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ABSTRACT OF THE DISSERTATION 

 

Leveraging mechanistic models  

to characterize the dynamics of zoonotic infectious diseases  

and assess intervention strategies 

 

by 

 

Monique Renee Ambrose 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2018 

Professor James O. Lloyd-Smith, Chair 

 

Zoonotic diseases, which are caused by pathogens that transmit from animals into 

humans, are responsible for numerous ongoing public health burdens, such as leptospirosis, 

rabies, and West Nile virus infections, and are also considered a probable source of future 

epidemics in humans. Describing and quantifying the transmission dynamics of these pathogens 

is vital if we wish to assess which of the many known zoonotic pathogens pose a threat to 

humans and which management strategies would be most effective at minimizing that threat. To 

conduct these assessments, it is necessary to consider the ecological dynamics and interactions 

driving zoonotic disease transmission.  

A zoonotic pathogen‟s impact on humans depends not only on transmission dynamics 

within the human population, including heterogeneities in human contacts and interactions with 
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endemic human pathogens, but also on disease dynamics within the reservoir and at the human-

reservoir interface. Because of the complex ecological interactions driving the spread of zoonotic 

pathogens, qualitatively and quantitatively characterizing their spread and devising rational 

management strategies requires combining insights from community ecology, invasion biology, 

and classical single-host disease ecology with system-specific information about the pathways of 

transmission within the reservoir, within humans, and between the two. Bringing together these 

complementary perspectives can shed light on the key processes driving transmission, which is 

essential for predicting how changes, both purposeful interventions and natural shifts, may alter 

the system‟s behavior. In this dissertation, I present three studies that use diverse methods to 

explore different aspects of zoonotic pathogens‟ disease dynamics.  

In chapter 1, I use a theoretical approach to explore the effects of competition between a 

zoonotic pathogen and a human-endemic pathogen in the context of a disease eradication 

program. I use a deterministic compartmental model that tracks spillover and transmission of a 

zoonotic disease in humans as well as transmission of a partially cross-protective endemic 

human pathogen to examine how the presence of the zoonotic pathogen can reduce the 

vaccination coverage necessary to eradicate the human pathogen and how the zoonotic 

pathogen‟s prevalence is expected to change during and following a successful eradication 

campaign. I then use the smallpox-monkeypox system as a case study to assess how the 

theoretical findings apply in a real-world context.  

In chapter 2, I move from theoretical explorations of disease dynamics to using real-

world datasets to inform mechanistic models. Zoonotic disease surveillance datasets are valuable 

sources of information about disease dynamics, but are generally difficult and expensive to 

obtain and are associated with a variety of data limitations. This chapter develops methods to 
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extract as much information as possible from these valuable information sources. I develop a 

model-based inference method that addresses a number of data challenges, including unobserved 

sources of transmission (both human and zoonotic), limited spatial information, and unknown 

scope of surveillance, using a spatial model with two levels of mixing. After demonstrating the 

robustness of the method using simulation studies, I apply the new method to a dataset of human 

monkeypox cases detected during an active surveillance program from 1982-1986 in the 

Democratic Republic of the Congo. The results provide estimates of the reproductive number 

and spillover rate of monkeypox during this surveillance period and suggest that most human-to-

human transmission events occur over distances of 30 km or less. Taking advantage of contact-

tracing data available for a subset of monkeypox cases, I find that around 80% of contact-traced 

links could be correctly recovered from transmission trees inferred using only date and location. 

The results highlight the importance of identifying the appropriate spatial scale of transmission, 

and show how even imperfect spatiotemporal data can be incorporated into models of zoonotic 

pathogens to obtain reliable estimates of transmission patterns. 

Chapter 3 shifts from examining the dynamics of zoonotic pathogens after they have 

already spilled into humans to evaluating how interventions in the zoonotic reservoir could help 

reduce the risk of spillover occurring in the first place. This chapter focuses on evaluating 

interventions to minimize the risk of spillover of swine-origin influenza A viruses (IAV-S) into 

humans in the United States. In the past decade, the majority of reported human infections with 

IAV-S in the United States have been associated with individuals exposed to exhibition swine 

while attending agricultural shows. Because these exhibition swine make up a largely distinct 

population within the US swine herd, there is great potential to implement control practices 

within exhibition swine that could substantially reduce risk of spillover into humans. To 
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understand the factors that drive influenza prevalence and persistence in US exhibition swine and 

to evaluate the impact of potential interventions, I develop a network model that characterizes 

disease spread into and among exhibition swine. The model incorporates key structural 

information about the system and is informed by a unique surveillance dataset collected from 

shows in Ohio, Michigan, and Indiana, including IAV-S genomes from more than one hundred 

infected swine. I use several different approaches based on both epidemiological and sequence 

data to estimate parameters describing transmission and to evaluate the expected impact of a set 

of thirty potential interventions on the risk of spillover into humans. Across all approaches, 

several interventions consistently are found to perform best at reducing projected spillover risk, 

including requiring participants to take one or two weeks off between shows and implementing 

strategies to reduce transmission probabilities among swine at shows. 

While the studies presented in these chapters range from theoretical explorations of 

simplified systems to direct comparisons of intervention impacts incorporating messy real-world 

data and complex system structure, they all pursue the common goal of providing insights 

relevant for conceptualizing the prominent forces in a system and for using that understanding to 

inform decisions on control measures in a real-world context. 
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CHAPTER 1: 

Competition between cross-immunizing human and zoonotic 

pathogens: implications for disease control and the aftermath of 

eradication 

1.1 Introduction 

Infectious disease management programs often focus on a single target pathogen, 

ignoring potential interactions with other pathogens and host species. However, pathogens do not 

exist in isolation: a single host individual may be infected with a multitude of pathogens (many 

of which may have complicated immune-mediated interactions) and pathogens may move 

between different host species. The implications of these multi-pathogen, multi-host interactions 

for disease control remain largely unexplored. 

Pathogen community ecology may be of particular importance in the context of pathogen 

eradication efforts. Following the successful eradication of smallpox and rinderpest, public 

health agencies and non-profit organizations have become more optimistic about using pathogen 

eradication to remove public health threats and are currently working to eradicate several other 

pathogens, such as poliomyelitis, dracunculiasis (guinea worm disease), yaws, and malaria (1–4). 

While these efforts will assuredly improve human health worldwide, it is important to consider 

potential unintended consequences of pathogen eradication. From a community ecology 

perspective, removing an organism from a system may open a „niche‟ that can then be filled by 

competing organisms. Although there has been some debate regarding the validity of niche 

competition when applied to pathogens (e.g. (5)), the existence of cross-protective immunity 

within many groups of pathogens suggest that niche replacement is a valid concern. There is 

already evidence suggesting that Peste des petits ruminants and monkeypox have increased in 

prevalence following the eradication of their competitors, rinderpest and smallpox, respectively 
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(6–8). Among the pathogens currently targeted for eradication, the possibility of emergence of 

related pathogens is already a concern. For example, in a recent study comparing the genomes of 

human Plasmodium vivax and P. vivax parasites from other primates, Loy et al. conclude that „P. 

vivax in African apes represents a substantial and genetically diverse parasite reservoir from 

which future human infections could arise, even if eradication of current human strains were 

successful‟ (9).  

To investigate how the competition of cross-immunizing pathogens over a limited supply 

of susceptible individuals may impact pathogen control efforts, we used a deterministic 

compartmental model to examine the interactions of a human-specific pathogen and a zoonotic 

spillover pathogen during and following a vaccination campaign. (For clarity, we use the terms 

„human pathogen‟ and „zoonotic pathogen‟ in this work; however, these concepts generalize to 

any system where there is a species-specific pathogen as well as a generalist pathogen that can 

spill over into that species.) In particular, we focused on several questions relevant to infectious 

disease control: 1. Does the added competitive pressure of a zoonotic pathogen that is cross-

protective with a human pathogen reduce the level of vaccination required to eradicate the 

human pathogen? 2. How will the zoonotic pathogen respond to vaccination pressure? 3. 

Following eradication of the human pathogen and cessation of vaccination, how much will the 

zoonotic pathogen‟s prevalence increase as a result of competitive release? 

As a case study, we applied the model to the smallpox-monkeypox system to examine the 

current paradigm that monkeypox has invaded the niche space opened by the elimination of 

smallpox and the cessation of vaccination. This work has implications for estimating the amount 

of vaccination required to eliminate a pathogen and for interpreting current trends in zoonotic 

prevalence, and also serves as a reminder that eradicating an endemic pathogen may have 
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unintended consequences that should be carefully considered when devising management 

strategies.  

1.2 Methods 

Model formation 

The model expands on the classic continuous-time Susceptible-Infected-Recovered (SIR) 

model to track the proportion of the host population in each of nine possible states that indicate 

whether they are currently infected by either pathogen, as well as their infection and vaccination 

history (see Figure 1.1). Individuals move between states when they are vaccinated and when 

they are infected by or recover from infection with either the human-specific pathogen or the 

zoonotic pathogen. The following system of differential equations describes the progression of 

the system through time: 
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where                 and                     are the rates at which fully susceptible 

individuals become infected with the human pathogen (via transmission from infectious 

individuals) and the zoonotic pathogen (via transmission from infectious individuals and 

spillover). Descriptions of the parameters and the baseline values used in analyses are provided 

in Table 1.1. Of particular importance, the extent of cross-protective immunity between the 

pathogens is represented by c. When c=1, there is complete cross-protective immunity between 

pathogens, so individuals who recover from infection with one pathogen can no longer be 

infected by either pathogen. At the other extreme, when c=0, individuals who recover from 

infection with one pathogen experience no protection against future infection with the other 

pathogen (no cross-protective immunity). Vaccination, which occurs at constant rate v in 

susceptible individuals as well as individuals who have recovered from infection, is assumed to 

provide the same degree of cross-protective immunity against the human and zoonotic pathogens 

as the two pathogens provide against one another.  

The basic reproduction number, which describes the average number of new infections 

caused by an infectious individual when the rest of the population is susceptible, is a common 

metric for describing the transmissibility of a pathogen (10–12). For this system, the basic 

reproduction number of the human and zoonotic pathogens, respectively, are R0,H =      
 

    

and R0,Z =             and unless otherwise specified are set at R0,H = 5 and R0,Z =1.5. This 

parameterization corresponds to a system in which the human pathogen is the superior 

competitor: when there is high enough cross-protective immunity between the pathogens, the 
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zoonotic pathogen is outcompeted by the human pathogen and is unable to sustain transmission 

in humans. However, zoonotic infections may still occur because the zoonotic pathogen is 

repeatedly reintroduced to the human population through spillover events (at rate sp). In the 

absence of the human pathogen, the zoonotic pathogen has a high enough basic reproduction 

number that it would be able to sustain transmission in humans.  

Smallpox-monkeypox case study 

We simulated smallpox and monkeypox transmission as well as vaccination in the Congo 

Basin between 1925 and 2010 using a slightly modified version of the model described in section 

2.1 (see Appendix for model equations). Instead of using a single parameter, μ, to represent both 

the per capita birth and per capita death rates, we included separate birth and death rate 

parameters to reflect the real-world differences in these rates in the Congo Basin. Due to the 

population growth that results from a higher birth than death rate, we tracked the number of 

individuals in each category, instead of the fraction of the population in each category. The 

frequency-dependent transmission pattern of the model described in 2.1 was preserved, so that 

when the birth and death rate parameters are set equal to one another, the two models produce 

equivalent results.  

All parameters used in the smallpox-monkeypox case study were estimated based on 

demographic and epidemiological studies from the literature. The parameter values used and the 

references for each value are shown in Table 1.2 and Figure 1.2. These parameter values give a 

R0,H of 6.9 for smallpox and a R0,Z of 0.8 for monkeypox. The fraction of the population in each 

infectious state in 1925 was initialized as the equilibrium values under the 1925 vaccination 

level. 
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1.3 Results and implications 

Effect of competition on the vaccination level needed to eradicate the human pathogen 

A classic result in infectious disease modeling is that when a sufficiently large fraction of 

the population is vaccinated, the pathogen‟s prevalence decreases to zero (10,22,23). This 

vaccination-coverage threshold is known as the critical vaccination level, and in the single-

pathogen version of the model described above, it is equal to (1-1/ R0,H)/c. Our results show that 

the presence of a cross-protective zoonotic pathogen in the human population reduces the 

vaccination coverage needed for eradication of the human pathogen below the single-pathogen 

critical vaccination level. The magnitude of this effect increases as the spillover rate or R0,Z 

increases (Figure 1.3). Furthermore, because the slope of the critical vaccination versus R0,H 

curve is steepest at low values of R0,H, the presence of a zoonotic pathogen will make the greatest 

impact on the critical vaccination level for these less-transmissible human pathogens (Figure 

1.3). Human pathogens with low R0,H values can be excluded entirely even in the absence of any 

vaccination and when the zoonotic pathogen has a lower reproduction value, so long as the 

spillover rate is sufficiently high.  

In the context of public health management, calculating the critical vaccination level is an 

important step in formulating a strategy to control an infectious disease (24–26). The critical 

vaccination level indicates whether a vaccination-based eradication campaign is feasible and 

helps optimize the resources expended on control. Because the presence of a zoonotic competitor 

can substantially decrease the critical vaccination level, public health officials should take the 

transmission patterns of cross-protective pathogens into account when developing control or 

eradication strategies.  
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Effect of vaccination on the zoonotic pathogen 

As vaccination pressure increases, the zoonotic pathogen‟s prevalence declines (Figure 

1.4). The magnitude of this effect depends largely on the extent of cross-protective immunity. 

When cross-protective immunity is weak, the zoonotic pathogen begins at a high prevalence but 

then declines sharply as vaccination levels are increased. When cross-protective immunity is 

strong, the zoonotic pathogen‟s prevalence begins at a lower value, but it experiences little or no 

decline in prevalence as vaccination levels increase. This phenomenon can be understood if one 

considers that the susceptible fraction of the population is largely set by the stronger competitor: 

the human pathogen. The effective reproduction number of the human pathogen (Reff,H : defined 

as the number of new infections caused by an infectious individual in a population that is not 

necessarily fully susceptible) is determined by the fraction of the population susceptible to 

infection with that pathogen (SH), such that Reff,H = SH*R0,H. By definition, at equilibrium the 

human pathogen‟s effective reproduction number is one (each infection exactly replaces itself so 

that its prevalence remains constant). To maintain this equilibrium in the presence of zoonotic 

spillover and vaccination, the prevalence of the human pathogen will adjust so that the fraction 

of the population susceptible to the human pathogen at equilibrium remains constant at 1/R0,H. 

When there is complete cross-protective immunity, both the human and zoonotic pathogens can 

only infect completely susceptible individuals, so SH = S. Because the human pathogen‟s 

prevalence decreases as vaccination increases to preserve an effective reproduction number of 

one, the size of the fully-susceptible population stays constant as vaccination increases. 

Therefore, in the complete cross-protectivity scenario, the zoonotic pathogen sees a constant 

number of susceptible individuals as vaccination levels increase, up until the human pathogen is 

eradicated. Once vaccination coverage has reached a high enough level to eradicate the human 
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pathogen, the effect of additional vaccination increases is no longer partly (or wholly) absorbed 

by the human pathogen, so the equilibrium zoonotic prevalence declines more sharply as 

vaccination increases (Figure 1.4).  

Understanding the expected response of a zoonotic pathogen to a vaccination campaign 

will help managers determine whether observed changes in zoonotic prevalence are within the 

range of anticipated outcomes or whether there is likely some other factor at play that merits 

further investigation.  

Increase in zoonotic pathogen prevalence following eradication of human pathogen 

Before eradication of the human pathogen, the zoonotic pathogen competes with the 

human pathogen and with vaccination for a limited supply of susceptible individuals. After 

eradication and cessation of vaccination, the zoonotic pathogen no longer shares the susceptible 

pool and therefore experiences increased equilibrium prevalence. The absolute increase in 

prevalence is greatest at large R0,Z values because the zoonotic pathogen is able to reach a higher 

equilibrium infection prevalence. However, the proportional increase in zoonotic prevalence is 

greatest at intermediate R0,Z values, which balance the higher final prevalence of large R0,Z values 

with the greater suppression by the human pathogen at lower R0,Z values (Figure 1.5). 

Furthermore, in systems where the human pathogen has a larger reproduction number or where 

there is stronger cross-protective immunity, the impact of competition on the zoonotic pathogen 

is stronger, and therefore the increase in the zoonotic pathogen‟s prevalence after eradication is 

greater.  

Because the presence of the human pathogen can substantially reduce the zoonotic 

pathogen‟s transmission in the human population, estimates of the zoonotic pathogen‟s 
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reproduction number that are generated using pre-eradication data may underestimate the true 

value unless the impact of cross-protective immunity is taken into account. It is worth noting that 

a zoonotic pathogen that is unable to sustain transmission in humans while competing with the 

human-specific pathogen may be capable of sustained spread after the human pathogen‟s 

eradication. Depending on the anticipated health costs of the zoonotic pathogen‟s increased 

prevalence, public health officials may need to consider whether vaccination efforts should be 

sustained even after eradication of the human-endemic pathogen. 

Smallpox-monkeypox case study 

To examine whether the findings discussed above, which are based on equilibrium states, 

are relevant in a real-world context, we ran a dynamic simulation of smallpox and monkeypox 

transmission in the Congo Basin between 1925 and 2010, covering both pre- and post- smallpox 

eradication eras. The dynamic smallpox-monkeypox simulation exhibited several of the 

behaviors reported in the previous sections (Figure 1.6). From 1925 to the late 1960s, the 

increasing vaccination rate caused only a small decline in monkeypox‟s simulated prevalence 

due to the high levels of cross-protective immunity between monkeypox and smallpox (as 

explained in section 3.2). After smallpox was eradicated but before vaccination was 

discontinued, monkeypox‟s prevalence declined more sharply, again, paralleling results from 

section 3.2. Finally, after smallpox was eradicated and vaccination efforts stopped, monkeypox‟s 

simulated prevalence increased substantially as it approached the higher competition-free 

equilibrium expected in section 3.3 (Figure 1.6). The timescale for monkeypox to asymptote at 

its competition-free equilibrium is related to the demographic birth and death rates of the 

population: as older individuals who were infected or vaccinated during the smallpox era are 

replaced by younger individuals born post-eradication, the system approaches its new 
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equilibrium state. These results indicate that the behaviors reported in sections 3.2-3.3 have an 

observable and important impact on real systems. 

The results are also of direct relevance to the monkeypox system. The idea that the 

decline of the vaccinated population has led to an increase in monkeypox prevalence has been 

proposed previously (7,8). This model provides a theoretical framework to formalize the idea 

that the relaxation in competition for susceptible individuals led to the increase in monkeypox 

prevalence. The model was created with the goal of transparency and generality, and thus does 

not include many important complexities found in the monkeypox system, such as spatial 

structure of villages, stochasticity, or population structure. These and other complexities not 

included in this paper‟s model preclude us from using the simulation output as quantitative 

predictions for the system. Nonetheless, the qualitative prediction that monkeypox would be 

expected to increase due to competitive release matches well with the observation and suggests 

that at least some of the observed increase in monkeypox prevalence is due to competitive 

release. 

Applying these ideas to a heterogeneous world  

The present work is a theoretical exploration of a complex situation, and to maximize 

comprehensibility we have restricted the analysis to a highly homogenous scenario. However, 

real-world heterogeneities in behavior and risk across the human population are well known to 

have important impacts on disease dynamics (10,27–32). We expect including spatial 

heterogeneity in the reproduction number of both pathogens as well as in the spillover rate would 

have a quantitative effect on our results, though the general qualitative findings should hold. For 

instance, if spillover risk is higher in remote villages than in cities due to higher rates of human-
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animal contact, the presence of the zoonotic pathogen might not have a large effect on the 

vaccination coverage needed for eradication in cities, but might substantially lower the coverage 

needed in villages. This effect could be beneficial in the context of an eradication campaign, 

which may struggle to obtain high vaccine coverage in remote regions. In fact, this type of effect 

has been proposed to help explain the eradication of the rinderpest virus, where the presence of 

PPR may have made eradication possible despite vaccination coverage levels in certain regions 

lower than the expected eradication threshold (6). Furthermore, if the zoonotic pathogen is 

expected to pose an unacceptable public health burden after eradication of the human-specific 

pathogen, it may be possible to take advantage of the heterogeneities in spillover to target 

vaccinations to the areas at highest risk.  

Also of relevance to the spillover and disease eradication context, both the human and 

zoonotic pathogens may have smaller reproduction numbers in remote villages and higher values 

in densely-packed cities. This means that after eradication of the human-specific pathogen, the 

increase in the zoonotic pathogen‟s prevalence if it reaches a city may be substantially higher 

than in the homogenous case presented here. Furthermore, these heterogeneities in reproduction 

numbers will also result in different critical vaccination levels required for elimination in 

different areas. Spatially-structured models, parameterized for the relevant disease system, are 

needed to explore the implications of these interactions more fully. 

While the qualitative patterns from this study will likely hold true in a wide range of 

situations, the magnitude of effects are likely to be highly dependent on the specific 

heterogeneities of a particular system. Considering the impact these heterogeneities, in addition 

to accounting for uncertainty or variability in parameter estimates, will be essential before using 

the ideas presented here to alter management plans.  
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Extending to other control scenarios 

In this study, we have focused on the relatively simple scenario where vaccination is the 

only management strategy in place, and the protection provided by vaccination against both the 

zoonotic and human pathogen is equal (and is the same as the cross-protective immunity between 

pathogens). These assumptions may be representative of some real-world scenarios, particularly 

when there is a vaccination available that produces strong, long-lasting immunity. However, 

additional control practices, such as vector control, bed nets, or drug treatments, will be 

necessary in many situations to supplement or replace vaccination. In addition, the interventions 

deployed may have an asymmetric impact on the transmission of the human versus the zoonotic 

pathogen. A full exploration of the implications of non-immune-mediated or asymmetric control 

measures is beyond the scope of this work; however, we expect that many of the qualitative 

patterns discussed here will apply across a wide range of scenarios, so long as the zoonotic and 

human pathogens are competing over a shared resource of susceptible individuals and the 

intervention affects the availability of that resource.  

Furthermore, here we have focused on systems where the cross-protective immunity 

between pathogens (and protection from vaccination) is strong and lifelong. The functional 

relevance of the patterns for management plans will vary between systems, and may become 

inconsequential in systems where cross-protective immunity is weak or short-lived. 

1.4 Conclusions 

This work illustrates that a zoonotic competitor can lower both the cost and benefits of 

eradication: it can decrease the amount of vaccination necessary to eradicate a human pathogen, 

but its expansion after eradication has the potential to counteract some of the public health 
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benefits. Applying the model to the monkeypox system indicates that pathogen competition can 

have real-world consequences and supports the idea that competitive release explains at least 

some of monkeypox‟s increase. It is therefore essential to consider the ecological interactions in 

the broader pathogen community when making decisions about infectious disease control so that 

consequences of eradication can be anticipated and dealt with appropriately. 
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1.5 Figures and Tables 

 

Figure 1.1. Model diagram. Individuals are born into the susceptible state (S). From here, they 

may be vaccinated (state V) or infected by either the human or zoonotic pathogen (state IH or IZ, 

respectively). After recovering from this first exposure (and moving into state RH or RZ), 

individuals are assumed to be completely immune to the pathogen they were previously infected 

with and partly protected from infection with the other pathogen. Individuals who have only 

been vaccinated or infected by one pathogen can be infected by the other pathogen (IZH if newly 

infected by the human pathogen or IHZ if newly infected by the zoonotic pathogen). After 

recovering from this infection (state RHZ), an individual is considered completely immune. Not 

shown in diagram, all individuals in the population experience a constant per capita death rate μ, 

and the population size is kept constant by balancing these deaths by births into the susceptible 

state.   
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Figure 1.2. Vaccination rates between 1925 and 2010 that were used in the smallpox-monkeypox 

simulation. The colored bars highlight the periods before (A), during (B), and after (C) 

smallpox‟s eradication from the Congo Basin. 
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Figure 1.3. Effect of competition on critical vaccination levels. The bold grey line represents the 

classic curve describing the proportion of the human population that would need to be vaccinated 

to eradicate the human pathogen (the „critical vaccination level‟) versus R0 of the human 

pathogen (R0,H) without competition. The remaining lines represent the curve under competition 

with a zoonotic pathogen.  The black line shows the baseline parameter values used in this study 

(sp = 0.00001 and R0,Z=1.5). The green dotted line corresponds to a higher spillover rate (sp = 1e-

04) while the blue dotted line corresponds to a higher zoonotic reproduction number (R0,Z =4). 

