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A NOTE ON SETTING UP THE DIFFUSION EQUATION 

T. N. Narasimhan 
Department of Materials Science and Mineral Engineering 

Department of Environmental Science, Policy and Management 
Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory 

University of California at Berkeley . 
467 Evans Hall, Berkeley CA 94720-1760 

ABSTRACT 

Traditionally; the transient heat conduction equation and other diffusion-type equations have 
invariably been expressed in the form of a partial differential equation. In this paper we address the 
question, how will the governing equation look if, instead of invoking infinitesimal calculus, one 
writes down the mass balance or energy balance statements directly for a discrete elemental volume 
of arbitrary shape? This inquiry leads us to taking a careful look at the physical, empirical basis of 
concepts such as conductivity and capacitance on the on hand and their idealization in the context of 
a continuum as embodied in the transient diffusion equation. Many intriguing questions arise about 
such issues as, how one may arrive at a unique initial condition based on data at a finite number of 
points, how fluxes may be evaluated correctly when potentials are continuously changing with time 
at either end of a flow tube and how one may define capacitance for a poorly stirred calorimeter. The 
discussions presented suggest that it is worth our while to explore the foundations of the transient 
diffusion equation which we use widely to understand an enormous variety of physical systems. 

Leave the beaten tracks occasionally and dive into the woods. You will be certain to find 
something you have never seen before. 

Alexander Graham Bell 
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INTRODUCTION 

The transient heat conduction (diffusion) equation is widely used in the earth sciences to 

quantitatively understand a variety of processes including heat transfer, fluid flow in subsurface 

systems, chemical diffusion (in liquids and solids) and the flow of electricity. Following Fourier, who 

in the early 19th century wrote down the governing equation of heat conduction in solids for the first 

time, the diffusion equation is invariably written as a partial differential equation. This equation, 

which physically represents the conservation of mass or energy over an infinitesimally small elemental 

volume, is derived by starting with a volume element of finite size, writing the terms for fluxes and 

accumulation, normalizing the accumulation by the bulk volume of the element and collapsing the 

elerrent in the limit to a point. In this work we address the question: suppose we do not wish to give 

ourselves a differential equation. Suppose we wish to look at the balance equation directly at the 

level of a discrete elerrental volume of a finite size. What would such an inquiry lead to? As will be 

seen, the inquiry raises some intriguing issues concerning the foundations of the transient diffusion 

equation. 

TRADITIONAL PRACTICE 

It has become almost second nature for us to derive the partial differential equation for 

diffusion-type problems by starting with a regularly-shaped box or a cylindrical annulus whose six 

faces are orthogonal to the axes of the chosen coordinate system (Figure 1). Following this, we write 

expressions for mass balance as a prelude to setting up the differential equation. The task of 

establishing mass balance itself does not demand the use of any of these regular-shaped elements. 

Traditionally we chose these types of elements of a regular shape for a specific reason. These 

elerrents have a simple well-defined relation between surface area and volume. Thus, when surface 

area is divided by volurre, we are left with a length term in the denominator. In turn, upon letting this 

length tend in the limit to zero, we obtain the second derivative in space. Indeed, normalization by 

bulk volume is merely an artifact devised to create the second derivative in space. Despite these 

artifacts, we recognize that the resulting partial differential equation has served us extraordinarily well 
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for nearly two hundred years. The main reason for its success is that it transformed a problem of 

integration (summation of fluxes) over discrete domains into an equivalent mathematical problem 

involving spatial and temporal gradients which could be handled in terms of continuous functions 

having algebraic forms. The resulting closed-form solutions, series solutions or integrals have 

provided us enormous insights into diffusion-type processes. 
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Figure 1: Discrete volume elements used to derive the transient diffusion equation. 

(A) Cartesian coordinates, and (B) Cylindrical coordinates 

AN ALTERNATE PERSPECTIVE 

Let ns now consider the notion of mass balance from a different perspective which does not 

commit itself to deriving the differential equation. Instead, one simply takes a careful look at the 
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process of mass balance over a discrete elemental volume and addresses its implication to spatial and 

temporal distribution of potentials. 

INITIAL CONDITIONS 

Consider an arbitrary elemental volume as shown in Figure 2A. This elemental volume exists 

within a larger transient flow domain of complicated geometric shape. Let us assume for simplicity 

that the entire domain is occupied by a single homogeneous isotropic material. At the time instant 

~ portrayed in, the figure, there exist surfaces of equal potential as shown schematically. Perpendicular 

to the isopotential surfaces are flow lines. In practice, these isopotential surfaces and flow lines are 

to be inferred from observations of potential at discrete locations or points. 

