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Preface 

 

The Public Interest Energy Research (PIER) Program supports public interest energy research 
and development that will help improve the quality of life in California by bringing 
environmentally safe, affordable, and reliable energy services and products to the marketplace. 

The PIER Program, managed by the California Energy Commission (Energy Commission), 
annually awards up to $62 million to conduct the most promising public interest energy 
research by partnering with Research, Development, and Demonstration (RD&D) 
organizations, including individuals, businesses, utilities, and public or private research 
institutions. 

PIER funding efforts are focused on the following RD&D program areas: 

• Buildings End-Use Energy Efficiency 

• Energy-Related Environmental Research 

• Energy Systems Integration  

• Environmentally Preferred Advanced Generation 

• Industrial/Agricultural/Water End-Use Energy Efficiency 

• Renewable Energy Technologies 

 

The California Climate Change Center (CCCC) is sponsored by the PIER program and 
coordinated by its Energy-Related Environmental Research area. The Center is managed by the 
California Energy Commission, Scripps Institution of Oceanography at the University of 
California at San Diego, and the University of California at Berkeley. The Scripps Institution of 
Oceanography conducts and administers research on climate change detection, analysis, and 
modeling; and the University of California at Berkeley conducts and administers research on 
economic analyses and policy issues. The Center also supports the Global Climate Change 
Grant Program, which offers competitive solicitations for climate research.  

The California Climate Change Center Report Series details ongoing Center-sponsored 
research. As interim project results, these reports receive minimal editing, and the information 
contained in these reports may change; authors should be contacted for the most recent project 
results. By providing ready access to this timely research, the Center seeks to inform the public 
and expand dissemination of climate change information; thereby leveraging collaborative 
efforts and increasing the benefits of this research to California’s citizens, environment, and 
economy. 

For more information on the PIER Program, please visit the Energy Commission’s website 
www.energy.ca.gov/pier/ or contact the Energy Commission at (916) 654-5164. 

www.energy.ca.gov/pier/
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Executive Summary 

 

This white paper focuses on how climate change-induced effects on weather will translate into 
changes in wildland fire severity and outcomes, particularly on the effectiveness of initial attack 
at limiting the area burned in contained fires and the number of fires that escape initial attack. 
Prior research has indicated that there is a potential for significant increases in the number of 
fires escaping initial attack, particularly in areas in which the fuel matrix is dominated by grass 
and brush. These results were driven primarily by predicted increases in wind speeds. Those 
findings, however, were derived using less sophisticated models of initial attack than currently 
available. 

The results of this study, using more sophisticated models and climate projections, indicate that 
subtle shifts in fire behavior of the sort that might be induced by the climate changes 
anticipated for the next century are of sufficient magnitude to generate an appreciable increase 
in the number of fires that escape initial attack, at least for areas where brush fuels dominate. 
Such escapes of considerable importance in wildland fire protection planning, given the high 
cost to society of a catastrophic escape like those experienced in recent decades in the Berkeley-
Oakland, Santa Barbara, San Diego, or Los Angeles areas. However, at least for the limited 
region in the Sierra Nevada considered in this study, it would appear that relatively modest 
augmentations to existing firefighting resources would be sufficient to compensate for change-
induced changes in wildland fire outcomes. 

Generalizing our findings with respect to wildland fire intensity and outcomes for the Amador-
El Dorado Unit to other private lands in the state will require both further analysis using the 
data for that CDF unit, and replication of this analysis using data for several other units and for 
the state’s federal forest lands. 

No attempt is made in this paper to extrapolate the results beyond the boundaries of the study 
area, in part because of necessary work that was identified with respect to further validation of 
this study’s modeling approach. 
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1.0 Introduction 
Previous analyses of wildfire and climate change suggested that wildfire outcomes (the number 
of escaped fires and area burned annually) would increase, sometimes dramatically, in northern 
California under a double-CO2 scenario (Fried et al. 2004; Torn and Fried 1992). In one extension 
of limited results to all nonfederal lands in this region, a double-CO2 climate was predicted to 
lead to a doubling in the frequency of fires that escape initial attack suppression, thereby 
potentially becoming large, damaging fires (Fried et al. 2004). Others have commented that 
given the importance of extreme fire weather in California, it is critical that we better 
understand how this weather is impacted by climate change (Davis and Michaelsen 1995). 
These results raise several important follow-on questions: Will climate change lead to changes 
in the number of fires (i.e., to fire occurrence), changes in the beginning and end dates of fire 
season for which fire agencies must be fully staffed, or shifts in fire rate-of-spread distributions? 
Can additional firefighting resources compensate for increased fire severity or occurrence? At 
what cost? Would lower greenhouse gas (GHG) emissions pathways moderate the projected 
impacts on wildfire relative to a higher emissions scenario? This white paper attempts to 
address some of these questions. Although much more work remains to be done to address 
them completely, this preliminary analysis indicates that existing models can be extended in 
ways that provide valuable insights into the impact of climatic change on wildfire severity and 
outcomes in California over the next century. 

The results reported in this paper differ from prior studies in that they were derived by using a 
more sophisticated initial attack simulator and higher resolution climate scenarios than were 
previously available. Unfortunately, time constraints limited our analysis to a consideration of a 
single representative northern California administrative unit of the California Department of 
Forestry and Fire Protection (CDF)—Amador-El Dorado (AEU). (Note: Most CDF units are one- 
or two-county administrative area). In prior work (Fried et al. 2004), AEU presented the highest 
sensitivity to climate change of the three units considered. Preliminary estimates for the effects 
of climate change on wildfire severity and outcomes for AEU are presented below for higher 
and lower emission scenarios: business-as-usual and reduced-anthropogenic-emission 
scenarios. 
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2.0 Methods 
This study relied on models and data drawn from California’s strategic fire planning system to 
estimate aspects of climate change relevant to wildland fire at three levels of analysis. The first 
level focused on generating 150 years of simulated daily weather variables from 1950 to 2099 
that relate to fire behavior via downscaling from general circulation model simulations under 
two GHG emissions scenarios for three periods: a baseline reference period from 1961 to 1999 
denoted henceforth as BASE; a second period in the middle of this century (2035 to 2064) 
denoted as MIDCEN; and a third period at the end of the century (2070 to 2099) denoted as 
ENDCEN. In the second level of analysis, these predictions of daily weather were used, in turn, 
to predict the wildfire behavior attributes rate of spread (ROS) and burning index (BI) by using 
the Fire Behavior Dispatch Modeling System (FBDMOD) (CDF 1992), a program patterned after 
the National Fire Danger Rating System (Deeming et al. 1977). Fire behavior predictions were 
made for a wide range of fuel and slope conditions in the study area, both to explore how these 
attributes would respond to climate change, and to generate inputs for the third level of 
analysis. In the third level of analysis, this study sought to assess the impact of these predicted 
changes on the success of the initial attack system that forms the foundation of wildland fire 
protection in California. Individual wildfire outcomes were predicted and then aggregated by 
using the California Fire Economics Simulator version 2 (CFES2) (Fried and Gilless 1999), a 
stochastic computer model developed for the California Department of Forestry and Fire’s 
(CDF) fire protection planning program. This section describes the detailed methods and 
assumptions for each level of analysis, and how the models and data from each level were 
ultimately combined to predict wildfire outcomes under alternative climate change scenarios. 

2.1. The Study Area: CDF’s Amador-El Dorado Unit 
All analysis reported in this paper relates to our pilot study area: CDF’s Amador-El Dorado 
Unit, which encompasses the area in the Sierra foothills east of Sacramento in Amador and El 
Dorado counties where the CDF has primary responsibility for wildfire suppression, with 
assistance from cooperating local and federal agencies. The AEU covers 0.9 million hectares 
(2 million acres) and contains a range of vegetation types from annual grasslands, shrublands, 
oak savannas, and open pine woodlands in the west, to short- and long-needled coniferous 
forests in the east, reflecting the effects of elevation and rainfall gradients. Census data from 
www.CensusScope.org show that the AEU experienced population growth in excess of the state 
average during the 1990s, increasing the value of infrastructure at risk and increasing the 
complexity of the problems faced there by local, state, and federal fire protection agencies. 

For purposes of strategic and tactical planning, CDF conducts analysis by using the Fire 
Protection Planning System. The agency stratified this unit into nine fire management analysis 
zones (FMAZs) that are described by a combination of fuel type (e.g., grass, brush—an indicator 
of the fire regime) and population density (as an indicator of the extent to which issues of 
wildland urban interface are germane). For modeling fire potential within a FMAZ, CDF relies 
on representative fire locations (RFLs) chosen on the basis of historical fire locations, each of 
which is characterized by a particular fire behavior fuel model, slope class, herbaceous 
vegetation type, climate class, and most representative fire weather station (for the conditions at 
the RFL). We conceive of these concatenated weather and behavior attribute labels as “fuel 
combinations.” Each FMAZ is considered homogenous with respect to some of these variables 

www.CensusScope.org
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(weather station, climate class and herb class) but specific fuel model and slope class are 
allowed to differ among RFLs within a FMAZ.  

