine reveals
relevant pathways
and conditions [42]
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Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

22 2017 Gemcitabine
Patients with pancreatic
ductal adenocarcinoma
receiving gemcitabine

GC-MS

Identification of relevant
differential PDAC metabolites that
can predict response to gemcitabine

treatment [87]

23 2017 Simvastatin Patients treated with
simvastatin GC-MS

Predicting the risk of developing
hyperglycemia or insulin resistance
during simvastatin treatment [88]

24 2017 Estradiol and/or
progesterone

Patients with
premenstrual anxiety

disorder
UPLC/MS-MS

Determining steroid-specific
metabolites resulting from

treatment with estradiol and/or
progesterone [89]

25 2017 Cytarabine and
Anthracycline

Patients with acute
myeloid leukemia UHPLC-Q-TOF

Statistical modeling of
chemotherapy response in de novo

AML patients treated with
cytarabine and anthracyclines [90]

26 2017 Midazolam Healthy human
volunteers

GC-MS,
LC-MS/MS

Validation of endogenous versus
exogenous markers to assess
CYP3A activity and predict

treatment effects [91]

27 2017 Cisplatinum Rats LC-MS/MS,
GC-MS

Discovery of predicted metabolites
in serum prior to cisplatin

administration and construction
and validation of

predictive models [92]

28 2018 Paclitaxel
Female adult patients
with oligometastatic

breast cancer
NMR Predicting metabolic changes

induced by PN and paclitaxel [39]

29 2018 Metformin Early-stage type 2
diabetic patients GC-MS Predicting the efficacy

of metformin [93]

30 2018
Gemcitabine-
carboplatin

chemotherapy

Patients with metastatic
breast cancer 1H-NMR

Determining predictive metabolites
for response to chemotherapy in
patients with metastatic breast

cancer [94]

31 2018 Dexamethasone Rats with osteoporosis LC-MS/MS Predicting side effects associated
with dexamethasone treatment [95]

32 2019 Dexamethasone Preterm infants treated
with dexamethasone GC-MS

Identifying changes in metabolites
before and after dexamethasone

treatment can be used to
distinguish between responders

and no-responders [96]

33 2019 Lamotrigine and
levetiracetam

Pregnant women
with epilepsy LC-HRMS

Assessing the risk of pregnant
women receiving antiepileptic drug

treatment [97]

34 2019 Tamoxifen Rats GC-MS LC-MS

Screening of potential
pharmacodynamic biomarkers in
rats treated with antitumor drugs

under different metabolic
patterns [98]
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Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

35 2019 L-Carnitine

Subjects with
vasopressor-dependent
septic shock treated with

levocarnitine

LC-MS

Identifying differential metabolites
in patients can be used to

distinguish between 1-year
survivors and non survivors [99]

36 2019 Irinotecan Rats GC-MS LC-MS
Establishing a model for predicting
delayed diarrhea and CPT-11 bone
marrow suppression toxicity [100]

37 2019 Isoniazide Rats 1HNMR

Determining the variability of
isoniazid toxicity reactions can be

used to distinguish whether
adverse reactions

have occurred [101]

38 2020 Anlotinib Terminal cancer patients LC-MS

Exploring the utility of longitudinal
pharmacometabolomics in

predicting response to erlotinib in
patients with nasty tumors [102]

39 2020 Meloxicam Cats GC-MS Predicting adverse reactions of
meloxicam [103]

40 2021 L-Carnitine Septic patient NMR
Different efficacy of L-carnitine
found in patients with different

metabolic profiles [104]

41 2021 Baoyuan decoction Rats UPLC-MS/MS

Analysis of endogenous metabolites
associated with oral administration
of Baoyuan decoction to predict PD

metrics [105]

42 2022 Aspirin Rats NMR
Predicting gastric toxicity

associated with LDA induced
coronary artery disease [106]