Figure 2: 
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An arbitrary elemental volume bounded by the solid line and its isopotential 

surfaces. Arrows represent flow lines: (A) at time t =~, and (B) at time t = 

~+~t 
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We now start with a set of points at which potentials are known at a certain instant in time. 

The isopotential surfaces shown in Figure 2 imply that the flow domain constitutes a continuum in 

which potential is a continuous function in space and in time. An important question now arises: how 

does one deduce a continuous surface from the values of potential known at a finite number of 

discrete points? Clearly an infinite number of continuous surfaces can fit the values at a finite number 

of points. Consequently, if we desire to have a unique surface fitting the potentials at these points, 

we have to impose appropriate constraints on the nature of the surface to be so chosen. For example, 

we may stipulate that the surface satisfies the constraints of steady state diffusive transport over the 

flow domain. We can show that under steady state diffusive transport, the required surface fitting 

the point values of potential must satisfy two conditions as detailed below. 

Condition 1: In Figure 3A is shown a set of hypothetical points in a steady state system 

occupied by a homogeneous isotropic material within a domain of arbitrary geometry at a given 

instant in time. The potentials at these points are assumed to be known. Because of the arbitrary 

geometry of the flow domain, the local flow pattern is characterized by converging and diverging flow 

paths. The isopotential contours in the figure have been drawn by using some arbitrarily chosen 

interpolation function (e.g. linear interpolation between adjacent points). The flow lines are oriented 

perpendicular to the isopotential contours. In Figure 3A we see two flow tubes, the steady flux 

through one of these is~. Based on empirical observations, the relation between ~ and the 

isopotential surfaces can be expressed in the mathematical form of Ohm's Law, 

(1) Q =Ll<I> 
A R ' 

where R is resistance to flow and Ll<I> is the drop in potential. In this context, if we consider two 

segments of the flow tube in the figure having flux ~, their resistances Rl and R2 must be equal 

because the potential drop Ll <I> is the same over both these segments. A corollary to equation 1 is that 

potential drop Ll<I> is directly proportional to resistance along the flow tube. Therefore, (1) can also 

be used to interpolate between two isopotential surfaces and find the position of intermediate values 

of isopotentials on the basis of the proportional relation between Ll <I> and R. 
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Condition 2: Iil Figure 3B is shown the same situation as in Figure 3A but with a difference. 

In this figure, the position of the intermediate isopotential surface with contour value 85 has been 

found by interpolation withinthe two adjacent flow tubes. These surfaces meet at P, a point on the 

interface between the adjoining flow tubes. If contour lines have no error in them, then the 

isopotential surface 85 must be continuous at P. 

Thus the continuous surface fitting the point values must satisfy two criteria. First, within a 

given flow tube, resistances over equal drops in potential must be equal. Secondly, isopotential 

surfaces must be continuous at interface between adjacent flow tubes. These two criteria together 

constitute sufficient conditions to fit a unique surface through the points at which potentials are 

known at a given instant in time. 

Going back to Figure 2A now, it is in this sense that we assume that the isopotentiallines and 

the flow line have been drawn. Nevertheless, the element in Figure 2 represents the state at a given 

instant in time in a transient system Yet, the contours have been drawn using steady state 

assumptions. We thus have a difficulty; a system cannot simultaneously exist under steady conditions 

and under transient conditions. How may we overcome this contradiction? To overcome this 

difficulty, should we dispense with the notion of isopotential surfaces and flow lines in a transient 

system? The answer has to be "no" because the use of an equation of motion (Darcy's Law, 

Fourier's Law) is essential to the formulation of the equation governing the transient flow process. 

In turn, these empirically defined equations are defined only in terms of steady-state experiments and 

the notion of a flow tube is intrinsic to these equations. Thus, the notion of a flow tube is essential 

to the formulation of the transient equation. Under the circumstances, perhaps the only way to get 

around this difficulty of the flow domain existing simultaneously under steady and transient flow 

conditions is simply to postulate that the transient system evolves in time in such a way that at any 

every instant in time the potentials satisfy spatial equilibrium in the sense of the empirical, steady-state 

equation of motion. 
) 
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Fitting a continuous surface over a set of point values; constraining conditions 

(A) resistances alOIlg flow tube, (B) continuity of isopotential surfaces 

CHANGE OF STATE AND CAPACITANCE 

Having considered the "state" of the elemental volume at a given instant in time, let us 

consider how the system may change its state with time. Let t = to be the instant at which the state 

of the element is as shown in Figure 2A. Let At represent an interval of time such that t = to + At. 