Fuel models used in AEU (A, B, C, F, H, and U) are from the National Fire Danger Rating 
System (narrative descriptions can be found in Deeming et al., 1977). Percentage slope, a key 
value in predicting fire behavior, is classed 1 (0% to 25%) through 5 (> 75%). Herbaceous 
vegetation, which has varying effects on fire behavior depending on fuel type and can be 
classified as either annual (A) or perennial (P), is classified as annual throughout this unit. 
Because of the Mediterranean climate, characterized by cold, wet winters and warm, dry 
summers, climate class is coded as 2 (subhumid, savanna). Fire weather stations used for fire 
behavior prediction in AEU are located at Bald Mountain (lat 38 54 3, long 120 41 8) and 
Georgetown (lat 38 55 10, long 120 54 0). Table 1 lists the specific fuel combinations used to 
represent fire behavior in AEU. 

The structure of the Fire Protection Planning System guides the analysis undertaken for this 
study at all three levels. Daily weather is modeled for the locations of the two representative fire 
weather stations for level 1. Predicted weather for those locations and the fuel combinations 
that occur on the unit are used to model fire rate of spread in a level 2 analysis. And for level 3, 
fire behavior results are combined with information on the existing initial attack organization to 
predict initial attack success. 
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Table 1. Fuel combinations for the Amador-El Dorado Unit 

Fuel model Description 
Slope class 
(percent) Herb class Climate class Associated weather station 

A1 Grassland 0–25 Annual 2 Bald Mountain 

A1 Grassland 26–40 Annual 2 Bald Mountain 

B1 Brush 26–40 Annual 2 Bald Mountain 

B1 Brush 41–55 Annual 2 Bald Mountain 

B1 Brush 56–75 Annual 2 Bald Mountain 

C1 Open pine 0–25 Annual 2 Bald Mountain 

C1 Open pine 26–40 Annual 2 Bald Mountain 

C1 Open pine 41–55 Annual 2 Bald Mountain 

H1 Short-needle conifer 41–55 Annual 2 Bald Mountain 

H1 Short-needle conifer 56–75 Annual 2 Bald Mountain 

U1 Closed pine 0–25 Annual 2 Bald Mountain 

U1 Closed pine 41–55 Annual 2 Bald Mountain 

U1 Closed pine 56–75 Annual 2 Bald Mountain 

A1 Grassland 26–40 Annual 2 Georgetown 

B1 Brush 0–25 Annual 2 Georgetown 

B1 Brush 26–40 Annual 2 Georgetown 

B1 Brush 41–55 Annual 2 Georgetown 

B1 Brush 56–75 Annual 2 Georgetown 

C1 Open pine 0–25 Annual 2 Georgetown 

C1 Open pine 26–40 Annual 2 Georgetown 

C1 Open pine 41–55 Annual 2 Georgetown 

C1 Open pine 56–75 Annual 2 Georgetown 

F1 Brush–chamise 41–55 Annual 2 Georgetown 
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2.2. Climate Forcing 
Projections of fire weather under future climate change scenarios are based on temperature and 
precipitation from simulations of BASE and future periods (MIDCEN and ENDCEN) for two 
atmosphere-ocean general circulation models (AOGCMs): the NOAA-GFDL CM2.1 (Delworth 
et al. 2005), denoted henceforth as GFDL; and the DOE-NCAR Parallel Climate Model 
(Washington et al. 2000), denoted as PCM. Simulations are forced by the IPCC Special Report on 
Emission Scenarios mid-high (A2) and lower (B1) emissions scenarios (SRES, Nakićenović et al. 
2000). The A2 scenario describes a very heterogeneous world where economic development is 
regionally oriented, economic growth and technological change occurs relatively slowly, and 
emissions climb steeply, reaching 30 gigatons of carbon per year (GtC/yr) or 6 times 1990 levels, 
by 2100. In contrast, emissions under the B1 scenario are lower, based on a world that 
transitions relatively rapidly to service and information economies.The CO2 emissions in the B1 
scenario peak at just below 10 GtC/yr—around two times 1990 levels—at mid-century and 
decline slowly to below current-day levels. Although both scenarios are “nonintervention” (i.e., 
do not include any specific actions to reduce emissions), the lower emissions under the B1 
scenario can be taken as a proxy to compare with A2 to evaluate the potential benefits of 
following a lower versus a higher emissions pathway. 

The GFDL and PCM monthly temperature and precipitation fields for the A2 and B1 scenarios 
were then statistically downscaled to daily values for regions with a resolution of 1/8°, or about 
12 kilomters (km) (7 miles) (Wood et al. 2002), each covering one of the two fire weather stations 
of interest in Alameda and El Dorado Counties. Downscaling used an empirical statistical 
technique that maps the probability density functions for modeled monthly and daily 
precipitation and temperature for the climatological period (1961 to 1990) onto those of gridded 
historical observed data, so the mean and variability of both monthly and daily observations are 
reproduced by the climate model data. The bias correction and spatial disaggregation technique 
is one originally developed for adjusting AOGCM output for long-range streamflow forecasting 
(Wood et al. 2002), later adapted for use in studies examining the hydrologic impacts of climate 
change (VanRheenen et al. 2004), and compares favorably to other statistical and dynamic 
downscaling techniques (Wood et al. 2004). The Variable Infiltration Capacity (VIC) distributed 
land surface hydrology model was then used to generate daily average relative humidity values 
that correspond to the daily temperature and precipitation for each grid cell. 

Daily maximum temperature, minimum temperature, precipitation, and humidity are only four 
of the variables required as inputs to FBDMOD. Thus, observed weather data for each fire 
station was next used in conjunction with the modeled variables to project daily 2 p.m. 
temperature and relative humidity, precipitation duration, maximum and minimum relative 
humidity, 10-hour fuel moisture, wind direction and speed, and state of the weather for all 
periods, as follows: 

Wind Direction. A statistical CART (classification and regression tree) algorithm was 
used to first resolve the wind “seasons” for each station as defined by statistically 
significant differences in average distributions. Most of the 15 stations had only two 
distinctly different seasons, but several had three or four. For each station and season, a 
second CART analysis was then performed to identify the primary characteristics of the 
weather system identified with each wind direction, in terms of humidity, temperature, 
diurnal temperature range, and precipitation. Based on the weather characteristics 
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associated with specific wind directions, probability distributions of wind direction were 
created for various weather types. Daily model data was then classified by season and 
weather type, and the wind direction for that day sampled from the appropriate 
distribution. 

Wind Speed. For each station and “wind season” identified above, a probability 
distribution of wind speed for each of the eight wind directions was created from 
historical observed data. Daily modeled wind speed was then determined by first 
obtaining the wind direction for the day based on the weather state characteristics (as 
described above), then sampling from the distribution of wind speeds corresponding to 
that wind direction for that season in order to produce a reasonable distribution of wind 
speeds that reflected both the projected change in daily conditions as well as the actual 
wind speeds that had been observed at that station over the historical period. 

Maximum and Minimum Relative Humidity. As the climate and hydrology models 
only simulate daily average humidity, it was also necessary to parameterize maximum 
and minimum daily values. Using the observed fire weather data for each station, this 
study first assessed the degree to which a range of temperature and average humidity 
variables were correlated with the daily range in relative humidity. For all stations, 
diurnal temperature range (dT) was found to be most strongly correlated with the 
difference between average and minimum relative humidity. Based on the observed 
records for each station, the difference between average and minimum relative humidity 
was then grouped into categories (binned) based on the diurnal temperature range. 
Modeled dT was calculated and the appropriate bin sampled from to determine the 
RHavg-RHmin difference. Values for RHmax and RHmin were then determined from 
simulated RHavg. 

2 p.m. Temperature and Humidity. Representative values of temperature and relative 
humidity at 2 p.m., to reflect the time of day required for representing worst-of-the-day 
fire behavior in FBDMOD, were developed by first determining which other variables in 
the observed data were most strongly correlated with 2 p.m. temperature and humidity. 
These were found to be maximum daily temperature and minimum daily relative 
humidity. The observed correlation between observed Tmax and T2pm, and between RHmin 
and RH2pm was then used to bin the difference between observed 2 p.m. data values and 
Tmax and RHmin data. Based on modeled Tmax and RHmin values, the corresponding bin 
was selected and the modeled daily 2 p.m. values determined through random sampling 
from the appropriate distribution based on observed differences. 