43 2022

Angiotensin-
converting enzyme

inhibitors,
angiotensin

receptor blockers,
calcium channel

blockers, and
diuretics

Hypertensive patient LC-MS

Metabolic profiles based on
metabolic profiles comparing

metabolic profiles between four
antihypertensive drug groups and

non-drug groups [107]

44 2022 Gefitinib Patients with non-small
cell carcinoma LC-MS/MS Identification of biomarkers

inducing liver toxicity [108]

45 2022 Olanzapine Rats AFADESI-MSI
Identification of metabolites and

drug-related treatments and
adverse reactions [109]

Pharmacometabolomics related to biomarkers

1 2008 Paracetamol Mice LC-MS Identification of biomarkers related
to toxic reactions [110]

2 2008 Cisplatinum Lung cancer patients GC-MS Discovering new biomarkers
related to cisplatin therapy [111]

3 2008 Polychlorinated
biphenyls

Mohawk men and
women LC Validation of biomarkers based on

serum metabolic profiles [112]
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Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

4 2011 Citalopram and
escitalopram

Patient with major
depression GC-MS

Discovering biomarkers for
citalopram/escitalopram

treatment [113]

5 2012 Rifampicin Bacterial strains GC-MS Comparing the fatty acid
metabolites of two strains [114]

6 2013
AD subjects, mild

cognitive impairment,
and control

LCECA
Identify functionally relevant

alterations in metabolic networks
and pathways in AD [115]

7 2013 Hepatitis B
virus patients

UPLC-Q-TOF-
HDMS

Identifying urine biomarkers for
HBV [116]

8 2013 Sparfloxacin hamsters LC-MS/MS

Predicting metabolic changes
directly related to physiological or
pathological functions and drug

toxicity [117]

9 2013 Aspirin Healthy human
volunteers GC-MS

Analyze serum samples from good
and poor responders to aspirin for
changes in metabolite levels [118]

10 2014 Acetaminophen Children treated with
Acetaminophen LC-MS

Studying the association between
APAP induced hepatotoxicity and

long-chain acylcarnitine in children
with APAP toxicity [119]

11 2014 Ketamine People with
bi-directional depression LC-QTOF-MS

A metabolomic approach to identify
potential markers of ketamine

response and non-response [120]

12 2015 Acamprosate Patients with alcohol use
disorders LC-MS

Discovering an increase in baseline
serum glutamate levels as a

potential biomarker associated with
a positive reaction to

akanic acid [121]

13 2015 Olesoxime
Patients with

Amyotrophic Lateral
Sclerosis

HPLC-MS/MS

Detection of metabolomic profiles
of patients treated with Olesoxime

and placebo and prediction
modeling [122]

14 2016 Busulfan Patients treated with
Busulfan LC-MS

Identification of Potential Other
Metabolites Predicts Intravenous

Leucovorin Clearance in HCT
Subjects [123]

15 2016 Trastuzumab and
Paclitaxel

Patients treated with
trastuzumab-paclitaxel LC-MS

Identification of biomarkers
associated with trastuzumab

paclitaxel therapy [124]

16 2016 Atenolol Hypertensive patient GC-MS
Identification of biomarkers related

to glucose changes after atenolol
treatment [125]

17 2016 Busulfan
Allogeneic

hematopoietic cell
transplant recipients

LC-MS
Identification of biomarkers

predictive of leucovorin clearance
by targeted drug metabolomics [52]

18 2016 Patients with liver
cancer GC–MS

Prognostic biomarkers for
identifying clinical outcomes in

lung cancer patients [126]



Pharmaceuticals 2023, 16, 1568 13 of 26

Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

19 2017 Glimepiride Healthy human
volunteers LC-MS/MS

Identification of endogenous
metabolites affected by glimepiride

administration [127]

20 2018 Clopidogrel Patients with coronary
artery disease 1H NMR

Identifying metabolic phenotypes
associated with clopidogrel blood

and identify relevant
biomarkers [128]

21 2019 Tuberculosis patient GCxGC-TOFMS

Determining the changes in human
urine metabolome induced by TB

treatment and the extent of
treatment [129]