If the flow domain is existing under transient conditions, the isopotential contours would have shifted 

in position over At. In the most general case, both the shapes and the magnitudes of the isopotential 

surfaces would have changed. Consequently, the change in potential A~ over the time interval would 
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be different at different locations within the elemental volume. Our problem is, given the state of the 

element at t = to, find the positions and magnitudes of the isopotential contours at t = to + at. 

Now suppose we are some how able to get the net accumulation over the element in Figure 

2 during the interval at. Then, in order to convert this accumulation into a change in potential a<p, 

we need the capacitance of the element. Here, capacitance of a finite volume or mass of material is 

defined as accumulation per unit change in potential. This notion of capacitance comes from the 

study of heat and dates back to Lavoisier and Laplace in 1783. Fundamentally, the notion of 

capacitance is associated with a calorimeter. In order that the heat capacitance of the mass of 

material be uniquely defined, the mass of material in question must change from one thermostatic 

state to another thermostatic state. This is the reason why a calorimeter has to be well mixed when 

one wishes to determine heat capacity of a liquid such as water. When the change in temperature is 

. the same everywhere in the mass of material, heat accumulation can be divided by a uniquely 

prescribed aT (that is, change in temperature) and heat capacity is determined unambiguously. 

With this background, consider the element in Figure 2A and Figure 2B. Neither its initial 

state at t = to nor its final state at t = to + at are motionless static states. Nor are the changes in 

potential a <P the same everywhere within the element. Because of this, a <I> cannot be uniquely 

specified over the element. Therefore, even though accumulation is known precisely, we cannot 

uniquely stipulate a capacitance for the elemental volume because the denominator a <P is undefined. 

In essence, the element is much like a poorly stirred calorimeter. Conversely, if we know the 

accumulation exactly and wish to determine change in potential within the element, we will have to 

use different values of capacitance for different locations within the element. That is, the capacitance 

of an elemental volume in a transient system has to be viewed as a function of the nature of the 

material as well as the particular location within the element where a <I> is desired to be determined. 

In summary, we see that the experimentally inspired notion of capacitance is associated with 

a system which is considered to jump from one static state to another static state. Yet, we desire 

to use this concept of capacitance under transient situations in which static equilibrium does not exist. 

To overcome this dilemma, we may give an ad hoc status to parameter capacitance when dealing 

with transient systems. Consequently, in a transient system, capacitance has to be defined as a 
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function of the material constituting an elemental volume as well as the location at which change in 

potential is to be evaluated. 

THE TRANSIENT EQUATION 

We now proceed to combine the postulate concerning the equation of motion and the ad hoc 

extension of the notion of capacitance to assemble a governing equation for an elemental volume of 

finite size existing under transient conditions. Our logic is to first use the equation of motion to 

evaluate the accumulation over the elemental volume during at and use the suitably-defined 

capacitance ofthe element as a means of converting the accumulation into a change in potential at 

a specified location. 

First, we devote attention to evaluating the fluxes that enter and leave the elemental volume. 

Traditionally, we are accustomed to using a flux law in a form that involves gradient of potential. 

That is, 

(2) 
- K d<p A 

dx ' 

where Qx is the flux in the direction x along which the gradient of potential is evaluated, K is 

conductivity and A is area of cross section. However, this form is not convenient for us to use in the 

case of an elemental volume such as the one in Figure 2 because we have chosen not to make use of 

infinitesimal calculus. It is more advantageous for us to use the equation of motion in the form of 

Ohm's Law (1). Note that the empirical basis for the equation of motion is a flow tube bounded at 

the inlet and at the outlet by surfaces of equal potential. The material within the tube itself is assumed 

to be homogeneous in our present discussions. Although it is customary to do these experiments on 

a tube of uniform cross sectional area, we may reasonably extend the concept to non-uniform flow 

tubes for which the form of Ohm's Law applies. The denominator in Ohm's Law is the Resistance, 
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which includes both the material property (e.g. hydraulic conductivity) as well as the geometry of the 

flow tube. For a flow tube of nonunifonn cross section, the resistance may be expressed as, 

(3) 
ltOlll 

R - f dy 
KA(y) 

X;" 

where A(y) expresses the variation of A as a function of position along a suitable flow path chosen 

as a curvilinear x axis. 

The question now is, how may we apply the equation of motion in this fonn to a volume 

element of finite size? 