For reference, the two spillover rates result in around 0.4% (for the baseline scenario) and 3.6% 

(for the high scenario) of the population being exposed to spillover in a given year. All other 

parameters are as listed in Table 1.1.  
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Figure 1.4. Effect of vaccination on zoonotic prevalence. Colors correspond to different levels of 

cross-protective immunity, with c=1 (blue) indicating complete cross-protection, c=0.9 

(magenta) indicating less cross-protection, and c=0.8 (yellow) indicating the least cross-

protection. Vertical arrows indicate the vaccination level at which the human pathogen is 

eradicated.  

  



18 

 

Figure 1.5. Increase in zoonotic prevalence (at equilibrium) after eradication of the human 

pathogen. Proportional increase of zoonotic pathogen‟s prevalence after eradication (right axis) 

is indicated by the line while the bars represent absolute zoonotic prevalence (left axis) before 

control (light grey bar) and after eradication (dark grey bar) of the human pathogen.  
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Figure 1.6. Simulation of smallpox-monkeypox dynamics during and following the smallpox 

eradication campaign. The colored bars indicate the same time periods as in Figure 1.2, which 

shows the vaccination rate through time. (A – blue bar)Vaccination efforts intensify, resulting in 

substantial decrease in smallpox. Due to the cross-protective immunity between monkeypox and 

smallpox, monkeypox experiences only a shallow decrease (relates to Figure 1.4). (B – purple 

bar) Smallpox has been locally eliminated but vaccination efforts continue. Monkeypox 

prevalence declines more sharply (relates to Figure 1.4). (C – green bar) Smallpox has been 

eradicated and vaccination efforts cease. As individuals protected by vaccination or smallpox 

exposure are replaced with fully susceptible individuals, monkeypox‟s prevalence increases 

(relates to Figure 1.5). 
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Table 1.1. Parameter descriptions and baseline values used in analyses. 

Parameter Description Default Value 

μ per capita birth and death rate 5.5ᴇ-5  individuals per day
 

βH transmission parameter for the human pathogen 0.50  [individuals * day]
-1

 

βZ transmission parameter for the zoonotic pathogen among 

humans 

0.15  [individuals * day]
-1

 

γH recovery rate from the human pathogen 0.1  day 
-1

 

γZ recovery rate from the zoonotic pathogen 0.1  day 
-1

 

sp spillover rate of the zoonotic pathogen 1ᴇ-5  day 
-1

 

ν per capita vaccination rate 0  day 
-1

 

c protection from infection due to cross-protective 

immunity 

0.9 
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Table 1.2. Parameter values used in the smallpox-monkeypox simulation, along with references. 

Parameter Value Reference 

μb 1.3ᴇ-4  (13) 

μd 6.0ᴇ-5 (13) 

βH 0.430 (14,15) 

βZ 0.051 (16,17) 

γH 0.0625 (14,18,19) 

γZ 0.0625 (14,20) 

sp 4.66e-07 (16,20) 

ν(t) See Figure 

1.2 

(7,14,16–18,21) 

c 0.8 (7) 
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1.6 Appendix 

For the model used in smallpox-monkeypox analysis, we are tracking the number of 

individuals in each state, rather than the fraction of individuals as described in the main text. In 

addition, the model allows for different birth and death rates, resulting in changes in the 

population size through time: 

  

  
                      

   
  

          
 

         

   
  

          
 

         

  

  
                                 

   

  
   

 
                        

   

  
   

 
                       

    

  
                     

 
          

    

  
                     

 
          

    

  
   

 
      

 
                      

where                   and                       and N is the population size. 

Notice that, like in the equations from the main text, transmission occurs in a frequency-

dependent way (based on the fraction of the population in the infectious category). Because IH, 
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IZ, IZH, and IHZ are now in terms of the number of individuals, we divide them by N to get the 

fraction of the population in each infectious class.  
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CHAPTER 2: 

Quantifying transmission of emerging zoonoses: Using 

mathematical models to maximize the value of surveillance data 

2.1 Introduction 

Many recent infectious disease threats have been caused by pathogens with zoonotic 

origins, including Ebola, pandemic H1N1 influenza, and SARS- and MERS- Coronaviruses, and 

zoonotic pathogens are expected to be a primary source of future emerging infectious diseases 

(1–8). By definition, zoonotic pathogens can transmit from animals to humans; those also 

capable of human-to-human transmission are of particular public health concern (5,9). Infectious 

disease surveillance serves a crucial role for detecting and gathering information on zoonotic 

pathogens: data obtained through surveillance are often the primary resource available for 

informing public health management decisions (10). Developing methods that improve our 

ability to infer information about a pathogen‟s transmission dynamics from available 

surveillance data is therefore an essential frontier for understanding and ultimately combating 

these pathogens (11,12).  

For zoonoses, three epidemiological measures are crucial for summarizing transmission 

dynamics and informing risk assessments. The first of these is the spillover rate, which indicates 

how frequently the pathogen is transmitted from the animal reservoir into humans and helps 

inform the total expected disease incidence (13). The second measure describes the pathogen‟s 

potential for further spread once in the human population and is commonly assessed using the 

reproductive number (R), which gives the average number of secondary human cases caused by 

an infectious individual (14,15). Values of R greater than one indicate that the pathogen is 

capable of sustained (i.e. „supercritical‟) transmission in humans. Pathogens with subcritical 
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transmission (R less than one but greater than zero) can cause limited chains of transmission in 

humans after a zoonotic introduction, and they pose a risk of acquiring ability for supercritical 

transmission via evolutionary or environmental change (2,5,16). The third epidemiological 

measure is the distance over which human-to-human transmission occurs, which informs how 

the disease will spread spatially and the risk of it being introduced into new populations. 

Combined, these three measures can help evaluate the current public health threat posed by the 

pathogen, the risk of future emergence, and the most effective approaches for disease 

management.  

Estimating epidemiological measures is a challenging task in any pathogen system, and 

the unique properties of zoonotic diseases can exacerbate these difficulties. Infectious disease 

surveillance often records temporal information and certain aspects of spatial information about 

human cases, but the underlying transmission events are seldom observed. In a zoonotic system, 

this means that an observed human infection could have been caused by a previous human case 

or by zoonotic spillover. Without intensive contact tracing, or sequence data in the case of fast-

evolving pathogens, quantifying the relative contribution of zoonotic versus human-to-human 

transmission is a major challenge; identifying the source of infection for specific individuals is 

an even bigger one. 

Epidemiological analyses are often hindered by data truncation and unknown 

denominators (17,18). In many disease surveillance systems, the total set of localities under 

surveillance (i.e. those that would appear in the dataset if a case occurred there) can be separated 

into „observed localities,‟ which appear in the dataset because they reported one or more cases, 

and „silent localities,‟ which have no cases during the surveillance period and therefore do not 

appear in the dataset. This form of truncation, where localities with zero cases are absent from 
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the dataset, obscures the true scope of the surveillance effort. Without knowledge of the total 

number of localities under observation (the „unknown denominator‟), accurately estimating the 

spillover rate and probability of human-to-human transmission between localities is not 

straightforward. Simply disregarding these silent localities in the analysis is the functional 

equivalent of selectively removing zeros from the dataset and can lead to problematic inference 

biases.  

Complicating inference efforts further is the fact that surveillance datasets often report 

the geographic location of cases only at a coarse resolution, obscuring information about a 

transmission process that occurs on a much finer scale (19–21). Precise spatial information is 

often absent from historic datasets and data collected in remote or low-resource areas, replaced 

by the names of the locality and broader administrative units where the case occurred. For 

example, only the village name and the region and country to which the village belongs may be 

recorded in a dataset. Furthermore, linking a village name to spatial coordinates is often 

impossible when maps of the region do not exist or only unofficial local names are used. 

Although collecting exact spatial coordinates has become more practical in contemporary disease 

surveillance, privacy and confidentiality concerns can arise in both human and agricultural 

contexts when data contains high-resolution spatial information (19,20,22–25), leading to data 

being reported in a non-localized manner. Methods that can use this inexact spatial information 

are especially needed for zoonotic diseases, where any additional information about the 

proximity of human cases to one another can improve the power to distinguish between human-

to-human transmission and zoonotic spillover. 

Despite these challenges, a series of research efforts have expanded our ability to 

estimate the transmission properties of zoonotic pathogens from case onset data. A key set of 
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methods revolve around inferring R from the sizes of case clusters (a cluster is defined as a group 

of cases that occur in close spatiotemporal proximity to one another) or from the proportion of 

observed cases that were infected by zoonotic spillover (16,26–30). However, these approaches 

either require detailed case investigations to determine whether a case was infected by a zoonotic 

or human source or assume that each cluster is caused by one single spillover event followed by 

human-to-human transmission. A likelihood-based approach for estimating R for human-to-

human transmission using only symptom onset dates of cases was introduced by Wallinga and 

Teunis (31). This method was extended to apply to zoonotic systems by Lo Iacono et al. (32), but 

the extension requires that chains of exclusively human-to-human transmission can be identified, 

and is thus not applicable to many zoonotic surveillance systems where human and zoonotic 

transmissions are intermixed. A different approach was taken by White and Pagano (33), who 

introduced a different likelihood-based method that compares the observed number of cases on 

each day with the expected number, as calculated using the number and timing of previous cases. 

Though the White and Pagano approach was only applicable to human-to-human transmission, it 

was expanded by Kucharski et al. (34) to work in zoonotic spillover systems in scenarios where a 

control measure, implemented at a known point in time, causes an abrupt reduction in spillover. 

A related approach that requires knowledge of the human and animal reservoir population sizes 

was also explored in Lo Iacono et al. (35). Crucially, however, none of these methods 

incorporate information about the spatial location of cases to improve inference power or to 

estimate patterns of spatial spread. Spatial data is a powerful tool in transmission inference in 

single-species studies (e.g. (36–39)), but has largely been excluded from analyses of zoonotic 

transmission, which often implicitly assume homogenous mixing across the study area or that 
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human-to-human transmission can only occur within a locality. One recent exception to this is 

the analysis by Cauchemez et al. (40), which includes transmission at several spatial levels.  

In this work, we present model-based inference methods that allow us to infer R, the 

spillover rate, and properties of spatial spread among humans from surveillance datasets with 

non-localized spatial information and an unknown total number of surveilled localities. Our 

approach builds on methods introduced by White and Pagano (33) and Kucharski et al. (34), but 

allows continuous spillover throughout the surveillance period and makes use of available spatial 

information on case location. While the method could be readily adjusted to incorporate more 

precise geographic information should it be available, in this study we focus on the more 

challenging scenario in which only the names of the locality and broader administrative units 

where a case occurred are known. To make use of this form of non-localized spatial data, our 

model considers two scales of spatial mixing and transmission (Figure 2.1A), reminiscent of the 

„epidemics with two levels of mixing‟ structure utilized in Ball et al. (41) and Demiris and 

O‟Neill (42). The first mixing level is the locality in which the case occurred, such as a village or 

a farm, conceptualized as a group of individuals geographically separated from other localities. 

We assume that individuals within the same locality have more frequent contact with one another 

than with individuals from other localities, and therefore that infection is more likely to be 

transmitted within a locality. However, the total number of localities under surveillance is 

unknown because only localities with one or more cases appear in the dataset (the „unknown 

denominator‟ problem discussed above). We refer to the second spatial level as the „broader 

contact zone.‟ It describes a collection of localities that all occur within the same administrative 

unit and likely share some amount of human movement. When multiple types of administrative 

units of different sizes are reported in the dataset (e.g., districts, regions, provinces, etc.), the 
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ideal choice for broader contact zone is the smallest administrative unit that contains inter-

locality human-to-human transmission events. If this scale is not known a priori, inferring the 

appropriate scale of administrative unit is necessary. 

We tested the method against a variety of datasets simulated using different 

epidemiological parameters, offspring distributions for human-to-human transmission, and 

spatial transmission kernels. To assess the performance of the method, we compared the 

estimated and true values for epidemiological measures such as the reproductive number and 

spillover rate, and also examined how well the method was able to estimate the probable 

transmission source of each case. When silent localities were not accounted for, substantial 

biases arose in zoonotic spillover rate estimates. However, a modified method that accounts for 

these silent localities was successful in a wide range of circumstances. We therefore applied this 

„corrected-denominator method‟ to a dataset on human monkeypox cases from an active 

surveillance effort conducted in the Democratic Republic of the Congo (formerly Zaire) in the 

1980s (43) (Figure 2.2). We repeated the analyses for four different assumptions about the 

appropriate spatial scale to use to represent the „broader contact zone‟ over which human-to-

human transmissions take place and selected the preferred option using the deviance information 

criterion (DIC) method for model comparison. In the monkeypox dataset, contact-tracing data 

are available for a subset of the cases, providing a rare opportunity to compare inferred 

transmission sources with those suggested by epidemiological investigation. In addition, some 

localities were associated with known GPS coordinates, enabling us to estimate the spatial 

transmission kernel in greater detail. As such, our monkeypox analysis yielded estimates of R 

and the spillover rate, as well as insights into the spatial scale of human transmission of 

monkeypox. 
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2.2 Results 

Overview of the approach 

We first validated the inference framework using a simulation study, then applied the 

validated method to a dataset on human monkeypox cases to estimate key epidemiological 

parameters and the spatial scale of transmission. To generate simulated test datasets and perform 

parameter inference, we used a mathematical model of the zoonotic pathogen‟s transmission into 

and among humans. The model tracks the number of human cases that occur in each locality on 

each day; infections can arise from spillover from the zoonotic reservoir or from human-to-

human transmission (Figure 2.1B). Three key parameters govern the behavior of the system. The 

spillover rate (λz) describes the average number of human cases caused by animal-to-human 

transmission („primary cases‟) in each locality per day. The reproductive number of the pathogen 

(R) determines the average number of („secondary‟) cases caused by each infected human. And 

the spatial dispersal of the pathogen is controlled by the fraction of cases arising from human-to-

human transmission that occur in the same locality as the source case (σ) and the rules governing 

inter-locality transmission events. Two spatial scales of transmission are included in the model: 

within the locality of the case and between localities in the same broader contact zone. Using this 

model (described further in Methods 4.1) and values for the three parameters, the likelihood of 

observing Nt,v cases on each day t and locality v can be calculated. Markov chain Monte Carlo 

(MCMC) methods were used to infer posterior parameter distributions (and hence parameter 

estimates) for a given dataset of cases.  
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Robustness of model-based inference method 

Basic method (assumes the total number of localities under surveillance is known) 

To assess the accuracy and precision of our method‟s estimates of spillover and 

transmission parameters, we simulated datasets with known parameter values and compared 

these true values with the inferred values. We investigated a range of R and λz values in the 

neighborhood of values previously estimated for monkeypox (16,44), with R ranging from 0.2 to 

0.6 and λz ranging from 0.0001 to 0.0007 expected spillover events per locality per day (λz values 

correspond to 59 to 415 expected spillover events in the five year simulation period, across all 

localities). Transmission events between humans had a probability σ=0.75 of occurring within a 

locality and otherwise were equally likely between any localities in the same broader contact 

zone. We were interested in seeing how well the inference methods are able to use the spatial-

temporal arrangement of cases to estimate the true parameter values.  

Across 125 simulations (25 simulations for each of five parameter sets), estimated values 

clustered around the true parameter values. The true value for R was included in the 95% 

credible interval (CI) 119 times (95.2%) and for λz was included 121 times (96.8%) (Figure 

2.3A). On average, the posterior mean estimate of R differed from the true value by 8.6%; the 

analogous percent errors for λz and σ estimates were 6.3% and 7.0%, respectively (Table S2.1).  

However, this method assumes that the true number of localities under surveillance is 

known. In real-world situations, „silent‟ localities that experience zero cases often do not appear 

in the dataset, resulting in an unknown true number of surveilled localities. We investigated 

possible biases in parameter estimates that could arise from assuming that the number of 

localities that reported one or more cases represents the total number of localities under 

surveillance. To do so, we used the same set of simulated datasets as described above, but 
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removed knowledge about the number of silent localities. In these datasets, silent localities make 

up between 21% and 85% of all localities under surveillance, with the proportion driven 

primarily by the spillover rate. Estimates for the reproductive number R were not strongly 

impacted (95.2% of the 95% CIs contained the true value with an average percent error of 8.4%), 

but the spillover rate λz was consistently overestimated (Figure 2.3B). The true value for λz was 

contained in none of the simulations‟ 95% CIs and the posterior mean had an average percent 

error of 153% (Table S2.1). 

To further investigate the effect of this data truncation (whereby localities with zero cases 

do not appear in the dataset), we performed inference assuming that the observed localities 

represented all, 1/2, or 1/5 of the total localities under surveillance. While this assumption had a 

relatively small impact on the estimated R, it greatly impacted the inferred λz (which is measured 

as the number of spillover events per locality per day and is therefore strongly affected by 

changes in the assumed number of localities) (Figure S2.1). Assuming that a larger fraction of 

surveilled localities appear in the dataset resulted in substantially higher estimated spillover 

rates.  

Corrected-denominator method (conditions on the locality observation process) 

Because the total number of localities assumed to be under surveillance has a substantial 

impact on parameter estimates, we developed a modified version of the likelihood function that 

accounts for localities that were under surveillance but never observed in the dataset. This 

approach calculates the likelihood of the observed dataset conditional on the fact that only 

localities with one or more cases are included (details on the modified likelihood function can be 

found in Methods 4.2 and Appendix). 
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We tested the performance of the corrected-denominator method against simulated 

datasets, looking at the same parameter sets as in the first section. The inferred parameter values 

cluster well with their corresponding true values (Figure 2.3C): mean percent error in R estimates 

was 8.4% and in λz estimates was 14.0%. Across the 125 simulations, the true parameter value 

was included in the 95% CI 116 times (92.8%) for R and 117 times (93.6%) for λz (Table S2.1).  

Because an estimate of the true number of localities under surveillance would help 

determine the size of the population that could be detected for a given system, we assessed how 

well we could approximate this value. Given the number of localities with one or more cases and 

the mean parameter estimates, it is possible to calculate the expected total number of localities 

under surveillance (see Appendix). Estimates of the true number of localities calculated for the 

simulated datasets center on the correct value (Figure S2.2). The magnitude of estimate error is 

driven by the spillover rate, which largely determines the proportion of localities that are 

observed by surveillance. The mean percent error across simulations with spillover rate of 

0.0001, 0.00036, and 0.0007 were 25.4%, 7.9%, and 2.4%, respectively, while simulations with 

spillover rates of 0.004 and above almost always recorded at least one case in each locality and 

therefore tended to estimate the exact true number of localities.  

Inferring the sources of transmission events 

We investigated how well sampled transmission trees recovered the source of individual 

cases as well as higher-order measures, such as the fraction of cases originating from zoonotic, 

within-locality, and between-locality transmission. We tested our method using 125 simulated 

datasets, with 25 datasets simulated for each of five sets of true parameter values (these are the 

same datasets as discussed above, simulated with R between 0.2 and 0.6 and spillover rate 
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between 0.0001 and 0.0007). Two hundred plausible transmission trees were sampled for each 

simulated dataset.  

When comparing the overall fraction of cases attributed to each source type (zoonotic 

versus within-locality versus between-locality transmission), the sampled transmission trees 

closely match the true transmission patterns (Figure 2.4). On average, the difference between the 

true fraction of cases caused by zoonotic spillover and the fraction inferred in a tree was 0.022 

(standard deviation 0.018), the difference for within-locality transmission was 0.006 (standard 

deviation 0.005), and the difference for between-locality transmission was 0.022 (standard 

deviation 0.018).  

The success at recovering individual transmission links was high overall but varied 

slightly depending on the true parameters underlying the simulation (Figure S2.3). On average, 

sampled transmission trees inferred 85.9% of all sources correctly. Better performance was 

observed for lower spillover rates and lower R, presumably due to the fewer opportunities for 

misattribution of cases. Some transmission links were more likely to be captured than others: on 

average 90.9% and 90.1% of sampled trees correctly inferred links with zoonotic and within-

locality sources, respectively, but only 36.8% of trees correctly identified the source of between-

locality transmission events.  

Epidemiological insights into monkeypox 

Applying the corrected-denominator method to 1980s monkeypox surveillance data 

Between 1982 and 1986, the active monkeypox surveillance program in the Democratic 

Republic of the Congo detected 331 human cases in 171 localities (43). For each human case, we 

know the name of the locality as well as the district or administrative subregion (henceforth 
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referred to simply as „district‟) and region to which it belongs. However, the total number of 

localities that would have been detected by surveillance had they experienced a case is unknown. 

We therefore used the corrected-denominator method to generate estimates under four different 

assumptions about which administrative unit most suitably represents the broader contact zone. 

The country-level, region-level, and district-level models correspond to progressively smaller 

choices of broader contact zone, while the locality-level model assumes that all instances of 

human-to-human transmission occur within a locality. We anticipate that assuming an 

excessively large broader contact zone could result in overestimating R and underestimating λz if 

too many spurious human-to-human transmission events are inferred from pairs of cases that just 

happen to occur within a generation-time interval of one another, while assuming an 

inappropriately small broader contact zone could result in the opposite parameter biases if the 

model is unable to detect actual incidents of human-to-human transmission because the cases 

occur in different (assumed) broader contact zones. 

In the monkeypox analysis, the size of the administrative unit used as the broader contact 

zone has a strong effect on the resulting parameter estimates (Figure 2.5A). When larger 

administrative units are assumed to represent the broader contact zone, a given pair of cases is 

more likely to belong to the same broader contact zone, giving the model more opportunities to 

infer inter-locality human-to-human transmission events and resulting in larger estimated 

reproductive number R and a smaller spillover rate λz. Mean values of the posterior distribution 

of R range from 0.29 when transmission is assumed to occur only within localities to 0.52 when 

transmission is assumed to occur among all localities in the country (Table 2.1).  

We used the mean parameter estimates obtained using each of the four broader contact 

zone assumptions to generate estimates of the expected total number of localities under 
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surveillance. While only 171 localities were observed in the dataset, estimates of the total 

number of surveilled localities ranged from 337 (using the locality-level model) to 408 (using the 

country-level model). The district-level and region-level models generated similar estimates of 

351 and 366 total localities, respectively. 

Insights into how underlying assumptions drive monkeypox estimates 

We investigated how different assumptions about the true number of localities and the 

spatial scale of human-to-human transmission would affect the parameter estimates for the 

monkeypox system. To explore how the presence of silent localities affects results, we repeated 

the analysis using the basic method (which does not account for silent localities) under the 

assumption that the localities observed in the monkeypox dataset represent all, 1/2, and 1/5 of the 

total number of localities that were under surveillance. Furthermore, for each of these 

assumptions about the total number of localities under surveillance, we repeated the analysis 

using the four different choices of broader contact zone to determine how the assumed spatial 

scales of inter-locality transmission impacted inference results.  

Both the choice of broader contact zone and the assumed total number of localities have a 

large impact on estimates of R and λz (Figure 2.5B). As noted above, models assuming smaller 

broader contact zones allow fewer opportunities for human-to-human transmissions to be 

inferred, and these models estimate substantially lower R values and correspondingly higher 

spillover rates. In contrast, assuming that a smaller fraction of surveilled localities were observed 

leads to slightly higher estimates of R and substantially lower estimates of λz because the 

presence of many silent localities effectively „dilutes‟ the observed number of spillover events 

per locality per day and drives the estimate lower. Estimates of R are most strongly affected by 

the choice of broader contact zone, while estimates of λz are most strongly impacted by assumed 
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fraction of localities observed. For all assumptions of broader contact zone and total number of 

localities, the means of the parameters‟ posterior distributions fall along the line  

    
      

 
    ,       (1) 

where V is the true number of localities, T is the number of days over which surveillance 

occurred, and N is to total number of cases in the monkeypox dataset. This relationship arises 

because the expected number of total cases is equal to the expected number of spillover events 

(      ) multiplied by the total number of human cases expected to occur from each spillover 

event (        for 0<R<1). Each assumption about the total number of localities under 

surveillance corresponds to a separate line along which parameter estimates fall (Figure 2.5B). 

The position of the parameter estimates along this line depends on the spatio-temporal 

distribution of the N cases and the assumed spatial scale of human-to-human transmission.  