Precipitation Duration. Average duration of precipitation during the day was set to 
zero if total precipitation amount was zero. For precipitation amounts greater than zero, 
12 monthly bins were created for a total of 144 bins based on observed weather at 
individual stations, with daily precipitation amounts for each bin ranging from  
1 through 20 in increments of 5, then up to a maximum value. Observed duration of 
precipitation was binned by month and by daily total to create historical distributions of 
the probability of precipitation duration by station and month. These distributions were 
then randomly sampled for modeled precipitation to determine representative 
precipitation duration values for each day of the corresponding month. 
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State of the Weather. The daily weather state is a complex function of season, 
temperature, precipitation, cloudiness, humidity, and numerous other variables not 
directly simulated by the modeled data used here. In lieu of direct information on 
weather states, the category for each day was determined based on a number of 
modeled variables, including the ratio of total precipitation to duration (differentiating 
between rain, showers, or drizzle), maximum humidity and minimum temperature (to 
determine the likelihood of fog), maximum temperature below 2°C (36°F) and 
precipitation (to identify snow or sleet events), high lightning probability combined with 
nonzero precipitation (for thunderstorms), and the diurnal temperature range (to 
identify the likely presence or absence of clouds, the presence of which would moderate 
both daily high and nighttime low temperatures). 

10-Hour Fuel Moisture. The relationships between observed values of 10-hour fuel 
moisture (10-hr FM) and a number of other climate variables were examined. It was 
determined that the strongest correlation was with daily average relative humidity, 
temperature, and precipitation, without a significant time lag. An empirical formula for 
10-hr FM was determined based on the observed values such that 10-hr FM was 
parameterized as a function of relative humidity divided by temperature with a flag for 
nonzero precipitation. Simulated values of RH, T, and precipitation were then used to 
calculate 10-hr FM for each day. 

As described above, detailed daily fire weather projections have been sampled from actual 
observed weather conditions specific to each station based on simulated daily maximum and 
minimum temperatures, relative humidity, and precipitation as calculated by two AOGCMs 
and downscaled to a high-resolution grid cell centered over that station. As such, they are 
expected to produce statistically similar (although not identical) fire behavior patterns over the 
historical period and realistically represent the effect of projected changes on fire behavior 
under future scenarios of climate change at specific fire weather stations. 

2.3. Fire Behavior 
Daily fire rate of spread and burning index (a proxy for intensity) was predicted for the three 
periods (BASE, MIDCEN, and ENDCEN) for each fuel combination present in AEU under the 
higher (A2) and lower emissions (B1) scenarios as simulated by the GFDL and PCM models and 
transformations described in the previous section as input to FBDMOD. A key assumption in 
these fire behavior predictions is that they represent fires that spread at near daily worst-case 
rates, without crowning or spotting, through continuous fuels on a uniform slope (NWCG 
2002). Weather station descriptive information required by FBDMOD (elevation, latitude, date 
of vegetation green-up, date of first killing frost) was obtained from the publicly available fire 
weather archives of the National Fire and Aviation Management Web 
(http://famweb.nwcg.gov/weatherfirecd/index.htm).  

The fire behavior algorithms contained in FBDMOD allow for the option of calculating 10-hour 
fuel moistures endogenously by FBDMOD. We chose to calculate 10-hour fuel moistures 
exogenously from our GCM weather streams instead, as these values produced generally more 
conservative estimates of fire behavior. FBDMOD also requires the user to estimate when 
herbaceous plant growth begins and when plants first freeze in the fall (i.e., green-up and frost 
dates). We applied a January 1 green-up date and December 31 frost date to all years of the 

http://famweb.nwcg.gov/weatherfirecd/index.htm
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study so as to minimize the impact of these unknown parameters on fire behavior for two 
reasons: historical evidence as to what these dates should be was lacking, and dynamically 
estimating green-up and frost dates annually based on other weather variables was beyond the 
scope of this analysis. Using these dates may have caused slight underestimation of potential 
fire behavior in the winter and early spring months (particularly for grass-driven fuel models).  

This study compared changes in fire behavior predictions between periods by using Tukey’s 
Honestly Significant Difference (HSD) test for multiple comparisons, a method based on the 
range of the sample means. Neither students-t test nor analysis of variance (ANOVA) are 
suitable for this data because the values of ROS and BI for a given period are not distributed 
normally. The Tukey HSD test does not mandate assumptions of normality or equal variances. 
Also, when comparing the period means for the levels of the factor time in an analysis of 
variance, simple comparisons using t-tests would inflate the probability of declaring a 
significant difference when one is not, in fact, present. When comparing samples of unequal 
sizes (such as our data), the Tukey HSD test is conservative. We compared means calculated for 
the portions of the ROS distributions modeled as beta distributions in CFES2 (leaving out only 
the slowest moving fires); we also compared means of the highest 5% of the values in each ROS 
distribution to explore potential increases in “extreme” fire weather.  

2.4. Initial Attack Simulation 
The event-based simulation framework of CFES2 allows users to evaluate initial attack response 
effectiveness for a given unit. This model simulates realistic fires and suppression responses 
through the use of stochastic modules for fire occurrence and fire behavior (Gilless and Fried 
1999; Fried and Gilless 1988), and lists of fire suppression resources with their response times 
and fireline production rates. For a given simulated season, CFES2 simulates fire events with 
specific locations and start dates and times, and estimates the behavior (rate of spread or 
burning index) of these fires by drawing from distributions of potential fire behavior (beta and 
Bernoulli) for a specific fuel combination and season. This study used daily fire behavior 
predictions generated with FBDMOD to generate the distributions of potential fire behavior 
necessary for CFES2 analysis. 

Daily-resolved fire behavior predictions were divided into five inter-annual seasons for CFES2 
analysis by using FORTRAN for data manipulation: low 1 (January 1 to May 15), transition 1 
(May 15 to June 15), high (June 15 to October 15), transition 2 (October 15 to November 15) and 
low 2 (November 15 to December 31). These seasons are used in CFES2 to specify what fire 
suppression resources are available, and have previously been estimated based on fire 
occurrence (Gilless and Fried 1999). An important question when studying fire and climate 
change is how the high fire season might change in timing and extent. Although it is likely that 
fire suppression agencies would alter management techniques to accommodate a changing 
climate, we held these dates constant throughout our studies under a “ceteris paribus” 
approach (i.e., “all other things being equal”). This forces the assumption that although 
potential fire behavior intensity might change for a particular time of year, the firefighting 
resources available would not.  

Separate distributions of potential fire behavior were modeled for the low, transition, and high 
fire seasons. Fire behavior data for a particular season is consistently bimodal in its distribution, 
with a large number of slow moving fires coupled with a wider distribution of fast-moving fires 
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(Fried and Gilless 1988). Each overall seasonal distribution was thus split into two smaller 
distributions, and fit with Bernoulli (slow-moving fires) and beta (fast-moving fires) curves. 
Determining both where to split the data and the best fitting curves for the resulting data was 
accomplished through iterations of a chi-square test and the moments method of curve fitting in 
the statistical program R. Distribution parameters were summarized for input into CFES2. 

These fire behavior indices served as inputs to CFES2, along with additional detailed input data 
from CDF on, for example, the locations and productivity of fire suppression resources, and 
historical fire ignition patterns. CFES2 was then used to generate estimates of the frequency of 
escaped fires and the area burned by contained fires, and to evaluate the effectiveness of 
alternative configurations and levels of initial attack resources. Simulations were conducted for 
the BASE, MIDCEN, and ENDCEN periods, for the A2 and B1 scenarios, by using behavior data 
generated from both the GFDL and PCM AOGCMs, with 200 “years” (actually, realizations of 
years) simulated for each scenario. 

When using CFES2 to conduct comparative analysis, any of a number of kinds of results can 
prove interesting, including changes in the frequency of escapes, area burned in contained fires 
by season, size class, and geographical unit; percentage of fires that are successfully contained 
within predetermined size limits; and even utilization frequency and dispatching costs of any 
particular firefighting resource or group of resources. And, because CFES2 is a stochastic 
simulator that produces as many potential realizations as desired, we can look beyond a single, 
deterministic result for any attribute of interest, and report information on variability (e.g., 
standard errors) along with expected values, or even selected percentiles of the distribution of 
realizations (Fried et al. 2006). This analysis focused on estimates of the expected value (and 
standard errors) of escaped fires per year by FMAZ, and secondarily on the area burned by 
contained fires. The critical lessons to be learned are the extent to which these change with 
climate in a statistically significant fashion.  

