
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Raptor: Large Scale Processing of Big Raster + Vector Data

Permalink
https://escholarship.org/uc/item/7x45c31r

Author
Singla, Samriddhi

Publication Date
2022

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7x45c31r
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Raptor: Large Scale Processing of Big Raster + Vector Data

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Samriddhi Singla

June 2022

Dissertation Committee:

Dr. Ahmed Eldawy, Chairperson
Dr. Vassilis Tsotras
Dr. Jiasi Chen
Dr. Elia Scudiero

Copyright by
Samriddhi Singla

2022

The Dissertation of Samriddhi Singla is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, Dr. Ahmed Eldawy, without whose help and guidance, I would

not have been here. Thank you for your support, encouragement, and patience. I especially

would like to thank my dissertation committee members: Dr. Vassilis J. Tsotras, Dr. Jiasi

Chen, and Dr. Elia Scudiero, for reviewing my dissertation. I also would like to thank

my collaborators: Tina Diao of Standford University, Ayan Mukhopadhyay, and Michael

Wilbur of Vanderbilt University. Finally, thank you to my colleagues at the Big Data Lab:

Saheli Ghosh, Tin Vu, Akil Sevim, Xin Zhang, Zhuocheng Shang, and Vinayak Gajjewar

for all their support and help.

The text of this dissertation, in part, is a reprint of the material as it appears

in ACM SIGSPATIAL 2018 and 2021, ACM SIGMOD 2021, VLDB 2019, IEEE Big Data

2020, NeurIPS 2020 and 2021, and ICDE 2021. The co-author Dr. Ahmed Eldawy listed

in that publication directed and supervised the research which forms the basis for this

dissertation.

This research was partially supported by Agriculture and Food Research Initiative

Competitive Grant no. 2019-67022-29696 from the USDA National Institute of Food and

Agriculture. Any opinions, findings and conclusions, or recommendations expressed in this

material are those of the author and do not necessarily reflect those of the USDA National

Institute of Food and Agriculture.

iv

To my parents and brother for all the support.

v

ABSTRACT OF THE DISSERTATION

Raptor: Large Scale Processing of Big Raster + Vector Data

by

Samriddhi Singla

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2022

Dr. Ahmed Eldawy, Chairperson

Advancements in remote sensing technology have resulted in petabytes of remote sensing

data being made publicly available. The widespread use of smart devices and GPS technol-

ogy has also led to the availability of highly accurate geographical features. This increase in

the amount of spatial data has allowed for greater research opportunities in many scientific

domains including hydrology, political science, environmental science, and agriculture. In

these applications, scientists rarely base all their analysis on a single dataset but they usu-

ally need to combine multiple datasets in their analysis. Machine learning is a popular tool

used by these scientists and often requires combining different datasets into a form usable

by the machine learning algorithms. Spatial data is generally available in two representa-

tions, raster, and vector. The best data science and machine learning applications need to

combine multiple datasets of both representations which is a data and compute-intensive

problem.

My dissertation proposes a new system called Raptor that bridges the gap between

raster and vector data. It is an end-to-end system for efficiently processing raster and

vi

vector geospatial data concurrently. First, it discusses an initial approach to parallelize the

zonal statistics operation called DARaptor. Second, it proposes Raptor Zonal Statistics, a

system implemented in Hadoop that can be used to perform the zonal statistics operation

for big raster and vector datasets. Third, it proposes Raptor Join which is modeled as a

relational join operator in Spark that can be easily combined with other operators, while

also offering the advantage of in-situ processing. Raptor Join is flexible to support ad-

hoc applications and has been used for various real-world applications such as wildfire

modeling, area interpolation, and crop yield mapping. Finally, this work proposes RDPro

to add distributed raster pre-processing capabilities to Raptor that can scale to big data.

The experimental evaluation on large-scale satellite data with up to a trillion pixels, and

big vector data with up to hundreds of millions of segments and billions of points has shown

that the proposed system is promising and can scale to big data.

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 DARaptor: Distributed Zonal Aggregation of Big Raster + Vector Data 4
2.1 Introduction . 4
2.2 Related Work . 8

2.2.1 Big Vector Data . 8
2.2.2 Big Raster Data . 9
2.2.3 Big Raster-Vector Combination . 9
2.2.4 Zonal Statistics . 10

2.3 Background . 11
2.3.1 Spatial Data Representation . 11
2.3.2 Zonal Statistics . 11
2.3.3 Single-machine ScanLine Method . 12

2.4 Distributed Zonal Statistics . 13
2.4.1 Näıve Implementation (NI) . 13
2.4.2 DARaptor . 15
2.4.3 Other Implementation Details . 23

2.5 Experiments . 25
2.5.1 Setup . 25
2.5.2 Overall Comparison . 29
2.5.3 Tuning . 32

2.6 Conclusion . 41

3 Raptor Zonal Statistics: Fully Distributed Zonal Statistics of Big Raster
+ Vector Data 43
3.1 Introduction . 43
3.2 Related Work . 47

3.2.1 Big Vector Data . 47

viii

3.2.2 Big Raster Data . 48
3.2.3 Big Raster-Vector Combination . 49
3.2.4 Zonal Statistics . 49

3.3 Review of Raster and Vector Data . 50
3.3.1 Spatial Data Representation . 51
3.3.2 Raster File Structure . 51
3.3.3 Zonal Statistics . 52
3.3.4 Zonal Statistics on Raster DB . 52
3.3.5 Zonal Statistics on Vector DB . 53
3.3.6 Single-machine ScanLine Method . 53

3.4 Implementation . 54
3.5 Theoretical Analysis . 64

3.5.1 Raster Database Approach (RDA) 64
3.5.2 Raptor Zonal Statistics (RZS) . 66
3.5.3 Discussion . 68

3.6 Experiments . 68
3.6.1 Setup . 70
3.6.2 Overall Execution Time . 71
3.6.3 Ingestion Time . 74
3.6.4 Closeup Scalability of Rasdaman . 75
3.6.5 Verification of Cost Models . 76
3.6.6 Applications . 78
3.6.7 Vector Chunks . 80
3.6.8 Compression of Intersection File . 81
3.6.9 Spatial Partitioning of Vector Data 82

3.7 Conclusion . 85

4 The Raptor Join Operator for Processing Big Raster + Vector Data 86
4.1 Introduction . 87
4.2 Related Work . 91

4.2.1 Non-spatial Joins . 91
4.2.2 Spatial Join on Raster Data . 91
4.2.3 Spatial Join on Vector Data . 92
4.2.4 Raster-Vector Joins . 92

4.3 Problem Formulation . 93
4.3.1 Input Data Model . 93
4.3.2 RJ⋊⋉ Output Definition . 97
4.3.3 Integration with Spark . 100

4.4 Implementation . 100
4.4.1 Flash Index Creation . 103
4.4.2 Flash Index Optimization . 113
4.4.3 Flash-Index Processing . 114

4.5 Experiments . 115
4.5.1 Setup . 115
4.5.2 Vector-based Systems . 118

ix

4.5.3 Raster-based Systems . 121
4.5.4 Flexibility of RJ⋊⋉ . 124
4.5.5 Optimizing RJ⋊⋉ . 126

4.6 Conclusion . 129

5 Distributed Raster Pre-processing 130
5.1 Introduction . 130
5.2 Problem Formulation . 134

5.2.1 Raster Data Model . 135
5.2.2 Vector Data Model . 137
5.2.3 Raster Operations . 137

5.3 RDPro Architechture . 141
5.3.1 RDPro Data Model . 143
5.3.2 Raster Data Loading . 146
5.3.3 Raster Data Output . 147
5.3.4 Raster Query Processing . 150

5.4 Experiments . 152
5.4.1 Setup . 153
5.4.2 Data Loading . 154
5.4.3 Data Writing . 156
5.4.4 Map Algebra: Local Operations . 157
5.4.5 Map Algebra: Focal Operations . 159
5.4.6 Map Algebra: Global Operations . 159

5.5 Conclusion . 161

6 Applications 162
6.1 Combating Wildfires . 162
6.2 Crop Yield Mapping . 165
6.3 Areal Interpolation . 166

7 Conclusions 168

Bibliography 172

x

List of Figures

2.1 Comparison of NI and ScanLine Method . 14
2.2 System Overview . 16
2.3 Intersection file structure . 19
2.4 Overall comparison of ScanLine, NI and DARaptor algorithms 28
2.5 Breakdown of running time for DARaptor 31
2.6 Comparison of the computation of intersections 33
2.7 Effect of different sizes of Vector Chunks on total running time 36
2.8 Effect of compression of Intersection File . 38
2.9 The overall effect of input split sizes (in seconds) 40

3.1 Overview of the Raptor Zonal Statistics (RZS) algorithm 56
3.2 Intersection file structure . 59
3.3 Comparison of total running time of RZS, Scanline, EMI, GEE and Rasdaman 72
3.4 Ingestion time . 75
3.5 Scalability of Rasdaman and RZS on MERIS dataset 76
3.6 Verification of the cost model of RZS . 77
3.7 Verification of the cost model of RDA . 78
3.8 Effect of vector chunk size on total running time 79
3.9 Effect of compression of Intersection File . 82
3.10 Effect of spatially partitioning vector data 83

4.1 Comparison of raster, vector and raster+vector based systems 88
4.2 Raster file structure . 94
4.3 Three predicates θ for Raptor Join . 98
4.4 Implementation Overview of Raptor Join 101
4.5 14pt.9513.6Pixel intersection computation for polygons. (a) A sample polygon and the pixels that satisfy the θpolygon

predicate. (b) The pixel intersections computed using Algorithm 4. (c) The pixel intersections sorted by (y, x) (gid is

omitted for brevity). (d) The pixel ranges produced by Algorithm 5 108
4.6 14pt.9513.6Comparison of running time (bars) and index size (lines) of ACT and RJ

⋊⋉
for small raster data on a single

machine . 119
4.7 Running time of vector-based systems . 120
4.8 Single machine performance of Rasdaman and RJ⋊⋉ 121

xi

4.9 Running time of raster-based systems . 122
4.10 Breakdown of RJ⋊⋉ running time . 124
4.11 14pt.9513.6Performance on non-polygon joins with big raster data. Dotted lines represent extrapolated values. . . . 125
4.12 Applications . 126
4.13 Vector Partitioning . 126
4.14 Optimization . 127
4.15 Aggregation . 127

5.1 Raster Data Model . 134
5.2 RDPro Architecture . 143
5.3 Comparison of reading time for GDAL, GeoTrellis, and RDPro 155
5.4 Comparison of writing time for GDAL and RDPro 156
5.5 Comparison of local operation running time for GDAL and RDPro 157
5.6 Comparison of focal operation running for GDAL and RDPro 158
5.7 Comparison of global operation running for GDAL, GeoTrellis, and RDPro 160

6.1 Data Generation Process . 163

xii

List of Tables

2.1 Vector and Raster Datasets . 26
2.2 Size of Intersection Files . 35

3.1 Parameters for Cost Estimation . 65
3.2 Vector and Raster Datasets . 69
3.3 Compression Ratio of Intersection Files . 81
3.4 Time taken to Partition Vector Datasets . 84

4.1 Vector and Raster Datasets . 117

5.1 Vector and Raster Datasets . 153

xiii

Chapter 1

Introduction

The recent decade has seen an explosive increase in the amount of spatial data.

The advancements in remote sensing technology have led to a tremendous increase in the

amount of remote sensing data. For example, NASA EOSDIS provides public access to

more than 33 petabytes of Earth Observational data and is estimated to grow to more than

330 petabytes by 2025 [17]. European Space Agency (ESA) has collected over five petabytes

of data within two years of the launch of the Sentinel-1A satellite and is expected to receive

data continuously until 2030 [18]. In the meantime, the proliferation of smart devices and

GPS technology has led to highly accurate geographical features such as water bodies, city

boundaries, roads, agricultural fields, and others.

This increase in the amount of spatial data has allowed for greater research op-

portunities in many scientific domains including hydrology, political science, environmental

science, and agriculture. In these applications, scientists rarely base all their analysis on a

single dataset but they usually need to combine multiple datasets in their analysis. Ma-

1

chine learning is also a popular tool used by these scientists that often requires combining

different datasets into a form usable by the machine learning algorithms. This makes it

necessary to pre-process data and combine it into a single data representation before it

can be used by the algorithm. A few applications that need to combine raster and vector

data include the study by ecologists on the effect of vegetation and temperature on human

settlement [32, 33], analyzing terabytes of socio-economic and environmental data [29, 30],

and studying of land use and land cover classification [57]. It can also be used for areal

interpolation [56], crop yield mapping [41], and to assess the risk of wildfires [24, 34].

Spatial data can be classified into two data representations: vector and raster.

Satellite imagery is an example of raster data and is usually represented in form of multi-

dimensional arrays. Vector data is represented as a set of points, lines, and polygons, and is

used to represent geographical features such as regional boundaries, roads, and water bodies.

The major differences between these two representations makes combining them difficult.

This is why existing systems are designed to either process vector data [80, 14, 45, 37, 52]

or raster data [21, 3, 27, 70, 51]. These systems are efficient for combining vector-vector or

raster-raster but are limited when the need to combine raster and vector data arises.

In this dissertation proposal, we propose a new system called Raptor that can

bridge the gap between raster and vector data. It is an end-to-end system for efficiently

processing raster and vector geospatial data concurrently. First, it discusses an initial

attempt, DARaptor to parallelize the zonal statistics operation. Second, it proposes Raptor

Zonal Statistics, a fully-distributed system implemented in Hadoop that can be used to

perform the zonal statistics operation for big raster and vector datasets. Third, it proposes

2

Raptor Join which is modeled as a relational join operator in Spark that can be easily

combined with other operators, while also offering the advantage of in-situ processing.

Raptor Join is flexible to support ad-hoc applications and has been used for various real-

world applications such as wildfire modeling, area interpolation, and crop yield mapping.

Finally, we propose RDPro to add distributed raster pre-processing capabilities to Raptor

that can scale to big data.

The rest of this dissertation proposal is organized as follows: Section 2 describes

the first attempt to implement a distributed method to tackle the zonal statistics operation,

called DARaptor. It builds the foundation for Section 3 that proposes a distributed method

to tackle the zonal statistics operation, called Raptor Zonal Statistics. Section 4 proposes

the Raptor Join which allows can be used for ad-hoc applications not limited to zonal

statistics. Section 5 discusses the work to add distributed raster pre-processing capabilities

to Raptor. Section 6 details the real-world applications where the proposed systems were

used. Section 7 concludes the proposal and discusses the future work.

3

Chapter 2

DARaptor: Distributed Zonal

Aggregation of Big Raster +

Vector Data

This chapter talks about DARaptor, a distributed implementation in Hadoop that

was a first attempt to efficiently compute zonal statistics.

2.1 Introduction

Remote Sensing Data is of vital importance to various research domains, such as

agriculture, environmental studies, and oceanography. It has been used to study climate

change, model biogeochemical cycles, map land and vegetation change, and has numerous

other applications. Recently, there has been a tremendous increase in the amount of this

data with the advancements in remote sensing technology. NASA EOSDIS provides public

4

access to more than 17 petabytes of Earth Observational data, which is estimated to grow

to more than 330 petabytes by 2025 [17]. European Space Agency(ESA) has collected over

five petabytes of data within two years of the launch of the Sentinel-1A satellite and is

expected to receive data continuously until 2030 [18]. Other than the data collected by

space agencies, the European XEFL project collects X-ray images of atoms at a rate of up

10 petabytes per year [77].

The remote sensing data is in the raster format, and its use requires it to be often

processed in combination with vector data. Zonal Statistics is one such spatial operation

that requires to process the combination of raster and vector data to compute statistics

for a zone defined by the vector data using the values provided by the raster data. It is

used in many applications, including the study by ecologists on the effect of vegetation and

temperature on human settlement [32, 33] and by geographers for analyzing terabytes of

socio-economic and environmental data [29, 30].

To make use of the ever-growing amount of spatial data, there is a need for scalable

distributed techniques that can efficiently process it. The existing systems for big spatial

data include SpatialHadoop [14], GeoSpark [80], Simba [78], SciDB [70], RasDaMan [3],

and GeoTrellis [36]. The above-mentioned systems are very efficient, however, they focus

on either processing big raster data [3, 36, 70] or big vector data [14, 45, 76, 78, 80], and

provide a poor performance when the combination of vector and raster data needs to be

processed.

Traditional methods to process the zonal statistics problem focused on either vec-

torizing the raster dataset [86] or rasterizing the vector data [29]. Both suffer from the

5

drawback of running a costly conversion process which makes them unscalable to high-

resolution raster and vector data. To overcome this drawback, the ScanLine [16] method

was proposed recently which processes the two datasets in their native format without a

need for a conversion process. It proved to be very efficient in producing the best perfor-

mance on a single machine but it was still limited to the resources available on a single

machine.

In this chapter, we study the problem of distributed zonal statistics on high-

resolution raster and vector data. We first show that a straight-forward näıve parallelization

of the ScanLine method is inefficient due to four limitations. First, and most importantly,

since the ScanLine method works on the raw vector and raster data, each machine repeats

the same process which imposes a lot of redundant work that slows down the process.

Second, distributed execution frameworks, such as Hadoop and Spark, are not designed to

parallelize vector and raster datasets efficiently, rather, they work well with text or specific

binary formats. Third, it could be inefficient because distributed frameworks are designed

to process entire files while in the case of zonal statistics there might be entire regions in

the raster files that do not overlap any regions. Finally, the basic ScanLine method relies on

loading the entire vector layer in memory and hence cannot scale to large vector datasets.

To overcome the above limitation, we propose DARaptor, an efficient implementa-

tion in Hadoop for the zonal statistics problem. The algorithm runs in two phases, namely,

preparation and aggregation phases. The preparation phase runs on a single machine and

efficiently performs the common logic that is needed by all the machines. At the same time,

it gets the chance to look into the metadata of the raster and vector files and decide how

6

to efficiently split the job across machines. The second aggregation phase is then launched

as a MapReduce job that scans the relevant parts of the raster files and computes the de-

sired statistics efficiently. This design overcomes the four limitations described above and

scales well to large data. First, the preparation phase carries out the common processing

which computes the intersection points between the vector and raster data which allows

the worker machines to scan and aggregate the data in parallel without repeating these

steps. Second, we introduce a novel RaptorInputFormat which efficiently split the job into

tasks that take into account both the raster and vector characteristics. Third, by looking

into the metadata of the input file, the proposed algorithm can prune irrelevant parts in

the raster files with minimal overhead. Finally, the proposed design splits both vector and

raster datasets making it scalable for both big vector and raster files.

We carry out an extensive experimental evaluation on large-scale real raster datasets

of around a trillion pixels, and big vector datasets of up to 50 million segments and we show

that the proposed method is scalable to high-resolution raster and vector data and outper-

forms the baseline methods by up-to an order of magnitude.

The rest of this chapter is organized as follows. Section 2.2 covers the related

work in literature. Section 2.3 gives a background and problem definition. Section 2.4 de-

scribes the Näıve Implementation and the proposed DARaptor Implementation. Section 2.5

provides an extensive experimental evaluation. Finally, Section 2.6 concludes the chapter.

7

2.2 Related Work

In this section, we cover the relevant work in the literature. First, we give an

overview of big spatial data systems and classify them according to whether they primarily

target vector data, raster data, or both. After that, we cover the work that specifically

targets the zonal statistics problem.

2.2.1 Big Vector Data

In this research direction, some research efforts aimed to provide big spatial data

solutions for vector data types and operations. There are several systems in this category

including SpatialHadoop [14], MD-HBase [45], ESRI on Hadoop [76], GeoSpark [80], and

Simba [78], among others. The work in this category covers (1) spatial indexes such as

R-tree [14, 80, 78], Quad-tree [76, 45], and Grid [14], (2) spatial operations such as range

query [76, 14, 80, 78, 45], k nearest neighbor [14, 80, 78, 45], spatial join [14, 80, 78],

and computational geometry [10], (3) spatial data visualization including single-level and

multilevel [15], and (4) high-level programming languages [13].

Vector-based systems can support the zonal statistics problem by utilizing the

spatial join operation with the point-in-polygon predicate. Simply, it treats each pixel as

a point and tests to find points that are inside the query polygon. The drawback of this

algorithm is that it has to test a huge number of pixels which is impractical for large rasters

with trillions of pixels and complex polygons with hundreds of thousands of segments.

8

2.2.2 Big Raster Data

Systems in this research direction focus on processing raster datasets which are rep-

resented as multidimensional arrays. Popular systems include SciDB [70], RasDaMan [3],

and GeoTrellis [36]. The set of operations supported for raster datasets are completely

different than those provided for vector datasets. They are usually categorized into four

categories, namely, local, focal, zonal, and global operations [60]. Each operation oper-

ates on one or more multidimensional arrays and produces another multidimensional array

possibly of a different size.

To support the zonal statistics operation for one polygon, a raster-based system

can apply the following operations: (1) Rasterize the polygon by generating a raster layer

of the same resolution of the input raster layer where a pixel has a value of one if it is inside

the polygon. (2) Apply a mask operation between the input raster and the rasterized layer

which is a local operation. (3) Apply the desired statistics function on the resulting masked

raster. The drawback of this technique is that the rasterized dataset can be excessively

large for very large raster datasets.

2.2.3 Big Raster-Vector Combination

One of the earliest works on combining raster and vector data is done in [49],

which proposes a hybrid data structure to store both raster and vector data. It requires

a preprocessing offline step that converts both datasets to an intermediate form before it

performs any processing. Some of the current systems support both vector and raster data

such as PostGIS and QGIS [54]. However, they internally rely on two isolated libraries,

9

one for vector and one for raster with different sets of operations for each representation.

Therefore, they are still stuck with one of the two approaches described above. Wang

et al. [75] proposed a parallel algorithm for rasterizing vector data which can be used as a

preprocessing step for processing the zonal statistics problem using the raster-based method.

2.2.4 Zonal Statistics

The zonal statistics problem is a basic problem that is used in several domains

including ecology [32, 33] and geography [29, 30]. However, there was only a little work in the

query processing aspect of the problem. ArcGIS [2] supports this query by first rasterizing

the polygons dataset and then overlaying it with the raster dataset. Zhang et al [86, 85]

solve the zonal statistics problem using the point-in-polygon query and they rely on GPUs

to speed up the calculation. The drawback is that it has to load the entire raster dataset in

GPU memory which is a very expensive operation, especially for very large raster datasets.

Recent papers by the NSF project Terra Populus [30, 29] demonstrate the complexity of

the problem on big raster and big vector datasets. The ScanLine algorithm [16] was a first

step in efficiently processing the zonal statistics problem by combining vector and raster

data but it was limited to a single machine.

In this chapter, we propose a novel scalable algorithm for processing the zonal

statistics problem on big raster and vector data using MapReduce. It is different than the

work described above in three ways. 1. It leverages the MapReduce programming paradigm

to scale out on multiple machines. 2. It provides a novel work distribution mechanism

that combines raster plus vector (Raptor) in one unit of work. 3. It can efficiently prune

non-relevant parts in the raster layer to speed up the query processing.

10

2.3 Background

This section provides a background on some relevant concepts from GIS and spatial

databases, and the zonal statistics problem.

2.3.1 Spatial Data Representation

The two common representations of spatial data are vector and raster representa-

tions. The vector representation uses constructs like point, line, and polygon, and operations

like intersect, union, and overlaps. The raster representation uses matrices as a common

construct and the operations are all performed on these matrices. Each entry in the matrix

is called a pixel. To map between pixels and geographic locations, two mappings are used,

namely, world-to-grid (W2G) and grid-to-world (G2W). These mappings can also be used

to map data between the vector and raster datasets. The algorithm in this chapter relies

mainly on these two mappings to map the computation between the two representations

without having to convert one of them entirely to the other representation.

2.3.2 Zonal Statistics

The input to the zonal statistics problem is a raster layer r, a vector layer v, and

an accumulator acc. The vector layer v consists of a set of polygons which are usually

disjoint. The accumulator acc is a user-provided function which takes pixel values, one at

a time, and computes the statistics of interest. For example, one accumulator can compute

the average value, while another one can compute the histogram over the spectrum of raster

values. The output is a value for the accumulator for each polygon in the vector layer. For

11

example, if r represents the temperature in the world, v represents the 50 US States, and

acc is an average accumulator, the output of this problem will be the average temperature

for each state.

2.3.3 Single-machine ScanLine Method

The scan-line method [16] is the state-of-the-art algorithm for computing zonal

statistics on a single machine. It runs in the following three steps.

Step 1 calculates the Minimum Bounding Rectangle (MBR) of the input polygon(s) and

maps its two corners from world to grid co-ordinates using the W2G mapping. These two

corners help in identifying the lower and upper rows in the grid coordinates that define the

range of scan lines to process.

Step 2 computes the intersections of each of the scan lines with the polygon boundaries. It

converts each scan line from grid coordinates to world coordinates using G2W mapping and

stores their y-coordinates in a sorted list. Each polygon is scanned for its corresponding

range of scan lines, which are then used to compute intersections with the polygon. These

intersections are then sorted by their x-coordinates.

Step 3 finds the pixels that lie inside the polygons and process them. It maps the x-

coordinates of the intersections from world to grid coordinates and accumulates the cor-

responding pixel values. For multiple polygons, all intersections in one row are processed

before moving to the next row.

This approach requires a minimal amount of intermediate storage for the intersec-

tion points. It also minimizes disk IO by reading only the pixels that overlap the polygons.

12

2.4 Distributed Zonal Statistics

The state-of-the-art ScanLine method [16] proved to be very efficient in minimizing

the memory footprint and disk IO. However, it had a major limitation of running on a single

machine which makes it limited to the capabilities of that machine. This section describes

the proposed distributed algorithm for zonal statistics. Section 2.4.1 below describes a

naive MapReduce implementation which is a straight forward parallel implementation of the

ScanLine method. After that, Section 2.4.2 describes our proposed improved MapReduce

algorithm which achieves up-to an order of magnitude speedup over the baseline method.

Section 2.4.3 provides further implementation considerations about our proposed improved

MapReduce algorithm.

2.4.1 Näıve Implementation (NI)

A straight-forward parallel implementation of the ScanLine method is to logically

partition the (big) raster file into tiles, let each machine processes its tiles using ScanLine,

and finally combine the results to produce the final answer. This algorithm is implemented

as a single MapReduce job that runs in three phases. In the first preparation phase, each

tile in the raster file is given a unique ID which are all written as a single text file, termed

tile-ID file, as one ID per line. The tile-ID file is split across mappers as a fixed number of

lines (tiles) per mapper. The vector file, which is relatively small, is broadcast to all the

machines. Second, each mapper reads a few lines of the tile-ID file and the map function

applies the ScanLine method to process the corresponding tiles with the entire vector file.

The output of the map function is a set of pairs ⟨pi, ai⟩, where pi is a polygon ID and ai

13

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

104

GLC2000

R
u
n
n
in
g
ti
m
e
(L

o
g
S
ec
s)

Scanline NI

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

104

MERIS

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

104

US Aster

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

104

Tree Cover

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

Figure 2.1: Comparison of NI and ScanLine Method

14

is its aggregate value that the ScanLine method computes. Finally, the reduce function

receives a polygon id pi and a set of aggregate values A = {ai}. It aggregates all the partial

aggregates and returns the final pair ⟨pi,
∑

ai⟩.

Figure 2.1 compares the performance of this first-cut solution (NI) to the single-

machine ScanLine method. As shown, this method is orders of magnitude slower than the

single-machine algorithm for small- and medium-sized raster files. It is only slightly faster

with a very large raster file. We omitted the running times that are more than two hours.

As clearly shown in the figure, the näıve algorithm is generally slower than the ScanLine

due to the major limitations briefly explained below.

1. The tile-ID file might contain unnecessary tile IDs that do not overlap with any of the

polygons.

2. Mappers perform a lot of redundant work by computing the intersection of the vector

file with the raster file for each tile.

3. Since each mapper processes the entire vector file, this method does not scale to big

vector data due to memory limitations.

4. In the case of multiple raster files, one mapper might process tiles from multiple raster

files which adds an overhead for reading and processing all these raster files.

2.4.2 DARaptor

Unlike the näıve implementation (NI) that follows a black-box approach, DARap-

tor takes a white-box approach to parallelize the ScanLine method. Figure 2.2 provides an

15

Vector Data

Raster Data

Compute
Intersections

Intersections
Files

Raptor Splits

Aggregation Phase

Input

Preparation Phase

Single Machine Hadoop Cluster

Broadcast

Distribute

Figure 2.2: System Overview

overview of the proposed algorithm. The proposed algorithm runs in two phases which are

outlined below, followed by a detailed description of each phase.

• Preparation Phase: As illustrated in Figure 2.2, this phase runs on a single machine and

performs two tasks. First, it computes the intersections of the geometries in the vector file

with the raster layer similar to the ScanLine method. These intersections are written to

binary files called the Intersection files, which are broadcast to all the machines. Second,

it defines a logical partitioning for the raster and vector files and creates RAster Plus

vecTOR splits, termed Raptor Splits, which define the smallest units of work and are

then distributed to the machines during the second phase.

• Aggregation Phase: This phase runs as a MapReduce job, where each mapper receives

a Raptor Split that defines a subset of raster tiles and polygons to process. The map

function reads the specified tiles and the intersection file that corresponds to the polygons

and computes a partial answer for the zonal statistics. The partial answers are combined

by polygon ID and the reducers combine them to produce the final aggregate.