District-level broader contact zone preferred in model comparisons 

To assess which broader contact zone assumption is most appropriate for the monkeypox 

system, we used the deviance information criterion (DIC) to perform model comparisons for the 

corrected-denominator method as well as for each assumption about the number of surveilled 

localities. For the corrected-denominator method, the district-level model had the best DIC score, 

followed by the region and country-level models (Table 2.1). The locality-level model received a 

much larger DIC value, indicating that the data strongly support models that allow transmission 

between localities. Similarly, for each of the three assumptions about the true number of 

surveilled localities, the district-scale model performed best in DIC model comparisons (Table 

2.1). 
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Inferring the sources and distances of transmission events 

We used the district-level corrected-denominator method to sample 20,000 transmission 

trees for the monkeypox dataset. The sampled transmission trees attributed an average of 60.8% 

(standard deviation of 2.2%) of cases to zoonotic spillover, 28.5% (standard deviation of 0.9%) 

to within-locality human-to-human transmission, and 10.7% (standard deviation of 2.1%) to 

between-locality human-to-human transmission. For comparison, the results using the three other 

broader contact zone assumptions are shown in Figure S2.4A. Each model‟s trees include a 

similar number of within-locality human-to-human transmission events, but increasing the 

spatial scale of the broader contact zone increases the number of inferred between-locality 

transmission events.  

To characterize the distance range over which inter-locality transmission occurs, we 

focused on links in the sampled transmission trees that occurred between cases with known GPS 

coordinates (280 out of 331 monkeypox cases had recorded GPS coordinates). The number of 

transmission events in each sampled tree that occurred over a certain distance was then compared 

to the number of transmission events expected to occur over each distance if transmission 

between all localities in a broader contact zone was equally likely (see Methods 4.3 for how this 

„null distribution‟ was calculated).  

For all models allowing inter-locality transmission, more transmission events were 

inferred to occur across ≤ 30 kilometers than expected based on the null distribution (Figure 2.6, 

Figure S2.4B). For each inferred transmission tree, a binomial test was used to examine whether 

more transmissions were inferred to occur over ≤ 30 kilometers than expected based on the null 

distribution of transmission distances. Out of 20,000 sampled trees for each model, p-values of 

less than 0.1 were obtained in 93% of the district, 72% of the region, and 81% of the country-
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level models‟ trees. The median p-values for these three models were 0.007, 0.030, and 0.012, 

respectively (Figure S2.5 shows the full distributions of p-values obtained across all sampled 

trees).  

Comparison of sampled transmission trees with contact-tracing data 

Contact-tracing, where the contacts of a case were recorded and follow-up investigations 

determined whether or not the contacts had become infected, was done for a subset of 

monkeypox cases. Instances where a contact developed an infection are presumed to be instances 

of human-to-human transmission. For each of these epidemiologically contact-traced links, we 

looked at how frequently the sampled transmission trees for each model captured the 

transmission link. 

Of the 53 case pairs linked through contact tracing, an average of 79.5% (standard 

deviation of 4.2%) were recovered in each of the district model‟s sampled transmission trees 

(Figure 2.7A). The highest success was seen for pairs of epidemiologically-linked cases whose 

dates of symptom onset were between 7 and 25 days apart (Figure 2.7B). Although it is generally 

believed that the generation interval for human-to-human transmission of monkeypox is between 

7 and 23 days (43,45), several case pairs that occurred more than 23 days apart were 

epidemiologically linked. It is possible that these links, which were often missed in the sampled 

transmission trees, are not true instances of human-to-human transmission. Cases that occurred 

in different localities were also less likely to be linked in a sampled transmission tree, though 

even for these inter-locality pairs, the district-level model tended to perform better than the other 

three models (Figure S2.6) The four models had similar success at recovering within-locality 

links. In all models, when a link was incorrectly inferred, it frequently was inferred to originate 

from zoonotic spillover instead. Although the district model had the highest success at 
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recovering contact-traced links, the sampled trees from all models recovered an average of >76% 

of contact pairs. 

Comparison of the transmission tree generated using only contact-tracing data with the 

trees created using the district-level and locality-level models highlights how much our 

perception of the transmission dynamics depends on assumptions about spatial spread (Figure 

2.8). Most of the within-locality transmission links detected through epidemiological contact-

tracing appear in the locality-level model‟s tree, though the locality-level tree suggests 

substantially more human-to-human transmission events than captured in the contact-tracing 

tree. However, the locality-level tree misses all inter-locality links. The district-level model‟s 

tree captures most of the links indicated by the locality-level tree, and also suggests that inter-

locality transmission is occurring, though it has low power to determine exactly which case pairs 

are linked through inter-locality transmission.  

Sensitivity analyses 

We conducted a variety of sensitivity analysis tests using simulated datasets to assess 

how robust the method was over a range of parameter values and assumption violations (full 

descriptions are provided in the appendix). The method continued to perform well even at very 

high spillover rates (Figure S2.7, Table S2.3) and when the offspring distribution used in 

simulations differed from the one assumed in the inference (Figure S2.8, Table S2.4). In some 

situations, assuming a larger broader contact zone than the one used for simulations could lead to 

an overestimation of R and an underestimation of λz (Tables S2.5, S2.6). This outcome is 

consistent with what was observed in the monkeypox analysis where assuming a larger spatial 

scale for the broader contact zone corresponded to a higher estimate of R and a smaller estimate 
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of the spillover rate (Figure 2.5). When simulations were run with highly structured, non-

homogeneous spillover, substantial biases in the inference results occurred because this spillover 

process gives rise to clusters of primary cases that the model mistakes as arising from human-to-

human transmission (Figure S2.9).  

2.3 Discussion 

Principal findings 

In this work, we developed and tested a method to infer fundamental epidemiological 

parameters and transmission patterns for zoonotic pathogens from epidemiological surveillance 

data with aggregated spatial information. When tested against simulated datasets, the method 

successfully recovered estimates of R and spillover rate close to the true values and also inferred 

the fraction of cases resulting from zoonotic, within-locality, and between-locality sources with a 

high degree of accuracy. The „unknown denominator problem‟ that occurs when the total number 

of localities under surveillance is unknown can cause large biases in parameter estimates, so we 

modified the inference method to account for this observational process and enable unbiased 

estimation in the presence of this common data gap. 

We applied the method to a rich surveillance dataset of human monkeypox in the Congo 

basin from the 1980s and found that human-to-human transmission of monkeypox between 

localities plays an important role in the pathogen‟s spread. Of the four assumptions we tested for 

the spatial scale of the broader contact zone, the district-level model was best supported by DIC 

model comparisons and validation with contact-tracing. In addition, the signal of elevated inter-

locality transmission occurring over ≤ 30 kilometers suggests that most inter-locality 

transmissions occur in a relatively small neighborhood, consistent with the limited transportation 
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infrastructure in the DRC. This further corroborates that the district-level model, which is the 

smallest spatial aggregation scale that still permits inter-locality transmission, is likely the most 

appropriate choice for capturing inter-locality transmission patterns of human monkeypox.  

The district-level model estimates a reproductive number for human monkeypox of 0.38 

(0.31-0.45 95% CI). This value is slightly higher than previous estimates of R for the 1980s DRC 

monkeypox dataset, which was estimated as 0.30 (90% CI 0.22-0.40) in Blumberg and Lloyd-

Smith (16), as 0.32 (90% CI 0.22-0.40) in Lloyd-Smith et al. (46), and as 0.28 in Jezek et al. 

(44). There are several explanations for the higher estimate we obtained. The previous studies 

may have underestimated the reproductive number, particularly if contact-tracing or cluster 

formation methods were liable to miss transmissions that occurred between localities. Indeed, the 

estimate obtained using the locality-level model (R = 0.29) closely matches previous estimates. It 

is also possible that the district-level model may overestimate the amount of human-to-human 

transmission in the same way that the region- and country-level models picked up a higher signal 

of human-to-human transmission than the district-level model due to their larger broader contact 

zone sizes. The size of the DRC‟s districts and administrative subregions used for the district-

level model vary in size, but average around fifteen thousand square kilometers, or around one 

hundred forty kilometers across, encompassing a much greater distance than most human-to-

human transmission events likely occur over. We therefore expect that the true value of R is 

bounded by the estimates of the locality-level and the district-level models. 

In addition to providing an estimate of monkeypox‟s reproductive number, the methods 

give insight into the frequency of spillover and the spatial scale of human-to-human 

transmission. The district-level model estimates a mean spillover rate of around 0.11 spillover 

events per locality per year, which corresponds to roughly one spillover event every nine years in 
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each locality. It also estimated that around 70% of human-to-human transmissions occur within a 

locality. This finding contrasts with the assumption that human-to-human transmission occurs 

within a locality, which is commonly used to generate transmission clusters, and suggests that 

estimates generated using that assumption may substantially underestimate the amount of 

human-to-human transmission occurring in the system. The importance of inter-locality contacts 

has been reported for the neighboring country of Uganda, where a survey by le Polain de 

Waroux et al. (47) on rural movement and social contact patterns indicated that 12% of social 

contacts occurred outside participants‟ village of residence. 

Among human monkeypox cases with recorded geographical coordinates, a clear signal 

emerged of higher rates of human-to-human transmission between localities ≤ 30 kilometers 

apart. This pattern seems reasonable given the infrastructure and general difficulty of 

transportation in the more remote regions of the DRC. It also suggests a similar pattern of 

movement as found in the le Polain de Waroux et al. (47) survey. Their analyses indicate that 

90% of people who traveled outside their village of residence remained within 12 km.  

Spatial scale of transmission and aggregated spatial data 

The potential biases introduced when analyzing data reported at a course spatial scale 

have been explored in a wide range of contexts (48–50), yet the implications of using this type of 

spatial information to infer the transmission dynamics of an infectious disease is not obvious. 

When spatial information is only reported at the level of large spatial zones like districts, regions, 

or countries, no finer-scale information is available to inform which human cases transmitted 

infection to one another between different localities. Here we explored how the size of these 

spatial zones would affect inference for the monkeypox system by repeating the analysis using 
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spatial information at the district, region, or country resolution. The large differences in 

parameter estimates generated under different broader contact zone assumptions in the 

monkeypox analysis illustrates how sensitive inference results can be to the spatial scale 

assumed for human-to-human transmission, and suggests that reporting spatial data at too large a 

scale or ignoring inter-locality transmissions can lead to substantial estimate biases.  

In the context of monkeypox in the DRC, analysis of simulations using the exact 

geographic coordinates reported for 80% of localities in the monkeypox surveillance dataset 

replicated the increasing estimates of R and decreasing estimates of spillover rate as the spatial 

aggregation scale increased (Tables S2.5, S2.6). However, the magnitude of the effect in 

simulated datasets was smaller than in the monkeypox analysis. This could be a result of the 

particular assumptions about inter-locality transmission patterns used in the simulations, but it 

also opens the question of whether outside large-scale factors such as seasonality or fluctuations 

in surveillance effort might induce temporal autocorrelation among unlinked human cases, 

giving rise to temporal clustering of cases that the model interprets as human-to-human 

transmission.  

This analysis serves to emphasize the importance of selecting an appropriate spatial scale 

and using caution when interpreting results obtained using spatially aggregated data. Many 

methods implicitly assume a certain scale of spatial transmission, often ignoring the possibility 

of longer-range transmissions, so careful consideration of whether that scale is appropriate for 

the system is essential.  

In general, recording precise spatial locations of cases is vital for increasing the 

inferential power of modeling analyses. Developing methods that maintain spatial information 

without risking a breach in confidentiality is a nontrivial challenge, but progress has already been 
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made in generating possible solutions such as geographic masking or the verified neighbor 

approach (51,52).  

Model assumptions and future directions 

In this work, we assumed that the spillover rate was homogenous through time and space, 

but more complex disease dynamics in the reservoir or spatiotemporal heterogeneity in animal-

human contacts may cause nontrivial deviations from this assumption in real-world systems. Of 

particular concern is the possibility that outbreaks in the reservoir could cause periods of 

amplified local spillover, which could create a clustering pattern of human cases potentially 

indistinguishable from human-to-human transmission. Without information about disease 

dynamics in the reservoir, accounting for this heterogeneous spillover will be challenging, but 

certain types of pathogen dynamics, such as seasonal epidemics or expanding wave-fronts of 

infection, could be incorporated into the model structure.  

Similarly, spatially and temporally variable surveillance intensity could potentially mimic 

the signal of human-to-human transmission clusters and result in overestimates of the 

reproductive number. Future surveillance programs could help mitigate this challenge by 

recording a measure of surveillance effort undertaken at each location and time.  

This work assumes that R is constant across all localities; however, to obtain a full picture 

of pathogen emergence risk, it may be necessary to consider the heterogeneity in transmission 

intensity among different human populations, as well as the interplay between where R is highest 

versus where spillover tends to occur (53). In some zoonotic systems, for instance, spillover 

predominantly occurs into remote villages and towns that are in close proximity to forested 

regions. However, we generally expect these villages to have lower levels of human-to-human 
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transmission than the more densely-packed cities (54–56). A pathogen may even be incapable of 

supercritical spread until it reaches such a city. Therefore, to assess the probability a pathogen 

will successfully emerge and to determine which populations to target with control measures, it 

may be necessary to establish not only the spillover rate and R across different populations, but 

also the rate of dispersal of the pathogen between those populations (53).  

Several assumptions may need to be modified when applying this method to other 

zoonotic systems. Because we assume that the source of human-to-human transmission events 

will show symptoms before the recipient, the likelihood function can treat human cases as 

occurring independently conditional on preceding cases. For zoonotic diseases in which infected 

individuals frequently transmit the pathogen before showing symptoms (or when asymptomatic 

cases contribute non-negligibly to transmission), the likelihood expression would need to be 

modified substantially, and the lack of independence between cases might make a simulation-

based inference approach necessary.  

We assume that sufficiently few infections occur relative to the population size that 

depletion of susceptible individuals does not affect transmission dynamics. While appropriate 

when there are few human infections or in the early stages of invasion, this assumption could 

bias estimates if applied in a system with sufficiently high levels of human infection or where 

transmission occurs primarily among highly clustered contacts, such as individuals within a 

household. We also note that in the monkeypox example we are estimating the effective 

reproductive number, which takes into account existing population immunity. If the goal instead 

were to establish the basic reproductive number (the reproductive number for the pathogen in a 

fully susceptible human population), accounting for past exposure to the pathogen or other cross-

immunizing pathogens or vaccines would be necessary.  
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The current methods assume that all human cases that occur during the surveillance 

period inside the surveillance area are observed. This assumption is plausible for the analysis of 

the 1980s monkeypox dataset, given the unusually high resources and experience level of this 

surveillance effort in the aftermath of the smallpox eradication program and the use of serology 

to detect missed cases retrospectively (43). However, most zoonotic surveillance systems operate 

with limited resources and have a much lower detection rate. Ignoring unobserved cases will lead 

to underestimation of the spillover rate, while the effect on estimation of R will depend on the 

nature of the surveillance program. For instance, in the chain-size analyses of Ferguson et al. 

(28) and Blumberg and Lloyd-Smith (16), R is underestimated when the detection probability of 

each case is independent of one another or when right-censoring occurs but overestimated when 

a detected case triggers a retrospective investigation that detects all cases in that transmission 

chain.  

Conclusions 

This work expands our ability to assess and quantify important zoonotic pathogen traits 

from commonly available epidemiological surveillance data, even in the absence of exact spatial 

information or a complete count of localities under surveillance. We anticipate that these 

methods will have greatest value in the common circumstance when the source of cases, 

particularly whether a case came from an animal or human source, cannot be readily established. 

In such situations, the ability to infer the pathogen‟s reproductive number, spillover rate, and 

spatial spread patterns from available surveillance data, will greatly enhance our understanding 

of the pathogen‟s behavior and could provide valuable insights to help guide surveillance design 

and outbreak response.  
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2.4 Methods 

Model 

In broad terms, the model describes the probability of observing a set of symptom onset 

times and locations of human cases given the timing and location of previous cases and 

parameters that underlie the transmission process. Human infections can arise from either 

animal-to-human transmission („zoonotic spillover‟) or human-to-human transmission (Figure 

2.1B). Human-to-human contact occurs more frequently within a locality than between localities, 

but can still occur between localities that belong to the same broader contact zone (Figure 2.1A).  

All sources of infection are assumed to generate new cases independently of one another. 

The number of human cases that become symptomatic on each day in each locality caused by 

zoonotic spillover is assumed to follow a Poisson distribution with mean λz. For simplicity and 

because reservoir disease dynamics are rarely well characterized, we assume the Poisson process 

is homogenous through time and across localities, but this assumption could be modified for a 

system where more information is available about the reservoir dynamics (e.g., (34)). New 

infections can also arise from contact with infected humans. The number of new infections that 

become symptomatic on day t in locality v caused by an infectious individual who became 

symptomatic on day s in locality w is assumed to be a Poisson-distributed random variable with 

mean λ{s,w},{t,v}.  

Aggregating cases caused by all sources of infection (both human and zoonotic), the total 

number of new cases on day t in locality v is a Poisson-distributed random variable with mean 

      ∑ ∑        {   } {   } 
 
   

   
             (2) 
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where   is the number of localities under surveillance and      is the number of cases with 

symptom onset on day s in locality w.   

The mean of the Poisson random variable describing human-to-human transmission, 

λ{s,w},{t,v}, depends on the reproductive number of the pathogen in humans, the generation time 

distribution, and the coupling between localities: 

 {   } {   }                           (3) 

where R is the reproductive number of the pathogen; g(t-s) is the generation time distribution, 

which gives the probability that a secondary case becomes symptomatic t-s days after the index 

case shows symptoms; and H(v,w) describes the amount of transmission between localities v and 

w and takes values between zero (if no transmission can occur between localities v and w) and 

one (if all cases arising from an infected individual in locality v arise in locality w). The 

generation time g(t-s) is assumed to follow a negative binomial distribution. For this study, we 

used a mean of 16 days and a dispersion parameter of 728.7 (calculated by fitting a negative 

binomial distribution to observed generation interval counts for smallpox presented in Fig. 2b of 

(57)), which is consistent with previous estimates of the generation time for both smallpox and 

monkeypox (43,45,57,58).  

The factor that describes the amount of transmission that occurs between localities v and 

w (H(v,w)) could reflect Euclidean distance, travel time, inclusion in different spatial zones, or 

any other available measurement. To accommodate the imperfect spatial information available 

for many zoonotic surveillance systems, this study focused on developing methods for the 

situation when only a locality name and an aggregated spatial zone (such as district or country) is 

reported for cases, rather than an exact position. We assume that inter-locality transmission 
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occurs only among localities within the same broader contact zone (Figure 2.1A). Because 

transmission will be greater within a locality than between localities, a proportion σ of secondary 

cases are assumed to occur in the same locality as the source case and a proportion (1- σ) of 

secondary cases are assumed to occur amongst the outside localities that are within the same 

broader contact zone as the source case. This outside transmission is assumed to be divided 

equally among all localities within the index case‟s broader contact zone:  

        {

                       
                         
     

      
               

      

where Zv indicates the broader contact zone of locality v and  v is the total number of localities 

in the broader contact zone of locality v. For a given locality v, the sum of H(v,w) across all w 

equals one. To observe the effect of assuming different broader contact zones, the monkeypox 

case study was repeated under four different assumptions about the spatial scale of human-to-

human transmission: locality, district, region, and country-level. 

Model inference 

Likelihood function 

Using the model described above, a likelihood function was used to evaluate a parameter 

set (θ = {R, λz, σ}) given the data (        cases observed on each day t and locality v): 
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where T is the number of days surveillance was conducted and V is the total number of localities 

under surveillance.  

While this approach works well when the total number of surveilled localities is known 

(see Figure 2.3A), localities often only appear in the dataset if they have reported cases; as a 

result we may not know the total number of localities under surveillance. Ignoring localities with 

zero cases can lead to biased parameter estimates (see Figure 2.3B). We explored several 

alternative approaches to account for these silent localities; the preferred approach rescales the 

likelihood function to reflect that localities with zero cases are not included in the data. Several 

approximations are made in this approach to estimate unknown parameters and improve 

computational tractability. The details of the derivation for the model are given in the appendix, 

and the final likelihood function is: 

   |   ∏
∏   
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    , 

where W is the number of observed localities (localities with one or more cases) and E[V] is the 

expected number of localities given the parameter values and the number of observed localities.  

Parameter estimation 

Markov chain Monte Carlo (MCMC) was used to obtain the posterior distributions of the 

model parameters. The fraction of transmissions occurring within a locality (σ) and the 

reproductive number (R) were given uniform priors on zero to one. The expected number of 

spillover events per locality per day (λz) was given a uniform prior with a lower bound of zero 

and an upper bound selected to be far above the converged posterior distribution (ranging from 

0.0075 to 1, see Figure S2.10 for comparison of spillover priors and posterior distributions).  
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The chains were run for 100,000 steps, with a burn-in of 20,000. They satisfied visual 

inspection for convergence. In addition, the Gelman and Rubin multiple sequence diagnostic was 

evaluated for three parallel chains from each of the models for the monkeypox dataset (59). The 

Gelman-Rubin potential scale reduction values were less than 1.00033 across all models, 

indicating that the chains have converged close to the target distribution (60).  

DIC model comparisons:  

For the monkeypox dataset, four assumptions about the choice of broader contact zone 

were compared using the deviance information criterion (DIC). This approach combines a 

complexity measure, used to capture the effective number of parameters in each model, with a 

measure of fit in order to perform model comparisons. Models are rewarded for better 

„goodness-of-fit‟ to the data and penalized for increasing model complexity. Similarly to the 

well-known Akaike information criterion (AIC) model comparisons, models with smaller DIC 

values are preferred. As a rule of thumb, a difference between models‟ scores of four or more 

generally indicates that the model with the larger value is „considerably less‟ well supported by 

the empirical evidence; similarly, a difference of ten or more indicates „essentially no‟ empirical 

support (61). The values necessary to calculate the DIC can be readily obtained from the MCMC 

output (62).  

Transmission tree reconstruction 

The origin of cases (zoonotic spillover, intra-locality human-to-human transmission, or 

inter-locality human-to-human transmission) and the distances of inter-locality human-to-human 

transmission events (when case localities are known) can be established given a particular 

transmission tree. To gain estimates of these measures, trees were sampled based on the model 
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and the parameter posterior distributions. From the MCMC output (representing draws from the 

posterior distribution), d1 sets of parameter estimates were drawn to create d1 transmission-

probability matrices (P). The entry Pij describes the probability that individual i was infected by 

individual j. The diagonal values of the matrix represent the probability a case originated from 

zoonotic spillover. For a case i observed to occur on day t in locality v, the probability that case j 

was the source of case i (Pij) was taken to be the proportion of µt,v (the expected total number of 

cases on that day and locality; defined in equation 2) contributed by case j. By sampling d2 

transmission trees from each of these transmission-probability matrices, we were able to 

calculate the proportion of cases that resulted from spillover, within-locality transmission, and 

between-locality transmission in each sampled tree. When testing the method against 125 

simulated datasets, 200 sampled transmission trees were generated for each datasets, with d1 =20 

and d2 =10. For the monkeypox dataset, 20000 transmission trees were generated with d1 =200 

and d2 =100. 

For inferred inter-locality human-to-human transmission events in the monkeypox 

dataset, if the GPS coordinates were known for both localities in a transmission pair, the 

transmission distance was calculated using the gdist function in the R package Imap (63). The 

„null distribution,‟ used for comparing the number of inferred inter-locality transmission events 

with the number expected to occur if spatial location played no role in transmission, was 

calculated by pooling all cases for which locality GPS coordinates are known, sampling all inter-

locality pairs permitted by the model, and recording the distance between the localities in each 

pair. 
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Simulation of test datasets 

To test the effectiveness of the methods, datasets with known parameter values were 

simulated using the model explained above. Simulations were run over 1825 days 

(approximately 5 years) and 325 surveilled localities. The localities were assumed to be 

partitioned across thirty districts and six regions, with the distribution of localities across districts 

and regions similar to that observed for the monkeypox dataset. The generation time interval (the 

number of days between symptom onset of the source and recipient cases) was assumed to 

follow a negative binomial distribution with a mean of 16 days and a dispersion parameter of 

728.7 (as described above), with a maximum generation time interval of 40 days. A number of 

parameter sets, as well as different underlying model structures, were used for simulations (Table 

S2.2). Simulation parameters were chosen to approximate the monkeypox dataset, with σ set at 

0.75, R ranging from 0.2 to 0.6, and λz ranging from 0.0001 to 0.1. Unless otherwise specified, 

simulations were performed assuming the district-level model. Details on the models used for 

sensitivity analyses that use the exact spatial location of cases or allow highly structured and 

non-homogenous spillover patterns are provided in the appendix.  