22 2019 Glucosamine
antimonate

Patients with cutaneous
leishmaniasis LC-MS

Prediction and prognostic
candidate biomarkers for

determining the treatment outcome
of meglumine antimoniate [130]

23 2020 Olanzapine Mice LC-MS

Identifying metabolites biomarkers
in plasma associated with AP

induced overeating and weight
gain [131]

24 2020 Gemcitabine Mice LC-MS

Metabolites of potential biomarkers
to identify the efficacy of

gemcitabine in patients with
pancreatic cancer [132]

25 2020 Warfarin Patients treated with
warfarin NMR

Predicting INR based reactions in
patients receiving warfarin

treatment [133]

26 2020 Irinotecan Cancer patients LC-MS/MS
Detection of related metabolic

changes for predicting the efficacy
or toxicity of irinotecan [134]

27 2021 Busulfan
Patients receiving HCT

conditioning with
Busulfan

LC-MS Identification of biomarkers related
to HCT patients [135]

28 2021

Patients with
high-density diffuse

peritoneal
carcinomatosis

LC-MS

Detection of metabolites associated
with the propensity of cancer

patients to experience oxidative
stress and develop infections [136]

29 2021 Inhaled
corticosteroids Patient with asthma UPLC-MS/MS

Evaluate plasma metabolomics
indicators of inhaled corticosteroids

to determine relevant
metabolites [137]

30 2021 Gefitinib Patient with rash victim HPLC/MS-MS
Development of a predictive model

for gefitinib-induced rash and
validation of the model [138]

31 2022 Adriamycin Mice LC-MS
Identification of urinary biomarkers

associated with sensitivity or
resistance to doxorubicin [139]

32 2022 Tacrolimus Kidney transplant
patients UPLC/Q-TOF-MS Identifying relevant metabolites as

biomarkers [140]
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Table 1. Cont.

Pharmacokinetics-Related Pharmacometabolomics

Number Year Drug Object Analytical
Technique

Results with
Pharmacometabolomics

33 2023 Medical cannabis Children with autism
spectrum disorders

CE-TOF-MS,
RRLC-TOF-MS

Determining corresponding
cannabis reactivity
biomarkers [141]

4. Pharmacometabolomics Informs Pharmacokinetics

To steer the course of personalized drug delivery, the full integration of various
technical means and data information makes different personalized medication meth-
ods complement each other and demonstrate mutuality, so as to promote the imple-
mentation of personalized medication by more accurately predicting drug reactions and
monitoring drug metabolism processes. A frequently employed approach for personal-
ized drug administration in clinical settings, TDM, predominantly concentrates on the
surveillance of drug metabolism (pharmacokinetics). However, it omits consideration
of inter-individual metabolic variations among patients and thus falls short in its ca-
pacity to prognosticate drug response during the drug delivery process [142]. Pharma-
cometabolomics is the most promising method for personalized medication. Within the
domain of pharmacometabolomics, its synergy with pharmacokinetics involves the uti-
lization of metabolomics methodologies to scrutinize patients’ metabolic profiles pre- and
post-drug administration. This facilitates stratification of the patient’s population using
endogenous substances as biomarkers and facilitates combining the metabolism of the
drug (pharmacokinetics) to predict the drug treatment response of a patient [143]. This
method can simultaneously monitor the drug level (pharmacokinetics) and the patient’s
individual metabolism (endogenous metabolites) level, helping to understand both the
real-time metabolism of the drug in the body and the individual metabolism level of the pa-
tient through the changes in metabolic profile, which enables the doctor treating the patient
to implement the clinical individualization of the patient’s medication more accurately.