16

Preparation Phase

The goal of this phase is to prepare and create the MapReduce job that computes

the zonal statistics. It runs on a single machine on the head node of the cluster and

performs two tasks, namely, intersection file generation and raptor split generation. The

intersection file generation step computes a common structure, called intersection file, which

is broadcast to all the machines to be used in the distributed processing step. The raptor

split generation step creates a list of tasks that are distributed among machines to perform

the parallel computation. Below, we describe the two tasks in more detail.

Intersection File Generation

The näıve algorithm has the limitation of performing redundant work by computing the

intersection of the vector file with the raster file in each mapper for each assigned tile.

Furthermore, it cannot scale to big vector data as it processes the entire vector file in each

mapper which imposes a huge CPU and memory overhead. The first task, intersection

file generation overcomes these two limitations by computing the intersections once and

broadcasting them to all the machines. In case of a big vector file, it splits the file into

small chunks of equal number of polygons which puts an upper limit on the amount of

data processed by each machine. Splitting the vector file overcomes the limitation of both

the ScanLine and Näıve implementation where they cannot scale to big vector data. From

our previous work, we showed that the intersection computation part requires a minimal

overhead as compared to the statistics computation phase. Therefore, running it once on a

single machine is more efficient than running it thousands of times on multiple machines.

To compute the intersections, a chunk of the vector file is loaded into memory and only the

17

metadata of the raster file is loaded, e.g., resolution and coordinate reference system (CRS).

For each chunk of polygons, we run the first phase of the scan line algorithm which computes

the intersections between the polygons and each row of pixels in the raster layer. For each

row, the intersections are represented as a list of pairs ⟨x, pid⟩ sorted by x, where x is the

coordinate of an intersection and pid is the ID of the polygon intersecting at that position.

All these intersections are then written to a compact binary file called the intersection file.

If multiple raster files are given in the input, this step uses multithreading to compute the

intersections with each raster file in parallel. For efficiency, each thread writes its part of

the intersection file independently and they are finally concatenated in one intersection file.

Figure 2.3 illustrates the structure of the intersection file. In this figure, a big

vector file is split intom chunks and there are n raster files. As shown, a separate intersection

file is produced for each vector chunk. In each of these files, there is a separate section for

each of the n raster files for a total of m · n sections in all the files. Each section stores

a list of intersections between polygons and raster files where one of them is illustrated

graphically in the figure. In the intersection file, each section is represented by r lists as one

per row in the raster file. Each list stores pairs ⟨x, id⟩ sorted by x as described above. In

addition, each file has a footer which stores the range of polygon IDs covered by this chunk

and a list of offsets in the file for the sections in that file, one for each raster file. To create

this file efficiently, multiple threads are created where each thread creates an interim file

that contains a list of sections. Writing the interim files immediately is crucial to reduce

the memory overhead as both the polygons and computed intersections can be evicted from

memory right after. Once all threads finish, one thread concatenates the sections that

18

Vector Chunks

R
a
st

e
r

Fi
le

s

Intersection Files

Raster
File 1

Raster
File 2

Raster
File n

Vector
chunk 1

Vector
chunk 2

Vector
chunk m

Intersection
file 1

Intersection
file 2

Intersection
file m

footer footer footer

Figure 2.3: Intersection file structure

19

correspond to one file and adds the footer to it. The concatenation step does not add a

huge overhead and it makes the organization of these files easier.

Raptor Split Generation

The second task, Raptor Split Generation, performed by this phase, generates Raptor Splits

using the RaptorInputFormat. In Hadoop, the InputFormat is the component that splits

the input file into equi-sized splits to be distributed on the worker nodes. These splits are

mapped one-to-one to mappers. Therefore, each split defines a unit of work. A correspond-

ing record reader uses the split to extract key-value pairs that are sent to the map function

for processing. Since our unit of work is a combination of raster plus vector data, we define

the new RaptorInputFormat, RaptorSplit, RaptorRecordReader, and RaptorObject. Starting

with the smallest one, the RaptorObject contains vector chunk ID, a raster file ID, and a

tile ID in that raster file. In the next phase, the map function processes one RaptorObject

at a time. The RaptorSplit stores a vector chunk ID, a raster file ID, and a range of tile IDs

in that raster file. The RaptorSplit defines a unit of work given to a mapper. We can control

the amount of work given to each mapper by adjusting the number of tiles in the range.

The RaptorRecordReader takes one RaptorSplit and iterates over all the RaptorObjects

that it represents. Finally, the RaptorInputFormat takes all the input to the problem, i.e.,

the raster files and all intersection files, and produces a list of RaptorSplits that define the

map tasks given to the worker nodes. Notice that the preparation phase only deals with the

RaptorInputFormat and generates a list of RaptorSplits out of the input. Therefore, this

single-machine step is extremely fast as it does not involve any processing of either vector

or raster data.

20

The information needed to logically partition the raster file is generated when the

intersection of a raster file with a vector chunk is computed. The definition of the tiles is part

of the metadata of the raster file which is loaded to compute the intersections. Moreover,

for efficiency, while computing the intersections, we keep track of the tiles that actually

overlap the polygons and we make sure to generate RaptorSplits that cover only those tiles.

In other words, this step prunes all the tiles that do not contribute to the answer.

The number of generated RaptorSplits depends on the total number of Intersection

files, raster tiles, and number of tiles. For efficiency, each RaptorSplit is limited to one

vector chunk and one raster file. This ensures that each mapper will need to load exactly

one section of the intersection file and open one raster file only which overcomes a limitation

of the näıve implementation which distributes the tiles regardless of their contained raster

files.

The two tasks of the preparation phase make the following contributions:

• The RaptorInputFormat eliminates the need of writing a tile-ID file. It generates Raptor

Splits containing only the Tile IDs that overlap with a polygon. This overcomes the first

limitation of the Näıve Implementation.

• The second limitation of Naive Implementation is overcome by computing the intersec-

tions of the vector files with the raster files once and then broadcasting this information

to all the machines.

• The third limitation of the Näıve Implementation is overcome by splitting the vector file

into chunks eliminating the need to process the entire vector file at once.

21

• The intersections are stored in the intersection file, and only the intersections correspond-

ing to the given Raster File ID are retrieved when required. This decreases the memory

footprint of the system, especially in the case of multiple raster files. The mapper may

need to process tiles from multiple raster files, and can now retrieve only the required

intersections. It does not need to compute intersections for multiple raster files, thus

overcoming the fourth limitation of the naive implementation.

• RaptorInputFormat limits each raptorsplit to one vector chunk and one raster file only

which ensures that most machines need to retrieve intersections only once.

Aggregation Phase

This phase is implemented as one MapReduce job, where each machine runs a

map function to compute partial Zonal Statistics for the RaptorSplit assigned to it. The

RaptorSplit is a set of RaptorObjects, where each object contains a vector chunk ID, a

rater file ID, and a tile ID. The mapper starts by reading the section of the intersection

file identified by the chunk ID and raster file ID. A copy of it is cached to process future

tiles in the same raster file. Then, the mapper processes the tile identified by the tile ID

by loading and aggregating the pixels identified by the ranges in the intersection file. This

step is similar to Step 3 in the ScanLine algorithm described in Section 2.3.3. The output

is a set of pairs ⟨pi, ai⟩, where pi is the polygon ID and ai is the statistics computed for pi

in the given tile. The reduce function merges the partial statistics ai belonging to the same

polygon pi and outputs the final aggregation
∑

ai.

22

2.4.3 Other Implementation Details

This section provides further implementation details for the proposed algorithm.

In particular, we describe three points, reading raster and vector files in MapReduce, com-

pression of intersection files, and whether to use Hadoop or Spark.

Reading Raster and Vector Files

To read raster and vector files, we use the open source GeoTools Library 17.0. This

library requires the data files to be stored on the Local File System and does not provide

support to read files from the Hadoop Distributed File System (HDFS). In MapReduce,

the files are assumed to be stored in HDFS which makes it incompatible with the GeoTools

library. One easy workaround is to let the mapper copy the file from HDFS to the local file

system before reading it but it is impractical given the huge sizes of raster files. Another

efficient but hard alternative is to modify the GeoTools library to read from HDFS but this

would be behind the scope of this work. We follow a third approach where we store the

files in a network file system (NFS) which is accessible to all the machines. In this case, the

files are not physically replicated to the machines but they can still be accessed as if they

are stored locally. A drawback of this method is that the machine that physically stores

the file would be a bottleneck. To test the overhead of this reading method, we ran a small

experiment that counts the number of text lines in a big text file (roughly 20 GB) using

two methods.

• Local FS : The file is stored locally in each machine and replicated to all machines.

• NFS : Only one copy of the file exists in the network file system.

23

Then, we executed two MapReduce jobs, one at a time, where each one reads one of the

files in parallel and counts the number of lines. We chose line counting due to its mini-

mal processing which allows us to focus on the disk IO. The total times taken for the two

MapReduce jobs were 445.24 and 496.53 seconds for the local FS and network FS, respec-

tively. While there is some overhead it was minimal. The reason for observing only a small

difference is that our NSF is hosted by a machine with 10 HDD connected through RAID

allowing it to serve many requests from different parts of the file at a higher IO through-

put than a single disk. Based on this, our experiments read the files from NFS using the

standard GeoTools library.

Compressing Intersection Files

The size of the intersection file ranges from the order of a few KBs to GBs. Since

they are concatenated from interim files and simultaneously broadcast to all the machines,

we thought it would be a good option to compress them. Compression is expected to reduce

the disk I/O in concatenating the interim files and the network I/O in broadcasting them.

We tried compressing each intersection written to the interim file using both GZIP and

Snappy compression. This however marginally slows down the algorithm as can been seen

in Figure 2.8. This was caused due to the overhead of compressing and decompressing the

file being larger than the time saved in disk and network I/O. This is further discussed in

Section 2.5.3.

24

Hadoop Vs Spark

Even though DARaptor could have been implemented using both Spark and

Hadoop, we chose to do it in Hadoop. Spark is known to be efficient for in-memory

computation intensive tasks and since our implementation does not require a great deal

of in-memory processing but becomes I/O-bound for very large raster layers, we decided to

implement this in Hadoop.

2.5 Experiments

This section provides an experimental evaluation of the DARaptor as compared to

the Näıve Implementation (NI) and the Scanline Method. We evaluate them on real data

and also show the effect of various design decisions on the proposed DARaptor approach.

Section 2.5.1 describes the setup of the experiments, the system setup, and the datasets

used. Section 2.5.2 provides a comparison of the DARaptor, NI, and the ScanLine method

based on the total running time. It also provides a breakdown of total running time for

DARaptor between the Preparation Phase and the Aggregation Phase. Section 2.5.3 shows

the effect of various parameters on the total running time of DARaptor. The parameters

include the utility of intersections files, size of vector chunks, compression of intersection

files, and the effect of RaptorInputFormat.

2.5.1 Setup

We run all the experiments on a cluster with one head node and 12 worker nodes.

The head node has Intel(R) Xeon(R) CPU E5− 2609 v4 @ 1.70GHz processor, 128 GB of

25

Table 2.1: Vector and Raster Datasets

Vector datasets

Dataset Polygons Segments #segments
#polygons File Size

Counties 3,108 51,638 17 978 KB

States 49 165,186 3,370 2.6 MB

Boundaries 284 3,817,412 13,440 60 MB

TRACT 74,133 38,467,094 519 632 MB

ZCTA5 33,144 52,894,188 1596 851 MB

Raster datasets

Dataset Resolution File Size

glc2000 40,320×16,353 629 MB

MERIS 129,600×64,800 7.8 GB

US-Aster 208,136×89,662 35 GB

Tree cover 1,296,036×648,018 782 GB

26

RAM, a 64 GB of SSD, 2 TB of HDD, and 2x8-core processors running CentOS and Oracle

Java 1.8.0 131. The worker nodes have Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz

processor, 64 GB of RAM, a 64 GB of SSD, 10 TB of HDD, and 2x6-core processors

running CentOS and Oracle Java 1.6.0 31-b04. The File Server used to host the vector and

raster datasets has 10 disks of 10 TB each, with a 64 TB formatted size. The methods are

implemented using the open source Geotools library 17.0.

In all the techniques, we compute the four aggregate values, minimum, maximum,

sum, and count. We measure the end-to-end running time as the performance metric

which includes reading both datasets from disk and producing the final answer. Table 2.1

lists the datasets that are used in the experiments. The vector layers represent the US

continental counties and US continental states with 3000 and 49 features respectively. The

Large-Scale International Boundaries (LSIB) includes geographic national boundaries for

249 countries and disputed areas. The TRACT and ZCTA5 datasets are a part of TIGER

2017 dataset which represents the contiguous US. TRACT represents the US census tracts

boundaries and ZCTA5 represents 5-digit ZIP Code Tabulation Areas. The raster datasets

come from various government agencies. The GLC2000 and MERIS 2005 datasets are

from the European Space Agency with pixel resolutions of 0.0089 decimal degrees (1km)

and 0.0027 (300m) respectively. The US Aster dataset originates from the Shuttle Radar

Topography Mission (SRTM) and covers the continental US. Hansen developed the global

Tree Cover change dataset which covers the entire globe. Both datasets have a spatial

resolution of 0.00028 decimal degrees (30m).

27

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

GLC2000

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

Scanline NI DARaptor

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

MERIS

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

US Aster

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

Tree Cover

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

Figure 2.4: Overall comparison of ScanLine, NI and DARaptor algorithms

28

2.5.2 Overall Comparison

This section provides a comparison of the proposed DARaptor approach, the Naive

Implementation (NI), and the Scanline Method [16]. This experiment is run for all the

combinations of vector and raster datasets shown in Table 2.1, and its results can be seen

in Figure 2.4. We omitted the running times that are more than two hours, or for which

the algorithm runs out of memory.

As can be observed from Figure 2.4, 1. DARaptor is scalable for larger vector

datasets (TRACT and ZCTA5), while the single-machine ScanLine Method and the Näıve

Implementation fail (run out of memory) for them. 2. For large raster datasets, the proposed

DARaptor algorithm is much faster than both the Scanline and NI algorithms with up-to

an order of magnitude speedup. 3. The combination of MERIS and Boundaries datasets is

where the single machine and the proposed DARaptor algorithms provide the same perfor-

mance. At this point, the overhead of parallelization is equal to its performance gain. 4.

The DARaptor algorithm shows a 10x speedup with Tree Cover and Boundaries dataset and

continues to scale to larger vector datasets where others fail. 5. The näıve implementation

performs worse than the proposed algorithm for all the combinations of raster and vector

datasets.

The scalability of the proposed algorithm can be attributed to the decision of cre-

ating vector chunks and interim files. Its gain in performance over the single-machine Scan-

Line Method for larger datasets is due to the distributed computation of Zonal Statistics.

The decrease in performance for smaller raster datasets is as expected. The proposed dis-

tributed algorithm incurs an additional overhead in setting up a MapReduce job in Hadoop

29

and therefore, performs slower than the single-machine ScanLine Method. Its performance

is at par with the ScanLine method for the MERIS dataset and Boundaries dataset and

then increases as the size of one of the raster or vector datasets increases. Its performance

gain over NI is due to the decision of computing intersections once on a single-machine and

then broadcasting them to all machines for distributed computation of Zonal Statistics.

Figure 2.5 shows the breakdown of the total running time for DARaptor into two

phases, Preparation Phase and Aggregation Phase. The Preparation Phase computes the

intersections of the vector file(s) against the raster layer and writes them to intersection files,

that are broadcast to all machines for the next phase. It also defines the logical partitioning

of raster and vector file(s) and generates Raptor Splits. The Aggregation Phase computes

zonal statistics for each raptor split. All the numbers shown in Figure 2.5 are normalized to

the overall running time for comparison. The actual numbers are the same as in Figure 2.4.

Breakdown of Total Running Time

It can be observed from the figure that the running time is dominated by Prepa-

ration Phase for the combination of smaller raster datasets (GLC200 and MERIS) with

the larger vector datasets (TRACT and ZCTA5). For all other combinations of raster and

vector datasets, the running time is dominated by the Aggregation Phase. The reason for

the domination of Preparation Phase for GLC200 and MERIS against TRACT and ZCTA5

datasets is because of the large number of geometries in the vector files for whom the in-

tersections with the raster file must be computed. Also, the small size of raster files leads

to a small number of logical partitions for which the Zonal Statistics must be computed,

30

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

0%

20%

40%

60%

80%

100%

GLC2000

T
im

e(
%
)

Preparation Phase Aggregation Phase

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

0%

20%

40%

60%

80%

100%

MERIS

T
im

e(
%
)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

0%

20%

40%

60%

80%

100%

US Aster

T
im

e(
%
)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

0%

20%

40%

60%

80%

100%

Tree Cover

T
im

e(
%
)

Figure 2.5: Breakdown of running time for DARaptor

31

hence the Aggregation Phase takes less time than the Preparation Phase, for these datasets.

Moreover, the computation of Zonal Statistics requires reading the required pixel values

from the disk for each Raptor Split. This makes the Aggregation Phase dominated by disk

IO for reading only the required pixel values. This leads to the running time for Aggregation

Phase becoming dominant over that for Preparation Phase for large raster files.

2.5.3 Tuning

This section provides a deeper study of the proposed algorithm and examines the

effectiveness of each component individually.

Computing Intersections

In this part, we examine the effect of computing the intersections once in the

preparation phase Vs computing it repeatedly in each node. This experiment compares

three algorithms:1. the Naive Implementation 2. DARaptor and, 3. an improved version of

the Naive Implementation (NI-Improved). This improved version of NI takes advantage of

the setup function of the mapper in Hadoop, which is used to initialize all the mappers. It

computes the intersections in the setup function, hence making them available to all the

mappers on their initialization.

Figure 2.6 shows the total running times for the three algorithms. We omit the

running times that are longer than two hours or for which the algorithm ran out of memory.

As can be seen from the figure, 1. the NI-Improved algorithm shows orders of magnitude

increase in performance over NI, but it is still slower than DARaptor. 2. The NI-Improved

32

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

GLC2000

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

NI-Improved NI DARaptor

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

MERIS
R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

US Aster

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

Tree Cover

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

Figure 2.6: Comparison of the computation of intersections

33

and NI run out of memory for the larger vector datasets (ZCTA5 and TRACT) due to the

overhead of computing the intersections of all the vector layers. 3. NI-Improved runs out

of memory for all combinations of the Tree Cover dataset with any of the vector datasets

due to the large size of the intersections. 4. NI takes longer than two hours to run for the

combination of Tree Cover and, Counties and States dataset. The Näıve Implementation

is slower than both NI-Improved and DARaptor due to its repeated computation of inter-

section in each mapper for each tile assigned to it. NI-Improved eliminates this repeated

computation of intersections, it still sends each mapper a copy of these intersections, while

keeping them in memory, which increases the memory footprint. If there are multiple raster

files, like in the case of Tree Cover dataset, each mapper receives the intersections for all the

raster files, which makes the algorithm run out of memory to proceed. Each mapper does

not require the intersections for all the raster files. NI and NI-Improved cannot compute

intersections for vector datasets with large number of geometries because they cannot keep

all the intersections in memory and run out of memory. DARaptor is faster than NI and

NI-improved because of the other improvements that we add in DARaptor, e.g., the Rap-

torInputFormat. Also, intersection files allows each mapper to retrieve only the required

intersections from the file rather than loading all the intersections.

Vector Chunks

This experiment studies the effect of splitting the vector file into chunks. In par-

ticular, this experiment varies the sizes of vector chunk used in DARaptor starting with

100, then 1000 to 10,000, incremented in steps of 1000. Figure 2.7 shows the overall running

34

Table 2.2: Size of Intersection Files

Raster Vector Intersection Compression

Dataset Dataset File Size Ratio

Raw Compressed

GLC2000 Counties 1.4 MB 347 KB 4.13%

States 276 KB 81 KB 3.41%

Boundaries 4.1 MB 1.6 MB 2.56%

TRACT 5.6 MB 1.9 MB 2.94%

ZCTA5 6.9 MB 2.4 MB 2.875%

MERIS Counties 4.6 MB 1.1 MB 4.18%

States 888 KB 266 KB 3.34%

Boundaries 13.3 MB 5.3 MB 2.55%

TRACT 18 MB 5.6 MB 3.21%

ZCTA5 22.1 MB 7.1 MB 3.11%

US Aster Counties 46 MB 10.6 MB 4.34%

States 8.9 MB 2.7 MB 3.3%

Boundaries 9.2 MB 2.5 MB 3.68%

TRACT 171.6 MB 49.7 MB 3.45%

ZCTA5 212.7 MB 63.7 MB 3.34%

Tree Cover Counties 52.2 MB 10.0 MB 5.22%

States 17.0 MB 2.8 MB 6.07%

Boundaries 1.2 GB 70.5 MB 17.43%

TRACT 259.6 MB 52.8 MB 4.9%

ZCTA5 308.6 MB 66.5 MB 4.64%

35

0.
1 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Vector Chunk Size(x103)

T
im

e
R
at
io

GLC2000

Counties States Boundaries TRACT ZCTA5

0.
1 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Vector Chunk Size(x103)

T
im

e
R
a
ti
o

MERIS

0.
1 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

Vector Chunk Size(x103)

T
im

e
R
at
io

US Aster

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Vector Chunk Size(x103)

T
im

e
R
at
io

Tree Cover

Figure 2.7: Effect of different sizes of Vector Chunks on total running time

36

time as the chunk size increases. In this experiment, we are only interested in the trend

of the lines rather than comparing the different lines. Therefore, each line is normalized

independently to fill all of them in one figure. We omit the running times for which the

algorithm runs of memory. We observe in this experiment that a very low chunk size of 100

results in a reduction in the performance due to the overhead of creating and running too

many RaptorSplits. On the other hand, using a very large chunk size eventually results in

some job failures due to the memory overhead. This is equivalent to not splitting the vector

file.

After chunk size of 3000, the number of vector chunks generated for Counties and

Boundaries, becomes stable which leads to marginal variation in their running times. The

variation of chunk size on larger vector datasets and Tree Cover is more prominent than the

other vector datasets. This is due to the large size of the Tree Cover dataset. The increase

in vector chunk size leads to a decrease in the number of chunks being generated and hence,

less number of raptor splits. This leads to each machine having more amount of work to do,

and a non-optimal distribution of work. It can be concluded that the choice of vector chunk

size should neither be too big (10,000) nor too small(100). It should lead to an optimal

distribution of work in the Aggregation Phase and can depend on the system configuration.

We chose it to be 5,000 based on the experiments and according to our system configuration.

Compression of Intersection File

In this experiment, we study the effect and tradeoff of compressing the intersection

files. The size of the raw (uncompressed) intersection files ranges from a few kilobytes to a

37

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

GLC2000

Compression W/o Compression

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

MERIS

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

US Aster

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

R
u
n
n
in
g
ti
m
e
(L

o
g
S
ec
s)

Tree Cover

Figure 2.8: Effect of compression of Intersection File

38

gigabyte as can be seen in Table 2.2. In order to reduce the network overhead to broadcast

the file over the network to all the machines and the time taken to concatenate them, we

investigated the option of compressing the intersection files using both GZIP and Snappy

compression. We did not see a major difference between GZIP and Snappy so we are only

reporting the results of GZIP. The comparison of the execution time with and without using

compression can be seen in Figure 2.8. It can be observed that there is a marginal increase

in the total running time if the intersection files are compressed for all the combinations of

the datasets. Although, from Table 2.2, it can be seen that the size of compressed files is

far smaller than that of non-compressed intersection files. This is because the time saved in

concatenating and broadcasting the compressed intersection file is nearly the same as the

time taken for compression and decompression of the intersection file. However, compressing

the intersection file can be a viable option, in case the network IO becomes a bottleneck.

RaptorInputFormat

This experiment shows the effect of defining our own RaptorInputFormat as com-

pared to using a single text file containing all Tile IDs like the Näıve Implementation does.

Figure 2.9 shows this comparison by using two versions of DARaptor, one uses a RaptorIn-

putFormat and another uses a text file just like NI does. The writing of the tiles to the text

file is a part of the total running time. The text file also does not contain any unnecessary

Tile IDs. The file is however split among machines so that the minimum number of lines

per split is at least 10 which allows the MapReduce jobs to take full advantage of the cluster.

39

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

R
u
n
n
in
g
ti
m
e
(L

o
g
S
ec
s)

GLC2000

Text File Tile Input Format

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

MERIS

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

US Aster

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

100

101

102

103

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

Tree Cover

Figure 2.9: The overall effect of input split sizes (in seconds)

40

As can be seen from the figure, there is either an improvement in the algorithm’s

running time with the introduction of RaptorInputFormat or it is almost equal to the one

using text file. The raster datasets GLC2000, MERIS, and US Aster have fewer number

of logical partitions as compared to the Tree Cover dataset. The time taken to write the

input text files for them is the fraction of a second, and these files lead to the creation

of just one intersection file. Also, these datasets contain only one raster file, which leads

to RaptorSplits being equivalent to the splits that are created using the text file. The

introduction of RaptorInputFormat therefore, does not show any significant improvement

for them.

The Tree Cover dataset consists of multiple raster files and covers the whole globe.

The Counties and States vector datasets cover only the US, while the Boundaries dataset

covers the whole world. Therefore, writing the text file (tile-ID file) for Counties and States

datasets takes a fraction of a second and the overall running time is not much different.

However, for the boundaries dataset which covers the entire globe, writing the tile ID file

takes approximately eight seconds. Therefore, the speedup is mainly driven by saving the

time to write the tile ID file. However, we need to keep in mind that the RaptorInputFormat

also allows us to apply other optimizations such as combining relevant tiles in the same

RaptorSplit which is not easy to do with a simple tile ID file.

2.6 Conclusion

In this chapter, we presented a distributed MapReduce algorithm for the zonal

statistics problem. The proposed algorithm provides several key ideas that can carry on

41

to other distributed algorithms for processing big vector and raster datasets. First, the

proposed framework runs two phases, a single-machine preprocessing step that computes a

common data structure to be used in parallel, and defines the tasks that will be executed in

parallel. The second phase runs in parallel and aims at reading and processing the big raster

files efficiently. The second key idea is introducing the RaptorInputFormat which is the first

input format that combines raster plus vector data in one split. The RaptorInputFormat can

define the units of work to be executed in parallel and provides an easy way to optimize and

balance the load across machines. The RaptorInputFormat combined with the preprocessing

step can also prune irrelevant parts of the raster file in order to speed up the parallel

processing. Finally, we investigated several improvements to this method such as splitting

the vector file into chunks and compressing the intermediate files between the preprocessing

and distributed aggregation. Our experiments show that the proposed algorithm can scale

to very large data whereas the baselines could not handle big vector or raster data.

42

Chapter 3

Raptor Zonal Statistics: Fully

Distributed Zonal Statistics of Big

Raster + Vector Data

This chapter talks about Raptor Zonal Statistics, a distributed implementation in

Hadoop that can be used to efficiently compute zonal statistics.

3.1 Introduction

Advancements in remote sensing technology have led to a tremendous increase in

the amount of remote sensing data. For example, NASA EOSDIS provides public access to

more than 33 petabytes of Earth Observational data and is estimated to grow to more than

330 petabytes by 2025 [17]. European Space Agency (ESA) has collected over five petabytes

of data within two years of the launch of the Sentinel-1A satellite and is expected to receive

43

data continuously until 2030 [18]. This big remote sensing data is available as raster data

which is represented as multidimensional arrays. Many applications need to combine the

raster data with vector data which is represented as points, lines, and polygons. This

chapter studies the zonal statistics problem which combines raster data, e.g., temperature,

with vector data, e.g., city boundaries, to compute aggregate values for each polygon, e.g.,

average temperature in each city. This problem has several applications including the study

by ecologists on the effect of vegetation and temperature on human settlement [32, 33],

analyzing terabytes of socio-economic and environmental data [29, 30], and study of land

use and land cover classification [57]. It can also be used for areal interpolation [56] and to

assess the risk of wildfires [24].

There exist many big spatial data systems which either efficiently process big

vector data, e.g., SpatialHadoop [14], GeoSpark [80], and Simba [78], or big raster data, e.g.,

SciDB [70], RasDaMan [3], GeoTrellis [36], and Google Earth Engine [28]. Unfortunately,

none of these systems are well-equipped to combine raster and vector data together and

they all become very inefficient for the zonal statistics problem for big raster and vector

data.

Traditional methods to process the zonal statistics problem focus on either vec-

torizing the raster dataset [86] or rasterizing the vector data [29, 2]. The first approach

converts each pixel to a point and then runs a traditional spatial join with polygons using

a point-in-polygon predicate [86]. Finally, it groups the pixels by polygon ID and computes

the desired aggregate function. This algorithm suffers from the big computation overhead

of the point-in-polygon query. Even if the polygons are indexed, this algorithm is still im-

44

practical. Furthermore, when the vector data is very large, a disk-based index is needed

which makes this algorithm even slower. The second approach rasterizes the vector data

by converting each polygon to a raster (mask) layer with the same resolution as the input

raster layer and then combines the two raster layers to compute the desired aggregate func-

tion [29, 2]. This algorithm suffers from the computation overhead of the rasterization step

and the disk overhead of randomly accessing the pixels that overlap each polygon.

To further show the limitation of the baseline algorithm, this chapter provides a

theoretical analysis of the two existing approaches by making an analogy to traditional join

algorithms. First, we show that the vector-based approach resembles an index nested loop

join which suffers from the repetitive access of the index. This means that it should be used

only if the non-indexed dataset, i.e., the raster dataset is very small. On the other hand,

the raster-based approach resembles a hash-join algorithm which suffers from the excessive

size of the hashtable, i.e., the number of pixels. This reveals that this algorithm would work

well if the number of pixels that overlap the polygons is very small.