Monkeypox data  

Data on human monkeypox cases in the Democratic Republic of the Congo (DRC), 

formerly „Zaire,‟ were collected as part of an intensive surveillance program supported by the 

World Health Organization. During the peak surveillance period, between 1982 and 1986 (64), 

data on 331 cases of laboratory-confirmed human monkeypox were recorded (see Figure 2.2) 

(43). As part of field investigations, mobile teams visited the locality of a monkeypox case to 

collect information about the case, such as the date of fever and rash onset (for this study, the 
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symptom onset date was taken to be the fever onset date; if the date of onset was not recorded, 

the rash onset date was used instead), as well as to identify individuals who had had close contact 

with the case (44,65). If one of these contacts developed monkeypox within 7 to 21 days of first 

exposure, the presumptive source case was recorded (43,65).  

Between 1982 and 1986, human monkeypox cases were observed in 171 distinct 

localities, distributed among 30 districts and administrative subregions (simply referred to as 

„districts‟) and 6 regions. The total number of localities that could have been detected by 

surveillance is unknown. Of the 171 observed localities, GPS coordinates are available for 136 

localities (which corresponds to 280 out of 331 cases). The district, region, and country of a 

locality were always recorded.  
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2.5 Figures and Tables 

 

 

Figure 2.1. Model schematic. A. The schematic illustrates the spatial scales considered in the 

model and the types of transmission that occurs at different scales. Human cases are represented 

in black if they were infected by zoonotic spillover, blue if they were infected by within-locality 

human-to-human transmission, and orange if infected by between-locality human-to-human 

transmission. Individuals who are not infected are colored gray and do not appear in the 

surveillance dataset. Similarly, if zero individuals in a locality are infected, that „silent locality‟ 

does not appear in the dataset (represented by the gray locality in the broader contact zone). B. 

The possible sources of human infection, which in aggregate determine the number of new 
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infections on day t, locality v. The number of cases arising from spillover and human-to-human 

transmissions follow Poisson distributions with means λZ and λ{s,w},{t,v}, respectively.   
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Figure 2.2. Map and time-series showing locations and dates of human monkeypox cases. The 

size of points on the map indicate the number of cases and the color of points corresponds to the 

region in which the cases occurred. Dark lines indicate region boundaries while light lines 

indicate the official boundaries for districts (though in the monkeypox surveillance dataset these 

may be further divided into administrative subregions). 
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Figure 2.3. Comparison of true and inferred parameter values in simulation study. Within each 

color, large points outlined in black indicate the true parameter set and smaller points indicate the 

inferred parameter values from simulated datasets (lines show the 95% credible interval). 

Inferences were performed A) when the true number of localities under surveillance was known, 

B) when the true number was unknown and it was assumed that the number of observed 

localities was the total number of localities, and C) when the true number of localities was 

unknown and the corrected denominator method was used to control for the locality observation 

process.  
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Figure 2.4. Comparison of the true and inferred fraction of transmissions from each source type. 

For each of five parameter sets, 25 datasets were simulated and 200 transmission trees were 

sampled for each of these simulated datasets. A. Stacked bars show the true fraction of 

transmissions from zoonotic (bottom bar, medium-darkness), within-locality (middle bar, light 

color), and between-locality (top bar, darkest color). Points on the bars indicate the inferred 

values. B. Box plots summarize the error in the inferred fraction of cases originating from each 

source type The error size is small across all parameter sets, especially for within-locality 
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human-to-human transmission. The upper whisker was calculated as min(max(x), Q3+1.5*IQR) 

and the lower whisker was calculated as max(min(x),Q1-1.5*IQR).   
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Figure 2.5. Assumptions about the total number of localities under surveillance and the broader 

contact zone affect parameter estimates for the monkeypox dataset. Estimates and 95% CIs for 

the reproductive number (R) and the spillover rate (λz) of the monkeypox dataset are shown for 

each of the four choices of spatial scale for the broader contact zone (locality = green, district = 

blue, region = purple, country = red). A. Inference performed using the corrected denominator 

method that accounts for silent localities. Light background dots are draws from the posterior, 

larger dots designate the mean value, and bars indicate the 95% CI. B. Inference performed 

assuming that the fraction of localities with one or more monkeypox cases (p) is 1/5, 1/2, or 1. 
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For each assumption about the total number of localities, parameter estimates fall roughly along 

the line     
      

 
 (indicated by grey lines); their position along this line depends on the 

spatial model used. Note that the slope of each line is proportional to -1/p because V = (number 

of observed localities) / p. Dots represent the mean posterior estimates and bars indicate the 95% 

CI. The four darker dots show the mean estimates from panel A.    
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Figure 2.6. Distance of inferred inter-locality human-to-human transmission events. Bars show 

the difference between the proportion of inter-locality human-to-human transmissions inferred to 

occur over a given distance by the district model and the proportion expected based on the spatial 

distribution of localities (the „null expectation‟). 
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Figure 2.7. Comparison of epidemiologically contact-traced links with sampled transmission 

trees. A. Circles (left axis) show the fraction of sampled trees that infer the epidemiologically-

traced source. Open circles represent inter-locality links while closed circles represent intra-

locality links. Crosses (right axis) indicate the probability that a link is instead inferred to have a 

zoonotic source. Results are shown for the model assuming the district-level broader contact 

zone. Links are sorted from lowest to highest success. B. The fraction of sampled transmission 

trees that recover a contact-traced link is influenced by the number of days between the symptom 

onset of source and recipient cases. Circles (left axis) show how often a given link was inferred 

as a function of the generation interval while the gray curve (right axis) shows the probability 

density for the generation interval assumed by the model.  
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Figure 2.8. Comparison of monkeypox transmission trees created from contact-tracing, the 

locality-level model, and the district-level model. Points represent cases and edges indicate 

inferred transmission links between cases. Edge thickness corresponds to the frequency with 

which a given transmission link was inferred while edge color indicates whether a pair of linked 

cases occurred within the same (blue) or different (red) localities. The darkness of a point‟s fill 

indicates how frequently the case was inferred to have a zoonotic source, so transmission links 

often go from black points (cases caused by zoonotic spillover) to white points (cases infected by 

a human source).  
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Table 2.1. District model performs best for the monkeypox dataset in DIC model comparisons. 

Parameter inference for the monkeypox dataset was performed using four different approaches 

for dealing with the silent locality problem: the corrected denominator method (which conditions 

on the observation process for localities under surveillance) and three assumptions about the 

fraction of localities under surveillance that were observed. For each of these approaches, 

inference was repeated using four choices for the broader contact zone and the DIC was 

calculated. Parameter estimates and ΔDIC values are shown. The model with lowest ΔDIC is 

preferred and is shown in bold text.  

Approach for dealing with silent localities Model ΔDIC mean R mean λz mean σ 

 

Corrected denominator method 

 

Locality 23.11 0.290 0.000387 1 

District 0.0 0.381 0.000309 0.696 

Region 5.88 0.418 0.000271 0.622 

Country 5.82 0.522 0.000188 0.464 

 

Assume all surveilled localities were 

observed 

 

Locality 21.98 0.272 0.000785 1 

District 0.0 0.372 0.000676 0.717 

Region 6.25 0.413 0.000633 0.656 

Country 10.92 0.479 0.000564 0.568 

 

Assume 1/2 of surveilled localities were 

observed 

 

Locality 17.06 0.290 0.000382 1 

District 0.0 0.381 0.000334 0.756 

Region 3.12 0.424 0.000311 0.684 

Country 6.79 0.488 0.000276 0.598 

 

Assume 1/5 of surveilled localities were 

observed 

 

Locality 15.05 0.310 0.000148 1 

District 0.0 0.395 0.000130 0.777 

Region 2.01 0.439 0.000121 0.704 

Country 5.34 0.500 0.000108 0.622 
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2.6 Appendix 

Corrected denominator method: Derivation for the conditional likelihood function 

The model described in the main text tells us that the number of new human cases on day 

t in locality v follows a Poisson distribution with mean 

      ∑ ∑        {   } {   } 
 
   

   
             (1) 

which represents the sum of the expected numbers of cases caused by spillover and all previous 

human cases (Table S2.7 provides a description of parameters). Based on this model, the 

likelihood of a set of parameters (θ = {R, λz, σ}) given surveillance data (        cases 

observed on each day t and locality v) is:  

   |   ∏ ∏
          

    

     

 
       

         (2) 

A challenge in applying this likelihood function to surveillance data arises when the total 

number of localities under surveillance, V, is unknown. Instead, we observe W localities that 

have one or more observed cases. If we re-arrange the product functions in the likelihood 

function, it becomes more apparent that we are taking the product of the likelihood for each 

locality:  

   |   ∏ ∏
          

    

     
 
       

         (3) 

However, because we only observe localities with one or more cases in the surveillance 

data, we need that conditioning to be reflected in the likelihood. In other words, we now want to 

express the likelihood of a particular time-series of cases in a locality conditional on that locality 

having one or more cases. This can be done for each locality by multiplying its component of the 

likelihood by the inverse of the probability (q) of having one or more cases: 



73 

   |   ∏
∏

 
         

    

     
 
   

 
    

   .     (4) 

It is now necessary to calculate the probability a surveilled locality experiences one or 

more cases. This probability is equivalent to one minus the probability of no cases occurring at a 

locality during the surveillance period. The following section explains how the probability of 

zero cases occurring at a given locality (here denoted p) is calculated.  

For zero cases to occur in a locality, there must be no zoonotic spillover into that locality 

as well as no human-to-human transmission from an outside locality. The zoonotic component is 

relatively straightforward to calculate, as it is simply the probability of zero spillover events on 

each of the T days (which equals      ). The probability of no transmission from an outside 

human source is a bit more complicated and can be broken down by the generation of the outside 

case to avoid double-counting. The generation of a case indicates how many human-to-human 

transmission events occurred leading to the case. We refer to cases resulting from zoonotic 

spillover as primary cases. Individuals infected by primary cases are second generation cases, 

individuals infected by second generation cases are third generation cases, etc. For there to be no 

cases in a locality, no transmission may have occurred into that locality from outside cases in any 

generation: 

                                                 

                                      

  (
                                            |                             
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                                           |                              
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The number of cases caused by a given case (of any generation) in the target locality is 

described by a Poisson distribution with expected value equal to  
     

      
, where Vw is the 

number of localities within the target locality‟s broader contact zone. Because each case 

transmits disease independently of one another (conditioned on the previous cases), the 

probability that no generation i cases cause infections in the target locality is  
  

     

      
  , where 

ni is the total number of i
th

 generation cases within the broader contact zone (given knowledge 

that none of the cases from previous generations transmitted to the target locality). Incorporating 

this information, the probability of observing zero cases in a locality (p) becomes: 

          ∏  
  

     

      
   

         

            
  

     

      
 ∑   

 
          (5) 

We next need to calculate estimates for the expected values of each of the ni. The 

expected number of primary cases in the entire broader contact zone (given that no spillover 

events occurred into the target locality) is the expected number of spillover events per locality 

(  ) multiplied by the number of localities under consideration (    ), multiplied by the 

number of surveillance days (T). For subsequent case generations, we can calculate the expected 

number of cases in generation i+1 as the number of cases caused by the i
th

 generation in their 

own localities plus those caused in the      other possible localities (there are      other 

possible localities because the case‟s current locality and the target locality have already been 

counted): 

            (    ∑
     

      

    
   )      
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If we approximate the values of ni with  [ni], we get  
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Returning to our estimation of p, we can approximate ni values with  [ni] and get 
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With some additional algebraic simplification, we can insert this value in the original equation: 
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This expression still includes the parameter   , though fortunately the sensitivity of results to the 

value of this parameter is relatively low. We therefore approximate    using the expected 

number of localities under surveillance in the broader contact zone. This calculation is explained 

in the following section.  
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Estimating total number of localities under surveillance 

We wish to use the estimated parameter values for R, λz, and σ in conjunction with the 

number of observed localities in a broader contact zone (Ww) to estimate the total number of 

localities under surveillance in that broader contact zone (Vw). If we let q be the probability a 

locality is observed (has one or more cases during the surveillance period), then we expect Vw *q 

≈ Ww. From the section above, we approximate q = 1-p as: 

      
       

                

                    (10) 

So we estimate Vw as the value that satisfies the equation: 

    (    
       

                

               )         (11) 

Simulation methods 

Simulations with exact spatial locations 

Although the model assumes that inter-locality transmission with a broader contact zone 

is equal between all locality pairs, we expect that the actual amount of shared transmission 

between two localities is strongly influenced by the distance between those localities. We 

conducted two simulations using localities with set geographic locations and inter-locality 

transmissions depending on the spatial relationship of the localities. We took the 178 GPS 

records available from monkeypox surveillance in the DRC during the 1980s and simulated 

transmission across localities with the same coordinates and the same district and region 

boundaries. Two types of inter-locality transmission rules were explored. In the first of these, 

inter-locality transmissions were assumed to occur equally into a source locality‟s five closest 
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neighbors. In the second set of simulations, inter-locality transmissions from a source locality 

were assumed to occur equally among all outside localities within 30 km of the source locality.  

Simulations with highly structured and non-homogeneous spillover patterns 

To illustrate how highly structured and non-homogeneous spillover could bias parameter 

estimates, we simulated an extreme case of a zoonotic epidemic traveling through time and 

space. We imagined that disease dynamics in the reservoir would occur in a single location for 

25 days before moving to a new spot, in an extreme form of a traveling zoonotic epidemic. For 

each 25 day period, three localities (selected to be in the same district when possible) would be 

selected to experience all of the spillover in the entire system. Aside from this extreme spillover 

pattern, the simulation followed the district-level model.  

Sensitivity analyses 

Sensitivity of parameter inference to elevated or heterogeneous spillover 

To test whether a high rate of spillover would inundate the system with so many cases 

that the temporal clustering patterns resulting from human-to-human transmission could be 

obscured, we simulated datasets with spillover rates up to 0.1. This value corresponds with an 

expected 59,312.5 spillover events during the five year simulation, which corresponds to an 

average of 36.5 per year in each locality. At this rate of spillover, there is an average of only ten 

days between spillover events, a shorter period than the mean generation time for human-to-

human transmission events, which was sixteen days. Across the range of spillover rates tested, 

the method did very well at both point estimates and capturing the true parameter values within 

the 95% CI (an average of 94.3% of CIs included the true value of R and 94.9% included the true 

value of λz; Figure S2.7, Table S2.3). As the spillover rate increased from 0.0001 to 0.1, 
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estimates of R tended to improve (posterior means closer to true value and smaller CIs). While 

the absolute error on estimates of λz increased as spillover rate increased, the relative error tended 

to decrease. As such, it appears that elevated spillover rates, far from obscuring patterns, may 

actually correspond with improved estimates, presumably due to the increased inference power 

resulting from a larger number of cases.  

Spillover is unlikely to occur homogeneously through time and space in real-world 

settings. As an illustration of the potential effect this occurrence could have on parameter 

estimates, we simulated an extreme case (see „Simulations with highly structured and non-

homogeneous spillover patterns,‟ above) where spillover occurs into three localities at a time. 

The parameter inference results for this situation were strongly biased (Figure S2.10). 

Sensitivity of parameter inference to offspring distribution assumptions 

The model used in this study assumes that the number of new cases caused by an 

infectious individual follows a Poisson distribution, but previous work suggests that the offspring 

distribution is often better characterized by a negative binomial distribution, which allows for a 

greater amount of variation between individuals (Lloyd-Smith et al. 2005). We simulated 

datasets using a negative binomial offspring distribution (using a dispersion parameter k=0.58 in 

accordance with previous estimates for monkeypox from Lloyd-Smith et al. 2005) and examined 

how well our inference method, which assumes a Poisson offspring distribution, estimated the 

true parameter values. Estimates for these datasets were only marginally less accurate than 

estimates for datasets generated with a Poisson offspring distribution (with an average percent 

error of 10.9% as opposed to 8.2% for R and of 11.6% as opposed to 10.4% for spillover rate 

estimates) (Figure S2.8, Table S2.4). As such, there are unlikely to be strong biases introduced 
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from a mis-specified offspring distribution for the monkeypox dataset, though this bias could 

increase if applied to pathogens with more extreme transmission variance.  

Sensitivity of parameter inference to broader contact zone assumption 

To examine how assuming different broader contact zones would affect inference results, 

we compared parameter estimates obtained under three choices of broader contact zones for data 

simulated under two inter-locality transmission rules. We simulated disease spread in a system 

where localities were placed in the same arrangement as seen in 178 localities with GPS 

coordinates included in the monkeypox surveillance system, district and region arrangement 

were the same as in the 1980s surveillance, and human-to-human transmission could occur either 

between a locality and its five closest neighbors or between localities located within 30 km of 

one another. Inference results again showed increasing estimates of R and decreasing estimates 

of spillover rate as the size of the assumed broader contact zone increased (Tables S2.5, S2.6). 
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2.7 Appendix Figures and Tables 

 

 

Figure S2.1. Effect of assumed fraction of localities observed on parameter estimates. The true 

parameter values are indicated by a large black dot and while smaller points indicate the inferred 

values from 25 simulated datasets (lines show the 95% credible interval). For each dataset, 

inference was performed assuming that 1/5, 1/2, and all of the localities under surveillance were 

observed. For these simulations, the true percentage of localities observed ranged from 46% to 

57%, with a mean of 52%. 

 

 

  



81 

 

Figure S2.2. Estimated number of localities under surveillance (calculated given the number of 

observed localities and the estimated parameter values). Large colored dots indicate the 

estimated number of localities under surveillance for each simulated dataset while the smaller 

dots show the number of localities observed in the dataset. The true number of localities is 

represented by the horizontal dashed line. Each color corresponds to a different parameter set 

used for simulations. 
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Figure S2.3. Accuracy of inferred transmission trees at inferring the correct source of cases. For 

each simulated dataset (25 simulations for each of 5 parameter sets), 200 transmission trees were 

drawn. Points show the mean fraction of cases inferred correctly in a sampled transmission tree 

and bars indicate the standard deviation.  
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Figure S2.4. Inferred sources of monkeypox cases. A. The fraction of cases inferred to have 

originated from each source using each of the four spatial models (locality-green, district-blue, 

region-purple, country-red). B. Difference in the proportion of inter-locality human-to-human 

transmissions inferred by the models to occur over a given transmission distance versus expected 

based on the spatial distribution of localities. The p-values indicate the probability of observing 

as many or more transmissions over distances of ≤ 30 kilometers based on the null model (i.e. 

assuming distance plays no role in determining which localities are linked by inferred 

transmission events). The median p-value of sampled transmission trees is given, and the full 

distribution of p-values can be seen in Figure S2.5.  
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Figure S2.5. The distribution of p-values obtained across sampled transmission trees. P-values 

obtained from a binomial test examining whether the number of transmission events inferred to 

occur across thirty or fewer kilometers is greater than that expected based on the null 

distribution. Each p-value corresponds to a sampled transmission tree. 
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Figure S2.6. Comparison of epidemiologically contact-traced links with sampled transmission 

trees. Circles (left axis) show the fraction of sampled trees that infer the epidemiologically-traced 

source. Open circles represent inter-locality links while closed circles represent intra-locality 

links. Bars (right axis) indicate the probability that a link is instead inferred to have a zoonotic 

source. Results are shown for models that use the country-level (red), region-level (purple), 

district-level (blue), and locality-level (green) broader contact zones. Links are sorted from 

lowest to highest success in the district model. 
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Figure S2.7. Effect of increasing spillover rate on parameter estimate success. Within each color, 

large points outlined in black indicate the true parameter set and smaller points indicate the 

inferred parameter values from 25 simulated datasets (lines show the 95% credible interval). 

Warmer colors correspond with higher spillover rates. Note the log-scale x-axis. 
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 A          B 

 

Figure S2.8. Parameter estimate residuals for data simulated using a negative binomial versus 

Poisson offspring distribution. Because the inference method assumes a Poisson offspring 

distribution, we compared the inference successes for datasets simulated assuming a Poisson 

offspring distribution versus datasets simulated assuming a negative binomial offspring 

distribution. The residuals in parameter estimates for 25 simulations are shown for A) the 

reproductive number and B) the spillover rate. 
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Figure S2.9. Strongly heterogeneous spillover causes bias in parameter estimates. The true 

parameter value is indicated by the large dot while smaller points indicate the inferred values 

from 25 simulated datasets (lines show the 95% credible interval). Simulations were conducted 

to mimic pockets of zoonotic disease moving through the reservoir population. To capture the 

idea that, at any given time, only a small subset of localities might be experiencing high levels of 

spillover while the rest of the localities experienced no spillover, the simulations assumed that 

every 25 days a new set of three localities experienced the full force of spillover for the entire 

system. This gave rise to clusters of primary cases, which tend to be misclassified as human-to-

human transmission events by our inference approach, which assumes homogeneous spillover 

rates. 
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Figure S2.10. Comparison of prior and posterior distributions for spillover rate λz. Black bars 

represent posterior distribution while red lines mark limits of the uniform prior distribution. One 

representative simulation is shown for each of the nine parameter sets. Notice that the posterior 

distribution is always relatively far from upper bound of the prior. 
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Table S2.1. Comparison of inference method success over the same simulated datasets. 

 R λz σ 

Inference 

Approach 

Fraction 

of 

95%CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction 

of 

95%CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction 

of 

95%CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

True number of 

localities known 

95.2% 

(119/125)  

0.0293 8.6% 96.8% 

(121/125) 

1.99E-05 6.3% 96.0% 

(120/125) 

0.0522 7.0% 

Assume all 

localities are 

observed 

95.2% 

(119/125) 

0.0288 8.4% 0.0% 

(0/125)  

3.30E-04 153.0% 94.4% 

(118/125) 

0.0575 7.7% 

Corrected 

denominator 

method (account 

for silent 

localities) 

92.8% 

(116/125) 

0.0298 8.4% 93.6% 

(117/125)  

3.59E-05 14.0% 88.0% 

(110/125) 

0.0665 8.9% 
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Table S2.2. Simulated datasets. 

Inter-locality transmission rule Offspring distribution True R True λz # datasets 

simulated 

Broader contact zone: district-level Poisson 0.36 0.00036 60 

Broader contact zone: district-level Poisson 0.2 0.00036 25 

Broader contact zone: district-level Poisson 0.6 0.00036 25 

Broader contact zone: district-level Poisson 0.36 0.0001 25 

Broader contact zone: district-level Poisson 0.36 0.0007 25 

Broader contact zone: district-level Poisson 0.36 0.004 25 

Broader contact zone: district-level Poisson 0.95 0.007 25 

Broader contact zone: district-level Poisson 0.36 0.04 25 

Broader contact zone: district-level Poisson 0.36 0.1 25 

Broader contact zone: district-level NBinom (k=0.58) 0.36 0.00036 60 

Broader contact zone: district-level Poisson 0.01 0.00036 (intensity 

heterogeneous through 

time and space) 

25 

Localities have same spatial coordinates as 

recorded for DRC monkeypox localities, inter-

locality transmission with closest 5 neighbors 

Poisson 0.36 0.00036 25 

Localities have same spatial coordinates as 

recorded for DRC monkeypox localities, inter-

locality transmission with neighbors within 30 km 

Poisson 0.36 0.00036 25 
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Table S2.3. Success of the corrected denominator inference method for datasets simulated with increasing spillover rates. 

 R λz σ 

True λz 
value 

Fraction 

of 95% 

CIs 

include 

true 

value 

Average 

error size 

Average 

percent 

error 

Average 

width of 

CI 

Fraction 

of 95% 

CIs 

include 

true 

value 

Average 

error size 

Average 

percent 

error 

Average 

width of 

CI 

Fraction 

of 95% 

CIs 

include 

true 

value 

Average 

error size 

Average 

percent 

error 

Average 

width of 

CI 

0.0001 96% 

(24/25) 

0.0458 12.7% 0.226 96% 

(24/25) 

3.54 E-

05 

35.4% 1.75 E-

04 

88% 

(22/25) 

0.1094 14.58% 0.395 

0.00036 92% 

(23/25) 

0.0279 7.8% 0.137 88% 

(22/25) 

3.68 E-

05 

10.2% 1.72 E-

04 

84% 

(21/25) 

0.0587 7.83% 0.239 

0.0007 100% 

(25/25) 

0.0213 5.9% 0.108 96% 

(24/25) 

3.85 E-

05 

5.5% 2.06 E-

04 

88% 

(22/25) 

0.0493 6.57% 0.187 

0.004 88% 

(22/25) 

0.0173 4.8% 0.068 96% 

(24/25) 

1.04 E-

04 

2.6% 4.71 E-

04 

100% 

(25/25) 

0.0255 3.39% 0.122 

0.007 92% 

(23/25) 

0.0121 3.4% 0.060 96% 

(24/25) 

1.27 E-

04 

1.8% 7.05 E-

04 

92% 

(23/25) 

0.0261 3.49% 0.113 

0.04 92% 

(23/25) 

0.0121 3.4% 0.050 92% 

(23/25) 

7.50 E-

04 

1.9% 3.15 E-

03 

96% 

(24/25) 

0.0215 2.87% 0.100 

0.1 100% 

(25/25) 

0.0071 2.0% 0.038 100% 

(25/25) 

1.12 E-

03 

1.1% 5.90 E-

03 

100% 

(25/25) 

0.0134 1.79% 0.082 
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Table S2.4. Success of the corrected denominator inference method for datasets simulated with different offspring distributions. 