Here, we will describe in detail the experimental procedures of Pharmacokinetic-
related pharmacometabolomics. In PK studies of pharmacometabolomics, researchers
generally do not measure complete pharmacokinetic parameters, and the three most fre-
quently used pharmacokinetic metrics in predicting the individualized PK of a drug or a
specific pharmacokinetic parameter based on endogenous metabolites are the area under
the drug time curve (AUC), the peak concentration of the drug (Cmax), and the clearance
rate (CL). The AUC and Cmax can reflect the absorption rate and degree of the drug in
the body, while clearance is the apparent volume of distribution of the drug removed
from the body per unit of time, elucidating the inherent disposition characteristics of the
organism toward the administered drug. Especially for certain pharmaceuticals demanding
heightened clinical scrutiny, the vigilant monitoring of these indices assumes paramount
significance. Based on mass spectrometry technology, we established and validated a
quantitative drug detection method, and blood samples at different time points after drug
administration were collected to detect the blood drug concentration and related pharma-
cokinetic parameters with the established method, and the pharmacokinetic parameters
and drug time profiles were obtained after statistical analysis.

The metabolomics process is divided into the following steps: (a) sample collection,
(b) data acquisition, (c) data processing, and statistical analysis. As shown in Figure 2.
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Figure 2. Pharmacometabolomics experimental procedures.
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(a) The sample collection process here mainly includes sample selection, collection, and
pre-processing. Pharmacometabolomics sample selection is usually based on drug response
(good or poor), and biosamples collected for analysis are typically derived from both pre-
and post-drug administration time points. Urine is usually the preferred biosample for
non-invasive sample collection; not only can it be collected in large quantities, but it
can also characterize drug metabolism in biological organisms [144]. In Zhixin Zhang
et al.’s study on the use of endogenous metabolites to predict the individualized PK of
the endogenous drug bile acids, pharmacometabolomics samples were collected from
pre-dose urine samples of rats for the corresponding metabolic analyses [56]. In a study
on the endogenous metabolites of cytochrome P450 (CYP3A) for predicting drug drug
interactions between CYP3A inhibitors and inducers in midazolam, urine samples from
healthy female volunteers were also used [53]. Unfortunately, the storage conditions of
urine are relatively more stringent, and it is necessary to take into account all aspects of the
experimental process to achieve good results in the pretreatment of urine samples [145].
Blood is the most common bioanalytical sample for metabolomics analysis. The selection
of serum and plasma, the choice of anticoagulant, and the avoidance of hemolysis are all
important considerations in the analysis of blood samples [146]. Sample pretreatment is
a key step in obtaining valuable metabolic information from biological samples. Based
on common pretreatment methods such as protein precipitation, liquid-liquid extraction,
and solid-phase extraction, selecting an appropriate extraction method according to the
physicochemical properties of the analyte and the characteristics of the other matrices,
and appropriately developing new techniques and methods according to the needs of the
analysis, will further contribute to the utilization of metabolite analysis [147].

(b) Commonly, the analytical platforms for metabolomics are MS and NMR. As pre-
viously discussed, each of these platforms possesses distinct merits and drawbacks. In
the context of pharmacometabolomics research, both MS and NMR have been utilized.
However, scrutiny of Table 1 reveals, thus far, publications addressing pharmacokinetic-
related drug metabolomics have not incorporated studies utilizing NMR as their analytical
platform; but, the other two directions of pharmacometabolomics studies related to phar-
macodynamics and biomarkers have applied NMR to their studies. Clayton [69] and others
demonstrated through the use of NMR that endogenous metabolites in the urine of healthy
adults could predict susceptibility to acetaminophen-induced liver injury. Hyuk Nam Kwon
et al. [73] evaluated the nephrotoxicity of cisplatin using the NMR platform and predicted
the toxic response based on the metabolic profile prior to administration. Table 1 shows that
contemporary pharmacometabolomics investigations continue to predominantly employ
the mass spectrometry (MS) platform. The MS platform can be further categorized into gas
chromatography (GC-MS) and liquid chromatography (LC-MS) based on chromatographic
distinctions. Chromatography-mass spectrometry is characterized by high-throughput,
high-sensitivity, and rapidity and efficiency. These attributes collectively furnish essential
technical underpinnings for advancing the field of pharmacometabolomics.