A LOGICAL ELEMENTAL VOLUME 

In order that we may implement theequ~tioribfni6tiortiri'be:doIripatif)IeWitnthe empirical 

nature of the equation of motion, let us abandon a voiume element of arbitrary shape as in Figure 2 

and define a volume element j in the context of a flow tube as shown in Figure 4. 

Figure 4: 

J 

L 

Three neighboring elemental volumes along a flow tube. j is the 

volume element of interest. L and R denote neighbors to the left and 

the right. J is a conveniently chosen isopotential surface whose 

magnitude will change with time. 
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We now write the mass balance equation for the middle element j in Figure 4. For simplicity, 

assume that over the time interval of interest to us, the position and shape of the flow lines remain 

unchanged. This is possible when we deal with a flow system of known syrrunetry (e.g. cylindrical 

or spherical) or in a transient system in which flow geometry changes very slowly in comparison to 

the time interval of interest. Although the shapes of the isopotential surface are fixed, their 

magnitudes will change in time. Within this element we have chosen the isopotentialline denoted J 

for purposes of computing the change in potential. The change in potential Il ~ will be the same at 

any point along this surface. We now wish to write an expression for the change in potential along 

the chosen isopotential contour 1. In order to do this we need to define a capacitance for the volume 

element j in such a way that when the accumulation over the element is divided by the said 

capacitance we will get the change in potential at any point on the chosen isopotential surface J. 

Thus, 

(4) 

where Cj is the operational capacitance of element j, , is a positive coefficient, V is the bulk volume 

of the element and c is the specific capacitance (capacitance per unit volume). We need not dwell 

here on how , may be determined but simply stipulate that it can be chosen on the basis of 

appropriate physical reasoning. 

Given these assumptions, the flux into j from the elements on either side can be summed up 

to yield the accumulation over an interval of time Ilt by, 

(5) [

k=R I 1 
Accumulation = Il t L - ( < ~k > - < ~j > ) , 

k =L I\j 
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where <~t> and <~? are potentials at k and j averaged over the time interval at and Rkj is the 

resistance of the flow tube segment bounded by the isopotential surfaces I and 1. 

We need to pause here and consider how the time-averaged values of potential may be 

evaluated rationally so that the fluxes and the accumulation implied in (5) are accurate. For 

illustration consider the flow tube segment between the element i, located to the left of j and j. This 

segment is shown in Figure 5. Normally, one would calculate the flux through this segment of the 

flow tube by assuming that flow is steady state and that the potentials ~i and ~j at the inlet and the 

outlet of this segIrent are independent oftime. However, under transient conditions, both ~i and ~j 

vary continuously with time. How may one apply the equation of motion to a flow tube the potentials 

at the end of which change in time? 

Figure 5: Flow tube between the isopotential surfaces I of element i and J of element j. 

The flow tube is shown by hatching 
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To understand this, consider the simple case of a flow tube initially under steady conditions 

of flow. At time t = 0, the potential at the inlet end is suddenly raised to a higher level and maintained 

constant The potential at tPe other end continues to remain unchanged. Clearly, the flow tube will 

experience transient flow and the fluxes at the inlet and outlet will be unequal With time, the flux 

at inlet will gradually decrease and the flux at outlet will gradually increase. After significant elapse 

of time, the flow tube will attain a new steady state. Upon attaining steady state, the inlet flux will 

match the outlet flux. This pattern of time-dependent flux change is illustrated in Figure 6. Note in 

Figure 6 that the outlet end will register an increase in flux only after a finite time interval needed for 

the perturbation in potential at the upstream end to travel to the downstream end. The total quantity 

of flow, Qat entering the flow tube segment over the time interval will be equal to the area under the 

curve, shown by hatching. Effectively then, before steady conditions of flow are established, the 

actual quantity of flow over at will be different from what one might calculate by simply dividing the 

difference in potential by the resistance. In view of this, it is clear that the time-averaged values <<PJ?> 

and <<Pj> should be so determined that due consideration is given to deviations from steady state 

assumptions. This discussion intrigues us about letting time tend in the limit to zero in deriving the 

transient equation because as at becomes small, the flow is prevented from attaining steady state. 