This chapter proposes a fully distributed algorithm, termed Raptor Zonal Statis-

tics (RZS), which overcomes the limitations of the two baseline algorithms. RZS overcomes

the limitations of existing algorithms since it scans the raster data sequentially while ag-

gregating pixels without running any point-in-polygon queries. The key idea is to generate

an intermediate structure, termed intersection file, which accurately maps vector polygon

to raster pixels. Further, this intersection file is sorted in a way that matches the raster file

structure which optimizes the disk access to raster data, hence, speeds up the algorithm;

this results in a linear-time algorithm for merging raster and vector data that is analogous

45

to sort-merge. In general, the proposed algorithm runs in three steps, namely, intersection,

selection and aggregation. The intersection step partitions the vector data and generates

the intersection file that contains a compact representation of the intersection of the vector

and raster datasets. The intersection file is then sorted to match the raster file by only

reading the metadata of the raster file, e.g., resolution and tile size, i.e., without reading

the pixel values. The selection step concurrently scans the intersection file and the raster

file to produce the set of ⟨polygon ID, pixel value⟩ pairs. To run this step, we introduce

two new components, RaptorInputFormat and RaptorSplit, that allows this step to read

both raster and vector data and process them in parallel. Finally, the aggregation step

groups these pairs by polygon ID and calculates the desired aggregate function. A previous

work (presented as a poster [65]) proposed a straight-forward parallelization of an efficient

single-machine algorithm [16, 67] which showed some promising results but was limited

since it used the single-machine algorithm as a black-box. In this chapter, we redesign the

algorithm to make it fully distributed and we make a cost analysis to theoretically prove

its efficiency over the baselines.

Experiments on real datasets, with nearly a trillion pixels and 330 million polygon

segments, show that the proposed algorithm (RZS) outperforms all baselines for big data,

including Rasdaman and Google Earth Engine, and shows perfect scalability with large

data and big clusters. Furthermore, RZS is up-to 100× faster in data loading since it does

not require any preprocessing while baseline systems need a heavy data loading phase to

organize the data for efficient processing.

46

The rest of this chapter is organized as follows. Section 3.2 covers the related work

in literature. Section 3.3 provides a review of the concepts used in this chapter. Section 3.4

describes the proposed system, Raptor Zonal Statistics. Section 3.5 provides a theoretical

analysis and comparison of the proposed approach and the raster-based baseline. Section 3.6

provides an extensive experimental evaluation. Finally, Section 3.7 concludes the chapter.

3.2 Related Work

In this section, we cover the relevant work in the literature. First, we give an

overview of big spatial data systems and classify them according to whether they primarily

target vector data, raster data, or both. After that, we cover the work that specifically

targets the zonal statistics problem.

3.2.1 Big Vector Data

In this research direction, some research efforts aimed to provide big spatial data

solutions for vector data types and operations. There are several systems in this cate-

gory including SpatialHadoop [14], Hadoop-GIS [1], MD-HBase [45], Esri on Hadoop [76],

GeoSpark [80], and Simba [78], among others. The work in this category covers (1) spatial

indexes such as R-tree [14, 80, 78], Quad-tree [76, 45], and grid [14], (2) spatial opera-

tions such as range query [76, 14, 80, 78, 45], k nearest neighbor [14, 80, 78, 45], spatial

join [14, 80, 78], and computational geometry [10], (3) spatial data visualization includ-

ing single-level and multilevel [15], and (4) high-level programming languages such as Pi-

geon [13].

47

Vector-based systems can support the zonal statistics problem by utilizing the

index-nested loop join operation with the point-in-polygon predicate. Shahed [11] further

improves this query by building an aggregate Quad-tree index for the raster layer but it

only supports rectangular regions while this work considers complex polygons without the

need to prebuild an index. When it comes to complicated polygons and high-resolution

raster data, all these techniques become impractical.

3.2.2 Big Raster Data

Systems in this research direction focus on processing raster datasets which are

represented as multidimensional arrays. Popular systems include SciDB [70], RasDaMan [3],

GeoTrellis [36], and Google Earth Engine [28]. The set of operations supported for raster

datasets are completely different from those provided for vector datasets. They are usually

categorized into four categories, namely, local, focal, zonal, and global operations [60] and

the computational model is based on linear algebra.

To support the zonal statistics operation in these systems, each polygon is first

rasterized to create a mask layer. Then, the mask layer is combined with the input raster

layer to select overlapping pixels which are finally aggregated. This process is repeated for

each polygon separately since the polygons might be overlapping in the mask layer. There

are two drawbacks to this approach. First, if the raster data has a very high resolution,

the size of each mask layer can be excessively large. Second, for nearby and overlapping

polygons, this algorithm will need to read the same regions of the raster data many times.

A parallel algorithm can be used for efficient rasterization [75] but this does not address

the two limitations described above.

48

3.2.3 Big Raster-Vector Combination

Systems like PostGIS and QGIS [54] can work with both vector and raster data

but they internally use two isolated libraries, one for each type, and they are still limited

to the approaches described above for the zonal statistics problem. Other research suggests

an alternative data representation for vector and raster data [49, 5] that can speed up some

queries that combine both data types. However, these methods are impractical since they

require an expensive preprocessing phase for rewriting and indexing all the data. On the

other hand, the proposed approach does not require any index construction while achieving

a better query performance.

3.2.4 Zonal Statistics

Zonal statistics is a basic problem that is used in several domains including ecol-

ogy [32, 33] and geography [29, 30]. However, there was only a little work in the query

processing aspect of the problem. ArcGIS [2] supports this query by first rasterizing the

polygons dataset and then overlaying it with the raster dataset which resembles a hash-join.

Zhang et al. [86, 85] solves the zonal statistics problem using an algorithm that resembles

the index nested-loop join. It converts each pixel to a point and relies on GPUs to speed

up the calculation. The drawback is that it has to load the entire raster dataset in GPU

memory which is a very expensive operation and is impractical for very large raster datasets.

Zhao et al. [89] aimed at increasing the performance of the existing zonal statistics method

using python in a shared memory multi-processor system. That method uses threads by

sending each thread a set of raster files but requires rasterizing the polygon dataset.

49

Recent work in Terra Populus [30, 29] demonstrates the complexity of the problem

on big raster and big vector datasets. The Scanline algorithm [16, 67] was a first step in

efficiently processing the zonal statistics problem by combining vector and raster data but it

was limited to a single machine. In [65] (a poster), we tried a straight-forward parallelization

of the Scanline approach that showed some performance improvement but it was limited

as it used Scanline as a black-box. In particular, it only parallelized the second phase that

reads the raster data but still processes the vector data on a single machine which made it

limited to small vector data.

This work proposes a novel scalable algorithm that follows a sort-merge approach

for processing the zonal statistics problem on big raster and vector data using MapReduce.

It is different than the work described above in four ways. 1. It leverages the MapReduce

programming paradigm to scale out on multiple machines. 2. It is a fully distributed ap-

proach to the zonal statistics problem which allows it to scale to big raster and vector data.

3. It provides a novel mechanism for parallel task distribution that combines raster-plus-vec-

tor (Raptor) in one unit of work. 4. It can efficiently prune non-relevant parts in the raster

layer to speed up query processing.

3.3 Review of Raster and Vector Data

This section provides a background on some relevant concepts from GIS and spatial

databases, and the zonal statistics problem. Interested readers can refer to [60] for more

information.

50

3.3.1 Spatial Data Representation

The two common representations of spatial data are vector and raster representa-

tions. The vector representation uses constructs like point, line, and polygon, and operations

like intersect, union, and overlaps. The raster representation uses matrices as a common

construct and the operations are all performed on these matrices. Each entry in the matrix

is called a pixel. To map between pixels and geographic locations, two mappings are used,

namely, world-to-grid (W2G) and grid-to-world (G2W). The W2G mapping takes a coordi-

nate in longitude and latitude and maps it to a position in the matrix and the G2W mapping

does the opposite. These mappings can also be used to map data between the vector and

raster datasets. The algorithm in this chapter relies mainly on these two mappings to map

the computation between the two representations without having to convert one of them

entirely to the other representation.

3.3.2 Raster File Structure

A raster layer is modeled as a very large dense matrix. One layer can typically

contain trillions of entries. Most standard file structures, e.g., GeoTIFF and HDF5, parti-

tion this large matrix into smaller equi-sized tiles. Each tile is stored as one block and is

typically small enough to load entirely in the main memory. Tiles are identified by sequence

numbers identifies, tid, starting at zero. The file contains a lookup table that allows locating

any tile efficiently. The data in all tiles can be stored in row-major or column-major order

but they have to be the same. Finally, if a compression technique is applied, then the data

in each tile is compressed separately to allow for the decompression of a single tile. The

51

proposed algorithm relies on this structure to achieve a highly optimized solution while

avoiding any prebuilt indexes.

3.3.3 Zonal Statistics

The input to the zonal statistics problem is a raster layer r, a vector layer v, and an

accumulator acc. The vector layer v consists of a set of polygons which are usually disjoint,

e.g., city boundaries. The raster layer is a large two-dimensional matrix that contains

remote sensing data, e.g., temperature values. The accumulator acc is a user-provided

function which takes pixel values, one at a time, and computes the statistics of interest. For

example, one accumulator can compute the average value, while another one can compute

the histogram over the spectrum of raster values. The output is a value for the accumulator

for each polygon in the vector layer. For example, if r represents the temperature in the

world, v represents the 50 US States, and acc is an average accumulator, the output of this

problem will be the average temperature for each state.

3.3.4 Zonal Statistics on Raster DB

The raster database approach focuses on processing raster data by representing

them as multi-dimensional arrays and is used in [70, 3, 36, 2, 30]. To solve the problem

of zonal statistics, this approach follows a method called clipping. It runs in the following

three steps.

Step 1 rasterizes each polygon in the vector layer separately, by generating a mask layer of

the same resolution of the input raster layer where a pixel has a value of one if it is inside

the polygon and a zero if it is outside.

52

Step 2 applies a masking operation between the input raster and the rasterized mask which

is a local operation.

Step 3 computes the desired aggregate function by aggregating all the values in the masked

layer.

3.3.5 Zonal Statistics on Vector DB

The vector database approach focuses on processing vector data by representing

each feature in terms of a list of coordinates associated with a set of attributes. A feature

can be a point, a line, or a polygon. This approach is used in [14, 80, 78]. To solve the

problem of zonal statistics, this approach follows a method called point-in-polygon. It runs

in the following three steps.

Step 1 builds a spatial index for the vector layer to facilitate the point-in-polygon query.

That is, given a query point, find the containing polygon.

Step 2 converts each pixel to a point and runs an index lookup to find the containing

polygon, if any.

Step 3 groups the points by their containing polygon ID and runs the desired aggregate

function on each group.

3.3.6 Single-machine ScanLine Method

The scan-line method [16] is the state-of-the-art algorithm for computing zonal

statistics on a single machine. It runs in the following three steps.

53

Step 1 calculates the Minimum Bounding Rectangle (MBR) of the input polygon(s) and

maps its two corners from world to grid coordinates using the W2G mapping. These two

corners help in identifying the lower and upper rows in the grid coordinates that define the

range of scan lines to process.

Step 2 computes the intersections of each of the scan lines with the polygon boundaries. It

converts each scan line from grid coordinates to world coordinates using G2W mapping and

stores their y-coordinates in a sorted list. Each polygon is scanned for its corresponding

range of scan lines, which are then used to compute intersections with the polygon. These

intersections are then sorted by their x-coordinates for each scan line.

Step 3 finds the pixels that lie inside the polygons and process them. It maps the x-

coordinates of the intersections from world to grid coordinates and accumulates the cor-

responding pixel values. For multiple polygons, all intersections in one row are processed

before moving to the next row.

This approach requires a minimal amount of intermediate storage for the inter-

section points. It also minimizes disk IO by scanning the raster data exactly once and by

reading only the pixels that overlap the polygons.

3.4 Implementation

This research started with the aim of implementing a distributed system for solv-

ing the zonal statistics operation efficiently for large datasets. To do so, we worked on

creating a distributed implementation for the scanline algorithm introduced in [16]. Scan-

line algorithm is a single-machine algorithm, that can work with raster and vector data

54

in their native formats and can be used to perform the zonal statistics operation. We

initially implemented a partially distributed method in Hadoop called DARaptor or the

Efficient MapReduce Implementation (EMI) [65, 67]. While EMI was more efficient than

the Scanline algorithm and could scale to large datasets, its scalability was limited. We

then implemented the fully distributed method, Raptor Zonal Statistics [66].

Raptor Zonal Statistics (RZS) follows a sort-merge approach to combine raster and

vector data and answer the zonal statistics query. By observing the analogy between the

two baseline approaches and the two join algorithms, hash join and index nested loop, the

reader can see why neither of them scales to big raster and vector data. The rasterization

approach does not scale due to the large number of pixels that overlap the polygons which

needs to be retrieved from disk and decompressed. The vectorization approach does not

scale either due to the overwhelming computation cost of index lookups or the large size of

the index which has to be stored on disk. This makes us think of using a sort-merge-like

algorithm, however, it requires an expensive sorting phase which outweighs the saving in

the merge step. We show below that we can minimize the overhead of the sorting phase

using a novel data structure named, intersection file.

Raster data is inherently sorted, the pixels can be indexed based on the tiles in

the raster layer to which they belong as well as based on their row and column numbers.

Hence, the key idea of the proposed algorithm is that we exploit this internal structure of

the raster data, and produce an intermediate compact representation of the vector data,

called intersection file, which perfectly matches the order of the raster data. Furthermore,

to produce the intersection file, we only need to process the vector layer and the metadata

55

Vector Data

Raster Data

1-Intersection Step

Metadata

Vector
Chunks

Raptor SplitsIntersection
Files

3-Aggregation Step2-Selection Step

Intersections

〈pi,m〉{ }

〈pi,m〉{ }

〈pi,m〉{ }

Partial
Aggregates

〈pi,Σm〉{ }

〈pi,Σm〉{ }

〈pi,Σm〉{ }

Final
Aggregates

<p1,Σm>

...

<p2,Σm>

<pn,Σm>

Figure 3.1: Overview of the Raptor Zonal Statistics (RZS) algorithm

of the raster layer which means that the raster dataset needs to be scanned only once.

Finally, the intersection file is generated and stored in a distributed fashion which allows

the proposed algorithm to be parallelized over a cluster of machines.

This algorithm as shown in Figure 3.1 runs in three steps, namely, intersection,

selection, and aggregation. The intersection step computes the intersection file which cap-

tures the intersections between the vector and raster data and sorts these intersections to

match the raster data. The selection step uses the intersection file to read the pixels in the

raster layer that intersect each polygon in the vector layer. Finally, the aggregation step

groups the pixel values by polygon ID and computes the desired aggregate function, e.g.,

average. The details of the three steps are given below.

Step 1: Intersection

This step runs as a map-only job and is responsible for intersection file generation.

It takes as input the vector layer and the metadata of the raster layer and computes a

common structure, called intersection file, which is stored in the distributed file system to

56

be used in the selection step. The vector layer consists of a set of polygons each represented

as a list of straight line segments. The metadata of the raster layer consists of the dimensions

(number of rows and columns), two affine matrix transformations G2W and W2G (which

define mapping from raster to vector layer and vice-versa), and the size of each tile in the

raster layer, i.e., number of rows and column, and is only a few kilobytes.

The input vector layer is partitioned into fixed-size chunks, 128 mb by default, and

each chunk is assigned to one task. While any partitioning technique works fine, we employ

the R*-Grove partitioning technique [74] which maximizes the spatial locality of partitions

while ensuring load balance.

For each chunk, this step computes all the intersections between each row in the

raster layer and each segment of each polygon in the vector layer. To compute these

intersections, each line segment is mapped to the raster layer using theW2G transformation

to find the range of rows that it intersects. Then, it is a simple constant-time computation

to find the x-coordinate of the intersection. Since we only need to know the intersection at

the pixel level, the intersection is mapped to the raster space and the integer coordinate of

the pixel is computed. We record the intersection as the triple ⟨pid, x, y⟩ where pid is the

polygon ID to which the segment belongs and (x, y) is the coordinate of the intersection in

the raster layer. All these triplets are kept in memory and can be spilled to disk if needed.

After all the intersections are computed, we run a sorting phase which sorts the

intersections lexicographically by (tid, y, pid, x)
1, where tid is the raster tile ID that contains

the intersection. Notice that the raster tile ID does not have to be explicitly stored since it

can be computed in a constant time for each intersection using metadata of raster layer.

1the sorting order becomes (tid, x, pid, y) if the raster file is stored in column-major order

57

Finally, the sorted intersections are stored in the intersection file as illustrated in

Figure 3.2. The figure shows multiple intersection files, one for each chunk in the vector data.

Since each chunk is processed on a separate machine, the intersection files are computed

and written in a fully distributed manner. In each intersection file, the intersections are

stored in the sorted order (tid, y, pid, x). As mentioned earlier, tid is not physically stored

to save space and is computed as needed. If there are multiple raster files, all intersections

for the first raster file are stored first, followed by the second raster file and so on. This

imposes a logical partitioning of the intersection file by tid as illustrated by the dotted lines

in the figure. In addition, we append a footer to each intersection file which stores a list of

polygon IDs that appear in this file, the number of tile IDs for each raster file in this file, and

a pointer to the first intersection in each raster tile ID tid. Since intersection files contain

intersections in only tiles overlapping the vector chunk, we store the combined extent of

the tiles that appear in the file, to map each tile to its raster tile ID as and when required.

This footer is only a few kilobytes for a hundred megabyte file and does not impose any

significant overhead.

Step 2 : Selection

This step uses the intersection files produced in the first step to select all the pixels

that are contained within each polygon. The input to this step is the intersection files and

the raster layer while the output is a set of pairs ⟨pid,m⟩ where pid is the ID of the polygon

and m is the measurement in the pixel. Notice that these values are pipelined to the next

step and are not physically stored as there are typically hundreds of billions of these pairs.

58

Vector Dataset
 (m chunks)

Raster Dataset
(n tiles)

Intersection Files

Vector
chunk #1

Intersection File (IF)#1
sorted by (tid, y, pid, x)

footer

pid xytid
1
1

2
2
2

n
n
n
n

Computed column
(not physically stored)

#m

IF #2 IF #m

Vector
chunk #2

1 2

n

...

Figure 3.2: Intersection file structure

This step runs in two phases, namely Raptor Split Generation and Raptor Split

Processing. The first phase creates a list of tasks that is distributed among machines to per-

form the parallel computation. The second phase processes the raster files and intersection

files as defined by the Raptor splits.

Raptor Split Generation

The Raptor Split Generation phase generates Raptor Splits using the RaptorInputFormat.

In Hadoop, the InputFormat is the component that splits the input file(s) into roughly

59

equi-sized splits to be distributed on the worker nodes. These splits are mapped one-to-one

to mappers. Therefore, each split defines a unit of work called map task. A corresponding

record reader uses the split to extract key-value pairs that are sent to the map function for

processing. Since our unit of work is a combination of raster plus vector data, we define the

new RaptorInputFormat, RaptorSplit, RaptorRecordReader, and RaptorObject, described as

follows. Starting with the smallest one, the RaptorObject contains a vector chunk ID [1,m],

a raster file ID [1, r], and a raster tile index [1, n]. The RaptorObject defines the smallest

unit of work done by the map function. The RaptorSplit stores a vector chunk ID, a raster

file ID and a range of tile indexes. The RaptorSplit defines the task given to each mapper.

We can control the amount of work given to each machine by adjusting the number of tiles

in the RaptorSplit. The RaptorRecordReader takes one RaptorSplit and generates all the

RaptorObjects that it represents. Finally, the RaptorInputFormat takes all the input to the

problem, i.e., the raster dataset and all intersection files, and produces a list of RaptorSplits

that define the map tasks given to worker nodes.

The information needed to create the RaptorSplits is contained in the footers of

the intersection files. As shown in algorithm 1, Raptor Split Generation takes as input

a 2-d array called TileSizes and the number of mappers, M. TileSizes is an array of size

m × r, where the first dimension is a vector chunk ID in the range [1,m], and the second

dimension is a raster file ID in the range [1, r]. It contains the number of intersecting tiles

for each combination of vector chunk and raster file, extracted from the footers of their

respective intersection files. Line 1 calculates the total number of tiles, TotalTiles among

all the vector chunks. To ensure load balance among workers, we assign each RaptorSplit

60

Algorithm 1: Raptor Split Generation

Input: TileSizes[m][r]: Number of intersecting tiles for each

VectorChunkID∈ [1,m] and RasterFileID∈ [1, r]

M: Number of mappers

Output: RaptorSplits : {(VectorChunkID, RasterFileID, StartTileIndex,

EndTileIndex)}

/* calculate total number of tiles */

1 TotalTiles = Sum(TileSizes)

/* calculate number of tiles per RaptorSplit based on number of mappers

available */

2 TilesPerSplit = Max
(
10, TotalT iles

M

)
3 for V ectorChunkID ← 1 to m do

4 StartTileIndex = 0

5 for RasterF ileID ← 1 to r do

6 NumTiles = TileSizes[VectorChunkID][RasterFile]

7 EndTileIndex = Min(NumTiles, StartTileIndex + TilesPerSplit)

8 RaptorSplits.add(VectorChunkID, RasterFileID, StartTileIndex,

EndTileIndex-1)

9 StartTileIndex = EndTileIndex

61

a maximum number of tiles. Line 2 calculates TilesPerSplit by dividing the TotalTiles

by the number of mappers for load balance; this value is upper-bounded at 10 to cap the

amount of work per split. Lines 3-9 generates the RaptorSplits. For each vector chunk

and raster file, it generates a set of StartTileIndexes and EndTileIndexes. Note that these

are indexes to the raster tile IDs in their respective intersection files. Information in the

footer of the intersection file facilitate the mapping of indexes to actual tile IDs. The

VectorChunkID, RasterFileID the StartTileIndex and the EndTileIndex are then added to

a list of RaptorSplits.

The use of tile indexes allows this step to effectively prune all the tiles that do

not contribute to the answer. In case of multiple raster files, this phase limits the range

of tile IDs in each RaptorSplit to only one file, as can be seen in algorithm 1 This ensures

that each machine in this step will need to process only one file. On the other hand, if the

raster layer is stored in one big file, we can still split that file among multiple machines for

efficient processing.

Raptor Data Processing

This phase takes a RaptorObject, which contains a vector chunk ID, raster file ID, and

a tile index, and generates a set of pairs ⟨pid,m⟩ where pid is a polygon ID and m is a

measurement of a pixel contained in that polygon. In Spark, this phase can be implemented

as a flatMap transformation and in Hadoop, it can be implemented as part of the map

function. Algorithm 2 shows the pseudo-code of this phase. Line 1 maps the tile index to a

tile ID tid from the footer of the intersection file. Line 2 loads the tile tid from the raster file

as a two-dimensional array. A tile is typically small enough to fit in main-memory. Then,

62

Algorithm 2: Raptor Data Processing

Input: RaptorObject: (VectorChunkID, RasterFileID, TileIndex)

Output: {⟨pid,m⟩}

1 tid = getTileID(VectorChunkID, TileIndex)

2 Tile = loadTile(RasterFileID, tid)

3 Intersections = getIntersections(VectorChunkID, RasterFileID, tid)

4 for i← 1 to Intersections.length by 2 do

5 y = Intersections[i].y

6 pid = Intersections[i].pid

7 x1 = Intersections[i].x

8 x2 = Intersections[i+ 1].x

9 for x← x1 to x2 do

10 m = Tile.getPixel(y, x)

11 output.add(pid,m)

Line 3 loads the intersections for the given tile and vector chunk as shown in Figure 3.2.

The for loop in Line 4 iterates over these intersections in order; each pair of consecutive

intersections represents a range of pixels in the tile that are inside the polygon. The loop

in Line 9 iterates over these pixels, reads each one, and output the pair ⟨pid,m⟩ where pid

is the polygon ID and m is the measure value of the corresponding pixel. These pairs are

aggregated in the next step as described shortly.

63

Step 3: Aggregation

In this last step, the set of pairs ⟨pid,m⟩ are aggregated to produce final aggregate

values ⟨pid,
∑

m⟩, where
∑

is any associative and commutative aggregate function. As

in most distributed systems, the aggregate function is computed in two phases, partial

and final aggregates. The partial/final computation supports any function that is both

associative and commutative which covers a wide range of aggregate functions. The partial

aggregates are computed locally in each machine while the final aggregates are computed

by combining all the partial aggregates for the same group in one machine. In Spark, this

can be implemented as a aggregateByKey transformation while in Hadoop this can be

implemented as a pair of combine and reduce functions.

3.5 Theoretical Analysis

This section presents a theoretical analysis of the proposed algorithm, Raptor

Zonal Statistics (RZS) and the baseline Raster Database Approach (RDA). For conciseness,

we focus only on the disk IO cost of these two algorithms; previous work showed that

the vector database approach (VDA) is not competent [16]. Table 3.1 summarizes the

parameters used throughout the analysis.

3.5.1 Raster Database Approach (RDA)

The RDA algorithm scans the polygons and for each polygon it clips the over-

lapping portion of the raster layer and aggregates the pixel values. We first estimate the

average disk cost per polygon DRDA and the total cost is simply computed by multiplying

64

Table 3.1: Parameters for Cost Estimation

Symbol Meaning

r Number of rows in raster

c Number of columns in raster

wt Tile width in pixels

ht Tile height in pixels

p Pixel size in degrees

np Number of polygons

ns Number of line segments in all polygons

ns =
ns
np

Average number of line segments per polygon

wp Average polygon width in longitudinal degrees

hp Average polygon height in latitudinal degrees

I Input size in bytes

B HDFS block size in bytes

C Chunk size. Number of polygons per chunk

65

by the total number of polygons np. The key point in this analysis is that the smallest

access unit in raster files is a tile of size wt× ht pixels. Raster data is stored in compressed

blocks of that size so the entire block has to be decompressed even if only one pixel needs

to be processed. On average, each polygon overlaps with nt tiles as calculated below:

nt =

⌈
wp

wt · p

⌉
×
⌈

hp
ht · p

⌉
(3.1)

where wp and hp are the average width and height of a polygon in degrees. This makes
wp

p

and
hp

p the average width and height of a polygon in pixels. Next, we can calculate the

average amount of disk access per polygon DRDA as follows:

DRDA =

⌈
wp

wt · p

⌉
×
⌈

hp
ht · p

⌉
× wt × ht (3.2)

Hence, the total disk cost for RDA, DRDA = np ×DRDA.

3.5.2 Raptor Zonal Statistics (RZS)

In RZS, the unit of work is a vector chunk. The input file is first loaded into HDFS

and split into blocks using the R*-Grove [74] partitioning algorithm. Then, each block is

further split into chunks of C polygons each. In the following part, we first analyze the

characteristics of each chunk, i.e., width and height, and then we present the cost estimate

for each one.

Vector Chunks: Given a vector file of size I, R*-Grove will create nB blocks

with roughly equal size. The number of blocks is nB = ⌈I/B⌉. The average number of

pixels covered by each block =c · r/nB. Assuming square-like partitions, the width and

height of each block is:

wB = hB =
√
c · r/nB (3.3)

66

Next, each block is split into chunks where each chunk has roughly C polygons

each. Since a block is split based on number of polygons not the location of the polygons,

the width and height of each chunk is equal to that of a block. Keep in mind that the above

width and height are in pixels.

wc = hc =
√

c · r/nB =

√
c · r
⌈I/B⌉

(3.4)

Disk Access per Chunk: To estimate the disk access per chunk, we follow a

similar analysis to the one we did with RDA where we need to read all tiles that intersect

the chunk. Unlike RDA where the same tile can be read many times for all overlapping

polygons, the proposed intersection file allows us to read each tile at most once. Therefore,

the average disk access per chunk for RZS is calculated as follows:

DRZS =

⌈
wc

wt

⌉
×
⌈
hc
ht

⌉
× wt × ht (3.5)

Assuming balanced partitioning of the np polygons in the input into equi-sized

chunks of C polygons each, the number of chunks would be nc = ⌈np/C⌉.

Finally, the overall disk access for RZS is:

DRZS = ⌈np/C⌉ ·DRZS (3.6)

This approach is analogous to sort-merge join, which achieves a very efficient

computation time by sorting only the smaller dataset, i.e., the vector dataset. Unlike the

traditional sort-merge algorithm, the sorted files might be scanned several times due to the

overlap between chunks.

67

3.5.3 Discussion

The disk IO cost of RZS is much lower than that of RDA because the size of

vector chunks is much bigger than that of a single polygon. This results in much smaller

overlap between chunks, hence, lower disk IO cost. Notice that this is only possible thanks

to the intersection file structure which enables RZS to transform the complex computation

of multiple, possibly overlapping polygons, to a single scan over the raster data. In the

experiments section, we will verify the accuracy of our model using real data.

3.6 Experiments

This section provides an experimental evaluation of the proposed algorithm, Rap-

tor Zonal Statistics (RZS). We compare the distributed RZS algorithm to the single-

machine Scanline Method [16], Rasdaman (a RasterDB approach) [3], Google Earth Engine

(GEE) [28] and our previous distributed algorithm EMI [65]. We show that the proposed

RZS is up-to three orders of magnitude faster than Rasdaman, is twice as fast as GEE

while using an order of magnitude fewer machines and is able to scale to much bigger vec-

tor datasets than EMI. We evaluate them on real data and also show the effect of vector

partitioning on RZS.