(c) In pharmacometabonomics experiments, variability in drug responses among pa-
tients’ post-administration can be attributed to the idiosyncrasies in their pre-administration
physiological conditions, so it is typically necessary to assess the baseline metabolic pro-
file. Raw metabolomics data obtained from analytical platforms are complex and make it
difficult to acquire effective information; as such, it is necessary to use relevant analytical
software to select correlated signals and reduce redundancy to generate easy-to-analyze
data matrices. Taking the metabolomics data from LC-MS as an example, its pre-processing
steps are generally de-noising, baseline correction, peak alignment, peak identification, and
normalization [148]. Proper data preprocessing steps are an essential part of extracting
important information from the raw data. In the statistical analysis of pharmacometabo-
nomics, multivariate statistical analysis is typically used due to its capacity for investigating
the influence of a multitude of variables, including pre- and post-administration, drug effi-
cacy response, and time on the outcomes of pharmaceutical treatments [149]. Multivariate
statistical analysis can be categorized into supervised and unsupervised methods, with
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principal component analysis (PCA) being the prevalent choice among the unsupervised
techniques. In the context of metabolomics data analysis, PCA serves as the initial step, fa-
cilitating the assessment of instrument stability through the examination of quality control
(QC) data distribution. Furthermore, it enables the visualization of data groupings, trends,
and outliers, as well as achieving data visualization through dimensionality reduction [150].
Supervised methodologies assess the validity of classification criteria by drawing upon
established sample groupings. In the field of metabolomics, widely employed techniques
include partial least squares discriminant analysis (PLS-DA) and orthogonal partial least
squares discriminant analysis (OPLS-DA). PLS-DA combines dimensionality reduction and
regression models to perform discriminant analysis on the results using relevant discrimi-
nant criteria, which is beneficial for finding similarities and differences between multiple
sets of samples. Nevertheless, a notable drawback arises when the quantity of variables
surpasses the number of samples, resulting in the issue of over-fitting [151]. OPLS-DA
is an extension of PLS-DA, which can better distinguish differences between groups and
improve the model’s explanatory capacity while maintaining its predictive efficacy [152].

After obtaining data from both pharmacokinetic and metabolomics components, we
will establish a model to evaluate and analyze the correlation between pharmacokinetic
parameters and differential metabolites, and identify metabolites with predictive ability. In
the corpus of published literature, the preferred approach for model construction is partial
least squares (PLS) analysis. PLS analysis is a multivariate statistical data analysis method,
which can quickly and efficiently screen out the relevant variables and establish the correla-
tion between the variables, and it can be used to perform regression modeling with multiple
severely correlated dependent variables. It represents a statistical analytical technique that
amalgamates the strengths of principal component analysis, canonical correlation analysis,
and multiple linear regression. Moreover, its response matrix has a prediction function,
which is an advantageous method that meets the requirements of pharmacometabolomics
data analysis. In addition, the correlation analysis of pharmacokinetic and metabolomics
data will also use conventional analysis methods for calculating correlation coefficients,
such as Pearman correlation coefficient and Spearman correlation coefficient [65,66,153].
Furthermore, the participation of machine learning methods in modeling also enhances the
precision and efficiency of data analysis within the realm of pharmacometabolomics. The
integration of machine learning with pharmacometabolomics data analysis represents a
significant and valuable extension of its applicability.

