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String method of nonimaging optics from a radiation
theory perspective

Boe Colabewala', Lun Jiang', Roland Winston'
"University of California Merced, 5200 N Lake Road, Merced, California, 95343

ABSTRACT

In this paper we will discuss the one-dimensional Hottel string method as it applies to
symmetric, infinite sources (as in the case of constructing ideal solar concentrators) and
extend the theory to asymmetric, finite sources and demonstrate that an ideal concentrator
can be created in this case. Furthermore, we will discuss the concept of flowlines and
explore the yet unknown relationship between strings and flowlines.

1. Hottel String Method

The well-known Hottel string method describes the probability of radiative transfer from
one surface to another using crossed strings. In the symmetric case, we consider two
surfaces of length A and B and draw strings labelled a, b, ¢ and d:

Surface 1
A

B

Surface 2

Then the probability of radiative transfer from Surface 1 to 2 is given by the equation|3]:

(c+d)—(a+D)
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12 24
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We can use this principle in constructing a thermodynamically efficient concentrator. Let
us consider an asymmetric case with a finite source. First, we’ll draw our strings:

a|
b|
2
1 b
a

We now take a string length a’b + bb’ and, using a” and b’ as the foci, draw the elliptical
profile until it meets point ¢ on ab’.

Now, we will repeat the same thing with a string length ab’ + b'b, using a and b as the foci,
draw the elliptical profile until it meets point ¢ on ab’.
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Now, we can call cc” Surface 3. If we assume that no energy is lost when radiation travels
from surface 1 to surface 2, then we have:

APz = A1 P (2)

That is, energy is conserved when travelling from surface 1 to surface 2 through surface 3.
Then, by the same conservation principle, we have the identities

A1P13 == A3P31 (3)

A1P12 = A2P21 (4)

Now, if we substitute Equation (3) into Equation (2), we have

AsPy = A1 P )

and we then substitute Equation (5) into Equation (4) to arrive at

A3P31 = AQPQl. (6)

Now, from Equation (6) the geometric concentration is given by
AP _ 1
AQ P31 P31

since is a probability and must be less than 1. Thus, we produce a thermodynamically
efficient ideal concentrator.

(7)
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2. Flowline Derivation

A useful approach in concentrator design is using the lines of flow from the geometrical
vector flux to model light rays as fluid flow in phase space. The advantage of this form
is that mirrors can be placed along the flow lines without disturbing the vector field. The
direction of these flow lines will be the the direction of energy flow from one body to
another. The geometrical vector flux J is defined by its components as

(Jas Jy, J2) = <// dpydpz,// dpzdpm,// dpmdpy) (8

where p,, p, and p, are the optical direction cosines of a ray from a Lambertian source.
[2]Let us first consider a finite source with point P on the z-axis:

We define angles (; and 6, and projection angles /3 and 6. Now, [[ dp.dp, will be the
solid angle projection of the shaded area %0039 onto the "floor” (the x-z plane), which
will simply be (8 — 81 cos ). [1] This is the y-component of the flowline vector.

In the two dimensional case, we model the flowline vector by considering a very long
aperature extending to infinity, in this case in the x-direction. Then, we can see that in
the infinite case, = [ = 5 and 61 = 0. Then, the y-component of our flowline vector
becomes
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Jy = %(1 — cos ) 9)

Similarly, if we take the solid angle projections onto the y-z plane and x-y planes, we can
find the x-component and z-components respectively. In the infinite case, the x-component
is 0 by symmetry. [1]The z-component is then, for the finite case

J, = %(01 sin 5 + (31 sin @) (10)

and in the infinite case

J, = %sin&. (11)

Then, to find the magnitude of the flowline vector in two dimensions, we first consider an
arbitrary point (not on the axis) so we have

Jy, = (1 —cosb) (12)
Jy, = (1 — cosby) (13)

and
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J,, =sinb, (14)

J., = sinb, (15)

so our components become
Jy = Jy, — Jy, = —(cos by — cos bs) (16)
J,=J, —J, =sinf; —sinb, (17)

or, if we apply trigonometric identites,

. (0146 . (01 —0
Jy:2sm(12 2)5111(12 2) (18)
J, = 2cos (91 —; 92) sin (91 ; 92) . (19)

Then, we find the magnitude of the two-dimensional flowline vector using

Il =/ ]2+ J.° (20)

and with a bit of simple algebra we arrive at the magnitude of the flowline being

|J| = 2sin (91 ;92> 21)

with a direction of

)
2
This means that in two dimensions, the flowline will always bisect the extreme angles.

. (22)
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3. Relationship between Strings and Flowlines

If we draw the flowlines between two surfaces along with the strings, we see some remark-
able results:

25

15F

05+

-0.5

At

A5k

25k

Here the curved lines extending from the center of A2 to the edges of Al are the flowlines
which form hyperbolas using the ends of Al and A2 as foci. As an inherent property of
a hyperbola, however, this also means that at each point on these hyperbolas, a pair of
strings can be drawn to the extrema and the difference between these strings (long string
- short string) will be constant. In this example, that constant length is h. This means
that the amount of radiation received by A2 from Al is equal to the amount of radiation h
emits everywhere. And this is the same as the amount A1 receives from A2—satisfying the
second law of thermodynamics! However, the flowline is a purely geometrical concept,
while strings are based only on the laws of thermodynamics. The fact that they agree in
concentrator design is neither trivial nor coincidental.
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4. Conclusions

Although concentrator design is typically viewed from a strictly optical perspective, ulti-
mately we are concerned with the transfer of light which should also be studied from a
thermodynamics perspective. Using radiation theory to study light flow alllows us a dif-
ferent outlook on optical design problems. Both the string method and flowline method
of concentrator design agree despite originating from completely different physical theo-
ries, suggesting that radiative heat transfer theory and geometrical optics are more closely
linked than one might expect, despite being separated by centuries of study. Uncovering
the relationship between strings and flowlines could be key to further nonimaging optic
design.
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