 R λz σ 

Offspring 

distribution 

Fraction of 

95% CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction of 

95% CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Fraction of 

95% CIs 

include 

true value 

Average 

error size 

Average 

percent 

error 

Poisson 91.7% 

(55/60) 

0.0289 8.0% 93.3% 

(56/60) 

3.76E-05 10.4% 83.3% 

(50/60) 

0.0649 8.7% 

Negative 

binomial 

(k=0.58) 

86.7% 

(52/60) 

0.0393 10.9% 90.0% 

(54/60) 

4.18E-05 11.6% 91.7% 

(55/60) 

0.0555 7.4% 
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Table S2.5. Comparison of parameter estimates inferred using models of increasing spatial scale 

– data simulated using the „nearest five neighbors‟ inter-locality transmission rule where 

localities take the same GPS coordinates as in the DRC monkeypox surveillance dataset (true R 

is 0.36, true spillover rate is 0.00036; mean parameter estimates from inference on 25 simulated 

datasets) 

Model used for 

inference 

mean R mean λz 

District 0.314 0.000346 

Region 0.323 0.000343 

Country 0.354 0.000328 
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Table S2.6. Comparison of parameter estimates inferred using models of increasing spatial scale 

– data simulated assuming inter-locality transmission can occur between any localities located 

within 30 km of one another, where localities take the same GPS coordinates as in the DRC 

monkeypox surveillance dataset (true R is 0.36, true spillover rate is 0.00036; mean parameter 

estimates from inference on 25 simulated datasets) 

Model used for 

inference 

mean R mean λz 

District 0.348 0.000385 

Region 0.357 0.000355 

Country 0.379 0.000334 
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Table S2.7. Parameter descriptions. 

Symbol Description 

     Expected number of cases observed on day t, in locality v 

     Actual number of cases observed on day t, in locality v  

  Actual number of cases observed across all localities over the course of surveillance 

  Total number of localities under surveillance 

   Total number of localities under surveillance in the broader contact zone of locality w 

  

Number of localities with one or more cases (the number of localities that appear in the 

surveillance dataset) 

   Number of localities with one or more cases in the broader contact zone of locality w  

  Duration of surveillance: number of days surveillance was conducted 

   Spillover rate: the expected number of spillover events per day in a given locality  

 {   } {   } 
The expected number of new infections that become symptomatic on day t in locality v caused 

by an infectious individual who became symptomatic on day s in locality w 

R 
Reproductive number: the average number of secondary cases caused by an infectious 

individual  

σ 

Within-locality transmission proportion: the fraction of cases arising from human-to-human 

transmission that occur in the same locality as the source case 
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CHAPTER 3:  

Evaluating intervention strategies to reduce zoonotic spillover of 

influenza A viruses from US exhibition swine: a modeling-based 

analysis 

3.1 Introduction 

Following the 2009 swine-origin influenza pandemic, there has been growing concern 

that swine may serve as an important source of other influenza A viruses (IAVs) capable of 

causing future pandemics in humans (1–9). The growing global domestic swine population (10) 

supports a large diversity of IAVs (2,5,6,11), most of which have never circulated in humans. In 

addition, recent studies have concluded that the types and distributions of the receptors for 

influenza A viruses in swine and human respiratory tracts are very similar (12–14), and it is 

known that there have been numerous occasions of transmission of human IAVs into swine 

(4,6,15–17), suggesting that there may be a relatively low barrier to host-jumps between these 

species. This idea is further supported by the fact that there have been more than 400 

documented human infections with IAVs acquired from swine since 2011 in the United States 

alone (18). There are substantial concerns that spillover of IAVs from swine to humans may lead 

to sustained human-to-human transmission; these concerns are heightened by the fact that there 

have already been documented cases of limited human-to-human transmission of swine-origin 

H3N2 IAVs and by the large diversity of IAVs being given repeated opportunities to invade the 

human population (19–21). 

The majority of the documented instances of swine-to-human spillover of IAVs in the 

United States can be linked to contact with show pigs at agricultural exhibitions, where millions 

of individuals from the general public come into close proximity with swine each year (22). 

Previous surveillance studies have detected IAVs in exhibition swine at around 20%-30% of 
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sampled agricultural fairs, with the prevalence of IAVs in swine at these shows often reaching 

high levels, sometimes even over 75% (23–26). Characterizing the transmission dynamics of 

IAV in exhibition swine is therefore a priority if we want to design and implement effective 

interventions to reduce the frequency of swine-to-human transmission events in the United 

States.  

Despite their central role in IAV transmission to humans, show pigs make up only around 

1.5% of the US swine herd and form a largely distinct group from commercial swine (23,27–29). 

They are often raised alone or in small groups on family farms or backyards and brought to 

compete at agricultural fairs, such as county and state fairs (21,29). Generally only swine from a 

particular county or state are permitted to compete in that county or state‟s fair, so many swine 

exhibitors will also bring their pigs to regional „jackpot‟ or national swine shows, which are open 

to individuals from any county. Because show pigs reach their peak competitive condition at 

around six months of age, most swine exhibitors buy piglets several months in advance of their 

county‟s show and sell their pigs for pork products at the end of a show season, leaving their 

farms vacant of swine for part of the year (29).  

Due to the strong seasonality of shows and when exhibition swine are present on home 

farms, it is unlikely that IAV transmission could be sustained in exhibition swine year-round; 

instead it is likely introduced from commercial swine over the course of the show season. 

Phylogenetic analyses using data from active IAV surveillance among exhibition swine between 

2009-2013 suggest that a diversity of IAVs are introduced annually from US commercial swine 

into exhibition swine (21,27). The transmission pathway of IAVs from commercial to exhibition 

swine is not yet well understood, but it may occur through show pigs housed on the same 
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premises as commercial swine or through fomites (like boots or shared equipment) that may 

carry IAVs back to a home farm or to a show.  

When an IAV outbreak occurs at a swine show, it can rapidly infect a large number of 

pigs from many different home farms (23–26). The viruses can spread even more broadly in the 

system if infected exhibition swine carry the infection between shows. However, the relative 

importance of repeated spillover versus onward transmission between shows, and the role that 

different types of shows play in sustaining IAV transmission within the show, is not yet well 

understood. For instance, because county fairs only allow resident pigs to compete, national and 

jackpot shows could act as bridges that allow IAVs to spread between counties. Clarifying the 

processes driving the disease dynamics is crucial if we want to devise and evaluate management 

plans to minimize the risk of spillover into humans. 

However, there are numerous challenges associated with quantifying disease dynamics 

and assessing interventions in livestock systems. The transmission of infectious diseases in 

livestock is often heavily reliant on the movement patterns of animals transported between 

localities (30,31), but details of these movement patterns are often undocumented and unknown 

(21,32–34). Privacy is often a major concern in the U.S. agricultural industry, so even the 

locations where animals are kept and the sizes of farms are frequently unavailable (35). 

Additionally, few livestock diseases have compulsory reporting (36) or large-scale, structured 

surveillance programs. As a consequence, information about a pathogen‟s spread and prevalence 

is often patchy and incomplete (34,37). The result is a system where local structure can have an 

important impact on transmission dynamics, but where only disjoint pieces of information are 

available to inform that complexity (34). Mathematical models have served a valuable role in 

numerous livestock infectious disease systems by pulling together available information about a 
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complex system into a single framework to infer information about disease spread and test 

potential interventions (36–44).  

In the current work, we use a network model to combine data from active surveillance of 

IAV at swine exhibitions in Indiana, Michigan, and (Figure 3.1) with insights about the swine 

show system‟s structure to evaluate which management strategies are likely to be most effective 

at reducing the risk of IAV spillover into humans. Several disparate estimation approaches were 

used to fit the parameters in the network model, including approaches based on epidemiological 

as well as sequence data, to promote robust results. We first tested our method using simulated 

datasets from twenty-one different true parameter sets covering a broad range of possible 

transmission behaviors. We examined how well the parameters estimated based on these 

simulated datasets matched the true values, as well as whether our method of assessing 

interventions reproduced the same intervention recommendations as the true parameter set. We 

then repeated this process for each of the three major HA lineages detected in show pigs in 2016: 

H3-2010, H3-2000, and H1-δ1 to estimate the effectiveness of thirty different potential 

interventions at reducing IAV in swine at county and state fairs.  

3.2 Overview of the approach 

To compare the expected impact of different potential interventions, we used data on IAV 

circulation at more than 120 shows in 2016 to fit the parameters of a model capturing the spread 

dynamics of IAVs in the swine show system. The fitted model was then used to assess the extent 

to which tested interventions reduced the fraction of county and state fairs with IAV outbreaks in 

attending swine, since these are the events where there is maximal contact with the general 

public.  
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Given that surveillance of IAV in show pigs was conducted at numerous swine shows but 

never at home farms and the expectation that shows are the primary avenue through which 

influenza viruses spread between exhibition pigs from different farms, we represented the 

transmission dynamics of IAV in the exhibition swine system as a network model where each 

node corresponds to a swine show (Figure S3.1). Nodes can take values of zero (if the show does 

not have an IAV outbreak among its swine) or one (if there is an IAV outbreak). The weight of 

edges between nodes represents the probability of indirect transmission from one show to 

another (via home farms that send pigs to both shows). A set of eight parameters quantifies IAV 

transmission probabilities: three parameters describe the probability of spillover into shows (λc 

for county and state shows, λj for jackpot shows, and λn for national shows), two parameters 

describe the probability a pig is infected by the end of an IAV-positive show (γc for county, state, 

and national shows and γj for jackpot shows), two parameters describe the probability that an 

infected pig starts an outbreak at a show (βc for county, state, and national shows and βj for 

jackpot shows), and one parameter describes the probability that an infected pig infects a 

susceptible pig on a given day on their home farm (ρ). Because pigs are generally housed on-site 

for several days at county, state, and national shows, but they may remain on their trailer except 

while competing at jackpot shows, the values of parameters describing probabilities of 

transmission at jackpot shows were allowed to differ from the parameters describing 

transmission at other types of shows. Parameters are summarized in Table 3.1. 

To ensure that our findings were robust to model assumptions, we used several different 

methods to generate the estimated parameter sets. From a dataset of IAV in exhibition swine 

(either a real dataset from active IAV surveillance on one of the three HA lineages or a dataset 

simulated using known parameter values), we applied four principal parameter-estimation 
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methods to identify parameter sets expected to best describe disease transmission in the system. 

In the first two methods, we used epidemiological data on which shows were determined to be 

IAV positive (first row of Figure 3.1), along with the likelihood function based on the network 

model, to estimate parameters‟ posterior distributions using MCMC. We then either sampled 

parameter sets directly from the posterior (parameter-estimation method „EP‟: Epidemiological 

data & Posterior distribution) or selected one hundred unique parameter sets that generated the 

highest likelihoods in the MCMC chain (parameter-estimation method „EL‟: Epidemiological 

data & Likelihood).  

The other two parameter-estimation methods used the phylogenetic tree formed from 

samples collected from both commercial swine and exhibition swine in 2016. In particular, we 

compared the size-distribution of show-only IAV clades in observed trees (third row of Figure 

3.1) with those simulated over a grid of 6^4 parameter sets. We defined a show-only IAV clade 

as a monophyletic group of IAVs that were all collected from swine shows. The simulations used 

to generate the size-distribution of show-only IAV clades included both the observation process 

of IAV samples as well as the transmission process of IAV within the swine-show network 

(Figure S3.2). All analyses were repeated with three different tip-sampling assumptions about 

how IAV strains were sampled from the commercial swine IAV reservoir: a „moderate-

assortativity‟ assumption represents our expectation for the system and was used for the primary 

analyses, and two bounding assumptions („completely-random‟ and „high-assortativity‟) were 

used to test whether results were robust to the tip-sampling assumption used. For each tip-

sampling assumption, two parameter-estimation methods were used: one based on summary 

statistics describing the size-distribution of show-only IAV clades (parameter-estimation method 

„CS‟: Clade-size distribution data & Summary statistics) and one based on estimated likelihood 
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distributions that were fitted using the simulated clade-size distributions (parameter-estimation 

method „CL‟: Clade-size distribution data & Likelihood). The parameter-estimation methods are 

described fully in the Methods section and summarized in Table S3.1. 

A number of strategies have been proposed to help mitigate the risk of spillover from 

exhibition swine into humans, such as shortening the duration of county fairs, requiring 

downtime between attending shows, or improving biosecurity, but the potential impacts of each 

have not been formally assessed or compared (22,23) We are particularly interested in 

understanding the relative effectiveness of a collection of thirty different potential interventions 

that span reducing transmission at shows, on home farms, or from commercial swine; changing 

the timing of shows; removing certain shows; or requiring farms to wait for a certain period 

between attending shows (Table S3.2). Because each parameter-estimation method yields a 

cloud of plausible parameter sets, we used a collection of 1000 parameter sets from each 

parameter-estimation method to simulate disease spread under thirty different intervention 

scenarios as well as the no-intervention scenario (giving a total of thirty-one tested scenarios). 

We compared the simulation results to assess robust patterns in the extent to which each 

intervention is expected to reduce the fraction of IAV-positive county and state shows. The 

tested intervention scenarios are described in Table S3.2.  
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3.3 Results 

Results from simulated test datasets 

Parameter-estimation methods produce precision and accuracy in some parameter 

estimates, but are unable to precisely identify other parameter values 

To assess how effectively parameter values could be inferred using each of the four 

different parameter-estimation methods, we tested the methods using twenty-one simulations 

with true parameter values selected to span the range of plausible parameter values (Table S3.3). 

All four methods generated fairly precise and accurate estimates for the probability of IAV 

spillover into county/state and jackpot shows (Table S3.4, see Figure S3.3 for two example 

parameter sets). The average error in the estimated probability of spillover per show was 0.04 

across the twenty-one simulated datasets (where true values spanned from 0.001 to 0.9) and the 

four parameter-estimation methods. There was not evidence of a bias toward over-estimating or 

under-estimating the spillover parameter values (p = 0.59 for a one-sample, two-sided t-test). 

However, for the remaining parameter values, the parameter-estimation methods could only 

identify broad ranges of parameter space rather than precise estimates for each parameter. The 

mean absolute error between the estimated and true parameter values across all simulated 

datasets and parameter-estimation methods was 0.20 (true parameter values spanned 0.001 and 

0.95). Here, estimated values for these parameters tended to overestimate the true parameter 

values (p < 2E-16 for a one-sample, two-sided t-test). There was a strong correlational structure 

between estimated parameters, so rather than identifying each individual parameter value, the 

methods identified parameter sets that were most consistent with the data. Significant 

correlations occurred between many pairs of parameters within parameter sets, especially 

between the parameters for spillover and transmission within a certain show type (e.g., between 
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λj and βj) and between the at-show transmission probabilities (e.g. between γc and βc and between 

γc and γj).  

The accuracy of parameter estimates was similar across the twenty-one simulated 

datasets (Table S3.5). The absolute error for estimates of the county/state and jackpot spillover 

probabilities was lowest for parameter sets with small spillover probabilities (from less than 0.01 

for λ1), and higher as spillover probability increased (to greater than 0.15 for λ6), though this 

trend disappears when considering the relative error (Table S3.6). 

There was also similar performance across the four parameter-estimation methods. The 

methods that use data on the size-distribution of show-only IAV clades (CS and CL) performed 

marginally better than the methods based on the epidemiological data (EP and EL), with mean 

absolute error sizes of 0.19 compared to 0.21 (Table S3.4). However, each of the test datasets 

was simulated using a parameter set from the 6^4 parameter sets used in the clade-size 

distribution grid search, while the parameters underlying transmission in a real-world context 

would not necessarily match perfectly with one of the parameter sets tested. In addition, the tip-

sampling assumption used to generate the clade-size distribution parameter estimates (see 

Methods) exactly matched the tip-sampling assumption used to generate the test datasets. When 

parameters were estimated based on incorrectly-specified tip-sampling assumptions, the CS and 

CL error sizes were slightly higher, with mean error sizes of 0.06 instead of 0.04 for the 

county/state and jackpot spillover probabilities and mean error sizes of 0.24 instead of 0.22 for 

the remaining parameters (Table S3.4). Estimates using the completely-random tip-sampling 

assumption (methods CSr and CLr) underestimated county/state and jackpot spillover 

probabilities by an average of 0.07 (p < 0.001) while the high-assortativity tip-sampling 
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assumption (methods CSh and CLh) overestimated these probabilities by an average of 0.03 (p < 

1E-4).  

Broadly, all estimation methods achieved good accuracy on spillover parameters, with 

mean errors for the county/state and jackpot spillover probabilities falling between 0.02 and 0.07, 

and moderate but consistent accuracy on other parameters, with mean errors for the non-spillover 

parameters falling between 0.17 and 0.31 (Table S3.4).  

Impact of interventions varies based on the underlying parameter values, but patterns 

emerge 

The expected effectiveness of each intervention at reducing the fraction of IAV-positive 

county and state fairs varies depending on the parameters that govern the transmission dynamics 

in the system (Figure 3.2). For instance, when the parameters associated with at-show 

transmission probabilities (γ and β) are larger, removing jackpot and national shows 

(interventions 2-4), requiring downtime between shows (interventions 9-11, 13-16, 30-31), and 

reducing transmission at shows (interventions 24-26, 30-31) are all highly effective at reducing 

the fraction of county and state shows that are IAV positive. However, when the at-show 

transmission parameters are lower or when spillover probabilities (λ) are high, those 

interventions are less effective and instead interventions that reduce spillover probabilities 

(interventions 17 and 28), even only to 90% of the original values, cause the greatest expected 

reduction of the fraction of county and state fairs that are IAV positive (Figure 3.2).  

While the predicted magnitude of an intervention‟s impact and the relative effectiveness 

of different interventions vary, certain interventions were frequently found to be effective across 

a wide range of parameter values, particularly intervention numbers 9, 13, 14, 23, 24, and 31, 

which correspond to interventions that reduce spillover and at-show transmission probabilities by 
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50%, require downtime before shows, and combine downtime before some shows with a minor 

decrease in transmission probabilities at shows (Figure 3.2).  

The expected impacts of interventions estimated from test datasets closely approximates 

the impacts calculated using true parameter values 

When calculating the expected impacts of interventions in a real-world setting, we do not 

know the true parameters underlying disease spread and instead must use parameter sets 

estimated from observed data. To assess how well the intervention impacts predicted by 

estimated parameter sets would agree with impacts predicted by true parameter values, we 

compared the expected reduction in the fraction of IAV-positive county and state fairs relative to 

the no-intervention scenario calculated using estimated parameter values with the reductions 

calculated using true parameter values. Despite the inability of all four parameter-estimation 

methods to obtain precise estimates of all but the county/state and jackpot spillover parameter 

values, the expected impacts of different interventions were largely consistent between estimated 

and true parameter values (Table S3.7; also see Figure S3.4 for results with two example 

parameter sets). The average error size in these values across all tested interventions and 

simulated datasets was less than 0.10 for each parameter-estimation method (Table S3.7). The 

clade-size-distribution methods (CS and CL) had the best performance with mean errors of 0.05.  

There was a slight trend toward underestimating the effect of interventions, with the 

estimated effect-size of interventions an average of 0.013 below the true effect size across all 

interventions, parameter sets, and parameter-estimation methods (p < 2E-16 for a one-sample, 

two-sided t-test). However, the direction and significance of bias was not consistent when the 

results from different parameter-estimation methods were considered separately. Estimates based 

on the EP method did not have evidence of bias (p = 0.41), estimates based on the EL and CL 
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methods slightly underestimated the impact of interventions with a mean error of less than 0.06 

(p < 0.001), and estimates based on the CS method slightly overestimated the impact of 

interventions with a mean error of 0.009 (p < 0.002). In addition, the directions and magnitudes 

of bias differed between intervention scenarios, with the largest bias observed for the „remove all 

jackpot shows‟ intervention (intervention number 2), where average impact calculated across all 

parameter sets and parameter-estimation methods underestimated the true effectiveness by 0.058 

(p < 0.003).  

When the tip-sampling assumption was misspecified (the assumption used to generate the 

simulated dataset was different from the assumption used to generate parameter estimates), the 

average error size was 0.08, with the largest mean error size of 0.10 for the CL method assuming 

completely random tip-sampling (Table S3.8). Estimates from the completely-random tip-

sampling assumption methods (CSr and CLr) underestimated the impact of interventions by an 

average of 0.07 (p < 2E-16), and estimates from the high-assortativity tip-sampling assumption 

methods (CSh and CLh) overestimated the impact of interventions by an average of 0.04 (p < 7E-

12). 

Multiplicative effects and antagonism when implementing multiple interventions 

simultaneously 

Three of our intervention scenarios (interventions 29, 30, and 31) involved simultaneous 

combinations of two other interventions. We examined the interactions of these interventions, 

comparing the effects of a total of 21 (parameter sets used to generate simulated datasets) * 9 

(ways to choose parameter estimates, including using the true parameter values) * 1000 

(simulations run for each combination of parameter set / parameter-estimation method) = 

189,000 simulations for each intervention. In one of the tested combined-intervention scenarios, 
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when both the parameters describing transmission at shows and the parameters describing 

spillover were reduced to 90% of their original values, the effect of the two interventions 

appeared multiplicative (with a difference of less than 0.005 between the mean effect of the 

combined interventions and the product of the means of the two individual effects). However, in 

the other two situations, when a 90% reduction in parameters describing transmission at shows 

was paired with one or two weeks of downtime before 2/3 of county and state fairs, the 

interaction appeared slightly antagonistic, although the difference between the mean effect of the 

combined interventions and the product of the means of the two individual effects was less than 

0.03 and the mean effect of the combined intervention was greater than the mean effect of either 

intervention alone.  

Results from the 2016 surveillance datasets 

Similar parameter values estimated for the three HA lineages 

Parameter estimates were generated using the 2016 surveillance datasets for each of the 

three HA lineages that appeared in more than two swine shows (H3-2010, H3-2000, and H1-δ1), 

yielding results that repeated many of the themes seen with the simulated datasets. For all three 

HA lineages, the parameter-estimation methods showed a strong preference for a relatively 

narrow range of county and jackpot spillover probabilities (Table S3.8). The mean estimates for 

λj among the parameter sets selected for intervention simulations were similar across HA-

lineages, ranging from 0.07 to 0.08. The mean estimate for λc was highest for the H3-2010 

lineage (0.08), followed by the H3-2000 lineage (0.06), and smallest for the H1-δ1 lineage 

(0.04). As was seen with the simulated test datasets, there was high uncertainty in estimates of 

the non-spillover parameters (Table S3.8). 
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The parameter sets selected using alternative tip-sampling assumptions differed (Table 

S3.8), but mean parameter estimates were largely consistent across assumptions, with an average 

difference of 0.06 between the primary tip-sampling assumption used in this analysis and each of 

the two other tested assumptions. Among the spillover estimates, the mean difference between 

the different assumptions was 0.04. As was seen for the simulated datasets, the completely-

random tip-sampling assumption methods (CSr and CLr) produced estimates of the spillover 

probabilities that were an average of 0.05 smaller than estimates generated using the moderate-

assortativity assumption, and the high-assortativity tip-sampling assumption methods (CSh and 

CLh) produced estimates of the spillover probabilities that were 0.04 larger than estimates 

generated using the moderate-assortativity assumption.  

The individual parameter estimates, however, may not be as important as the parameter 

set taken as a whole for determining the behavior of the system. Certain parameter values tend to 

pair with one another, indicating a correlation structure where there may be the potential for 

parameters to compensate for one another to produce the same behavior. For example, in Figure 

3.3, which shows tanglegrams of parameter sets selected under three different parameter-

estimation methods for all three HA lineages, parts E, F, and H show that lower values of β tend 

to occur in the same parameter sets as higher values of γ. Across the 12,000 parameter sets 

sampled using the four parameter-estimation methods for the three HA lineages, values of γc 

above its median paired with values of βc below its median or vice versa in 60% of parameter 

sets. Nearly identical patterns were observed for γj and βj. The Pearson correlation coefficients 

describing the relationship between paired values of γc and βc and between paired values of γj and 

βj were -0.1 (p < 2E-16). As was seen in the simulated test datasets, significant correlation 

between parameter values within a parameter set were found for many parameter pairs, 
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especially between the parameters for spillover and transmission within a certain show type (e.g., 

between λc and γc and between λj and βj), between spillover and home-farm transmission 

probabilities (e.g., between λc and ρ) and between the at-show transmission probabilities (e.g. 

between γc and βc and between γc and γj).  