5. Pharmacokinetics-Related to Pharmacometabolomics for Predicting Drug Reactions

Research in pharmacokinetics related to pharmacometabolomics can be categorized
into specific objectives: predicting individual PK (individual metabolic characteristics
of drugs), predicting the drug clearance rate, predicting the drug area under the curve
(AUC) and maximum concentration (Cmax), and predicting drug exposure. Within these
defined research objectives, a significant emphasis has been placed on the prediction
of individual pharmacokinetics (PK) through the utilization of identified endogenous
differential metabolites. Notably, groundbreaking research in this realm was conducted by
Phapale et al. [48] in 2010. The researchers successfully formulated a partial least squares
(PLS) model relying on the metabolic characteristics observed in pre-dose urine samples to
forecast the individual pharmacokinetic profiles of tacrolimus among a diverse cohort of
healthy volunteers. The study further identified key metabolites participating in the drug’s
metabolism pathways, marking the initiation of using pharmacometabolomics for predict-
ing individual PK. While the years spanning from 2010 to 2020 encompassed a significant
body of pertinent studies, this review predominantly centers its attention on the academic
literature from 2020 onwards, with a specific emphasis on the prediction of the individual
pharmacokinetics (PK) of drugs. In 2020, Xing et al. [60] accomplished the successful
prediction of individual pharmacokinetics for meropenem among a cohort of healthy
volunteers by employing pre-dose plasma samples. They screened potential biomarkers to
elucidate the individual variability mechanism of meropenem and validated their findings
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in rat experiments. This milestone signified the inaugural use of pharmacometabolomics
in the prediction of individual PK profiles for an antibiotic pharmaceutical. Similarly, in
2021, this approach was applied to the context of the antidepressant medication paroxe-
tine, which is a selective serotonin re-uptake inhibitor used to treat depression, anxiety
disorders, and obsessive-compulsive disorder. Given its substantial adverse effects and a
constrained therapeutic window with a narrow concentration range, the imperative for re-
fining dosage regimens for personalized medication is underscored. In a study conducted
by Zhuoling An et al. [62], an exploration was undertaken into the pharmacokinetics of
paroxetine, along with the associated metabolic alterations in healthy volunteers, both
pre- and post-administration. The research involved the development of partial least
squares (PLS) models to establish correlations between pharmacokinetic (PK) parameters
and differential metabolites. This endeavor culminated in the identification of potential
biomarkers capable of predicting parameters such as the area under the curve (AUC) and
maximum concentration (Cmax), thereby enabling the differentiation between individuals
who respond favorably to paroxetine and those who do not. Concurrently, during the
same year, attention shifted towards the cholesterol-lowering agent rosuvastatin, primarily
driven by the adverse reactions it causes and the substantial inter-individual variations
observed in its pharmacokinetic profiles. Anne et al. [63] studied the blood concentration
and PK parameters of rosuvastatin in healthy volunteers. They analyzed pre-dose plasma
metabolites using non-targeted metabolomics, correlated differential metabolites with
PK parameters, and established an elastic net linear regression machine learning model,
which effectively pinpointed metabolites of significance for the prediction of both the
area under the curve (AUC) and the maximum concentration (Cmax) of rosuvastatin.
Furthermore, there has been a significant amount of research focused on predicting drug
parameters such as AUC and Cmax, which in turn predict drug exposure. In a departure
from earlier investigations involving healthy human volunteers, these inquiries encom-
passed experimental models involving rats. Surprisingly, pharmacometabolomics was
even extended to the realm of therapeutics for COVID-19, specifically in the context of
the antiviral drug remdesivir. In the year 2022, Ping Du et al. [65] embarked on a pharma-
cometabolomics study concerning remdesivir in rat model. They employed HPLC-MS/MS
to study remdesivir’s pharmacokinetic behavior and employed both cross-sectional and
longitudinal metabolomics analyses. Pearson correlation analysis and PLS modeling
identified potential biomarkers for predicting AUC and Cmax, which could distinguish
between treatment effects. Another study from the same group in 2022 focused on the
pharmacometabolomics of the tumor-targeting drug sotorasib [66], employing PK plus
PM methods to predict drug exposure. In the realm of predicting drug clearance rates,
a study in 2023 [68] utilized pre-dose plasma metabolomics to predict the clearance rate
of busulfan, a cytotoxic drug. Through a nonlinear mixed-effects model, the population
approach estimated busulfan’s clearance rate. Subsequent non-targeted metabolomics
analysis of pre- and post-dose plasma samples established a linear model, which corre-
lated the clearance rate with metabolomics results. This model could predict busulfan’s
clearance rate within two weeks based on pre-dose metabolomics. Collectively, research
in pharmacokinetics-related to pharmacometabolomics is experiencing robust growth.
These studies underscore the versatility of pharmacometabolomics in studying drug re-
sponse at various levels. This approach leverages the advantages of using endogenous
metabolites to represent baseline metabolism levels and pharmacokinetics to represent
drug metabolism within the body. Especially in the context of steering individualized
drug dosing strategies and assessing drug safety parameters, this methodology presents a
departure from the traditional belief that drug metabolism is predominantly modulated by
genetic factors. It integrates additional variables such as height, weight, age, and lifestyle
into drug metabolism, marking a significant advancement in medical science.
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6. Challenges and Conclusions