Important assumptions were made in our CFES2 simulations to make the analysis tractable. 
Somewhat tempering the definitiveness of these results, many parameters that may well change 
over the next century were held constant, including fire occurrence, fuel models, the amount, 
positioning, and productivity of firefighting resources, and population density.  
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3.0 Results 

3.1. Climate 
The impact of global climate change on daily weather characteristics at the location of the Bald 
Mountain weather station differs widely by variable. This section examines changes specifically 
in fire season weather (defined as bracketing the range from May 1 to November 30 of each 
year) for MIDCEN and ENDCEN relative to BASE. In some cases the projected changes are 
larger under a higher emissions scenario (A2 versus B1), illustrating the sensitivity of fire 
weather to emissions pathways and the degree of global change; in others, the GFDL model 
shows changes that are distinctly different from the PCM model, highlighting inter-model 
uncertainty; and in some cases, changes are not consistent either between models or scenarios, 
displaying a more random component that may be indicative of the sensitivity of that variable 
to multiple and interactive changes in and feedbacks between climate characteristics.  

The 2 p.m. temperature displays the most robust changes, consistent across both models and 
scenarios (Table 2, Figure 1). By midcentury, a change of 1.1°F to 3.5°F (0.6°C to 1.9°C) is 
projected under B1 and 1.9°F to 4.2°F (1.1°C to 2.3°C) under A2. As expected, the inter-scenario 
difference grows by end-of-century where projected changes range from 2.4°F to 4.8°F (1.3°C to 
2.7°C) (B1) up to 4.3°F to 8.5°F (2.4°C to 4.7°C) (A2). Larger changes are seen for GFDL, the more 
sensitive model, as compared to PCM. Under the higher A2 scenario, both GFDL and PCM 
exhibit significant changes in the standard deviation of the distribution that are not as evident 
under B1, with both A2 temperature distributions developing smaller peaks and longer tails 
over time. These changes in the shape of the distribution are indicative of more frequent 
extreme temperature events, particularly at the higher end of the range. 

Relative humidity (RH) changes display a strong dependence on both the model and the 
emissions scenario (Table 2, Figure 2). The model determines the sign of the change, with GFDL 
being consistently drier and PCM more humid. However, the emissions scenario (higher or 
lower) tends to determine the magnitude of change for each model, with larger changes for A2 
relative to B1. For 2 p.m. RH values, GFDL projects decreases ranging from –6% (B1) to –9% 
(A2) by MIDCEN and –5% (B1) to –13% (A2). In contrast, PCM simulations show small 
increases in average RH of +1% (B1) to +3% (A2) by MIDCEN and +3% (B1) or no change (A2) 
by ENDCEN. Focusing specifically on low-humidity days (defined as 2 p.m. RH less than 15%) 
intensifies the inter-model differences (Figure 3). The GFDL model shows increases in the 
number of low-humidity days, up from a total of 28 or 29 on average during each fire season for 
BASE to 34 days (B1) or 46 days (A2) on average for each fire season by ENDCEN. In contrast, 
PCM simulates 35 low-humidity days under BASE, and projects decreases in this number of  
–2 days (B1) to –11 days (A2) by ENDCEN. 
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Table 2. Predicted temperature, humidity, and fuel moisture for the  
Amador-El Dorado Unit 

MEAN STANDARD DEVIATION  

BASE MIDCEN ENDCEN BASE MIDCEN ENDCEN 

2 PM TEMPERATURE (°F) 

GFDL A2 70.99 75.11 79.45 13.77 14.61 15.44 

PCM A2 70.99 72.87 75.26 13.74 13.93 13.94 

GFDL B1 70.82 74.35 75.64 13.89 14.48 14.50 

PCM B1 71.02 72.16 73.42 13.78 14.03 13.91 

2 PM RELATIVE HUMIDITY (%) 

GFDL A2 37.47 34.01 32.63 20.67 20.13 20.16 

PCM A2 35.72 36.68 35.54 20.31 20.10 20.05 

GFDL B1 37.47 35.27 35.78 20.67 20.18 20.52 

PCM B1 36.13 36.50 37.38 20.51 20.18 20.08 

10-HR FUEL MOISTURE (%) 

GFDL A2 9.43 9.47 9.49 7.01 7.21 7.07 

PCM A2 9.45 9.35 9.43 7.11 6.91 7.04 

GFDL B1 9.44 9.45 9.37 6.97 7.09 6.90 

PCM B1 9.35 9.40 9.40 6.96 7.02 7.02 

LOW HUMIDITY DAYS (< 15% 2 PM RELATIVE HUMIDITY) 

GFDL A2 29.43 39.27 46.10       

PCM A2 35.13 28.00 33.00     

GFDL B1 28.43 34.10 33.60     

PCM B1 34.83 29.30 24.30       
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Figure 1. Mean 2 p.m. temperature for the high and transition fire seasons, for the 
location of the Bald Mountain weather station, for BASE, MIDCEN,  

and ENDCEN, by scenario 
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Figure 2. Mean 2 p.m. relative humidity for the high and transition fire seasons, for the 
location of the Bald Mountain weather station, for BASE, MIDCEN,  

and ENDCEN, by scenario 
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Figure 3. Number of very dry days (relative humidity < 15%) for the high and transition 
fire seasons, for the location of the Bald Mountain weather station, for BASE, MIDCEN, 

and ENDCEN, by scenario 
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Precipitation is similar to RH in that the sign of the change is determined by the model, but the 
magnitude is a function of the emissions scenario (larger changes for A2 relative to B1 for each 
model). However, although the models disagree in the sign of the change for MIDCEN (with 
GFDL showing decreases and PCM increases), by ENDCEN all model-scenario combinations 
suggest drier conditions (Table 3, Figure 4). For this location, the GFDL projects decreases in 
precipitation of 5% to 23% at MIDCEN and 13% to 34% at ENDCEN. The PCM shows increases 
on the order of 5% to 12% at MIDCEN, but at ENDCEN, a very small decrease (< 1%) is seen for 
B1 and a decrease of –8% for A2. Projected changes in the intensity of precipitation (measured as 
the total precipitation for the fire season divided by the number of wet days), display the same 
model-scenario split for MIDCEN, with GFDL projecting less intense precipitation and PCM 
more (Table 3, Figure 5). However, at ENDCEN all models and scenarios are in agreement that 
the intensity of precipitation will decrease. This is indicative of either less rain or more wet days 
or both, with overall less rain falling on a given wet day. Decreases range from –16% to –20% 
for GFDL and –8% for both PCM scenarios. Direct calculations of the number of wet days 
illustrate how intensity is a strong influence as at ENDCEN, all but the GFDL A2 simulation 
show more wet days per season (Figure 6). The GFDL A2 scenario shows fewer wet days  
(-8 days) but also much less precipitation (-34%), producing a net decrease in intensity despite 
the decrease in actual number of wet days. 
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Table 3. Predicted precipitation for the Amador-El Dorado Unit 
MEAN STANDARD DEVIATION  

BASE MIDCEN ENDCEN BASE MIDCEN ENDCEN 

PRECIPITATION (AVERAGE PER DAY, IN HUNDREDTHS OF INCHES) 

GFDL A2 6.92 5.33 4.59 64.65 58.59 54.94 

PCM A2 6.20 6.91 5.70 67.42 65.99 61.94 

GFDL B1 6.92 6.56 6.03 61.85 67.13 62.95 

PCM B1 6.20 6.51 6.19 60.52 60.63 54.42 

NUMBER OF WET DAYS PER YEAR 

GFDL A2 46.40 42.87 38.37    

PCM A2 44.87 44.27 44.90    

GFDL B1 45.37 43.90 47.23    

PCM B1 43.90 44.53 47.53    

PRECIPITATION INTENSITY (ANNUAL TOTAL/NUMBER OF RAINY DAYS) 

GFDL A2 31.89 26.59 25.61    

PCM A2 29.57 33.42 27.17    

GFDL B1 32.62 31.96 27.31    

PCM B1 30.22 31.30 27.89    
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Figure 4. Average daily precipitation for the high and transition fire seasons, for the 
location of the Bald Mountain weather station, for BASE, MIDCEN,  

and ENDCEN, by scenario 
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Figure 5. Precipitation intensity for the high and transition fire seasons, for the location 
of the Bald Mountain weather station, for BASE, MIDCEN, and ENDCEN, by scenario 
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Figure 6. Annual number of wet days for the high and transition fire seasons, for the 
location of the Bald Mountain weather station, for BASE, MIDCEN,  

and ENDCEN, by scenario 
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The 10-hr FM is parameterized as proportional to relative humidity and precipitation and 
inversely proportional to temperature. As we have already seen how temperature increases 
consistently across all model-scenario combinations while the sign of RH and precipitation 
changes tend to be determined by each model, FM is a good example of a variable where 
projected changes are likely to be inconsistent across models and scenarios owing to its 
sensitivity to multiple climate characteristics that may not be changing in consistent ways. We 
would not expect to see consistent changes in projected future FM values, and this is in fact 
exactly what we do see (Table 2, Figure 7). At ENDCEN, GFDL A2 and PCM B1 simulations 
show tiny increases of 1%. Although GFDL A2 has a large increase in temperature and a small 
decrease in humidity, which would act to reduce FM, the projected large increase in 
precipitation (+34%) at ENDCEN wins out, producing very slightly higher FM values for GFDL 
A2 relative to BASE. In contrast, PCM B1 has a smaller increase in temperature, which, coupled 
with a small increase in humidity and no change in precipitation, also results in a 1% increase in 
average FM. The PCM A2 scenario shows no change at all, whereas GFDL B1 has a decrease of  
–1%, again owing to the confounding factors of a small temperature increase, RH decrease, and 
precipitation increase. 