Several interventions identified as having the largest expected impact in the exhibition 

swine system 

The magnitude of the expected impact of interventions varied strongly, particularly 

across different methods used to generate parameter sets within a HA-lineage. For H3-2010, the 

two methods based on the epidemiological data (EP and EL) led to predictions of smaller 

impacts than the predictions based on clade-size-distribution methods (CS and CL) (Figure 3.4A, 

Figure S3.5), while the opposite pattern held for H1-δ1 (Figure 3.4A). Averaging across 

parameter-estimation methods, the largest reductions in the expected fraction of IAV-positive 

fairs were seen for H3-2010, which also had the largest number of IAV-positive shows in the 

2016 dataset. The top intervention reduced the fraction of IAV-positive county and state fairs to 

below 40% of the no-intervention scenario. But even for the other two HA lineages, the top 

interventions are expected to reduce the fraction of shows infected to 55-65% of the fraction 

infected without intervention.  

Yet despite the differences in predicted magnitude, the qualitative patterns of which 

interventions are expected to be most impactful were largely consistent across HA lineages and 

parameter-generation methods (Figure 3.4). The most impactful interventions included those that 

required downtime before shows and those that reduced spillover or at-show transmission 

probabilities. Requiring one or two weeks downtime before all shows (interventions 9 and 13), 

requiring two weeks downtime before county and state shows (intervention 14), and reducing 
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transmission at all shows or only at county and state shows (interventions 24 and 25) were found 

in the top ten interventions for all parameter-estimation methods and all HA lineages.  

When the results from all parameter-estimation methods were averaged within each HA 

lineage, these same interventions were in the top ten interventions for each HA lineage, along 

with removing all jackpot shows (intervention 2), one week downtime before county/state fairs 

(intervention 10), reducing spillover probabilities (intervention 23) and combining two-weeks 

downtime for 2/3 of county/state fairs with a 90% reduction in at-show transmission 

(intervention 31). Each of these interventions is expected to reduce the fraction of IAV-positive 

county and state fairs to below 75% of the no-intervention scenario, and the „two weeks 

downtime required before all shows‟ scenario is expected to reduce the fraction to below 60% 

across all HA lineages. 

The intervention scenarios where jackpot or national shows were removed (interventions 

2, 3, and 4) were often included in the top ten most effective interventions. Removing all eighty 

jackpot shows (intervention 2) or all four national shows (intervention 4) reduced the fraction of 

IAV-positive county and state shows to 69% or 85% of the no-intervention scenario, 

respectively, when averaged across all HA lineages and parameter-estimation methods.  

Moving jackpot shows earlier in the season (interventions 5, 6, and 7) was never selected 

as one of the top ten interventions, though the average fraction of IAV positive county and state 

shows was decreased by 10-20% when jackpot shows were moved 2 or 4 weeks earlier 

(interventions 6 and 7) or when national shows were moved 4 weeks earlier (intervention 8).  

Interventions that required farms to take downtime between shows (interventions 9-16) 

were often among the most effective interventions. Taking two weeks downtime was universally 

more effective than taking a single week downtime, reducing the fraction of IAV positive fairs 



120 

by an additional 10% on average. Only taking downtime after the four national shows 

(interventions 12 and 16) was less effective than the other downtime interventions tested, but 

those other interventions require the participation of a minimum of 172 shows. The interventions 

requiring farms to take one or two weeks downtime after national shows (interventions 12 and 

16) reduced the fraction of IAV-positive county and state fairs to 93% and 82% of the no-

intervention scenario, respectively  

Reducing transmission at national shows or on home farms (interventions 21, 22, 27, and 

28) was not effective at reducing the expected fraction of IAV-positive county and state fairs. 

Even when transmission parameters were reduced to 50% of their original values, the mean 

fraction of IAV-positive shows was reduced by less than 4% relative to the no-intervention 

scenario.  

The sensitivity of the results to the tip-sampling assumption used to generate CS and CL 

parameter estimates was assessed by comparing the results obtained using the „moderate 

assortativity‟ assumption with results obtained using completely-random and highly-assortative 

tip selection assumptions. The average difference between tip-selection assumptions in the 

expected reduction of IAV-positive fairs was 0.07, but differences as high as 0.51 were observed 

for certain interventions (Figure S3.6). However, across all tip-sampling assumptions, parameter-

estimation methods, and HA-lineages, six interventions were consistently selected in the top ten 

most effective interventions, namely interventions 9, 13, 14, 24, 25, and 31, which involve 

downtime before shows and reducing transmission at shows. These are the same interventions as 

were identified above as the most impactful across all HA lineages.  
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3.4 Discussion 

Because exhibition swine have a role as a type of „intermediate host‟ allowing IAVs 

circulating in US swine substantially more opportunities to infect susceptible humans, 

implementing interventions that target this special group of swine has the potential to efficiently 

reduce the risk of spillover into humans. In this work, we used several different approaches to 

estimate the expected impact of thirty interventions on reducing the fraction of county and state 

fairs with IAV outbreaks in exhibition swine. The predicted impact of interventions was 

remarkably consistent across all methods, despite the distinct data sources and methods used to 

generate estimates, and despite challenges in identifying precise parameter values.  

To estimate the impact of interventions, it was necessary to estimate parameter sets that 

describe IAV spillover from commercial swine and transmission among exhibition swine. For 

both simulated test datasets and real-world datasets, the parameter values describing spillover 

probabilities into county/state and jackpot shows were identified precisely, while the remaining 

parameter values exhibited a strong correlation structure, allowing values of parameter pairs to 

trade off with one another. This correlation structure, combined with the two well-identified 

spillover parameters and the structure imposed by the network model, meant that even though 

precise estimates of all individual parameters could not be obtained, estimated parameter sets 

predicted similar intervention impacts. Furthermore, for the test datasets simulated using known 

true parameter values, the expected intervention effectiveness calculated using estimated 

parameter sets was similar to that calculated using the true parameter values. 

While this work indicates which interventions would be most effective if carried out, it 

does not evaluate the practicality of actually implementing interventions. Requiring downtime 

between shows, reducing transmission at shows and spillover into shows, and removing jackpot 
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or national shows were all indicated as being effective interventions, but not all of these are 

realistic options for real-world implementation. For instance, national and jackpot shows are 

highly valued and present many educational, training, cultural, and networking opportunities; 

removing them is therefore not a viable management policy. However, the expected impact of 

removing these shows sheds light on the role they play in contributing to infection at county and 

state fairs. Interestingly, even though our results suggest that these shows serve as an important 

bridge for IAVs to transmit between swine in different counties, removing all jackpot or all 

national shows would not be expected to reduce the fraction of IAV-positive county and state 

shows by more than 31%.  

Intervention scenarios that involve reducing transmission probabilities help highlight 

locales where such policies would be most impactful, and thereby aid in prioritizing limited 

resources. For instance, reducing spillover probabilities or at-show transmission probabilities 

were substantially more effective at decreasing the fraction of IAV-positive fairs than reducing 

transmission probabilities on home farms. Based on this finding, we would expect that 

biosecurity measures which minimize transmission opportunities at shows, such as frequent 

sanitation of intake equipment or limiting the time swine are permitted to spend at a show (and 

thereby reducing the size of outbreaks) would be more effective than reducing swine-to-swine 

contact on home farms. However, because the current model did not explicitly include within-

show transmission dynamics between swine, additional modeling and experimental work will be 

needed to quantify how much specific measures would affect transmission probabilities.  

It is likely that the most practical and effective approach will involve multiple control 

measures implemented simultaneously. The present work investigated three examples of mixed 

strategies and found both multiplicative and slightly antagonistic interactive effects; however a 
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more thorough examination of different combined interventions is merited. Where possible, 

combining multiplicative or even synergistic interventions will yield the most cost-effective 

strategy. 

Like all model-based analyses, the accuracy of this study‟s results depends on the model 

framework capturing the key transmission processes driving disease spread among exhibition 

swine. In particular, the present study assumes that the only way IAV can spread between pigs 

from different home farms is via transmission at a show. However, it is likely that there are some 

opportunities for farm-to-farm transmission outside of the show context, such as through open 

houses, swine sales, or contaminated equipment. It seems improbable that these transmission 

routes, likely between neighboring or local farms, would be an important driver in the spread of 

IAVs at the broader scales represented by exhibition swine, but studies that quantified the 

interactions between different farms would indicate whether this transmission route may be 

worth including in future studies.  

The model used in the present analysis did not track the immune status of swine 

throughout the season. We expect that the lack of saturation of IAV in the system (only around 

20-30% of tested shows are IAV positive (24,25)), the short lifespans of the pigs, and the large 

number of shared farms connecting shows would diminish the sensitivity of IAV dynamics to 

immunity from previous exposures. Nonetheless, immunity acquired from past IAV exposures 

could potentially change patterns of disease spread, especially given the high variance in the 

number of shows farms participate in during the season. While most swine exhibitors attend 1-4 

shows during a season, a few exhibitors report bringing pigs to more than 20 shows. The 

potential of pigs from these farms to spread IAV widely depends on whether exposure early in 

the season protects them from infection later. Challenge experiments have suggested that there is 
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at least short-term protection against infection and virus replication within and, to a lesser 

degree, between IAV subtypes in swine (45–49), suggesting that this effect may be worth 

including in future work. Similarly, the use and efficacy of influenza vaccination in exhibition 

swine is currently not well documented but could be worth quantifying and including in future 

models.  

Conclusion 

While many measures implemented to reduce the risk of infectious disease spillover into 

humans are focused on the animal-human interface or on pathogen spread in humans after 

spillover, this work highlights the benefits of also considering interventions aimed at 

transmission in the reservoir to minimize spillover risk. The results we have presented in this 

work reinforce the value of combining data from surveillance in the reservoir and information 

about system structure with mathematical models to highlight key processes and evaluate 

potential interventions. A key requirement for this type of work is high-quality surveillance data, 

yet such information is difficult to obtain and unavailable for many systems. Conducting 

surveillance within the zoonotic reservoir and on developing mathematical modeling approaches 

to translate surveillance datasets into insights about routes of transmission would be a very 

worthwhile investment in many systems, as the resulting mechanistic understanding could reveal 

opportunities for efficient and effective prevention of spillover. 
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3.5 Methods 

Data 

Overview 

Data on the presence or absence of IAV in exhibition pigs at 118 shows in Ohio, 

Michigan, and Indiana, as well as at four national shows in other states, were obtained from 

active IAV surveillance in 2016 (described in (26,50)). In total, exhibition swine from 96 county 

fairs, 2 state fairs, 4 national shows, and 20 jackpot shows were sampled. At each of these shows, 

between 20 and 600 (most commonly 20) nasal swabs or nasal wipes were collected from 

exhibition pigs and were tested for IAV using real-time reverse transcription PCR. For shows 

with one or more IAV positive samples, a subset of samples (generally one or two samples) were 

sequenced. The hemagglutinin (HA) protein from each sequenced sample was classified as 

belonging to H1δ1, H3-2010, H3-2000, or another HA lineage. This study made use of 

sequences publicly available on the National Center for Biotechnology Information (NCBI) 

Influenza Virus Resource (51).  

Date and location of shows 

In the Midwestern states, most county fairs take place between July and September, with 

state fairs in late July through early September. Jackpot shows tend to be held earlier in the 

season, with most occurring on weekends from May to July. There are also a few large national 

shows held throughout the year that attract pigs from all over the United States (52). For shows 

included in the 2016 active IAV surveillance, the exact GPS coordinates of each show was 

recorded. However, we also found the dates and counties of a number of shows that were not 

sampled in 2016 based on information reported on state agricultural fair websites, jackpot show 
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advertisements posted online, and 4-H schedules (data available upon request). For these 

unsampled shows, we used the centroid GPS coordinates for the relevant county to represent the 

show‟s location.   

Number of pigs attending each show 

When the number of pigs attending a show was reported as part of the 2016 surveillance 

dataset, exact numbers were used. When the numbers of attending swine was not reported for a 

2016 county fair, the number reported for that county fair in 2013 in (29) was used. When the 

numbers of attending swine were unknown for a jackpot show, we used the average number of 

swine reported across the jackpot shows with reported swine numbers in 2016 because we do not 

expect there was a bias toward sampling jackpot shows of larger or smaller than average size.  

Distribution of home-farm sizes and number of pigs brought to a show from the same 

home farm 

The distribution of home-farm sizes and the distribution of the number of pigs brought to 

a show from the same home farm were both calculated using the responses of survey participants 

(29). Across nine swine exhibitions, a total of 428 surveys were collected from participants. The 

probability distribution for the number of swine brought to a show from the same home farm was 

taken as the exact distribution reported by survey participants. The distribution of the number of 

pigs on each home farm was also calculated from survey results, but because a few individuals 

housed their exhibition swine on the same premises as commercial swine, we only included the 

home-farm sizes for participants who reported a total of 15 or fewer swine on the premises.  
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Phylogenetic trees 

Phylogenetic trees were obtained from the NCBI Influenza Virus Database (51), for the 

H1δ1, H3-2010, and H3-2000 HA lineages from among all US swine IAV sequences with 

collection dates in 2016. Phylogenetic trees created using the single linkage/nearest neighbor 

clustering algorithm and F84 nucleotide distances were downloaded from NCBI (51).  

Creating augmented datasets 

We expect that we recorded the date and location of all county and state fairs from the 

three states included in the study area but only around 70% of all jackpot shows from the three 

states. In addition, the number of farms in each county, and which farms attend which shows, are 

both unknown. However, all of these pieces of information are needed to inform the structure of 

the network model used in analyses. We therefore created “augmented datasets” using the time 

and location of known shows (see “Date and Location of Shows” section, above), the number of 

swine present at each show (see “Number of pigs attending each show” section, above), and 

survey information (29). First, we estimated the number of farms in each county as the number 

of show pigs that attend their county‟s fair (see “Number of pigs attending each show” section, 

above) divided by the estimated average number of pigs that attend a show from the same home 

farm (see “Distribution of home-farm sizes and number of pigs brought to a show from the same 

home farm” section, above). Next, we assigned which farms attended each show. For county 

shows, only farms within the same county are permitted to attend. For state shows, we give every 

farm in the relevant state an equal probability of being selected to attend the state show. For 

national shows, each farm in the three states is given an equal probability of being selected to 

attend, so long as the farm is not already scheduled to attend another show at the same time. For 

each jackpot show, the attending farms are drawn based on 1) which farms are not already 
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attending a concurrent show and 2) the distance between the centroids of the farm‟s county and 

of the show‟s county. To inform the fraction of farms that should be selected at different 

distances from the jackpot show, we used data on the GPS coordinates of home farms of pigs 

sampled at jackpot shows as part of the 2016 active surveillance. The fraction of home farms that 

reported being in each of six distance bins (0-25, 26-50, 51-100, 101-150, 151-200, and >200 

miles) away from the sampled jackpot shows in the 2016 dataset was used to inform the number 

of farms to draw from each of these distance bins in the augmented dataset. If, for a particular 

jackpot show, there were insufficient farms available from within one of the distance bins, the 

remainder was drawn from the next-largest distance bin.   

While we believe we found the dates and locations for the county and state shows in 

Ohio, Michigan, and Indiana, we expect that we may have missed several jackpot shows. We are 

aware of the timing and location of 56 jackpot shows, 20 of which were sampled as part of the 

active IAV surveillance. Based on the estimation that around 25% of all jackpot shows in Ohio, 

Michigan, and Indiana were included in the active IAV surveillance program (giving a total 

estimated 80 shows for that region), we estimated that we missed around 24 jackpot shows. To 

account for this, we added 24 extra „augmented‟ jackpot shows to the augmented dataset, whose 

counties were chosen at random. The timing of each augmented show was drawn from a list of 

the dates of known jackpot show, with a 1, 2, or 3 week jitter either earlier or later in the season 

(with uniform probability for each jitter value). Other properties of the augmented jackpot 

shows, such as the number of participating swine, were selected at random from the observed 

jackpot shows with known values.  

The augmented datasets were used 1) when creating simulated test datasets used to 

evaluate the method‟s performance (see “Simulations using the network model” section), 2) 
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during inference of parameters using likelihood from network model (explained in “Network 

model” section), and 3) for the simulations used to evaluate the expected impact of different 

intervention scenarios (see “Simulations using the network model” section). Different augmented 

datasets were generated for each of these three uses.  

Network model 

Because our data come from IAV surveillance at swine shows (and we lack farm-level 

sampling) and because shows are believed to allow influenza to spread between pigs from 

different home farms, we modeled disease spread in the system using a network model where the 

nodes are shows and the directional edges represent the probability of IAV transmission from 

one show to another. A node takes the value one (and is called „IAV positive‟) if there is an IAV 

outbreak in pigs at that show or zero (and is called „IAV negative‟) if there is not an IAV 

outbreak. A graphical depiction of the network model is shown in Figure S3.1. 

A show can become IAV positive if spillover of IAV from commercial swine or from 

shows outside the modeled system occurs into pigs attending that show or if a show from earlier 

in the season „transmits‟ IAV to the show. In this system, for one show to „transmit‟ to another 

several events must occur: first, a pig must be infected while attending the initial show. That pig 

may either be brought directly to another show, or it may return to its home farm where it may 

infect other pigs from that home farm. Finally, an infected pig from that farm, either the original 

pig or a pig infected as a result of the original pig‟s infection, must be brought to the second 

show and must initiate an IAV outbreak there.  

A set of eight parameters describe the probabilities associated with these transmission 

processes (Table 3.1). The probability of spillover occurring into a show depends on the type of 
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show, where there is probability λc that an IAV outbreak is started by spillover at a county or 

state show, probability λj at a jackpot show, and probability λn at a national show. The edge 

weight between show a and show b (ωa


b), describing the probability of transmission from show 

a to show b, depends on the number of farms that send pigs to both shows (ηa,b) as well as the 

probability κ(da,b, ξa, ξb) that pigs from a given shared farm will bring the infection from the first 

show (of show-type ξa) to the second show (of show-type ξb) da,b days later and start an outbreak. 

The probability κ(da,b, ξa, ξb) is informed by a set of five transmission parameters and is 

calculated using a simulation approach, as explained in Methods: “Shared-farm transmission 

simulations” below. The edge weight from show a to b is calculated as one minus the probability 

that none of the shared farms (farms that bring pigs to both show a and show b) transferred 

infection from show a to show b:  

       [   (          )]
    

   .  

The probability that show b of show-type ξb is IAV positive (Ib=1) is equal to one minus the 

probability it was not infected from spillover nor from an IAV positive ancestor node (a show 

that occurred earlier in the season and is connected to show b with edge weights greater than 

zero): 

      |               
  ∏    {    }     

    

  

where Ab is the set of ancestor nodes of show b, and θ  is the set of eight parameters that describe 

transmission probabilities. 

The probability that a node takes value one or zero is conditionally independent of other 

nodes‟ values, given the values of the node‟s ancestors. Therefore, the overall likelihood for a set 

of parameters θ given the observed positive/negative status of all shows D = {I1, I2, I3, …,In} is: 
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We assume no direct farm-to-farm transmission outside of shows. Although our model assumes 

that pigs on a farm can only be infected while attending an infected show, functionally, spillover 

could occur either into a farm before it brings pigs to a show or into pigs while they attend the 

show.  

Shared-farm transmission simulations 

To inform the probability κ(da,b, ξa, ξb) that a farm that sends pigs first to IAV-positive 

show a and then to show b will start an outbreak at show b, we ran stochastic simulations to 

integrate over variability in the number of pigs on each farm and the number of pigs selected to 

attend shows, as well as to incorporate stochasticity in transmission dynamics arising from the 

small numbers of pigs on home farms. As above, da,b is the number of days between the end of 

show a and the start of show b, ξa is the show-type of show a (county/state, jackpot, or national), 

and ξb is the show-type of show b.  

We ran 100 simulations each time the probability of a farm transmitting IAV from one 

show to another was calculated for a new parameter set. In each simulation, we drew a farm‟s 

size and the number of pigs sent to each show that farm attended from two distributions 

described in “Distribution of home-farm sizes and number of pigs brought to a show from the 

same home farm,” above. For each pig sent to show a, we drew random variables to determine 

whether or not that pig was infected at show a (with probability     for each pig, which takes 

different values depending on whether or not show a was a jackpot show). If infected, we drew a 

second random variable giving the day of infection, where the probability distribution for 

different days of infection depended on the show type and when during the show a pig was 
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expected to have been infected. We assumed that pigs returning from jackpot shows could be on 

their first (with probability 0.33) or second (with probability 0.67) day of infection. Pigs 

returning from county, state, or national shows could be on their first through sixth day of 

infection, reflecting the longer length of these shows, with the highest probabilities associated 

with infection later in the show. This progression of increasing probability later in the show is 

meant to capture the growing epidemic size during the course of the show. The exact values used 

for the probabilities an infected pig was on its first through sixth day of infection when it 

returned home from the show were, in order: 0.38, 0.32, 0.16, 0.08, 0.04, and 0.02.   

We then simulated transmission between swine on a home farm using a stochastic model 

that tracked the infectious state of each pig on the farm. All pigs started as susceptible except for 

pigs that were infected at show a. The probability that a given infectious pig transmitted the 

infection to a given susceptible pig on a particular day was equal to ρ. Each infected pig 

progressed through three stages of infection: the incubation stage, the infectious stage, and 

finally the recovered stage. The number of days pigs spent in each stage was drawn 

independently for each individual. The incubation period was drawn from a truncated normal 

distribution with mean 2.83 days and standard deviation 1.14 days. The infectious period was 

drawn from a truncated normal distribution with mean 4.5 days and standard deviation 1.07 days 

(values taken from (53) and similar to values used or reported in (45,54–58)). Both distributions 

were truncated (and renormalized) such that the minimum number of days in each stage was one 

and the maximum number of days was ten.   

After recovery from infection, pigs on a farm were considered immune to future infection 

during that simulation. However, the immune status of pigs on each farm was not tracked 

through time, so each farm was assumed fully susceptible at the beginning of a within-farm IAV-
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transmission simulation. In other words, the model did not track which farms had already been 

exposed to IAV earlier in the season. We assumed that pigs on a farm could remain infectious for 

at most 40 days from a single IAV introduction.  

To establish whether any pigs from the farm transmitted infection to show b, we first 

randomly selected pigs from the home farm to attend show b. Each infected pig selected for 

attending show b had probability    
 of starting an outbreak at show b, where    

 takes different 

values depending on whether or not b is a jackpot show.  

In summary, the probability κ(da,b, ξa, ξb) is calculated using five parameters: the 

parameters γc and γj give the probability that a pig attending an IAV positive show becomes 

infected by the end of the show for county, state, or national shows and for jackpot shows, 

respectively. The parameter ρ describes the infectiousness of swine on the home farm. And the 

probability that an infected pig starts an outbreak at a show is given by βc and βj for county, state, 

or national shows and for jackpot shows, respectively. Based on the values for these parameters, 

simulations of the entire process: from pigs being taken home from show a, to transmission on 

the home farm, to pigs being brought to show b, are used to generate a single value, κ(da,b, ξa, ξb), 

giving the probability that a given shared farm transmitted infection from show a to show b.  

Selecting parameter sets to use in intervention simulations 

For each dataset (either one of the 3 HA lineages or one of 21 test datasets simulated – 

see “Evaluating success of method based on test datasets simulated with known true parameter 

values”), we explored eight ways of generating parameter sets to use in intervention simulations. 

The first two approaches to generate the set of 1000 parameter sets Ω = {θ1, θ2, θ3, … θ1000} used 

for intervention simulations are based on data on the positive/negative status of each sampled 
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show while the last six approaches are based on the observed clade-size distribution of IAV 

samples taken from show pigs. Table S3.1 provides a summary of the data sources and methods 

used to generate each of the eight sets of parameter sets Ω.  

Parameter inference based on IAV positive/negative show statuses 

Inference of parameter posteriors using MCMC 

Using the IAV positive/negative status for each sampled show, the augmented dataset, 

and the likelihood function described in the „Network model‟ section, we used MCMC to arrive 

at a posterior distribution for the parameter set θ. Because the IAV positive/negative status of 

unsampled shows is unknown, these values were treated as nuisance parameters in the inference. 