With the popularization of precision medicine and the increasing enthusiasm for
pharmacometabolomics research, pharmacometabolomics has been widely applied to
various drugs and diseases in preclinical research. However, the translation of its findings
into practical clinical applications has been sluggish, impeding the effective transference
of preclinical research outcomes to the realm of precision medicine. The initial purpose
of drug metabolomics was to predict the outcomes of drugs, which coincided with the
most urgent problem of precision medicine. Concurrently, as pharmacometabolomics
proactively anticipates individualized patient responses to drug treatments by considering
patient-specific factors as variables, determining how to effectively obtain and process
effective information on these baseline metabolic factors is also one of the research chal-
lenges. Although preclinical research in pharmacometabolomics has great prospects, it
still requires equipment support and powerful data conversion technology to transform
it into clinically applicable drug response monitoring methods. With the rise of biophar-
maceuticals with strong specificity, high target selectivity, and good therapeutic effects,
various malignant diseases, including tumors, can be effectively treated. Current research
in pharmacometabolomics mainly focuses on small-molecule chemical drugs. Due to the
large molecular weight and unique pharmacokinetic characteristics of biopharmaceuticals,
there are no clear guiding principles for the characterization of the body’s disposal of
biopharmaceuticals. Moreover, the drug characteristics of biopharmaceuticals, such as
charge, glycosylation type, patient gene polymorphisms, and individual factor differences,
have unknown effects on the ADME of biopharmaceuticals. Consequently, there is an
imperative need to intensify the investigative efforts within pharmacometabolomics per-
taining to the domain of biopharmaceuticals. Such endeavors are essential for refining
clinical drug administration guidance and fostering innovation within the biopharmaceu-
tical sector. In the big data environment, the reasonable utilization of artificial intelligence,
large databases, and machine learning holds the potential to significantly enhance the
precision and efficacy of personalized drug administration significantly. In the realm of
targeted personalized therapy, the deployment of artificial intelligence and machine learn-
ing algorithms can facilitate the optimization of drug dosages. In preclinical studies of
pharmacometabolomics, establishing a correct prediction model and accurately predicting
PK features is a key step in data transformation. By analyzing high-throughput omics data
using machine learning prediction algorithms can not only discover new biomarkers to
assist in patient stratification and disease diagnosis and treatment, but also gain a deeper
understanding of disease mechanisms and metabolites upstream and downstream of the
pathways involved.

The development of pharmacometabolomics has only covered a period of less
than 20 years, but it has led to exciting achievements. From the initial prediction of
acetaminophen hepatotoxicity in rats to the current prediction of the drug toxicity of the
COVID-19 drug remdesivir, pharmacometabolomics is constantly advancing through
its own technological and theoretical innovation. Pharmacokinetics- related pharma-
cometabolomics monitors the therapeutic response of drugs from two aspects: drug
metabolic behavior and changes in endogenous metabolites before and after administra-
tion and predicts the body’s response to drugs. This comprehensive approach facilitates
the anticipation of an individual’s response to drugs, enabling the precise and efficient
execution of personalized drug administration strategies Pharmacometabolomics pro-
vides new research ideas and methods for personalized drug delivery, but it still needs to
combine technological innovation and development with other omics to achieve comple-
mentarity and mutual assistance between omics technologies. This synergy will enable a
dynamic and stimulating trajectory for the evolution of drug metabolomics within the
life sciences domain.
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