Wind is a function of both direction and speed. For almost all future periods and model-
scenario combinations (the sole exception being PCM B1 ENDCEN), simulations project an 
average fire season wind direction of 4 to 5 on a north-initiated, clockwise 8-point directional 
scale (S/SE) that shifts upward, indicating a seasonal average change in wind direction toward 
the south and west (Table 4, Figure 8). This could be indicative of increasing land-sea 
temperature gradients and hence more offshore winds. Changes in wind speed are extremely 
inconsistent, displaying no uniform dependence on either model or scenario. At MIDCEN, 
GFDL projects very small increases in average wind speed from 0.3% (B1) to 0.6% (A2), and 
PCM projects only slightly larger decreases of –1.1% (A2) to –1.3% (B1). At ENDCEN, GFDL A2 
and PCM B1 show decreases of –0.7% to –2%, and PCM A2 and GFDL2.1 B1 project increases of 
0.2% to 0.3% (Figure 9). None of these changes are particularly significant, likely reflecting the 
fact that wind speed is parameterized as such a complex function of daily weather 
characteristics and wind direction for each location that the multiple changes in temperature, 
humidity, wind direction, and other factors already observed are interacting here to 
simultaneously increase and decrease wind speed, producing little net change. It is also likely a 
result of the fact that this approach does not take into account model-simulated changes in the 
wind-related characteristics of the daily weather systems. A comparison of these wind direction 
and speed projections with high-resolution regional model-generated values is planned for the 
future, to evaluate the ability of this approach to capture projected shifts in wind owing to 
climate change. However, focusing on the “very windy days” (wind speeds > 15) only, which 
likely display a stronger relationship to fire escapes than do the overall average wind fields for 
a given season, does reveal a more consistent picture of the future. For MIDCEN, all but the 
GFDL A2 simulation show decreases in the number of “very windy” days (Figure 10). At 
ENDCEN, however, both A2 simulations show increases of 0.2 to 0.7 windy days per season, 
and both B1 scenarios show decreases of 0.3 to 0.7 windy days per season. This suggests that for 
each model there should be a consistently larger number of wind-driven fire escapes under the 
A2 scenario relative to the B1 at ENDCEN. 
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Table 4. Predicted wind for the Amador-El Dorado Unit 
MEAN STANDARD DEVIATION  

BASE MIDCEN ENDCEN BASE MIDCEN ENDCEN 

WIND DIRECTION (ON A NORTH-INITIATED, CLOCKWISE 8-POINT DIRECTIONAL SCALE)

GFDL A2 4.86 4.90 4.95 1.55 1.55 1.54 

PCM A2 4.88 4.91 4.93 1.59 1.59 1.52 

GFDL B1 4.87 4.89 4.88 1.58 1.55 1.56 

PCM B1 4.88 4.88 4.86 1.60 1.60 1.59 

WIND SPEED (MILES PER HOUR) 

GFDL A2 6.28 6.30 6.24 4.04 4.06 4.06 

PCM A2 6.33 6.26 6.34 4.09 4.05 4.03 

GFDL B1 6.26 6.30 6.28 4.06 4.04 4.03 

PCM B1 6.26 6.18 6.14 4.09 4.04 4.06 

VERY WINDY DAYS (WIND SPEED > 15) (NUMBER OF DAYS) 

GFDL A2 3.20 3.77 3.90    

PCM A2 3.93 3.77 4.10    

GFDL B1 3.90 3.63 3.23    

PCM B1 3.93 3.27 3.60    
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Figure 7. Average 10-hour fuel moisture (percent) for the high and transition fire seasons, 
for the location of the Bald Mountain weather station, for BASE, MIDCEN, and ENDCEN, 

by scenario 
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Figure 8. Wind direction for the high and transition fire seasons, for the location of the 
Bald Mountain weather station, for BASE, MIDCEN, and ENDCEN, by scenario 



25 

6.00

6.05

6.10

6.15

6.20

6.25

6.30

6.35

6.40

GFDL A2 PCM A2 GFDL B1 PCM B1

A
ve

ra
ge

 W
in

d 
Sp

ee
d

BASE MIDCEN ENDCEN

Figure 9. Average wind speed for the high and transition fire seasons, for the location of 
the Bald Mountain weather station, for BASE, MIDCEN, and ENDCEN, by scenario 
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Figure 10. Annual number of very windy days (wind speed > 15 mph) for the high and 
transition fire seasons, for the location of the Bald Mountain weather station, for BASE, 

MIDCEN, and ENDCEN, by scenario 
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3.2. Fire Behavior 
Table 5 shows mean rates of spread (ROS) for the high fire season (June 15 to October 15) under 
GFDL scenario A2 for selected fuel-weather station-slope class-period combinations. Note that 
the reported ROS means were calculated using only the portion of the distribution of predicted 
rate of spread values used to estimate the beta distribution that the CFES2 model uses in 
assigning a ROS values to faster-moving fires. 

The results in Table 5 show that the increase in mean ROS between BASE and ENDCEN was 
significant (p < 0.05) and positive for all fuel combinations. Relative to BASE, the largest 
absolute and proportional increases were for the shrub fuel combinations, and the smallest were 
for the timber combinations. Most of this increase, however, took place between BASE and 
MIDCEN, with the majority of fuel combinations showing either no change, or a slight decrease, 
in mean ROS between MIDCEN and ENDCEN. The exceptions were not characterized by a 
common fuel type. For similar fuel combinations, the predicted mean ROS was generally higher 
when estimated by using weather data generated for the Bald Mountain weather station 
(elevation 4,613 ft, or 1,406 meters) than the Georgetown weather station (elevation 3,000 ft, or 
914 meters). 

Table 6 shows the mean rates of spread for the same fuel combinations under the GFDL 
scenario A2 for just the 95th percentile values. Fires with such extremely high ROS values are of 
particular importance because of their greater potential to escape initial attack suppression 
efforts. As shown, mean ROS values for the top 5% of the estimated ROS distribution also 
generally increased significantly between BASE and ENDCEN for shrub and grass fuel 
combinations. 

Table 7 shows mean ROS for the high fire season (June 15 to October 15) under GFDL scenario 
B1 for selected fuel-weather station-slope class-period combinations. These predicted values for 
mean ROS did not show as consistent a pattern of significant increase between BASE and 
ENDCEN for the shrub and timber fuel combinations as was evident in scenario A2. 
Furthermore, all fuel combinations exhibited either a decrease or no change in predicted ROS 
between MIDCEN and ENDCEN. These results were mirrored in Table 8, which shows the 
changes in predicted mean ROS for just the top 5% of the ROS distribution values.  
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Table 5. Mean rates of spread (chains per hour) for the high fire season (June 15–October 15) for selected fuel-weather 
station-slope class-period combinations under climate model GFDL2.1, scenario A2 

   

 

Mean ROS by period Tukey HSD comparisons 

Weather station Fuel model 
Slope 
class 

(percent) 
µBASE µMIDCEN µENDCEN 

Change 
BASE 

to MIDCEN 

Change 
MIDCEN 

to ENDCEN 

Change 
BASE 

to ENDCEN 

Bald Mountain Grass (A1) 26–40 60.72 63.24 63.77 + x + 

Georgetown Grass (A1) 26–40 59.41 63.02 71.78 + + + 

Bald Mountain Shrub (B1) 26–40 54.10 64.53 65.09 + x + 

Georgetown Shrub (B1) 26–40 34.93 38.13 39.68 + + + 

Bald Mountain Shrub (B1) 41–55 57.34 71.21 72.06 + x + 

Georgetown Shrub (B1) 41–55 48.78 51.02 52.28 + x + 

Bald Mountain Open pine (C1) 26–40 13.92 17.20 16.49 + - + 

Georgetown Open pine (C1) 26–40 9.18 9.88 10.14 + + + 

Bald Mt. Closed pine (U1) 0–25 4.24 5.02 4.91 + x + 

Bald Mt. Closed pine (U1) 41–55 6.41 6.97 7.06 + x + 

 

Notes: µi denotes the mean rate of fire spread for the values used to estimate the beta distribution characterizing most of the fire load 
in period I; “+” denotes significant increase. “x” denotes no change; and “–“ denotes significant decrease. 
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Table 6. Mean rates of spread (chains per hour) for the high fire season (June 15–October 15) for the 95th percentile values 
for selected fuel-weather station-slope class combinations under climate model GFDL2.1, scenario A2 