Section 3.6.1 describes the experimental setup, the system setup, and the datasets.

Section 3.6.2 provides a comparison of the proposed RZS, Scanline method, EMI, Rasdaman,

and Google Earth Engine based on the total running time. It is followed by a discussion

of the vector and raster dataset ingestion time for each of these methods in Section 3.6.3.

Section 3.6.5 gives a verification of the proposed cost model for RZS and RDA methods.

68

Table 3.2: Vector and Raster Datasets

Vector datasets

Dataset np ns wp hp File Size I

Counties 3k 52k 0.82 0.51 978 KB

States 49 165k 12.18 4.28 2.6 MB

Boundaries 284 3.8m 18.61 8.18 60 MB

TRACT 74k 38m 0.096 0.068 632 MB

ZCTA5 33k 53m 0.19 0.15 851 MB

Parks 10m 336m 0.0067 0.0043 8.5 GB

Raster datasets

Dataset image size c× r tile size wt × ht resolution p

glc2000 40, 320× 16, 353 128× 128 0.0089

MERIS 129, 600× 64, 800 256× 256 0.0027

US-Aster 208, 136× 89, 662 208136× 1 0.00028

Tree cover 1, 296, 036× 648, 018 36001× 1 0.00028

Section 3.6.6 discusses two applications where the proposed RZS algorithm has been used.

The next three sections discuss the effect of various parameters on the total running time of

RZS. Section 3.6.7 shows the effect of the size of vector chunks on the performance of RZS.

Section 3.6.8 and Section 3.6.9 shows the effect of compression of intersection files and the

effect of partitioning the vector data on the total running time of RZS.

69

3.6.1 Setup

We run all the experiments on a Amazon AWS EMR cluster with one head node

and 19 worker nodes of type m4.2xlarge with 2.4 GHz Intel Xeon E5−2676 v3 processor, 32

GB of RAM, up to 100 GB of SSD, and 2×8-core processors. The methods are implemented

using the open source GeoTools library 17.0.

In all the techniques, we compute the four aggregate values, minimum, maximum,

sum, and count. We measure the end-to-end running time as well as the performance metrics

which include reading both datasets from disk and producing the final answer. Table 3.2

lists the datasets that are used in the experiments along with their attributes using the

terminology in Table 3.1. The vector layers represent the US continental counties and US

continental states with 3,000 and 49 features respectively. The Large-Scale International

Boundaries (LSIB) includes geographic national boundaries for 249 countries and disputed

areas. The TRACT and ZCTA5 datasets are a part of TIGER 2017 dataset. The parks

datasets is derived from OpenStreetMap and contains park boundaries over the entire world.

The raster datasets come from various government agencies. The GLC2000 and MERIS

2005 datasets are from the European Space Agency with pixel resolutions of 0.0089 decimal

degrees (1km) 0.0027 (300m) respectively. The US Aster dataset originates from the Shuttle

Radar Topography Mission (SRTM) and covers the continental US. Hansen developed the

global Tree Cover change dataset which covers the entire globe. Both datasets have a spatial

resolution of 0.00028 decimal degrees (30m).

RZS is implemented in Hadoop 2.9. We chose to implement it in Hadoop rather

than Spark for two reasons. First, it was simpler because Hadoop can easily support custom

70

input format, i.e., the RaptorInputFormat while Spark does not have a specialized method

to define a new input format; it just reuses Hadoop’s InputFormat architecture. Second,

Spark is optimized for in-memory processing while RZS is a disk-intensive query that does

not have a huge memory footprint.

For RDA, we used Rasdaman 10.0 running on a single machine since the distributed

version is not publicly available. We also used Google Earth Engine (GEE) which runs on

Google Cloud Engine. GEE is still experimental and is currently free to use. The caveat is

that it is completely opaque and we do not know which algorithms or how much compute

resources are used to run queries but it uses up-to 1,000 nodes according to their published

report [28]. We run each operation on GEE 3-5 times at different times and report the

average to account for any variability in the load. For large vector data, we hit the limit of

GEE of 2GB vector file. To work around it, we split the file into 2GB smaller files, run on

each file separately, and add up the results. All the running times are collected as reported

by GEE in the dashboard.

3.6.2 Overall Execution Time

This part compares Raptor Zonal Statistics (RZS), Scanline, EMI, Rasdaman, and

Google Earth Engine (GEE) based on the end-to-end execution time. This experiment is

run for all the combinations of vector and raster datasets shown in Table 3.2, and its results

can be seen in Figure 3.3. For the cases when Rasdaman takes more than 48 hours, we

extrapolate the results based on our cost model and mark them with a dotted line. All

experiments on RZS run on a cluster of 20 machines except the TreeCover dataset which

71

105 106 107 108
100

101

102

103

104

105

106

No. of line segments (ns)

R
u
n
n
in
g
ti
m
e
(s
ec
on

d
s
-
L
o
g
S
ca
le
)

GLC2000

Rasdaman RZS ScanLine Google Earth Engine EMI

105 106 107 108

101

102

103

104

105

106

No. of line segments (ns)

R
u
n
n
in
g
ti
m
e
(s
ec
on

d
s
-
L
o
g
S
ca
le
)

MERIS

105 106 107 108

102

103

104

105

No. of line segments (ns)

R
u
n
n
in
g
ti
m
e
(s
ec
on

d
s
-
L
og

S
ca
le
)

US ASTER

105 106 107 108

102

103

104

105

No. of line segments (ns)

R
u
n
n
in
g
ti
m
e
(s
ec
on

d
s
-
L
og

S
ca
le
)

TREECOVER

Figure 3.3: Comparison of total running time of RZS, Scanline, EMI, GEE and Rasdaman

72

runs on 100 nodes due to its huge size. This is done in order to provide a comparison to

GEE which may run on from 100 nodes to up-to 1,000 nodes [28].

As can be observed from Figure 3.3, the proposed distributed RZS algorithm is

orders of magnitude faster than Rasdaman for all combinations of raster and vector datasets.

RZS is up-to two orders of magnitude faster than GEE and twice as fast for the largest

input (Parks▷◁TreeCover), despite using an order of magnitude less machines.

Rasdaman failed to ingest the US-Aster file due to its huge size (48GB as a single

BigGeoTIFF file). In addition to being a single machine, Rasdaman does not scale due to

using the RDA method which scans the polygons, clips the raster layer for each polygon, and

aggregates the clipped values. Based on the overlap of polygons and raster tiles, the same

tile could be read tens of times. RZS overcomes this problem by generating intersection

files that are ordered based on the raster file structure to reduce the number of scans of the

raster file.

When compared to GEE for large datasets, RZS is at least 2x faster for the large

datasets and up-to two orders of magnitude faster. This is an impressive result knowing that

GEE runs on up-to a 1,000 machines. In particular, the speedup of RZS is much higher for

large vector datasets since GEE is a raster-oriented system that does not handle big vector

data well [28]. While GEE is faster for small vector datasets, this is due to the overhead

of using Hadoop for small inputs. Indeed, the single machine Scanline [16] algorithm is an

order of magnitude faster than both for these small datasets, e.g., GLC2000 and MERIS

and small vector data. Therefore, if we want to be always faster than GEE, we just need

to switch to Scanline for small datasets but we leave this for a future work. GEE is a free

73

tool (for now) but the knowledge of how it implements the zonal statistics operation2 is not

public. Also, the amount of resources available to users at any time can vary and this is

why we report the average of 3-5 runs.

When compared to the single-machine Scanline we observe two orders of mag-

nitude speedup of RZS due to the parallel implementation. We also observe that Scanline

cannot scale to large vector data due to the limitations of the intersection step which runs

on a single machine and that is why the straight-forward parallelization of Scanline on

Hadoop [65], EMI does not scale either. RZS shows performance on par or better than the

previously proposed EMI, however, EMI runs out of memory for the parks dataset, which

is the largest vector dataset.

3.6.3 Ingestion Time

Figure 3.4 shows the ingestion time of the raster and vector datasets for the pro-

posed RZS algorithm, Rasdaman, and GEE. Scanline method can read data from disk and

hence does not have the overhead of ingestion time. RZS algorithm requires both raster and

vector datasets to be stored into HDFS, while GEE requires them to be uploaded to its web

interface as well. We do not upload US Aster and Treecover to GEE as they are available

in its data repository. Rasdaman only requires to ingest the raster datasets, although it

failed to ingest the US Aster dataset as explained earlier.

As can be observed from the Figure 3.4 RZS has a lower raster data ingestion

time as compared to Rasdaman and GEE. Figure 3.4 also shows that RZS has an order of

magnitude lower vector data ingestion time when compared to GEE. The reason for that

2reduceRegions function in Google Earth Engine (GEE)

74

109 1010 1011 1012
100

102

104

No. of Pixels (c× r)

T
im

e
(l
og

se
cs
)

Raster Dataset

RZS Rasdaman GEE

105 106 107 108

102

104

No. of line segments (ns)

T
im

e
(l
o
g
se
cs
)

Vector Dataset

Figure 3.4: Ingestion time

is that RZS follows an in-situ data processing methodology which does not need to read

the data until the query is executed. This makes it a perfect choice for ad-hoc exploratory

queries.

3.6.4 Closeup Scalability of Rasdaman

Since Rasdaman preloads the raster data but not the vector data, it could be a

good choice if only a few polygons need to be processed on a large raster dataset. Figure 3.5

shows the results of the zonal statistics query using the MERIS dataset and varying the

number of polygons in the parks dataset. It can be observed that Rasdaman is optimized

for a very few polygons. However, its running time has a steep ascent as the number of

polygons increases. This happens because Rasdaman processes each polygon in a separate

query which results in overlapping work. RZS is able to scale more steadily as it can combine

the overlapping work using the intersection file structure.

75

100 101 102 103 104 105

100

101

102

103

104

No. of polygons (np) - Parks dataset

R
u
n
n
in
g
ti
m
e
(l
o
g
se
cs
)

Rasdaman
RZS

Figure 3.5: Scalability of Rasdaman and RZS on MERIS dataset

3.6.5 Verification of Cost Models

This part verifies our cost models described in Section 3.5 and uses that analysis

to better explain the results that we got earlier. Since zonal statistics is a disk IO-intensive

operation, we only use the disk cost estimation. Also, to be able to compare the actual run-

ning time to the estimated cost, we normalize all values and compare the trends rather than

the absolute values. All cost models are computed based on the parameters in Table 5.1,

the system parameters B = 128MB and C = 5, 000, and the equations in Section 3.5.

Figure 3.6 compares the actual running time of RZS to the estimated cost (both

normalized) when processing GLC2000 and TreeCover datasets. As shown in the figure, the

trends generally match for both the small and the large datasets showing the robustness of

the cost model. Notice that there is still some deviation due to our assumptions of uniform

distribution of the vector data which does not hold in reality. To quantify the relationship,

we calculated Spearman’s correlation coefficient for both cases and it turned out to be

0.94 and 0.77 for GLC2000 and TreeCover respectively. Notice that we did not use the

76

105 106 107 108

109

1010

No. of line segments (ns)

N
or
m
al
iz
ed

co
st

(L
og

sc
al
e)

Spearman’s Correlation rs = 0.94

DRZS (Estimate) RZS (Actual)

GLC2000

105 106 107 108

1012

1013

No. of line segments (ns)

N
o
rm

a
li
ze
d
co
st

(L
og

sc
al
e)

Spearman’s Correlation rs = 0.77

TreeCover

Figure 3.6: Verification of the cost model of RZS

Pearson’s correlation coefficient as it will result in a misleading value of almost 0.999 due

to the exponential increase on the x and y values.

Figure 3.7 shows the estimated cost of Raster Database Approach (RDA) and the

actual cost of both Rasdaman and GEE. It is evident from the chart that the trend of the

cost model and the actual times are very similar. While we do not have definite information

about GEE, we highly predict that they use the RDA algorithm given the almost perfect

match in trends. The correlation coefficient with Rasdaman in GLC2000 is perfect, and for

GEE 0.9 and 0.83. We did not have enough data points for Rasdaman with the TreeCover

dataset to plot the figure or calculate the coefficient. We believe the cost model for RDA

is more accurate since it does not make an assumption about the uniformity of the data as

we do with RZS. Still, it is amazing how accurate the results are given that we only relied

on the statistics shown in the Table 3.2.

77

105 106 107 108

108

109

No. of line segments (ns)

N
or
m
al
iz
ed

co
st

(L
og

sc
al
e)

Correlation rs = 1.0, rs = 0.9

Cost Model Rasdaman GEE

GLC2000

105 107 109

1010

1011

1012

No. of line segments (ns)

N
or
m
al
iz
ed

co
st

(L
o
g
sc
a
le
)

Correlation rs = 1.0, rs = 0.83

TreeCover

Figure 3.7: Verification of the cost model of RDA

3.6.6 Applications

This section discusses two real-life applications of our proposed system, population

estimation and wildfire combating.

The first application of RZS is to estimate the population of arbitrary regions using

landcover data [56]. The problem is that the US Census Bureau reports the population at

the granularity of census tracts which are regions chosen by the Bureau to keep the privacy

of the data. Areal interpolation transforms these counts from source polygons, i.e., tracts,

to target polygons, e.g., ZIP Codes, with unknown counts. One accurate method [56] uses

the National Land Cover database (NLCD) [46] raster dataset as a reference to disaggregate

the population counts into pixels and then aggregate them back into target polygons. To

speed up the process, we apply RZS to compute the histogram for each polygon in the

78

0.11 2 3 4 5 6 7 8 910

0.5

1

Vector Chunk Size (x103)

T
im

e
R
at
io

US Aster

Counties States Boundaries TRACT ZCTA5

1 2 3 4 5 6 7 8 910
0.4

0.6

0.8

1

Vector Chunk Size (x103)

T
im

e
R
a
ti
o

Treecover

Figure 3.8: Effect of vector chunk size on total running time

TRACT dataset on the NLCD dataset. We compared our single-machine implementation

to the original Python implementation used by the developers of that algorithm, which

was a vector database approach (VDA). Using RZS, the entire process completed in 10

seconds for the state of Pennsylvania while the python-based script took over 100 minutes

to complete. Given that impressive speedup, the authors were able to scale their work to

the entire US which took under 2 hours on a single machine.

The second application of RZS is in combating wildfires. The goal of this applica-

tion is to co-create probabilistic decision theoretic models to combat wildfires, which would

use RZS for pre-processing satellite wildfire data. The raster data used has a size of 60 GB

and the vector data has over 3 million polygons, both spanning over California. We have

been able to compute zonal statistics for it in under 2 hours using an AWS cluster of 20

machines.

79

3.6.7 Vector Chunks

This experiment studies the effect of splitting the vector file into chunks. In par-

ticular, this experiment varies the sizes of vector chunk used in RZS starting with 100, then

1000 to 10,000, incremented in steps of 1000. Figure 3.8 shows the overall running time for

the two larger raster datasets as the chunk size increases. Since each line in this graph rep-

resents a different vector dataset, we are only interested in the trend of the lines. Therefore,

each line is normalized independently to fit all of them in one figure. We omit the running

times for the extreme cases that run out of memory. We observe in this experiment that a

very low chunk size of 100 results in a reduction in the performance due to the overhead of

creating and running too many RaptorSplits. On the other hand, using a very large chunk

size eventually results in some job failures due to the memory overhead. This is equivalent

to not splitting the vector file.

After chunk size of 3000, the number of vector chunks generated for Counties and

Boundaries becomes stable which leads to marginal variation in their running times. The

variation of chunk size on larger vector datasets and Tree Cover is more prominent than the

other vector datasets. This is due to the large size of the Tree Cover dataset. The increase

in vector chunk size leads to a decrease in the number of chunks being generated and hence,

less number of raptor splits. This leads to each machine having more amount of work to

do, and a non-optimal distribution of work. It can be concluded that the choice of vector

chunk size should neither be too big (10,000) nor too small(100). We chose it to be 5,000

based on the experiments and according to our system configuration.

80

Table 3.3: Compression Ratio of Intersection Files

GLC2000 MERIS US Aster Tree Cover

Counties 4.13 4.18 4.34 5.22

States 3.41 3.34 3.3 6.07

Boundaries 2.56 2.55 3.68 17.43

TRACT 2.94 3.21 3.45 4.9

ZCTA5 2.88 3.11 3.34 4.64

3.6.8 Compression of Intersection File

In this experiment, we study the effect and trade-off of compressing the intersection

files. The size of the raw (uncompressed) intersection files ranges from a few kilobytes to a

gigabyte. In order to reduce the network and disk IO when storing this file in the distributed

file system, we investigated the option of compressing the intersection files using both GZIP

and Snappy compression libraries. We did not see a major difference between the two

libraries so we are only reporting the results of GZIP. The speedup of the approach without

using compression to the approach with the use of compression can be seen in Figure 3.9.

It can be observed that the speedup is either equal to one or marginally less than it. This

means that the total running time without the use of compression is less than or almost

equal to that with compression. Table 3.3 reports the compression ratio of intersection files,

which is defined as the ratio of the size of uncompressed file to that of the compressed file.

Although, from Table 3.3, it can be seen that the size of compressed files is far smaller than

81

105 106 107 108
0.5

0.6

0.7

0.8

0.9

1

No. of line segments (ns)

S
p
ee
d
u
p

GLC2000 MERIS US Aster Tree Cover

Figure 3.9: Effect of compression of Intersection File

that of non-compressed intersection files this did not provide a significant improvement in

the running time. This is because the time saved in writing the compressed intersection file

is nearly the same as the time taken for compression and decompression of the intersection

file. However, compressing the intersection file can be a viable option, in case network IO

becomes a bottleneck.

3.6.9 Spatial Partitioning of Vector Data

This experiment shows the effect of spatial partitioning input vector data on the

total running time. We use R*-Grove [74] algorithm to partition the vector data. The

results for the total running time of the proposed algorithm with partitioned and non-

partitioned vector data are shown in figure 3.10. As can be observed from the figure,

82

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

Pa
rk
s

100

101

102

103

104

105

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

GLC2000

W/o Partitioning Partitioned

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

Pa
rk
s

100

101

102

103

104

105

R
u
n
n
in
g
ti
m
e
(L

o
g
S
ec
s)

MERIS

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

Pa
rk
s

100

101

102

103

104

105

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

US Aster

C
ou
nt
ie
s

St
at
es

B
ou
nd
ar
ie
s

T
R
A
C
T

ZC
TA
5

100

101

102

103

104

105

R
u
n
n
in
g
ti
m
e
(L

og
S
ec
s)

Tree Cover

Figure 3.10: Effect of spatially partitioning vector data

83

Table 3.4: Time taken to Partition Vector Datasets

Vector Dataset Partitioning Time

Counties 22.97s

States 38.92s

Boundaries 121.09s

TRACT 118.14s

ZCTA5 126.85s

Parks 209.40s

spatially partitioning the vector data helps achieve orders of magnitude of speedup for

the large vector datasets (ZCTA5 and Parks). In addition, the largest combination of

datasets, Parks×TreeCover took more than 48 hours with non-partitioned data and we had

to terminate it. The total running time for other vector datasets either shows a marginal

improvement or remains the same.

Spatial partitioning reduces the spatial extents of the contents of each HDFS block

which also reduces the overlap with raster data. Not using spatial partitioning means that

the contents of each block would cover the entire input space which results in reading the

entire raster file when processing each intersection file. Our cost model can further explain

the results of this experiment by setting the average width and height of a block to the

width and height of the raster dataset, respectively. For small vector datasets with one

block, there will be no difference between spatial and non-spatial partitioning. However, as

the number of blocks increase the effect of spatial partitioning will be huge.

84

Table 3.4 reports the time taken by R*-Grove [74] algorithm to partition the vector

datasets. As can be seen from the table, The partitioning though fast takes hundreds of

seconds to partition the vector dataset. Parks was the only dataset, where the difference

between running time of partitioned and non-partitioned input vector data is much larger

than the partitioning time. It can thus be concluded that partitioning vector data is of

advantage for very large vector datasets.

3.7 Conclusion

This chapter proposes a novel distributed MapReduce algorithm, Raptor Zonal

Statistics (RZS) to solve the zonal statistics problem. First, RZS runs an intersection step

that computes the intersection file which maps vector polygons to raster pixels. Second,

the selection step concurrently scans the intersection file and the raster file to find the

join result. To process the two files in parallel, the chapter introduces two new components

RaptorInputFormat and RaptorSplit which define the smallest unit of work for each parallel

task. Third, it runs an aggregate phase that computes the desired statistics for each polygon.

Our experiments with large scale real data show that the proposed algorithm is up-to two

orders of magnitude faster than the baselines including Rasdaman and Google Earth Engine

(GEE). We also presented a cost model which helped us in explaining the results of both

RZS and the baseline techniques.

85

Chapter 4

The Raptor Join Operator for

Processing Big Raster + Vector

Data

Through our collaborations, we realized that applications that combine raster and

vector data use various operations that are not limited to zonal statistics. They might

also need to use geometry types other than polygons. These applications would also re-

quire to process input data before combining them and then process output data once it

is generated. Therefore, to increase the usability of the system and meet the demands of

the ever-increasing size of data, we decided to implement the Raptor Join operator. This

chapter talks about Raptor Join, a distributed implementation in Spark that can be used

to efficiently process the combination of raster and vector data.

86

4.1 Introduction

Machine Learning has become a popular tool to analyze and utilize spatial data

for research applications such as areal interpolation [56], wildfire risk assessment [34, 24],

crop yield mapping [41], studying the effect of vegetation and temperature on human settle-

ment [32, 33], and land use classification [57]. These applications often use spatial data from

various sources and in different data representations. This makes it necessary to pre-process

data and combine it into a single data representation before it can be used by the algorithm.

Spatial data can be classified into two data representations: vector and raster. Vector data

includes points, lines, and polygons, while raster data, such as satellite images, is repre-

sented as multidimensional arrays. The major differences between these two representations

make combining them difficult. This is why existing systems are designed to either process

vector data [80, 14, 45, 37, 52] or raster data [21, 3, 27, 70, 51]. These systems are efficient

for vector-vector join or raster-raster join but do not implement a raster-vector join. In this

chapter, we propose a new type of join, Raptor Join that can efficiently combine raster and

vector data to implement complex spatial data analysis pipelines.

Existing systems support raster-vector join operation by converting one of the

datasets so that both datasets become of the same representation. Figure 4.1 illustrates

how raster- and vector-based systems support raster-vector join. First, raster-based sys-

tems rasterize the vector data to the same resolution as the raster data and then process

them using raster-raster join. Similarly, vector-based systems vectorize the raster data by

converting each pixel to a point and then join both datasets using a vector-vector join.

These two approaches run fine for small and medium resolution data since the conversion

87

 3 GB

Raster Input Vector Input

Size: 629 MB

Raster-based System Vector-based System Proposed Work

Vector Join (720 sec)

Conversion

Raster Join (240 sec) Raptor Join (30 sec)

Raster Input Vector Input

Size: 629 MBSize: 632 MB

Raster Input Vector Input

Size: 629 MB

 2500 MB

Procesing
Time

Size: 632 MB Size: 632 MB

Figure 4.1: Comparison of raster, vector and raster+vector based systems

process does not dramatically increase the data size. However, with the recent availability

of high-resolution satellite data, these approaches no longer scale. In fact, the converted

data size increases quadratically with the resolution [66].

To further highlight the limitations of existing approaches, we start with raster-

based systems. Existing raster-based approaches for the raster-vector join problem can

be broadly categorized into two methods. First, on-the-fly method iterates over vector

records, rasterize each record on-the-fly, and combine it with the raster data to retrieve

the relevant pixels. This method suffers from the overhead of the rasterization step and

the redundant access to raster data when geometries are close to each other. Second,

the materialized method materializes all the rasterized data to increase the computation

efficiency but it suffers from the huge size of the rasterized data. For example, a 632MB

dataset that represents the 74k US Census tracts is rasterized to nearly 2.5GB of data at

1km resolution.

On the other hand, vector-based systems convert raster pixels to points and process

them with the vector data as illustrated in Figure 4.1. Methods can be similarly categorized

88

as on-the-fly and materialized methods. The on-the-fly method first indexes the vector data

and then scans the pixels, convert each pixel to a point, and process it with the index. This

method suffers from the large index size and the overhead of accessing the index for each

pixel. The materialized method first converts and materializes all pixels to points, and then

runs an efficient distributed spatial join algorithm on the result. This method suffers from

the huge size of the materialized data. For example, a 34MB compressed GeoTIFF file with

600 million pixels will be converted to nearly 3 GB of decompressed vector representation.

The proposed Raptor Join can concurrently process raster and vector data. Raptor

Join (RJ⋊⋉) overcomes the limitations of existing systems as follows. First, RJ⋊⋉ is imple-

mented using an in-situ approach in Spark [82] which does not require an expensive data

loading phase. Second, it directly processes raster and vector data in their native represen-

tations and does not require any data conversion. Third, RJ⋊⋉ is modeled as a relational

operator which makes it easier to combine with other relational operators in Spark such as

selection, join, grouping, and aggregation. Previous work showed that a similar approach is

efficient for the zonal statistics problem [66, 65, 67] but that work is still limited and can-

not support complex analytical queries [68]. The RJ⋊⋉ operator is the first general-purpose

operator that can build complex distributed processing pipelines for raster and vector data.

The proposed RJ⋊⋉ operator models both raster and vector data as relational data.

Vector data is represented as a set of geometries while raster data is virtually represented

as a set of pixels. To join them, we first define three predicates that define the logic of

matching a pixel with either a point, a line, or a polygon. Based on that, we define the

Raptor join output and show how it can be combined with standard operators to perform

89

arbitrarily complex query pipelines for real scientific applications. To implement the Raptor

join operator efficiently, we propose a novel distributed index structure termed Flash index

which is stored as a set of integer arrays that represent ranges in the raster data that join

with the vector data. Flash index has a very small memory footprint which allows it to

efficiently process terabytes of data. We compare the proposed system to GeoTrellis [21],

Google Earth Engine [27], Rasdaman [3], Sedona [80], Adaptive Cell Trie (ACT) [37], and

Beast [88], and show that it has up-to three orders of magnitude performance gain over

them while being perfectly able to scale to big data and use fewer resources.

To summarize the contributions, this chapter: 1. Defines a logical relational data

model that represents both raster and vector data. 2. Proposes a new operator Raptor Join

(RJ⋊⋉) that joins raster and vector data. 3. Formulates three predicates for joining points,

lines, and polygons, with raster data. 4. Proposes a new data structure, Flash Index,

and uses it to implement RJ⋊⋉ efficiently in Spark. 5. Runs a comprehensive experimental

evaluation on real datasets to show the efficiency of RJ⋊⋉.

The rest of this chapter is organized as follows: Section 4.2 covers the related

work in literature. Section 4.3 describes the data and query model of the proposed system.

Section 4.4 details the algorithm used to implement the proposed operator and the Flash-

index construction and processing. Section 4.5 runs an extensive experimental evaluation

of the proposed system. Section 4.6 concludes the chapter and discusses future work.

90

4.2 Related Work

4.2.1 Non-spatial Joins

The join operation [55] is a fundamental relational database query operation that

brings together two or more relations. Logically, it can be modeled as a Cartesian product

followed by a filter on the join predicate. Non-matching attributes from the two relations

can be included in the output depending on the join type, inner, left outer, right outer,

or full outer join. The most common join operation in relational databases is equi-join

which uses the equality join predicate. Traditional join algorithms [44] are block nested

loop, index nested loop, hash join, and sort-merge join. Sort-merge join is usually the most

efficient algorithm if the inputs are already sorted. Otherwise, hash join is most commonly

used. Finally, index nested loop join is preferred if one dataset is very small and the other

one is indexed. In this chapter, we make an analogy between traditional join algorithms

and raster-vector-join algorithms to explain their limitations.

4.2.2 Spatial Join on Raster Data

Raster data is usually represented as multidimensional arrays and it is analysed

using map algebra [60, 43]. To join two raster layers, they must have the same dimensions.

If the dimensions mismatch, a regridding operation is applied on one dataset to match the

other dataset. Systems such as SciDB [70], RasDaMan [3], GeoTrellis [36], ChronosDB [83],

and Google Earth Engine [27] implement algorithms for raster operations that can process

large amounts of raster data. However, none of these systems provide an efficient join

operation for raster and vector data. They usually rasterize the vector data with a matching

91

resolution and apply the raster operation. [90, 9] optimize raster joins by utilizing its tiled

structure. However, they focus on either similarity joins or skewed data, which generally

do not apply to raster-vector joins.

4.2.3 Spatial Join on Vector Data

Vector data is represented as a set of points, lines, and polygons, which are all

represented as a set of coordinates. A spatial join on vector data can be defined as a join

that finds pairs of geometries that satisfy a spatial predicate, such as intersection, overlap,

or contains. Spatial join algorithms for vector data include R-Tree join [4], Spatial Hash

join [40], Partition Based Spatial Merge join (PBSM) [47], index-based in-memory joins [63,

37], and many more [39, 38]. Efforts have also been made to implement these spatial join

algorithms in a distributed environment in order to process big data [87, 14, 1, 80, 78].

None of these systems support raster-vector join efficiently. They can only convert raster

pixels to points to apply one of the spatial predicates. For raster datasets with billions of

pixels, this method does not scale.