Chains were run for 35,000 steps, and the first third of each chain was discarded. The priors for 

all eight parameters in θ were set as uniform over the range [0,1].  

Sampling 1000 parameter sets 

To obtain the 1000 parameter sets used in the intervention simulations, two approaches 

were taken. In the first approach, the 1000 parameter sets were sampled from the posterior (from 

the output of the MCMC chain). In the second approach, the 100 unique parameter sets that were 

associated with the highest recorded likelihoods from the MCMC chain were selected and each 

was repeated ten times to give rise to a total of 1000 parameter sets.  

Parameter set selection based on size-distribution of show-only IAV clades in 

phylogenetic tree  

Our goal for this section of the analysis was to assess which parameter sets yield 

phylogenetic trees that are consistent with the trees observed in the real-world datasets. In 
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particular, we sought to determine which parameter sets reproduced similar size-distributions of 

show-only IAV clades.  

Tips in the real-world IAV phylogenetic tree (obtained from NCBI Influenza Virus 

Database, as described in the “Phylogenetic trees” section, above) came both from IAV samples 

collected from commercial swine in 2016 in the United States, as well from IAV samples 

collected from pigs at sampled shows in Ohio, Michigan, and Indiana in 2016. We defined a 

show-only IAV clade as a monophyletic group whose tips all came from swine shows. In other 

words, in the phylogenetic tree, all descendants of the common ancestor of a show-only IAV 

clade must be IAV samples collected from swine shows. The only exception to this occurred 

when tips from both commercial swine IAV samples and from exhibition swine IAV samples all 

had zero branch lengths. In these cases, the show-swine tips with branches of zero length from 

one another were considered to be a show-clade.  

To compare the observed size-distribution of show-only IAV clades with the size-

distribution expected under different parameter sets, it is necessary to account for both the 

transmission and the observation processes. Figure S3.2 shows a schematic of the sampling and 

transmission processes we believe gave rise to the phylogenetic tree formed from the NCBI 

database of observed commercial- and show-pig IAV samples. We conceptualized the system as 

follows: from the full, mostly-unobserved true phylogenetic tree of all IAVs in commercial 

swine, only a subset of tips were actually sampled and appear on the NCBI Influenza Virus 

Database. The tips that were sampled may not have been chosen completely at random from the 

set of all possible tips. For example, commercial farms from certain geographic areas may have 

been more likely to submit their samples to the USDA, which is a major contributor of IAV 

samples from commercial swine on the NCBI database. Also from the full phylogenetic tree of 



136 

all IAVs in commercial swine, only a small subset of tips was responsible for spillover into 

exhibition swine. Again, the tips associated with these spillover events were unlikely to be 

independent from one another, especially considering that IAV in commercial swine occurs all 

over the United States while we focused on shows only from three states. After spillover into 

exhibition swine, an IAV may have spread between shows; we expect that this behavior was 

governed by the set of transmission parameters and the structure of the system (such as the time 

between shows and the number of farms that attended a pair of shows). Among all potentially-

IAV-positive shows, 122 were sampled during the 2016 active surveillance and viruses from 

those shows were submitted to the NCBI database.  

Simulating the size-distribution of show-only IAV clades for different parameter sets 

For a given candidate parameter set, we ran 100 simulations of the observation and 

transmission processes that give rise to size-distributions of show-only IAV clades, enabling 

comparisons with the clade-size distributions from real-world data. In each simulation, we began 

by drawing the full „true‟ phylogenetic tree to represent all IAV tips for commercial swine using 

the rTree() function from the Analysis of Phylogenetics and Evolution (ape) package in R (59). 

We assumed that the diversity of IAVs from one HA lineage in commercial swine in 2016 was 

represented by 10,000 tips. We then considered three different assumptions for how tips should 

be selected for commercial sampling and for spillover into exhibition swine. For the „completely-

random‟ tip-sampling assumption, we assumed that tips for both commercial and spillover are 

selected at random independently of one another from among all 10,000 commercial tips. For the 

second („moderate-assortativity‟) and third („high-assortativity‟) tip-sampling assumptions, we 

assumed that certain clades were more likely than others to be sampled or to spill over into 

exhibition swine. To capture this idea, we used an algorithm for choosing a subset of clades that 
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involves randomly selecting a tip from the full phylogenetic tree, finding the ancestor of that tip 

some fraction F of the way to the root ancestor, and then adding all tips from that clade to the 

collection of tips from which sampling or spillover is assumed to occur. This process was 

repeated until there were at least 1000 tips from which sampling or spillover could occur. Clades 

were selected independently for commercial sampling and for spillover (the same clade could be 

selected for both within the same simulation). In the second tip-sampling assumption, the value 

of F used for both commercial sampling and spillover was F=1/3, which results in sampling 

occurring from around 25 separate clades. In the third tip-sampling assumption, F=1/3 for 

commercial sampling but F=3/5 for spillover, which results in spillover occurring from an 

average of around 3.5 clades. The complete analysis was repeated using each of these three tip-

sampling assumptions. 

The number of spillover events that occurred during a given simulation depended on the 

spillover parameters. Following spillover of IAV into show pigs, the network model (described 

in the “Network model” section) was used to simulate the transmission of IAV between shows in 

the system. We assumed that the genetic sequences of IAV viruses taken from shows that 

transmitted to one another would form a clade in the full phylogenetic tree (formed from all 

commercial IAV tips and all show IAV tips). To reflect the real-world observation process of 

IAV from swine shows, only tips from shows that were part of the 2016 active surveillance were 

considered „observed.‟ 

Using only the sampled commercial and show tips, we constructed an „observed‟ 

phylogenetic tree, similar to how tips in the tree obtained from NCBI consist of observed 

samples rather than all possible IAV tips. We obtained the size-distribution of show-only IAV 

clades directly from this tree. In summary, for a given candidate parameter set, each of the 100 
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simulations of the transmission and observation processes led to one instance of a clade-size 

distribution.  

Because the process to generate the 100 simulated clade-size distributions for each 

parameter set is time-consuming, and our network model is described by eight parameters, a 

high-resolution search over the full parameter space was impractical. Instead, we first split the 

eight individual parameters into four parameter groups: {λc, λj, λn}, {γc, γj}, {βc, βj}, and {ρ}, 

where probabilities across different show types are grouped together. Six different sets of values 

were tested for each parameter group (see Table S3.3), with a full factorial design, giving a total 

of 6^4 parameter sets, with 100 simulations run for each parameter set. 

Sampling 1000 parameter sets 

To obtain the 1000 parameter sets used in the intervention simulations, two approaches 

were taken for each of the three tip-sampling assumptions. In the first approach, we fit a 

binomial distribution to the number of clades observed in each of the 100 simulations for a given 

parameter set and fit a negative binomial distribution to the clade-size distribution across those 

100 simulations. These two fitted distributions were used to estimate the likelihood that a 

particular parameter set gave rise to the observed real-world clade numbers and clade-size 

distributions. The 1000 parameter sets used for the intervention simulations were sampled (with 

replacement) from among all 6^4 possible parameter sets, with the probability of selecting a 

particular parameter set proportional to the likelihood estimated for that parameter set. 

The second approach to generate 1000 parameter sets for intervention simulations used a 

set of summary statistics calculated for all 100 of a parameter set‟s simulation outputs as well as 

for the real-world clade-size distribution. The statistics included in this test were 1) the number 

of show tips in the observed phylogenetic tree, 2) the number of show-only clades in the 
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observed phylogenetic tree, 3) the average show-only clade size, 4) the number of show-only 

clades containing two or more tips, 5) the number of show-only clades containing five or more 

tips, 6) the number of show-only clades containing ten or more tips, 7) the number of show-only 

clades containing fifteen or more tips, and 8) the maximum show-only clade size observed in 

phylogenetic tree. For a parameter set to be selected, the distribution formed by calculating a 

statistic for each of a parameter set‟s 100 simulations had to include the real-world value within 

the 90% CI for all eight statistics tested. Because fewer than 1000 parameter sets satisfied this 

criteria for every real-world (and test) dataset explored, the accepted parameter sets were 

repeated as necessary to make up the 1000 parameter sets used in intervention simulations. In 

two of the test datasets used to evaluate the method, none of the 6^4 parameter sets satisfied the 

90% CI criteria for all eight tested statistics. In this case, the 95% CI was used in place of the 

90% CI. If there still were no parameter sets that satisfied that criterion (as was the case for one 

test dataset), we accepted parameter sets that captured the true values within the 95% CI for four 

or more statistics. 

Simulations of intervention scenarios using the network model 

When estimating the expected impact of thirty-one intervention scenarios, a collection of 

1000 parameter sets Ω = {θ1, θ2, θ3, … θ1000} were selected in several different ways (see 

„Selecting parameter sets to use in intervention simulations,‟ above). Each parameter set θi = {λc, 

λj λn, γc, γj, βc, βj, ρ} in Ω was used to run one simulation for all 31 intervention scenarios, giving 

a total of 1000 simulations under each intervention scenario. The network model was used to 

simulate IAV transmission into and among shows.  
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Among the 31 intervention scenarios (described in Table S3.2), one scenario was „no 

intervention,‟ 13 scenarios involved reducing some of the transmission parameters, 3 involved 

removing a subset of shows, 4 involved changing the timing of shows, 8 involved requiring 

farms to take a period of time off between attending different shows, and 2 involved both a 

reduction in transmission parameters and requiring farms to take down time between attending 

certain shows. The „no intervention‟ scenario and the 13 transmission-reduction scenarios used 

the same augmented dataset, while the remaining scenarios required drawing new augmented 

datasets that reflected the changed system structure.  

Evaluating the success of the method using test datasets simulated with known parameter 

values 

To assess how reliable we expected the results from this analysis to be at indicating the 

impact of different potential interventions, we used a set of twenty-one test datasets simulated 

with known parameter values that represent a wide range of transmission behaviors. The 

parameter sets used to generate test datasets were taken from Table S3.3. One simulation was run 

using value 2 for the spillover parameter group and value 3 for all other parameter groups. The 

remaining twenty simulations were run holding three parameter groups at the same values used 

for the first simulation while varying the fourth parameter group through the remaining five 

parameter sets indicated in Table S3.3.  

For each simulated dataset, we sampled from the simulation output to mimic the real-

world surveillance process and repeated the same analysis steps that were used for each HA 

lineage from the real-world dataset. Like in the HA-lineage analysis, we used eight methods to 

generate the 1000 parameter set estimates Ω and ran thirty-one intervention simulations for each 

parameter set. We then used the known „true‟ parameter values (which were originally used to 
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generate each of the twenty-one simulated datasets) to simulate the effect of the thirty-one 

interventions. We compared the „true‟ results (from simulations using „true‟ parameter values) 

with the results of intervention simulations based on each set of estimated parameter values. For 

each pair of simulated test dataset and method to generate parameter estimates from that test 

dataset, we calculated the difference in the expected fraction of IAV positive county and state 

shows (relative to the no-intervention scenario) between the „true‟ and „estimated‟ results across 

intervention scenarios as well as the Pearson‟s correlation coefficient. 
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3.6 Figures and Tables 

 

Figure 3.1. Data available for each HA lineage (columns) from the 2016 active surveillance of 

IAV in exhibition swine in Indiana, Ohio, and Michigan. The first row (A-C) displays 

epidemiological information: the timing, location, and types of shows (circles are county fairs, 
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squares are jackpot shows, and triangles are state and national shows). Along the x-axis, shows 

are grouped by state and then sorted by longitude within a state. Shows that were sampled in 

2016 are plotted with a black outline; those that tested positive for IAV of a particular HA 

lineage are plotted as larger shapes with blue fill. The second row (D-F) shows the phylogenetic 

tree for each HA lineage based on sequences available on the NCBI Influenza Virus Database. 

Tips that come from active surveillance of exhibition swine in 2016 are indicated with blue (a 

maximum of one tip in each HA lineage is included per show). The third row (G-I) displays the 

show-only clade size distribution for each HA lineage.  
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Intervention types: 

 

Figure 3.2. The expected fraction of IAV-positive county and state shows under different 

intervention scenarios relative to no-intervention is indicated by the color of a grid cell where 

lighter values indicate a more effective intervention. Each column corresponds to a tested 

intervention (Table S3.2). Each of the twenty-one rows corresponds to a different parameter set 

used to simulate disease spread (Table S3.3). These twenty-one parameter sets were obtained by 

partitioning the eight parameters in a parameter set into four parameter groups. Three parameter 

groups were held at default values while the remaining parameter group was cycled through from 

the smallest to largest of five non-default values. Parameter sets are named according to the 

parameter group that takes non-default values, so λ1 indicates that the smallest spillover values 

were used in the simulation while λ6 indicates that the largest spillover values were used. The 

top five interventions for each row are indicated by filled black circles and the next five best 

interventions are indicated by open circles.   
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Figure 3.3. Tanglegrams of parameter sets used in intervention simulations; shown for all three 

HA lineages (columns) and for three of the parameter-estimate generating methods (rows). In 

each tanglegram, there are four parameter groups, one for the three spillover parameters (λc, λj, 

and λn), one for the two probabilities a pig was infected at a show (γc and γj), one for the two 

probabilities a pig started an outbreak at a show (βc and βj), and one parameter describing 

transmission on home farms (ρ). The values used in each parameter group are given in Table 

S3.3. Each estimated parameter set is represented in the tanglegram by four lines radiating out 

from a centroid point. Each line points to one of the six parameter sets from each parameter 

group. Lines are colored according to the γ value. Tanglegrams in the first row (A-C) show 

parameter sets generated using the EL parameter-estimation method (Table S3.1). Because 

parameter values within each parameter group are estimated individually, the endpoints of lines 

were calculated as the weighted average of each parameter in that group. So the location of the 

line in the λ group was determined by (λc* nc + λj* nj + λn* nn) / (nc + nj + nn) w here ni is the 

number of shows of type i. Tanglegrams in the second (D-F) and third (G-I) rows show the 
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parameter sets estimated using the CS and CL parameter-estimation methods, respectively (Table 

S3.1). Here, parameters within a parameter group were not estimated independently (a grid 

search over the same 6^4 parameter sets represented in the tanglegrams was used to generate 

parameter estimates) so lines point directly to one of the six values within each parameter group.  
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A 

 

B 

 

Figure 3.4. Expected impact of intervention scenarios. A. The expected fraction of IAV-positive 

county and state shows under different intervention scenarios relative to no-intervention is 

indicated by the color of a grid cell where lighter values indicate a more effective intervention. 
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Each row corresponds to a HA-lineage / parameter-estimate method pair. For each HA-lineage, 

the results from four parameter-estimation methods are shown (Table S3.1). Each column 

corresponds to a tested intervention. The top five interventions for each row are indicated by 

filled black circles and the next five best interventions are indicated by open circles. B. Average 

fraction of county and state shows IAV positive relative to the no-intervention mean. Colored 

points correspond to combinations of HA-lineage and the four methods used to generate 

parameter estimates (the height of each point corresponds to that HA-lineage / estimation 

method‟s color in subplot A). The black dots indicate the mean fraction for each intervention 

across all three HA lineages and all four parameter-estimate-sources. 
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Table 3.1. Description of model parameters.  

Parameter Description 

λc 
Probability spillover of an IAV occurs into a county or state fair from commercial 

swine or from exhibition swine outside Indiana, Michigan, and Ohio 

λj 
Probability spillover of an IAV occurs into a jackpot show from commercial swine or 

from exhibition swine outside Indiana, Michigan, and Ohio 

λn 
Probability spillover of an IAV occurs into a national show from commercial swine or 

from exhibition swine outside Indiana, Michigan, and Ohio 

γc 
Probability a pig will be infected with an IAV while attending a county, state, or 

national show where there is an IAV outbreak 

γj 
Probability a pig will be infected with an IAV while attending a jackpot show where 

there is an IAV outbreak 

βc 
Probability an infected pig will start an IAV outbreak at a county, state, or national 

show  

βj Probability an infected pig will start an IAV outbreak at a jackpot show  

ρ 
Probability that, while on the home farm, a given infected pig infects a given 

susceptible pig on a given day 
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3.7 Appendix Figures and Tables 

 

Figure S3.1. Schematic of the network model used to represent the transmission of IAV in the 

exhibition swine system. A. In the network model, each node corresponds to a swine show 

(circles are county fairs, squares are jackpot shows, and triangles are state and national shows) 

and the weight of an edge between a pair of shows indicates the probability of indirect 

transmission between the shows. B. Transmission between shows occurs if pigs from a shared 

farm bring infection from one show to the next. The probability of indirect transmission between 

two shows depends on the number of farms that bring pigs to both shows, the number of days 

between shows, and parameters that describe the probability a pig gets infected on a farm, 

spreads the infection at the home farm, and starts an outbreak at a show. C. The probability that a 

given shared farm brings IAV from one show to another is estimated using stochastic simulations 

using an SEIR-type model, with dynamics depending on the number of swine on the home farm. 
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Figure S3.2. Diagram of the transmission and sampling processes that yield the observed 

sequences found on the NCBI influenza database. From a full tree of all IAV tips in commercial 

swine, a small subset of viruses spill into exhibition pigs at shows. From each spillover event, 

multiple shows may be infected if the virus is transmitted between shows via their shared farms. 

Only a subset of IAV-positive shows is under active surveillance, and sequences from these 

shows may appear on the NCBI database (indicated by purple dots). Similarly, only a small 

subset of tips from the commercial IAV tree is sampled and appears on NCBI (indicated by 

green dots). The tree created using the observed tips will have a different structure that the full, 

largely-unobserved tree.  
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Figure S3.3. Tanglegrams of parameter sets used in intervention simulations; shown for two 

datasets simulated using different spillover rates (columns) and for two of the parameter-estimate 

generating methods (rows). True parameter values are circled. In each tanglegram, there are four 

parameter groups, one for the three spillover parameters (λc, λj, and λn), one for the two 

probabilities a pig was infected at a show (γc and γj), one for the two probabilities a pig started an 

outbreak at a show (βc and βj), and one parameter describing transmission on home farms (ρ). 

The values used in each parameter group are given in Table S3.3. Each estimated parameter set 

is represented in the tanglegram by four lines radiating out from a centroid point. Each line 

points to one of the six parameter sets from each parameter group. Lines are colored according to 

the γ value. Tanglegrams in the first row (A-B) show parameter sets estimated using the EL 

parameter-estimation method (Table S3.1). Because parameter values within each parameter 

group are estimated individually, the endpoints of lines were calculated as the weighted average 

of each parameter in that group. So the location of the line in the λ group was determined by (λc* 

nc + λj* nj + λn* nn) / (nc + nj + nn) where ni is the number of shows of type i. Tanglegrams in the 

second row (C-D) show parameter sets estimated using the CS parameter-estimation method 

(Table S3.1). Here, parameters within a parameter group were not estimated independently (a 
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grid search over the same 6^4 parameter sets represented in the tanglegrams was used to generate 

parameter estimates) so lines point directly to one of the six values within each parameter group.  
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Figure S3.4. Violin plots show the results of the 1000 intervention simulations (Table S3.2) run 

for two test datasets (columns) using true parameter values as well as parameter values obtained 

using two estimation methods (rows). The first row (A-B) shows the fraction of IAV-positive 

county and state shows relative to the no-intervention scenario, with intervention simulations run 

using the true parameter values. These values can be compared with the results obtained using 

parameter sets estimated with the EL method (row 2, C-D) and the CS method (row 3, E-F) 

(Table S3.1). The mean value for each intervention is indicated by a black dot. The first column 

shows the results for a dataset simulated with low spillover rates (λ1) and the second column 
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shows the results for a dataset simulated with high spillover rates (λ5). The results for all other 

parameter sets are shown in Table S3.7.  
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Figure S3.5. Fraction of county and state shows IAV positive under different intervention 

scenarios (Table S3.2) relative to the mean fraction positive with no intervention for the H3-2010 

HA lineage. Violin plots show the results of 1000 simulations for each intervention scenario. The 

mean value is indicated by a black dot. Each subplot shows the results from a different method of 

generating parameter estimates: A. EP (Epidemiological data & Posterior distribution), B. EL 
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(Epidemiological data & Likelihood), C. CS (Clade-size distribution data & Summary statistics), 

and D. CL (Clade-size distribution data & Likelihood) (Table S3.1). 
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Figure S3.6. The expected fraction of IAV-positive county and state shows under different 

intervention scenarios relative to no-intervention is indicated by the color of a grid cell where 

lighter values indicate a more effective intervention. Each row corresponds to a HA-lineage / 

parameter-estimate-source pair. For each HA-lineage, the results from four parameter-estimation 

methods are shown (Table S3.1). For the clade-size distribution methods, results from all three 

tip-sampling assumptions are shown: the moderate-assortativity tip-sampling assumption (CSm 

and CLm), the completely-random tip-sampling assumption (CSr and CLr), and the highly-

assortative tip-sampling assumption (CSh and CLh). Each column corresponds to a tested 

intervention. The top five interventions for each row are indicated by filled black circles and the 

next five best interventions are indicated by open circles. 
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Table S3.1. Four different approaches were taken to obtain the 1000 parameter sets used in the 

intervention simulations. The approaches differ in the data source and methods used to estimate 

the parameter sets that best match the data. For each HA lineage in the real-world dataset and for 

each test-simulated dataset, four groups of 1000 parameter set estimates were calculated. Each of 

these groups was then used to run simulations under different intervention scenarios.  

Method name Data source Approach used to 

evaluate parameter 

sets 

Selection of 1000 parameter 

sets for use in intervention 

simulations 

EP 

(Epidemiological 

data & Posterior 

distribution) 

Epidemiological data: 

IAV positive/negative 

status of each sampled 

show (row 1 of Figure 

3.1) 

The likelihood of a 

parameter set was 

calculated based on the 

network model of IAV 

transmission; MCMC 

used to search parameter 

space  

Draw 1000 parameter sets 

from posterior (draw from 

MCMC chain with 

replacement) 

EL 

(Epidemiological 

data & 

Likelihood) 

Take the 100 parameter sets 

associated with the highest 

likelihoods from MCMC 

chain; repeat each value 10 

times to get the 1000 sets for 

simulations 

CS 

(Clade-size 

distribution data 

& Summary 

statistics) 

Clade-size distribution 

data: the sizes of IAV-

only clades in the 

observed phylogenetic 

tree (row 3 of Figure 

3.1) 

The network model of 

IAV transmission and 

the IAV phylogenetic 

tree observation model 

were used to generated 

100 simulated clade-size 

distributions for a grid 

of 6^4 parameter sets  

Use the parameter sets that 

satisfy the summary statistics 

(within the 90% CI for all 

eight statistics); repeat these 

parameter sets as necessary 

until have 1000 sets for 

simulations 

CL 

(Clade-size 

distribution data 

& Likelihood) 

Take 1000 draws (with 

replacement) from the 6^4 

parameter sets, with the 

probability of a parameter set 

being drawn proportional to 

the likelihood calculated 

using the number of clades 

and the clade size distribution 
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Table S3.2. The names, models, and parameter values associated with each of the thirty-one 

interventions tested.  