   

 

Mean ROS by period Tukey HSD comparisons 

Weather station Fuel model 
Slope 
class 

(percent) 
µBASE µMIDCEN µENDCEN 

Change 
BASE 

to MIDCEN 

Change 
MIDCEN 

to ENDCEN 

Change 
BASE 

to ENDCEN 

Bald Mountain Grass (A1) 26–40 145.17 146.76 146.99 x x x 

Georgetown Grass (A1) 26–40 116.94 122.39 127.66 + x + 

Bald Mountain Shrub (B1) 26–40 88.61 95.57 94.07 + x + 

Georgetown Shrub (B1) 26–40 73.30 77.44 80.64 + + + 

Bald Mountain Shrub (B1) 41–55 99.25 106.48 105.14 + x + 

Georgetown Shrub (B1) 41–55 84.15 88.39 91.82 + + + 

Bald Mountain Open pine (C1) 26–40 23.03 24.27 23.57 x x x 

Georgetown Open pine (C1) 26–40 17.93 18.86 19.73 + + + 

Bald Mountain Closed pine (U1) 0–25 8.51 8.90 8.66 x x x 

Bald Mountain Closed pine (U1) 41–55 12.03 12.51 12.27 x x x 

 

Notes: µi denotes the mean rate of fire spread for the 95th percentile values in period I; “+” denotes significant increase; “x” denotes 
no change; and “–“ denotes significant decrease. 
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Table 7. Mean rates of spread (chains per hour) for the high fire season (June 15–October 15) for selected fuel-weather 
station-slope class-period combinations under climate model GFDL2.1, scenario B1 

   

 

Mean ROS by period Tukey HSD comparisons 

Weather station Fuel model 
Slope 
class 

(percent) 
µBASE µMIDCEN µENDCEN 

Change 
BASE 

to MIDCEN 

Change 
MIDCEN 

to ENDCEN 

Change 
BASE 

to ENDCEN 

Bald Mountain Grass (A1) 26–40 60.27 64.24 61.98 + - x 

Georgetown Grass (A1) 26–40 61.37 70.39 63.15 + - + 

Bald Mountain Shrub (B1) 26–40 62.68 55.83 50.82 - - - 

Georgetown Shrub (B1) 26–40 35.39 37.30 37.17 + x + 

Bald Mountain Shrub (B1) 41–55 69.04 58.65 55.71 - - - 

Georgetown Shrub (B1) 41–55 49.36 50.55 50.26 + x + 

Bald Mountain Open pine (C1) 26–40 15.63 13.39 12.81 - - - 

Georgetown Open pine (C1) 26–40 9.24 9.68 9.58 + x + 

Bald Mountain Closed pine (U1) 0–25 4.56 4.01 4.12 - x - 

Bald Mountain Closed pine (U1) 41–55 6.43 6.72 6.74 + x + 

 

Notes: µi denotes the mean rate of fire spread for the values used to estimate the beta distribution characterizing most of the fire load 
in period I; “+” denotes significant increase; “x” denotes no change; and “–“ denotes significant decrease. 
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Table 8. Mean rates of spread (chains per hour) for the high fire season (June 15–October 15) for the 95th percentile values 
for selected fuel-weather station-slope class combinations under climate model GFDL2.1, scenario B1 

   

 

Mean ROS by period Tukey HSD comparisons 

Weather station Fuel model 
Slope 
class 

(percent) 
µBASE µMIDCEN µENDCEN 

Change 
BASE 

to MIDCEN 

Change 
MIDCEN 

to ENDCEN 

Change 
BASE 

to ENDCEN 

Bald Mountain Grass (A1) 140.68 148.18 145.04 + x + 140.68 

Georgetown Grass (A1) 120.43 119.00 119.76 x x x 120.43 

Bald Mountain Shrub (B1) 85.62 91.85 89.21 + x +   85.62 

Georgetown Shrub (B1) 75.37 75.82 75.18 x x x   75.37 

Bald Mountain Shrub (B1) 96.30 102.73 99.82 + x +   96.30 

Georgetown Shrub (B1) 86.32 86.87 86.17 x x x   86.32 

Bald Mountain Open pine (C1) 22.08 22.96 22.95 x x x   22.08 

Georgetown Open pine (C1) 18.42 18.48 18.46 x x x   18.42 

Bald Mountain Closed pine (U1) 8.15 8.47 8.47 x x x    8.15 

Bald Mountain Closed pine (U1) 11.68 12.08 11.99 x x x   11.68 

 

Notes: µi denotes the mean rate of fire spread for the 95th-plus percentile values in period I; “+” denotes significant increase; “x” 
denotes no change; and “–“ denotes significant decrease. 
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3.3. Initial Attack Simulation 
The two key outcomes of initial attack on wildfire that are predicted by the CFES2 model are the 
expected number of ESL fires (those that would exceed simulation limits on time to 
containment or size upon containment) and the expected area burned for all fires contained 
within those same limits. The ESL fires can be interpreted loosely as fires that would “escape” 
initial attack, since the time and size limits used to define them are primarily a reflection of 
what policymakers regard as an escape. In some cases, although probably not for the AEU unit 
for which these results were generated, these time and size limits might also be used to express 
bounds on what is considered a range within which the simulation process is valid (i.e., one 
within which topography or firefighter fatigue does not fundamentally change the nature of 
what is being simulated, or imply that a fire would have moved into an “extended attack” 
phase in which additional resources would be dispatched or firefighting tactics would need to 
be adjusted). 

Under both the GDFL A2 and B1 scenarios, the predicted number of ESL fires and area burned 
by contained fires for the AEU Unit in BASE compare favorably with the historical record 
derived from wildland fire incidents that occurred on nonfederal lands over the period 1990 to 
2000 as recorded in the Emergency Activity Reporting System maintained by CDF (Table 9). 
The discrepancy between BASE simulation results and the historical record was less than 20% 
for the number of ESL fires, and less than 30% for area burned in contained fires. The predicted 
distribution of the ESL fires by fuel model was also quite close to the historical record, leading 
us to conclude that BASE simulation results provided a good basis for both relative and 
absolute comparisons with the predicted wildfire outcomes for MIDCEN and ENDCEN. 

Under GDFL scenario A2, ESL fires and the area burned by contained fires increased by 44% 
and 19%, respectively, between BASE and ENDCEN (Table 10). Under GDFL scenario B1, the 
increase in both was much smaller—only 10% and 8%, respectively. These differences in 
wildfire outcomes for the two scenarios are consistent with the climate under the A2 scenario 
being warmer and drier, in addition to exhibiting more “extreme wind” days, which would 
cause a shift in the distribution of fire rates of spread toward higher rates. 
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Table 9. Historical (1990 to 2000) and GFDL (BASE) Scenario A2 escapes, ESL fires, and 
area burned by contained fires for the main fuel types in the Amador El Dorado Unit 

Fuel type 

Historical 
escapes 

(per year) 

Historical area burned  
in contained fires 
(hectares per year) 

GFDL 
(BASE) 

ESLs 
(per 
year) 

GFDL (BASE) area 
burned in contained fires 

(hectares per year) 

Brush 0.7 62.2 0.83 144 

Grass 0.6 215.5 0.80 317 

Interior Conifer 0.3 9.1 0.19    7 

Woodland 0.4 56.3 0.07    8 

Not classified 0.1 15.3 0.00    0 

Overall 2.1 358.5 1.88 475 
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Table 10. CFES2 predictions for the GFDL GCM and both climate scenarios 

Fuel type 
Fires 

(per year)  
ESLs 

(per year)  
Area burned in contained fires 

(hectares per year) 

 
GFDL 

Scenario A2               

   BASE SE MIDCEN SE ENDCEN SE  BASE SE MIDCEN SE ENDCEN SE 

Brush  204   0.83 0.05 1.36 0.06 1.32 0.07  144 3 195 3 153 5 

Grass  80   0.80 0.04 0.86 0.04 1.07 0.04  317 10 351 11 363 11 

Interior conifer  42   0.19 0.02 0.30 0.03 0.28 0.03  7 0 9 0 10 0 

Woodland  20   0.07 0.01 0.08 0.02 0.05 0.01  8 0 10 1 12 1 

Overall  346   1.88 0.07 2.59 0.08 2.72 0.09  475 10 564 11 538 12 

 
GFDL 

Scenario B1               

Brush  204   0.86 0.05 0.80 0.05 0.87 0.06  141 3 163 3 157 3 

Grass  80   0.79 0.04 0.92 0.04 0.92 0.04  317 10 351 11 339 11 

Interior conifer  42   0.18 0.02 0.22 0.02 0.23 0.02  7 0 8 0 7 0 

Woodland  21   0.07 0.01 0.05 0.01 0.06 0.01  10 1 11 1 10 0 

Overall  346    1.88 0.07 1.99 0.07 2.08 0.08   474 10 533 11 513 11 

Notes: SE denotes standard error. 
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Interpretation of the distribution of the increases in predicted ESL fires and acres burned in 
contained fires in different parts of the AEU unit is complex for a variety of reasons. For 
example, it is standard practice for the deployment of firefighting resources to differ by fuel, 
slope, and population density, with more resources deployed where fires are more difficult to 
contain, or where greater values are at risk. Furthermore, since CFES2 does not attempt to 
estimate the area burned in escaped fires, the total increase in acres burned might be 
significantly larger than would be indicated by the increase in estimated acres burned in 
contained fires for either scenario. Thus, the expected total area burned in all fires might 
actually go down as a result of the expected number of ESL fires going up. 