4.2.4 Raster-Vector Joins

There have been some efforts to combine raster and vector data efficiently at the

data representation, indexing, and query processing levels. At the data representation

levels, a new vaster model was proposed [49] which converts both vector and raster data to

a common representation. However, it was not practical as it needs to convert both datasets

prior to doing any processing. At the indexing levels, the k2-raster index is proposed [5, 62]

to index raster data that can be combined with an R-tree vector index. However, this work

92

is limited to top-k and range queries and is limited to small data as it is a main-memory

index. At the query processing level, the single-machine Scanline algorithm [16, 67] was

proposed to solve the zonal statistics problem on raster and vector data. The algorithm

was also ported to Hadoop for scalability [65, 66]. However, this work was limited to the

zonal statistics computation on polygons and had a limited scalability when it comes to big

vector data.

This work is the first to define and implement a general-purpose join operator for

raster and vector data that can be used to build any complex relational query plan that

runs on the distributed Spark framework. It does not require a conversion process like [49].

The proposed Flash index is lighter than [5, 62, 37] and can scale to terabytes of data and

support any relational operation. Finally, the proposed work is more scalable and flexible

than [16, 67, 65, 66] since it can support any relational query plan and not only zonal

statistics.

4.3 Problem Formulation

This section defines the new Raptor Join (RJ⋊⋉) operator which joins raster and

vector data. We begin by defining the data model for both raster and vector inputs, followed

by the output of the RJ⋊⋉ operator for three types of geometries: points, lines, and polygons.

4.3.1 Input Data Model

A key advantage of our system is its ability to process both raster and vector data

in their native representation. In other words, it can directly process raster data represented

93

Metadata (M)

Metadata (M)

Metadata (M)

Metadata (M)
Tile

Pixel

Rn

R2

R1

...

T0 T1 T2
...

T15

Raster Dataset (R)

Figure 4.2: Raster file structure

as 2D arrays in compressed GeoTIFF or HDF files, and vector data represented as sequences

of coordinates in CSV or binary Shapefiles. This poses a challenge on how to combine these

two representations without data conversion. Our idea is to propose a common logicalmodel

that allows users to write queries but without actually doing any conversion. We choose

the relational model as a common data model since it naturally integrates with other Spark

operations to produce powerful query plans. We reiterate that even though we propose a

common relational model for formalization purposes, the proposed system neither requires

raster data to be input in a tabular form nor does it internally convert it into a relational

form.

94

Raster dataset R: Figure 4.2 illustrates the physical structure of the raster data. The

input consists of a collection of raster files. Each file R ∈ R, identified by a unique ID

Rid, is a matrix of pixels organized into rows and columns. Each pixel px = (Rid, x, y,m)

in file Rid is located at column x, row y, and has a numeric value m, e.g., temperature

or vegetation. For efficient storage and access, raster file formats group pixels into equi-

sized non-overlapping sub-arrays called tiles, and each tile is assigned an identifier, Tid. For

example, in Figure 4.2, each file contains 16 tiles and each tile contains 25 pixels. Typically,

each tile contains tens of thousands of pixels and is compressed to reduce storage. These

tiles are defined by the raster file format and our system uses this information as input to

optimize the data access.

We use the array model as a physical representation when data is loaded in memory

for its efficiency. In addition, we provide a relational logical representation to simplify the

query processing for users. The logical model represents the raster dataset, R as a set of

(Rid, x, y, m) tuples by simply flattening all the pixels and rasters in it.

R = {(Rid, x, y,m)}

Raster Metadata R.M : Each raster image R is associated with metadata that consists

of the following information:

• Number of columns (c) and rows (r) of pixels in the entire raster image.

• Tile width (tw) and tile height (th) in pixels.

• The grid-to-world (G2W) affine transformation matrix that converts a pixel location

95

on the grid to a point location in the world. The world-to-grid (W2G) transformation

is simply the inverse affine matrix.

• Coordinate Reference System (CRS) which describes the projection that maps the

Earth’s surface to the world coordinates as defined by the ISO-19111 standard [31].

We assume that all R ∈ R have the same CRS. If not, we can easily group them by

CRS and process each group individually.

We use the above information to calculate the following attributes, as needed, for

each raster layer R or pixel px:

• Pixel bounding box bb(px): is the bounding box of a pixel in world coordinates. The

two corner points of bb(px) are computed by applying the G2W transformation for

the pixel locations (x, y) and (x+ 1, y + 1).

• Pixel resolution px, py: is the width and height of a pixel bounding box. This value

needs to be calculated only once since all pixels have the same resolution. For square

pixels, we use p = px = py to refer to either of them.

• Tile ID Tid(px): is the tile that contains any given pixel.

Tid =
⌊ y

th

⌋
·
⌈ c

tw

⌉
+
⌊ x

tw

⌋
(4.1)

• Number of tiles in the file:

numTiles =
⌈ c

tw

⌉
·
⌈ r

th

⌉
(4.2)

96

We reiterate that the metadata is not replicated for each pixel, but is stored only

once in memory and is associated with pixels through the raster ID that contains the pixel.

Vector Dataset V : is defined as a collection of geometric features that comprise points,

lines, or polygons. Points represent discrete data values using a pair of longitude and

latitude (lon, lat). Lines or linestrings represent linear features, such as rivers, roads, and

trails. Each line is represented by an ordered list of at least two points. Polygons represent

areas such as the boundary of a city, lake, or forest. Polygons are represented as an ordered

collection of closed linestrings, i.e., rings, which constitute the boundary of the polygon and

optionally holes inside it. In this work, we represent a vector dataset, V as a set of (gid, g)

tuples, where gid is a unique identifier for the record and g is the geometry.

V = {(gid, g)}

If V has a different CRS than the raster dataset R, we convert V to match R

on-the-fly as the data is loaded.

4.3.2 RJ⋊⋉ Output Definition

This section formally defines the output of the RJ⋊⋉ operator that brings together

raster and vector data.

Raptor Join RJ⋊⋉: is a spatial join operator that takes as input a vector dataset V , a raster

dataset R, and a predicate θ. It produces the set of (geometry, pixel) pairs which satisfy the

predicate. Based on our collaboration with domain scientists in various fields [68], we define

three predicates θpoint, θline, and θpolygon for the three types of geometries defined shortly.

Each predicate θ takes two input records, a geometry g and a pixel px = (Rid, x, y,m), and

97

Point

Overlapping Pixel

(a) θpoint

Line

Overlapping Pixel

(b) θline

Overlapping Pixel

Polygon

(c) θpolygon

Figure 4.3: Three predicates θ for Raptor Join

returns true if the geometry and pixel match. Unlike vector-based systems, we show later

in this work that we do not need to test this predicate for individual pixels but we can still

find the correct result using the proposed Flash index.

Point Predicate (θpoint) returns true if the point location lies inside the bounding box

(bb(px)) of the pixel as illustrated by the two shaded pixels in Figure 4.3(a).

Line Predicate θline returns true if the line intersects the crosshair of the pixel, which is

defined as the two lines splitting the pixel bounding box in half, horizontally and vertically,

as depicted by dotted lines in Figure 4.3(b). In this figure, shaded pixels are the ones

that match the line according to this definition. This predicate can be used in hydrology

applications to measure the altitude profile along hillslopes to detect watersheds [19].

Polygon Predicate θpolygon returns true if the center of the pixel bounding box is inside

the polygon boundary. Figure 4.3(c) depicts an example where the pixel centers are marked

98

as points. Blue (green) points mark the centers of the pixels that are inside (outside)

the polygon. The shaded pixels are the ones whose centers lie inside the polygon. This

predicate can be used in agriculture to calculate the average vegetation per farmland [58]

where vegetation values are represented using a raster.

These three predicates can also be used to express other predicates. For example,

to match a linestring with all pixels within a distance d, we can compute a buffer of that

distance around the linestring and use θpolygon. Conversely, to match a polygon with pixels

around its perimeter, we can first compute the polygon boundary as a linestring and then

use θline. These transformations are computed on-the-fly as the data is loaded and do not

incur a significant overhead on the overall computation time.

For any of the three predicates, RJ⋊⋉ outputs a set of (gid, Rid, x, y, m) tuples

for all geometries and pixels that match. Notice that the user does not explicitly set the

predicate but it is automatically chosen by the system based on the geometry type.

R⋊⋉θV = {(gid, Rid, x, y,m)} (4.3)

This allows us to define RJ⋊⋉ as a new Spark RDD (Resilient distributed dataset)

[81] operator. Keep in mind that the RJ⋊⋉ operator can be combined with other operators as

needed by the application to satisfy the desired query logic. For example, it can be followed

by an equi-join with the vector dataset V on the attribute gid if the geometric feature is

needed. Also, it can be followed by a group by operator on gid to group all pixels that match

a single geometry. Similarly, the result can be grouped by the pixel value m if it represents

a raster object, e.g., contour or land type. We can extend our RJ⋊⋉ definition for outer joins

but we omit these definitions for brevity.

99

4.3.3 Integration with Spark

This part describes how the RJ⋊⋉ operation is integrated with the Spark RDD

API [81]. We use the Scala implicit classes1 feature to extend the SparkContext and RDD

classes without touching the internal code of Spark. In SparkContext, we add two sets of

functions for loading vector and raster data in various formats, e.g., geoTiff, shapefile,

and geojson. Vector data is loaded as RDD[IFeature] where IFeature represents a geo-

metric feature that contains a geometry and any additional non-spatial attributes in the

file. Raster data is loaded as RDD[ITile] where each ITile is an interface for accessing pixel

values and raster metadata. We also extend RDD[ITile] with the raptorJoin method that

takes RDD[IFeature] and returns RDD[(Long, Int, Int, Int, Float) which represents

a set of tuples (gid, Rid, x, y,m). Finally, raptorJoin is implemented as a transformation

so it can be preceded or followed by other transformations and they will be compiled into

one Spark job. For example, it can be preceded by a filter on the vector data and followed

by a grouped aggregation on the geometry ID or the pixel value.

4.4 Implementation

This section describes the proposed algorithm that implements the RJ⋊⋉ operator.

The key design objectives for RJ⋊⋉ are: 1. In-situ: RJ⋊⋉ does not require a preprocessing

phase for converting the input data. 2. Efficiency: RJ⋊⋉ handles high-resolution raster

data and big vector data. 3. Fully distributed: RJ⋊⋉ runs in a fully distributed mode for

scalability.

1https://docs.scala-lang.org/overviews/core/implicit-classes.html

100

1- Flash Index

Creation

2- Flash Index

Optimization

3- Flash Index

Processing

Pixel Ranges

P = {(Rid, Tid, gid, y, x1, x2)}

Raster Data

R = {(Rid, x, y,m)}

Vector Data

V={(gid, g)}

Metadata (M)

Input

R⋊⋉θV = {(gid, Rid, x, y,m)}

Pixel values

Output

Sorted pixel ranges

Figure 4.4: Implementation Overview of Raptor Join

The key idea of RJ⋊⋉ is to resemble a sort-merge join algorithm which scans the

input datasets only once. In contrast, raster-based systems resemble a hash-join where each

geometry is hashed to pixels (i.e., buckets) which are then joined with input raster data.

This will have a cost of O(|V | · |R|), since each geometry in V can be rasterized into a

layer with as many pixels as the raster layer, |R|. On the other hand, vector-based systems

resemble a nested-loop join where each pixel is compared to geometries to find the matching

ones. If an index is built on geometries, it will resemble an index nested loop join with a

101

running time of O(|V | log |V |+ |R| · log |V |), where the first term is for building the index

and the second term is for searching the index for each pixel in R. The proposed algorithm

has a running time of O(|V | log |V | + |R|), where the first term resembles a sort step for

the vector dataset (in our case, building the Flash index, described shortly) and the second

term resembles the linear merge step.

To accomplish this idea, RJ⋊⋉ exploits the inherent structure of the raster data and

builds an intermediate index structure, termed Flash index. The Flash index is built on

the vector data and has three main novelties to satisfy our design objectives. 1. In-situ:

The Flash index is built as needed which makes it suitable for in-situ data processing. 2.

Efficiency: Since it is built as needed, it is adjusted according to the input data size and

resolution to produce a compact and highly-efficient index. 3. Fully distributed: The

index is constructed, optimized, and processed in parallel which allows it to scale to big

raster and vector data.

Figure 4.4 gives an overview of the three phases of the RJ⋊⋉ algorithm, namely,

Flash index creation, optimization, and processing. The creation phase takes the input

vector data and only the metadata of the raster data to produce an initial Flash index that

consists of a set of unordered pixel ranges. The second phase, optimization, repartitions,

groups, and orders the pixel ranges to match the structure of the raster data. The goal is

to ensure that the third phase can process the entire join query in a single scan over the

raster data. The final processing phase uses the Flash index to scan the raster dataset and

produce the final output. The output is produced in parallel and is streamed into the next

operator depending on how the Spark job is structured.

102

4.4.1 Flash Index Creation

The input to this phase is the vector dataset (V) and the metadata (Rid.M)

of all raster files (Rid ∈ R) and the output is a set of pixel ranges P in the format

(Rid, Tid, gid, y, x1, x2), where, Rid is the ID of the raster file, Tid is the id of the tile, gid is

the geometry ID, and y is a row index in the raster file Rid and [x1, x2] is a range of pixels

in row y that match with the geometry gid. This initial version of the Flash index repre-

sents all matching ranges between the vector and raster data. This proposed representation

produces a compact index by matching the resolutions of the raster and vector data. For

example, if a complex geometry overlaps only a few pixels, only those pixels are encoded

regardless of the size of the geometry. On the other hand, if the geometry overlaps a large

number of pixels, those pixels will be grouped in ranges to reduce the size of the Flash

index. The pixel ranges also prune any non-relevant parts of either dataset. For example,

if the vector dataset covers farmlands, then any non-relevant parts in the raster data, e.g.,

water areas or deserts, will be excluded from the Flash index.

Preparation: Before the vector data can be processed, it might need some of

these preparation steps.

1. If the geographical coordinate reference system (CRS) of the vector and raster data

do not match, we convert the vector data to match the raster one using a map trans-

formation as defined by the ISO 19111:2019 standard [31].

2. If the geometric data does not already have a unique ID, we use the Spark operation

zipWithUniqueID to generate a unique ID for each geometry.

103

3. If the input vector RDD has fewer partitions than the number of cores in the Spark

cluster, we randomly repartition the records to have at least one partition per core.

This ensures that we fully utilize the cluster during index creation.

Pixel Ranges: Once the vector data is ready, the next step is to create the pixel

ranges. The computation of these ranges differs for the three predicates, θpoint, θline, and

θpolygon as detailed below. The following description is given for one raster file R but the

process is simply repeated for all raster files and the output of all of them is merged in no

particular order.

Pixel ranges for points

The intersection of a point with raster layer is defined as the pixel whose bounding

box bb contains the point. Given a point at location (lon, lat), the matching pixel location

can be found using the following equation.

(x′, y′) =W2G(lon, lat) (4.4)

(x, y) = (
⌊
x′
⌋
,
⌊
y′
⌋
) (4.5)

First, we apply the W2G transformation to find the grid coordinates and then use the floor

function to find the pixel coordinate. Since each point covers a single pixel, the range is

formed as (Rid, Tid, y, x, x), where Rid is the ID of the raster file and Tid is calculated using

Equation 4.1. Even though there is some redundancy in repeating x, we use this format to

maintain uniformity in the output for all geometry types.

104

Pixel ranges for lines

Our definition for the θline predicate matches a line segment with those pixels

whose centers are closest to the line, either horizontally or vertically. This definition is

analogous to the traditional mid-point line drawing algorithm that is used in the field of

computer graphics. To compute the pixel intersections, we iterate over each line segment

and convert its end points from world to grid. Then, we apply the mid-point algorithm

to find pixel intersections. However, unlike the original algorithm that deals with integer

coordinates, our algorithm must deal with floating point geographical coordinates. This

results in a collection of (gid, y, x) tuples, where y and x are the row and column identifiers

of the intersecting pixel and gid is the geometry ID.

The next step groups these pixel intersections into pixel ranges. Simply, if several

pixel intersections are in the same tile (Tid), belong to the same geometry gid, on the same

row (y), and have consecutive x or overlapping coordinates, they are combined into a single

pixel range. If there is only one pixel intersection with no adjacent intersections to be

combined with, a range with a single pixel is created (similar to the case of θpoint).

Algorithm 3 computes pixel ranges from line-pixel intersections. It takes as input

a list of pixel intersections represented in three arrays gid, x, and y. The output is five

arrays that together represent the pixel ranges. Line 1 sorts the intersections to bring the

ones that can be merged next to each other in the sort order. It then scans the list of pixel

intersections from the end to allow new intersections to be appended without affecting the

processing of the loop. Inside the loop, the tile ID is computed using Equation 4.1 and then

the two adjacent pixel intersections at i and i+1 are compared to check if they are adjacent

105

Algorithm 3: LinePixelIntersectionsToRanges

Input: A list of pixel intersections represented by three arrays gid[], x[], y[] with

equal length n

Output: A list of pixel ranges represented by five arrays t[], gid[], y[], x1[], x2[] with

equal length nout ≤ n

1 Sort (gid, x, y) lexicographically by (y, gid, x)

2 Let t[] be an array of tile IDs with length n initialized to zeros

3 numDeletions ← 0

4 for i=n-1 to 0 do

5 t[i]← Tid(x[i], y[i]) /* Use Equation 4.1 */

6 if i ̸= n− 1 and (t[i+1], gid[i+1], y[i+1]) = (t[i], gid[i], y[i]) and (x[i+1] = x[i]

or x[i+ 1] = x[i] + 1) then

7 t[i+ 1]← numTiles /* Mark for deletion */

8 numDeletions++

/* Form a range by appending a similar pixel */

9 else

10 (x[n], y[n], gid[n], t[n])← (x[i], y[i], gid[i], t[i])

11 n++

12 Sort (t, gid, x, y) lexicographically by (t, y, gid, x)

13 nout ← n− numDeletions /* Arrays are zero-based */

14 x1 = x[i : i is even ∧ i < nout]

15 x2 = x[i : i is odd ∧ i < nout]

16 t = t[i : i is odd ∧ i < nout]

17 gid = gid[i : i is odd ∧ i < nout]

18 y = y[i : i is odd ∧ i < nout]

19 return (t, gid, y, x1, x2, nout)

106

or overlapping. If they are, we remove the latter one at i+ 1. For efficiency, we only mark

it for deletion by setting its tile ID to numTiles which is larger than all valid tile IDs.

Otherwise, if the two pixel intersections cannot be merged, we insert a new intersection at

the tail of the list to form a range. Notice that the newly inserted intersection is not in the

sort order but this will be fixed after the loop finishes.

After the for loop, Lines 12-19 sort the list of intersections again by (t, y, gid, x)

which has two goals. First, it will push all the pixels marked for deletion to the end of the

list since they all have a maximum tile ID. Second, it will form pixel ranges from every

two consecutive pixel intersections. The final output is formed by combining every two

consecutive intersections into a single range as depicted in the algorithm. The running

time of this algorithm is O(n log n) for the sort steps. It can insert and delete at most n

intersections with a constant time for each insert or delete.

Pixel ranges for polygons

The intersection of a polygon with the raster layer is defined as the pixels whose

bounding box center is inside the polygon. Similar to linestrings, we first compute pixel

intersections and then combine them into ranges. However, unlike the linestrings, the set of

pixel intersections already define an initial set of ranges that are further adjusted to match

the structure of the output for points and linestrings. Figure 4.5 illustrates the computation

of pixel intersections. In this example, the raster file has 10 rows and 10 columns of pixels

and is organized into four tiles, each with 5× 5 pixels. The solid and hollow circles indicate

centers of pixels that are inside and outside the polygon, respectively.

107

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

Pixel center
in polygon

Pixel center
not in polygon

(a) Polygon raster join

0 1 2 3 4 5 6 7 8 9
0
1
2
3
4
5
6
7
8
9

Start Pixel
Intersection

Two pixel
Intersections

End Pixel
Intersection

(b) Pixel intersections

x y # x y

0 1 1 7 6 2

1 1 1 8 1 3

2 3 1 9 5 3

3 7 1 10 1 4

4 1 2 11 2 4

5 2 2 12 1 5

6 2 2 13 1 5

(c) Sorted pixel intersections

t y x1 x2

0 0 1 3 4

1 0 2 1 4

2 0 3 1 4

3 0 4 1 1

4 1 1 5 6

5 1 2 5 5

(d) Sorted pixel Ranges

Figure 4.5: Pixel intersection computation for polygons. (a) A sample polygon and the
pixels that satisfy the θpolygon predicate. (b) The pixel intersections computed using Algo-
rithm 4. (c) The pixel intersections sorted by (y, x) (gid is omitted for brevity). (d) The
pixel ranges produced by Algorithm 5

108

Algorithm 4: ComputePolygonSegmentIntersections

Input: One polygon segment (lon1, lat1)→ (lon2, lat2) and

raster metadata M

Output: A list of pixel intersections

1 (x1, y1)←M.W2G(lon1, lat1)

2 (x2, y2)←M.W2G(lon2, lat2)

/* xs and ys are real numbers */

3 row1 ← max(0, round(min(y1, y2))) /* row1 and */

4 row2 ← min(M.r, round(max(y1, y2))) /* row2 are integers */

5 for row ← row1 to row2-1 do

6 xIntersection ← round(x2 − (y2 − (row + 0.5))x2−x1
y2−y1

)

7 Output ≪ (max(0, min(xIntersection, M.c)), row)

The first step is to compute the pixel intersections between the boundary of the

polygon and the center lines of raster rows. Algorithm 4 describes how to compute all

intersections between a single polygon segment and centers of raster rows. It starts by

converting the two end points from the model to grid space. Notice that we keep the grid

coordinates as real numbers, not integers, for correctness. After that, it computes the range

of raster rows that intersect with the line segment without going out of raster boundaries.

For each row, it computes the intersection between the horizontal line at row+0.5 and the

polygon segment. The computed intersection is added to the list of intersections.

Figure 4.5(b) depicts the computed intersections with a cross. Pixels with double-

crosses indicate two intersections at the same pixel. A blue cross depicts the start of an

109

intersection range while a red cross depicts its end. Figure 4.5(c) lists all pixel intersection

locations computed by Algorithm 4. Notice that we omit gid for brevity since the example

shows only one polygon but the computation is repeated for all polygons in the input. The

algorithm starts by converting the two end points of each segment to the grid space while

keeping it as a real number. Then, it calculates the range of rows that intersect the line

segment while keeping in mind that the valid range of rows is [0, r]. For each row, the

segment is intersected with the horizontal line at the center of the row, i.e., row+0.5 while

keeping in mind that the valid range of intersections is [0, c].

The next step is to convert the pixel intersections into ranges in the same structure

of points and lines. By inspecting Figure 4.5, one can realize that each row must have an

even number of intersections for closed polygons. Each pair of consecutive intersections

represent a range of pixels. However, these ranges have three issues that are fixed using

a simple algorithm. First, ranges are open-ended, i.e., last pixel in the range is excluded

which can be easily fixed by decreasing the position of the range end by one pixel. Second,

some ranges are empty, e.g., the first range at rows 1 and 5, and some consecutive ranges

can be merged, e.g., the two ranges in line 2. Both of these can be fixed by removing

every pair of pixel intersections with the same exact coordinates. Third, some ranges span

two tiles which would result in an efficient disk access pattern since each tile is stored in a

different disk location. These are fixed by breaking each range that spans multiple tiles at

tile boundaries by creating two new intersections one at the end of the first tile and one at

the beginning of the next tile. All these adjustments are done in one scan over the list of

pixel intersections.

110

Algorithm 5: PolylgonPixelRanges

Input: A list of pixels intersections represented by three arrays gid[], x[], y[] with

equal length n

Output: A list of pixel ranges represented by five arrays t[], gid[], y[], x1[], x2[] with

equal length nout

1 Sort (gid, x, y) lexicographically by (y, gid, x)

2 Let t[] be an array of tile IDs with length n initialized to zeros

3 numDeletions ← 0

4 for i=n-2 to 0 step -2 do

5 if x[i] ≥ x[i+1] then

6 t[i]← t[i+ 1]← numTiles /* Mark points for removal */

7 numDeletions ← numDeletions + 2

8 else

9 t[i]← Tid(x[i], y[i]) /* Use Equation 4.1 */

10 x[i+ 1]← x[i+ 1]− 1 /* Make the range inclusive */

11 t[i+ 1]← Tid(x[i+ 1], y[i+ 1])

12 if t[i] ̸= t[i+ 1] then

/* Break the range into two at tile boundary */

13 (x[n], y[n], t[n]) ← (tw · t[i+ 1]− 1,ys[i],t[i])

14 (x[n+ 1], y[n+ 1], t[n+ 1]) ← (tw · t[i+ 1],ys[i],t[i+ 1])

15 n← n+ 2

16 if (gid[i+ 1], y[i+ 1], t[i+ 1])=(gid[i+ 2], y[i+ 2], t[i+ 2]) and

x[i+ 1] = x[i+ 2]− 1 then

17 t[i+ 1]← t[i+ 2]← numTiles

18 numDeletions ← numDeletions + 2

19 Similar to lines 12-19 of Algorithm 3

111

Algorithm 5 describes how to compute pixel ranges from pixel intersections for

polygons. Similar to the case of linestrings, it starts by sorting all pixel intersections lexi-

cographically by (y, gid, x). This directly creates ranges as illustrated in Figure 4.5. After

that, it makes one scan over those ranges from end to start. Line 5 checks if the range is

empty and marks the both ends for removal by setting the tile ID to a value bigger than

all valid tile IDs. If not empty, it computes the tile ID for both pixel intersections and

decrements the end to convert it from an open-ended to closed interval. Line 12 checks if

the range spans two tiles. If so, it breaks it into two ranges at the tile boundary. This is

done by inserting two new pixel intersections at the end of the first tile and the beginning

of the second tile. While this part assumes that a range can intersect at most two tiles, it

can be easily extended to ranges that span several tiles but we omit this part for brevity.

Line 16 tests if two consecutive ranges can be merged into one. Merging two ranges is done

by removing the end of the first one and the start of the second one. After all pixel inter-

sections are processed, the final pixel ranges are computed in the same way as lines 12-19

in Algorithm 3. This algorithm has a running time of O(n log n) for the two sorting steps.

Figure 4.5(d) shows the computed ranges using the above algorithm. The empty

intersections formed by pixel intersections (#0, #1) and (#12,#13) were removed in the

output. Additionally, the range formed by intersections (#2,#3) is split into two ranges at

two tiles. Finally, notice that the lower two tiles do not contain any ranges which means

they do not need to be processed or even read from disk.

RangeIterator: We store the intersections in memory in a column format, i.e.,

arrays of integer values. This reduces the memory overhead and improves the cache per-

112

formance. It also gives an opportunity for efficient column compression to reduce memory

overhead which we leave for future work. However, Spark is a row-oriented system and

cannot directly process column-oriented data in memory. To solve this mismatch issue, we

create a component, termed RangeIterator, that iterates over the ranges and streams them

into the next phase.

4.4.2 Flash Index Optimization

The pixel ranges generated in the first phase can be directly used to process the

data. However, the performance will not be optimal since some input raster tiles might

need to be processed several times. The reason is that the Flash-Index is created in parallel

for vector partitions so it is most likely that two vector partitions overlap the same set

of tiles. In this phase, we perform global and local optimizations to ensure minimum disk

access in the processing phase. At the global level, we repartition pixel ranges by tile ID

so that all ranges that belong to one tile are processed in a single task. At the local level,

we sort all ranges within each tile to match the order of the pixels in the raster file which

maximizes the cache hit while processing each tile. We efficiently perform both global and

local optimizations using the Spark operation repartitionAndSortWithinPartition.

Global optimization: We use the pair (Rid, tid) as a partitioning key which

moves all pixel ranges with the same tile ID to the same partition. While all tiles have the

same number of pixels, the workload across tiles can differ based on the number of pixel

ranges within each tile. The distribution of pixel ranges is expected to follow the distribution

of the vector data which means that the workload will have a spatial locality, i.e., nearby

tiles will have similar workload. Therefore, we use hash partitioning to distribute nearby

113

tiles across machines. We also adjust the number of partitions so that each partition will

have a pre-configured number of tiles k. The goal is to adjust the processing time for each

task to be a few seconds which balances the trade-off between parallelization overhead and

load skewness.

Local optimization: Within each partition, we sort the pixel ranges lexicograph-

ically by (Rid, tid, y, gid, x1) which ensures that tiles are processed in order and that pixels

are accessed row-by-row which matches the in-memory matrix representation of the tile.

This will maximize the cache efficiency since each row will be loaded in cache, processed in

full, and then evicted when no longer needed.

4.4.3 Flash-Index Processing

This is the only phase where the raster tiles are read from disk. It takes as input a

stream of pixel ranges sorted by (Rid, tid, y, gid, x1) and it reads the pixel values m to output

the final result as a stream of tuples in the format (gid, Rid, x, y,m). The order of the input

ensures that only one tile needs to be loaded in memory at a time which minimizes both

disk access and memory requirement. For each new range in the input, if the tile is not

the one currently loaded, the current tile is replaced with the new one. Then, all pixels in

the range are read one-by-one and the value is processed. If the value indicates an invalid

pixel, i.e., fill value, the pixel is skipped to the next one. Otherwise, if it is a valid value,

a tuple (gid, Rid, x, y,m) is output. The output tuples are generated in a streamed way to

avoid keeping all of them in memory at the same time. For example, if the RJ⋊⋉ operator

is followed by an aggregate operator, the values are directly processed and never kept in

memory.