In view of (5), we may write down an expression for the new potential along the isopotential 

surface J of element j at time t = to + at by, 

(6) 

Equation 6 is essentially the governing equation for the discrete elemental volume j within a 

flow tube. This equation is valid for a volume element that is part of a curvilinear flow tube. In 

principle, one could directly program this equation into a computer algorithm towards solving 

problems. Should one so desire, one could invoke infinitesimal calculus and derive a partial 

differential equation for one dimensional flow in a flow tube with variable cross section as was shown 

by Fick (A. Fick, On Liquid Diffusion, Phil. Mag, 10,30-39,1855), 
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Figure 6: 

Time 

--------------------------.::':---~------------
Steady Outflow 

Time-dependent variation of fluxes at inlet and outlet of a flow tube subjected 

to a step-wise increase in inlet potential 

The governing integral equation (6) pertains to a single flow tube. One way to extend this 

equation to general three dimensions is to consider the three dimensional system to be collection of 

flow tubes_ One would write an equation such as (6) for each of the flow tubes. Having done this, 

one could impose suitable constraints of continuity of potential at interfaces between adjoining flow 

tubes. Note that this statement inherently treats the multidimensional problem in terms of a collection 

of parallel processes. 
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DISCUSSION 

The derivations presented above have focused attention on a discrete elemental volume, 

unfettered by an ulterior desire to use a differential equation. The basic notions of resistance, 

capacitance and conservation relate to finite volumes of material. Although these three notions are 

physically meaningless at a point which intrinsically has no dimensions, the pioneers of mathematical 

physics of two centuries ago invented the artifact of the differential equation pertaining to a point 

because functional analysis provided a way of solving problems which were unsolvable otherwise. 

Without the contrived differential equation, there was no conceivable way of solving practical 

problems which needed to be solved to understand phenomena of nature. The availability of the tool 

dictated how the problem will be posed. 

Two hundred years after Fourier, we now have a radically different tool available to us for 

solving mathematical problems. This tool is the computer. The computer simultaneously provides 

us the ability to store, retrieve and manipulate information pertaining to very complex mathematical 

objects and, in addition, solve a large number of algebraic equations intrinsically interwoven with the 

complex geometric objects. This new tool provides us a motivation to depart from the well-beaten 

track shown us by Fourier and explore a new track which perhaps is naturally suited to exploit the 

power of the digital computer as a means of solving problems of interest to us. 

The differential equation is intimately tied up with vectors and hence is associated with 

specific coordinate systems, preferably rectilinear. However, using the differential equation with 

curvilinear coordinate systems can be cumbersome, even with the aid of tensors. As we have seen, 

the alternate development explored above is quite convenient to use in systems characterized by 

curvilinear coordinates, especially with the availability of the computer and the remarkable graphic 

tools that are available with the computer. 

Aside from this possibility of using the computer for problem solving, the thoughts presented 

above are of interest in other ways. As we have seen, our foundations for describing the transient 

process lie on two equilibrium concepts; the equation of motion which assumes that potentials have 

achieved spatial equilibrium and the notion of capacitance which assumes that the potential is always 

in eqUilibrium with its appropriate extensive attribute (the equation of state). However, a system 
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cannot simultaneously be transient and at equilibrium There is thus something fundamentally 

intriguing about the way we are using our empirical experience of steady state systems to quantify 

the behavior of dynamic systems. 

. The fact that solutions to differential equations have reasonably imitated the behavior of 

transient systems (e.g. transient heat conduction in a rod or cylinder) may be taken to suggest that 

our foundations are perfectly sound. This success of the differential equation may be taken to assert 

that in the limit of vanishing volume, one can assume simultaneous existence of steady and non-steady 

states within a system The logical strength of this assertion deserves careful inquiry. As long as the 

volume does not vanish, the elemental volume in the continuum will contain infinitely many points 

and one has to reconcile the simultaneity of steady and non-steady states. On the other hand, if the 

elemental volume vanishes to a single point, notions of resistance, capacitance and potential 

conservation are invalid. Nor does a point have any symmetry. 

Be that as it may, it is clear that whenever we are confronted with problems of sufficient 

complexity which require us to integrate the differential over discrete domains, one has to address 

the issues discussed above and lay down suitable postulates to enable logically sound numerical 

integration. Clearly, without properly defining what the integral is, one cannot reliably integrate a 

differential equation over discrete elemental volumes. 

In closing, the purpose of this note is not to criticize the differential equation. Conceived by 

some of the most distinguished minds of the 18th and 19th centuries, modem science owes much of 

its success to the differential equation. Yet, we do recognize that some limitations are inherent to the 

methodology of the differential equation. It is in the best tradition of science to explore if we can find 

other methodologies which can help us look farther. It is in this spirit that this note has looked at the 

diffusion-type process directly in the context of a discrete domain of the continuum It appears that 

the foundations of our traditional methodology may not be as strong as we might have thought. 
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