In AEU, the frequency of fires in high-population-density FMAZs tends to be greater than in 
low-population-density FMAZs (although these results are not normalized for the total area 
involved), possibly reflecting the fact that most of the fires in AEU are of human origin (i.e., 
accidents or arson). Yet under GDFL scenario A2, the number of ESL fires increased more in the 
low-population-density areas between BASE and ENDCEN (Figure 11, Table 11). Under the 
GDFL B1 scenario, the predicted increases in both expected number of ESL fires and area 
burned in contained fires were still greater in low-population-density areas, but the increases 
were much smaller than in the GDFL A2 scenario Figure 12). 

Not surprisingly, given the smaller changes in weather variables predicted by using PCM, 
CFES2 simulation results for PCM-generated scenarios showed little change in ESLs or acres 
burned in contained fires between BASE and ENDCEN, or between the A2 and B1 scenarios 
(Table 12).  

Another way to look at predicted changes in the number of ESL fires is to consider what 
happens in the worst-case years instead of expected number of ESL fires per year. Consistent 
with the indications in table 10 that most of the increase in the number of ESL fires would be in 
FMAZs with brush fuels, examination of the 95th- and 99th-percentile values for the number of 
ESL fires per year showed increases for both brush FMAZs between BASE and MIDCEN, but no 
obvious increase for FMAZs characterized by other fuel models (Table 13). 

In an effort to assess what additional resources would be to offset the predicted changes in fire 
outcomes, a “new” fire engine was added to the preexisting configuration of firefighting 
resources, to be nominally dispatched from the fire station generally providing the first-
responding engine to simulated wildland fires in the brush, low-population FMAZ. This 
addition of a single engine resulted in a reduction in the predicted number of ESL fires from 2.7 
to 2.4 at ENDCEN (Table 14). Although this fell short of returning the system to the annual 
escape rate of 1.9 that prevailed for BASE, it is easy to envision how deployment of additional 
firefighting resources could achieve such a reduction. 
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Table 11. CFES2 predictions for the GFDL GCM and both climate scenarios. 

Fuel type Population 
ESLs 

(per year)  
Area burned in contained fires 

(hectares per year)  
Fires 

 (per year) 
  BASE SE MIDCEN SE ENDCEN SE  BASE SE MIDCEN SE ENDCEN SE   
  GFDL, Scenario A2             

Brush High 0.35 0.05 0.68 0.06 0.30 0.04  47 2 69 2 20 0  115 
 Low 0.48 0.05 0.69 0.06 1.02 0.08  96 3 126 3 133 3  90 

Grass High 0.14 0.03 0.20 0.03 0.20 0.03  13 1 14 1 16 1  7 
 Low 0.42 0.05 0.42 0.05 0.60 0.06  277 8 312 8 322 8  66 
 Moderate 0.25 0.04 0.24 0.03 0.28 0.04  27 2 26 2 25 2  7 

Interior conifer High 0.03 0.01 0.05 0.02 0.02 0.01  4 0 5 0 7 0  31 
 Low 0.17 0.03 0.25 0.04 0.27 0.04  3 0 4 0 3 0  10 

Woodland High 0.04 0.01 0.08 0.02 0.04 0.01  7 1 9 1 10 1  10 
 Low 0.03 0.01 0.00 0.00 0.02 0.01  1 0 1 0 1 0  10 

Overall  1.88  2.59  2.72   475  564  538   346 
  GFDL, Scenario B1             

Brush High 0.33 0.05 0.29 0.04 0.34 0.05  47 2 55 2 52 2  115 
 Low 0.53 0.06 0.52 0.06 0.53 0.06  47 3 108 3 105 3  89 

Grass High 0.11 0.02 0.18 0.03 0.12 0.02  279 1 13 1 13 1  7 
 Low 0.40 0.05 0.49 0.05 0.53 0.06  25 8 314 8 301 8  66 
 Moderate 0.29 0.04 0.25 0.04 0.28 0.04  13 2 24 2 25 2  7 

Interior conifer High 0.02 0.01 0.03 0.01 0.03 0.01  3 0 5 0 4 0  31 
 Low 0.16 0.03 0.19 0.03 0.20 0.03  4 0 3 0 3 0  10 

Woodland High 0.03 0.01 0.04 0.01 0.05 0.02  1 1 10 1 8 1  10 
 Low 0.04 0.01 0.01 0.01 0.01 0.01  9 0 1 0 2 0  10 

Overall   1.88   1.99   2.08    428   533   513    346 
Notes: SE denotes standard error. 
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Table 12. CFES2 predictions for the PCM GCM and both climate scenarios 

Fuel type 
Fires 

(per year)  
ESLs  

(per year)  
Area burned in contained fires 

(hectares per year) 

 PCM, Scenario A2               

   BASE SE MIDCEN SE ENDCEN SE  BASE SE MIDCEN SE ENDCEN SE 

Brush  206   0.78 0.05 0.84 0.05 0.95 0.05  142 3 148 3 165 3 

Grass  81   0.79 0.04 0.79 0.04 0.83 0.04  339 11 315 10 344 11 

Interior conifer  42   0.21 0.02 0.17 0.02 0.23 0.02  7 0 7 0 7 0 

Woodland  20   0.05 0.01 0.08 0.01 0.00 0.00  9 0 9 0 0 0 

Overall  348   1.82 0.07 1.87 0.07 2.00 0.07  497 11 479 10 516 11 

 PCM, Scenario B1               

Brush  208   1.00 0.05 0.88 0.05 0.82 0.05  156 3 156 3 138 3 

Grass  81   0.70 0.04 0.74 0.04 0.82 0.04  313 10 332 10 337 10 

Interior conifer  42   0.21 0.02 0.24 0.02 0.23 0.03  9 0 7 0 6 0 

Woodland  21   0.07 0.01 0.08 0.01 0.07 0.02  8 0 10 1 8 0 

Overall  352   1.97 0.07 1.94 0.07 1.93 0.07  487 10 506 11 489 11 

Notes: SE denotes standard error.  
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Table 13. GFDL, scenario A2, 90th and 95th percentile number of ESL fires per year 

 Fuel type  Population 
ESLs 

(per year)  

  BASE MIDCEN ENDCEN 

  95% 99% 95% 99% 95% 99% 

Brush High 2 2 3 3 1 3 

 Low 2 3 3 4 3 4 

Grass High 1 2 1 2 1 1 

 Low 2 2 2 2 2 3 

 Moderate 1 2 1 2 1 2 

Interior conifer High 0 1 0 1 0 1 

 Low 1 1 1 2 1 2 

Woodland High 0 1 1 1 0 1 

  Low 0 1 0 0 0 1 
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Table 14. Effect of adding a CDF engine at the El Dorado Hills station post-climate change under GFDL-A2 

Fuel type 
Population 

density 
ESLs 

(per year) 

  BASE SE ENDCEN SE 

ENDCEN 
with extra 

engine SE 

Brush High 0.35 0.05 0.30 0.04 0.23 0.03 

 Low 0.48 0.05 1.02 0.08 0.83 0.07 

Grass High 0.14 0.03 0.20 0.03 0.18 0.03 

 Low 0.42 0.05 0.60 0.06 0.54 0.05 

 Moderate 0.25 0.04 0.28 0.04 0.27 0.04 

Interior conifer High 0.03 0.01 0.02 0.01 0.03 0.01 

 Low 0.17 0.03 0.27 0.04 0.29 0.04 

Woodland High 0.04 0.01 0.0 0.01 0.06 0.02 

 Low 0.03 0.01 0.02 0.01 0.04 0.01 

Overall  1.88  2.72  2.45  

Notes: SE denotes standard error. 
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Figure 11. Mean annual escapes, by Fire Management Analysis Zone, for base, mid-
century, and end-of-century periods modeled by GFDL for the A2 (high GHG) scenario 
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Figure 12. Mean annual escapes, by Fire Management Analysis Zone, for base, mid-
century, and end-of-century periods modeled by GFDL for the B1  

(reduced GHG) scenario 
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4.0 Conclusions 
As climate change and population growth unfold over the coming century, we can expect 
changes in the wildland fire system to manifest themselves through several pathways. Climate-
induced changes in weather will directly affect the behavior of vegetation fires by altering their 
rate of spread or intensity in ways that ultimately affect their outcomes: burned area, damage to 
natural resources or infrastructure, fire agency budgets and suppression expenditures, and 
number of fires that escape initial attack and therefore have the potential to become larger or 
very costly. 