114

4.5 Experiments

This section provides an extensive experimental evaluation of the proposed algo-

rithm for the Raptor Join (RJ⋊⋉) operator. We compare RJ⋊⋉ to three vector-based ap-

proaches, Adaptive Cell Trie (ACT) [37], Sedona [80] (formerly GeoSpark), and Beast [88];

and three raster-based approaches, Rasdaman [3], Geotrellis [36], and Google Earth Engine

(GEE) [27]. When applicable, we also compare to RZS [66] which supports only the zonal

statistics problem on polygons using Hadoop. Zonal statistics aggregates pixel values within

polygonal regions.

The experiments show that the proposed RJ⋊⋉ is up-to three orders of magnitudes

faster than the baselines. Additionally, RJ⋊⋉ is two to three orders of magnitude faster

in the data loading step. Finally, RJ⋊⋉ is the only system that is able to perform all the

experiments in one run over the big inputs while for GEE and GeoTrellis we needed, in

some cases, to manually split big files into smaller ones, process each one separately, and

combine the results, to work around system limitations.

4.5.1 Setup

We run RJ⋊⋉, GeoTrellis, Sedona, and Beast on a cluster with one head node and 12

worker nodes. The head node has Intel(R) Xeon(R) CPU E5−2609 v4 @ 1.70GHz processor,

128 of GB RAM, 2 TB of HDD, and 2×8-core processors running CentOS and Oracle Java

1.8.0 131. The worker nodes have Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz processor,

64 GB of RAM, 10 TB of HDD, and 2×6-core processors running CentOS and Oracle Java

1.8.0 31-b04. The methods are implemented using the open source GeoTools library 17.0.

115

Google Earth Engine runs on the Google Cloud Platform on up-to 1,000 nodes [27] but it

does not reveal the actual resources used by each query. Rasdaman and ACT are run on a

single machine with Intel(R) Core i5 − 6500 CPU @ 3.20GHz × 4, 32 of GB RAM, 1 TB

of HDD running Ubuntu 16.04.

For Rasdaman, we use version 10.0 running on a single machine since the dis-

tributed version is not publicly available. For GeoTrellis, we use the geotrellis-spark package

version 1.2.1, as described in its documentation. We used Sedona v1.3.2-SNAPSHOT as

described on its website. GEE is still experimental and is currently free to use. The caveat

is that it is completely opaque and we do not know which algorithms or how much compute

resources are used to run queries. Therefore, we run each operation on GEE 3-5 times at

different times and report the average to account for any variability in the load. All the

running times are collected as reported by GEE in the dashboard.

For each experiment, we perform the zonal statistics query that performs a raster-

vector join and then compute the four aggregate values, minimum, maximum, sum, and

count for the resulting tuples. We measure the end-to-end running time as well as the

performance metrics which include reading both datasets from disk and producing the

final answer. Table 4.1 lists the datasets that are used in the experiments along with their

attributes. All vector datasets are available on UCR-Star [25, 72]. All raster datasets except

Planet Data are also publicly available. They come from various government agencies. The

GLC2000 and MERIS datasets are from the European Space Agency with pixel resolutions

of 0.0089 decimal degrees (1km) and 0.0027 (300m) respectively. The US Aster dataset

originates from the Shuttle Radar Topography Mission (SRTM) and covers the continental

116

Table 4.1: Vector and Raster Datasets

Vector datasets

Dataset |V | Points File Size Type Coverage

all nodes 2.7b 2.7b 257.2 GB Points World

Linearwater 6m 292m 5.8 GB Lines US

Roads 18m 349 9.1 GB Lines US

Edges 68m 759m 33.6 GB Lines US

States 49 165k 2.6 MB Polygons US48

Counties 3k 52k 978 KB Polygons US48

ZCTA5 33k 53m 851 MB Polygons US

TRACT 74k 38m 632 MB Polygons US

Boundaries 284 3.8m 60 MB Polygons World

Parks 10m 336m 8.5 GB Polygons World

Raster datasets

Dataset # pixels Resolution Size Coverage

GLC2000 659M 1 km 629 MB World

MERIS 8.4B 300 m 7.8 GB World

US Aster 187B 30 m 35 GB US48

Tree cover 840B 30 m 782 GB World

Planet Data 4.2B 3 m 31 GB California

117

US. Hansen developed the global Tree Cover change dataset which covers the entire globe.

Both datasets have a spatial resolution of 0.00028 decimal degrees (30m). Planet data is

sourced from Planet Labs [71] and has a temporal range of a month. The coverage of these

datasets is either California, the contiguous 48 states (US48), the entire US, or the world.

4.5.2 Vector-based Systems

In this section, we compare to three vector-based baselines, Adaptive Cell Trie

(ACT) [37], Sedona [80], and Beast. Since ACT is a single-machine algorithm, we compare

it separately to a single-machine version of RJ⋊⋉. Then, we compare Sedona and Beast to

the Spark-based RJ⋊⋉ implementation.

On-the-fly method: ACT is a highly-efficient in-memory index for point-in-

polygon queries. We use it as a representative for the on-the-fly method that can avoid

materializing the converted data. To adapt it to our problem, we first create an ACT-4

index (which gives the best result) and we set its precision to match the raster resolution

to minimize the index size and maximize the throughput without significantly reducing the

accuracy. Then, we use GDAL library to load the pixels that are within the minimum

bounding rectangle (MBR) of the vector data directly from the GeoTIFF file. After that,

we convert each pixel location to a point, and search for overlapping polygons in the index.

For a fair comparison, we compare ACT to RJ⋊⋉ when both are running on a single-thread.

The single-thread RJ⋊⋉ implementation skips the index optimization phase since the Flash-

index is built on one machine. Since ACT is not optimized for disk access, we did not

include the raster or vector loading times.

118

100

101

102

103

104

In
d
ex

S
iz
e
(M

B
)
-
L
o
g
sc
al
e

RJ⋊⋉ Flash Index Size ACT Index Size

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

100

101

102

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s)

-
L
og

sc
a
le

GLC2000

RJ⋊⋉(SM) time ACT time

101

102

103

104

In
d
ex

S
iz
e
(M

B
)
-
L
og

S
ca
le

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

101

102

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s)

-
L
og

sc
a
le

MERIS

×

Figure 4.6: Comparison of running time (bars) and index size (lines) of ACT and RJ⋊⋉ for
small raster data on a single machine

Figure 4.6 shows the results of ACT and RJ⋊⋉ to join the two smallest raster

datasets with all vector datasets. ACT ran out of memory for larger datasets on a machine

with 32GB of RAM. For the smallest raster dataset, GLC2000, RJ⋊⋉ is up-to three orders of

magnitude faster than ACT. This can be explained by the index size which reaches nearly

6GB for ACT while it barely reaches 20MB for the proposed Flash index. Keep in mind that

ACT index needs to be searched for each pixel while the Flash index is scanned only once.

For the medium raster dataset, MERIS, we can see a similar behavior for both running time

and index size. Furthermore, ACT runs out of memory for the boundaries dataset while

the Flash index peaks at 60MB of memory.

119

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

101

102

103

× ×

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
og

S
ca
le
)

GLC2000

RJ⋊⋉ Beast Sedona

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

102

103

104

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le

)

MERIS

Figure 4.7: Running time of vector-based systems

Materialized method: Sedona and Beast are used to test the performance of

the materialized method. To use them, we first convert the raster dataset to points in the

format (lon, lat,m), which encodes the pixel location and value. We do not consider the

overhead of the conversion process. We show the results on only the smallest raster datasets

since none of the baselines was able to finish for the larger datasets. Figure 4.7 shows that

RJ⋊⋉ outperforms all baseline systems hands down. Furthermore, as the raster resolution

increases, from GLC2000 to MERIS, the gap grows to more than three orders of magnitude.

The reason is that the number of pixels increases quadratically with the resolution which

incurs a huge overhead on partitioning and processing this data.

120

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

101

102

103

104

105

106

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
og

S
ca
le
)

GLC2000

RJ⋊⋉(SM) Rasdaman

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

101

102

103

104

105

106

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

MERIS

Figure 4.8: Single machine performance of Rasdaman and RJ⋊⋉

The previous experiments confirm that vector-based systems are not suitable for

this problem. The on-the-fly method suffers from the large index size and the excessive

index access. On the other hand, the materialized method suffers from the partition and

processing overhead of the vectorized pixels.

4.5.3 Raster-based Systems

In this part, we compare RJ⋊⋉ to four baselines, Rasdaman, GeoTrellis, Google

Earth Engine (GEE), and Raptor Zonal Statistics (RZS). The latter is our previous work

which is designed only for the zonal statistics problem between polygons and raster data.

Since the free version of Rasdaman runs on a single-machine, we compare it to a single-

121

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

102

103

104

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
og

S
ca
le
)

US ASTER

RJ⋊⋉ GeoTrellis GEE RZS

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

102

103

104

Vector Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
og

S
ca
le
)

Tree Cover

Figure 4.9: Running time of raster-based systems

thread implementation of RJ⋊⋉. We compare all other baselines to the Spark version of RJ⋊⋉.

The experiments in [68] show that the ingestion time for raster and vector datasets for the

baselines. The in-situ approach of RJ⋊⋉, that is, uploading data to HDFS, can be observed

to be two to three orders of magnitude faster than the baselines. Since, they also show

that the ingestion performance of all raster systems is very low, we omit the results of the

materialized method and show only the on-the-fly method.

Single-machine Systems: Figure 4.8 shows the performance of Rasdaman as

compared to the single-machine RJ⋊⋉ algorithm. Rasdaman iterates over polygons, clips,

and aggregates the raster data for each one. This would result in some redundant access

to the raster data for nearby or overlapping polygons. On the other hand, RJ⋊⋉, even when

running on a single machine, ensures that the raster tiles are accessed only once. Rasdaman

122

would still be helpful for processing a single polygon or a very few polygons but it does not

scale for large vector data.

Distributed Systems: Figure 4.9 shows the overall running time for RJ⋊⋉ as

compared to RZS, GeoTrellis, and GEE. Since all these systems are more scalable than

the previous ones, we only try on the two bigger raster datasets, US-Aster and TreeCover.

RJ⋊⋉ is still the fastest algorithm in almost all cases. The only case where RZS is faster

is when joining Boundaries with TreeCover. Since the Boundaries dataset is small, RZS

would broadcast it to all machines where it then processes each file locally. RJ⋊⋉ would still

partition the Flash index which might result in some overhead as multiple machines might

process different parts of the same file. However, for big vector and raster data, RJ⋊⋉ is more

than 50 times faster than RZS. Additionally, RJ⋊⋉ is more flexible since the RZS algorithm

solves only the zonal statistics problem and runs only with polygons.

Breakdown of RJ⋊⋉ Running Time Figure 4.10 shows the breakdown of the

total running time for RJ⋊⋉ into three steps, Flash Index Creation, Flash Index Optimization,

and Flash Index Processing. It can be observed from the figure that the running time is

dominated by the Flash Index Processing step. This is because this step is dominated by

disk IO for reading the required pixel values from disk. Flash Index Creation takes about

10%-40% of the running time and depends on the size of vector data. Treecover dataset

is made up of multiple raster files. This is why for this dataset, Flash Index Creation step

takes more time as it needs to compute the Flash Index for each raster file separately.

Flash Index Optimization takes the least amount of time and depends on the distribution

of intersections across worker nodes.

123

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

pa
rk
s

0

20

40

60

80

100

Vector Dataset

T
im

e
(%

)

MERIS

Flash Index Creation Flash Index Optimization Flash Index Processing

St
at
es

C
ou
nt
ie
s

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

0

20

40

60

80

100

Vector Dataset

T
im

e
(%

)

Treecover

Figure 4.10: Breakdown of RJ⋊⋉ running time

4.5.4 Flexibility of RJ⋊⋉

Non-polygon joins: To show the flexibility of RJ⋊⋉, we test its performance

on non-polygonal joins, i.e., point and linestring joins. An application of point joins is

agricultural applications that combine ground sensors at fixed points with remote sensors

and build a regression model between them [58]. Linestring joins can be used in hydrology

applications to compute the elevation model along water paths to measure the water flow

and delineate watersheds [19]. Figure 4.11 shows the performance of point and line joins for

the vector datasets in Table 4.1 and the largest raster dataset Treecover for RJ⋊⋉ and GEE.

124

106 107 108 109

102

103

104

105

106

Vector Size (no. of points)

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
og

S
ca
le
)

Tree Cover

RJ⋊⋉
GEE

(a) Point Features

107 107.5
103

104

105

106

Vector Size (no. of lines)
R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

Tree Cover

RJ⋊⋉
GEE

(b) Line Features

Figure 4.11: Performance on non-polygon joins with big raster data. Dotted lines represent
extrapolated values.

We chose GEE as a baseline as we observed it to be the most scalable during the experiments

for polygon joins. As can be observed, RJ⋊⋉ outperforms GEE for both linestring and point

joins with over two orders of magnitude performance gain. The dotted lines for GEE indicate

an extrapolation that we did to estimate the running time for larger vector datasets, since

it was not able to process the entire dataset in one run.

Applications: Figure 4.12 shows the results for applications discussed in [68].

As can be observed, RJ⋊⋉ is at least 10x faster than GEE for the first two applications.

For the first application, wildfire combating, RJ⋊⋉ is used to calculate statistics for both

California (3 million polygons) and the entire US (55 million polygons). It takes as input

23 rasters from landfire.gov each containing over a billion pixels. The second application,

crop yield mapping, takes as input 360,000 agricultural fields and over 1.8 TB of medium

125

I-W
ild
Fi
re
(C
A
)

I-W
ild
Fi
re
(U
S)

II
-C
ro
p
Y
ie
ld
(M
R
)

II
-C
ro
p
Y
ie
ld
(H
R
)

II
I-A

rI
(P
A
)

II
I-A

rI
(U
S)

101

104

107
R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
og

S
ca
le
)

RJ⋊⋉ GEE

Figure 4.12: Applications

0 1 2 3 4 5

102

103

0 0.5

Vector Size (GB)

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

Treecover × Parks

Spark default
RJ⋊⋉

Figure 4.13: Vector Partitioning

resolution(MR) raster data and 31 GB of high resolution(HR) Planet Data. For the third

application of areal interpolation(ArI), the results are for the single machine implementation

of RJ⋊⋉. It was used to join the National Land Cover (NLCD) raster dataset, with 16 billion

pixels, with 74k TRACT polygons to estimate their population.

4.5.5 Optimizing RJ⋊⋉

Flash Index Construction:

This experiment studies the effect of partitioning vector data during the Flash

index construction step. We compare the default Spark partitioning, that creates a partition

for each 128 MB block, against the one proposed in RJ⋊⋉ that partitions the file into blocks

of 16 MB each, followed by another partitioning if the number of blocks is less than the

number of workers in the cluster. The experiment is conducted using the raster dataset,

126

ZC
TA
5

T
R
A
C
T

B
ou
nd
ar
ie
s

Pa
rk
s

102

103

104

105

106

Vector Data

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

Tree Cover

None Global only Global+Local

Figure 4.14: Optimization

2 4 6 8

40

60

80

100

120

140

0.5

Vector Size (GB)
R
u
n
n
in
g
ti
m
e
(s
ec
o
n
d
s)

US Aster × Parks

Median Mean

Figure 4.15: Aggregation

Treecover and subsets of vector dataset, Parks. As can be seen in Figure 4.13, the proposed

partitioning runs 100 times faster for small datasets due to the additional re-partitioning

step that ensures that all executors participate in the processing. For large datasets, the

default partitioning method fails with out of memory exception due to the large number of

intersections per 128 MB partition. Using a 16 MB partition reduces the overall memory

overhead per executor.

Flash Index Optimization:

This experiment studies the effect of global and local index optimizations on the

running time of RJ⋊⋉ algorithm. As can be observed in Figure 4.14, using only the global

optimization helps with small vector datasets, i.e., boundaries, but it does not help much

with medium-scale datasets, i.e., ZCTA5 and TRACT, and reduces the performance for

127

large datasets, parks. The reason is that for a small dataset, the Flash index is small

enough that only partitioning by tile ID (global optimization) is enough while sorting within

partition might not help much. For large vector data, local optimization is critical due to

the large number of pixel ranges. This can be observed with the parks dataset where

global+local optimizations achieve an order of magnitude speedup.

Efficient Aggregation:

There are two types of aggregate functions, algebraic and holistic. Algebraic func-

tions can be computed efficiently using reduce or aggregate operation. local and then

global aggregation, e.g., min, max, and average. These can be computed in Spark using

the reduce or aggregate operations. Holistic functions, on the other hand, may require

collecting all values in one machine and are thus less efficient to compute, e.g., median and

percentile. They can be implemented in Spark using the less efficient groupBy operation.

Since RJ⋊⋉ is integrated in Spark, it can compute both types of functions by simply following

the RJ⋊⋉ operation with the appropriate Spark operation. This design breaks from the lim-

itation of RZS which can only support a limited number of algebraic aggregate functions.

Figure 4.15 compares the computation of mean and median as an example of algebraic

and holistic functions, respectively. As shown, RJ⋊⋉ is three times faster when computing

the mean due to the more efficient calculation method. This experiment also shows the

flexibility of RJ⋊⋉ with any function that the users want to compute.

128

4.6 Conclusion

The chapter proposes a new raster-vector join algorithm, Raptor Join (RJ⋊⋉). It

overcomes the limitations of the existing systems by combining raster-vector data in their

native formats by using a novel index structure Flash Index. This algorithm is modeled as a

relational join operator and uses an in-situ approach, hence, making it attractive for ad-hoc

queries. It runs in three steps, namely, Flash Index creation, Flash Index optimization and

Flash Index processing. The Flash Index creation step computes a mapping between raster

and vector in the form of pixel ranges. The Flash Index optimization step partitions and

reorganizes this data structure across machines in such a way that each tile in the raster

dataset is scanned by only one machine. The Flash Index processing step processes the

partitioned pixel ranges to read the required pixel values from the raster dataset. We run

extensive experiments for the system against Rasdaman, GeoTrellis, Google Earth Engine,

Adaptive Cell Trie, GeoSpark, and Beast on large raster and vector datasets to show its

scalability and performance gain.

129

Chapter 5

Distributed Raster Pre-processing

Raster data pre-processing is an important part of a spatial query pipeline. Re-

searchers may need to pre-process raster data before it can be combined with vector data

using Raptor. In this section, we propose RDPro that adds distributed raster processing

capabilities to Raptor.

5.1 Introduction

There is an ever-increasing amount of geospatial data, which has been made pos-

sible due to the advancements in remote sensing technology. There are currently more than

1000 [73] active satellites in-use for collecting Earth Observational Data with resolutions

varying from 50 cm to 1 km per pixel. Another source of spatial data is aerial imagery, which

refers to images taken from drones, balloons, or airplanes. It is a relatively newer source

and offers higher spatial resolution than satellites, which is up-to 1-5 cm per pixel. Both

public organisations such as NASA, USGS, and European Space Agency (ESA) and private

130

organisations such as Planet Labs, Hexagon Geosystems, and NearMap capture satellite

and aerial images. Due to their efforts, today we have petabytes of earth observational data

available for use.

Satellite and Aerial imagery is an example of raster data which is represented using

multi-dimensional array of values. Raster data is an important component of research in

fields such as disaster response and monitoring [26, 6], management of energy and natural

resources [48, 50, 8], agricultural monitoring [59, 61, 79], and marine biology [35, 23]. The

increased availability of data has allowed for significant progress to be made in these research

applications. However, this has also created the challenge of efficiently processing such large

amounts of raster data.

There exist systems for processing raster data such as GDAL [20], PostGIS [53],

SciDB [70], GeoTrellis [22], Rasdaman [3], Sedona [80], Google Earth Engine [27] and

ChronosDB [84]. However, these systems suffer from one or more of the following limitations:

1. single machine [20, 53], 2. successive disk I/O [84, 20], 3. expensive data ingestion [70, 3,

22, 80, 27], and 4. limited functionality [70, 80].

A detailed explanation of how existing systems suffer from these limitations is

provided below:

1. Single Machine: There are various raster-based systems [53, 20] that run on a single

machine. These systems are not efficient when working with large raster datasets. They

either fail because they run out of memory or it may take them days to perform a query on

the rasters. In comparison, distributed systems are able to scale to larger datasets and can

perform the same query in significantly less amount of time.

131

2. Successive Disk I/O: Some systems [84, 20] are modeled in such a way that they can

only perform one query at a time on the dataset. These systems require to read data from

disk, perform the computation on the data and then write the data back to disk. If an

application needs to perform a series of queries on a raster dataset, these systems would

need to read and write data after every query. As the size of raster data increases, these

successive disk I/O operations become time expensive and affect the performance of these

systems.

3. Expensive Data Ingestion: Raster-based systems often implement their own data

model which allows them the capability to process huge amounts of raster data. These

systems either suffer from the limitation of an expensive data ingestion phase [70, 3, 27]

or need to ingest the whole data in memory before processing it [22, 80]. Systems that

suffer from the limitation of an expensive data ingestion phase serially read in the data and

re-structure it according to their data model. This data loading phase often takes longer

than the actual analysis. On the other hand, systems that need to read data in memory

before processing are not able to scale to large datasets. This is because the size of large

datasets often exceeds the amount of memory available.

4. Limited Functionality: The data model used by raster-based systems sometimes lim-

its the type of operations that can be performed on the raster data. For example, [70]

implements an array data model and its users can only perform array operations on the

data. [80] converts the raster data into vector format and only allows pixel-wise operations

to be performed on it. Neither of these systems can perform operations such as reprojection

which is necessary when working with datasets in different co-ordinate reference systems.

132

In this chapter, we propose a novel distributed system, RDPro, implemented in

Spark that can efficiently perform analysis on big raster data. As mentioned earlier, raster

data is represented using multi-dimensional arrays of values. Each value in this array rep-

resents a measurement, such as vegetation, and can be identified based on its location in

the array. The array is further divided and stored using equi-sized subarrays called Tiles

that can be randomly accessed. The proposed system derives its data model from how

the raster data is stored on disk. It uses a custom RDD, RDD[ITile] to represent raster

data. It overcomes the limitations of existing systems as follows: 1. The proposed system

is a distributed system implemented in Spark and implements the RDD[ITile] interface.

This allows it to distribute computation across machines and scale to larger datasets. 2.

Because the proposed system is implemented in Spark and uses an RDD to model the raster

data, it allows the users an advantage to combine multiple operations and run a complex

spatial query pipeline on their datasets. The raster data for each of these operations will

only be read when required and only the final output needs to be written to disk. 3. The

proposed system has the advantage of in-situ processing. It does not need to ingest and

re-structure data before performing analysis on it. RDPro only reads metadata (a few KBs

in size) information from the raster data and initializes the RDD[ITile]. It only needs to

read the required raster data when performing the analysis and does not require to keep

input data in memory. 4. The proposed system implements map algebra operations which

include local, focal, zonal, and global operations. These operations provide an exhaustive

list of operations that users may want to use to analyze raster data.

133

W

H

(0, 0)

(W, H)
(2, 3)

Figure 5.1: Raster Data Model

We compare the proposed system to GeoTrellis [22], GDAL and Sedona [80], and

show that it has significant performance gain over them while being perfectly able to scale

to big raster data and use fewer resources.

The rest of this chapter is organized as follows: Section 5.2 describes the data and

query model of the proposed system. Section 5.3 details the architecture of the proposed

system. Section 5.4 runs an extensive experimental evaluation of the proposed system.

Section 5.5 concludes the chapter.

5.2 Problem Formulation

In this section, we formulate the problem of raster data processing solved by the

proposed system RDPro. First, we define logical data models for the two types of spatial

data, raster and vector, and then we define the operations for raster analysis using the two

data models. Figure 5.1 provides an illustration related to these definitions.

134

5.2.1 Raster Data Model

Definition 1 (Raster Grid, G) A raster grid G = (W,H) is a two-dimensional grid that

consists of W columns and H rows.

Definition 2 (Grid Space) Grid space is defined as the two-dimensional Euclidean space

that covers the range [0,W [×[0, H[∈ R2. The origin of the grid space (0, 0) is always at the

top-left corner as shown in Figure 5.1. The location of a raster in the grid space bears no

resemblance to what geographical area it represents.

Definition 3 (Pixel, p) A pixel p = (i, j) represents the cell in the grid at column 0 ≤

i < W and row 0 ≤ j < H. According to the definitions above, a pixel p = (i, j,m) occupies

the grid subspace [i, i+ 1[×[j, j + 1[.

Definition 4 (Measurement, M) The measurement is a function that defines a value

for each pixel.

M : (i, j)→ Rb

where 0 ≤ i < W and 0 ≤ j < H are integers and b ≥ 1 is an integer that represents the

number of bands for the measurement. For example, RGB rasters contain three bands for

red, green, and blue. We use M(i, j) to indicate the value of the pixel at location (i, j)

Definition 5 (Non-geographical Raster Dataset) A non-geographical raster dataset is

defined by a grid G and a measurement function M .

A non-geographical raster dataset can represent an image but it is not associ-

ated with any geographical location. The next set of definitions will help in defining a

geographical raster dataset that is associated with a location on the earth surface.

135

Definition 6 (World Space) The world space represents a rectangular space on the Earth

surface defined by four geographical coordinates (x1, y1) and (x2, y2) that define the space

[x1, x2[×[y1, y2[. The world space is associated with a coordinate reference system (CRS)

that defines how the values in world coordinates map to earth surface.

Definition 7 (Coordinate Reference System (CRS)) A Coordinate reference system

(CRS) defines how a point in the world space maps to the earth surface. Each CRS is

defined by a unique spatial reference identifier (SRID). The details of all types of CRS are

outside the scope of this work but interested readers can refer to the ISO-19111 standard [31]

for the details. What matters for this work is that there is a standard method to transform

a point coordinate from one CRS to another CRS.

An example of CRS is the world geodetic system, WGS84 with SRID=4326, which

defines a location by its longitude and latitude degrees and is used by GPS.

Definition 8 (Grid-to-World, G2W) G2W is a 2D affine transformation that transforms

a point from the grid space to the world space.

G2W =

a1 a2 a3

a4 a5 a6

0 0 1

The inverse of this matrix is called world-to-grid, W2G =G2W−1 and can be used

to map locations from world space back to grid space.

Definition 9 (Geographical Raster Dataset, R) A geographical raster dataset is de-

fined by a grid space, G = (W,H), a measurement function M , a grid-to-world G2W trans-

formation, and a CRS defined by its unique SRID.

136

In a geographical raster dataset, termed raster dataset from this point on, each

pixel occupies a rectangular space in the world defined by transforming its occupies grid

space using the associatedW2G. The measure valueM(i, j) of that pixel indicates a physical

value measured for that area, e.g., temperature or vegetation. Although, the pixel width

and height in grid space is one unit of measurement, in world space the pixel width may

not be equal to pixel height. For example, the pixel width in world space may be 80 cm

and height may be 30 cm.

5.2.2 Vector Data Model

A vector dataset, V , is defined as a set of geometric features that comprise of

points, lines, or polygons. Points represent discrete data values using a pair of longitude

and latitude (lon, lat). Lines or linestrings represent linear features, such as rivers, roads,

and trails. Each line is represented by an ordered list of at least two points. Polygons

represent areas such as the boundary of a city, lake, or forest. Polygons are represented

as an ordered collection of closed linestrings, i.e., rings, which constitute the boundary of

the polygon and optionally holes inside it. Similar to the raster dataset, a vector dataset is

associated with a CRS that defines its world coordinates.

5.2.3 Raster Operations

Raster analysis may require processing one or more raster datasets to produce

either a value or another raster dataset. The set of operations that are required to analyze

raster data are called map algebra and are broadly classified into four categories: 1. local,

137

2. focal, 3. zonal, and 4. global.1. The definition of the operations implemented by the

proposed system is as follows:

1. MapPixels: This operation takes as input a raster dataset R1 and a function f , and

outputs the raster dataset R2 with modified pixel values. R1 and R2 share the same

dimensions W and H, the same CRS, and the same G2W. They only differ in the

number of bands m1 and m2. The function f is a used-defined function that maps a

measure value in R1 to R2, i.e., f : Rm1 → Rm2 . The MapPixels operation applies the

user-defined function f to each pixel measurement in R1 and the output of the function

is set as the pixel value in the output raster R2. This is a type of local operation and can

be used to, for example, add a constant value to each pixel in the raster. It is defined as:

MapPixels(R1, f)→ R2

where

R2[i, j] = f(R1[i, j])∀0 ≤ i < W, 0 ≤ j < H

2. Overlay: This operation takes as input two raster datasets R1 and R2, and returns a

new raster dataset R3. All the three raster datasets share the same dimensions, W and

H, the same CRS, and the same G2W, but they might have different number of bands

m1, m2, and m3. This operation concatenates the measurement values of corresponding

pixels in R1 and R2 to produce one measurement in the output R3. This is a type of

local operation and can be used to output a raster with multiple bands. This operation

is defined as follows:

Overlay(R1, R2)→ R3

1More information about map algebra can be found at [42]

138

where

R3[i, j] = R1[i, j]||R2[i, j]∀0 ≤ i < W ∧ 0 ≤ j < H

and || is the concatenation operator for two arrays.