Intervention 

number 

Intervention 

name 

Model used Parameter values used 

1 No intervention Original network model Unmodified values from 

Ω 

2 No jackpot Removes all jackpot shows from the 

original network model 

Unmodified values from 

Ω 

3 Half jackpot Removes half of the jackpot shows 

from the original network model 

(removed shows are randomly 

selected) 

Unmodified values from 

Ω 

4 No national Removes all national shows from the 

original network model 

Unmodified values from 

Ω 

5 Jackpots one 

week earlier 

Shifts all jackpot shows one week 

earlier in the season 

Unmodified values from 

Ω 

6 Jackpots two 

weeks earlier 

Shifts all jackpot shows two weeks 

earlier in the season 

Unmodified values from 

Ω 

7 Jackpots four 

weeks earlier 

Shifts all jackpot shows four weeks 

earlier in the season 

Unmodified values from 

Ω 

8 National shows 

four weeks 

earlier 

Shifts all national shows four weeks 

earlier in the season 

Unmodified values from 

Ω 

9 One week 

downtime before 

all shows 

Farms must allow at least one week to 

pass between the end date of one 

show and the start date of the next 

show they attend 

Unmodified values from 

Ω 

10 One week 

downtime before 

county/state 

Farms must not attend any shows 

during the week before they attend a 

county or state fair 

Unmodified values from 

Ω 

11 One week 

downtime before 

2/3 of 

county/state 

A randomly selected 2/3 of county 

fairs enforce the rule that farms must 

not attend any shows during the week 

before they attend the county or state 

fair 

Unmodified values from 

Ω 

12 One week 

downtime after 

national shows 

After attending a national show, 

farms must allow at least one week to 

pass before attending another show 

Unmodified values from 

Ω 

13 Two weeks 

downtime before 

Farms must allow at least two weeks 

to pass between the end date of one 

show and the start date of the next 

Unmodified values from 

Ω 
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all shows show they attend 

14 Two weeks 

downtime before 

county/state 

Farms must not attend any shows 

during the two weeks before they 

attend a county or state fair 

Unmodified values from 

Ω 

15 Two weeks 

downtime before 

2/3 of 

county/state 

A randomly selected 2/3 of county 

fairs enforce the rule that farms must 

not attend any shows during the two 

weeks before they attend the county 

or state fair 

Unmodified values from 

Ω 

16 Two weeks 

downtime after 

national shows 

After attending a national show, 

farms must allow at least two weeks 

to pass before attending another show 

Unmodified values from 

Ω 

17 Reduce spillover 

to 90% 

Original network model Replace λc with 0.9* λc  

Replace λj with 0.9* λj  

Replace λn with 0.9* λn 

18 Reduce 

transmission at 

show to 90% 

 

Original network model Replace γc, γj, βc, and βj 

with 0.9*γc, 0.9*γj, 

0.9*βc, and 0.9*βj, 

respectively 

19 Reduce 

transmission at 

county/state 

shows to 90% 

 

Original network model Replace γc and βc with 

0.9*γc and 0.9*βc only at 

county and state fairs 

20 Reduce 

transmission at 

jackpot shows to 

90% 

 

Original network model Replace γj and βj with 

0.9*γj and 0.9*βj  

21 Reduce 

transmission at 

national shows to 

90% 

Original network model Replace γc and βc with 

0.9*γc and 0.9*βc only at 

national shows 

22 Reduce 

transmission on 

all farms to 90% 

Original network model Replace ρ with 0.9* ρ 

23 Reduce spillover 

to 50% 

Original network model Replace λc with 0.5* λc  

Replace λj with 0.5* λj  

Replace λn with 0.5* λn 

24 Reduce Original network model Replace γc, γj, βc, and βj 
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transmission at 

all shows to 50% 

with 0.5*γc, 0.5*γj, 

0.5*βc, and 0.5*βj, 

respectively 

25 Reduce 

transmission at 

county/state  

shows to 50% 

Original network model Replace γc and βc with 

0.5*γc and 0.5*βc only at 

county and state fairs 

26 Reduce 

transmission at 

jackpot shows to 

50% 

Original network model Replace γj and βj with 

0.5*γj and 0.5*βj  

27 Reduce 

transmission at 

national shows to 

50% 

Original network model Replace γc and βc with 

0.5*γc and 0.5*βc only at 

national shows 

28 Reduce 

transmission on 

all farms to 50% 

Original network model Replace ρ with 0.5* ρ 

29 Reduce show 

transmission and 

spillover to 90% 

Original network model Replace γc, γj, βc, βj, λc, 

and λj with 0.9*γc, 

0.9*γj, 0.9*βc, 0.9*βj, 

0.9*λc, and 0.9*λj, 

respectively 

30 One week 

downtime before 

2/3 of 

county/state and 

reduce 

transmission at 

shows to 90% 

A randomly selected 2/3 of county 

and state fairs enforce the rule that 

farms must not attend any shows 

during the week before they attend 

the county or state fair 

Replace γc, γj, βc, and βj, 

with 0.9*γc, 0.9*γj, 

0.9*βc, and 0.9*βj, 

respectively 

31 Two weeks 

downtime before 

2/3 of 

county/state and 

reduce 

transmission at 

shows to 90% 

A randomly selected 2/3 of county 

and state fairs enforce the rule that 

farms must not attend any shows 

during the two weeks before they 

attend the county or state fair 

Replace γc, γj, βc, and βj, 

with 0.9*γc, 0.9*γj, 

0.9*βc, and 0.9*βj, 

respectively 
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Table S3.3. Values used for each parameter in a parameter group (parameters are described in 

Table 3.1). For the twenty-one simulated test datasets, the default values for parameter groups λ, 

γ, β, and ρ are λ2, γ3, β3, and ρ3, respectively (indicated in bold in the table). The first simulated 

test dataset used all default values and the subsequent twenty datasets used default values for all 

but one parameter group. Simulated datasets are named according to the parameter group that 

does not take default values. For example, in test dataset λ1, default values were used for γ, β, 

and ρ, and λ1 was used for λ. 

Parameter 

group 

Values – 1 Values – 2 Values – 3  Values – 4  Values – 5  Values – 6  

λ 

(λc, λj, λn) 

0.001, 

0.001, 0.1 
0.05, 0.05, 

0.3 

0.15, 0.15, 

0.6 

0.3, 0.3, 0.9 0.6, 0.6, 

0.92 

0.9, 0.9, 

0.95 

γ 

(γc, γj) 

0.01, 0.007 0.1, 0.07 0.3, 0.21 0.5, 0.35 0.7, 0.49 0.9, 0.63 

β 

(βc, βj) 

0.01, 0.007 0.1, 0.07 0.3, 0.21 0.5, 0.35 0.7, 0.49 0.9, 0.63 

ρ 0.01 0.1 0.3 0.5 0.7 0.9 
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Table S3.4. Absolute error between true parameters and estimates (averaged across the twenty-

one tested true parameter sets and across the 1000 parameter sets generated for each true 

parameter set), reported for eight different methods of generating parameter estimates. 

Parameter-

estimation 

method λc λj λn γc γj βc βj ρ Mean  

EP  0.05 0.07 0.22 0.27 0.24 0.24 0.24 0.30 0.21 

EL 0.03 0.05 0.21 0.25 0.26 0.28 0.23 0.29 0.21 

CS  0.02 0.02 0.03 0.27 0.19 0.25 0.17 0.30 0.18 

CL 0.05 0.05 0.06 0.28 0.20 0.26 0.19 0.30 0.19 

CSr  0.07 0.07 0.07 0.30 0.21 0.29 0.20 0.29 0.19 

CLr  0.07 0.07 0.07 0.30 0.21 0.28 0.20 0.30 0.20 

CSh  0.03 0.03 0.08 0.27 0.19 0.27 0.19 0.31 0.21 

CLh 0.07 0.07 0.12 0.28 0.20 0.26 0.18 0.30 0.21 
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Table S3.5. Absolute error between true parameters and estimates (averaged across the four 

parameter-estimation methods and across the 1000 parameter sets generated for each true 

parameter set), reported for each of twenty-one tested true parameter sets. Simulated datasets are 

named according to the parameter group that does not take default values. For example, in test 

dataset λ1, default values were used for γ, β, and ρ, and λ1 was used for λ. 

Parameter 

set λc λj λn γc γj βc βj ρ Mean  

Default 0.03 0.04 0.18 0.26 0.19 0.20 0.25 0.31 0.19 

λ1 0.00 0.01 0.17 0.30 0.26 0.27 0.24 0.27 0.21 

λ3 0.09 0.07 0.20 0.25 0.19 0.33 0.20 0.26 0.22 

λ4 0.05 0.10 0.08 0.21 0.20 0.29 0.15 0.31 0.19 

λ5 0.10 0.17 0.10 0.25 0.24 0.22 0.26 0.26 0.21 

λ6 0.15 0.15 0.12 0.34 0.19 0.34 0.28 0.29 0.25 

γ1 0.03 0.02 0.08 0.30 0.26 0.24 0.20 0.30 0.20 

γ2 0.01 0.02 0.07 0.19 0.30 0.24 0.17 0.26 0.17 

γ4 0.03 0.03 0.14 0.28 0.23 0.25 0.25 0.29 0.20 

γ5 0.01 0.04 0.09 0.41 0.15 0.28 0.19 0.21 0.21 

γ6 0.02 0.04 0.10 0.37 0.24 0.22 0.25 0.26 0.21 

β1 0.02 0.03 0.12 0.26 0.25 0.28 0.16 0.27 0.19 

β2 0.02 0.02 0.09 0.23 0.19 0.18 0.18 0.26 0.16 

β4 0.02 0.01 0.11 0.23 0.27 0.21 0.15 0.24 0.17 

β5 0.02 0.07 0.25 0.25 0.18 0.21 0.22 0.23 0.19 

β6 0.02 0.02 0.15 0.31 0.21 0.33 0.21 0.24 0.21 

ρ1 0.01 0.02 0.07 0.26 0.23 0.29 0.31 0.44 0.22 

ρ2 0.05 0.08 0.22 0.23 0.17 0.24 0.18 0.36 0.20 

ρ4 0.03 0.04 0.27 0.23 0.27 0.23 0.18 0.35 0.21 

ρ5 0.01 0.02 0.06 0.26 0.25 0.32 0.17 0.35 0.20 

ρ6 0.02 0.03 0.08 0.24 0.20 0.25 0.18 0.49 0.20 
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Table S3.6. Relative error between true parameters and estimates (averaged across four methods 

for generating parameter estimates and across the 1000 parameter sets generated for each true 

parameter set), reported for each of twenty-one tested true parameter sets. 

Parameter 

set λc λj λn γc γj βc βj ρ Mean  

Default 0.70 0.71 0.60 0.85 0.91 0.68 1.17 1.05 0.70 

λ1 2.87 7.18 1.66 1.01 1.23 0.89 1.12 0.90 2.87 

λ3 0.61 0.48 0.33 0.82 0.88 1.10 0.95 0.88 0.61 

λ4 0.18 0.33 0.09 0.71 0.94 0.97 0.71 1.04 0.18 

λ5 0.16 0.28 0.11 0.84 1.16 0.73 1.22 0.88 0.16 

λ6 0.17 0.17 0.13 1.13 0.89 1.14 1.32 0.97 0.17 

γ1 0.52 0.49 0.26 30.38 36.63 0.81 0.95 1.00 0.52 

γ2 0.25 0.31 0.23 1.88 4.27 0.80 0.80 0.88 0.25 

γ4 0.68 0.66 0.46 0.55 0.67 0.84 1.19 0.96 0.68 

γ5 0.30 0.71 0.29 0.59 0.30 0.93 0.92 0.70 0.30 

γ6 0.38 0.82 0.34 0.41 0.39 0.75 1.17 0.86 0.38 

β1 0.37 0.51 0.41 0.85 1.18 27.55 23.37 0.91 0.37 

β2 0.36 0.32 0.29 0.78 0.90 1.75 2.57 0.87 0.36 

β4 0.46 0.30 0.36 0.77 1.29 0.43 0.42 0.82 0.46 

β5 0.41 1.30 0.82 0.85 0.87 0.30 0.44 0.78 0.41 

β6 0.44 0.36 0.49 1.02 1.00 0.36 0.34 0.80 0.44 

ρ1 0.26 0.37 0.22 0.88 1.11 0.95 1.46 44.32 0.26 

ρ2 1.07 1.51 0.72 0.75 0.83 0.80 0.84 3.57 1.07 

ρ4 0.70 0.88 0.92 0.76 1.30 0.78 0.84 0.69 0.70 

ρ5 0.27 0.38 0.21 0.87 1.17 1.05 0.81 0.51 0.27 

ρ6 0.36 0.67 0.26 0.78 0.97 0.83 0.86 0.54 0.36 
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Table S3.7. Comparison of intervention simulation results using true and parameter sets 

estimated using four methods. Rows are the parameter set used to generate a simulated dataset. 

Values are the error in mean fraction of IAV-positive county/state shows relative to no-

intervention scenario. 

Parameter set EP 

(Epidemiologi

cal data & 

Posterior 

distribution) 

EL 

(Epidemiologi

cal data & 

Likelihood) 

CS 

(Clade-size 

distribution 

data & 

Summary 

statistics) 

CL 

(Clade-size 

distribution 

data & 

Likelihood) 

Average 

across 

parameter-

estimation 

methods 

Default 0.06 0.05 0.06 0.02 0.05 

λ1 0.15 0.18 0.14 0.15 0.16 

λ3 0.05 0.04 0.04 0.05 0.04 

λ4 0.01 0.07 0.01 0.01 0.02 

λ5 0.01 0.00 0.05 0.02 0.02 

λ6 0.01 0.01 0.00 0.10 0.03 

γ1 0.33 0.36 0.04 0.07 0.20 

γ2 0.06 0.09 0.02 0.07 0.06 

γ4 0.12 0.04 0.12 0.20 0.12 

γ5 0.09 0.11 0.03 0.03 0.06 

γ6 0.12 0.07 0.01 0.02 0.06 

β1 0.09 0.08 0.03 0.03 0.06 

β2 0.07 0.16 0.04 0.03 0.07 

β4 0.08 0.05 0.05 0.05 0.06 

β5 0.14 0.06 0.04 0.03 0.07 

β6 0.10 0.04 0.03 0.03 0.05 

ρ1 0.03 0.19 0.06 0.02 0.07 

ρ2 0.09 0.06 0.06 0.06 0.07 

ρ4 0.07 0.14 0.04 0.06 0.08 

ρ5 0.08 0.20 0.10 0.03 0.10 

ρ6 0.10 0.09 0.03 0.03 0.06 

Average 

across all 

parameter sets 0.09 0.10 0.05 0.05 0.07 
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Table S3.8. Comparison of intervention simulation results obtained with true parameter sets and 

results obtained with parameter sets estimated using misspecified tip-sampling assumptions. 

Error in mean fraction of county/state shows infected relative to no-intervention. 

Parameter 

set 

CSr (completely-

random tip-

sampling 

assumption) 

CLr (completely-

random tip-

sampling 

assumption) 

CSh (high-

assortativity tip-

sampling 

assumption) 

CLh (high-

assortativity tip-

sampling 

assumption) 

Default 0.09 0.13 0.07 0.06 

λ1 0.14 0.18 0.17 0.15 

λ3 0.22 0.21 0.05 0.03 

λ4 0.14 0.16 0.01 0.02 

λ5 0.18 0.19 0.01 0.01 

λ6 0.22 0.24 0.00 0.03 

γ1 0.07 0.06 0.02 0.08 

γ2 0.09 0.15 0.02 0.04 

γ4 0.11 0.10 0.12 0.21 

γ5 0.04 0.04 0.14 0.05 

γ6 0.02 0.03 0.10 0.10 

β1 0.06 0.04 0.05 0.03 

β2 0.03 0.02 0.04 0.02 

β4 0.07 0.07 0.10 0.04 

β5 0.03 0.04 0.09 0.06 

β6 0.03 0.03 0.11 0.04 

ρ1 0.05 0.02 0.06 0.02 

ρ2 0.11 0.14 0.10 0.09 

ρ4 0.12 0.14 0.06 0.05 

ρ5 0.03 0.07 0.09 0.06 

ρ6 0.07 0.10 0.06 0.08 

Average 

across all 

parameter 

sets 0.09 0.10 0.07 0.06 
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Table S3.9. Mean (and 95% CI) of the 1000 parameter estimates used from each method of generating parameter sets and for each of 

the HA lineages. 

HA 

lineage 

Parameter-estimation 

method λc λj λn γc γj βc βj ρ 

H3-

2010 

EP (Epidemiological data 

& Posterior distribution) 

0.15 

(0.05-

0.25) 

0.14 

(0.01-

0.32) 

0.79 

(0.36-

0.99) 

0.39 

(0.06-

0.93) 

0.16 (0-

0.64) 

0.27 

(0.03-0.8) 

0.39 

(0.01-

0.95) 

0.43 

(0.06-

0.97) 

H3-

2010 

EL (Epidemiological data 

& Likelihood) 

0.07 

(0.04-

0.11) 

0.06 

(0.02-

0.16) 

0.86 

(0.65-

0.99) 

0.3 (0.13-

0.56) 

0.08 

(0.03-

0.18) 

0.44 

(0.16-

0.62) 

0.55 

(0.13-

0.93) 

0.29 

(0.09-

0.78) 

H3-

2010 

CS (Clade-size 

distribution data & 

Summary statistics; 

moderate-assortativity tip-

sampling assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.53 (0.3-

0.9) 

0.37 

(0.21-

0.63) 

0.59 (0.3-

0.7) 

0.41 

(0.21-

0.49) 

0.6 (0.01-

0.9) 

H3-

2010 

CL (Clade-size 

distribution data & 

Likelihood; moderate-

assortativity tip-sampling 

assumption) 

0.06 

(0.05-

0.15) 

0.06 

(0.05-

0.15) 

0.32 (0.3-

0.6) 

0.63 (0.3-

0.9) 

0.44 

(0.21-

0.63) 

0.64 (0.3-

0.9) 

0.45 

(0.21-

0.63) 

0.45 

(0.01-0.9) 

H3-

2010 

CS (Clade-size 

distribution data & 

Summary statistics; 

completely-random tip-

sampling assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.57 (0.3-

0.9) 

0.4 (0.21-

0.63) 

0.57 (0.3-

0.9) 

0.4 (0.21-

0.63) 

0.39 

(0.01-0.9) 

H3-

2010 

CL (Clade-size 

distribution data & 

Likelihood; completely-

random tip-sampling 

assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.64 (0.3-

0.9) 

0.45 

(0.21-

0.63) 

0.67 (0.3-

0.9) 

0.47 

(0.21-

0.63) 

0.45 

(0.01-0.9) 



 

170 

H3-

2010 

CS (Clade-size 

distribution data & 

Summary statistics; high-

assortativity tip-sampling 

assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.59 (0.3-

0.9) 

0.41 

(0.21-

0.63) 

0.56 (0.3-

0.9) 

0.39 

(0.21-

0.63) 

0.42 

(0.01-0.9) 

H3-

2010 

CL (Clade-size 

distribution data & 

Likelihood; high-

assortativity tip-sampling 

assumption) 

0.16 

(0.05-

0.31) 

0.16 

(0.05-

0.31) 

0.56 (0.3-

0.9) 

0.51 

(0.01-0.9) 

0.35 

(0.01-

0.63) 

0.49 

(0.01-0.9) 

0.34 

(0.01-

0.63) 

0.42 

(0.01-0.9) 

H3-

2000 

EP (Epidemiological data 

& Posterior distribution) 

0.03 (0-

0.08) 

0.1 (0.01-

0.24) 

0.63 

(0.14-

0.94) 

0.36 

(0.01-

0.95) 

0.49 

(0.12-

0.97) 

0.09 

(0.01-0.3) 

0.57 

(0.19-

0.97) 

0.32 

(0.02-

0.94) 

H3-

2000 

EL (Epidemiological data 

& Likelihood) 

0.01 (0-

0.03) 

0.03 (0-

0.06) 

0.49 

(0.14-

0.78) 

0.48 

(0.09-

0.85) 

0.5 (0.21-

0.78) 

0.07 

(0.02-

0.17) 

0.77 

(0.49-

0.98) 

0.26 

(0.03-

0.88) 

H3-

2000 

CS (Clade-size 

distribution data & 

Summary statistics; 

moderate-assortativity tip-

sampling assumption) 

0.1 (0.05-

0.15) 

0.1 (0.05-

0.15) 

0.44 (0.3-

0.6) 

0.34 

(0.01-0.9) 

0.24 

(0.01-

0.63) 

0.32 

(0.01-0.9) 

0.22 

(0.01-

0.63) 

0.4 (0.01-

0.9) 

H3-

2000 

CL (Clade-size 

distribution data & 

Likelihood; moderate-

assortativity tip-sampling 

assumption) 

0.11 

(0.05-0.3) 

0.11 

(0.05-0.3) 

0.47 (0.3-

0.9) 

0.34 

(0.01-0.9) 

0.24 

(0.01-

0.63) 

0.33 

(0.01-0.9) 

0.23 

(0.01-

0.63) 

0.39 

(0.01-0.9) 

H3-

2000 

CS (Clade-size 

distribution data & 

Summary statistics; 

completely-random tip-

sampling assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.5 (0.1-

0.9) 

0.35 

(0.07-

0.63) 

0.47 (0.1-

0.9) 

0.33 

(0.07-

0.63) 

0.41 

(0.01-0.9) 

H3- CL (Clade-size 0.05 0.05 0.3 (0.3- 0.49 (0.1- 0.34 0.49 (0.1- 0.34 0.45 
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2000 distribution data & 

Likelihood; completely-

random tip-sampling 

assumption) 

(0.05-

0.05) 

(0.05-

0.05) 

0.3) 0.9) (0.07-

0.63) 

0.9) (0.07-

0.63) 

(0.01-0.9) 

H3-

2000 

CS (Clade-size 

distribution data & 

Summary statistics; high-

assortativity tip-sampling 

assumption) 

0.1 (0.05-

0.15) 

0.1 (0.05-

0.15) 

0.46 (0.3-

0.6) 

0.31 

(0.01-0.9) 

0.21 

(0.01-

0.63) 

0.3 (0.01-

0.9) 

0.21 

(0.01-

0.63) 

0.4 (0.01-

0.9) 

H3-

2000 

CL (Clade-size 

distribution data & 

Likelihood; high-

assortativity tip-sampling 

assumption) 

0.13 

(0.05-0.3) 

0.13 

(0.05-0.3) 

0.54 (0.3-

0.9) 

0.33 

(0.01-0.9) 

0.23 

(0.01-

0.63) 

0.3 (0.01-

0.9) 

0.21 

(0.01-

0.63) 

0.39 

(0.01-0.9) 

H1-δ1 EP (Epidemiological data 

& Posterior distribution) 

0.04 

(0.01-

0.09) 

0.15 

(0.03-0.3) 

0.29 

(0.02-0.7) 

0.21 (0-

0.84) 

0.38 

(0.01-

0.95) 

0.21 

(0.01-

0.82) 

0.3 (0.02-

0.9) 

0.41 

(0.01-

0.96) 

H1-δ1 EL (Epidemiological data 

& Likelihood) 

0.02 (0-

0.04) 

0.05 

(0.01-0.1) 

0.27 

(0.05-

0.46) 

0.08 (0-

0.21) 

0.64 

(0.28-

0.97) 

0.33 

(0.02-0.8) 

0.41 

(0.12-

0.89) 

0.19 

(0.02-0.6) 

H1-δ1 CS (Clade-size 

distribution data & 

Summary statistics; 

moderate-assortativity tip-

sampling assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.29 

(0.01-0.9) 

0.2 (0.01-

0.63) 

0.31 

(0.01-0.9) 

0.22 

(0.01-

0.63) 

0.41 

(0.01-0.9) 

H1-δ1 CL (Clade-size 

distribution data & 

Likelihood; moderate-

assortativity tip-sampling 

assumption) 

0.04 (0-

0.05) 

0.04 (0-

0.05) 

0.26 (0.1-

0.3) 

0.36 

(0.01-0.9) 

0.25 

(0.01-

0.63) 

0.36 

(0.01-0.9) 

0.25 

(0.01-

0.63) 

0.42 

(0.01-0.9) 

H1-δ1 CS (Clade-size 

distribution data & 

0.01 (0- 0.01 (0- 0.16 (0.1- 0.61 (0.1- 0.43 

(0.07-

0.54 (0.1- 0.38 

(0.07-

0.49 (0.1-
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Summary statistics; 

completely-random tip-

sampling assumption) 

0.05) 0.05) 0.3) 0.9) 0.63) 0.9) 0.63) 0.9) 

H1-δ1 CL (Clade-size 

distribution data & 

Likelihood; completely-

random tip-sampling 

assumption) 

0.01 (0-

0.05) 

0.01 (0-

0.05) 

0.14 (0.1-

0.3) 

0.46 (0.1-

0.9) 

0.32 

(0.07-

0.63) 

0.44 (0.1-

0.9) 

0.31 

(0.07-

0.63) 

0.45 

(0.01-0.9) 

H1-δ1 CS (Clade-size 

distribution data & 

Summary statistics; high-

assortativity tip-sampling 

assumption) 

0.05 

(0.05-

0.05) 

0.05 

(0.05-

0.05) 

0.3 (0.3-

0.3) 

0.29 

(0.01-0.9) 

0.2 (0.01-

0.63) 

0.3 (0.01-

0.9) 

0.21 

(0.01-

0.63) 

0.39 

(0.01-0.9) 

H1-δ1 CL (Clade-size 

distribution data & 

Likelihood; high-

assortativity tip-sampling 

assumption) 

0.06 (0-

0.15) 

0.06 (0-

0.15) 

0.31 (0.1-

0.6) 

0.34 

(0.01-0.9) 

0.24 

(0.01-

0.63) 

0.34 

(0.01-0.9) 

0.24 

(0.01-

0.63) 

0.42 

(0.01-0.9) 
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