Just as importantly, but much more difficult to forecast, we can expect climate change to alter 
vegetation composition, conceivably to an extent that leads to substantial changes in the fuels 
available to burn, thereby affecting fire behavior. For example, if timber species die out and are 
replaced by shrubs, there might be less total burnable fuels and fewer commercial natural 
resources at risk, but fire rates of spread would likely increase. 

Apart from climate change, we know that population growth will almost certainly result in 
additional area covered in wildland vegetation to be incorporated into California’s extensive 
wildland-urban interface. As the wildland-urban interface spreads, the values at risk in this 
type of development will inexorably result in public demands for greater expenditures on 
firefighting resources, and for more aggressive initial attack to protect the increased values at 
risk. To the extent that these demands are met simply by increased use of existing resources 
(e.g., dispatch five engines to a fire instead of two), then this would act as a countervailing force 
tending to reduce any climate change-induced increase in the frequency of escaped fires 
without fundamentally changing the fixed costs of fire control. The effects of infrastructure 
development in the wildland-urban interface on the marginal costs of fire control are difficult to 
generalize, given their site and situation specificity. 

This white paper focuses primarily on the first pathway noted above—how climate change-
induced effects on weather will translate into changes in wildland fire severity and outcomes, 
particularly on the effectiveness of initial attack at limiting the area burned in contained fires 
and the number of fires that escape initial attack. The other pathways are not less important, but 
could not be addressed within the severe time, personnel, and resource limitations under which 
this work was undertaken. 

Prior research on this issue indicated that there is a potential for significant increases in the 
number of fires escaping initial attack, particularly in areas in which the fuel matrix is 
dominated by grass and brush. These results were driven primarily by predicted increases in 
wind speeds. Those findings, however, were derived for a single climate change scenario, very 
coarse-scale AOGCMs, and a rather simplistic deterministic simulation model of initial attack 
on wildland fire (CFES-IAM). 

In contrast, the analysis reported here used two state-of-the-art AOGCMs (GFDL and PCM), 
new downscaling techniques to link the outputs of those AOGCMs to historical data from local 
weather stations, and a much more sophisticated stochastic simulation model of initial attack on 
wildland fire (CFES2) that was developed specifically to address the deficiencies noted in the 
model used in the prior research on this topic. Using this more rigorous approach with data for 
the Amador-El Dorado Unit, this study’s primary findings can be briefly summarized as 
follows. 
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First, the subtle shifts in fire behavior of the sort that might be induced by the climate changes 
anticipated for the next century are of sufficient magnitude to generate an appreciable increase 
in the number of fires that escape initial attack, at least for areas where brush fuels dominate. It 
is important to remember that even a fractional increase in the number of ESL fires may have 
significant public policy implications, given the high cost to society of a catastrophic escape like 
those experienced in recent decades in the Berkeley-Oakland, Santa Barbara, San Diego, or Los 
Angeles areas. 

Second, comparison between the higher A2 and lower B1 emissions scenarios shows that the 
lower emissions scenario seems to be sufficient to produce modest reductions in the anticipated 
negative impacts on wildland fire severity and outcomes relative to the higher A2 scenario. 

Third, this analysis is sensitive to the choice of AOGCM. Projections of certain climate variables 
that display strong relationships to fire conditions and spread (e.g., wind speed, 10-hr fuel 
moisture) appear to be more sensitive to the model than shown in the emissions scenario used 
(Tables 2, 4). Carrying these projections through to simulations of wildland fire severity, we 
found the PCM-generated climate scenarios (which were in general wetter than and not as 
warm as GFDL) to result in more modest predicted changes in wildland fire severity and 
outcomes than GFDL-generated climate-change scenarios. The climate impacts on fire 
conditions and rates of spread might be much greater in San Bernardino or Riverside, where 
under GDFL A2, relative humidity starts lower (compared to AEU) and declines along with 
precipitation, number of wet days, and precipitation intensity; whereas there are more windy 
days and higher wind speeds. Such changes would increase the likelihood of escapes, which 
highlights the importance of performing a similar analysis for a southern California CDF unit. 

Fourth, the magnitude of the climate change-induced changes in wildland fire severity and 
outcomes was less than reported in prior work, and we suspect that this is primarily owing to 
different assumptions with respect to how wind speed is treated in the process of downscaling 
AOGCM climate simulations. The method used in this study was more conservative, sampling 
from historical distributions, but, lacking input from larger-scale dynamics as represented by a 
regional climate model, it may underestimate the effect of climate change on wind fields. 
Further work on how to combine the historical range of wind speeds observed at weather 
stations with dynamic simulations of changes in regional to local-scale wind fields under 
climate change scenarios and evaluation of their overall impact on wildfire severity and spread 
will be a high priority for the research team who collaborated to produce this report. 

Fifth, we conclude that the change-induced changes in wildland fire outcomes given the 
existing firefighting resources, deployment, and dispatch policies in AEU could be 
compensated for with a modest augmentation to those resources. A modest augmentation of 
firefighting resources in all of the CDF’s 22 administrative units and contract counties, however, 
might translate at the statewide level into a significant budget augmentation. As noted below, 
generalizing this result would be problematic until a similar analysis is performed for 
additional units characterized by a wider range of fuel conditions, resource availability, etc. 

Sixth, although the existing “fire season” during which the CDF maintains a fully staffed 
organization is more a reflection of annual fire occurrence patterns than anticipated fire 
behavior, the results of climate change on fire behavior predicted by using the methods 
employed in this study suggest that fire behavior might play a more significant role in 
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determining the length of the fire season in the future. Further exploration of this possibility 
will, of course, need to be coordinated with work on how fire occurrence patterns might change 
as a result of both climate and demographic changes over the next century. 

Seventh, it would be useful for future work to attempt to factor in vegetation change resulting 
from climate change, possibly by using the newer 40-fuel model system in BEHAVE 2, or 
perhaps the 256-fuel model matrix of the fuel characteristics classification system. The fuel 
models used in this study are relatively coarse, and therefore relatively unresponsive to climate 
change. 

Eighth, although this study has focused on a consideration of the impact of climate change on 
rate of spread, it may be just as important to consider the impacts of climate change and 
vegetation management activities on the potential for crown fires. Some of the models currently 
in use for assessing crown fire potential would have the benefit for extension of this research of 
being linkable to the Forest Inventory Anlysis (FIA) data on forest condition collected by the 
USDA Forest Service (USFS). 

Finally, in contrast to prior work, the use in this study of a stochastic model of initial attack 
demonstrates the value of being able to generate standard errors on the mean values of 
predicted outcomes for hypothesis testing, as well as for characterizing the impact of climate 
change on the extreme values of fire ROS distributions. 

Generalizing our findings with respect to wildland fire intensity and outcomes for the Amador-
El Dorado Unit to other private lands in the state will require both further analysis using the 
AEU data, and replication of this analysis using data for several other units. We have plans to 
do so in the coming months, using data from the Santa Clara and San Bernardino Units.  

It will be more difficult to extend the analysis to cover the public forests managed by the USFS 
on the north coast or in the upper elevations of the Sierra Nevada owing to differences between 
the USFS Fire Program Analysis (FPA) model and the California Department of Forestry and 
Fire Protection’s CFES2 model for analysis of initial attack on wildland fires. The two models 
are similar in many ways, but the FPA model does not incorporate a stochastic treatment of key 
simulation elements (e.g., fire occurrence or rate of spread), and therefore its simulation outputs 
cannot be analyzed by using the same significance-testing methods. The same methods could, 
however, be used to downscale GCM climate projections for a similar analysis of the impact of 
climate change on fire rates of spread, and a deterministic analysis could be performed by using 
the FPA model of the effects of those changes. It is also likely that a more sophisticated analysis 
of the impact of climate change on wildfire on public and private lands in California would 
entail the development of separate prediction models of the effects on fire occurrence, as most 
fires on CDF-protected lands are of anthropogenic origin; whereas lightning-caused fires 
constitute a higher proportion of fire ignitions on much of the land protected by the USFS. 

We believe that the research summarized in this paper will prove to be at least as valuable as 
any attempt would have been to estimate statewide impacts, if not more so, because of the 
problems and opportunities it has identified in our capacity to address the questions that 
motivated the study. In particular, it is now clear to the fire research community at the 
University of California, Berkeley, and to their network of collaborators at other institutions, 
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that much more work is needed to validate some of our modeling approaches, or develop 
entirely new ones, to many of the elements of the system we are modeling.  
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