3. Convolution: This operation takes as input a raster dataset R1, a window size w, and a

function f . It output a raster dataset R2 with the same size, CRS, andW2G as R1. This

operation computes the value of each pixel (i, j) in R2 by processing all values in R1 in

locations (i + di, j + dj) where −w ≤ di, dj ≤ w using the function f . This operation is

an example of focal operation and can be used to apply a range of analytical functions

such as smoothing, sharpening, and edge detection. It is defined as:

f : Rb1·(2w+1)2 → Rb2

Convolution(R1, f, w)→ R2

where

R2[i, j] = f (∪−w≤di,dj≤+wR1[i+ di, j + dj])

4. Reprojection: This operation takes as input a raster dataset R1, target CRS CRS2, target

raster width W2 and target raster height H2. It reprojects the input raster to the target

CRS with the specific raster size. Both R1 and R2 will have the same number of bands.

The value of each pixel in R2 is equal to its nearest pixel in R1 in world space. This is an

example of a focal operation and is often used when the user wants to analyze multiple

rasters that do not have the same CRS. It is defined as:

Reprojection(R1, CRS2,W2, H2)→ R2

139

Where

R2[i2, j2] = R1[i1, j1] : (i1, j1) =W2G2(T (G2W1(i1, j1), CRS2))

If 0 ≤ i1 < W1 ∧ 0 ≤ j1 < H2. Otherwise, R2[i1, j2] = null.

A special case of this function is the resampling function when the target CRS is the

same as the source CRS.

5. Resampling: This operation takes as input a raster dataset R1, target raster width W2

and target raster height H2. It outputs a raster dataset R2 of the target width and

height. Both R1 and R2 share the same CRS and number of bands. It computes its

value of each target pixel based on the values of its nearest neighboring pixel of the input

raster in world space. This function is a special case of the reprojection function when

the target CRS is same as that of the input.

6. Raptor Join: This operation takes as input a raster dataset R and a vector dataset V . It

is used to select pixels from the raster that overlap the geometries in the vector dataset.

It outputs a set of (gid, i, j, m) tuples. In this tuple, gid represents a unique identifier for

each geometry in the vector dataset. (i, j) is the position of the matching pixel in grid

coordinates, and m is the measure value of the matching pixel. This is an example of a

zonal operation and can be used to compute statistics of pixel values for each geometry

(zone). It is defined as:

RaptorJoin(R, V)→ {(gid, i, j,m)}

7. Reduce: This operation takes as input a raster dataset R and a reduce function f and

outputs a value v. This operation aggregates all the pixel measure values into a single

140

value with the same number of bands as the input. The reduce function f takes as input

two pixel values,m1 and m2 and outputs another value m3 as formalized below.

f : (Rb,Rb)→ Rb

It is applied recursively on all original and resulting values until a single value v is

produced. This is an example of a global operation and can be used to find the minimum,

maximum, or average, of all pixels. It is defined as:

Reduce(R, f)→ v

5.3 RDPro Architechture

This section describes the proposed system RDPro (Raster Distributed

Processing). The goals of this system are: 1. Distributed Processing: RDPro imple-

ments distributed reading, writing and processing of raster data. 2. Efficiency: RDPro

can handle high-resolution raster data. 3. Comprehensiveness: RDPro implements a

wide range of operations for raster analysis which can be combined to form a complex

spatial query pipeline.

Most existing systems are implemented based on two assumptions. First, that

a raster dataset is physically represented as a set of files that are small enough to fit in

memory. Second, that each of these files can be processed separately. They implement

raster-based operations by loading each raster file into memory and then performing the

required analysis on it. Thus, these systems fail to process raster files whose size exceeds

the memory size. For example, the US Aster dataset is 35 GB in size and is stored as a

141

single raster file. It is not small enough to fit in memory and therefore cannot be processed

by existing systems unless manually split into several small files. Moreover, the files used to

physically represent a raster dataset are logically a part of the same raster grid. Therefore,

when these files are processed separately, their logical connection is not taken into account.

For operations such as reprojection, it is important to reproject the raster grid as a whole.

Reprojecting each file separately may result into a grid that is not well aligned and has

overlapping pixels.

In order to implement a distributed system for processing raster data, the proposed

system needs to devise methods to partition raster data across machines, load and process

this partitioned data, and write the partitioned back to disk in the raster format. However,

partitioning raster data is not that straightforward. Usually, for textual file formats, the

data can be partitioned line-wise, but this cannot be done for raster data. To overcome

this challenge RDPro takes advantage of how raster data is stored on disk. Raster files are

stored by dividing the raster grid into smaller equi-sized grids called tiles(more details in

next section), each of which is stored separately. Moreover, these tiles are small enough to

load into memory for data processing. Therefore, RDPro chooses a tile to be the smallest

processing unit and implements algorithms to work with it.

Figure 5.2 shows the architecture of RDPro, which consists of four main compo-

nents: 1. Raster Data Model (RDD[ITile]), 2. Data Loading, 3. Data Writing, and 4. Raster

Query Processing. RDPro is implemented in Spark and extends the RDD programming in-

terface to implement a (physical) data model whose processing unit is a tile. It stores raster

data on a distributed file system. The RDPro data model is implemented in such a way that

142

RM

RM

RM
RM

RM

RDD[T]

Raster Data
Input

Distributed
File System

RDD[ITile]
Partitions

Raster Query
Processing

Output Raster
Data Writing

Raster Data Loading

Figure 5.2: RDPro Architecture

it can read, write and represent the distributed raster data. The data loading component

is responsible for reading this partitioned raster data from disk and initializing the Raster

RDD, while the data writing component is responsible for writing the processed raster

data to disk. The raster RDD component handles the tasks associated with the RDPro

data model while the raster query processing component implements raster operations. We

provide details about the proposed data model, data input, data output, and how various

raster data operations are implemented in the following sections.

5.3.1 RDPro Data Model

The main goal of the proposed system RDPro is to efficiently process raster data in

a distributed manner. This means that a part of the raster data should be assigned to each

machine for processing. However, unlike text file formats raster data can’t be partitioned

based on the number of lines in it. In order to partition raster data, RDPro takes advantage

143

of the way raster data is stored on disk. Most standard raster file structures, e.g., GeoTIFF

and HDF5, physically store the raster dataset by partitioning the raster grid into tiles.

Definition 10 (Raster Tiles) Raster tiles are smaller equi-sized partitions of the raster

grid.. The tiles can be identified by sequence numbers identifiers, tid, starting at zero and

typically are tens of kilobytes in size.

Each tile is stored as one block on disk and is typically small enough to load entirely in main

memory. The raster file contains a lookup table that allows locating any tile efficiently.

This makes tiles the perfect choice of data unit to process raster data in a distributed

environment. However, in order to process each tile separately, certain auxiliary information

called raster metadata is needed.

Definition 11 (Raster Metadata, RM) Each raster is associated with auxiliary infor-

mation called metadata, which is stored in the header of the raster file and consists of the

following information:

1. Number of columns (c) and rows (r) of pixels in it.

2. Tile width (tw) and tile height (th) in pixels.

3. The grid-to-world (G2W) affine transformation matrix that converts a pixel location

on the grid to a point location in the world, and the inverse, world-to-grid (W2G)

transformation.

4. Coordinate Reference System (CRS) which describes the projection that maps the

Earth surface to the world coordinates as defined by the ISO-19111 standard [31].

144

RDPro implements its own (physical) data model which allows it to process par-

titioned raster data in form of tiles. Since the proposed system is implemented in Spark,

it extends the RDD programming interface to implement it. RDD (Resilient Distributed

Dataset) is defined as a fault-tolerant collection of elements that can be operated on in

parallel. The proposed system creates a custom RDD, represented as RDD[ITile], whose

each element is a raster tile which in turn has the raster metadata associated with it. This

allows the proposed system to partition raster data into a set of tiles which can then be

processed separately on each machine.

As shown in figure 5.2, the raster data is stored on a distributed file system. The

users do not need to pre-process raster data into tiles before storing it on the distributed file

system. The data loading component (described in next section) can load the raster data

and initialize the RDPro data model. The data model is initialized using only the raster

metadata, which is a few KBs in size at most and the location of the tiles on disk. The

actual tile data is not loaded until needed during raster operations. Since, the proposed

system does not load the data in memory until required, this allows the system to scale

for high-resolution raster data. Moreover, the input and output of each raster operation is

an RDD which allows the user to pipeline multiple operations in Spark and run complex

spatial query pipelines. The raster data for each of these operations will only be read when

required and only the final output needs to be written to disk. This allows the system to

save on a lot of unnecessary disk I/O and speed up processing.

145

5.3.2 Raster Data Loading

In this section, we describe the raster data loading component of the proposed

system. RDPro does not require the users to do any pre-processing and allows them the

advantage of in-situ processing. As can be seen from figure 5.2, the users only need to

store data on a distributed file system. RDPro can also process data stored locally on disk

and not on a distributed file system. However, doing so will keep users from taking full

advantage of RDPro’s distributed processing capabilities.

The raster data loading component of RDPro loads data from disk and initializes

its data model, RDD[ITile]. RDPro implements its own custom raster data loader due to

the complex structure of raster files. Unlike existing distributed data loaders in Spark that

mostly work with text files, raster data cannot be easily split at text line boundaries. This

makes it challenging to load big files in parallel. When a large raster file, e.g., GeoTiff,

is stored in a distributed file system, it is split into fixed-size blocks which are distributed

among the compute nodes. To efficiently load the file, each machine should load the tiles

that are locally stored in its block. The challenge is that some tiles span multiple blocks

and they should be read exactly once. Furthermore, to parse the file correctly, the header

of the file is needed which is usually located in the first block.

RDPro is implemented in Spark, and therefore, the raster data loading component

is implemented in similar to other distributed file parser. It works in two steps: 1. splitting,

2. and reading. The splitting step runs on a single machine and splits the input file into

smaller partitions that can be processed independently. The reading step runs in parallel

on one split at a time and reads the tiles within the given split.

146

Details about these steps are as follows:

Step1: Splitting The splitting step runs on a single machine before the Spark

job starts. It produces a set of partitions that define the raster data model, RDD[ITile].

This step reads only the header of the raster file, which is typically a few kilobytes, so it

does not incur a huge overhead. From the header, it determines where each tile starts in

the file and uses this to correctly define split boundaries. It defines one split for each block

in the file which contains the start and end offset of the split and the metadata of the raster

file.

Step2: Reading In the reading step, a machine takes one split and should read

all the tiles within that split. The problem is with tiles that span two partitions. To ensure

a correct result, we define an anchor point as the offset of the first byte in a tile. Then,

the reading step will read only the tiles that have an anchor point within the split range.

The information for defining the anchor point of each tile and how to parse each tile is all

included in the metadata within the split.

Please note that keeping in line with Spark’s lazy evaluation model, the reading

step is only executed when raster data needs to be processed. This allows RDPro the

advantage of in-situ processing. The data loading component of RDPro also saves it from

having an expensive ingestion and restructuring phase which many existing systems suffer

from.

5.3.3 Raster Data Output

In this section, we discuss the raster data writing component of RDPRo. As shown

in figure 5.2, the output of a raster operation can be a raster RDD, RDD[ITile]. This creates

147

the need of a distributed writer that can write raster data to disk in a distributed file system.

To do so, RDPro implements its own distributed raster data writer. It writes raster data

in standard raster file formats, e.g., GeoTiff, so that users can use the output in another

system.

There are two main challenges with writing raster files to a distributed file system.

First, a distributed file system can write a file only in a sequential mode and with a very large

output file, it would generally be impractical to cache the data in memory before writing to

disk. Second, the tiles that form a single file might be distributed across multiple machines

and bringing them together in one machine would require an extra network overhead.

To overcome the first challenge, the proposed writer runs in two rounds. The first

round writes the majority of the file contents in a sequential file without the file header.

The second round compiles the file header and concatenates it with the main contents to

form a correct file.

First round: The first round writes the majority of the file contents to disk but

not in a well-formed raster file. It takes one tile at a time and appends all tile data to a

temporary file. While writing, it keeps track of the start and end offset of each tile within

the temporary file. In addition to decompressed format, the proposed writer supports two

popular compression format for raster files, deflate and LZW compression schemes which

can significantly reduce the written disk size. The output of this step is a collection of files,

one for each output partition, and the associated information of each tile ID, the start, and

length of each tile data in the file.

148

Second round: The second round adds the appropriate header to write a set of

well-formatted output files.

To overcome the second challenge, RDPro proposes two modes for writing the

output, compatibility mode and fully distributed mode. The compatibility mode produces

a file that is backward compatible with existing libraries but it requires an additional step

to weld all pieces into one file. The fully distributed mode is more efficient but will produce

multiple files that should be individually loaded using an external system or library. The

difference between the two modes is in the second round as detailed below.

Compatibility mode: In the compatibility mode, the second round collects all

tile information produced in the first round into one machine which contains the list of

written tile IDs and their location on files. Notice that since the first round runs in parallel,

the tiles are written to several files. This step will concatenate all these files into one file

with all tile data. Then, it will form the file header in memory which stores information

about the dimension of tiles and the start and length of each tile. During this process, the

tile offsets are updated again to account for the size of the file header. Finally, the header

file and tile data file are concatenated to produce the final output. If the output file is

very large, this step might be a bottleneck since it needs to write a single file with all data

but it is still faster than traditional libraries since all the heavy computations including tile

compression is done in parallel.

Fully distributed mode: The fully distributed mode avoids the bottleneck in

the concatenation step by writing the files in a completely distributed manner. Instead of

collecting all metadata in one machine, it writes a separate file for each partition. However,

149

this would result in patched raster files which might contain many missing tiles. To overcome

this problem, this step performs two additional steps. First, it writes one additional tile

that is completely empty and update the tile offset of all missing tiles to point to this single

tile. This way, if another application tries to read this file, it will not fail but will detect

that all the tiles are empty. Second, it adds a special tag in the header that indicates which

tiles are empty as a bit mask. This additional field is only readable by our system to allow

the distributed output to be read efficiently.

5.3.4 Raster Query Processing

The operations for raster analysis are called Map Algebra and can be divided into

four main categories, namely, local, focal, zonal and global. They may be used to join a

pixel in one raster dataset to either one or many pixels in other raster datasets. We define

each of these operations below and detail how they are implemented in the proposed system.

The raster operation discussed in section 5.2 can easily be implemented using the methods

described below.

Map Algebra : Local Operations A local operation takes as input a raster

dataset and a function and outputs another raster dataset. The function is applied to each

pixel value in the input raster dataset. The resulting value of the function is then assigned to

the corresponding pixel location in the output raster dataset. Examples of local operations

include threshold operation where the value of a pixel is set to zero if its above or below

the specified threshold value.

Since the function is applied to each pixel value and is not dependent on any

other information or pixel value, each tile in the raster dataset can be processed separately.

150

This operation would apply the function to each raster tile on separate worker nodes in a

distributed manner. The resulting raster dataset can then be either written to disk or used

as input for another operation.

Map Algebra : Focal Operations A focal operation is used to change the value

of each pixel in the raster based on neighboring values of the pixel. It takes as input a raster

dataset, a function and a window size that defines the neighboring pixels. It applies the

function to the value of each pixel and its neighboring pixels defined by the window. Then

it assigns the resulting value of the function to the corresponding pixel in the output raster

dataset. For example, the smoothing operation assigns the mean of the neighboring pixel

values to the specified pixel.

This operation is not localized to a tile. Depending on the window size, the function

may need to use pixel values from other tiles. RDPro implements this operation in two steps.

It first computes the neighboring pixel values defined by the window size for each pixel in

a tile and assigns the set of pixel values to the corresponding pixel in a new tile. However,

each input tile results in nine output tiles. Although each tile is processed separately and

does not contain information about other tiles, it can compute the information required

by its neighboring tiles. It creates an empty tile for each neighboring tile, and assigns the

pixels in the empty tile the pixel values the neighbour might need from itself. In the second

step, all the tiles are merged based on the identifier for the tile and the function applied to

the set of values contained in the pixel.

Map Algebra : Zonal Operations A zonal operation takes as input a raster

layer and a vector layer. The operations then finds the pixels in the raster layer that

151

overlaps each geometry(zone) in the vector dataset. A function may then be applied to the

resulting pixels. Zonal statistics is an example of zonal operations. This method in RDPro

is implemented using our previous work called RJ⋊⋉ [69].

Map Algebra : Global Operations A global operation or function takes as

input a raster dataset and a function and outputs a set of values. The function is applied

to the value of all the pixel in the input raster dataset and reduces them to a set of values.

Examples of global operations include finding the minimum value of all the pixels in the

raster dataset.

This operation is implemented in RDPro in two steps. In the first step, the function

is applied to each tile and outputs a set of values corresponding to each tile. In the second

step, the output values from all the tiles are combined to produce the final output. Please

note that a global operation does not require any data from its neighboring tile, which

allows the proposed system to process each tile separately and combine the results.

5.4 Experiments

This section provides an experimental evaluation of the proposed algorithm, RD-

Pro. We compare the distributed RDPro algorithm to the single-machine GDAL pack-

age [20], and the distributed systems, Apache Sedona [80] and GeoTrellis [22]. We show

that the proposed RDPro is faster than the baselines for big raster datasets.

Section 5.4.1 describes the experimental setup, the system setup and the datasets.

Section 5.4.2 provides a comparison of the reading time for the proposed RDPro and GDAL.

Section 5.4.2 provides a comparison of the writing time for the proposed RDPro and GDAL.

152

Table 5.1: Vector and Raster Datasets

Raster datasets

Dataset # pixels Resolution Size Coverage

GLC2000 659M 1 km 629 MB World

MERIS 8.4B 300 m 7.8 GB World

US Aster 187B 30 m 35 GB US48

Tree cover 840B 30 m 782 GB World

Landsat8 1.27T 30 m 3.4 TB World

Planet 4T 3 m 16 TB USA

Section 5.4.3 to 5.4.5 provides a comparison of the running time of the proposed RDPro and

the baseline systems for the various map algebra operations. We do not show experiments

for zonal operations as we implemented these operations using our previous work which

constitutes Chapter 4. The readers may refer to Chapter 4 for more details and experiments

about zonal operations.

5.4.1 Setup

We run RDPro, Apache Sedona, and GeoTrellis on a Amazon AWS EMR cluster

with one head node and 20 worker nodes of type m5.4xlarge with 2.5 GHz Intel Xeon

Platinum 8175M series processor, 64 GB of RAM, up to 1024 GB of EBS, and 16-core

processors. GDAL is run on a machine with Intel(R) Xeon(R) CPU E5 − 2609 v4 @

1.70GHz processor, 128 of GB RAM, 2 TB of HDD, and 2×8-core processors running

153

CentOS. For GeoTrellis, we use the geotrellis-spark package version 3.0.0, as described in

its documentation. We used Sedona v1.2.0-incubating as described on its website.

Table 5.1 lists the datasets that are used in the experiments along with their

attributes. All raster datasets except Planet Data are publicly available and come from

various government agencies. The GLC2000 and MERIS datasets are from the European

Space Agency with pixel resolutions of 0.0089 decimal degrees (1km) and 0.0027 (300m)

respectively. The US Aster dataset originates from the Shuttle Radar Topography Mission

(SRTM) and covers the continental US. Hansen developed the global Tree Cover change

dataset which covers the entire globe. Both datasets have a spatial resolution of 0.00028

decimal degrees (30m). The Landsat8 data is a 30m pixel resolution multi-dimensional

dataset sourced from USGS (United States Geological Survey). It spans over the world and

has three bands. Planet data which spans over the US is sourced from Planet Labs [71]. It

is a multidimensional raster dataset with a pixel resolution of 3m.

5.4.2 Data Loading

This experiment compares the data loading times for the proposed system RDPro

against the baselines GeoTrellis and GDAL. For this experiment, each of the systems was

used to load the data and compute a histogram for each of the raster datasets. The results

for this experiment are shown in Figure 5.4.2. As can be observed from the experiment,

GDAL is faster in loading data than the proposed system for the smallest dataset, GLC2000.

However, RDPro gains in performance as the size of datasets increases. This is because

RDPro reads and processes data in parallel while GDAL reads data in serially.

154

G
LC
20
00

M
ER

IS

U
S
A
st
er

Tr
ee
co
ve
r

La
nd
sa
t8

Pl
an
et

101

102

103

104

105

106

Raster Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

GDAL RDPro GeoTrellis

Figure 5.3: Comparison of reading time for GDAL, GeoTrellis, and RDPro

When compared to GeoTrellis, RDPro is either on par in terms of performance or

slightly slower than GeoTrellis. However, it is able to scale to the larger dataset Planet,

while GeoTrellis fails to do so. This is because GeoTrellis requires to read the whole data

in memory before processing it. The Planet dataset is 16 TB (uncompressed) in size and

can’t be loaded into memory, whereas RDPro takes advantage of its data model to load

data only when required and does not need to keep the whole raster dataset in memory.

This allows RDPro to scale to larger datasets.

We do not show results for Apache Sedona as it was not able to load any of the

raster datasets. Apache Sedona can work with at most 200 million pixels while the smallest

dataset GLC2000 has over 650 million pixels.

155

G
LC
20
00

M
ER

IS

U
S
A
st
er

Tr
ee
co
ve
r

La
nd
sa
t8

Pl
an
et

101

102

103

104

105

Raster Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

GDAL RDPro

Figure 5.4: Comparison of writing time for GDAL and RDPro

5.4.3 Data Writing

This experiment compares the data writing times for the proposed system RDPro

and GDAL. The results for this experiment are shown in Figure 5.4.2. As can be observed

from the experiment, GDAL is comparable in writing data to the proposed system only for

GLC2000. However, RDPro gains in performance as the size of datasets increases. This is

because RDPro implements its own data writing component which writes data in parallel

while GDAL writes data serially to disk. We do not show results for Apache Sedona as

it was not able to load any of the raster datasets. Apache Sedona can work with at most

200 million pixels while the smallest dataset GLC2000 has over 650 million pixels. Also,

we were not able to run this operation for Geotrellis as it requires the raster datasets to be

156

G
LC
20
00

M
ER

IS

U
S
A
st
er

Tr
ee
co
ve
r

La
nd
sa
t8

Pl
an
et

101

102

103

104

105

Raster Dataset

R
u
n
n
in
g
ti
m
e
(s
ec
s
-
L
o
g
S
ca
le
)

GDAL RDPro

Figure 5.5: Comparison of local operation running time for GDAL and RDPro

stitched into a single tile (represented as an array in Geotrellis) before they can be written

to output. However, the number of pixels in the datasets used makes it impossible for all

the values to be stored into a single tile(array).

5.4.4 Map Algebra: Local Operations

This experiment compares the running time for a local operation for the proposed

system RDPro and GDAL. The map algebra operation that was used was thresholding,

where pixel values smaller than a target value are set to zero. The results for this experiment

are shown in Figure 5.5. As can be observed from the experiment, GDAL is faster in loading

data than the proposed system only for GLC2000 as it is a small file and easier to process

157

1X
1

5X
5

10
X
10

50
X
50

10
0X
10
0

50
0X
50
0

100

101

102

103

104

105

106

No. of Pixels(x103)

R
u
n
n
in
g
ti
m
e
(L

og
se
cs
)

Treecover

GDAL RDPro

Figure 5.6: Comparison of focal operation running for GDAL and RDPro

on a single machine. However, RDPro gains in performance as the size of datasets increase.

This is because as size of data increases, the offset of setting up a distributed job diminishes

as compared to the performance gain. We do not show results for Apache Sedona as it

was not able to load any of the raster datasets. Apache Sedona can work with at most 200

million pixels while the smallest dataset GLC2000 has over 650 million pixels. GeoTrellis

on the other hand fails to run this operation as it tries to combine the whole raster dataset

into one single tile before writing it to disk. This is not possible for the datasets used as

their size exceeds the size of memory on a single machine in the cluster.

158

5.4.5 Map Algebra: Focal Operations

This experiment compares the running time for a focal operation for the proposed

system RDPro and GDAL. The map algebra operation that was used was reprojection,

where pixel values were reprojected from source projection of datasets to EPSG:4269. The

results for this experiment are shown in Figure 5.6. We show results for the Treecover

dataset. As can be observed from the experiment, RDPro is faster than GDAL. This is due

to the distributed processing and writing component of RFPro. We do not show results

for Apache Sedona as it was not able to load any of the raster datasets. Apache Sedona

can work with at most 200 million pixels while the smallest dataset GLC2000 has over 650

million pixels. Also, we were not able to run this operation for Geotrellis as it requires the

raster datasets to be stitched into a single tile (represented as an array in Geotrellis) before

they can be written to output. However, the number of pixels in the datasets used makes

it impossible for all the values to be stored into a single tile(array).

5.4.6 Map Algebra: Global Operations

This experiment compares the running time for a global operation for the proposed

system RDPro, GDAL, and GeoTrellis. The map algebra operation that was used was

Statistics, where the statistics such as mean, sum, count, minimum, maximum, and standard

deviation of all the pixel values was calculated. The results for this experiment are shown in

Figure 5.7. As can be observed from the experiment, GDAL is faster in loading data than

the proposed system only for GLC2000 as it is a small file and easier to process on a single

machine. However, RDPro gains in performance as the size of datasets increases. This is

159

G
LC
20
00

M
ER

IS

U
S
A
st
er

Tr
ee
co
ve
r

La
nd
sa
t8

Pl
an
et

100

101

102

103

104

105

106

Raster Dataset

R
u
n
n
in
g
ti
m
e
(L

o
g
se
cs
)

GDAL RDPro GeoTrellis

Figure 5.7: Comparison of global operation running for GDAL, GeoTrellis, and RDPro

because as the size of data increases, the offset of setting up a distributed job diminishes

as compared to the performance gain. When compared to GeoTrellis, RDPro is either on

par in terms of performance or faster than GeoTrellis. It is also able to scale to the larger

dataset Planet, while GeoTrellis fails to do so. This is because GeoTrellis requires to read

the whole data in memory before processing it. The Planet dataset is 16 TB (uncompressed)

in size and can’t be loaded into memory, whereas RDPro takes advantage of its data model

to load data only when required and does not need to keep the whole raster dataset in

memory. This allows RDPro to scale to larger datasets.

We do not show results for Apache Sedona as it was not able to load any of the

raster datasets. Apache Sedona can work with at most 200 million pixels while the smallest

dataset GLC2000 has over 650 million pixels.

160

5.5 Conclusion

In this chapter, we propose the distributed system RDPro which is used to add

distributed raster processing capabilities to Raptor and can scale to big raster data. RDPro

is implemented in Spark and uses a custom RDD, RDD[ITile] to represent and process

raster data in a distributed environment. It uses RDD[ITile] to implement the operations

required for raster analysis. Since the proposed system is implemented in Spark and uses

an RDD to model the raster data, it allows the users an advantage to combine multiple

operations and run a complex spatial query pipeline on their datasets. We also show how

each operation required for raster analysis is implemented using RDD[ITile]. At last, we

compare the proposed system to GeoTrellis, GDAL and Sedona, and show its performance

gain and scalability.

161

Chapter 6

Applications

In this section, we discuss three real-world applications that process the combina-

tion of raster and vector data.

6.1 Combating Wildfires

Wildfire is a natural disaster which causes massive damage to property and human

life. It is a recurring phenomenon, especially in North America, which has led to research in

ways to prevent, detect, and combat the spread of wildfires. In the current wildfire season

in California so far, more than four million acres have already burned due to more than

8,000 wildfires. At one point in August 2020, the entire northern half of the state had been

instructed to prepare for evacuation. This has made it crucial to model the spread of wildfire

and predict how to efficiently allocate resources to minimize loss of life and property.

Data-driven modelling of wildfire spread needs to combine the information about

occurrences of fire with their corresponding geographical factors [24, 7]. The occurrences

162

US Cells

Rasters

1

Compute Zonal
Statistics

(Cell ID, Geometry, f)

(Cell ID, Geometry, f, Cell IDn, Geometryn, fn)

touches2
Find neighbors

Fire
Data

contains

3

Find cell for
each fire point

2012-2017

4

GROUP BY
(Lat, Lon, t)

List(FRP)

Cell ID

Cell ID == Cell IDn
&&

tn = t + 1

(Cell ID, Geometry, f, t, FRP Cell IDn, Geometryn, fn, tn, FRPn)

Figure 6.1: Data Generation Process

of fire are available in vector format as a collection of geographical points where the fire

occurred. Each point also has a variety of attributes associated with it such as the timestamp

of fire, fire radiative power (FRP), etc. Geographical factors such as vegetation, elevation,

wind direction, and fuel levels, that affect the duration and direction of wildfire spread are

available as rasters in form of satellite imagery. Apart from these two datasets, data-driven

modelling also requires to divide the target geographic region into numerous polygons called

zones, which are available as polygons in vector format. At the core of this application, the

fire zones need to be joined with several raster layers to calculate various statistics such

as mean, median, standard deviation, min, and max, of contributing geographical factors

for each zone. The computed statistics may or may not have associative and commutative

properties, e.g., median is not associative or commutative. After that, it joins the result

with the fire dataset.

The goal of this application was to build a wildfire dataset for the continental US.

The data generation process for it is depicted in Figure 6.1 and includes the following steps:

163

1. Compute Zonal Statistics: For each cell (fire zone) in the continental USA

and for each raster dataset, we want to compute aggregated feature vectors. To compute

zonal statistics, we use Raptor Join, which outputs a collection of tuples (gi, Geometryi, fi)

where Geometryi and fi refer to the actual spatial geometry and the set of feature values

calculated for cell gi respectively.

2. Find neighbors: The neighbors for each cell in the spatial grid are computed

by doing a spatial self-join using the predicate touches on the Geometry values of the

tuples generated in the previous step. The predicate touches returns true, if and only if

the boundaries of the cells intersect. We implement the spatial join using Beast [12]. It

outputs a collection of tuples (gi, Geometryi, fi, gn, Geometryn, fn) where each tuple in the

previous step is appended by the tuples of one of its neighbors (recall that we use subscript

n to denote variables that refer to the neighbors of the cell in consideration).

3. Find cell for each fire point: For specific points (latitude-longitude pairs)

in fire occurrence data and the cells in our spatial grid, a spatial join using the predicate

contains is performed to find the cell that each fire point is contained in. The predicate

contains returns true, if and only if the fire point lies in the interior of the cell. This step

is implemented using Beast eldawy2021beast.

4. Generate tuples: To generate the final tuples for WildfireDB, we start by

filtering the tuples in the fire occurrence data for the years 2012 to 2017. The fire occurrence

dataset may contain multiple tuples for the same fire point having the same time-step yet

different Fire Radiative Power(FRP) values. We group all such tuples by the fire point and

time-step and create a list for the FRP values to generate a single tuple. The resulting

164

VIIRS tuples are then joined with tuples from Step 2. Finally, we filter information about

each neighbor of the cell under consideration at the next time step. This results in tuples of

the form (gi, Geometryi, fi, t, xit, gn, Geometryn, fn, t + 1, xn(t+1)). If the condition on the

neighbor’s time-step is not satisfied, the value of xn(t+1) is set to zero, i.e. no fire.

This dataset can be used utilized by machine learning algorithms to build a model

for wildfire spread [7, 24, 64].

6.2 Crop Yield Mapping

The problem of crop yield mapping in agriculture [41] studies the crop yield of

various agriculture fields using Normalized Difference Vegetation Index (NDVI), which can

be used as a proxy for crop health, growth status, and yield. NDVI is calculated using

the red and near-infrared spectral reflectance (SR) measurements captured by satellites

which are available as rasters. To study crop yield, NDVI needs to be calculated for all

pixels that overlap the agricultural fields under study for a period of time ranging over

multiple years. The agricultural fields are available in vector format as a set of polygons,

where each polygon represents one agricultural field. Since crop yield is affected by various

environmental conditions, it makes it necessary to study various statistics about the crop

yield both in-field and across all the fields under study. These statistics also need to be

calculated across different windows of time to make sure whether the factors contributing

towards the decrease in crop yield are local or global (such as drought).

This application starts by sorting the NDVI layers by time to logically form a

three-dimensional cube where each pixel contains a time series of NDVI values in one year.

165

Then it calculates the standard deviation of each time series which represents the temporal

variability in vegetation in that location. After that, it combines this result with the

agricultural fields, represented as polygons, and computes the average and 90th percentile

value per field. This whole process is repeated for each year in the study and these values

are then used to classify the agriculture fields according to their crop yield and stability

over the years.

6.3 Areal Interpolation

Areal Interpolation is the problem of estimating a function in arbitrary areas,

e.g., city boundaries, based on values in other non-aligned areas, e.g., census tracts. One

application of this problem is to estimate the population of arbitrary regions using land-

cover data [56]. The problem is that the US Census Bureau reports the population at the

granularity of census tracts which are regions chosen by the Bureau to keep the privacy of

the data. Areal interpolation transforms these counts from source polygons, i.e., tracts, to

target polygons, e.g., ZIP Codes, with unknown counts. One accurate method [56] uses the

National Land Cover Database (NLCD) [46] raster dataset as a reference to disaggregate

the population counts into pixels and then aggregate them back into target polygons.

This application starts by calculating the histogram of NLCD values of each known

region, e.g., census tract. This step estimates how much of each region is covered by each

land type, e.g., road, urban area, and water. After that, it uses Poisson regression to

estimate the contributing factor of each land type to the true population in these regions.

This is called the disaggregation step since it breaks down the population into pixels. In

166

the next step, it processes the unknown regions, e.g., ZIP codes, with the NLCD dataset

to compute the histogram of each known region. Finally, it uses the regression parameters

to estimate the population of each known region. The most time consuming step in this

process is to calculate the histogram of the (raster) NLCD dataset for each (vector) region.

167

Chapter 7

Conclusions

In this dissertation proposal, we propose a new system called Raptor that can

bridge the gap between raster and vector data. It is an end-to-end system for efficiently

processing raster and vector geospatial data concurrently.

In the first chapter, we introduce and motivate the problem of efficiently processing

raster and vector geospatial data concurrently. We talk about the increase in the amount

of spatial which has facilitated several research applications but has also led to the demand

for systems that can efficiently process big spatial data.

In the second chapter, we presented an initial approach called DARaptor to paral-

lelize the zonal statistics operation. This algorithm provided several key ideas for processing

big vector and raster datasets in a distributed environment. First, this framework runs in

two phases, a single-machine preprocessing step that computes a common data structure

to be used in parallel, and defines the tasks that will be executed in parallel. The second

phase runs in parallel and aims at reading and processing the big raster files efficiently. The

168

second key idea is introducing the RaptorInputFormat which is the first input format that

combines raster plus vector data in one split. The RaptorInputFormat can define the units

of work to be executed in parallel and provides an easy way to optimize and balance the load

across machines. The RaptorInputFormat combined with the preprocessing step can also

prune irrelevant parts of the raster file in order to speed up the parallel processing. Finally,

we investigated several improvements to this method such as splitting the vector file into

chunks and compressing the intermediate files between the preprocessing and distributed

aggregation. The experiments show that the proposed algorithm can scale to large raster

data whereas the baselines could not handle big vector or raster data.

However, this approach did not scale well for very large vector datasets. There-

fore, in the third chapter, we proposed Raptor Zonal Statistics, a fully distributed system

implemented in Hadoop that can be used to perform the zonal statistics operation for big

raster and vector datasets. RZS runs in three steps: 1. First, RZS runs an intersection step

that computes the intersection file which maps vector polygons to raster pixels. 2. Second,

it runs the selection step that concurrently scans the intersection file and the raster file

to find the join result. To process the two files in parallel, the chapter re-introduces and

modifies the two components RaptorInputFormat and RaptorSplit which define the smallest

unit of work for each parallel task. 3. Third, it runs an aggregate phase that computes the

desired statistics for each polygon. The experiments with large-scale real data show that

the proposed algorithm is up-to two orders of magnitude faster than the baselines including

Rasdaman and Google Earth Engine (GEE). We also presented a cost model in this chapter

which helped us in explaining the results of both RZS and the baseline technique.

169

In the fourth chapter, we propose a new raster-vector join algorithm Raptor Join

which is modeled as a relational join operator in Spark that can be easily combined with

other operators, while also offering the advantage of in-situ processing. It overcomes the

limitations of the existing systems by combining raster-vector data in their native formats

by using a novel index structure called Flash Index. It runs in three steps, namely, Flash

Index creation, Flash Index optimization, and Flash Index processing. The Flash Index

creation step computes a mapping between raster and vector in the form of pixel ranges.

The Flash Index optimization step partitions and reorganizes this data structure across

machines in such a way that each tile in the raster dataset is scanned by only one machine.

The Flash Index processing step processes the partitioned pixel ranges to read the required

pixel values from the raster dataset. We run extensive experiments for the system against

Rasdaman, GeoTrellis, Google Earth Engine, Adaptive Cell Trie, GeoSpark, and Beast on

large raster and vector datasets to show its scalability and performance gain. We also show

that Raptor Join can be used to support real-world applications such as wildfire modeling,

area interpolation, and crop yield mapping.

In the fifth chapter, we propose the distributed system RDPro which is used to add

distributed raster processing capabilities to Raptor and can scale to big raster data. RDPro

is implemented in Spark and uses a custom RDD, RDD[ITile] to represent and process

raster data in a distributed environment. It uses RDD[ITile] to implement the operations

required for raster analysis. Since the proposed system is implemented in Spark and uses

an RDD to model the raster data, it allows the users an advantage to combine multiple

operations and run a complex spatial query pipeline on their datasets. We compare the

170

proposed system to GeoTrellis, GDAL, and Sedona, and show its performance gain and

scalability.

In the sixth and final chapter, we discuss three real-world applications that require

to process the combination of raster and vector data and were solved using the proposed

system Raptor.

In the future, we intend to make Raptor inter-operable with R and Python. R

and Python are popular tools used for analysis by the geospatial community. Incorporating

Raptor with them would allow more users to take advantage of the system. We also intend to

extend Raptor to work with SparkSQL and implement the query optimizer for it. Another

future work includes extending Raptor to work with machine learning algorithms that use

both raster and vector data.

171

Bibliography

[1] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong Zhang,
and Joel H. Saltz. Hadoop-GIS: A high performance spatial data warehousing system
over mapreduce. PVLDB, 6(11):1009–1020, 2013.

[2] Zonal Statistics in ArcGIS. http://desktop.arcgis.com/en/arcmap/10.3/tools/

spatial-analyst-toolbox/h-how-zonal-statistics-works.htm, 2017.

[3] Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, and Norbert Wid-
mann. The multidimensional database system RasDaMan. In SIGMOD, pages 575–577,
Seattle, WA, June 1998.

[4] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of
spatial joins using R-trees. ACM SIGMOD Record, 22(2):237–246, 1993.

[5] Nieves R Brisaboa, Guillermo de Bernardo, Gilberto Gutiérrez, Miguel R Luaces, and
José R Paramá. Efficiently querying vector and raster data. The Computer Journal,
60(9):1395–1413, 2017.

[6] Daniel Brown, Stephen Platt, John Bevington, Keiko Saito, Beverley Adams, Torwong
Chenvidyakarn, Robin Spence, Ratana Chuenpagdee, and Amir Khan. Monitoring
and evaluating post-disaster recovery using high-resolution satellite imagery–towards
standardised indicators for post-disaster recovery. Martin Centre: Cambridge, UK,
2015.

[7] Tina Diao et al. Uncertainty aware wildfire management. In AI for Social Good
Workshop, AAAI Fall Symposium Series, 2020.

[8] Chris Dickens, Vladimir Smakhtin, Matthew McCartney, Gordon O’Brien, and Lula
Dahir. Defining and quantifying national-level targets, indicators and benchmarks
for management of natural resources to achieve the sustainable development goals.
Sustainability, 11(2):462, 2019.

[9] Jennie Duggan, Olga Papaemmanouil, Leilani Battle, and Michael Stonebraker. Skew-
aware join optimization for array databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 123–135, 2015.

172

http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/h-how-zonal-statistics-works.htm
http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/h-how-zonal-statistics-works.htm

[10] Ahmed Eldawy et al. CG Hadoop: computational geometry in MapReduce. In
SIGSPATIAL, pages 284–293, Orlando, FL, November 2013.

[11] Ahmed Eldawy et al. SHAHED: A mapreduce-based system for querying and visual-
izing spatio-temporal satellite data. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, pages 1585–1596, 2015.

[12] Ahmed Eldawy, Vagelis Hristidis, Saheli Ghosh, Majid Saeedan, Akil Sevim, AB Sid-
dique, Samriddhi Singla, Ganesh Sivaram, Tin Vu, and Yaming Zhang. Beast: Scal-
able exploratory analytics on spatio-temporal data. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management, pages 3796–3807,
2021.

[13] Ahmed Eldawy and Mohamed F. Mokbel. Pigeon: A Spatial MapReduce Language.
In ICDE, pages 1242–1245, Chicago, IL, March 2014.

[14] Ahmed Eldawy and Mohamed F. Mokbel. SpatialHadoop: A MapReduce Framework
for Spatial Data. In ICDE, pages 1352–1363, April 2015.

[15] Ahmed Eldawy, Mohamed F. Mokbel, and Christopher Jonathan. HadoopViz: A
MapReduce Framework for Extensible Visualization of Big Spatial Data. In ICDE,
pages 601–612, Helsinki, Finland, May 2016.

[16] Ahmed Eldawy, Lyuye Niu, David Haynes, and Zhiba Su. Large scale analytics of
vector+raster big spatial data. In SIGSPATIAL, pages 62:1–62:4, 2017.

[17] Eosdis annual metrics reports, 2020. https://earthdata.nasa.gov/eosdis/

system-performance/eosdis-annual-metrics-reports.

[18] The ESA Earth Observation Payload Data Long Term Storage Activities, 2017.
https://www.cosmos.esa.int/documents/946106/991257/13_Pinna-Ferrante_

ESALongTermStorageActivities.pdf.

[19] Y. Fan, M. Clark, D. M. Lawrence, S. Swenson, L. E. Band, S. L. Brantley, P. D.
Brooks, W. E. Dietrich, A. Flores, G. Grant, J. W. Kirchner, D. S. Mackay, J. J. Mc-
Donnell, P. C. D. Milly, P. L. Sullivan, C. Tague, H. Ajami, N. Chaney, A. Hartmann,
P. Hazenberg, J. McNamara, J. Pelletier, J. Perket, E. Rouholahnejad-Freund, T. Wa-
gener, X. Zeng, E. Beighley, J. Buzan, M Huang, B. Livneh, B. P. Mohanty, B. Nijssen,
M. Safeeq, C. Shen, W. van Verseveld, J. Volk, and D Yamazaki. Hillslope Hydrology
in Global Change Research and Earth System Modeling. 2019.

[20] GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library.
Open Source Geospatial Foundation, 2022.

[21] GeoTrellis on Spark. https://github.com/wri/geotrellis-zonal-stats/blob/

master/src/main/scala/tutorial/ZonalStats.scala, 2019.

[22] GeoTrellis on Spark. https://github.com/wri/geotrellis-zonal-stats/blob/

master/src/main/scala/tutorial/ZonalStats.scala, 2019.

173

https://earthdata.nasa.gov/eosdis/system-performance/eosdis-annual-metrics-reports
https://earthdata.nasa.gov/eosdis/system-performance/eosdis-annual-metrics-reports
https://www.cosmos.esa.int/documents/946106/991257/ 13_Pinna-Ferrante_ESALongTermStorageActivities.pdf
https://www.cosmos.esa.int/documents/946106/991257/ 13_Pinna-Ferrante_ESALongTermStorageActivities.pdf
https://github.com/wri/geotrellis-zonal-stats/blob/master /src/main/scala/tutorial/ZonalStats.scala
https://github.com/wri/geotrellis-zonal-stats/blob/master /src/main/scala/tutorial/ZonalStats.scala
https://github.com/wri/geotrellis-zonal-stats/blob/master /src/main/scala/tutorial/ZonalStats.scala
https://github.com/wri/geotrellis-zonal-stats/blob/master /src/main/scala/tutorial/ZonalStats.scala

[23] Pierre Gernez, Stephanie CJ Palmer, Yoann Thomas, and Rodney Forster. remote
sensing for aquaculture. Frontiers in Marine Science, 7:1258, 2021.

[24] Omid Ghorbanzadeh et al. Spatial prediction of wildfire susceptibility using field survey
GPS data and machine learning approaches. Fire, 2(3):43, 2019.

[25] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. UCR-STAR:
The UCR Spatio-Temporal Active Repository. SIGSPATIAL Special, 11(2):34–40,
December 2019.

[26] Thomas W Gillespie, Jasmine Chu, Elizabeth Frankenberg, and Duncan Thomas. As-
sessment and prediction of natural hazards from satellite imagery. Progress in Physical
Geography, 31(5):459–470, 2007.

[27] Noel Gorelick et al. Google earth engine: Planetary-scale geospatial analysis for ev-
eryone. Remote sensing of Environment, 202:18–27, 2017.

[28] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and
Rebecca Moore. Google earth engine: Planetary-scale geospatial analysis for everyone.
Remote sensing of Environment, 202, 2017.

[29] David Haynes, Steven Manson, and Eric Shook. Terra Populus’ Architecture for Inte-
grated Big Gepspatial Services. Transactions on GIS, 2017.

[30] David Haynes, Suprio Ray, Steven M. Manson, and Ankit Soni. High Performance
Analysis of Big Spatial Data. In Big Data, pages 1953–1957, Santa Clara, CA, Novem-
ber 2015.

[31] ISO 19111:2019: Geographic information - Referencing by coordinates. https://www.
iso.org/obp/ui/#iso:std:iso:19111:ed-3:v1:en, 2019.

[32] G Darrel Jenerette, Sharon L Harlan, Anthony Brazel, Nancy Jones, Larissa Larsen,
and William L Stefanov. Regional Relationships Between Surface Temperature, Vege-
tation, and Human Settlement in a Rapidly Urbanizing Ecosystem. Landscape Ecology,
22:353–365, 2007.

[33] G. Darrel Jenerette, Sharon L. Harlan, William L. Stefanov, and Chris A. Martin.
Ecosystem Services and Urban Heat Riskscape Moderation: Water, Green Spaces, and
Social Inequality in Phoenix, USA. Ecological Applications, 21:2637–2651, 2011.

[34] Maxwell B Joseph et al. Spatiotemporal prediction of wildfire size extremes with
bayesian finite sample maxima. Ecological Applications, 29(6), 2019.

[35] Daniel Kachelriess, Martin Wegmann, Matthew Gollock, and Nathalie Pettorelli. The
application of remote sensing for marine protected area management. Ecological Indi-
cators, 36:169–177, 2014.

[36] Ameet Kini and Rob Emanuele. Geotrellis: Adding Geospatial Capabilities to Spark,
2014.

174

https://www.iso.org/obp/ui/#iso:std:iso:19111:ed-3:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:19111:ed-3:v1:en

[37] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Christoph Anneser,
Eleni Tzirita Zacharatou, Harish Doraiswamy, Peter A. Boncz, Thomas Neumann, and
Alfons Kemper. Adaptive main-memory indexing for high-performance point-polygon
joins. In EDBT 2020, pages 347–358. OpenProceedings.org, 2020.

[38] Nick Koudas and Kenneth C Sevcik. Size separation spatial join. In SIGMOD, pages
324–335, 1997.

[39] Ming-Ling Lo and Chinya V Ravishankar. Spatial joins using seeded trees. In Pro-
ceedings of the 1994 ACM SIGMOD international conference on Management of data,
pages 209–220, 1994.

[40] Ming-Ling Lo and Chinya V Ravishankar. Spatial hash-joins. In Proceedings of the
1996 ACM SIGMOD international conference on Management of data, pages 247–258,
1996.

[41] Bernardo Maestrini and Bruno Basso. Predicting spatial patterns of within-field crop
yield variability. Field Crops Research, 219, 2018.

[42] Map Algebra, 2022. https://gisgeography.com/

map-algebra-global-zonal-focal-local/.

[43] Jeremy Mennis, Roland Viger, and C Dana Tomlin. Cubic map algebra functions for
spatio-temporal analysis. Cartography and Geographic Information Science, 32(1):17–
32, 2005.

[44] Priti Mishra and Margaret H Eich. Join processing in relational databases. ACM
Computing Surveys (CSUR), 24(1):63–113, 1992.

[45] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. MD-HBase:
Design and Implementation of an Elastic Data Infrastructure for Cloud-scale Location
Services. DAPD, 31(2):289–319, 2013.

[46] NLCD dataset. https://www.mrlc.gov/data/type/land-cover, 2020.

[47] Jignesh M Patel and David J DeWitt. Partition based spatial-merge join. ACM Sigmod
Record, 25(2):259–270, 1996.

[48] Nathalie Pettorelli. Satellite remote sensing and the management of natural resources.
Oxford University Press, 2019.

[49] Donna J Peuquet. A hybrid structure for the storage and manipulation of very large
spatial data sets. Computer Vision, Graphics, and Image Processing, 24(1):14–27,
1983.

[50] Kamleshan Pillay, Naeem Hoosen Agjee, and Srinivasan Pillay. Modelling changes in
land cover patterns in mtunzini, south africa using satellite imagery. Journal of the
Indian Society of Remote Sensing, 42(1):51–60, 2014.

175

https://gisgeography.com/map-algebra-global-zonal-focal-local/
https://gisgeography.com/map-algebra-global-zonal-focal-local/

[51] Gary Planthaber, Michael Stonebraker, and James Frew. Earthdb: scalable analysis
of modis data using scidb. In BIGSPATIAL, pages 11–19, 2012.

[52] Postgis: Spatial and geographic objects for postgresql, 2020. https://postgis.net.

[53] PostGIS, 2022. https://postgis.net/.

[54] QGIS. http://www.qgis.org/, 2015.

[55] Raghu Ramakrishnan and Johannes Gehrke. Database management systems. McGraw-
Hill, 2000.

[56] Michael Reibel and Aditya Agrawal. Areal interpolation of population counts using
pre-classified land cover data. Population Research and Policy Review, 26(5-6):619–633,
2007.

[57] Hossein Saadat, Jan Adamowski, Robert Bonnell, Forood Sharifi, Mohammad Namdar,
and Sasan Ale-Ebrahim. Land use and land cover classification over a large area in iran
based on single date analysis of satellite imagery. ISPRS Journal of Photogrammetry
and Remote Sensing, 66(5):608–619, 2011.

[58] Elia Scudiero et al. Regional scale soil salinity evaluation using landsat 7, western san
joaquin valley, california, usa. Geoderma Regional, 2-3:82 – 90, 2014.

[59] Elia Scudiero, Todd H Skaggs, and Dennis L Corwin. Regional scale soil salinity eval-
uation using landsat 7, western san joaquin valley, california, usa. Geoderma Regional,
2:82–90, 2014.

[60] Shashi Shekhar and Sanjay Chawla. Spatial Databases: A Tour. Prentice Hall Upper
Saddle River, NJ, 2003.

[61] Andrii Shelestov, Mykola Lavreniuk, Nataliia Kussul, Alexei Novikov, and Sergii
Skakun. Exploring google earth engine platform for big data processing: Classification
of multi-temporal satellite imagery for crop mapping. frontiers in Earth Science, 5:17,
2017.

[62] Fernando Silva-Coira et al. Efficient processing of raster and vector data. Plos one,
15(1):e0226943, 2020.

[63] Bogdan Simion, Angela Demke Brown, and Ryan Johnson. Skew-resistant Parallel
In-memory Spatial Join. In SSDBM, pages 6:1–6:12, Aalborg, Denmark, July 2014.

[64] Samriddhi Singla, Tina Diao, Ayan Mukhopadhyay, Ahmed Eldawy, Ross Shachter,
and Mykel Kochenderfer. WildfireDB: A Spatio-Temporal Dataset Combining Wildfire
Occurrence with Relevant Covariates. 2020.

[65] Samriddhi Singla and Ahmed Eldawy. Distributed Zonal Statistics of Big Raster and
Vector Data. In SIGSPATIAL, 2018.

176

https://postgis.net
https://postgis.net/
http://www.qgis.org/

[66] Samriddhi Singla and Ahmed Eldawy. Raptor Zonal Statistics : Fully Distributed Zonal
Statistics of Big Raster + Vector Data. In Proceedings of the 2020 IEEE International
Conference on Big Data (IEEE BigData 2020). IEEE, December 2020.

[67] Samriddhi Singla, Ahmed Eldawy, Rami Alghamdi, and Mohamed F. Mokbel. Raptor:
Large Scale Analysis of Big Raster and Vector Data. PVLDB, 12(12):1950 – 1953,
2019.

[68] Samriddhi Singla, Ahmed Eldawy, Tina Diao, Ayan Mukhopadhyay, and Elia Scudiero.
Experimental Study of Big Raster and Vector Database Systems. In ICDE, page To
Appear, April 2021.

[69] Samriddhi Singla, Ahmed Eldawy, Tina Diao, Ayan Mukhopadhyay, and Elia Scudiero.
The raptor join operator for processing big raster+ vector data. In Proceedings of the
29th International Conference on Advances in Geographic Information Systems, pages
324–335, 2021.

[70] Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. SciDB: A
Database Management System for Applications with Complex Analytics. Computing
in Science and Engineering, 15(3):54–62, 2013.

[71] Planet Team. Planet application program interface: In space for life on earth, 2018–.

[72] UCR-Star: The UCR Spatio-temporal Active Repository. https://star.cs.ucr.

edu/.

[73] UCS Satellite Database, 2022. https://www.ucsusa.org/resources/

satellite-database.

[74] Tin Vu and Ahmed Eldawy. R*-grove: Balanced spatial partitioning for large-scale
datasets. Frontiers in Big Data, 3:28, 2020.

[75] Yafei Wang et al. Parallel scanline algorithm for rapid rasterization of vector geographic
data. Computers & geosciences, 59:31–40, 2013.

[76] Randall T. Whitman, Michael B. Park, Sarah A. Ambrose, and Erik G. Hoel. Spa-
tial Indexing and Analytics on Hadoop. In SIGSPATIAL, pages 73–82, Dallas, TX,
November 2014.

[77] European XFEL: Data Handling, 2017. http://www.xfel.eu/research/data_

handling/.

[78] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba: Efficient
In-Memory Spatial Analytics. In SIGMOD, June 2016.

[79] Chenghai Yang, James H Everitt, Qian Du, Bin Luo, and Jocelyn Chanussot. Using
high-resolution airborne and satellite imagery to assess crop growth and yield variability
for precision agriculture. Proceedings of the IEEE, 101(3):582–592, 2012.

177

https://star.cs.ucr.edu/
https://star.cs.ucr.edu/
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
http://www.xfel.eu/research/data_handling/
http://www.xfel.eu/research/data_handling/

[80] Jia Yu, Mohamed Sarwat, and Jinxuan Wu. GeoSpark: A Cluster Computing Frame-
work for Processing Large-Scale Spatial Data. In SIGSPATIAL, Seattle, WA, November
2015.

[81] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI.
USENIX Association, 2012.

[82] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark:
a unified engine for big data processing. Commun. ACM, 59(11):56–65, 2016.

[83] Ramon Antonio Rodriges Zalipynis. Chronosdb: distributed, file based, geospatial
array dbms. PVLDB, 11(10):1247–1261, 2018.

[84] Ramon Antonio Rodriges Zalipynis. Chronosdb: distributed, file based, geospatial
array dbms. Proceedings of the VLDB Endowment, 11(10):1247–1261, 2018.

[85] Jianting Zhang and Dali Wang. High-Performance Zonal Histogramming on Large-
Scale Geospatial Rasters Using GPUs and GPU-Accelerated Clusters. In IPDPS Work-
shops, pages 993–1000, Phoenix, AZ, May 2014.

[86] Jianting Zhang, Simin You, and Le Gruenwald. Efficient Parallel Zonal Statistics
on Large-Scale Global Biodiversity Data on GPUs. In BIGSPATIAL, pages 35–44,
Bellevue, WA, November 2015.

[87] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. Sjmr: Paral-
lelizing spatial join with mapreduce on clusters. In CLUSTER, pages 1–8, 2009.

[88] Yaming Zhang and Ahmed Eldawy. Evaluating computational geometry libraries for
big spatial data exploration. In ACM SIGMOD, pages 1–6, 2020.

[89] Gang Zhao, Brett A Bryan, Darran King, Xiaodong Song, and Qiang Yu. Paral-
lelization and optimization of spatial analysis for large scale environmental model data
assembly. Computers and electronics in agriculture, 89:94–99, 2012.

[90] Weijie Zhao, Florin Rusu, Bin Dong, and Kesheng Wu. Similarity join over array data.
In Proceedings of the 2016 International Conference on Management of Data, 2016.

178

	List of Figures
	List of Tables
	Introduction
	DARaptor: Distributed Zonal Aggregation of Big Raster + Vector Data
	Introduction
	Related Work
	Big Vector Data
	Big Raster Data
	Big Raster-Vector Combination
	Zonal Statistics

	Background
	Spatial Data Representation
	Zonal Statistics
	Single-machine ScanLine Method

	Distributed Zonal Statistics
	Naïve Implementation (NI)
	DARaptor
	Other Implementation Details

	Experiments
	Setup
	Overall Comparison
	Tuning

	Conclusion

	Raptor Zonal Statistics: Fully Distributed Zonal Statistics of Big Raster + Vector Data
	Introduction
	Related Work
	Big Vector Data
	Big Raster Data
	Big Raster-Vector Combination
	Zonal Statistics

	Review of Raster and Vector Data
	Spatial Data Representation
	Raster File Structure
	Zonal Statistics
	Zonal Statistics on Raster DB
	Zonal Statistics on Vector DB
	Single-machine ScanLine Method

	Implementation
	Theoretical Analysis
	Raster Database Approach (RDA)
	Raptor Zonal Statistics (RZS)
	Discussion

	Experiments
	Setup
	Overall Execution Time
	Ingestion Time
	Closeup Scalability of Rasdaman
	Verification of Cost Models
	Applications
	Vector Chunks
	Compression of Intersection File
	Spatial Partitioning of Vector Data

	Conclusion

	The Raptor Join Operator for Processing Big Raster + Vector Data
	Introduction
	Related Work
	Non-spatial Joins
	Spatial Join on Raster Data
	Spatial Join on Vector Data
	Raster-Vector Joins

	Problem Formulation
	Input Data Model
	RJ"056F-13.8mu"056E Output Definition
	Integration with Spark

	Implementation
	Flash Index Creation
	Flash Index Optimization
	Flash-Index Processing

	Experiments
	Setup
	Vector-based Systems
	Raster-based Systems
	Flexibility of RJ"056F-13.8mu"056E
	Optimizing RJ"056F-13.8mu"056E

	Conclusion

	Distributed Raster Pre-processing
	Introduction
	Problem Formulation
	Raster Data Model
	Vector Data Model
	Raster Operations

	RDPro Architechture
	RDPro Data Model
	Raster Data Loading
	Raster Data Output
	Raster Query Processing

	Experiments
	Setup
	Data Loading
	Data Writing
	Map Algebra: Local Operations
	Map Algebra: Focal Operations
	Map Algebra: Global Operations

	Conclusion

	Applications
	Combating Wildfires
	Crop Yield Mapping
	Areal Interpolation

	Conclusions
	Bibliography

